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Abstract 

COPD is linked to inflammatory mediators that orchestrate the disease progression, 

mainly in the small airways and in parenchymal tissue. Inflammatory mediators, such as 

cytokines, chemokines and oxygen free radicals, orchestrate the inflammatory response, 

causing disruption of the epithelial surface and the surrounding microenvironment in the 

lung tissue. Glucocorticoids are the main treatment for many inflammatory diseases, 

however, the majority of COPD patients are resistant to glucocorticoids, so a better 

understanding of the exact mechanism of glucocorticoid resistance in COPD patients 

and lung cancer is necessary in order to improve the effectiveness of steroids. 

Glucocorticoids act through glucocorticoid receptors that are located in the cytoplasm. 

GRs are phosphorylated, and this post-translational modification affects their binding 

and interaction with other proteins. In this thesis the expression of TTC-5, a stress 

responsive co-factor, and the total and the phosphorylated GR in the peripheral lung 

tissue of COPD patients were examined and compared with the expression in healthy 

patients. Results indicate that total GR and GR phosphorylated at S211 and S226 are 

expressed in A549 lung cancer cells as well as TTC5. Preliminary results also suggest 

that TTC5 and GR interact in these cells. Furthermore, as determined by 

immunohistochemistry, the total GR, GR phosphorylated on S211 and S226 as well as 

TTC5 are expressed in human lung tissues and in associated macrophages. Finally, we 

detected altered TTC5 expression that correlates with disease status. These results may 

contribute to our understanding of the underlying mechanisms of glucocorticoid 

resistance in COPD and in lung cancer. 
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1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a considerable health problem all 

over the world. It is the fourth leading cause of death and expected to be the third by 

2020 (Petty, 2003). Moreover, 40-70% of patients with COPD, especially in the late 

stages, develop lung cancer (Metcalf et al, 2009).   

In the United Kingdom, COPD and lung cancer are common debilitating diseases and a 

major public heath challenge. The NHS (National Health Service) spends about £800 

million annually treating COPD. Moreover the cost of management of lung cancer is 

about £10,000 per patient (Health news 2014, Oxford University). 

 

1.1 Lung physiology 

1.1.1 Lung volumes and capacities  

Physiologically the lung is the place where respiration takes place and the function of 

the lungs is determined by volumes and capacities. Lung volumes reflect the amount of 

air that can be inhaled during different stages of the respiratory cycle. Several important 

definitions can be measured to estimate lung function as listed below and shown in 

figure 1. Tidal volume (TV) is the amount of air entering and exhaled during resting. 

Total lung capacity (TLC) is the amount of gases contained inside the lung at the end of 

maximum inspiration and it is the vital capacity plus residual volume (the amount of air 

that remains after full expiration). Vital capacity (V.C) is the amount of air that is 

expelled after deep inspiration. Residual volume (R.V) is the amount of air inside the 

lung after forced complete expiration. Forced vital capacity (FVC) is the amount of air 

that can be exhaled following full inspiration. Forced expiratory flow (FEF 25%-75%), 

measures the airflow at mid-point of expiratory phase. Functional residual capacity 

(FRC) is the volume of air left inside the lung after normal expiratory phase. Inspiratory 

reserve volume (IRV) is the volume of air that can be inhaled beyond normal 

inspiratory breathing. Expiratory reserve volume (ERV) is the air that can be exhaled 

beyond the normal expiratory phase. In addition, there are some terms which they are 

important in the alveolar ventilation-perfusion processes, such as physiological dead 

space which is part of tidal volume which is not involved in the O2-CO2 exchange 

process. Anatomical dead space is the amount of air inside the airways which does not 
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participate in the ventilation process and alveolar dead space, that represents the 

difference between anatomical dead space and physiological dead space, and this 

amount of air does not participate in gas exchange.  Figure 1 illustrates the important 

values in the lung (Becker et al, 2009). 

 

                                              
Figure1- Lung volumes and capacities. Lung volumes include (TV, IRV, ERV and 

Residual volume) and derived lung capacities including FRC, IC, VC and total lung 

capacity (Becker et al, 2009). 

 

In normal individuals the peak of lung performance is achieved by age of 20 and 25 

years among females and males respectively, followed by a plateau phase until the age 

of 35. Lung performance then gradually starts to decrease. This is shown in figure 2 

(Fletcher and Petos’s, 1977). 
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Figure 1-2. Age related decline in FEV1 in healthy individuals and COPD. FEV1 

decline in normal healthy individuals (first line) is slow and usually in normal people 

the rate of decline is unnoticeable even after age of 75. In regular smokers (Second 

line), the FEV1 decreases more rapidly and the rate of decline is directly proportionate 

to the comorbidity and the death rate at the age of 65 and 75 years respectively (Löfdahl 

et al, 1998). Modified Fletcher and Petos’s graph, (1977).    

 

A part of respiration is explained by the lung function, which is subdivided into three 

main categories based on spirometry, lung volumes dependant flow rates, which include 

forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and the 

ratio of FEV1/FVC. The second part of lung function cannot be determined by 

spirometry. It is known as static lung volumes comprise total lung capacity (TLC), vital 

capacity (VC), residual volume (RV), and functional residual capacity. Finally, the 

ability of blood gases to cross the alveolar blood barrier is measured by carbon 

monoxide diffusion capacity (CLCO). 

 

1.1.2 Factors that may affect lung volumes  

There are three factors affecting lung volumes and capacities. The first is height, 

because tall individuals have larger lungs, thus larger volumes and capacity. The second 

is body mass index. Obesity adversely affects lung volumes and capacity. The third is 

altitude. People who live at high altitude are more able to compensate for the low 

oxygen level by increased lung capacity.  
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1.1.3 Physiology of gas transport 

In dry air oxygen accounts for approximately 21% of air, and the Partial pressure of 

oxygen is about 160mmHg of total air pressure (760mmgh). Physiologically, the partial 

pressure of oxygen and carbon monoxide is the main determinant of the oxygenation 

process, in which PO2 and PCO2 inside the alveoli is about 100mm and 40mm Hg 

respectively. The opposite is the case in capillary blood vessels (figure 1-3). In addition, 

the amount of oxygen across the alveolar membrane into the capillary blood vessels is 

directly proportionate to the alveolar surface area and reciprocal to membrane thickness 

and determined by carbon monoxide diffusion capacity (DLCO) (Stamet et al, 1994). 

  
Figure 1-3 Gas exchange and partial pressure in the ventilation process. (A) O2-CO2 

exchange across the respiratory barrier showing pressure difference between the alveoli 

and the capillary blood vessels. (B) Higher partial pressure of oxygen (PO2) in the 

systemic capillary blood vessels facilitates its delivery into different parts of the body 

(Stamet et al, 1994). 

 

1.2 Defence system in the lung 

There are various environmental pollutants that may have a detrimental effect on lung 

function, such as carbon monoxide, which has a higher affinity to haemoglobin (210 

times higher than oxygen) (Ganong et al, 1995). However, the clearance system in the 

upper and lower respiratory zones are effective in eliminating the majority of deposited 

particles. 
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Two important mechanisms are well known as a first line of defence: the mucociliary 

system in the airways and alveolar macrophages in the air passages.  

 

1.2.1 Mucociliary System  

The mucociliary system is an important mechanism for protection from harmful 

organisms via ciliary movement and the mucus layer that is produced by Goblet cells 

(glandular simple columnar cells located in epithelial layer), and the mucus gland 

located in deep epidermis (Morgan et al, 1986). 

There are a number of related congenital diseases associated with abnormality in ciliary 

structure and function causing an impaired elimination of noxious particles and 

subsequently leading to chronic respiratory disorders such as primary ciliary dyskinesia 

(autosomal recessive genetic disorder) also known as immotile cilia syndrome 

characterized by malfunctioning cilia and chronic infections. In addition, patients with 

cystic fibrosis and Young's syndrome may develop immotile cilia syndrome (Afzelius et 

al, 1981).   

 

1.2.2 Lung macrophages  

Lung macrophages are the most important line of defence in the lower respiratory zone, 

and are considered part of the mononuclear phagocyte system and one of the front line 

defences in the lung. They develop as a result of migration of circulatory monocytes 

into the lungs (Cohn et al, 1968). Nevertheless, the monocytes do not enter the alveoli 

directly, they divide and gain bio-inflammatory characteristics then migrate to the 

alveoli (Bowden et al, 1976). Macrophages play a pivotal role in both innate and 

acquired immunity, either by direct phagocytosis of foreign antigens or by initiation of 

an inflammatory cascade by releasing a number of pro-inflammatory and anti-

inflammatory cytokines and chemokines. In some diseases like COPD, the phagocytic 

ability is disturbed by smoking, in addition it is suggested to play a role in tumour 

development (Mantovani et al, 2008). Four types of macrophages have been identified 

according to the site; alveolar macrophages, interstitial macrophages, intravascular and 

dendritic cells. Alveolar macrophages are the predominant type of this group and 

increase in number with the severity of COPD (Barnes et al, 2008). Because 
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macrophages are exposed to the environment, they have developed the ability to 

recognise and phagocyte the foreign particles, which may end by over-production of 

inflammatory cytokines and tissue remodelling factors triggering the inflammatory 

process and tissue repair. This type of cell is associated with tissue destruction in COPD 

through the release of inflammatory mediators including proteases such as 

methalloproteinases-1.The extent and severity of alveolar destruction (emphysema) is 

related to the number of macrophages in COPD patients (Tetley et al, 2005), and the 

macrophages are accumulated in areas where alveolar destruction exists (Barnes et al, 

2004). Macrophages, isolated from COPD smokers, exhibit less phagocytic activity 

against some bacteria such as Haemophilus influenza. 

Activated macrophages are also sub-divided into two groups, according to secretory 

mediator and their roles. The first type, classical activated macrophage or pro-

inflammatory macrophages (M1), possesses an anti-inflammatory and cytotoxic 

character that enable them to eliminate intra-cellular pathogens especially bacteria by 

producing a large quantity of lymphokines. The second type, which are capable of 

presenting the antigens and producing anti-inflammatory 

 

              Mediators related to M2 Toxic particles to the lung 

         Reactive oxygen species (ROS) 

and Reactive nitrogen species (RNS) 

Ozone, Radiation, Bleomycin and 

Cilica 

 

                          Proteases  Bleomycin, Endotoxins and Sulphur 

mustard 

   Bioactive  Lipids and Pro-

inflammatory     mediators(TNF-α, IL-

1β and chemokines) 

Ozone, silica and Sulphur mustard 

             Mediators related to M2  

                          IL-10 Ozone, Silica and Endotoxins 

                          IL-4 Radiation, Silica, Endotoxin and 

hyperoxia. 

                          IL-13 Endotoxin, hyperoxia and Asbestos. 

                          TGFβ Bleamycin, Radiation and Asbestos. 

Table 1.1 illustrates number of mediators released by M1 and M2 macrophages in 

response to variable environmental and toxic particles. (Laskin et al, 2011). 
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Mediators are known as activated type (M2) and show anti-inflammatory properties, 

and hence are involved in tissue repair and development of T-regulatory cells. However 

some inflammatory mediators like IL-10 are poorly presented (Martines and Gordon, 

2009). Classical type (M1) is responsible for pro-inflammatory cytokines release (IL-12 

and TNF-α) and in addition enhances Th-1 immunity (Hoeve et al, 2005).  

 

1.2.3 Epithelial surface 

During embryogenesis the epithelial surface is derived from the endoderm tubule 

(Morrisey et al, 2010). The airways in the human lung are supported by cartilage that 

extends to the small airways which are lined by the ciliated pseudo-stratified columnar 

epithelium and surrounded by mucus-secreting glands and blood vessels. Beneath the 

epithelial surface, basal cells are responsible for renewal of injured epithelial and other 

secretory cells (Hong et al, 2004). Airway epithelial cells are further sub-classified into 

two groups, ciliated epithelial mediates dispose of the foreign particles; mucus cells, 

which are responsible for mucus production as well as cellular differentiation and the 

production of inflammatory mediators, mediate inflammatory response (Puchelle et al, 

2006). There are many toxic particles inhaled mainly from cigarette smoking that result 

in alteration of epithelial cells. One of these disruptions entails epithelial cells being 

replaced by squamous cells, resulting in reduction of ciliated cells as well as hyperplasia 

of mucus secreting cells. These changes are associated with loss of surfactant producing 

cells (Clara cells). Additional new studies showed an inverse correlation between NF-

KB expression and impaired defective mechanism in epithelial cells. Moreover, direct 

contact of epithelial cells with toxic materials increases airway the epithelial 

permeability (figure 1.4) by down regulation of the junctional barrier (Heijin et al, 

2012). 
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Figure 1.4. Normal epithelium histological types and significance of bronchial 

epithelial   dysplasia. Healthy epithelial surface (black arrow) shows small tiny cilia and 

epithelial disruption (yellow arrow), sub-mucosal layer with small blood vessels (Heijin 

et al, 2012). 

 

Healthy airway epithelia are an essential requirement for the integrity and proper 

function of the respiratory tree. Recurrent exposure to irritants may have a disruptive 

effect on the epithelial surface, which is participating in remodelling during its recovery 

(Grainage et al, 2013). Moreover, an intact epithelial surface is an important functional 

and structural barrier against inhaled particles. Frequent contact with irritants and toxic 

compounds such as cigarette smoke may initiate an inflammatory cascade, causing 

disruption in epithelial integrity, followed by a repair process via epithelial cells leading 

to the proliferation and regeneration of pseudo-stratified cells. Remodelling can result at 

any step during the repair process, including squamous metaplasia, smooth muscle 

hypertrophy, sub-mucosal and goblet cell hypertrophy and fibrosis. 

There are many triggering factors involved in the disruption of the epithelial surface, 

including bacterial or viral infection, allergic reaction (asthma, cigarette smoke) and 

trauma. During the repair process, the reactive inflammation to antigens is the same, 

however, long term response to the irritants varies in different parts of the lung, 

according to the architecture, level of oxygen, abundance of surfactant and blood supply 

of the area. For example a disruption to alveolar capillary blood vessels leads to 

irregularity in the basement membrane and induces fibrosis by activation of fibroblasts. 

The role of the epithelial surface is also important in the pathogenesis of COPD and 

dysfunction of this barrier could cause bacterial colonization and infection in COPD 

patients. 

According to the shape and function of epithelial cells in the alveolar region, they are 

classified into, type I squamous cells, which represent about 90% of the total number of 
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the cells, and type II cuboidal cells, which are responsible for production of surfactant, 

which is responsible for decreased surface tension during the respiratory cycle. 

 

 

Figure 1.5 Gas exchange function of the alveolar region in the terminal respiratory unit. 

(a) Lining epithelial surface (b) illustrates gas exchange through alveolar lining cells 

and mucus production from sub-mucosal glands, in addition to the formation of the 

mucin layer (yellow line). (C) and (d) respectively represent the pseudo-stratified 

epithelial surface (red arrow) and the underlying mucosal structure (yellow bracket) 

http://www.nature.com/reprints/index.html 

  

1.3.4 Dendritic cells 

Dendritic cells are a group of mononuclear cells, which have the ability to identify and 

uptake pathogens (Henderson et al, 1997). They are found close to the epithelial lining 

surface and possess cytoplasmic branches to interact with the environment and to 

facilitate their interaction with PMN and to induce an acquired immune response 

(Iwasaki et al, 2007). Dendritic cells originally existed in bone marrow and circulate 

throughout the body in immature form. Dendritic cells present antigens to lymphocytes 
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in regional lymph nodes. There are 100 times fewer dendritic cells in the alveoli and 

small airways of COPD patients than in healthy individuals. Moreover, this type of cell 

returns to normal as soon as patients stop smoking (Rogers et al, 2008).  

 

CD-8 T lymphocytes 

CD8-T lymphocytes also have an essential role in the adaptive immune response to viral 

infections, and especially in respiratory syncytial viral infection and in disease 

progression. CD8-T- lymphocytes have been detected in both large and peripheral 

airways during inflammatory response (Kim et al, 2008). Compared with heathy 

smokers, the number of CD8-T lymphocytes are significantly increased, mainly in the 

wall of the small airways, and the number of CD8-T lymphocytes are increased with 

progression of the disease (Saetta et al, 1998). T -lymphocytes are antigen-presenting 

cells. They are activated by determining antigens. In COPD non-activated cells return to 

the circulation. In addition to the involvement in the inflammatory process in the release 

of inflammatory cytokines, the CD8 T-lymphocytes are related to disruption of the 

micro-vascular environment as a consequence of chemokines such as IL-8 and 

monocyte chemotactic protein-1, produced  by T-cells (Abbas et al, 2000). 

 

1.2.6 Natural killer cells 

This type of cells is related to innate immunity. Natural killer cells act in a non-specific 

manner and secrete variable inflammatory mediators such as IFN-ϒ, TNF- α and IL12, 

which are involved in activation of immune cells to kill viruses. However, these cells 

are less active in smokers than healthy individuals (Ferson et al, 1979) 

 

1.2.7 Neutrophils 

Unlike alveolar macrophages and dendritic cells, neutrophils are part of innate 

immunity and account for 3 to 19% of all cells. Neutrophils flow into inflammatory or 

injured places to destroy pathogenic microbes in response to inflammatory signals from 

epithelial cells or regional macrophages. Neutrophils produce a variety of enzymes, the 

nature of whose effect is controversial. For example neutrophil elastase may cause 
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alveolar destruction if not controlled properly. Neutrophils are observed in the epithelial 

layer and the number of the neutrophils is directly related to restriction in the airways 

and to the severity of the disease (Chua et al, 2006).  In addition, Neutrophils isolated 

from COPD patients respond less vigorously than normal to chemoattractants (Beeh et 

al, 2003). The speed of travel toward the presenting antigens is also affected by the 

disease, moreover the chemotactic property of neutrophils isolated from COPD patients 

is less responsive than normal to chemo-attractants. The number of neutrophils is nearly 

the same in both healthy smokers and smokers with COPD, however the phagocytic 

ability of the neutrophils is decreased in COPD patients. 

 

1.3 Alveoli 

Alveoli are where gas exchange takes place. The alveolar sacs are lined with two types 

of cells, type I pneumocytes represent the majority and are responsible mainly for gas 

exchange, while type II account for approximately 5% of the cells and are more 

resistant to damage and are mainly responsible for surfactant production that reduces 

surface tension. They also have the ability to repair injured type I pneumocytes. In 

addition, these cells are responsible for xenobiotic metabolism and facilitate trans-

epithelial movement of water. Type II pneumocytes are implicated in pathogenesis of 

chronic obstructive pulmonary disease via production of inflammatory cytokines and 

are responsible for fibroblast inhibition during pathogenesis in some diseases (Kotton et 

al, 2014). 

Surfactant is a mixture of phospholipids and proteins, surfactant synthesis and 

production can be affected by genetic disorders. Cigarette smoking may alter surfactant 

synthesis by increasing the neutrophil elastase activity, MMPs and proteolytic enzymes 

(Hogg et al, 2004). 
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Figure 1.6. Involvement of surfactant dysfunction in pathogenesis of COPD. Impaired 

surfactant results in impaired immunity and airway collapse, causing more resistance in 

the small airways. On the other hand, surfactant causes an increase in neutrophil 

elastase and in metalloproteinases. Moreover, surfactant may activate NF-KB, which in 

turn induces inflammation. Together with increased resistance, the airway inflammation 

ends in COPD (Hogg, et al 2004). 

 

In chronic obstructive pulmonary disease, the surfactant system is impaired due to 

frequent contact with noxious particles from cigarette smoking, resulting in a reduction 

of the total amount of the surfactant (figure 1.7) (Barnes et al, 2009). 

 

Figure 1.7 Cigarette smoke and noxious particles increase apoptosis and injury of 

alveolar cells type II. The direct effect of toxic materials from cigarette smoke on type II 

alveolar cells, leading to activation of macrophages, which subsequently enhance 

phagocytosis. Defective surfactant function may increase the activity of proteases and 

oxidative stress (Zhao et al, 2010).  
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1.4 Chronic inflammation 

Inflammation is the protective mechanism against injury. Acute inflammatory response 

is initiated by recruitment of leukocytes from the circulatory system, starting by leakage 

of polymorph nuclear cells, followed by monocytes, which transform into macrophages 

(Majno, 1975). Chronic inflammation is generally characterized by tissue infiltration 

with mono-nuclear cells, lymphocytes, and plasma cells and sometimes is associated 

with tissue destruction as a result of the direct effect of chemicals or from inflammatory 

mediators that are secreted from the recruited cells. At the same time, as a part of 

chronic inflammation, a countervailing process of repair is usually mediated by 

angiogenesis and fibrosis, whatever the end-result of repair: restoration of normal 

architecture or permanent fibrosis (Rennard et al, 1999). 

 

1.4.1 Classification of inflammatory lung diseases 

Inflammatory lung diseases are classified according to the site of inflammation. Firstly, 

airway diseases mainly affect the passages of the air like, for example, asthma (a disease 

of large airways), bronchitis and bronchiectasis (permanent destruction of air spaces 

distal to terminal bronchioles). Secondly, parenchyma diseases usually affect the 

architecture of the lung, leaving either permanent destruction or fibrosis (emphysema, 

interstitial lung disease). Additionally, some inflammatory diseases affect blood vessels 

either by blood clotting or by scarring. 

 

1.5 COPD 

Term COPD is an international abbreviation for chronic obstructive pulmonary disease. 

It is classified as a systemic disease because of the extra-pulmonary involvement of the 

heart and skeletal muscles (MacNee, 2013). The most frequent leading causes of COPD 

are tobacco smoking, genetic inheritance and the environment. It is the 4th most 

common cause of mortality and morbidity. It is estimated to affect 20-30% of smokers 

and has a prevalence of 10% of the population as a whole (Afonso et al, 2011). The 

course of the disease is usually progressive, and many factors determine the disease 

severity including FEV-1, inspiratory capacity, DL-CO, hypoxaemia, impaired exercise 

capacity, BMI (body mass index), hypercapnia, dyspnoea and health status. Death 
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among patients with mild COPD is usually attributed to lung cancer and cardio-vascular 

diseases, however, in the advanced stages, the causes of mortality are non-malignant in 

origin (Berry et al, 2010).  

 

1.5.1 Nature and structural feature 

The prominent characteristic feature of chronic obstructive pulmonary disease is the 

involvement of the mucociliary system accompanied by airway structural changes, and 

more evidently loss of elastic recoil which is the reason behind hyperinflation and 

tapering of CO2 (Saett et al, 2001). The progressive airflow limitation in COPD is due 

to two major pathological processes: chronic bronchitis and emphysema. 

 

1.5.2 Chronic bronchitis 

The term chronic bronchitis refers to inflammation in the surface lining of the airways, 

manifested as a chronic productive cough for three subsequent months of two 

consecutive years. The clinical implications for chronic bronchitis are increased mucus 

production by goblet cells, frequent exacerbation, and remodelling of the epithelial 

surface (Kim et al, 2013). The inflammatory series starts at the small airways (less than 

5 mm in diameter) and lung parenchyma causing physiological and clinical 

complication. The cellular changes in the airways start with mucosal infiltration of the 

airways by inflammatory cells (macrophages, neutrophils and CD8 T-lymphocytes) 

leading to epithelial disruption, smooth muscle hypertrophy and fibrosis in severe cases 

(Cosio et al, 2002). In turn, these inflammatory cells start the inflammatory process by 

releasing different inflammatory mediators such as TNF, interleukins, C-reactive 

protein and fibrinogen. Angiogenesis is another structural change resulting from 

activation of the hypoxia inducible factor that leads to an increase of VEGF 

transcription. Nevertheless, level of VEGF expression is decreased in emphysema that 

is induced by smoking. Emphysematous alveolar septa are avascular (low 

angiogenesis). 

Inflammatory lung diseases are characterized by the new formation of small blood 

vessels as a result of the narrowing of blood vessels (Siafakas et al, 2007). The 

remodelling process may be induced by inflammatory mediators such as interleukins or 
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growth factors such as vascular endothelial growth factor (VEGF). Furthermore, micro-

vascular remodelling in COPD may enhance the thickening of the airways, which 

contributes to the progression of the disease (Lieckens et al, 2001). Although the 

thickening is increased as the disease progresses, the microvasculature is reduced 

especially in patients with co-morbidity like lung cancer and right side heart 

complications (Soltani et al, 2009).    

 

Structural changes are varied according to the stage of the disease. In COPD, smoking 

is the main cause of the structural and cellular changes. In healthy smokers respiratory 

bronchiolitis (inflammation of small airways) is the pathological hallmark in young 

smokers and the structural changes usually occur along the respiratory system in healthy 

smokers (not established COPD) (Piqueras et al, 2001). The main changes observed in 

many studies are infiltration of lung parenchyma with macrophages and T- lymphocytes 

in the absence of alveolar destruction or fibrosis. Meanwhile, a disrupted epithelium has 

been identified in the membranous bronchioles. In smokers with established COPD, the 

inflammatory cascades occur predominantly in small airways, resulting in resistance in 

small airways of less than 2 mm which is the hallmark in COPD patients. In (1968), 

Hogg et al discovered that small airway resistance is 4 times normal among patients 

with mild COPD, while total lung capacity was nearly normal. Conversely, in moderate 

to severe cases, because the resistance in small airways increased the total lung 

capacity, was higher than normal. The second effect is morphological, which 

dramatically affects the lung performance because of physiological abnormalities in the 

small airways, including mucus plugging, inflammation and increased smooth muscle 

and fibrosis. One report from the national lung and heart institute revealed that a 50% 

reduction in the number of small airways is related to a two-fold increase in peripheral 

resistance in COPD patients (Hogg et al, 2004). Moreover, a number of pathological 

changes has been reported in epithelial airways, including goblet cells hyperplasia in the 

proximal region of the airways in both ex-smokers and current smokers, as well as 

squamous metaplasia in the proximal and distal parts. In addition, short cilia have been 

reported in COPD patients (Hessel et al, 2011). According to the global initiative for 

chronic obstructive pulmonary diseases, squamous metaplasia and mucus hyper-

secretion are characteristic of stages III and IV (Hogg et al, 2004). Additionally, 

squamous metaplasia is related to the number of cigarettes smoked per day. 46% of 
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smokers and only 23% of ex-smokers develop squamous hyperplasia. Furthermore, the 

extent of metaplasia is related to a decrease in the forced expiratory volume in 1 second 

(Araya et al, 2007).  

Peri-bronchial fibrosis in COPD is enhanced by interleukin 1-β, secreted by squamous 

metaplastic cells, which in turn enhance production of the transforming growth factor 

and fibrosis (Kolb et al, 2001). Peri-bronchial inflammation and fibrosis may cause the 

centrilobular type of emphysema, which is usually associated with FEV25 changes in 

Spirometry. Disruption may occur in lung parenchyma and is considered to be a 

consequence of inflammatory reactions (Petty et al, 1985).                                                                                                                                                              

The smooth muscle hyperplasia in patients with COPD is prominent in the small 

airways, however, compared to asthmatic patients it is less marked in COPD (Hogg et 

al, 2004). At cellular level, persistent contact with tobacco smoke causes lung 

inflammation, characterized by invasion of white blood cells into extracellular spaces of 

the lung, causing accumulation of inflammatory cells in the lung tissue. 

 

1.5.3 Emphysema 

Abnormal dilation of airspaces beyond the terminal bronchioles, associated with 

alveolar destruction, is usually caused by an imbalance between protease/anti-protease 

activities in the lung microenvironment (Snider et al, 1985). Emphysematous changes 

have many effects on lung physiology, with gas transfer more affected than FEV1 (Parr 

et al, 2004). Furthermore, the alveolar destruction is the pathological hallmark in 

emphysematous lungs and loss of alveolar attachment and elastic fibre are related to 

collapse of distal airways during the expiratory phase (Vlahovic et al, 1999). 

The inflammatory series starts at small airways and lung parenchyma, causing 

physiological and clinical complications. Moreover, the risk of bronchogenic carcinoma 

is 32 times higher in patients with bullous lung diseases (Ogawa et al, 1999). In practice 

the emphysematous lung is diagnosed by high resolution CT scan in addition to 

spirometry changes. Morphologically, emphysema is sub-classified into three types: 

centrilobular, pan-lobular and para-septal emphysema (Figure 1.8). 

Centriacinar is the most frequent type. It features dilatation of central parts of lung 

bronchioles. The alveolar sacs are usually not affected (Leopold et al, 1957). The upper 



28 

 

lobe is the most affected part. Furthermore, this type is predominantly related to 

cigarettes. In the early stages of centrilobular emphysema, the border between the inner 

affected area and the outer region is not well identified by a high resolution CT scan. 

Panacinar emphysema is less frequent than the centriacinar type, and the α1- antitrypsin 

is the commonest cause (Figure 1.8-C). The destructive dilatation of the affected areas 

in this type started from respiratory bronchioles up to the alveoli and lower parts are 

more affected than the upper zone (Heppleston et al, 1961). Panacinar emphysema is 

localized or diffuse in form, and the affected parts tend to be hypo-echoic in contrast to 

the normal lung. In addition, the borders of panacinar sacs are not well defined (Stern et 

al, 1994). 

Para septal emphysema is the least frequent type. The peripheral parts of acini are 

usually the affected site and the posterior surface of the upper parts of the lung is the 

predominant affected area. This type of emphysema in young age groups is usually 

asymptomatic, although the risk of pneumothorax is higher (Figure 1.8-C) 

Figure 1.8 High-resolution CT scan of the chest. (A) High-resolution CT scan of the 

chest shows ill-identified margin of emphysematous sacs (arrow) in mild 

emphysematous changes (early stages). (B) CT scan shows radiological appearance of 

diffuse form of panacinar emphysema with ill-defined border (between the brackets). 

(C) CT scan chest with para septal emphysema with sub pleural air spaces (arrows). 

(Masashi et al, 2008)      

 

1.5.3.1 Alpha1-antitrypsin deficiency 

Autosomal recessive disorder affects 1 in 3000 births per annum, and manifest in the 

liver and lung, including emphysema and chronic bronchitis. In emphysema about 90% 

of anti-trypsin activity is α1- antitrypsin. Malfunctioning or deficiency in α1- antitrypsin 

is a leading cause of emphysema. 
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Αlpha1-antitrypsin is an acute phase reactant secreted by hepatocytes. It is the major 

inhibitor of proteases such as neutrophil elastases and proteases (Anderson and Lomas, 

2006). In addition the most common genetic abnormality is linked mutation in SERPIN 

A1 gene. 

A genetic defect in the protein causes misfolding, which is referred as α1-antitrypsin Z 

(ATZ), and the accumulation of ATZ in the endoplasmic reticulum of hepatocytes has a 

proteotoxic effect on liver cells (Erikson et al, 1986), and causes fibrosis and cirrhosis 

and hence increases the risk of hepatocellular carcinoma. 

 

1.5.3.2 Emphysema in α1-antitrypsin deficiency: 

Emphysematous changes in alpha-1 antitrypsin deficiency are caused by protease-

antiprotease imbalance, inflammation, and mechanical damage. In a clinical setting the 

patients are usually asymptomatic in early life, however, affected patients develop their 

symptoms at third or fourth decade. Characteristic features of emphysema related to α1-

antitrypsin deficiency are panacinar and usually affect the upper lobe. The symptoms 

usually start at the fourth or fifth decade (Tomashefski et al, 2004) 

 

1.5.3.2 Neutrophil Elastase (NE) 

Neutrophil Elastase (NE), is a serine protease, whose molecular mass is 28000-31000 

g/mol (Sinha et al, 1987). It is produced by variety of cells, mainly neutrophils, and is 

inhibited by α1-antitrypsin. A deficiency in the lung tissue and an elevated elastase in 

the sputum are correlated with a decline in FEV1 (Betsuyaku et al, 2000). NE also 

increases expression of IL8 in pulmonary epithelial cells in cystic fibrosis patients. 

(Nakamura et al, 1992). Moreover, disruption of elastase causes emphysema by 

affecting the Elastin which is the cardinal part of the architecture of lung tissue. 

 

1.5.4 Blood vessels 

In severe cases of COPD, blood vessels, especially those smaller than 500 µm in 

diameter are usually affected by hypoxemia, causing more resistance. Recently it has 

been discovered that even in early stages of COPD, smooth muscle proliferation, elastin 
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and collagen deposition exist in the inner surface of small blood vessels. Moreover new 

small blood vessels are the pathological hallmark in COPD. Angiogenesis is strongly 

associated with bronchiectasis and asthma. As well as COPD and lung cancer, the 

angiogenesis of squamous dysplasia is considered as premalignant change 

(Caldenhoven et al, 2012). 

New growth of blood supply is known as angiogenesis, however, changes in 

morphology such as increasing the diameter without formation of new blood vessels is 

considered to be blood vessel remodelling. Hypoxia is responsible for new vessel 

formation in severe cases of COPD by upregulating VEGF (McDonald, Walsh and 

Pearson, 2001). Tumours in general are characterized by new vessel formation 

(angiogenesis) (Strieter et al, 2004). 
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                         Area affected 

 

        Pathological changes in COPD 

 

 

 

 Proximal airways ( >2mm in diameter)  

  .Number of macrophages and                             

CD8-T lymphocytes   

. Few neutrophils and eosinophils 

. Enlargement of sub-mucosal gland and 

goblet cell metaplasia. 

. Infiltration of mucus glands with 

lymphocytes and neutrophils   

Smooth muscle hypertrophy and 

squamous metaplasia of lining epithelium. 

 

 

 

 

Distal small airways(< 2mm in    diameter) 

 .  Macrophages and CD8 T-lymphocytes  

 .  B lymphocytes, lymphoid follicles and  

    Fibroblasts. 

 . Small number of neutrophils and      

eosinophils 

 . Evidence of bronchiolitis 

 . constriction and Peri-bronchial fibrosis 

 . squamous metaplasia of epithelial lining    

small airways  

 

                        

 Parenchymal tissue 

 .  CD8 T-lymphocytes and macrophages 

 . Destruction of alveolar wall  

 . Microscopic and gross enlargement of 

airspaces (emphysematous bullae). 

 .   

 

 

Pulmonary blood vessels 

    Total number of macrophages and  

    T-lymphocytes 

 .  Initial changes include intimal 

thickening and dysfunction 

 . delayed changes represented as 

hypertrophied smooth muscle and 

collagen deposition leading to pulmonary 

hypertension and cor-pulmonale 

Table 1.2 cellular and structural changes in COPD. Proximal and distal airway 

changes as well as cellular infiltration associated with COPD (William, 2006)  
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1.5.5 Spirometry changes 

Spirometry provides objective measures about the severity and reversibility of 

obstructive and restrictive disease (Figure 1.9). In addition, the quantitative data 

obtained by spirometry is important to confirm a diagnosis of COPD, and to measure 

the severity and progression estimation of the disease (Vestbo et al, 2012). A diagnosis 

of COPD is based primarily on reduced FEV1 to FVC ratio in addition to other 

parameters that have emerged as important predictors for small airways disease, like 

FEV25-75 (Marseglia et al, 2007). 

 

Figure 1.9 (A) Inflammatory and Spirometry changes in COPD. Parenchyma 

destruction in COPD patients. (B)Inner surface changes in the small airways showing 

disruption in the surface with mucus hyper-secretion. (C) Shape of the curve in normal 

heathy and COPD individuals. (D)Volume-time curve showing FEV1 in litres and 

expected FVC in 4 seconds (Vestbo et al, 2012). 

             

1.5.6 Classification and severity of COPD 

The global initiative for chronic obstructive lung disease (GOLD criteria) has launched 

criteria dependent on symptoms, spirometry changes and history of exacerbation in 

diagnosis of COPD. A bronchodilator test (percentage of change in FEV1 after 

bronchodilator nebulizer) is one of the most common tests to distinguish asthma from 

COPD in practice. A post bronchodilator measurement of FEV1 is usually negative in 

COPD patients. There are four categories of COPD: mild, moderate, severe and very 

sever. In mild COPD, symptoms are non-specific in the form of a cough, and 

FEV1/FVC<70%, FEV1≥80% is predicted. At this stage the patient is not aware of any 

symptoms. In moderate COPD FEV1/FVC<70%, FEV1 ≥ 50% and < 80% is predicted 

and the patient complains of progressive shortness of breath usually during exercise. 

Severe COPD is characterised by FEV1/FVC<70%, FEV1 ≥ 30% and <50% and the 

patient’s symptoms and exacerbations constrain his daily activity. In very severe cases, 
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the lung performance is markedly affected and FEV1/FVC<70%, FEV1<30% or FEV1 

less than 50%, usually accompanied by respiratory failure. In addition, the quality of 

life is affected at this stage. 

 

1.5.7 Physiological changes in COPD patients 

The most striking physiological abnormality in COPD patients is expiratory flow 

limitations, which occur as a consequence of alveolar destruction leading to air trapping 

and hyperinflation (Kainu et al, 2008). Moreover, during exercise the harmful effects of 

resting hyperinflation are exaggerated when the inspiratory demands are increased. 

Additionally, decreased expiratory timing leads to more air trapping, dynamic 

hyperinflation and increased mechanical restriction. Therefore inspiratory capacity, 

which reflects the end expiratory lung volume (EELF), is decreased as EELV (end 

expiratory lung volume) increase (Bikker et al, 2009). 

Airway and parenchymal inflammation in the majority of COPD patients are associated 

with a decrease in FEV1 and fibrosis in the long term (American Thoracic Society, 

2000). Furthermore, patients with established COPD have abundant macrophages 

compared with healthy smokers (Finkelstein et al, 1995). Tissue remodelling is a crucial 

pathophysiological change in COPD patients, which is characterized by abnormal repair 

of the epithelium and an accumulation of fibroblast cells, leading to fixed bronchial 

obstruction (Stockley et al, 2002). Moreover, frequent contact with harmful particles 

enhances inflammatory cells in the mucosa, sub-mucosa and glandular tissue, resulting 

in excessive secretion of mucus and thickening of small airways. 

The major cellular components of this process are neutrophils and macrophages, which 

are the prominent cells in the parenchymal tissue, bronco-alveolar lavage, and sputum. 

In addition, these cells are involved in tissue destruction and remodelling, and defence 

mechanism (Stockley et al, 2002). Moreover, relocation and activation of these 

inflammatory cells are regulated by cytokines and chemokines such as TNF-α, 

interferon -ϒ, interleukin- 1β and IL6 (Wouters et al, 2009). 

Tissue remodelling in COPD has two forms: thickening of the small airway, and 

alveolar destruction. It is presented, however, by mucus hyper-secretion and small 

airway fibrosis. Small airway remodelling in COPD patients affects the transition zone, 
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which lies between the airways and the alveoli. Alveoli show alveolar destruction and 

peri-bronchial fibrosis because of epithelial irregularity and hypertrophied smooth 

muscle. 

 

1.5.8 Alveolar hypoxia and hypoxemia in chronic obstructive pulmonary disease. 

The term “hypoxia” reflects a limited oxygen flux which causes oxygen deficiency to 

occur at tissue or cellular level. The term “hypoxemia”, on the other hand, refers to a 

reduction of the oxygen level in the arterial blood (haemoglobin saturation <92%, 

arterial oxygen pressure < 70% or alveolar arterial gradient > 25 mm gH). Oxygen 

enters the body without any effort at atmospheric pressure of 760 mm gH and this is 

more or less the pressure inside the lung. However when the process of respiration starts 

the negativity inside the alveoli increases, as a result of stretching the visceral pleura 

outside, which allows the air to come inside. The process of expiration differs and 

depends mainly on the elastic recoil of the lung parenchyma. Loss of this property may 

cause air trapping and hyperinflation observed in COPD (Incalzi et al, 2009) 

Oxygen is transported by capillary blood vessels in the lung tissue into different parts of 

the body through the heart and any defect in the blood vessel formation in the peripheral 

lung of COPD patients, for example a decrease in VEGF (vascular endothelial growth 

factor), may contribute to hypoxemia. 

The severity of the disease in both obstructive and restrictive lung diseases is related to 

the degree of alveolar hypoxia and hypoxemia (Han et al, 2006). As well as an increase 

in airflow limitations, the ventilation/perfusion mismatch increases, which may be 

aggravated by sleep and exercise (Rodriguez et al, 2009). The most determinant factor 

in the development of hypoxemia in COPD is ventilation/perfusion mismatch, which 

results from emphysematous destruction of the pulmonary blood vessels and airflow 

limitation. 

In COPD patients the ventilation/perfusion mismatch results in destruction of the 

capillary bed of the alveolar septa. Moreover frequent exacerbation is associated with 

deterioration in gas exchange and hypoxemia. Long-term disturbance in oxygen 

delivery may cause serious complications if the hypoxemia is not corrected, including 

systemic inflammation, pulmonary hypertension, muscle wasting and polycythaemia. 
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Long-term oxygen therapy (LTOT) can improve the quality of life, and hence is one of 

the options in the management of alveolar hypoxemia (Rabe et al, 2007). 

Systemic inflammation is one of the possible complications associated with COPD. 

Many factors are proportionally related to systemic inflammation in COPD. These 

include tobacco consumption, degree of hypoxemia and a narrowing of the airways (Sin 

et al, 2006) 

 

1.5.9 Complications 

COPD is a common cause of hospitalization among elderly patients and co-morbidities 

are a frequent cause of hospitalization. Coronary artery disease, diabetes mellitus, 

infections, osteoporosis, and muscle wasting are the most frequent complications. 

7-10% of COPD patients develop lung cancer (Mannino et al, 1993; Hansell 2003). 

Long-term complications are associated with cachexia (weight loss), which occurs in 

25-65% of cases associated with an increase in leptin level (adipose derived hormone). 

Leptin is considered as pro-inflammatory factor, which is involved in the release of 

other inflammatory factors like IL6 (Yang et al, 2006). 

 

1.5.10 Management of COPD 

Deterioration of lung performance in COPD starts slowly at the beginning and rapidly 

progresses with advancement of the disease. Nonetheless, smoking cessation remains 

the first and the most important way to halt further progression and reduction of FEV1.  

The pharmacological treatment depends on the clinical stages of the disease. In mild 

COPD (FEV1/FVC ≥70%), where breathlessness on exertion is the most common 

symptom, the mainstay of treatment is short acting β2-agonist which acts via 

stimulation of the cell surface of β2-adrenoreceptors (member of G-protein) (Jonson and 

Malcom, 1998), which in turn activate protein kinase-A by a sequence of reactions 

resulting in phosphorylation of the intracellular regulatory proteins, which then block 

histamine and cysteinyl-leukotrine efflux from mast cells; moreover β2-agonists possess 

an anti-inflammatory property. 
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Anti-cholinergic medication is another group that can alleviate bronchoconstriction via 

relaxation of smooth muscle by blocking the muscarinic receptors (Rabe et al. 2007). 

Inhaled corticosteroids are important in the management of COPD as they decrease 

hospital stay and reduce frequency of exacerbations. Nevertheless, the long-term benefit 

is not clear (Lung Health Study Group, 2000). 

 

1.5.11 Indication of steroids in management of COPD 

 
(Figure 1.12), Indication of glucocorticoids in management of COPD. Use of 

glucocorticoid is usually redistricted on mild cases, however during exacerbations 

steroids along with long acting β2 agonists are usually recommended.   

 

1.5.12 Oxidative stress in COPD 

Oxidative stress is a disturbed balance between oxidants, such as reactive oxygen 

species (ROS) and the anti-oxidant defence line (Betteridge, 2000). Three main sources 

of oxygen free radicals are smoking, inflammation and infections. Oxygen free radicals, 

which are responsible for alteration of oxidative stress, are released by inflammatory 

cells as a result of the consumption of oxygen (American Thoracic Society, 1996) 

(Figure 1.11). Oxidative stress is considered as the main explanation of pathogenesis of 

COPD. ). Both oxidative and nitrates stress are increased in COPD and are profoundly 
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increased with frequent exacerbation (Barnes et al, 2009). Oxidative stress is initiated 

by products of neutrophils and macrophages causing tissue damage and turns on nuclear 

factors such as NF-KB and activating protein-1 (AP-1), leading to production of pro-

inflammatory cytokines and chemokines. Meanwhile, frequent injuries or repeated 

infections could initiate inflammation. Antioxidants such as Nrf2 activator are inactive 

inside the cells until released by the effect of Nrf2 activators, then translocate into the 

nucleus to exert their effect by binding to anti-oxidant response elements (ARE) (Itoh et 

al, 2004). These anti-oxidants are markedly decreased in COPD patients because of 

cigarette smoking and frequent exacerbation (de Boer at el, 1989).  

 

(Figure 1.11). Role of Oxidative and nitrative stress in pathogenesis of COPD.                                                                                                                         

Different oxidant are involved in the activation of alveolar macrophages, neutrophils 

epithelial cells leading to production of ROS (reactive oxygen species) and RNS 

(reactive nitrogen species), as well as activation of redox sensitive transcription factors. 

They might have a role in inflammatory cascade responsible for COPD. 

 

1.5.13 Role of inflammatory mediators in COPD 

In heathy people the respiratory zone is sterile, however bacteria have been identified in 

patients with established COPD. In addition, the presence of bacteria in the lower 

airways is involved in the pathogenesis of the disease by releasing inflammatory 
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mediators that cause epithelial destruction and mucus overproduction (Grainge et al, 

2013). 

There are several inflammatory cytokines and chemokines (more than 50 different types 

of inflammatory mediators) involved in the inflammatory process in COPD patients 

(Table 1.3). Cytokines have been categorized into four main groups: 1) lymphocytes 

(cytokines which are released by T-cells and involved in the inflammatory process), 2) 

pro-inflammatory cytokines (enhance inflammation), 3) growth factors (cytokines that 

are responsible for structural modification which enhance the proliferation, 

differentiation and survival of cells), and 4) chemokines. Chemokines are inflammatory 

cytokines, which possess a chemotactic property for inflammatory cells and enhance the 

inflammatory process.  

The most important pro-inflammatory cytokines involved in COPD are TNFα, IL-1β 

and IL6, in addition IFN-ϒ. 
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Table 1.3 Cytokines netwok in Asthma and COPD (Barnes, 2008). Different 

inflammatory mediators are involved in the pathogenesis of COPD, involving 

lymphokines and T-cell regulatory cytokines, pro-inflammatory cytokines, anti-

inflamatory cytokines, growth factors and chemokines 

 

Cytokines are extra-cellular signalling proteins with relatively low molecular weight. 

They are produced by variety of cells and implicated in cellular interactions. In addition, 

inflammatory cytokines have a paracrine effect (on the neighbouring cells), an 

endocrine effect (at distance) and influence the original cells that secrete the cytokine. 

Both cytokines and chemokines act by binding to transmembrane receptors and the 

effect may be overlapped in a synergistic or antagonistic way by other cytokines 

produced by the same cells. TNF-α is one of the most important inflammatory 

 

Cytokines 

  

Role in COPD 

Lmphokines and T-cell 

regulatory cytokines                

IL4    

IL5 

IL9 

IL12 

IL13   

IL17    

IL25 

IFN-ϒ 

 

 

Unknown 

Unknown 

Unknown 

Inhances the disease 

Reduce the inflammation 

Enhances the disease 

Unknown 

Enhances the disease 

Pro-inflammatory 

cytokines 

IL-1β, IL-6, TNF-α  

 

  Enhances the disease. 

Anti-inflammatory 

cytokines 

IL-10 

 

Reduces the inflammation 

Growth factors 

TGF-β 

VEGF 

 

Increase in the disease. 

Increase in the disease. 

Chemokines 

(CCR2,3,4,5 agonists) 

Enhances the disease except CCR4 agonist 

Unknown.  
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mediators associated with systemic manifestation, such as muscle weakness and wasting 

in chronic obstructive pulmonary disease (Wouters, 2002) and has been found over-

expressed in patients with emphysema.  

 

1.5.13.1 Role of Interleukin-6 in health and disease 

IL6 is a multifunctional pro-inflammatory and immune-modulator cytokine produced by 

a variety of cells, such as epithelial cells, interstitial fibroblasts, macrophages and other 

inflammatory cells in response to cigarette smoking (Figure 1.10). IL6 is involved in 

inflammatory and immunological response, as it plays an important role in cellular 

proliferation and the survival of interstitial fibroblasts, thereby being involved in 

fibrosis. In addition, some studies show a high expression of IL6 in epithelial derived 

tumours (Grivennikov and Sergei, 2008). In lung tissue, it is mainly produced by 

alveolar macrophages and epithelial cells. Furthermore, one longitudinal study showed 

a relation between increased interleukin 6 in the sputum of COPD patients and 

deterioration in FEV1, exacerbation and pulmonary infections (Hagashimoto et al, 

2009).  

IL6 is implicated in the progression of the disease (Cosio et al, 2009). In addition, IL6 

secretion in COPD patients is directly proportionate to C-reactive protein level during 

exacerbations (Kolsum et al, 2009). High levels of IL6 in COPD patients are related to 

depression and increased mortality rate (Cavaillès et al, 2012), and concomitant 

cardiovascular co-morbidities (Cosio et al, 2009). The cytokine IL6 has both pro-

inflammatory and anti-inflammatory characteristics. The anti-inflammatory property is 

mediated by classic signalling, however, the majority of cells mediate the pro-

inflammatory. IL6 is located on chromosome 7P 21, and it is relatively small molecular 

weight protein (21kDa). IL6 attaches to cell member receptors, consequently leading to 

activation of JAF family of tyrosine kinase, which in turn stimulates pathways such as 

MAPKs, PI3Ks and others (Hodge et al, 2005). 
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Figure 1.10 Interaction of cells and cytokines in the airway inflammation of COPD. The 

effect of environmental and infectious agents (viruses) on epithelial cells, as well as the 

effect of different inflammatory mediators on macrophages eg TNF-α and on 

neutrophils eg.IL6, IL-8, MCP and its involvement in tissue damage (Chung, 2001). 

 

1.5.14 Future directions towards the new treatment of COPD 

New treatment options based on the cellular and molecular mechanisms are a point of 

interest for many inflammatory diseases like rheumatoid arthritis and COPD. The new 

drugs focus on the inflammatory mediators that are responsible for the activation and 

recruitment of the inflammatory cells and for the ROS (reactive oxygen species) that 

contributes to COPD (Barnes, 2011).  

TNF-α is elevated in the sputum of COPD patients. Moreover, TNF-α induces IL8 by 

enhancing transcription of NF-KB (Cheirakul et al, 2005). Anti-inflammatory drugs like 

phosphodiesterase inhibitors and P38 MAP kinase inhibitors are inhibitors of TNF-

expression. Moreover, phosphodiasterase-4 inhibitors block expressed 

phosphodiesterase in the inflammatory cells suggesting a potential effect in control of 

the inflammation (Edelson et al, 2001). 

Based on oxidative stress, which is increased in COPD patients (Nadeem et al, 2005), 

the anti-oxidants like N-acetyl cysteine have emerged, which show an anti-oxidant 
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effect both in vitro and in vivo. Recently, NAC (N-acetyl cysteine) was suggested to 

minimize the frequency of exacerbations (Gerrits et al, 2003).  

 

1.6 Steroids in health and disease  

Steroid hormones have an important role in the development, differentiation and 

homeostasis of the human body. Five classes of steroids are synthesized and released in 

organized rhythm (androgens, estrogens, progestin, mineralocorticoids and 

glucocorticoids), and each class exerts its effect by binding to a selected member out of 

48 members of the steroid nuclear superfamily of intracellular proteins. Synthetic 

glucocorticoids are more potent than naturally-released glucocorticoids (Piemonti et al, 

1999). Nuclear hormone receptors involve a superfamily of ligand dependent 

transcriptional factors that have role in wide cellular processes such as apoptosis, cell 

growth, development, differentiation and homeostasis. Many physiological processes 

including metabolism and haemostasis are influenced by nuclear receptors. There are 

two types of nuclear hormone receptors. Type I facilitate the effect of glucocorticoids 

(glucocorticoid receptors, GR), oestrogens (oestrogen receptors ER), mineralocorticoids 

(mineralocorticoid receptors, MR), progestin (progestin receptors, PR) and androgens 

(androgen receptors). Type II mediate the effect of thyroid hormones, 9-cis retinoic acid 

and vitamin-D. All nuclear receptors have same modular structure, consisting of N-

terminal A/B domain, DNA binding C domain and D, E, F (LBD) Carson et al, (1990); 

Mc kenna et al, (1999). 

There is evidence that glucocorticoid hormones are produced from various organs 

(Davis and Eleanor, 2003), however the adrenal cortex is the main site of synthesis and 

production of both glucocorticoids and mineralocorticoids. Under the control of the 

hypothalamic-pituitary axis various stress factors and hormones are responsible for tight 

regulation of glucocorticoid synthesis and production. Glucocorticoid production is 

enhanced by the adrenocorticotropic hormone from the pituitary gland, which is 

secreted under the influence of a corticotropin-releasing hormone from the 

hypothalamus. Mineralocorticoids are another important hormone similar to 

glucocorticoids and mainly responsible for reabsorption of sodium and water by the 

epithelial surface of collecting ducts in kidneys, salivary gland and large intestine 

(Schambelan and Morris, 1981). 
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The availability of natural glucocorticoids in tissues is regulated by corticosteroid-

binding globuline in serum and by locally expressed 11β hydroxysteroid dehydrogenase 

enzymes (11β-HSD). Essentially, the majority of tissues are expressing glucocorticoid 

receptors and their effect has a crucial influence on maintaining cellular functions and 

mediating pathological conditions (Figure 1.13). 

In the central nervous system, over-expressed glucocorticoid receptors are linked to 

depression and post-traumatic stress. Several experiments show a strong association 

between glucocorticoid signals and anxiety disorders. In addition, glucocorticoids have 

a critical role in maintaining immunity and suppressing inflammatory reactions 

following organ transplants. Furthermore, glucocorticoids increase the phagocytic 

ability of macrophages (Busillo et al 2011). 

 

Figure 1. 13| Effect of glucocorticoids on cellular and body function. Different tissue 

and organs are affected by glucocorticoids, including blood glucose, endothelial tissue, 

lipid metabolism and homeostasis.   

             

1.6.1 Glucocorticoids homeostasis 

Cortisol is the main type of steroid, and is regulated by the hypothalamic pituitary axis 

under the influence of the neuroendocrine system. Furthermore, the magnitude and 

duration of HPA activation is controlled by glucocorticoids (Keller et al, 1984).    
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Glucocorticoids are produced in a circadian manner with diurnal variation (Rose et al, 

1971). They have a diverse physiological effect on the majority of mammalian cells. 

Moreover, during some physiological conditions like stress and starvation, 

glucocorticoids stimulate the liver to replace the deficit by glycogenolysis and 

gluconeogenesis. Cushing's and Addison’s diseases result from a surplus and deficiency 

of glucocorticoid supply respectively. 

 

1.6.2 Response to steroids  

Endogenous glucocorticoid hormones are considered to be stress related hormones 

released under hypothalamic control. As a response to the hypothalamic factor, 

corticotropin-releasing hormones enhance the release of adrenocorticotropic hormones 

(ACTH) from the pituitary gland, and consequently ACTH induces glucocorticoid 

synthesis from the zona fasciculate in the adrenal cortex. Glucocorticoids are lipophilic 

and circulate in the blood stream attached to corticosteroid binding protein (GBP) 

(Wallimann and Peter, 1997). The therapeutic efficacy of glucocorticoid is either 

mediated by trans-repression, which largely mediates the anti-inflammatory property, or 

by transactivation, which is responsible for side effects. Generally the genes that have 

anti-inflammatory functions are induced by GR through its transcriptional activity, for 

example lipocortin, IL10 and IL1 receptor antagonist. Conversely the pro-inflammatory 

proteins that are responsible for induction of the inflammatory process are controlled by 

NF-KB and AP-1, and the role of glucocorticoids in this situation is trans-repressive by 

blocking pro-inflammatory genes. 

Glucocorticoid hormones enter the cell to interact with glucocorticoid receptors causing 

the release of heat shock protein (Pratt and William 1997). There are two types of 

glucocorticoid receptors both of which act as pro-inflammatory: GR-α which has 

agonistic activity and is related to glucocorticoid sensitivity, and GR-β that is related to 

insensitivity to the glucocorticoids. The complex then translocate into the nucleus and 

binds to the glucocorticoid response element (GRE) on responsive genes leading to 

increased or decrease transcription (Barnes et al, 2009). The GR gene is found on 

chromosome 5 (Hollenberg and Stanley, 1985). The GR function is controlled at 

multiple levels, by binding to hormones, nuclear translocation, interaction with 

cofactors and post-translational modifications such as phosphorylation and acetylation. 
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Four functional domains have been identified (Giguere and Vincent, 1986): N-terminal 

domain contains AF1 function that mediates transactivation of target genes. DNA 

binding domain (DBD) is involved in binding to GREs and contains two zinc fingers. 

The first involves AF1 which plays a role in trans-repression. The second finger has a 

role in dimerization of the receptor and the trans-activation that is mediated by the 

glucocorticoid response element. LBD (ligand binding domain) has a steroid binding 

function, a nuclear localization signal and ligand dependent trans-activation region 

which may interact with a co-activator or a co-repressor. The interaction between 

activated glucocorticoid receptors and GRE is considered to be classical and leads to 

activation of transcription, whereas binding with NF-KB is non-classical and is usually 

associated with transcriptional repression.  The actions of NF-KB are inhibited by GR 

through multiple mechanisms (Auphan et al, 1995). 

NF-KB is usually located in the cytosol in inactive state, bound with blocking proteins 

such as Ik B-α. Upon inflammatory signal. The NF-KB inhibitor-α is phosphorylated 

causing the release of NF-KB, which in turn translocate into the nucleus to interact with 

KB response elements and to regulate the genes coding the cytokines and chemokines to 

fight infection or inflammatory particles. Moreover, the imbalance or over expression in 

NF-KB may cause chronic inflammation (Ghosh et al, 1998).  
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              Systemic effect                      Local effect 

Lung Decreased macrophages 

in sputum 

Decease oxidative stress 

 Reduce eosinophils in 

sputum 

Reduction in mast cells 

  Down regulate synthesis and 

release of IL6 and IL8 from 

epithelial cells 

Circulatory         

system 

 Decrease CRP level 

 

Clinical 

 

Improved FEV1, shorter 

hospital stay, and improve 

the acute exacerbations 

Decrease hyper-

responsiveness of the 

airways, reduce exacerbation 

and slight effect on the rate 

of decline in FEV1 

 

 

 Improve cough and decrease 

sputum,  

Improve post Broncho-

dilator test in acute 

exacerbation and reduce 

mortality rate  

Table 1.4 Systemic and local effect of glucocorticoids (Barnes et al, 2011)  

 

1.6.3 Glucocorticoid receptor phosphorylation 

Glucocorticoid receptors are phosphoproteins that exist in most human cells. Although 

the glucocorticoid response is mainly determined by hormones, phosphorylation status 

also affects GR actions. Moreover, cellular conditions that affect phosphorylation of 

glucocorticoid receptors can have impact on GR transcriptional output. The most 

common sites for GR phosphorylation are serine 203, 211, 226 and 404. Moreover, 

glucocorticoid receptors have ability of phosphorylation at other sites of serine and 

threonine as well as tyrosine residues (Rao et al, 1987). Dephoure et al (2008) has 

suggested that other phosphorylation sites including threonine 8, serine 45, 134, 234 and 

267 exist. 
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Several residues within GR, for example S211, need phosphorylation to acquire full 

transcriptional activity (Krstic et al, 1997). S211 (phosphorylated glucocorticoid 

receptors at serine 211) use CDK and P38 kinases pathways, which is transcriptionally 

active as a result of conformational changes which mediate the recruitment of GR to 

GRE-containing promotor.  The JNK pathway is responsible for S226 (phosphorylated 

glucocorticoid receptor at serine 226) phosphorylation. This type of phosphorylation 

results in inhibition of GR activity, possibly because of increase in GR nuclear export. 

GR undergoes ligand-dependant self-regulation, which limits hormone responsiveness 

(Wallace et al, 2001). In addition, glucocorticoid sensitivity depends on availability of 

GR inside the cells. This process is also regulated by phosphorylation, in addition to 

transcriptional activity and nucleo-cytoplasmic localisation (Ismaili and Garabedian, 

2004). In previous studies p38 MAPK was found active in alveolar macrophages in 

steroid-resistant asthma (Bhavsar et al., 2008).  In response to external factors, MAPKs 

can affect cell behaviour and other biological processes such as migration, proliferation, 

and cell death. (Davis et al, 2003). 

                                                                       
Figure 1, 14| Phosphorylation of glucocorticoid receptor. GR modulates 

hormone signalling. Upon binding to glucocorticoids it translocates into the 

nucleus and starts transcription. In addition half the life of the protein may be 

altered by the phosphorylation (Galliher et al; Amy et al, 2009). 
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1.6.4 Underlying mechanism of glucocorticoids action in COPD  

A combination of long acting beta agonist and glucocorticoids has little effect on FEV1 

decline rate, however long-acting beta agonist and inhaled steroids diminish the rate of 

exacerbations and the severity of the disease (Mahler, 1999: Dahl, 2001).   

Down-regulation of inflammatory cytokines by HDAC2 in the presence of 

corticosteroids is a rational explanation for the therapeutic effect of glucocorticoids. 

Many clinical studies show that local and systemic glucocorticoids have an inhibitory 

effect on inflammatory cytokines (Lto et al, 2005). Moreover, Sin et al, (2006) 

conducted a study that showed that C-reactive protein levels are reduced in patients 

treated with glucocorticoids compared with placebo. 

In stable COPD patients, systemic glucocorticoids have no obvious effect on FEV1 and 

FVC (Walter et al, 2005). Moreover, glucocorticoids increase the mortality rate among 

COPD patients above 65 (Sin et al, 2001). There are other side effects of 

glucocorticoids, such as hyperglycaemia, hypertension etc. On the other hand, during 

acute exacerbation of COPD, glucocorticoids improve FEV1, decrease hospital stay and 

reduce the frequency of exacerbation.  

Inhaler glucocorticoids are involved in the management of COPD, however the exact 

causal mechanism of the benefit is still unclear. Pauwels et al (2001), carried out three 

years observational study on mild COPD patients who received inhaler glucocorticoids 

or placebo. The author concluded that there were no significant differences in FEV1 

decline rate. 

In COPD patients, prolonged use of glucocorticoids is responsible for systemic side 

effects and toxicity, including disturbance of blood sugar, increased risk of fracture, 

adrenal gland insufficiency (Walter et al, 2005), muscle weakness and depression 

(Decramer et al, 1994). However, there are some advantages including less hospital 

admission, fewer exacerbations and enhanced bronchodilator efficacy. (Scanlon et al, 

2000). 
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1.6.5 Mitochondrial GR 

GR translocation to the nucleus happen both in sensitive and resistant to glucocorticoid 

cells, while only in steroid-sensitive cells, glucocorticoid can translocate into the 

mitochondria. Mitochondrial membrane is directly affected by glucocorticoid 

hormones, resulting in loss of mitochondrial trans-membrane potential, hence disturbing 

the cellular processes mediated by function of mitochondria, for example ATP 

generation via oxidative phosphorylation, calcium flux and apoptosis 

             

1.6.6 Role of co-factor TTC5 in glucocorticoid action  

Nuclear hormone receptor function is controlled by numerous cofactors. GR also 

interacts with both coactivators, such as p300 histone acetyl transferase and 

corepressors such as histone deacetylases. One of the cofactors recently identified to 

affect GR is TTC5 (tetratricopeptide repeat domain 5). TTC5 is a cofactor protein 

originally identified in P53 response. TTC5 is a chaperone-like protein that mainly 

facilitates the assembly of multiple protein complexes. 

TPR motifs are protein-protein interaction modules, identified in a variety of proteins 

and usually in combination with other structural motifs (Blatch and Lassle, 1999). 

Demonacos et al (2001) have identified a stress responsive activator of P300 (STRAP, 

also known as TTC5) as a co-factor for P300 co-activator complex. TTC5 expression 

was significant in lungs, brain, and kidney mouse tissues and several cell lines. TTC5 is 

composed of six TPR motifs and is phosphorylated and regulated by DNA damage 

responsive kinases (Figure 15). 

TTC5 plays a pivotal role in P53 transcriptional activity in response to DNA damage 

and it is required to assist the interaction between JMY (transcriptional cofactor of P53) 

and P300 which in turn enhances apoptosis and P53 dependent transcription and 

prevents its degradation by MDM2 (negative regulator of p53 suppressor gene) (Coutts 

and La Thangue, 2006). HSP (heat shock protein) can also induce TTC5 to act as a co-

factor to enhance the transcription of heat shock genes during heat shock response 

(Davis et al, 2011) 
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Figure-1. 15 Structure of TTC5. (A) Domain organization revealing mapped interaction 

for JMY, P300 phosphorylation sites (Demonacos, 2001). (B) Ribbon diagram for 

TTC5 with coloured structure as in A. 

 

Stability, post-translational modifications and recruitment of co-factors are the main 

factors affecting glucocorticoid receptors. Post-translational modification is vital for GR 

transcriptional activity, stability and GR binding to other factors, suggesting that 

glucocorticoid hormone efficacy is highly dependent on post-translational 

modifications. Previous studies have shown a relation between GR and the TTC5/stress-

responsive activator of P300, in which activity and ligand-dependent down-regulation 

of GR is affected by TTC5 (Demonacos et al, 2011). Phosphorylation of the 

glucocorticoid receptor at some sites, like serine 211, is up-regulated after exposure to 

dexamethasone hormone, however interaction between phosphorylated glucocorticoid 

receptor and TTC5 is still under investigation. 

 

1.6.7 Complications associated with glucocorticoid treatments 

Long-term treatment with glucocorticoids is associated with undesirable side effects and 

complications involving many parts of the body, and these complications could be 

immediate or long term complications, which usually result as a consequence of a 

cumulative dose of glucocorticoids (Figure 14). The average doses of different types of 

synthetic glucocorticoids are shown in table 4. 

Increased weight and redistribution of fat is the most common long-term complication 

associated with glucocorticoids. One study, carried out for patients with rheumatoid 
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arthritis, has shown a 4 to 8% increase in BMI (Da silva et al, 2006). Another 

observational study concluded about 40% of patients above the age of 60 on 

glucocorticoids are at risk of osteoporosis and fracture, moreover, glucocorticoids can 

halt osteoblast activity responsible for bone formation in osteoporosis and cause 

pathological fracture (Canalis et al, 2004). 

Glucocorticoids may block the pro-inflammatory cytokines, leading to decreased 

macrophage activity and increased risk of infection. There is a very weak correlation 

between glucocorticoid use and the risk of peptic ulcer, however patients on steroid 

treatments with NSAID (non-steroidal anti-inflammatory drugs) are at four times 

greater risk of peptic ulcer than patients who are taking NSAID alone (Weil et al, 2000). 

More serious complications, such as osteonecrosis, can occur. Shigemura and Tomonori 

(2011) revealed taking 10mg/day of prednisolone for six months can increase the risk of 

osteonecrosis by 4 to 5%. Other serious complications of frequent use of 

glucocorticoids include hyperglycaemia and secondary diabetes, ischemic heart 

diseases, which are the major drawback to the use of steroids in high risk patients. 

Moreover, hypothalamic-pituitary adrenal axis suppression may develop over a long 

period. In the case of small cell lung cancer there is synthesis of pro-hormone ACTH-

like hormone, which is the same in character as that secreted by the pituitary gland. 

Negative feedback is responsible for blocking the expression and release of ACTH from 

the pituitary gland, nevertheless, in small cell lung cancer, glucocorticoids do not have 

the ability to block glucocorticoid release (Schlossmacher et al, 2003). 



52 

 

 

Figure 1.16| Side effect and complication from prolonged use of steroid hormones 

 

             Generic name of synthetic   

Glucocorticoids 

              Recommended dose/Kg/day 

Hydrocortisone 4 mg/kg/day 

Prednisolone 1 mg/kg/day 

Methyl prednisolone 0.8 mg/kg/day 

Dexamethasone 0.15-0.3 mg/kg/day 

Betamethasone  0.12 mg/kg/day 

Table 1.5 Types of synthetic glucocorticoids and recommended doses/Kg/day (Adapted 

from Gensler et al, 2013).  

 

1.6.8 Immunohistochemistry 

Immunohistochemistry is a common procedure used to identify the surface area and 

distribution of specific tissue antigens, and in situ detection by monoclonal and 

polyclonal antibodies. IGg is the most popular immunoglobulin used.   

The idea of immunohistochemistry started when Marrack, who invented reagents acting 

against cholera and typhus, based on a red-stain called tetraedro. In the 1940s, antigens 
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against streptococcus pneumonia were identified by fleuressin stain under ultra-violet 

light fluorescence microscopy (Coons et al, 1991). In the following years, Nakane 

introduced the idea of enzymes as a marker antibody (Avrameas et al, 1966; Nakane et 

al, 1968). 

 

1.6.7 Background of immunohistochemistry 

Immunoglobulin is Y in shape and has two identical heavy and white chains. The type 

of antibody is determined by the weight of the chain: heavy or light. Each one has two 

forms: lambda and kappa (figure 1.7). 

Fab portion is part of immunoglobulin that can bind to the antigen, which contains 

different segments of heavy and light chain and plays a role in stabilizing the antibody 

binding to the tissues. 

The FC region (the tail of immunoglobulin) is an important region, which allows 

binding of antibodies by FC receptors to inflammatory cells. Moreover, this part is 

important for non-specific staining in the technique. 

Paratop is the antigen-binding site of the antibody. The site of the antigen that binds to 

the antibody is known as “the epitope”. 

                                                      
Figure 1.17|. Structure of immunoglobulin. Fab Fragment (antigen binding).                                                                                                        

Fc Fragment, crystalized. CL constant domain (Light chain). Variable domain                                                                                                                  

heavy chain, and hinge region. http://www.ebioscience.com/knowledge-

center/antigen/immunoglobulin/structure.htm. 
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Previous researchers hypothesized that lung macrophages in COPD are resistant to 

glucocorticoids. Plumb et al (2013) conducted research about phosphorylated GR in 

peripheral lung tissue, concluding that phosphorylated GR (S211 and S226) are 

expressed in lung macrophages in heathy and COPD patients. On the other hand, 

phosphorylated forms of GR (S211 and S203) were expressed in the lung epithelial 

surface, but the form of the GR phosphorylated at S226 was not expressed. Moreover, 

the phosphorylation status of glucocorticoids in lung macrophages was not affected by 

the disease as high degree phosphorylation in lung macrophages was detected. 

The conclusion from previous research indicated that there were abundant 

phosphorylated forms of GR in lung macrophages, suggesting that this process was not 

disrupted in COPD patients (Adcock et al, 2005). In addition, optimum concentration of 

17-BMP at small airways of COPD patients is enough to suppress pro-inflammatory 

mediator production by macrophages (Plumb et al, 2013). 

 

1.7 Lung cancer 

Lung cancer is the fourth most common cause of death in the world and about 41,000 

cases are diagnosed every year in the UK. According to its histopathological features, 

lung cancer is classified into two types: small cell and non-small cell.  

Non-small cell lung cancer accounts for approximately 85% of cases. Three types of 

lung cancer belong to this group: squamous cell carcinoma, large cell carcinoma and 

adenocarcinoma. About 40% are adenocarcinomas and usually occur in peripheral areas 

of the lung tissue, while squamous cell carcinoma usually occurs in central areas and 

more frequently in males than in females. This last detail is related to smoking patterns 

across sexes (Minna et al, 2008). Response to treatment and disease metastasis is varied 

from one type to another. Small cell lung cancer usually responds poorly to treatment 

and spreads quickly. Moreover, surgical intervention is inadvisable. However, non-

small cell lung cancer responds better response to treatment. It is likewise subdivided 

into three main types: squamous cell carcinoma, adenocarcinoma and large cell 

carcinoma. 



55 

 

Adenocarcinoma is the most common type, and in the majority of cases the tumour is 

locally advanced or already metastatic at the time of diagnosis, with only 15% survival 

rate in 5 years. 

 

1.7.1 Histological features of non-small cell adenocarcinoma 

Non-small cell adenocarcinoma is subdivided into six groups according by histological 

features and clinical behaviour. Type A, known as local bronchoalveolar carcinoma, is 

solitary and grows by substituting the alveolar lining cells with a thickening of the 

alveolar septa. Usually there is no fibrotic foci with an unclear boundary. Type B, or 

localized bronchoalveolar type, is usually associated with foci and alveolar destruction. 

Its general microscopic appearance is the same as type A’s, however there are some 

alveolar foci that develop as a consequence of alveolar collapse. Type C, or localized 

bronchoalveolar with foci of active fibroblastic proliferation, is the most common 

histological subtype. The lining epithelium is replaced with active fibroblastic 

proliferation and small vessels are obvious. However, there are no active fibroblasts in 

the foci as with type B. Type D, or poorly differentiated adenocarcinoma, is 

characterized by a solid tumour, which is similar to large cell carcinoma. Moreover, it 

has clear boundaries between the tumour and the normal parenchyma. Type E, or 

tubular adenocarcinoma, is comprised of tubular and acinar structures. Tumour margins 

are well defined. Type F, or papillary adenocarcinoma type of tumour, grows by 

replacing the alveolar lining cells. Additionally, it shows destruction of the septa. 

 

1.7.2 Clinical-pathological characteristics 

The clinical features depend on the stage of the tumour. In types A and B there is no 

lymph node metastasis and it is considered to be stage I bronchoalveolar adenoma 

(bronchoalveolar carcinoma in situ) and in type C around 30% of cases show lymph 

node metastasis. The male to female ratio is 1:4 and the survival rate within 5 years is 

100% in patients with types A and B.  
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1.7.3 Smoking and lung cancer 

There are more than 4,000 toxic and carcinogenic materials in each cigarette. There are 

approximately104 free radicals in each puff, which may interrupt oxidative/anti-

oxidative balance, causing alveolar destruction. Moreover, apoptosis of the epithelial 

airways is mainly due to mitochondrial damage, and is the result of oxygen free radicals 

rather than nicotine (Wlkilson et al, 2006). 

Heat shock protein 70 is a molecular chaperone important in uniting polypeptides, 

which importantly limit cellular injury and restore the function of damaged proteins. On 

the other hand, the quantity of inflammatory cytokines is directly proportionate to the 

development of the lung cancer in which high levels of inflammatory cytokines such as 

IL6 and IL8 are correlated with the occurrence of lung cancer. Moreover, IL6 and IL8 

are over-expressed in pre-malignant epithelial cells and their expression is associated 

with a bad prognosis. Other inflammatory mediators such as C-reactive protein, a 

circulating inflammatory biomarker, are potential contributing factors to lung cancer 

 

1.7.4 Inflammation in development of lung cancer  

The role of inflammation was first described by Rudolf Virchows in 1863. He noted that 

tumours could arise from the inflammatory sites. Cancer is defined as a complex of 

disease diversity in the same cells, and usually occurs as a result of uncontrolled 

growth. Genetically normal cells are under tight control of two main classes of genes: 

oncogenes and tumour suppressor genes. The risk of malignancy increases whenever the 

activity of oncogenes exceeds that of the tumour suppressor genes. Although genetic 

inheritance remains an important risk factor, environmental and life style factors are 

considered as the main cause of genetic mutation for some diseases (Stein et al, 2004). 

Despite inflammation’s health-giving function in restoring injured tissue, it may cause 

malignancy in the surrounding areas. The inflammatory reaction and carcinogenesis 

have the same molecular aspect and signalling pathway (Yan et al, 2006). 

Chronic inflammatory response is linked to the development of cancer. It provides 

active materials from cellular inflammation of tumour areas. Examples of such active 

materials include cytokines, chemokines and growth factors, which may maintain the 
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optimum environment for the cells to avoid apoptosis and enhance other beneficial 

processes such as the reorganization of energy metabolism (Stein et al, 2004).  

Cytokines potentially are low molecular mass proteins (21 kDa) that have a role in 

cellular communication. They are synthesized by stromal cells. For example, fibroblasts 

regulate different metabolic processes, such as differentiation and migration. 

Once the inflammatory process starts, it leads to the release of these mediators that then 

play an important role in the development of tumours (Hanahan et al, 2011). Saetta et 

al, (1998) reported that IL6 is involved in the inflammatory process in human COPD, 

and has shown the highest expression in lung COPD. Moreover, high levels of 

inflammatory cytokines such as IL6 and IL8 are correlated with a high risk of lung 

cancer. IL6 and IL8 are expressed in pre-malignant epithelial cells, which expression 

implies a bad prognosis. 

 

1.8 Genetic susceptibility in COPD and lung cancer 

Genetic and environmental factors are both responsible for COPD and lung cancer. The 

risk of lung cancer in patients with chronic obstructive disease is 5 times greater than in 

healthy smokers. Genetic backgrounds are not fully understood. It is well known that 

patients with α1-antitrypsin deficiency are at risk of emphysema, as it accounts for only 

1 to 2 % of cases of COPD. Other genetic factors are mentioned in the development of 

emphysema such as TNF, which have the coding of TNF-α protein. Previous studies in 

mice show that excessive production of TNF-α protein is associated with inflammation 

and the development of emphysema (Bouma et al, 2006), and that TNF-α is involved in 

70% of COPD-related smoking. BAL (bronchoalveolar lavage) of COPD patients 

shows an increase in TNF-α compared with healthy smokers. However, the reason 

behind the increased TNF-α in COPD patients is not clear. One possibility is that the 

TNF is associated with 308A allele in different disorders. It is well known that smoking 

increases the oxidative stress and inflammatory process by inhalation of oxidants and 

invasion of inflammatory cells in the lung tissue. Moreover, both oxidative stress and 

inflammatory cascade have an effect on the cells causing genetic instability. 

Furthermore, histone tails are altered by an extensive group of non-histone chromatin 

associated proteins known as chromatin modified enzymes which are present in cells as 
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a multi-component complex that is usually recruited to chromatin with DNA bound 

transcription factors.  

Chromatin-modifying enzymes are categorized based on their function into:  

1) Acetylation by histone acetyl transferase (HATs). 2) Deacetylation by histone 

deacetylase (HDAC). 3) Methylation by methyl transferase (HMTs). 4) Demethylation 

by histone demethylases (HDMs). 

The level and activities of histone deacetylase, particularly HDAC2 and Sirtuin 

1(SIRT1), are diminished in lungs and alveolar macrophages, resulting in steroid 

resistance in COPD patients as well as reduction in HDAC2 activity, which may lead to 

acetylation of NF-KB and glucocorticoid receptor α resulting in abnormal inflammatory 

response and resistance. 

Alveolar and parenchymal macrophages show a reduction in the level of HDAC activity 

especially HDAC2 and Sirtuin. This reduction is associated with acetylation of NF-KB 

and glucocorticoid receptor-α, resulting in excessive inflammatory response in COPD. 

Since histone deacyteylases control the activity and expression of many proteins related 

to cancer initiation and progression and alteration in somatic genes encoding HDACs 

activity is related to tumour progression. It is widely believed that returning HDAC 

activity could have positive effects on steroid efficacy. For the lung cancer, the risk was 

found in carriers of mutant TP53 (Tumour protein 53). Moreover, carriers of TP53 who 

smoke have a 3 times higher chance of developing lung cancer than non-smokers 

(Hwang et al, 2003). Additionally, Hemminiki (2004) has reported germline epidermal 

growth factor receptor (EGFR) T790M sequence variation in families with NSCLC.  

 

1.8 Apoptosis in COPD and lung cancer 

Apoptosis is defined as programmed cell death, a specific program encoded in the 

genome responsible for regulated activation of cell death. Apoptosis is also considered 

as morphological aspect of cell death, which is characterized by cell shrinkage, nuclear 

condensation and membrane swelling. Apoptosis is an important aspect of homeostasis 

(the opposite of cellular division). In addition, the pathogenesis of some diseases, like 

ischemia, neurodegenerative diseases and viral diseases is related to apoptosis. 

Necrosis, on the other hand, occurs due to the effect of toxins, physical stimuli or 
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ischemia. Moreover, it can be differentiated from apoptosis by intense inflammatory 

response due to early loss of cellular content, cell swelling and nuclear lysis. 

(Vandenabeele et al, 2010). 

Nonetheless, apoptosis is involved in eliminating inflammatory cells, which is 

considered as homeostasis in the lung, this process has a harmful effect on defence 

mechanism if it exceeds normal limits. Furthermore, the abnormal apoptotic process is 

related to the development of emphysema (figure 1.16), fibrosis, and bronchiolitis 

obliterans (non-reversible collapse of small airway) (Kasahara et al, 2001). The process 

of apoptosis is usually not easily detectable in pneumonia, however in severe 

inflammatory diseases, such as fibrosis, it could be obvious due to inefficient clearance 

(Vandivier and Gardai, 2005).  

Phagocytosis in COPD is involved in the process of the elimination of apoptotic cells, 

fibroblasts, epithelial and endothelial cells. Moreover, macrophages and dendritic cells 

are responsible for this process. Previous studies in COPD patients showed that the 

inefficient removal of dead cells may be responsible for the disruption of alveolar 

structure (deCathelineau et al, 2003). Furthermore, engulfing and necrosis of dead cells 

could lead to the release of some inflammatory mediators, which may initiate the 

immunological response and attract more inflammatory cells in the surrounding tissue. 

Hence, the elimination of the apoptotic cells is a crucial step to restore normal tissue 

function. 
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Figure 1.18| Involvement of inflammatory mediators in apoptosis. Ineffective 

efferocytosis (effective removal of dead cells by phagocytic cells) result in endothelial 

cells regression and matrix turnover. (B) Normal removal of dead cells maintains 

balance and prevents excessive release of inflammatory mediators that may cause 

erosion of the endothelium (Edward et al, 2009). 

 

Programmed cell death is the principle of tumour prevention and usually occurs in 

normal cells as a protective mechanism. In addition, oncogenes that become active in a 

tumour inhibit the apoptosis of abnormal cells (Green and Evan 2002; Lowe et al, 

2004).  

The elimination of unwanted cells is regulated by apoptosis, which is a highly organized 

process of programmed cell death (Figure 1.16). Two different pathways, depending on 

the source of death stimuli, have been described in the cell cycle, intrinsic and extrinsic 

pathways (Figure 1.19), which they categorized according to the source of stimuli. The 

first pathway (intrinsic pathway) is stimulated by internal stress signals such as DNA 

damage, starvation and the oxidative stress (Scmitt and Lowe, 1999; Mayer and 

obubauer, 2003). In turn, the mitochondrial proteins leak to trigger apoptosis 

(Hengarner et al, 2000; Saelens et al, 2004). Upon release of mitochondrial proteins, 

cytochrome C initiates a dismantling of cellular components, leading to cell death 

(Degeterve et al, 2003). The second pathway (extrinsic pathway), in which the external 

sources such as cytokines activate the extrinsic pathway by the binding of the death 
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ligand of TNF superfamily and TNF-related apoptosis to cell surface death receptors 

(TNF receptor 1 and 2) (Walczac and Krammer, 2002; Lavrik et al, 2005).This in turn, 

activate the pro-caspase-8 after formation of death inducing signalling complex (DISC), 

leading to induction of mitochondrial permeability or triggering a protease cascade, 

which ends by death (Scaffidi et al, 1998; Fluda et al, 2002). 

Figure 1-19| Different pathways of apoptosis in COPD and pulmonary emphysema, 

Intrinsic and extrinsic stimuli initiated by internal and external stimuli, which mediates 

two different pathways (Demedts et al. 2006).  

 

Several studies carried out in COPD lung were focussing on apoptosis. Imai and 

colleagues (2005) pointed to decrease in the apoptosis in lining epithelial surface and 

endothelium in COPD patients and concluded the reduction in level of apoptosis of 

inflammatory cells could be responsible for chronic inflammatory process. 

 

1.9.1 Effect of glucocorticoids on apoptosis 

Glucocorticoids are used mainly as anti-inflammatories and immunosuppressant, 

however they are also able to induce apoptosis in many cell types and tissues (Chrouses 

et al, 2007). In glucocorticoid-sensitive cells, the GR mediates glucocorticoid apoptotic 

effect. The classical signalling and modulation is mediated by the high expression of 
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GR-α, while the role of GR-β is not well-defined and may be inversely correlated with 

the inhibition of GR-α.  

Various isoforms of GR-α translation are related to different apoptotic rates. Apoptosis 

is induced by a group of proteins known as caspases. The caspase proteins are activated 

through the mitochondrial pathway. One of the immunomodulatory activities of 

glucocorticoids is to induce T-cell apoptosis. There is evidence that in the majority of 

white blood cells glucocorticoids use the intrinsic pathway to induce apoptosis by 

affecting pro-apoptotic members of the Bcl-2 family (like Bim) or blocking the anti-

apoptotic members (Han et al. 2001, Wang et al. 2003, Lu et al. 2007). Moreover, in 

one study of glucocorticoid-induced apoptosis, the authors showed that there was a 

difference between cell lines, with the mitochondrial pathway being activated by 

glucocorticoids only in certain types of cell. (Sionovet al. 2006). 

The purpose of steroids in the management of lung cancer is to enhance cell death or 

apoptosis, however treatment commonly fails. In addition, glucocorticoids are used as 

adjuvant therapy in the treatment of solid tumours to reduce oedema, pain and 

electrolyte disturbance. They are also used in conjunction with chemotherapy because 

of their pro-apoptotic properties in lymphoid cells and because they can reduce the toxic 

effect of chemotherapy in healthy tissue (Rutz, 2002, Rutz; Herr 2004). 

 

 

Figure-1.18|. Mechanism of glucocorticoid mediated apoptosis. Genomic and non-

genomic pathway of glucocorticoid mediated apoptosis, leading to activation of caspase 

via mitochondrial pathway. (Elmore et al, 2007) 
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Aim and hypothesis 

The risk of lung cancer among COPD patients is higher than in heathy individuals. 

Moreover, the degree of structural change and the variety of cells recruited in COPD 

patients is different from those in the case of other inflammatory diseases like asthma. 

Treatment failure is common in COPD, and glucocorticoid resistance in COPD and lung 

cancer is considered the main issue. Our study highlights the effect of glucocorticoid 

hormones on the transcriptional activity of glucocorticoid receptors. We hypothesize 

that the stress cofactor TTC5 is important for the stability and the post-translational 

modification of glucocorticoid receptors. In this thesis, we examine the importance of 

glucocorticoid receptor phosphorylation on the transcriptional activity of glucocorticoid 

receptors, in lung cancer cell line (A549), as well as lung tissues of healthy and COPD 

patients, also, we hypothesize that TTC5 interacts with phosphorylated glucocorticoid 

receptors at multiple sites including S211, S226, and affects the activity of 

glucocorticoid receptors  

There is evidence suggesting that inflammatory mediators such are IL6 have an 

orchestrating role in the pathogenesis and the course of chronic obstructive pulmonary 

disease. One cross-sectional study showed that increased IL-6 in the sputum of COPD 

patients is directly proportionate to the disease severity. Based on these findings, our 

study will examine the expression of IL-6 in the peripheral lung tissue of COPD 

obtained from different groups of patients compared to healthy individuals. Moreover, 

on tissue level, we will examine the expression of glucocorticoid receptors and of the 

novel stress cofactor TTC5 in the macrophages and the epithelial surface, and in 

particular, how this expression varies with smoking status and the rate of decline in the 

pulmonary function. These findings could contribute to development of novel 

biomarkers of disease progression and drug sensitivity and improve therapy. 
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Chapter 2 Material and methodology 

 

2.1.1 Methodology 

Three procedures were used in this research namely maintaining the cell lines and 

western blot technique, co- immunoprecipitation and immunohistochemistry.  

 

2.1.2 Maintaining the cells 

Human alveolar adenocarcinoma cell line (A549 cells) were maintained in a Roswell 

Park Memorial Institute (RPMI) culture media. . Sterile media was with sodium 

bicarbonate and without L-glutamate which acts as intermediary between ammonia and 

ammonic acid and as nitrogen source in vivo. About 90ml of media with 1% penicillin 

was supplemented with 10ml foetal bovine serum (FBS) and 1ml glutamate. A549 cells 

were inspected on regular basis under a light microscope for possible bacterial or fungal 

infection and contamination. 

 

2.1.3 Feeding of the cells 

Feeding of cells with nutrients and amino acids was required to maintain healthy cells. 

The media was replenished every 2 to 3 days, the media was prepared under as a septic 

technique. For safety and infection control purpose, the pipettes were changed in every 

step in order to avoid microbial contamination.   The cells washed two times with warm 

sterile PBS and the existing media replaced by new one then the cells incubated in 37C 

(5% CO2).    
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2.1.4 Splitting of the cells 

The aim of splitting of the cells was to maintain the cells' growth in optimum condition 

with enough nutrient supply. The splitting was performed whenever the confluence of 

the cells was 70% or more. Safety and infection control measures was followed before 

the procedure. The trypsin and PBS were wormed to match body temperature for 

enzymes activity at 370C, then the cells washed twice with warm PBS. In the following 

step about 1ml of Trypsin was added to the cells and left for about 3 minutes in 370C. 

The flasks were tapped from the sides to detach the cells from the flask and then 

observed under the microscope to ensure complete detachment. Once the cells were 

detached, they were counted using haemocytometer under the microscope. The trypsin 

was deactivated by adding 10 ml of new media. The following step was dividing the 

amount of the media between two or more flasks depending on confluence and then 

filled up to 10 ml of media was added to each flask.  

 

2.1.5 Counting of cells 

The cells were counted using a sterile haemocytometer. About 25µl of well mixed cells 

were added to 100µl of trypan blue dye and then loaded on the sides and observed under 

light microscope using 10x power. The vital cells which were located at four side 

chambers of the haemocytometer were counted and the dead cells which were blue were 

not counted. The total amount of cells in the four chambers are divided by four.  

.                                                                                                        

Figure 2.1 haemocytometer under the microscope. 
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2.1.6 Freezing of the cells 

In order to freeze cells, cells were washed twice with sterile PBS followed by detaching 

the cells with 1ml trypsin and incubation in 370C for three minutes. The following step 

was adding 10 ml of media, centrifuge cells for 2 minutes at speed of 2000 rpm and 

wash them with PBS. The final step in the freezing was adding 1800 µl FBS and 200µl 

DMSO- (Dimethyl sulfoxide).The samples left in -20 for 24 hours before transferring 

into the -80 degree. 

 

2.1.7 Cell treatments  

The drug of choice was dexamethasone (1µM per 10 ml culture media for 16 to 18 

hours). Dexamethasone is manufactured steroid which possesses anti-inflammatory and 

immuno-suppressant effect, the potency of dexamethasone is 25 times stronger than 

glucocorticoid, however it is weak mineral-corticoid hormone. 

It is widely prescribed in management of allergic and immunological conditions such as 

asthma, chronic obstructive pulmonary disease, fibrosis, rheumatic diseases etc.  

Before the treatment with dexamethasone, the media was supplemented with 1 ml 

glutamate and 10% DDC/FCS instead of FCS. 

                                                                    
Figure 2.2| chemical structure of dexamethazone. Adopted from 

http/pubchem.ncbi.nlm.nih.gov/compound/5743 
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2.1.8 Protein extraction 

Glucocorticoid receptor is a cytoplasmic protein and the aim of extraction was to 

analyse the protein condition and the affinity to dexamethasone hormone (treated cells 

with dexamethasone) relatively to control cells. The extraction of the protein was 

carried out using 120 µl high salt lysis buffer containing protease inhibitors per well that 

were previously washed with cold BPS three times. Protein extraction was done on ice 

to keep the proteins stable and the extracted protein was collected in Eppendorf tubes. 

Then the samples were rotated for 20 minutes followed by centrifuged for another 20 

minutes at 12 rpm in 4C.  

The samples collected and the pellets discarded. The protein concentration was 

measured by Spectrophotometer (protein absorbance measured at 595 nm. Jenway, 

Genova) aimed to have the same quantity of protein in both treated samples and the 

control samples. Acquiring the same amount of protein was essential to avoid false-

positive or false-negative results. Moreover, the protein concentration was measured 

twice in order to acquire an average reading. Each sample was a mixture of 200µl of 

Bio-Rad reagent plus 800µl of distilled water and about 2µl of the extract were added to 

each sample before measuring the amount of protein (one sample was used as blank 

without any extract). After the measurement a simple calculation were used for 

quantification of protein of both control and treated cells, and then protein kept in -200 C 

with 3x DSD buffer before analysed by Western blot technique.  

 

2.1.9 SDS- PAGE  

SDS- PAGE is the way to determine protein amount and molecular weight. It is 

followed by the western blot analysis that uses antibodies to detect specific protein. 

Western blot technique is based on detection of molecular proteins on nitrocellulose 

membrane, thus enabling to identify specific proteins from target cells, this technique 

depend mainly on separation according to size of protein, and identifying target protein 

by using specific primary and secondary antibody. 
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2.1.10 Running 

 Before running the samples with 1x DSD buffer (made from 10x buffer that has made 

by dissolving 30.2g Tris base and 144g glycine), the sample was boiled at 950 C for 5 

minutes and then the samples are subjected to 7.5 acryl amid gel (formula below), the 

samples run on 80 milliamp for stacking gel and 110 milliamp until the end of the 

resolving gel. 

Acryl amide gel 7.5%  

The resolving gel was prepared according to this formulation 

Distilled water ..........13.3 ml                                                                                                            

Acryl amide 30% ........7 ml                                                                                                       

1.5M Tris (Ph8.95).....7ml                                                                                                       

0.2M EDTA ..............280µl                                                                                                    

10% SDS...................280µL                                                                                                   

10% APS..................157µl                                                                                                          

TEMD.......................17µl 

The stacking gel was prepared according to this calculation                               

 

Distilled water .................6.73ml                                                                                          

Acryl-amide 30%.......1.67ml                                                                                              

1M Tris (Ph6.95).............1.25 ml                                                                                           

0.2M EDTA.......................100µl                                                                                            

10% SDS..............................100µL                                                                                      

10%APS...............................157µl                                                                                          

TEMED.................................17µL 

 

2.1.11 Transfer 

Once running the samples finished, the polypeptide bands are transferred into the 

nitrocellulose membrane using 1x western transfer buffer, that was prepared by adding 

100 ml of 10x western transfer stock to 200ml methanol and 700 ml dH2O, transfer was 

carried out for 2 hours, this step was crucial as the protein transferred from the gel into 

the membrane. Firstly the filter paper was soaked into a transfer buffer, while the 

transfer membrane submerged in methanol for 30 sec and then washed with the transfer 

buffer.  A holder was prepared by assembling the following a sponge, filter paper, 
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transfer membrane, gel, a filter paper and a sponge from the outside, (bubbles were 

removed by rolling pin). The protein was transferred at 40 C by using ice and magnetic 

starrier that was placed inside. 

 

2.1.12 Blocking 

The aim of blocking was to avoid any non-specific interaction between the antibody and 

non-specific proteins. This step was carried out by incubating a Imobilon P membrane 

in blocking mixture (5% of skimmed powder milk in PBS buffer) for one hour at room 

temperature on a shaker.  

 

2.1.13 Incubation with primary antibody 

The membrane was incubated in each experiment with specific primary antibody to the 

protein of interest overnight at 40 C on a rotator (about 3 µl of primary antibody were 

added to milk/PBS/ 0.1 % tween. 

 

2.1.14 Incubation with secondary antibody  

Prior to the development which was on the second day, the membrane was washed three 

times with PBS tween for 10 minutes interval, and then incubated with the secondary 

antibody for one hour at room temperature (from 2-4 µl of secondary antibody was 

added to 10 ml of milk/PBS/tween 

 

2.1.15 Development  

This was the last step in western blot technique. It was done by incubating the 

membrane from 1-2 minutes in enhancer ECL mix (about 1000µl from each bottle of 

western pico), then developed by X-ray machine.  
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2.1.16 Stripping  

It was useful to strip the membrane in order to reuse it with another antibody. The 

stripping was applied to the nitrocellulose membrane considering the following three 

steps. First step was to prepare the chemicals by adding exactly 10ml of 10% SDS to 

3.2 ml of Tris (PH8.5) in a universal tube, and the completed with distilled water up to 

50 ml of the universal tube. Finally under the chemical hood 350µl of 2-

mercaptoethanol was added to the total amount. The second step was to place the 

membrane into autoclave where heated up to 50 degree for exactly 30 minutes, agitation 

applied sometimes aimed to remove any chemicals from the membrane. The last step 

was washing the membrane on a shaker twice with PBS tween for about 10 minutes, 

and then blocked with 5% of skimmed powder milk in 1 times TBS buffer before 

incubation with another antibody. 

 

2.2 Co-immune-precipitation 

It is a common purification technique usually to detect any possible interaction between 

two molecules of proteins, by using specific antibody to the protein of interest (target 

protein). The aim of the Co-immuno-precipitation in this research was to detect any 

possible interaction between different forms GR (H-300, phosphorylated S211 and 

S226) and TTC5 in physiological condition in vitro. The TTC5 was the protein of 

interest which added to cell lysate and identified each time by different antibody of GR.  

 

. 
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Figure 2.3| Co-immunopricipitation process using protein A sepherose. 

(http://www.assay-protocol.com/Immunology/Co-IP). 

 

Co immunoprecitation was carried out as the following:  

 

2.2.1 Cell maintenance  

Obviously maintaining the cells and the splitting was the same as usual .However the 

buffer used for the protein extraction was 250µl of TNN buffer (50mM Tris PH7.5, 

120mM Na Cl, 5mM EDTA, 0.5% Igepal, 1µg/ml PI, 1mM DTT, 1mM PMSF, Sodium 

orthovanadate , 5mM Sodium pyrophosphate, 20 mM β- glycerophosphate ) per well 

plate instead of high lysis buffer . 

About 20 µl of protein A sepherose beads (magnetic beads, Sigma) washed three times 

with 200µl of the same puffer used for cell lysate which is TNN buffer.  

Some samples were saved as input in -20 and the remaining of the samples incubated 

with the primary antibody for the protein of interest (TTC5) overnight at 4C. In the 

second day the samples centrifuged at 12000 rmp, for 3 minutes and the pellet washed 

three times with TNN buffer at the same rate. The last step were adding 30 µl of SDS 

.before analysed with indicating antibody by western blot the samples boiled at 90 C for 

5 minutes. 

Cell 

lysat

e 
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2.2.2 Immunohistochemistry  

In this procedure, the monoclonal and polyclonal antibodies was used to observe in situ 

detection of antigens in lung tissues. The aim was to detect expression of glucocorticoid 

receptors and protein distribution in the lung tissues in different stages of COPD 

compared to clinical data for each group. Samples was obtained by bronchoscopy and 

lobectomy from COPD patients (permission and written consent has been taken from 

the patients). 39 patients were involved in this study and have been categorized 

according to NHS classification into 5 groups. Healthy ex-smokers, mild COPD, 

moderate COPD, Sever COPD and COPD with lung cancer. 

The samples underwent many steps before the investigation. The first step was 

embedding and cutting in which, the tissue cut into small pieces and kept in cuvettes at 

room temperature. The cuvettes first stored overnight in 10% formalin and then 

processed through several different concentration of ethyl alcohol, 70% ethanol for 1 

hour, 90% ethanol for 40 minutes and 100% ethanol for 40 minutes for 4 times, then 

transferred into Xylene1 and Xylene2 for 30 minutes respectively. The last step in the 

processing was transferring the tissue into a new cuvette were the wax added and the 

left over night in cool place.  

 

2.2.3 Patient’s demographics 

39 patients from Wythenshawe hospital were investigated and analysed compared with 

clinical values (smoking status, FEV1, FEV1/FVC ratio) after written consent using 

immune-histochemistry technique. The lung biopsies in this research obtained from 

different regions in the lung with safety distance from the tumours, and processed into 

different concentration of ethyl alcohol, then cut by microtome into slides of 5µm in 

diameter The pathophysiological changes were similar in each group and airway 

obstruction was assessed by measuring FEV1/FVC ratio and predicted FEV1 (The 

standard deviation showed no significant difference in each group.  All the clinical data 

and pathological characteristics are summarized in the table below. 
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 Healthy 

non-

smokers 

Heathy ex-

smokers 

Healthy 

smokers 

COPD ex-

smokers 

COPD current 

smokers 

Number of     

patients 

        

3 

       

10 

    9 9 8 

Age 

 

73.3 (SD 

6.8) 

70.3 (SD 

12.2) 

59.5 (SD 

10.3) 

68.3 (SD 8.1) 68.25 (SD 5.7) 

Gender 

 

2Female,  

1Male 

    

FEV1 

 

2.2 (SD 

0.39) 

2.19 (SD 

0.45) 

2  (SD 0.7) 1.38 (SD 0.36) 1.76 (SD 0.4) 

FEV1 

predicted 

101.6 

(SD2.35) 

96.3 (SD 

22.1) 

86.5 (SD 

19.3) 

60.7 (SD 6.5) 72.7 (SD 

10.48) 

FVC 

 

2.81 (SD 

0.36) 

2.8 (SD 

0.67) 

3 (SD 

0.81) 

3.5 (SD 1.04) 3.1 (SD 0.7) 

FEV1/FVC 

ratio 

78.72 

(SD 3.8) 

77 (SD 7.1) 68.7 (SD 

9.3) 

51 (SD 9.8) 57 (SD 8.4) 

Height 

 

162 cm     

Smoking 

history 

Never EX-smokers 

Past history 

35.3pack/ye

ar SD (15.5) 

Current 

smoker(42.

4 P/year) 

SD (17.1)  

Ex-smokers 

with COPD 

Stage II (33.9 

Pack/ year) SD 

(21.7) 

Current 

smokes with 

different stages 

of 6 patients 

with stage II, 

and two 

patients in 

stage I and III. 

Medication 

 

Non Non Non Bronchodilator

s+ Long acting 

beta-agonists in 

combination 

with steroid 

Bronchodilator

s, long beta 

agonists in 

combination 

with steroid 
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(Seretid discus) 

and/or 

anticholinergic 

(Spiriva). 

(Seretid discus) 

and/or anti 

cholinergic 

drugs (Spiriva)  

Pathologica

l findings 

Normal 

architect-

ure of 

lung 

tissue 

without 

obvious 

alveolar 

destructio

n seen 

Variable 

number of 

macrophage

s with non-

distinguish 

border and 

angiogenesi

s in the 

majority of 

the patients, 

however no 

evidence of 

alveolar 

destruction 

 

Few to 

Moderate 

number of 

macrophag

aes with no 

alveolar 

destruction 

 

Moderate to 

large number 

of macrophages 

associated with 

alveolar 

destruction in 

some patients 

moreover tar 

deposition.  

Mild to 

moderate 

number of 

macrophages 

associated with 

alveolar 

destruction and 

some epithelial 

disruption. 

Table 2.1 illustrates patient’s demographics and histopathological changes in each 

group of patients (complete patient’s demographic supplemented in table 4.1) 

 

2.2.4 Optimization  

The aim of optimization was to confirm specificity to antibodies and to achieve the best 

dilution for the antibodies relevant to pre-treatment condition. And it was important to 

test serial sections with different buffers to the same antibody. 
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 Antibody 

dilution for 

IHC 

 

 

Antibody 

species (and 

associated 

vector kit) 

Pre-

treatment 

needed (y/n) 

Pre-

treatment 

buffer 

Company order 

code + clone 

   IL-6 1:100 

 

 

 

mouse         n CB abcam 

AB9324 500µg 

providedand 

diluted in 500µg 

to yield 1mg/1ml 

Total GR H-

300 

   1:1000 Rabbit- 

polyclonal 

        n n/a SantaCruz sc-

8992 Provided at 

200ug/ml  

  S226 

GRphospho 

226 

1:100 

 

 

 

Rabbit 

polyclonal 

y TEB Abcam:ab536925

µg/ml, heat 

antigen retrival 

CB PH6 

Recommended by  

Abcam 

   S211 

GRphosphop

horylated at 

211 

 

1:1000 

 

 

 

Rabbit 

polyclonal 

y EB Cell Signaling 

#4161100ul 

provided but no 

info on 

concentration 

TTC5 1:500 Rabbit 

polyclonal  

      n 

 

n/a Abcamab36855U

se at 10ug/ml 

Table 2.2 serial dilution for different antibodies (TGR, S211, S226, TTC6 and IL-6) 
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2.2.5 Immunohistochemistry technique 

The first step in the procedure was dewax by the tissue by histoclear reagent (National 

diagnostic) I and II for 5 minutes, aimed to deparaffinise the slides. Then the slides 

transferred into different concentration of alcohol100% for 5 minutes, 90% for 3 

minutes, 75% for 2 minutes, 75% for 2 minutes and 50% for 1 minutes then the slides 

placed into a running water for 5 minutes before pre-treatment with different buffers 

before the pre-treatment  with different buffers according to the optimization carried out 

before the incubation with the primary antibodies

The aim pre-treatment was aimed for expose epitopes retrieval( the binding part of the 

receptors) , which may be masked by formalin during fixation procedure  . Heat applied 

with different solutions for epitope retrieval. Citrate buffer prepared by dissolving 2.1g 

of citrate in 1000ml distilled water (PH 6 with 1M HCL). 1mM EDTA buffer prepared 

by dissolving 0.37 g of EDTA in 1000 distilled water and PH to 8. And Tris-EDTA 

buffer prepared by adding 1.21g Tris base and 0.37g EDTA to 1000ml distilled water 

(PH to 9 where 0.5 ml tween 20 was added).                                                                                                                                 

Blocking serum was important step in order to prevent non-specific hydrophilic binding 

between non-specific protein and primary antibody other than those attractive to 

receptors. Blocking the normal serum carried out by incubation of 100 µl (15µl of 

normal serum in 1000 µl TBS. 

The last step in the first part of the immunohistochemistry was incubating the samples 

in the primary antibody for about 2 hours up to 18 hours the primary antibody was 

added to the normal blocking serum and 100µl was applied. 

In the second part and before the incubation with secondary antibody, the samples 

washed three times with PBS tween, then the samples incubated in Vector biotinylated 

secondary antibody  which was prepared by adding 15µl of normal blocking serum and 

5µl of secondary anti (mouse/rabbit) IGg to 1ml TBS. The incubation with the 

secondary antibody was 1 hour, and then washed again with TBS three times. 

After the incubation with the secondary antibody and to avoid inconvenient staining it 

was necessary to block endogenous peroxidase by incubating the samples in 3% H2O2 

with methanol for half an hour, (the mixture was prepared by adding 48.5 ml of 

methanol to 1.5 hydrogen peroxide3%).  
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Before washing with TBS and running water for 5 minutes the ABC (Avidin-

biotinylated complex) prepared and left for 30 minutes in room temperature. Any 

biotinylated molecule can be detected by ABC because of high affinity property of 

avidin to biotin. 

 

 

Figure2.4| using ABC system. (https://www.vectorlabs.com/uk/catalog.aspx?catID=42) 

 

The samples washed three times by PBS tween, then incubated with DAB substrate (3, 

3’ diaminobenzidine), dark brown reaction was the end result under the microscope and 

this reaction stopped by distilled water. And the haematoxylin stain was applied from 

20 to 40 seconds and rainsaned with excess of water (Haematoxylin is diagnostic dye in 

histology field and counter stain to nuclei in immunohistochemistry. the nuclei are 

stained blue as oxidized haematoxylin bound to aluminium ions. And before the last 

step of dehydration, the slides put under running water. The dehydration was by 

different concentration of ethyl alcohol as following. 50% ethyl alcohol for 1minute,  

75% ethyl-alcohol for 2 minutes,                                                                                                                                                                                                

75% ethyl-alcohol for 2 minutes,   90% ethyl-alcohol for 3 minutes, 100% ethyl-alcohol 

for 5 minutes lastly clearance was through xylene II and xylene I for 5 minutes each 
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respectively                                                                                                                                                                           

then the slides covered with slip s were DPX had applied  

 

2.2.6 Image-J  

Image-j is analytical program, its idea adopted from NIH image which was developed 

first time by research service branch (RSB) of the natural institute of mental health. It 

can be downloaded for free from http://rsbweb.nih.gov/ij/download.html. 

Multiple tasks can be performed by image j including quantification of protein amount 

in western blot, also it is important tool in the pathology field which can be used in 

counting the number of cells like Macrophages, measurement of surface area in tissues 

and density histogram, the steps of cell counting are explained in the following diagram 

 Figure 2.5 Plugins-Analyse-Cell counting process by image-j. A shows multiple 

windows available on the front, starting by file image option, and plugins window 

which is characterized by analysing the slides through cell counting icon. In picture B 

illustrates analysis process which involving many characters like counting each type 

separately and total calculation at the end of counting.   

 

 

2.3 Material  

Different materials were used in processing the lung tissues and different antibodies as 

well as chemical reagents used for western blot and Co-immune-precipitation. All the 

materials are mentioned in the table below as well as the supplier and the product code. 

http://rsbweb.nih.gov/ij/download.html


79 

 

2.3.1 Substances 

Different chemicals were used in this research including buffers, steroid drugs and 

different antibodies 

 

2.3.2 List of chemical reagents 

 

 

   Name of the chemical 

 

Supplier 

 

 

 

 Product code 

        Dexamethazone Sigma  81K1100 

           Penicillin Labtech  LM-A4118/100 

            Formalin    

        Hydrogen peroxide    

          Histoclear I                              

          (d-limonene) 

National diagnostic   

          Histoclear II National diagnostic   

               DPX    

             Citrate     

             EDTA Sigma-

Aldrich, UK  

 E6760 

          Tris EDTA    

        Ethyl alcohol Fisher, UK  E/0600/05 

FCS/FBS(Dextran coated 

charcoal treated FBS) 

Supplier, UK   
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            Vericol Fisher, UK  005414182 

     Trypsin (500ml) Labtech  LM-

T1705/500 

(Dimethylsulfoxide) hyprid-

max-sterile filtered (DMSO) 

(SLS) 

Scientific 

Laboratory 

Supplies, UK 

 D2650-

5X5ML 

        Biorad protein essay Bio-Rad  500-0006 

    

                 SDS Fisher UK  S/P530/48 

      High Lysis Buffer 1   

             TTN buffer 2   

    30% Acryl National diagnostic  Ec-890 

     0.2M EDTA    

Page Ruler Prestained protein 

ladder 

Fermentas, UK  SM0672 

               TEMD (N.N.N.N) 

Tetramethylethylenedaimine 

Sigma  BCBH1254V 

            Tris base Fisher, UK  BP152-1 

 PMSF (Phenylmethanesulfonyl 

Fluoride) 

Sigma  044K0157 

   BGP (Disodium Pentahydrate)    

             DTT Sigma UK  D0632 

           Na OV Sigma UK  S6508 
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APS 10% (Ammonium per 

sulphate) 

Flowgen, UK  H17423 

          Glycine Fisher  1211411 

Sodium dodecyl Sulphate Fisher  114840 

           Na PPI    

        TBS buffer Fisher           10214733  

(PBS) Phosphate buffer 

saline 10X 

Fisher, UK   

           Tween 20 Sigma  029Ko1855 

 Western Pico enhancer Thermo  N178744 

        Western Femto super-signal Thermo  NH173984 

 2-Mercaptoethanol Sigma-

Aldrich, UK 

 M3148 

Sodium pyrophosphate    

            Methanol Fisher UK  BPE1105-1 

         Haematoxylin     

           ABC reagent Vectastain  PK-6100 

            DAB substrate   PK-6100 

          Goat serum            Vectastain   

      Total GR      (H300) Santa Cruz 

Biotechnology 

 SC-8992 

      Phospho GR  ( S211) Cell Signaling  4161 

      Phospho GR  (S226) Abcam  Ab 53692 
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 TTC5 (Tetratricopeptide                  

repeat domain 5)  

 

Abcam  Ab36855 

          Interleukin 6 abcam  Ab 9324 

          Β-actin  abcam  ab8227 

          Glycerol Fisher chemical  1291109 

Secondary anti-mouse GE-Healthcare  5356526 

Secondary anti-rabbit IgG GE-Healthcare  5272514 

          Actin Abcam  Ab8227 

          X-ray Fuji film UK  Super Rx 
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III. Results 

3.1 Determination of GR and TTC5 protein levels in lung cancer cell line 

The main purpose of western blot in adenocarcinoma cell line (A549 cells), was to 

investigate the difference in protein expression after treatment with long acting 

corticosteroid (Dexamethasone). Three main forms of glucocorticoid protein (total GR, 

S211, S226) were investigated in addition to TTC5 (tetratricopeptide repeat domain 5) 

and Interleukin-6. The procedure was performed by making a protein extract from 

control and hormone treated cells, and by loading the whole cell lysate on 7.5% 

polycrylamide gel. Actin protein was used as a loading control. The quantity of target 

protein was measured by image-J comparative to the control (Figure 3.1).  

 

 

 

 

 

 

 

                                                                                          

Figure 3.1| Measurement of protein expression (total GR) in A549 cells. (A) The level 

of expression in total GR relative to actin gene in A549 cells treated with 1µM 

dexamethasone. The whole cell lysate was analysed by SDS-PAGE using 7.5% gel, this 

was followed by western blot transfer and antibody analysis with total GR and actin. (B) 

Protein expression of TGR. The percentage of expression was obtained by 

normalization of non-affected gene (Actin). The results represents the averages of five 

different experiments (supportive figures 5.1), and the error bars represent SD (13.71) 

(figure 3.1 B). P value < 0.01 (shown in supplementary figure, table 5.2). 

In this series of experiments the protein level of total GR was measured in A549 lung 

cancer cell line (Figure 3.1 and supplementary figure 5.1 in the appendix).).  Protein 

expression of TGR shown in lane 2 compared to lane 1, was down-regulated by 53% in 

A549 cells treated with dexamethasone as compared to un-treated cells (figure 3.1 A 

and B, compare lane 2 and lane 1). Results show that GR is down-regulated (figure 3.1 

A, lane 2) in A459 cells treated with dexamethasone. 

 

 

 

B B 
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Figure3.2| Measurement of protein expression (S211) in A549 cells. (A) The level of 

expression in phosphorylated GR at S211 in treated A549 cells with 1µmol 

dexamethasone. The whole cell lysate was analysed by SDS Page using 7.5% gel, this 

was followed by western blot transfer and antibody analyst with S211 and actin. (B) 

Relative protein expression of S211. The percentage of expression was obtained by 

normalization of non-affected gene (actin). The result represent the averages of three 

different experiments (supportive figures 4.2), and the error bars represent SD (28.28), 

(figure 3.2 B). P value< 0.01 (shown in supplementary figure, table 5.2).  

In order to analyse GR phosphorylation status in lung cancer, GR phosphorylated on 

serine 211 was followed by SDS PAGE (Figure 3.2 and supplementary figure 5.1 in 

appendix). Protein expression of S211 shown in lane 2 compared to lane 1, was 

massively up-regulated in A549 cells treated with dexamethasone as compared to un-

treated cells (figure 3.2 A and B, compare lane 2 and lane 1). Results show that S211 is 

up-regulated (figure 3.2 A, lane 2) in A549 cells treated with dexamethasone. 

 

 

 

B 
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Figure3.3 Measurnement of protein expression (S226) in A549 cells. (A) The level of 

expression in phosphorylated GR (226) related to actin gene in A549 cells treated by 

dexamethasone. The whole cell lysate was analysed by SDS Page using 7.5% gel, this 

was followed by western transfer and antibody analysis with S226 and Actin. (B) 

Quantification of protein expression. The percentage of expression was obtained by 

normalization of non-affected gene (actin). The results represents the averages of five 

different experiments (supportive figures 4.2), and the error bars represent SD (5.85) 

(figure 3.3 B). P value < 0.05 (shown in supplementary figure, table 5.2).  

In this series of experiments the protein level of S226 was measured in A549 lung 

cancer cell line (figure 3.3 and supplementary figure 5.1 in the appendix). Protein 

xpression of S226 shown in lane 2 compared to lane 1, was up-regulated by 11% (figure 

3.3A, lane 2) in A549 cells treated with dexmethasone. 

                                         

   

Figure 3.4| Measurement of protein expression (TTC5) in A549 cells. (A) The level of 

expression in TTC5 (Strap) related to actin in A549 cells treated with 1µM 

dexamethasone. The whole cell lysate was analysed by SDS Page using 7.5% gel 

followed by western blot transfer and antibody analysis with TTC5 and actin. (B) 

Quantification of protein expression using image J. The percentage of expression was 

obtained by normalization of non-affected gene (actin). The results represent the 
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averages of three independent experiments (supportive figures 5.1), and the error bars 

represent SD (62.93) (figure 4.1 B). P value < 0.05 (shown in supplementary figure, 

table 5.2).  

The protein level of TTC5 was measured in A549 lung cancer cell line (Figure 3.4 and 

supplementary figure 5.1 in the appendix). Protein expression of TTC5 shown in lane 2 

compared to lane 1, was up-regulated by 80% in A549 cells treated with dexamethasone 

as compared to un-treated cells (figure 3.4 A, lane 2) in A549 cells treated with 

dexamethasone.  

 

 

 
Figure 3.5| Measurement of protein expression (IL6) in A549 cells. (A) The level of 

expression in IL6 related to actin gene in A549 cells treated with 1µM dexamethasone. 

The whole cell lysate was analysed by SDS Page using 12% gel, followed by western 

transfer and antibody analyst with IL-6 and actin. (B) Protein expression of IL-6 in lane 

2 compared to lane 1(figure 5A and B, compare lane 2 lane 1). The percentage of 

expression was obtained by normalization of non-affected gene (actin). The percentage 

of expression represent only one reading. 

In this experiment the protein level of IL6 was measured in A549 lung cancer cell line 

(figure 3.5A). Protein expression of IL6 shown in lane 2 compared to lane 1, was down-

regulated by 52% in A549 cells treated with dexamethasone as compared to un-treated 

cells (figure 3.5A, lane 2) in A549 cells treated with dexamethasone.  

 

3.2 Conclusion of western blot experiments 

In summary, in lung cancer cells treated with synthetic glucocorticoid dexamethasone, 

protein levels showed down regulation of total GR, slight increase in expression of the 

GR phosphorylated on S226, and substantial up-regulation of the GR phosphorylated on 

S211. On the other hand the expression of TTC5 was variable in three different 

 

 

 

 

 

 

A B 

B 
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experiments. Preliminary results suggest that dexamethasone causes marked down 

regulation of IL6. 

         

 

3.3 Analysis of protein-protein interaction using Co-immune precipitation  

Glucocorticoid receptors mediate varied physiological processes. They interact with a 

number of proteins which are considered as co-regulators because they control gene 

transcription by repression or activation. TTC5 has been identified as co-regulator of 

p53 tumour suppressor that controls cell cycle progression and stress response 

(Demonacos et al, 2001). In this experiment we analysed possible interaction between 

glucocorticoid receptors and TTC5. 

The aim of co-immunoprecipitation was to detect interaction between total 

glucocorticoid receptor protein, phosphorylated glucocorticoid receptor at S211 Serine 

226 and TTC5. The procedure was carried out by incubation of the cell lysate with 

protein A-sepharose and antibody against the protein of interest (TTC5) were affixed to 

the complex and left in a rotator overnight at 40C. About 5% of cell lysate was saved as 

an input sample as shown in figure 3.6A (lane 1 non-treated cells and lane 2 treated 

cells upper panels). Co-immunoprecipitation was continued after overnight incubation, 

the samples were washed by TNN buffer then loaded on the same 7.5% acrylamide gel 

(figure 3.6A, lower panels). The immune-precipitates brought down using TTC5 

antibody were analysed with H300 total GR specific antibody and non-specific 

secondary anti-mouse IGg.  Extracts were incubated with separate cell lysate at 40C and 

loaded on the same gel to confirm there is no non-specific interactions.  

The results showed down regulation of total GR protein levels isolated from hormone 

treated cells in the input sample in lane 1 and 2. At molecular weight 49 TTC5 levels 

increase with hormone treatment as shown in lane 1 and 2. On the other hand, in the 



88 

 

third panel co-immunoprecipitation showed that GR interacts with TTC5 in lung cancer 

cells and this, interaction increases in presence of dexamethasone (compare lanes 1 and 

in the  2) in the third panel.  Panel four showed no interaction when nonspecific 

antibody was used. Quantification showed interaction between TTC5 and GR that was 

slightly higher in treated cells (figure 3.6B). 

 

 

Figure 3.6 Interaction of TTC5 and total GR (A) Co-IP of TTC5 with total GR 40 µl of 

cell lysate (input) of non-treated cells and treated cells are loaded in lane l and 2 respectively 

(two upper panels). The immune-precipitant of treated and non-treated cells were shown in the 

third panel. Fourth panel shows non-specific anti-mouse IGg to ensure there was no non-

specific interaction. (B) The results of quantification using Image J are shown (figure 3.6, B).  
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Figure3.7| TTC5 interaction with GR phosphorylated at S211. Above described 

experiment (Figure 3.6) was used to analyse western blot membrane with antibodies 

against GR phosphorylated at S211The experiment was done by loading 40µl of cell 

lysate as input (lane1 and 2) (upper panel) and incubation of the rest of the sample with 

5µl of TTC5 antibody (both treated and non-treated cells) and developing the blot by 

incubating with antibody against phosphorylated GR at S211 (middle panel). (B) 

Quantification of results using Image J 

In order to determine if GR phosphorylated on S211 interacts with TTC5, membranes 

were reprobed with antibody that specifically detects this GR phosphorylated form. 

Results show there is a strong interaction between GR phosphorylated at S211 and 

TTC5. However, this experiment needs to be repeated multiple times to confirm the 

findings. 

 

 

3.4 Conclusion of the Co-immune precipitation  

 In summary, GR and TTC5 have been shown to interact in A549 cells according to one 

preliminary result (Figures 3.6 and 3.7, Supplementary figure 4. 2). This interaction 

increases in hormone treated cells and both total and GR phosphorylated at S211 

interact with TTC5. However, given that there was more TTC5 in hormone treated cells 

in the input sample, more experiments are needed to confirm what the role of hormone 

is in controlling GR and TTC5 interaction. 
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3.5 Determination of protein expression in human lung tissues using 

immunohistochemistry 

The main purpose of immunohistochemistry analysis was to investigate the extent of 

protein expression in healthy non-smokers, healthy ex-smokers, healthy smokers, ex-

smokers with COPD and current smokers with COPD in relation to FEV1 and clinical 

relevance in each group. Three main forms of glucocorticoids were detected in addition 

to TTC5 and IL6. The total glucocorticoid receptor (detected using H300 antibody), 

phosphorylated glucocorticoid receptor (phosphorylated on serine 226 and serine 211) 

and cofactor (TTC5) in addition to IL6, were detected in COPD patients using H300, 

S226, S211, TTC5 and IL6 specific antibodies.  

 

3.6 Optimization of experimental conditions 

The aim of optimization was to confirm specificity to antibodies and to achieve the best 

dilution for the antibodies relevant to pre-treatment condition. It was important to test 

serial sections with different buffers and the same antibody. The antibodies directed 

against phospho-serine groups of glucocorticoid receptor were better detected in buffers 

containing EDTA and Tris-EDTA. 

Conclusion from antibody optimisation protocols (figure 3.8) was that antibody against 

total GR (H300), and TTC5 antibodies do not require any pre-treatment (column 1) 

whereas the antibody against IL6 is more efficient if citrate buffer (column 2) was 

used.GR antibody that detects GR phosphorylated at serine 211 required pre-treatment 

with EB buffer (column 3) while S226 phospho GR antibody required pre-treatment in 

TEB buffer (column 4). 
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Figure 3.8 antibody optimisation  



92 

 

3.7 Pathological changes 
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Figure 3.9| Glucocorticoid receptors, phosphorylated glucocorticoid receptors, 

interleukin-6 and TTC5 were investigated in situ using immunohistochemistry in 

healthy non-smokers. 40 times magnification (column-A) of peripheral lung samples 

from healthy non-smokers, detecting the glucocorticoid receptors (H300 antibody), 

phosphorylated glucocorticoid receptors (antibodies against phosphorylated GR at S211 

and at S226) in addition to IL-6 and TTC5. 400 times magnification (column B) of the 

peripheral lung tissue analysed as described above.  

In order to analyse pathological changes in the lung tissue of healthy non-smokers, 

immune histochemical analysis was carried out using relevant antibodies (Figure 3.9 

and supplementary figure 5.4 in the appendix). The lung parenchymal tissue was intact 

(between the brackets, figure 3.9 column A, first panel from the top) in the majority of 

the involved group. The intima of blood vessels was intact (red arrow) and normal 

epithelial surface and submucosa (blue arrow, figure 3.9 column A, first panel from the 

top) with sub-mucosal gland (blue inferior arrow). In the candidate group the inner 

alveolar septum was intact (Figure 3.9 column B purple arrow). The expression of TGR, 

S211 and S226 was high in epithelial surface. However, TTC5 showed weak expression 

in epithelial surface. Moreover, IL6 was not expressed in epithelial surface of healthy 

non-smokers (Figure 3.9 column A, yellow arrow). TGR was highly expressed in 

macrophages (column-B, black arrow) and epithelial surface (Column B-red arrow). 

S211 and S226 was highly expressed in macrophages (red arrow, column B) and 

epithelial surface of healthy individuals. TTC5 showed higher expression in 

macrophages among healthy non-smokers, however expression in epithelial surface was 

relatively week. The expression of IL6 in healthy non-smokers was not detected in 
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epithelial surface, however there was some expression of IL-6 in macrophages in 

healthy normal individuals (red arrow). 
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Figure 3.10. Glucocorticoid receptors, phosphorylated glucocorticoid receptors, 

interleukin-6 and TTC5 were investigated in situ using immunohistochemistry in 

healthy ex-smokers. 40 times magnification (column-A) of peripheral lung samples 

from healthy ex-smokers, detecting the glucocorticoid receptors (H300 antibody), 

phosphorylated glucocorticoid receptors (antibodies against phosphorylated GR at S211 

and at S226) in addition to IL-6 and TTC5. 400 times magnification (column B) of the 

peripheral lung tissue analysed as described above. 

In order to analyse pathological changes in the lung tissue of healthy ex-smokers, 

immune-histochemical analysis was carried out using relevant antibodies (figure 3.10 

and supplementary figure 5.4 in the appendix). The lung parenchyma was intact in the 

majority of the patients, infiltrated with small number of macrophages (figure 3.10, 

column B) and the epithelial surface was intact (figure 3.10, yellow arrow, fist panel). 

TGR, S211, S226, and TTC5 were highly expressed in both epithelial and macrophages, 

moreover, IL6 was expressed in the epithelial surface in this group (red arrow, the last 

panel, column B). The number of macrophages infiltrating the lung parenchyma was 

low and expressing TGR, S211, S226, TTC5 and IL6 (black arrow, column B). 
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Figure 3.11| Glucocorticoid receptors, phosphorylated glucocorticoid receptors, 

interleukin-6 and TTC5 were investigated in situ using immunohistochemistry in 

healthy chronic smokers. 40 times magnification (column-A) of peripheral lung samples 

from healthy chronic smokers, detecting the glucocorticoid receptors (H300 antibody), 

phosphorylated glucocorticoid receptors (antibodies against phosphorylated GR at S211 

and at S226) in addition to IL-6 and TTC5. 400 times magnification (column B) of the 

peripheral lung tissue analysed as described above.  

In order to analyse pathological changes in lung tissue of healthy chronic smokers, 

immune-histochemical analysis was carried out using relevant antibodies (figure 3.11 

and supplementary figure 5.4 in the appendix). The lung parenchyma was intact, 

infiltrated with large number of macrophages. The expression of TGR, S211, TTC5 and 

IL6 was expressed in both macrophages and epithelial surface, additionally other 

leukocytes express IL6 in this group of patients (red arrow, figure 3.12, column B, the 

last panel). S226 was only expressed in macrophages and absent in epithelial surface 

(green arrow, figure 3.11, column B, third panel).  
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Figure 3. 12| Glucocorticoid receptors, phosphorylated glucocorticoid receptors, 

interleukin-6 and TTC5 were investigated in situ using immunohistochemistry in COPD 

ex-smokers. 40 times magnification (column-A) of peripheral lung samples from COPD 

ex-smokers, detecting the glucocorticoid receptors (H300 antibody), phosphorylated 

glucocorticoid receptors (antibodies against phosphorylated GR at S211 and at S226) in 

addition to IL-6 and TTC5. 400 times magnification (column B) of the peripheral lung 

tissue analysed as described above. 

In order to analyse pathological changes in lung tissue of COPD chronic smokers, 

immune-histochemical analysis was carried out using relevant antibodies (figure 3.12 

and supplementary figure 5.4 in the appendix). The lung parenchyma was intact in the 

majority of the patients, with some epithelial disruption. Moreover, the parenchyma was 

infiltrated with variable number of inflammatory cells including macrophages (figure 

3.12, black arrows, column B), groups of lymphocytes (figure 3.12, yellow arrows, 

column A, first panel). The expression of TGR, S211 and IL6 in macrophages and 

epithelial cells was relatively high, however, S226 was not expressed in the epithelial 

cells.  
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Figure 3.13| Glucocorticoid receptors, phosphorylated glucocorticoid receptors, 

interleukin 6 and TTC5 were investigated in situ using immunohistochemistry in COPD 

current smokers. 40 times magnification (column-A) of peripheral lung samples from 

COPD current smokers, detecting the glucocorticoid receptors (H300 antibody), 

phosphorylated glucocorticoid receptors (antibodies against phosphorylated GR at S211 

and at S226) in addition to IL-6 and TTC5. 400 times magnification (column B) of the 

peripheral lung tissue analysed as described above. 

In order to analyse pathological changes in lung tissue of COPD chronic smokers, 

immune-histochemical analysis was carried out using relevant antibodies (figure 3.12 

and supplementary figure 5.4 in the appendix). The lung parenchyma was destructed in 

the majority of cases (brackets, figure 3.13, column A and B, second panel). The 

expression of TGR, S211, S226 and IL6 was relatively high in macrophages, however, 
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TTC5 was weak expression to TTC5 in macrophages (Figure 3.13, red arrow, column 

B, and fifth panel). S226 was not expressed in epithelial surface of this group. 
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3.8 Statistical analysis 

Non-parametric repeated measures ANOVA, were used to examine the difference of 

gene expression between different groups, and multiple linear regression was performed 

for the complete data to test expression of TGR, S211, S226, TTC5 and IL-6 in relation 

to FEV1, FEV1/FVC and pack years of smoking. 

 

 

 

 

Figure 3. 14| Expression of TGR in macrophages in healthy non-smokers, healthy ex-

smokers, healthy current smokers, ex-smokers and current smokers with COPD. (A) 

Percentage of macrophages expressing TGR as demonstrated by immunohistochemistry 

in 39 patients. (B) Linear regression analysis was employed to analyse the relation 

between TGR and FEV1, FEV1/FVC and the smoking history. Error bars represent SD 

and the P vale was > 0.05. 
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Expression of TGR was analysed in macrophages in the lung tissue of healthy non-

smokers, healthy ex-smokers, healthy current smokers, ex-smokers and current smokers 

with COPD using immunohistochemistry (Figure 3.14). Expression of TGR was almost 

the same in all candidate group without any significant difference (figure 3.14A, 

compare healthy non-smokers with other group). Linear regression analysis was 

performed to determine the relation between expression of TGR and FEV1, FEV1/FVC, 

and smoking history of all candidate groups using one way anova. The analysis showed 

no significant relation between TGR and FEV1, FEV1/FVC or smoking history 

(Complete supplementary figures shown in appendix 5.5). 
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Figure 3.15| expression of S226 in healthy non-smokers, healthy ex-smokers, Healthy 

current smokers and ex-smokers and current smokers with COPD. (A) Percentage of 

macrophages expressing S226 as demonstrated by immunohistochemistry in 39 

patients. (B) Linear regression analysis was employed to analyse the relation between 

S226 and FEV1. Error bars represent SD and the P value was > 0.05. 

 

Expression of S226 was analysed in macrophages in the lung tissue of healthy non-

smokers, healthy ex-smokers, healthy current smokers and ex-smokers and current 

smokers with COPD using immunohistochemistry (figure 3.15). There was non-

significant difference in expression of S226 between the candidate groups (figure 

3.15A, compare different groups). Linear regression analysis was performed to 

determine the relation between expression of S226 and FEV1, FEV1/FVC and smoking 

history using one way anova. This analysis showed non-significant relation between 

lung parameters and S226 (complete supplementary figure shown in appendix 5.5).    
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Figure 3.16| Expression of S211 in macrophages in lung tissue in healthy non-smokers, 

healthy ex-smokers, healthy current smokers, ex-smokers and current smokers with 

COPD. (A) Percentage of macrophages expressing S211 as demonstrated by 

immunohistochemistry in 39 patients. (B) Linear regression analysis was employed to 

analyse correlation between S211 and lung parameters. Error bars represent SD and the 

P value was > 0.05.  

Expression of S211 was analysed in macrophages in the lung tissue of healthy non-

smokers, healthy ex-smokers, healthy current smokers, ex-smokers and current smokers 

with COPD using immunohistochemistry (figure 3.17). S211 was exist in all candidate 

group without significant difference (figure 3.16A, compare different groups). Linear 

regression analysis was performed to determine the relation between the expression of 

S211 and FEV1, FEV1/FVC, and smoking history using one way anova. This showed 

non-significant relation between the expression of S211 and lung parameters or 

smoking history (complete supplementary figure shown in appendix 5.5) 
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Figure 3.17| Expression of IL6 in Macrophages in Healthy non-smokers, healthy ex-

smokers, healthy current smokers, ex-smokers and current smokers with COPD. (A) 

Percentage of macrophages expressing IL6 as demonstrated by immunohistochemistry 

in 39 patients. (B) Linear regression analysis was employed to analyse correlation 

between IL6 and FEV1. Error bars represent S.D and the P value was > 0.05. 

The expression of IL-6 was analysed in macrophages in the lung tissue of healthy non-

smokers, healthy ex-smokers, healthy current smokers, ex-smokers and current smokers 

with COPD using immunohistochemistry (figure 3.17). The statistical analysis showed 

no significant difference in the expression of IL-6 among the candidate group (figure 

3.17A, compare different groups). Linear regression analysis was performed to 

determine the relation between IL-6 expression and FEV1/FVC, FEV1 and smoking 

status of all candidate group using one way anova. This analysis showed non-significant 
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relation between the expressions of IL-6 and lung parameters or smoking status 

(complete supplementary figure shown in appendix 5.5).                                                 
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Figure 3.18 Expression of TTC5 in macrophages in healthy non-smokers, healthy ex-

smokers, healthy current smokers, ex-smokers and current smokers with COPD. (A) 

Number of macrophages expressing TTC5 as demonstrated by 

immunohiustochemistry.in 39 patients. (B) Linear regression analysis was employed to 

analyse correlation between TTC5 and FEV1/FVC.  Error bars represent SD. P value 

was < 0.05. 

Expression of TTC5 was analysed in macrophages in the lung tissue of healthy non-

smokers, healthy ex-smokers, healthy current smokers, ex-smokers and current smokers 

with COPD using immunohistochemistry (Figure 3.18).  Expression of TTC5 was at 
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highest level in healthy non-smokers and its expression showed gradual decrease as 

disease progressed. Moreover there was significant decrease between healthy non-

smokers and current smokers with COPD (figure 3.18A, compare healthy non-smokers 

group to current smokers with COPD).  Linear regression analysis was performed to 

determine the relation between expression of TTC5 and FEV1/FVC, FEV1 and 

smoking history of all candidate groups using one way anova. This analysis showed 

significant relation between FEV1/FVC and TTC5, in which the percentage of 

macrophages expressing TTC5 are declining with the course of the disease P value 

<0.05. (Complete supplementary figure shown in appendix 5.5) 

 

The expression in epithelial cells among healthy non-smokers, current healthy smokers, 

and current smokers with COPD, showed significant difference between healthy 

individuals and current smokers with COPD. The expression of IL6 was at the highest 

level among COPD patients who currently smoke, while healthy normal individuals 

showed no expression to IL-6. The expression of S226 in epithelial cells among healthy 

non-smokers, current smokers and COPD current smokers showed significant 

difference, in which the expression of S226 was higher among healthy non-smokers and 

very weak expression among current smokers and COPD patients. TGR, S211 and 

TTC5 were expressed among all candidate group (healthy non-smokers, current healthy 

smokers, and COPD patients). 
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Conclusion 

TGR, S226, S211 showed no significant difference in expression among healthy non-

smokers, healthy current smokers and current or ex-smokers with COPD, however the 

expression of IL-6 in both macrophages and epithelial cells was significantly different 

and increase by disease course. The percentage of average positive macrophages to 

TTC5 among healthy non-smokers was the highest and decrease gradually over the 

course of the disease. 

Expression of S226 and IL-6 were opposite to each other in epithelial cells, in which 

healthy non-smokers showed no expression to IL6 and high expression to S226. On the 

other hand in COPD patients the IL6 was highly expressed and S226 was negative. 

(Complete supplementary table for clinical features, and statistical analysis including 

the averages supplemented in complete tables 4.4 and 4.5). 
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Discussion  

The disease course in COPD varies from one patient to another, and treatment failure is 

common. Glucocorticoids are among the most widely prescribed drugs for the 

management of COPD, however, glucocorticoid resistance is the main obstacle in the 

management of COPD (Sin et al, 2003). Glucocorticoids in humans are secreted in a 

circadian rhythm in the form of cortisol under the control of the HPA (hypothalamic 

pituitary axis). The receptors mediating the glucocorticoid effect can be altered and are 

considered to be inflammatory markers in some diseases, such as asthma and COPD 

(Vilasco et al, 2011). The aim of this research is to follow the molecular pathways of 

the glucocorticoid hormone and of the stress co-factor TTC5. A further aim is to 

measure the expression of IL-6 and of the glucocorticoid receptors in peripheral parts of 

the lungs across different groups: COPD current smokers, COPD ex-smokers, healthy 

smokers, healthy ex-smokers and healthy non-smokers. 

 

4.1 Disease progression and glucocorticoid resistance 

Glucocorticoid receptors control many physiological functions, such as cellular 

differentiation and metabolism, by modulating transcription in cells in a gene specific 

way (Mushtaq et al, 2002). There are two forms of glucocorticoid receptors, hGR-α and 

hGR-β. The GR-α is the most abundant form. Furthermore, the level in the cells of GR-

α mRNA is higher than that of GR-β mRNA (Pujols et al, 2002). We have analysed the 

expression of the hGR-α form in A549 cells (respiratory epithelial lining cells) under 

the effect of dexamethasone. Wang et al, (2002) have identified three main 

phosphorylation points at N-terminal transcriptional regulatory domains (S203, S211 

and S226).   

To gain insight into the effect of dexamethasone on the transcriptional activity of GR, 

we have investigated the effect of dexamethasone on TGR, on phosphorylated GR at 

S211 and S226, and on the stress co-factor TTC5. Our results show that the protein 

level of both phosphorylated forms of glucocorticoid receptors is up-regulated 

significantly in the presence of the dexamethasone hormone.  

TTC5 (stress responsive activator of P53) or strap is a p300 interacting protein, which is 

necessary for P53 response (Demonacos et al, 2001). We have investigated the effect of 
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dexamethasone on TTC5 in A549 cells and the result shows varying degrees of up-

regulation. Previously it has been proposed that glucocorticoid activity is linked to the 

TTC5 cofactor that affects its stability and transcriptional activity (Demonacos et al, 

2001). Demonacos et al (2011) have stated that TTC5 interacts with TGR in the 

presence and absence of dexamethasone at multiple sites. Our data are consistent with 

this result. Our preliminary data show that there is an interaction between TTC5 and 

phosphorylated GR at S211. 

 

4.2 Evaluation of glucocorticoid receptors, TTC5 and IL-6 in COPD patients 

Glucocorticoids usually halt the inflammatory process by reversing the histone 

acetylation of activated genes (Barnes, 2010). As a result of oxidative and nutritive 

stress, histone deacetylase activity decreases in COPD patients, leading to 

glucocorticoid resistance (Barnes, 2010). Chronic obstructive pulmonary disease 

(COPD) is a progressive, non-reversible decline in FEV1 due to airflow limitation and 

parenchymal destruction (Rabe et al, 2007; MacNee et al, 2007). Many types of cell are 

involved in the pathogenesis of this disease. One type, epithelial cells, is activated to 

produce inflammatory mediators, including TNF-α, IL-1b and IL-6. In addition, 

epithelial cells are an important source of TGF, which mediates fibrosis. 

In this study, we have evaluated a cohort of 39 patients of different categories and 

examined the expression of TGR, S211, S226, TTC5 and IL-6 in relation to spirometry 

changes FEV1, the FEV1/FVC ratio, smoking status, and the stage of the disease. In 

addition, a linear regression curve was used to detect the relationship between smoking 

history, FEV1 and the FEV1/FVC ratio.  

Jan et al (2011) found that TGR was expressed in all groups in both macrophages and 

epithelial cells, showing that there is no significant difference between healthy non-

smokers and COPD patients in TGR expression. 

Our results show that total glucocorticoid receptor (TGR) is expressed in both 

macrophages and epithelial cells of all candidate involving current smokers with COPD 

without any significant changes in the expression. The linear regression curve shows 

that the alteration of FEV1 is not related to glucocorticoid receptor expression. To gain 

insight into the expression of phosphorylated GR at S211 in the peripheral lung tissue, 
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we have analysed the same candidate groups of patients: healthy non-smokers, heathy 

ex-smokers, heathy smokers and both ex-smokers and current smokers with COPD. Our 

results show that the GR phosphorylated at S211 was expressed in all the groups and 

there was no significant difference in the expression between the candidate groups. 

The phosphorylation of S226 on the GR is mediated by C-Jun terminal kinase, a 

member of MAPK (mitogen activated protein kinase), which blocks GR transcriptional 

activation (Rogastsky et al, 1998). Ito et al (2002) revealed that S226 phosphorylation 

controls GR export from the nucleus upon hormone withdrawal. Our statistical analysis 

showed that the percentage of macrophages expressing S226 in peripheral lung tissue in 

all patients is more or less the same. However, GR phosphorylation at S226 was 

expressed in the epithelial cells only of healthy non-smokers, suggesting that S226 

activity can be altered by smoking. 

Moreover, we investigated a novel expression of TTC5 in the peripheral lung tissue. For 

different groups of patients, our statistical analysis shows that TTC5 expression in 

peripheral lung tissue is altered by smoking status and the progression of the disease. 

TTC5 expression in macrophages is inversely proportionate to the FEV1/FVC ratio and 

the linear regression curve shows a positive curve line (P value < 0.5).  

We also investigated the expression of TTC5 in the epithelial cells of heathy non-

smokers, healthy ex-smokers, heathy current smokers and both ex-smokers and current 

smokers with COPD. Our data shows that TTC5 is expressed in all the candidate 

groups.  

 

4.3 Pro-inflammatory cytokines and COPD 

Frequent contact of the epithelial surface with noxious antigens may precipitate the 

inflammatory process by means of inflammatory mediators including TNF-α, IL-1b and 

IL6, secreted from the inflammatory cells such as macrophages, neutrophils, T-

lymphocytes, and pulmonary epithelial cells. The epithelial surface plays a role in 

airway remodelling (Perotin et al, 2014). In this research, we have evaluated the 

expression of pro-inflammatory cytokines IL-6 in the epithelial cells of COPD patients 

compared to normal healthy individuals. Our data revealed that IL6 is not expressed in 

healthy non-smokers, whereas in both heathy ex-smokers and COPD patients epithelial 
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cells express IL6, suggesting that exposure to cigarette smoke stimulates pulmonary 

epithelial cells to release IL-6.  
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Conclusion  

Glucocorticoids play a pivotal role in both lung development and treatment and act by 

binding to intracellular protein glucocorticoid receptors (GR). Glucocorticoids are 

among the most widely prescribed drugs in the world for inflammatory diseases, such as 

rheumatoid arthritis, COPD and cases of malignancy like leukaemia, skin and numerous 

other conditions. They are regularly used in the treatment of lung diseases, such as 

asthma, because of their anti-inflammatory properties. However, resistance and side 

effects remain problems, highlighting the need for further research.  

The aim of this project is to understand the basis of glucocorticoid resistance in COPD 

and in non-small cell lung cancers (adenocarcinoma). The glucocorticoid receptor 

function is controlled at multiple levels, including covalent modifications, the GR 

interaction with transcriptional co-factors such as TTC5 that is involved in control of its 

target genes and ligand type. In this project, glucocorticoid receptors phosphorylation 

and interaction with its cofactors were investigated in A549 cell lines and COPD 

patients. The samples were obtained from Wythenshawe hospital after surgical 

procedures and the analysis was far from the affected area. The results indicated that the 

GR and the cofactor TTC5 were expressed in lung cancer cell line A549, that GR is 

phosphorylated in that cell line, and that it can interact with TTC5. 

Immunohistochemistry analysis of different stages in COPD patients (categorised 

according to whether they smoke, or have COPD or cancer) was carried out to detect the 

total GR, GR phosphorylated at serine 211 and serine 226, and the expression of TTC5 

and interleukin 6. The expression of these proteins was then correlated with the clinical 

picture for TTC5, in which TTC5 was highly expressed in heathy non-smokers and the 

level of expression decreased gradually among the candidate groups, with a significant 

difference between healthy non-smokers and current smokers with COPD. Moreover, 

the level of TTC5 expression in all the candidate groups was directly proportionate to 

FEV1/FVC ratio. The results of this research may improve therapy efficacy and help 

minimize the unwanted effects of steroids used in lung pathologies. 
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Future prospectus 

In this thesis, we examined the expression of TTC5 in macrophages in different stages 

of COPD. However, the effect of dexamethasone on TTC5 expression in macrophages 

needs to be investigated. The interaction between TTC5 and glucocorticoid receptors in 

macrophages is unknown. Our future prospectus is the identification of TTC5 compared 

to the degree of inflammation in peripheral lung tissue, using real time PCR and 

isolation of macrophages from COPD patients to determine the interaction between 

TTC5 and GR, compared with healthy candidates.  
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