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Abstract 24 

Computer simulation of human gait, based on measured motion data, is a well-established 25 

technique in biomechanics. However, optimisation studies requiring many iterative gait cycle 26 

simulations have not yet found widespread application because of their high computational cost. 27 

Therefore, a computationally efficient inverse dynamics model of 3D human gait has been 28 

designed and compared with an equivalent model, created using a commercial multi-body 29 

dynamics package. The fast inverse dynamics model described in this paper led to an eight fold 30 

increase in execution speed. Sufficient detail is provided to allow readers to implement the 31 

model themselves. 32 

 33 

Keywords:   Fast inverse dynamics; Gait Simulation; Prediction 34 
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Notation 36 

ia  Acceleration of segment i’s origin 37 

Cia  Acceleration of segment i’s centre-of-mass 38 

iF  Force applied to segment i at its proximal end (origin) 39 

grrkF  Component k of the (right) ground reaction force (k=X, Y or Z) 40 

grFå  The total ground reaction force 41 

grkFå  Component k of the total ground reaction force (k=X, Y or Z) 42 

iI  Moment of inertia of segment i 43 

im  Mass of segment i 44 

MF  Moment as a result of a distal force 45 

MFs  Sum of the moments resulting from distal forces 46 

MPF  Moment as a result of the proximal force 47 

MPFs  Sum of the moments resulting from proximal forces 48 

in  Moment applied to segment i at its proximal end (origin) 49 

grrkn  Component k of the (right) ground reaction moment (k=X, Y or Z) 50 

gr
nå  The total ground reaction moment 51 

grknå  Component k of the total ground reaction moment (k=X, Y or Z) 52 

iN  Euler’s equation for segment i 53 
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j

i
P  Position of segment i origin in segment j’s frame 54 

j

CiP  Position of segment i centre-of-mass in segment j’s frame 55 

pr

j dR R=  Joint rotation matrix (maps vectors from distal to proximal segment frames) 56 

a  Joint rotation about X axis 57 

b  Joint rotation about Y axis 58 

g  Joint rotation about Z axis 59 

jw  Angular velocity of joint j 60 

j
wɺ  Angular acceleration of joint j 61 

/

k

i jw  Angular velocity of segment i relative to segment j, written in segment k’s frame  62 

/

k

i j
ɺw  Angular acceleration of segment i relative to j, written in k’s frame  63 

  64 

Subscripts and superscripts 65 

Note that leading superscripts before a vector indicate the frame in which that vector is written. 66 

d  Distal segment 67 

f  Foot 68 

gr  Ground 69 

h  Head 70 

l  Left 71 
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larm  Lower arm 72 

p  Pelvis 73 

pr  Proximal segment 74 

r  Right 75 

sh  Shank 76 

st  Stance 77 

sw  Swing 78 

t  Torso 79 

th  Thigh 80 

uarm  Upper arm 81 

 82 

  83 
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Introduction 84 

Computer simulation of human gait (walking or running), based on measured motion data, is a 85 

well-established research technique for estimating the forces acting on the body’s joints and 86 

muscles. Conversely, optimisation of gait kinematics (known as gait prediction) is a relatively 87 

new and challenging area of research, which has not yet found widespread application because of 88 

its high computational cost (Anderson & Pandy, 2001; Xiang et al., 2010). 89 

Typically, gait prediction is achieved by embedding a forward or inverse dynamics model of 90 

human locomotion within an optimisation framework (henceforth referred to as the optimiser). 91 

The optimiser is used to represent the coordination of the body’s motions by the central nervous 92 

system (CNS) based on the assumption that we have evolved to optimise our gait in order, for 93 

example, to minimise energy consumption, maximise speed or minimise pain, depending on the 94 

situation. The forward dynamics approach to gait prediction is very computationally demanding, 95 

with one of the best known examples of this approach requiring 10,000 hours of CPU time to 96 

satisfy the terminal conditions (Anderson & Pandy, 2001). Although this well-known study is 97 

now rather dated, based on a review of internet sources we estimate that there has been a 10 to 20 98 

fold increase in computational power over the intervening period. As this type of information is 99 

very hard to find and to verify, we conservatively assume a 20 fold increase in computation 100 

power. This means that the execution time quoted by Anderson & Pandy would reduce to 500 101 

hours which is still very excessive. For this reason, in our previous work, we have chosen to 102 

focus on the inverse dynamics approach to gait prediction (Ren, et al., 2007). 103 

In gait prediction, the joint motions can be represented in many ways and well-known curve 104 

fitting functions are often chosen, such as polynomials, splines, or a combination of 105 

discretisation and interpolation. However, these do not take account of the special features of 106 
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human walking. Firstly it is periodic and, hence, using functions that explicitly enforce 107 

periodicity will avoid having to include this as an optimisation constraint. Secondly, the 108 

fundamental frequency of human walking is of the order of 1Hz and over 99% of the power 109 

content is below 6Hz (Winter, 2009). As a result, 5
th

 order Fourier series are likely to adequately 110 

represent walking, including enforcing periodicity, which means that each joint motion trajectory 111 

can be represented by just 11 optimisation parameters. For these reasons, several previous 112 

authors have chosen to represent the joint motions using Fourier series (Koopman et al., 1995; 113 

Ren et al., 2007). In the case of Ren et al., 2007, this allowed the prediction of a realistic gait 114 

even when the initial Fourier coefficients represented standing not walking. 115 

Most previous authors have limited their gait prediction studies by using planar models, because 116 

of the complexity and corresponding computational demands of 3D inverse dynamics models. Of 117 

those that adopted 3D models, the following limitations can be identified. Koopman et al., 1995, 118 

only predicted a small number of unmeasured joint motions. Tlalolini et al., 2010, did not model 119 

finite double support periods. Kim et al, 2008, avoided solving the full inverse dynamics 120 

problem by adopting an approach that constrains the centre of pressure (COP) to be within the 121 

base of support (BOS), thus ensuring that “dynamic equilibrium” is satisfied. However, because 122 

the joint moments are not calculated, many optimisation objectives cannot be adopted (e.g. 123 

minimisation of mechanical work). 124 

So it is clear that there still remains a challenge to establish a fast inverse dynamics model of 3D 125 

human gait that can be used in optimisation based studies. In this paper we describe the design of 126 

a bespoke human gait model where computational efficiency has been achieved by adopting a 127 

dedicated model structure and calculation sequence that is optimised for human gait, thus 128 

avoiding the overheads of general simulation packages that must cater for any model topology. 129 
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We have verified this model against an equivalent model, created using a commercial multi-body 130 

dynamics package, and compared the execution times of the two models to demonstrate the 131 

computational efficiency of our model. Sufficient detail is provided to allow readers to 132 

implement the model themselves. 133 

Methods 134 

Although inverse dynamics is less computationally demanding than forward dynamics, in the 135 

case of a 3D skeletal model, it is still very important to adopt an efficient solution method. The 136 

chain like structure of the model lends itself to a bespoke implementation of the iterative 137 

Newton-Euler method, which is well recognised as being particularly efficient (Craig, 2004; 138 

Featherstone, 2008; Angeles, 2014) and, therefore, we have adopted this solution approach for 139 

the inverse dynamics. This method has a computational complexity of O(n), which means that 140 

the calculations required grow linearly with the number of degrees of freedom (n). This 141 

compares very favourably to a computational complexity of O(n
4
) for a non-iterative approach 142 

(i.e. the calculations required grow with n4). 143 

For the reasons previously discussed, we have chosen to use Fourier series to represent the 144 

trajectories of the degrees-of-freedom driving the motions of the 3D skeletal model. This has two 145 

benefits, the first of which is that this leads to a relatively small set of optimisation variables (the 146 

Fourier coefficients), which reduces computation times. Secondly, Fourier series automatically 147 

constrain the motions to be cyclic and continuous.  148 

 149 

1. The multi-body model 150 
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To maximise computational efficiency whilst maintaining reasonable accuracy in the description 151 

of gait kinematics, a compromise was adopted with regard to the number of rigid segments and 152 

degrees-of-freedom (DOF). For example, the hands were treated as part of the forearm segments. 153 

Referring to Figure 1, the multi-body model has fourteen rigid segments including: the ground, 2 154 

feet, 2 shanks, 2 thighs, pelvis, torso, head, 2 upper-arms, and 2 forearms. Each segment has an 155 

attached coordinate frame. For the simple line segments (representing the longitudinal axis of the 156 

bone), the origin is located at the proximal end and the Z-axis is determined by the unit vector 157 

directed from the distal end to the proximal end. For the torso, the segment origin is located at 158 

the lumbosacral joint and the Z-axis is determined by the unit vector directed from the 159 

lumbosacral joint to the neck joint. For the pelvis, the segment origin is located at the 160 

lumbosacral joint and the Z-axis is determined by the unit vector directed from the mid-point 161 

between the two hip joints to the lumbosacral joint. For all segments, the Y-axis points forward 162 

when the segment is vertical (i.e. its Z-axis is vertical) and is not rotated about its Z-axis. For all 163 

segments, the X axis points to the right when the segment is not rotated about its other axes. 164 

The model has 25 DOF including: a 1-DOF rollover joint between the stance foot and the 165 

ground (the 3 ankle coordinates are functions of the foot-ground angle); 2-DOF ankle joints 166 

(dorsiflexion and eversion); 1-DOF knee joints; 3-DOF hip joints; a 3-DOF lumbosacral joint; a 167 

3-DOF neck joint; 2-DOF shoulder joints (flexion and abduction); and 1-DOF elbow joints. 168 

 169 

2. Joint motions 170 

The joint DOFs are represented by X-Y-Z sequence Euler angles. Each rotation is performed 171 

about an axis of the moving system, which is the distal (d) segment coordinate frame, starting 172 



10 

 

from an orientation aligned with the reference system, which is the proximal (pr) segment 173 

coordinate frame. In this context, the pelvis is the most proximal segment and the lower arms, 174 

head and feet are the most distal segments. Therefore, each joint’s rotation matrix 
jR  can be 175 

calculated from the following expression (Craig, 2004): 176 

( , , ) ( ) ( ) ( )pr

j d XYZ X Y Z
R R R R Ra b g a b g= =    177 

where 178 

 179 

Then, given the rotation matrix 

11 12 13

21 22 23

31 32 33

pr

j d

r r r

R R r r r

r r r

é ù
ê ú
ê ú= =
ê ú
ê úë û

, the joint angular velocity can be 180 

calculated as follows (Craig, 2004): 181 

x

pr

j d y
pr

z

w
w w w

w

é ù
ê ú
ê ú= =
ê ú
ê úë û

 182 

where 
jw  

is the angular velocity of the distal (d) segment relative to the proximal (pr) segment, 183 

expressed in the proximal segment’s coordinate frame.  The three components of 
jw  are given 184 

by: 185 

1 0 0 cos 0 sin cos sin 0

( ) 0 cos sin ; ( ) 0 1 0 ; ( ) sin cos 0

0 sin cos sin 0 cos 0 0 1

X Y Z
R R R

b b g g
a a a b g g g

a a b b

é ù é ù é ù-
ê ú ê ú ê ú
ê ú ê ú ê ú= - = =
ê ú ê ú ê ú

-ê ú ê ú ê úë û ë û ë û
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31 21 32 22 33 23

11 31 12 32 13 33

21 11 22 12 23 13

x

y

z

r r r r r r

r r r r r r

r r r r r r

w

w

w

= + +

= + +

= + +

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 186 

Finally, the angular acceleration vector is simply the derivative of the angular velocity vector. 
187 

Using the above, the corresponding expressions for each type of anatomical joint can be derived 
188 

and these are given in the appendix. These dedicated expressions increase computational 
189 

efficiency in comparison to applying the general analysis described above as is necessary in 
190 

general simulation packages that must cater for any model topology. 
191 

 192 

3. Iterative calculation of segment kinematics 193 

The iterative Newton-Euler method has been used for the inverse dynamics calculations. The 194 

first stage of this method is to calculate the segment kinematics by iteratively working outwards 195 

from one segment to the next, beginning at the stationary reference segment (the ground) and 196 

ending at the most distal segments (the swing foot, head and lower arms). The motion of the next 197 

segment is calculated from the motion of the previous segment (already calculated) and the 198 

motions of the joint DOFs connecting the two segments. 199 

The exact form of the iterative Newton-Euler equations depends on whether the calculations are 200 

being performed in a distal to proximal direction or vice versa. Therefore, the following sub-201 

sections deal with the different cases involved in modelling the gait cycle. In most cases (unless 202 

for emphasis) the leading superscript is omitted when there is a single subscript and the 203 

superscript would be the same as the subscript (e.g. d

d dw wº ). 204 
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3.1 Stance Leg 205 

For the stance leg the direction of calculation is from the ground (most distal segment) towards 206 

the pelvis (most proximal segment). Therefore, referring to Figure 2, the general form of the 207 

iterative calculations is as follows. 208 

Segment angular velocity: 
209 

/

pr pr pr pr

pr d d pr d d d j
R Rw w w w w= + = -  210 

Segment angular acceleration: 
211 

       
212 

 213 

Acceleration of segment frame origin: 214 

( ) ( )pr pr pr

pr d d pr d pr pr d
a Ra P Pw w w= - ´ - ´ ´ɺ  215 

Acceleration of segment mass centre: 216 

( ) ( )pr pr

Cpr pr pr Cpr pr pr Cpr
a a P Pw w w= + ´ + ´ ´ɺ  217 

Using the above, the corresponding equations for each segment of the stance leg can be derived. 
218 

 
219 

3.2 Swing leg and upper body 220 

/ /

pr pr pr pr pr

pr d d d d pr d pr d

pr pr pr

pr d d d d j j

R R

R R

w w w w w

w w w w w

= + ´ +

® = - ´ -

ɺ ɺ ɺ

ɺ ɺ ɺ
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For the swing leg and upper body the direction of calculation is from the most proximal segment 221 

(pelvis) to the most distal segment (foot, head, or lower arm). Therefore, the general form of the 222 

iterative calculations is as follows. 223 

Segment angular velocity:
 
 224 

/
( )d d d d

d pr pr d pr pr pr j
R Rw w w w w= + = +  225 

Segment angular acceleration:
 226 

/ /
( )

( )

d d pr pr

d pr pr pr d pr d pr

d d

d pr pr pr j j

R

R

w w w w w

w w w w w

= + ´ +

® = + ´ +

ɺ ɺ ɺ

ɺ ɺ ɺ

 227 

Acceleration of segment frame origin: 228 

( ) ( )d pr pr

d pr pr pr d pr pr da R a P Pw w wé ù= + ´ + ´ ´ê úë ûɺ  229 

Acceleration of segment mass centre: 230 

( ) ( )d d

Cd d d Cd d d Cd
a a P Pɺw w w= + ´ + ´ ´  231 

Using the above, the corresponding equations for each segment of the swing leg and upper body 
232 

can be derived. 
233 

3.3 Double stance 234 

To avoid kinematic redundancy during double stance, only one foot is considered to be 235 

connected to the ground by the roll-over joint (labelled the stance foot). Therefore, in 236 

double stance, the sequence of kinematic calculations is the same as in single stance. From 237 
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right heel-strike (RHS) to left heel-strike (LHS), the right foot is the stance foot. From LHS 238 

to RHS, the left foot is the stance foot. 239 

 240 

4. Equations of motion  241 

Segment forces and moments are defined to be the forces and moments acting on a segment at its 242 

proximal joint. Therefore, from Newton’s third law, the forces and moments acting at distal 243 

joints (i.e. belonging to other segments) must be multiplied by −1; hence the minus signs shown 244 

in the free-body diagrams (Figure 3). Note that, in these diagrams and the accompanying 245 

equations of motion, all vectors are assumed to be written in the global frame. Therefore leading 246 

superscripts are not shown except for some position vectors. There are three different types of 247 

segments in the skeletal model as follows. 248 

4.1 Standard line segment 249 

Most segments within the human body can be modelled as a simple line segment connecting a 250 

proximal and a distal joint (Figure 3a).   251 

   From Newton’s second law: 
252 
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pr d pr Cpr
F F m a- =  253 

From Euler’s equation: 
254 

( ) ( ) ( )
pr

pr d Cpr pr d Cpr d pr pr pr pr prn n P F P P F I Iw w wé ù é ù- + - ´ + - ´- = + ´ë ûë û ɺ  255 

4.2 Torso segment 256 

As illustrated in Figure 3b, the torso segment has been modelled as a quadralateral segment with 257 

corners at the four joints connecting it to the pelvis, head and two arms. The lumbo-sacral joint is 258 

the proximal joint, the other joints being distal joints.  259 

From Newton’s second law: 260 

t head uarmr uarml t ctF F F F m a- - - =  261 

From Euler’s equation: 
262 

( )
( ) ( ) [ ]

( )

( )

t

t head uarml uarmr Ct t head Ct head

t t

uarml Ct uarml uarmr Ct uarmr t t t t t

n n n n P F P P F

P P F P P F I Iɺw w w

é ù- - - + - ´ + - ´- +ê úë û
é ù é ù- ´- + - ´- = + ´ê ú ê úë û ë û

 263 

4.3 Pelvis segment 264 

As illustrated in Figure 3c, the Pelvis segment has been modelled as a triangular segment with 265 

corners at the three joints connecting it to the torso and two legs. Being the most proximal 266 

segment in the body, all of the joints are distal joints and hence all of the joint forces and 267 

moments have minus signs associated with them. 268 

From Newton’s second law: 269 
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( )
l rt th th p cp

F F F m a- - - =  270 

From Euler’s equation:
 271 

 
( ) ( )

( ) ( )

r l l l

r r

p

t th th Cp t th Cp th

p

th Cp th p p p p p

n n n P F P P F

P P F I Iw w w

é ù- - - + - ´- + - ´- +ë û
é ù é ù- ´- = + ´ë ûë û ɺ

 272 

 273 

5. Iterative kinetics calculations for single stance 274 

The second stage of the iterative Newton-Euler method is to calculate the segment kinetics by 275 

iteratively working inwards from one segment to the next, beginning at the most distal segments, 276 

furthest from the stationary reference segment (the ground), and ending at the ground. Therefore, 277 

in single stance, the calculations begin at the swinging foot, lower arms, and head. This sequence 278 

of calculations is executed twice: first to calculate the joint forces; and then again to calculate the 279 

joint moments (which depend on the already calculated forces). In the first sequence of 280 

calculations, the force acting at the joint connecting the current segment to the next segment is 281 

calculated from the other joint forces acting on the current segment (already calculated) and its 282 

translational acceleration. In the second sequence of calculations, the moment acting at the joint 283 

connecting the current segment to the next segment is calculated from the other joint moments 284 

acting on the current segment (already calculated), all of the joint forces acting on the current 285 

segment (already calculated), and its angular motion.    286 

Based on this sequence of calculations and the equations of motion presented in the previous 287 

sub-section, the following equations can be derived. 288 
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5.1 Forces 289 

For the standard line segments found in the upper body and the swing leg, the calculation 290 

sequence is from distal segment to proximal segment, leading to the following general equation: 291 

pr

pr d d pr Cpr
F RF m a= +  292 

Using the above, the corresponding equations for each line segment in the upper body and the 
293 

swing leg can be derived.
 

Then the torso force can be calculated as follows: 
294 

( ) ( ) ( )
r r l l

t t t

t uarm uarm uarm uarm head head t Ct
F R F R F R F m a= + + +    295 

And the stance thigh force (
stth

F ) can be calculated as follows: 296 

[ ( ) ]st

st sw sw

th p p

th p th th t t p Cp
F R R F RF m a= - - -  297 

Note that “st” refers to the stance leg and “sw” refers to the swing leg.
 

298 

For the standard line segments found in the stance leg, the calculation sequence is from proximal 299 

segment to distal segment, leading to the following general equation: 300 

( )d

d pr pr pr Cpr
F R F m a= -  301 

Using the above, the corresponding equations for each line segment in the stance leg, and also 
302 

for the ground, can be derived. 
303 

5.2 Moments 304 

For the standard line segments found in the upper body and the swing leg, the calculation 305 

sequence is from distal segment to proximal segment, leading to the following general equations: 306 
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( )

( )

pr

pr pr d d pr d

pr pr

d d Cpr d d

pr Cpr pr

pr pr pr pr pr pr

n N Rn MPF MF

MF P P RF

MPF P F

N I Iw w w

= + - -

= - ´-

= - ´

= + ´ɺ

 307 

Using the above, the corresponding equations for each line segment in the upper body and the 
308 

swing leg can be derived.
 

Then the torso moment can be calculated as follows: 
309 

( )

( )

( )

t t t

t uarml uarml uarmr uarmr head head t t uarml uarmr head

t Ct t

t t

uarml uarml Ct uarml uarml

t t

uarmr uarmr Ct uarmr uarmr

t t

head head Ct head head

n Rn Rn Rn N MPF MF MF MF

MPF P F

MF P P RF

MF P P RF

MF P P RF

= + + + - - - -

= - ´

é ù= - ´-ë û
é ù= - ´-ë û
é ù= - ´-ë û

 310 

Then the stance thigh moment (
stthn ) can be calculated as follows:311 

( )

( )

( )

st

st sw sw sw st

sw sw sw sw

st st st st

th p p

th p t t th th p p th th

p

p Cp t t

p p

th th Cp th th

p p

th th Cp th th

n R Rn Rn N MPF MF MF

MPF P RF

MF P P RF

MF P P RF

= - - - + + +

= - ´-

é ù= - ´-ë û
é ù= - ´-ë û

 312 

Note that “st” refers to the stance leg and “sw” refers to the swing leg.
 

313 

For the standard line segments found in the stance leg, the calculation sequence is from proximal 314 

segment to distal segment, leading to the following general equations: 315 
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( )

d

d pr pr pr pr d

pr Cpr pr

pr pr

d d Cpr d d

n R n N MPF MF

MPF P F

MF P P RF

é ù= - + +ë û
= - ´

= - ´-

 316 

Using the above, the corresponding equations for each line segment in the stance leg, and also 
317 

for the ground, can be derived. 
318 

 
319 

6. Iterative kinetics calculations for double stance 320 

One complete gait cycle includes two double stance phases: right double stance (following RHS) 321 

and left double stance (following LHS). In walking, the duration of each of these is 322 

approximately one tenth of the gait cycle. In the double stance phases, the sequence of kinetics 323 

calculations for the upper body is the same as it is in the single stance phases. However, the 324 

division of forces and moments between the two stance legs is an indeterminate problem. To 325 

resolve this problem, first the total ground reaction force and moment are calculated by applying 326 

the Newton-Euler equations to the lower limbs as a whole. Then, to share the total ground 327 

reaction force and moment between the two feet, smooth transition assumptions are applied. The 328 

details of this process are as follows.
  

329 

6.1 Calculating the ground reaction forces  330 

During double stance, the sum of the ground reaction forces on both feet is calculated by 331 

summing Newton’s second law for the pelvis and all segments in both legs as follows: 
 

332 

,
{ }gr gr gr gr gr

gr f f Cf sh sh Csh th th Cth l r p p Cp t t
F Rm a Rm a Rm a Rm a RF= + + + +å  333 

where 
gr grr grlF F F= +å  334 
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Then the right and left ground reaction forces ( ,
grr grl

F F ) can be calculated from the total ground 335 

reaction force (
gr

Få ) by applying the following smooth transition assumptions: 336 

( ) ( ) ( )
( ); ( ); ( )

gr st X gr st Y gr st Z

grX grY grZ

F F F
STA t STA t STA t

F F F
= = =

å å å
 337 

Where (st) refers to the stance foot (i.e. the heel-strike foot that has just landed). In this study, the 338 

smooth transition assumption, STA(t), is a linear function of time with its value changing from 0 339 

to 1 over each double stance period. 340 

6.2 Calculating the joint forces in the legs   341 

Then, starting from the two supporting feet and working upwards, segment by segment, the force 342 

at each leg joint can be calculated from the following general equation: 343 

pr

pr d d pr Cpr
F RF m a= +  344 

Using the above, for both stance legs, the corresponding equations for each segment force (i.e. 
345 

the force at the segment’s proximal joint) can be derived.
  346 

6.3 Calculating the ground reaction moments 347 

During double stance, the sum of the ground reaction moments on both feet is calculated by 348 

summing Euler’s equation for the pelvis and all segments in both legs as follows: 349 

p
gr gr gr gr

gr grr grl i t t
i f

n n n N Rn MFs MPFs
=

= + = + - -å å  350 
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,{ ( ) ( ) ( )} ( )

( ) ( ) ...

{ ( ) ( )

l l l r r r

gr gr gr gr gr p

f Cf f sh Csh sh th Cth th l r p Cp t t

gr gr p p p gr p p p

p th Cp th th p th Cp th th

gr f f f gr sh sh

f gr Cf gr gr sh f Csh f

MPFs R P F R P F R P F R P RF

MFs R P P RF R P P RF

R P P RF R P P

= - ´ + - ´ + - ´ + - ´-

é ù é ù= - ´- + - ´- +ë ûë û
é ù- ´ + - ´-ë û

,

...

( ) }

sh

f

gr th th th

th sh Cth sh sh l r

RF

R P P RF

é ù +ë û
é ù- ´-ë û

351 

 352 

,

{ [ ( )] [ ( )]

[ ( )]} [ ( )]

p
gr gr

i f f f f f f sh sh sh sh sh sh
i f

gr gr

th th th th th th l r p p p p p p

N R I I R I I

R I I R I I

w w w w w w

w w w w w w

=

= + ´ + + ´

+ + ´ + + ´

å ɺ ɺ

ɺ ɺ

 353 

Then the right and left ground reaction moments ( ,
grr grl

n n ) can be calculated from the total 354 

ground reaction moment (
grnå ) by applying the following smooth transition assumptions: 355 

( ) ( ) ( )
( ); ( ); ( )

gr st X gr st Y gr st Z

grX grY grZ

n n n
STA t STA t STA t

n n n
= = =

å å å
 356 

Where (st) refers to the stance foot (i.e. the heel-strike foot that has just landed). In this study, the 357 

smooth transition assumption, STA(t), is a linear function of time with its value changing from 0 358 

to 1 over each double stance period.  359 

6.4 Calculating the joint moments in the legs   360 

Then, starting from the two supporting feet and working upwards, segment by segment, the 361 

moment at each leg joint can be calculated from the following general equation: 362 
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ɺ

 363 

Using the above, for both stance legs, the corresponding equations for each segment moment (i.e. 
364 

the moment at the segment’s proximal joint) can be derived. 
365 

 
366 

Test results 367 

The inverse dynamics model described above has been verified against an identical model 368 

created using MathWorks’ Sim Mechanics software. To achieve model verification, the degrees 369 

of freedom, segments, joints and motion inputs were identical. However, it was not possible to 370 

simulate double stance using Sim Mechanics, because of the indeterminacy problem, or to 371 

change the foot in contact with the ground during simulation. Therefore, the model verification 372 

applies only over one single stance phase with the right foot in contact with the ground. 373 

There was excellent agreement between the two models. For example, over single stance, the 374 

positions of the segment origins were in agreement with a mean error of 1210- mm. The ground 375 

reaction forces and moments were in agreement with mean errors of 1410-  N and 1410-  Nm 376 

respectively. 377 

Finally, the execution speeds of the two models were compared. This was done for single stance 378 

because the Sim Mechanics model could only model single stance. Both models were run on the 379 

same PC without compiling the associated MATLAB code. The Sim Mechanics model’s 380 
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execution time was 8.5 seconds as compared to 1.1 seconds for the fast inverse dynamics model 381 

described in this paper. 382 

 383 

Conclusion 384 

A computationally efficient inverse dynamics model of human gait has been designed for use in 385 

optimisation based studies requiring many iterative gait cycle simulations. The model has been 386 

verified against an equivalent model, created using a commercial multi-body dynamics package, 387 

and the execution times of the two models compared. The fast inverse dynamics model described 388 

in this paper led to an eight fold increase in execution speed.  389 

The increased computational efficiency is a result of a number of factors including the use of a 390 

bespoke model of the human gait cycle, which avoids the overheads associated with general 391 

simulation packages that must cater for any model topology. Furthermore, the chain like 392 

structure of the model lends itself to a bespoke implementation of the iterative Newton-Euler 393 

method, which is well recognised as being a particularly efficient approach. 394 
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Appendix – Joint rotation matrices and angular motions 418 

 419 

a) One degree of freedom joints rotating about X axis (Flexion-Extension) 420 
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The joints of this type are foot rollover, knee, and elbow. 

422 

b) Two degrees of freedom joints rotating about X and Y axes 423 
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The joint of this type is the shoulder.

  425 
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c) Two degrees of freedom joints rotating about X and Z axes 
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The joint of this type is the ankle. 

428 

d) Three degrees of freedom joints rotating about X, Y and Z axes 
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 431 

The joints of this type are hip, lumbosacral and neck. 432 

  433 
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Figure Captions  434 

 435 

Figure 1: The multi-body model 436 

 
437 

Figure 2: Position vectors used in the iterative calculations  438 

 439 

Figure 3: Free Body Diagrams: a) Standard line segment; b) Torso; c) Pelvis 440 
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