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ABSTRACT ARTICLE HISTORY

The Salford Advanced Laser Canopy Analyser (SALCA) is a unique Received 19 August 2015
dual-wavelength full-waveform terrestrial laser scanner (TLS) Accepted 12 December 2015
designed to measure forest canopies. This article has two principle

objectives, first to present the detailed analysis of the radiometric

properties of the SALCA instrument, and second, to propose a novel

method to calibrate the recorded intensity to apparent reflectance

using a neural network approach. The results demonstrate the

complexity of the radiometric response to range, reflectance, and

laser temperature and show that neural networks can accurately

estimate apparent reflectance for both wavelengths (a root mean

square error (RMSE) of 0.072 and 0.069 for the 1063 and 1545 nm

wavelengths, respectively). The trained network can then be used

to calibrate full hemispherical scans in a forest environment, provid-

ing new opportunities for quantitative data analysis.

1. Introduction

Terrestrial laser scanners (TLS) measure range with very high accuracy, driving a dramatic
shift in three-dimensional (3D) visualization and analysis for both natural and manmade
scenes. Along with the acquisition of range from multiple azimuth and zenith angles, laser
scanning systems also measure intensity, which can be related to laser power, for each
laser pulse. Intensity is recorded as a sensor-specific digital number (DN) and is affected by
several factors as defined in the lidar equation (Wagner et al. 2006):

P.D?

P, = o, (M
" 4nRAg?

where P, is the received energy, P; the outgoing laser pulse energy, D, the aperture
diameter of the receiver optics, R the distance from the laser to the target, ﬁf the beam
divergence, and o is the backscatter cross-section, computed as:
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where Q is the phase function, p the reflectivity of the scatterer, and A is the illuminated area
of the scattering element. Intensity information has been most commonly used to support the
visual examination of point clouds but among the latest advances in laser scanning is the
application of intensity data to extract information about target properties, through the
interpretation of physical backscattering characteristics (Hofle and Pfeifer 2007). As a result,
the reliability of the intensity measure and the application of correction methods to facilitate
its effective interpretation are becoming important areas of study (Kaasalainen et al. 2009).
In order to convert raw DN recorded by the instrument into physical units related to
target reflectance, it is necessary to apply a radiometric calibration procedure. In remote
sensing, this is typically implemented by applying a sequence of corrections to translate
the DN into a value proportional or equal to target reflectance, usually with the aid of
known external reference targets (Wagner et al. 2008; Kaasalainen et al. 2009). The
calibrated output, the apparent reflectance, is related to physical characteristics of the
target and can therefore be used in object classification, change detection, and in point
cloud processing algorithms for both airborne laser scanner (ALS) and TLS datasets.
Very few published studies exist on TLS radiometric calibration methods. One reason
is that the design of commercial laser scanners is often undisclosed by the manufac-
turers and some systems have proprietary calibration routines that are performed within
the system software. As a consequence, uncertainties remain which hinder the inter-
pretation of data from many systems and limit the utilization of recorded intensity.
The Salford Advanced Laser Canopy Analyser (SALCA) is an experimental TLS instru-
ment developed by the University of Salford and Halo Photonics Ltd. Full access to the
instrument design and raw data provides an opportunity to investigate the intensity
response and develop a robust radiometric calibration routine. SALCA is a dual-wave-
length full-waveform TLS system: two independent lasers at wavelengths 1063 and
1545 nm are used and the entire backscattered signal for each laser pulse is recorded.
The purpose is to aid the spectral separation of leaf and woody material in forest
ecosystems, a current limitation of single wavelength TLS instruments. A description of
the instrument including background on the development and full technical specifica-
tions may be found in Danson et al. (2014). Accurate radiometric calibration of SALCA
data is a fundamental first step for inferring characteristics of the forest ecosystem such
as achieving leaf and wood separation based on reflectance, along with other ecological
applications, such as measuring moisture content or monitoring tree health in a forest
(Gaulton et al. 2013). The main objectives and contributions of this article are:

e to assess the radiometric characteristics of the SALCA instrument; specifically, the
intensity response to range, reflectance, and laser temperature,

¢ to develop, test, and assess the novel application of neural networks to provide a
rapid and robust method for intensity correction to apparent reflectance.

2. Background to calibration

Assuming the sensor configuration for a given TLS instrument remains constant, the
return power of a laser pulse is governed by the range, reflectance properties of the
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target, incidence angle, and amount of beam occupied. Atmospheric effects can also
play a part but are only significant over long ranges (Wagner et al. 2006).

The theoretical range dependence of laser return power can be expressed as 1/R
where R is the range of the target measured, deduced from (1). Although this has been
shown to be mostly valid for ALS (Hofle and Pfeifer 2007), the inverse square law does
not fully apply for many TLS systems. Typically, close to the scanner, the recorded
intensity increases with range: a strong deviation from the inverse square law of the
lidar equation and an artefact identified for several TLS instruments (Ramirez, Armitage,
and Danson 2013). This can be the result of system software such as a brightness
reducer in the detector for short distances, as is the case for Faro and Leica instruments
(Kaasalainen, Jaakkola, et al. 2011), or the incomplete overlap of the laser beam and
detector field of view (FOV) which restricts the amount of energy reaching the detector
through the optics (Hofle 2014). For longer range measurements, intensity begins to
decrease as the 1/R* effect becomes dominant.

The reflectance properties of the target are a significant factor controlling the amount
of backscatter returned to the sensor, together with the phase function which describes
reflectance as a function of angle of incidence. Assuming that the target fills the entire
footprint of the laser beam and incidence angle remains constant, then the recorded
intensity should increase as the reflectance of the object increases (Wagner et al. 2006).

A third factor to consider is the influence of laser temperature. It is well documented
in manufacturer guidelines that many commercial TLS sensors will only function prop-
erly when used within a certain range of external temperatures. Temperatures inside the
scanners may be considerably higher than the surrounding atmosphere due to laser
operation and external heating, and this heating of the lasers can influence outgoing (P;)
laser pulse energy. Previous deployment of the SALCA instrument exposed a drop in
received power over time from the beginning of a scan; and this has been attributed to
an internal thermal effect. In an effort to cool the system, fans were installed within the
scanner but a decrease in recorded intensity over time is still observed. The influence of
internal temperature of the sensor on intensity has not been openly reported for other
TLS systems. However, the dependence of laser power on temperature is well known
(Welford and Mooradian 1982) and therefore commercial laser scanning companies
must account for this effect within their algorithms, although these corrections remain
inaccessible due to commercial sensitivity.

2.1. Calibration approaches

There are two broad approaches that can be adopted to perform radiometric calibration of
TLS data. The first involves applying a series of corrections based on theoretical laws and
relationships in the lidar Equation (1). These known characteristics of a laser give the received
power as a function of sensor parameters, measurement geometry, and the scattering
properties of the target. Wagner et al. (2008) demonstrated this approach on full-waveform
ALS data collected with the RIEGL LMS-Q560 instrument (RIEGL, Horn, Austria). However, the
complex non-linear interaction of TLS optics and electronics make it difficult to derive an
entirely theoretical approach. This has meant that a second approach to calibration, a data-
driven method, has often been preferred (Pfeifer et al. 2008). Data-driven approaches fit
statistical models to empirically measured data using simple or complex non-linear fitting. For
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instance, Balduzzi et al. (2011) corrected TLS intensity from a Faro LS880 with regard to
distance and angle of incidence with leaf surfaces. In addition, Kaasalainen et al. (2008)
describe a calibration procedure using reference targets in both laboratory and field condi-
tions for the hyperspectral lidar prototype (HSL; Hakala et al. 2012) compared with results from
ALS. Semi-empirical approaches have also been adopted, combining empirical methods to
physical principles of lidar systems (Kaasalainen, Pyysalo, et al. 2011). A calibration model has
been developed for the Dual-Wavelength Echidna Lidar (DWEL; Douglas et al. 2015) which
combines a function to remove the effects of telescope efficiency with the inverse square law
(Li et al. 2015).

The radiometric properties of the SALCA instrument are characterized by non-linearity in
reflectance and temperature response, and a near-field peak followed by the inverse square
form with range. Although possible, correcting for these artefacts along with saturation and
near-noise signal with a function fitting approach would not be a trivial task. In contrast,
neural networks offer an empirical data-driven framework which allows for non-linear
relationships between inputs and outputs developed by supervised learning. Neural net-
works provide a powerful and flexible computational tool which can solve complex pro-
blems whilst being relatively quick and easy to implement and therefore potentially offer an
alternative method to rapidly correct recorded intensity to apparent reflectance.

2.2. Neural Networks

Neural networks are adaptive statistical models inspired by the way in which biological
nervous systems, such as the brain, process information (Abdi, Valentin, and Edelman 1999).
The network structure is typically arranged in layers (input layer, hidden layer(s), output
layer) with interconnected ‘nodes’. Supervised learning is used to train the network until a
particular input leads to a specific target output by adjusting the connection weights using
an iterative error back-propagation algorithm (Abdi, Valentin, and Edelman 1999). This
functionality allows application to complex systems that are not easily modelled with a
closed-form equation such as the radiometric properties of some TLS sensors.

3. Methods

To establish the relationships between intensity, range, and reflectance, an external
reference target of known reflectance was used. The target consisted of six subpanel
squares (25 cm - 25 ¢cm) painted onto a medium-density fibreboard (MDF) base using a
mixture of white and black matte paint. The reflectivity of each subpanel was measured
ten times with an ASD spectroradiometer using a contract probe to obtain the mean
measured reflectance shown in Table 1. Subpanel 5 was re-painted during data collec-
tion to a reflectance of 44.13% and 40.38% for the 1063 and 1545 nm wavelengths,
respectively, in order to ensure that this reflectivity region was sufficiently represented.
The panel was mounted on a tripod and imaged at different ranges, during the acquisition
of full hemisphere scans in a forest environment for related work. This was achieved by
moving the panel around the scanner as the scan progressed, so that it was imaged multiple
times at multiple ranges during each scan. At 10 m the beam footprints are approximately
0.80 cm in the 1063 nm wavelength and 0.92 cm in the 1545 nm wavelength. The panel was
erected at approximately the same height relative to the scanner and visually aligned
perpendicular to the laser output to reduce incidence angle effects.
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Table 1. Reflectance (%) measured with an ASD spectroradiometer using a contact probe for each of
the six 25 cm - 25 cm sub-panels. Mean values from 10 measurements at the two wavelengths of the
SALCA instrument. Standard deviation shown in brackets.

Subpanel Reflectance at 1063 nm (%) Reflectance at 1545 nm (%)
1 88.78 (0.45) 80.36 (0.21)

2 27.61 (0.57) 24.50 (0.40)

3 17.08 (0.32) 15.24 (0.38)

4 9.99 (0.97) 8.77 (1.02)

5 6.15 (0.45), 44.13 (0.63) 5.55 (0.54), 40.38 (1.05)
6 3.46 (0.04) 3.53 (0.05)

High resolution (0.06° in both azimuth and zenith), full hemispherical scans were
acquired between April 2014 and November 2014 in Delamere Forest, Cheshire, UK, a
mixed broadleaf coniferous forest, owned and managed by the Forestry Commission, UK
(Ramirez, Armitage, and Danson 2013). As a proxy for laser temperature, thermocouples
were attached to the casings of the two laser units inside the instrument. These readings
were logged at ten minute intervals throughout the two hour scans. Typically, two or three
scans would be acquired over the course of a field day.

The raw binary files recorded by the sensor were processed to extract intensity and
range for each return using the Centre of Gravity method which sums the waveform value
above a predetermined threshold (Hancock et al. 2015). The mean intensity value of each
sub-panel was extracted by averaging footprints over selected surface areas for both
wavelengths. Each mean intensity and range value extracted from the point clouds was
then attributed a laser temperature value linearly interpolated from the recorded logs.

The creation, training, and simulation of neural networks in this study were carried
out using Matlab® with the Neural Network Toolbox®. The first stage was to assemble
the data from the field target panels. The resultant dataset contained 868 sub-panel
measurements taken from 46 scans covering ranges 1.9-32.9 m, and laser case tem-
peratures 21.9-36.6°C and 20.2-36.9°C for the 1063 and 1545 nm lasers, respectively.

The dataset was randomly divided into three subsets: training (70%), to initiate the
gradients and adjust the network weights; validation (15%), to minimize over-fitting; testing
(15%), to test the final network solution. A feed-forward network object was created and an
experimental approach adopted to define the optimal architecture which is shown in
Figure 1. Through supervised learning, these network properties allow for non-linear
relationships, an increase in training accuracy using error back-propagation, and achieve a
balance between the power of the network to learn complex relationships and over-fitting.

The networks were retrained twenty times and the networks chosen with the lowest
error (RMSE). Finally, the neural network was simulated with full field scans to provide an
apparent reflectance output for the entire forest point cloud.

4. Results and discussion
4.1. Radiometric characteristics

A negative relationship was observed between the recorded laser temperature and the
intensity response of all six subpanels. Figure 2 shows the results of 190 sub-panel
measurements at 10 m range. A steeper slope for the 1545 nm wavelength was evident
with a stronger correlation (coefficient of determination (R?) values between 0.78 and
0.92; second order polynomial) compared with the 1063 nm wavelength (R? values
between 0.65 and 0.82; linear fitting).
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Figure 1. Feed-forward neural network architecture.
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Figure 2. Relationship between laser case temperature and intensity for the six sub-panels at a
range of 10 m for wavelength 1063 nm (left) and 1545 nm (right). Each sub-panel is represented by
a different symbol. The 1063 nm wavelength displays a linear trend whereas the 1545 nm
wavelength was best described with non-linear fitting (2nd order polynomial).

Intensity as a function of range is displayed in Figure 3 for both wavelengths showing the
results of 122 measurements of subpanel 3. At close ranges, the flattened top is caused by
the incomplete overlap of the laser beam and the detector field of view and then the inverse
square effect becomes dominant from around 8 m. The vertical spread of data at each range
can be attributed to the thermal effects described above, which also explains the larger
variation in the 1545 nm wavelength.

A positive non-linear relationship between intensity and reflectance was observed. Figure 4
shows recorded intensity as a function of measured reflectance for one multi-reference panel
measurement at two different laser case temperatures. As the laser case temperature
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Figure 3. SALCA intensity response to range for both wavelengths: 1063 nm (left) and 1545 nm
(right) for subpanel 3.
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Figure 4. SALCA intensity reflectance response for both wavelengths: 1063 nm (left) and 1545 nm
(right) at a range of 10 m for the six subpanels at two laser case temperature measures: 21°C (open
circles) and 31°C (closed circles).

increased, the recorded intensity for a given reflectance decreased. Once again, larger intensity
variation between the laser case temperatures was seen for the 1545 nm wavelength.

The results outlined above show that a temperature dependent decrease in P; is present,
which is non-linear for 1545 nm wavelength and linear for 1063 nm. This, coupled with the
non-linear and non-monotonic variation in recorded intensity with range, and an observed
non-linear response of the detector in both wavelengths, makes empirical function fitting
difficult. The following section investigates a neural network approach to perform the
calibration to test whether this approach may be used for the SALCA instrument.

4.2. Apparent reflectance

The selected neural networks which showed the most accurate results had an average error
of 7.2% reflectance for the 1063 nm wavelength and 6.9% reflectance for the 1545 nm
wavelength (Figure 5). These results are comparable with calibration fitting of the DWEL
instrument of 8.1% (1064 nm laser) and 6.4% (1548 nm laser) (Li et al. 2015). Independent
measurements of the directional reflectance properties of the panels were acquired in the
laboratory using the ASD fibre optic cable fitted with an 8° field of view lens, at multiple view
angles. These results indicated that variations in laser incidence angle for very short range
measurements may result in a maximum of 5% reflectance difference, accounting for some
of the scatter in Figure 5. At longer ranges the range of incidence angles is much smaller and
so the effects become negligible.

A neural network output for a subset of a full point cloud is illustrated in Figure 6 for both
wavelengths, along with the apparent reflectance frequency distribution of the full scan.
The dataset was acquired on the 19 June 2014 under full leaf conditions for a broadleaf
deciduous plot at Delamere Forest, UK, composed of Common beech (Fagus sylvatica) trees.

A very small number (0.14% in 1063 nm wavelength and 1.62% in 1545 nm wavelength) of
the estimated apparent reflectance values were outside of the range 0-1 reflectance. Neural
networks do not have the ability to accurately extrapolate beyond the range of inputs for
which they have been trained (Abdi, Valentin, and Edelman 1999), therefore this hinders the
performance of the network if the training dataset does not span the full intensity, range, and
temperature variation of the full field scans. An examination of these anomalies revealed that
their inputs were outside (or near the limits) of the training dataset. To solve this issue and
increase the networks accuracy to new data, more data should be included in the training
stage of the neural network development, particularly around the limits of the current dataset.
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Figure 6. Subset from a full calibrated forest point cloud for (a) 1063 nm and (b) 1545 nm
wavelength showing all returns. Dataset acquired on 19 June 2014 at Delamere Forest, UK. Blue
background colour symbolizes no returns. Insets: histograms of apparent reflectance values for full
scan (frequency in thousands) and enlarged reflectance panel at a range of 16.6 m.

Furthermore, the calibration will be most accurate at 10 m as this is where the largest
proportion of the reference panels was located.

In order to assess the reliability of the network, two calibrated forest scans acquired
on consecutive days in leaf-off conditions, are compared. Figure 7 shows that the neural
network produces a stable output in both wavelengths.
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Figure 7. Frequency distribution of apparent reflectance from two scans acquired on consecutive
days in leaf-off conditions (8 and 9 April 2014).

5. Conclusion

The ability to generate apparent reflectance from a laser scanning system is essential for
inferring information on target properties. In forest environments, this relates to data of
increased ecological value, such as distinguishing leaves from woody material, or parameters
relating to the health of vegetation. This work has demonstrated the potential of neural
networks for providing a rapid radiometric calibration of raw intensities from a novel TLS
sensor to realistic values of apparent reflectance, successfully accounting for the complexities
of TLS intensity response. The use of neural networks for this purpose has provided an
alternative approach to calibration which can be benchmarked against existing methods in
the future.

Although neural networks are essentially ‘black boxes’ — the user’s interaction is limited
to defining the inputs, architecture, and outputs — the advantage is that the user does not
have to be an expert to use this approach or interpret the results, nor have any prior
knowledge about the system.

This research has provided the first description of the radiometric characteristics of a
unique dual-wavelength TLS, highlighting the effect of internal temperature on intensity
response. This has been shown to be significant for the SALCA instrument, particularly for
the middle-infrared wavelength. It may also be important with other TLS, especially for the
increasing number of custom-designed and dual/multi-wavelength systems where accurate
intensities will be key to quantitative analysis of the data.
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