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Diversity in a honey bee pathogen: first report of a
third master variant of the Deformed Wing Virus

quasispecies
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Treatment of emerging RNA viruses is hampered by the high mutation and replication rates that enable
these viruses to operate as a quasispecies. Declining honey bee populations have been attributed to
the ectoparasitic mite Varroa destructor and its affiliation with Deformed Wing Virus (DWV). In the
current study we use next-generation sequencing to investigate the DWV quasispecies in an apiary
known to suffer from overwintering colony losses. We show that the DWV species complex is made
up of three master variants. Our results indicate that a new DWV Type C variant is distinct from the
previously described types A and B, but together they form a distinct clade compared with other
members of the Iflaviridae. The molecular clock estimation predicts that Type C diverged from the other
variants ~ 319 years ago. The discovery of a new master variant of DWV has important implications for
the positive identification of the true pathogen within global honey bee populations.
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Introduction

RNA viruses have rapid replication and high error
rates, leading to immense diversity within each viral
replication cycle (Domingo and Holland, 1997). As a
result, many RNA viruses are highly genetically
heterogeneous and exist within infected population
structures known as quasispecies. It has been
proposed that this gives these viral pathogens an
increased ability to shift to a new environmental
niche, such as a new host, as a suitable mutant is
more likely to already exist if this opportunity arises.
However, if the diversity within a quasispecies
becomes too high, deleterious mutations can accu-
mulate leading to loss of overall fitness (Clarke et al.,
1993). The adaptability and host range of a virus are
a function of the level of diversity found within a
quasispecies (termed the quasispecies swarm size)
(Schneider and Roossinck, 2001). As well as a
randomly generated swarm of mutants around one
variant, quasispecies can also exist as a number of
master variants, each with their own swarm of
random mutations (Palacios et al., 2008; Lauring
and Andino, 2010). Determining the extent of genetic
heterogeneity in virus populations thus has
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important implications for predicting and preventing
emerging viral diseases.

The global decline in honey bee populations over
the past few decades has been attributed to the
ectoparasitic mite Varroa destructor and its affilia-
tion with Deformed Wing Virus (DWV) type A
variant (Dainat et al., 2012; Martin et al.,, 2012;
Schroeder and Martin, 2012; Francis et al., 2013).
The role of honey bees as pollinators is vital to the
environment and economy, as bees are a key
pollinator species for agriculture. The economic
value of honey bees is estimated to be more than
225 billion US dollars worldwide (Gallai et al.,

2009). DWV, a member of the single-stranded
positive-sense RNA genus Iflavirus (Lanzi et al,
2006), exists as a group of closely related

viruses, often considered as variants of the same
species complex (Ryabov et al., 2014). The ICTV
(The International Committee on Taxonomy of
Viruses) database categorises DWV type A as two
variants, DWV (Lanzi et al, 2006) and Kakugo virus
(KV) (Fujiyuki et al., 2004). A second closely related
virus Varroa destructor virus-1 (VDV-1) is also part
of the genus Iflavirus, which is now designated DWV
type B (Martin et al., 2012; Mordecai et al., 2015).
DWYV type B was designated a separate species based
on a nucleotide identity to DWV type A of ~84%
that, according to demarcation criteria, is sufficient
dissimilarity to warrant the creation of a new master
variant (Fauquet et al., 2005). VDV-1 was originally
isolated from V. destructor but has since been
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reported to replicate in honey bees (Ongus et al.,
2004; Zioni et al., 2011) where it has been shown to
cause wing deformities in bees (Zioni et al., 2011).
DWYV type B was also recently found to dominate the
DWYV population in honey bees from an isolated
apiary in Swindon, UK (Mordecai et al., 2015); to the
apparent exclusion of any other master variants.
In honey bee populations that have never been
exposed to Varroa mites, DWV exists in a very large
variant swarm with numerous master variants
(Martin et al., 2012). However, transmission of
DWV by Varroa reduces variant diversity to one
master variant (Martin et al., 2012). Therefore, DWV
exists as an endlessly mutating swarm of variants
with these master variants constituting part of this
quasispecies and sharing a recent common ancestor
(Baker and Schroeder, 2008; Martin et al., 2012). The
dominance of one master variant over another will
lead to ultimately different life histories for the
colony, that is, death if DWV type A dominates
(Martin et al., 2012) or health if DWV type B
dominates (Mordecai et al., 2015).

By existing as a diverse swarm of variants, viruses
are able to co-occupy several biological niches.
Certain biological traits may allow a virus to infect
one cell type over another, known as cell tropism
(Koyanagi et al., 1987). Whether or not a virus is able
to infect a susceptible cell depends firstly on
recognition of a cellular receptor on the cell surface
and secondly on intracellular host factors that dictate
whether the host cell is permissive to virus replica-
tion. Therefore, amino acid substitutions caused by
nucleotide mutations in the structural or nonstruc-
tural region of the virus genome can affect both the
host range and cell tropism of a virus. When
categorising viruses based on a phylogenetic rela-
tionship it is important to note that a single amino
acid change can have a substantial effect on the
phenotypic traits of a virus. Therefore, when a virus
exists as a collection of variants or quasispecies,
although the phylogeny and ancestry of the viruses
may be similar, the host range, tropism, pathogeni-
city and epidemiology of the variants may differ
greatly (Domingo et al., 2012). In addition, recombi-
nation between these variants is a source of further
variation (Moore et al., 2011).

There are numerous biological implications of
quasispecies occupying large amounts of sequence
space that challenge the treatment and control of both
established and emerging infectious diseases (Gomez
et al., 1999). For example, quasispecies theory has
been used to describe how viruses such as Hepatitis C
virus and HIV are able to escape host immune
responses (Pavio and Lai, 2003; Woo and Reifman,
2012). In addition, effective vaccines are yet to be
developed for both these viruses because of the rapid
emergence of resistant mutants under vaccine selec-
tion pressure (Gaschen et al., 2002; Law et al, 2013).
For similar reasons, the highly divergent nature of
RNA viruses has been implicated in the emergence of
antiviral drug-resistant infections in AIDS (Metzner
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et al., 2009), hepatitis C (Halfon and Locarnini, 2011),
hepatitis B (Nishijima et al, 2012) and influenza
(Boivin et al., 2002).

Conventional methods to define and analyse
variance within RNA viruses include RNA ‘finger-
printing’ (Domingo et al., 1978) and reverse
transcriptase-PCR amplification using specifically
designed primers (see, for example, Highfield et al.,
2009). Clone libraries and Sanger sequencing were
used to identify the DWV type A as being associated
with Varroa infestation and colony collapse (Martin
et al., 2012). Although these techniques are valid for
identifying known variants, primer-based methods
are prone to missing unidentified variants and are
biased towards overrepresented sequences (Gomez
et al., 1999). PCR-based methods are less appropriate
to determine the extent of variation in a quasispecies
that is not normally distributed that is, where
multiple variants exist, each with their own spec-
trum of mutants (Gomez et al., 1999). In these
instances deep sequencing methods such as Illumina
platforms are more suited to discovering new
variants as well as to diversity analysis (Wood
et al., 2014).

HNlumina sequencing is advantageous for samples
with large amounts of genetic variation because of its
depth of sequencing, although significant raw read
analysis is required. Reference-based assembly meth-
ods can overlook biological variants because of
inaccurate read alignments and loss of data (Archer
et al., 2010; Igbal et al., 2012; Yang et al., 2012),
although former studies using high-throughput next-
generation sequencing of DWV have used these
methods (Moore et al., 2011; Ryabov et al., 2014).

A previous study (Highfield et al., 2009) found that
despite controlling Varroa populations, high DWV
loads were associated with overwintering colony
losses (OCL). Historical losses due to OCL of ~10%
were normal; these have now risen to ~20% since the
establishment of Varroa. This suggests that a ‘new’
non-Varroa-transmitted DWV master variant may be
circulating in some colonies during the winter causing
OCL. To investigate this hypothesis we used a
bespoke de novo assembly pipeline (Mordecai
et al., 2015). The Vicuna (broadinstitute.org/scientific-
community/science/projects/viral-genomics/vicuna)
de novo assembler was used as it is designed to
assemble highly heterogeneous viral populations and
is well suited to the computational challenge that the
DWYV quasispecies present (Yang et al., 2012). As well
as assembling the DWV type A master variant, a
third DWV master variant (Type C) was assembled
and confirmed to be distinct through phylogenetic
inference.

Materials and methods

Sequencing and assembly
Total RNA was sequenced without an amplification
step. llumina (San Diego, CA, USA) Hi-seq (2 x 100)
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pair-end sequencing was carried out by TGAC (The
Genome Analysis Centre) and at the University of
Exeter on four samples from Highfield et al. (2009);
Late June, Early October and Late October from GD1,
and early October from GD2 (Supplementary Table
S1). The samples were originally collected from
Devon in the southwest of England (Highfield et al.,
2009). Twenty asymptomatic bees were pooled for
each sample before RNA extraction. RNA extractions
were prepared as in Highfield et al. (2009) followed
by a complementary DNA amplification step before
sequencing.

A Bioinformatics pipeline was developed to
accommodate the large amount of variation found
within the DWV species complex. First, the
quality of the raw reads was verified using FastQC
(Babraham Bioinformatics, Cambridge, UK). Samples
were then converted from fastq to fasta using the
fastq_to_fasta script that is part of the FASTX-toolkit
(Hannon Lab) (http://hannonlab.cshl.edu/fastx_

toolkit/).
To isolate the DWV complex sequence reads from
the host and other contaminating sequences,

the BLASTn (Altschul et al., 1990) tool was used.
The reads were searched against a custom BLAST
database containing the DWV, VDV-1 and KV
genomes, with an e-value of 10e-5. BLAST was
carried out against Read 1 of the Illumina data. The
ncbi-blast-parser perl script (http://www.bioinfor
matics-made-simple.com/2012/07 /ncbi-blast-parser-
extract-query-and.html) was then used to parse and
read the top hit of the BLAST output.

Next, ‘sed’ and ‘awk’ scripts were used to delete
empty lines and the reads that contained ‘nohits’.
The corresponding BLAST hits were extracted from
the Read 2 raw reads using QIIME (Caporaso et al.,
2010). The paired reads were balanced using a
custom script written in R version 3.2.0 (R Core
Team, 2015). Finally, the balanced DWV family
reads were assembled using the Vicuna assembler
that was developed to generate consensus assemblies
from genetically heterogeneous populations, specifi-
cally RNA viruses. (Yang et al., 2012).

Vicuna contigs >200bp in length were imported
into Geneious (Version 7.04, created by Biomatters,
Auckland, New Zealand) and the ‘Map to Reference
tool” was used to align the contigs with the DWV and
VDV-1 reference genomes. For several of the samples
the Vicuna assembly yielded full-length contigs that
covered the whole genome, whereas for others
consensus scaffolds were created from two or more
contigs. The ends of the contigs were then trimmed
of any assembly or sequencing artefacts.

A second novel variant was also assembled by
Vicuna. In order to create a consensus sequence of
the novel variant, the contigs from three samples
were realigned against the DWV genome. Any
contigs containing sequence other than the novel
variant were removed. If a contig contained the novel
variant as well as sequence belonging to the type A
DWYV genome because of recombination or in silico
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recombination, the type A DWV regions were
trimmed and deleted. A consensus genome of the
novel variant was created from these sorted and
trimmed contigs. Accordingly, the same steps were
carried out on the type A sequence in order to
assemble the type A genome consensus from Devon.
The DWV scaffolds were then aligned with full-
length genome sequences from the NCBI (National
Center for Biotechnology Information) database
using the MUSCLE alignment tool (Edgar, 2004)
within Geneious and the full-length genome was
obtained. Full genome comparisons were visualised
in mVISTA (Frazer et al., 2004).

To quantify the number of reads attributed to
each DWV variant using BLAST (Supplementary
Table S1), the novel Type C variant genome
sequence was added to the custom DWV family
database and the BLAST for each sample was carried
out a second time. This allowed the Type C variants
to be categorised correctly by BLAST rather than
attributed to the closets hit to the three other
reference genomes.

To validate the quantification of reads attributed to
each variant, the balanced read 1 and 2 BLAST hits
were aligned competitively to three reference gen-
omes using the ‘Map to Reference Tool” within
Geneious.

Consensus genomes of type A and Type C were
translated using the ‘live annotation’ tool within
Geneious. Because of repetitive regions in the
genome, assembly error took place in several sites,
leading to an incomplete open reading frame. These
assembly errors were corrected by using the Vicuna
analysis tool to pull out individual reads covering
these regions, and the correct sequence was deter-
mined. Finally, the RDP4 programme (Martin et al.,
2010) was used to determine whether any recombi-
nation took place between the sequences. Assembled
genomes are available from the European Nucleotide
Archive under the accession numbers ERS657948
(type A) and ERS657949 (Type C).

Amino acid-based phylogeny

To establish the phylogenetic relationship of DWV
subtypes and closely related Iflaviruses, we recon-
structed the phylogeny of the conserved RdRp amino
acid sequences for seven DWV subtypes, spanning
all three types that were either sequenced and
assembled from the Devon hive or available from
genbank (type A: NC_005876.1, NC_004830.2; type
B: KC_786222.1, NC_006494.1, JQ 413340), as well
as Formica exsecta Virus 1 (NC_023022.1) and
Sacbrood Virus (NC_002066.1). We used a Bayesian
approach using MrBayes (v. 3.1.2) (Huelsenbeck and
Ronquist, 2001). We assumed a fixed rate model of
protein evolution and reconstructed the phylogeny
using a model jumping method. This method allows
for different models of amino acid substitution to be
used in the Markov chain Monte Carlo (MCMC)
procedure, with all models contributing to the final
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B,

result weighted according to their respective poster-
ior probability. We ran two runs of four chains for
4000000 MCMC generations, sampling trees every
1000 generations. All trees were drawn using FigTree
v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Evolutionary rate

To estimate the evolutionary rate of DWV and
its subtypes, we collated three independent data
sets with temporal information for at least one
population: (A) partial Ip-gene; 10 populations,
n=78, 328nt (1323-1650bp) (Genbank AJ489744,
AY292384, GU109335, HM162355, JF346615-
JF346620, JF346624-JF346629, JF346633-JF346639,
KF164292, KF164293, KJ437447, KP734726, KP734738,
KP734747, KP734765-KP734770, KP734774-KP734787,
KP734817-KP734825, KP734827-KP734846); (B) par-
tial capsid-gene; 1 population, n=167, 1215nt
(2634—3848 bp) (Genbank AY292384, HQ655502-

HQ655561, KF314827- KF314932); (C) partial
RdRp-gene; 1 B. terrestris population, n=145,
508nt  (8016-8522bp) (Genbank KP734326—

KP734470). To test whether these fragments contain
a molecular clock signal, we estimated the root-to-tip
divergence using Path-o-gen v.1.4 (http://tree.bio.ed.
ac.uk/software/pathogen/) to estimate how much
genetic variation can be explained by the sampling
date. We constructed maximum likelihood phyloge-
netic trees without the assumption of a molecular
clock in Phylip v. 3.695 (evolution.genetics.washing
ton.edu; Felsenstein, 1989) and tested whether the
regression between root-to-tip distance in these
maximum likelihood trees and the age of the samples
indicated a clock-like signal. In addition, we tested
for a significant temporal signal by randomising the
temporal information across each data set 100 times
and compared the resulting random evolutionary
rates from BEAST with the real data set. A temporal
signal is supported if there is a significant difference
between the real data set and the randomised data
sets (Ramsden et al., 2009; Alizon and Fraser, 2013).
Both analyses support a temporal signal in these data
sets (Supplementary Figure S3 and Supplementary
Table S4).

Model selection and BEAST runs

To determine the appropriate molecular clock
models for each data set, we used the path sampling
maximum likelihood estimator implemented in
BEAST 1.8 (Baele et al., 2012, 2013). As this method
is very computationally intensive, we first used a
range of simpler tests to limit the number of models
to be compared by this method as suggested by
Alizon and Fraser (2013), and Drummond and
Bouckaert (2014). For the three large temporal data
sets, we used jModelTest v.2.1.1 (https://github.com/
ddarriba/jmodeltest2; Posada, 2008) to compare
substitution models based on the Bayesian Informa-
tion Criterion (Alizon and Fraser 2013); the resulting
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substitution models were the Tamura-Nei (TnR)
model (Ip-fragment) and the Hasegawa, Kashino
and Yano (HKY) model (vp3- and RdRp-fragments),
both with Gamma variation. For the DWV-subtype
data set, we compared the general time-reversible
model and the SRD06 model (Shapiro et al., 2006)
using path sampling. We partitioned substitution
rates between the first and second and third codon
positions as, for all data sets, the third codon
position had a significantly higher rate. We tested
whether a strict clock rate can be excluded by
running models with a lognormal relaxed clock; if
the relaxed clock’s coefficient of variation statistic
abuts the zero boundary, a strict clock cannot be
excluded (Gray et al., 2011). We ran models with
exponential population growth for all models; if the
exponential growth rate was significantly higher
than zero, a constant population size can be
excluded. We then used path sampling to distinguish
between clock models (exponential and lognormal
relaxed clock) and demographic models (constant
population size, exponential population growth or a
Gaussian Markov random field (GMRF skyride);
Drummond et al., 2002; Minin et al., 2008) as
indicated for each fragment by the initial analyses.
Based on these analyses, we chose an exponential
relaxed clock and exponential growth prior for the
Ip- and capsid-fragments and a lognormal relaxed
clock and constant growth prior for the RdRp-
fragment as well as for the DWV-subtype analyses.

To generate a genome-wide estimate for the
evolutionary rate in DWV, we calculated the mean
of the relaxed clock means for the individual
fragments (Ip-fragment: 9.097 x10°* (95% highest
posterior density: 4.412 x 10~ *-1.394 x 10~ ®), capsid-
fragment: 1.845x107° (1.159x107°-2.569x107?),
RdRp-fragment: 1.278 x 107* (4.131x 107 *-2.513 x 1077),
resulting in a mean evolutionary rate of 1.346 x 1072
(5.41x107%-2.627 x1073) substitutions/site/year.
We implemented this evolutionary rate as an uncor-
related lognormal clock prior for the DWV-subtype
analysis with a lognormal distribution with a mean of
1.35x 107 * in real space and a log s.d. of 0.4. We used
the default priors in BEAST v.1.8.1. We ran models
with 2 runs each of 50 million MCMC generations,
sampling every 5000 generations with a burn-in of 5
million generations to obtain effective sample sizes
>200. We examined traces for convergence using
Tracer v.1.6 (http://www.tree.bio.ed.ac.uk/software/
tracer/) and used TreeAnnotator v.1.8 (beast.bio.ed.ac.
uk/downloads) to produce a Maximum Clade Cred-
ibility tree for the DWV-subtype analysis. We used the
method from Xia et al. (2003), as implemented in
DAMBE, to confirm that the alignment had not
reached substitution saturation.

Results and discussion

Mlumina Hi-seq (2x100) pair-end sequencing of
asymptomatic honey bees from Devon was carried
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out on colonies that either survived (GD2) or
collapsed (GD1) because of OCL (Highfield et al.,
2009). To assess DWV diversity within the samples
the raw reads were searched against a custom DWV
family database (including KV and VDV-1 genomes)
and reads matching to any of the DWV genomes were
extracted. The coverage for the number of reads that
matched to a custom DWV BLAST database was
estimated using the Lander/Waterman equation (that
is, the depth of sequencing). Genome coverage depth
ranged from 457 to 165 927 x (average coverage was
86 838 x) (Supplementary Table S1).

De novo assembly of the Illumina reads yielded a
complete genome of a type A variant as well as of a
novel DWV variant that we named Type C
(Supplementary Table S2). Competitive alignment
to the now three master variants revealed that out of
the ~30 million DWV blast positive reads, ~27
million were assembled to one of three genomes
(Supplementary Table S3 and Supplementary Figure
S1). Around 3 million assembled to type A, ~3.5
thousand to type B and ~ 24 million to Type C. As
expected, more reads align to the 3’ region of the
genome than the 5’; an artefact of the reverse

Table 1 Percent identity matrix of Deformed Wing Virus (DWV)
variants amino acid (top half) and nucleotide alignments (bottom
half)

DWV Devon type A|Type B Devon Type (|
Type A 95.2 89.5
Devon type A 95.2 89.3
Type B 95.2 95.2 89.1
Devon Type C|89.5 89.3 89.1
DWV Devon type A|Type B Devon Type (|
Type A 84.4
Devon type A 84.4
Type B 84.4 84.4
Devon Type C|

Dark Green >98%, Light Green 90-98%, Yellow 85-90%, Orange 80—-85%,
Red <80%.

(U3 1k 2k 3k 4k

5k
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transcription 3’ bias (Brooks et al., 1995). Although
reads aligned to the whole of the Type C genome, the
depth of coverage was lower at the 5’ region
(Supplementary Figure S1). In addition, coverage of
the 5’ region of the type A variant was unusually
high, indicating that this disproportionate coverage
in the 5 regions of type A and C could be the
evidence of recombination between the two variants.
Because of the low read depth and coverage for type
B in our samples, a full genome could not be
assembled  (Supplementary Table S3 and
Supplementary Figure S1). Nonetheless, closer
examination of 3’ region where the RNA-dependent
RNA polymerase (RdRp) gene is located (Baker and
Schroeder, 2008) revealed that the Devon type B
variant shared 100% identity to VDV-1 type B
genome in this region (Supplementary Figure S2).
The sequence identity of our newly assembled type
A and C variants was compared with other members
of the DWV complex (Table 1 and Figure 1). Both
type B and C differ from the type A nucleotide
sequence in similar regions of the genome. However,
type B and C share only 79% nucleotide identity in
the polyprotein encoding region of the genome and
89% identity in the amino acid sequence.

Phylogenetic analysis showed the relationship of
the novel type A and C variants from Devon to
previously sequenced viruses (Figures 2 and 3). The
type A genome clustered with other type A variants,
whereas Type C formed a distinct and separate
branch, thereby confirming the originality and thus
new master variant assignment of DWV Type C.
Given that type A and C can recombine with each
other, we screened for any genomes with evidence of
recombination and excluded them from the analysis
in order to comply with the assumptions underlying
phylogenetic reconstruction.

The Type C genome codes for a full-length
polyprotein and translation of the genome permitted
the amino acid sequence to be compared with more
distant members of the genus Iflavirus (Figure 2).
The relationship of the DWV complex with

] 100%

50%

50%
100%

50%
100%

50%
6k 7k 8k 9k 10k

Figure 1 Plot showing the percentage identity across the whole genome of (1) Devon DWV type A (ERS657948), (2) KV type A
(NC0058762), (3) VDV-1 type B (AY251269) and (4) Devon Type C (ERS657949) compared with the DWV type A (NC004830) reference

genome. Plot created by mVISTA (Frazer et al., 2004).
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FexV - NC023022.1

—— DWV Type C-Devon 3k

DWV Type B -KC786222.1

095

088 DWV Type B - NCO06494.1

~ DWV Type A - Devon 3k

069
= DWV Type A - NC005876.1

~ DWV Type A — NC004830.2

L Dwv Type A - JQ413340

0.09

SBV - NC002066.1

Figure 2 Bayesian inference of phylogeny based on a conserved region of amino acid sequence encoding for the RNA-dependent RNA
polymerase, with the Bayesian support values shown on the nodes. Samples from this study are labelled with an asterisk (*). Bar represent

number of nucleotide substitutions per site.

F. exsecta virus 2 and Sacbrood virus was analysed
using a Bayesian inference of phylogeny of a
conserved region of the RdRp amino acid sequence
(Figure 2). The DWV sequences were attributed to
three main groups (type A, B and C). The nucleotide
consensus sequences created by Vicuna for type A
was found to be 98.2% identical to the type A
reference DWV genome. The analysis suggested that
the new Type C genome is clearly related to type A
and B, and forms a distinct clade to other members of
the family Iflaviridae (for example, Sacbrood virus)
that are all only distantly related to a dicistrovirus
outgroup, F. exsecta virus.

In addition, a Bayesian analysis of the polyprotein
encoding region of the sequences was carried out
using an MCMC model, permitting a molecular clock
model to be run within BEAST v1.8.1 (Figure 3)
(Drummond et al., 2012). Divergence times were
calculated based on a tip-dated coalescent model,
with an evolutionary rate prior based on three
independent tip-dated fragments of DWV type A.
The samples in the tree span 11 years (2000-2011),
and the samples used for estimating the evolutionary
rate span 11, 13 and 22 years for the RdRp-, capsid-
and Ip- fragments, respectively. The Bayesian tree of
the nucleotide sequences had a similar structure to
the amino acid tree, showing that the Type C viral
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variant is distinct from type A and B. The molecular
clock estimation predicts that Type C diverged from
the other DWYV variants 319 years ago (57—1010 95%
highest posterior density), and type A and B
disassociated from each other 181 years ago
(38—497 95% highest posterior density). This
estimate is unlikely to be biased by substitution
saturation, as there is no evidence for saturation in
our data set (Xia et al., 2003).

The phylogenetic analysis concludes that the
DWV quasispecies is made up of three distinct
master variants. However, the number of variants is
not exhaustive and it is conceivable that more
variants will be added in the future as the use of
NGS becomes increasingly prolific. The result
further suggests that Type C has not recently
emerged, but rather is an established DWV variant.
Moreover, using reverse transcriptase-PCR to
amplify a region of the DWV RdRp gene, Martin
et al. (2012) attributed a novel variant to the type B
swarm of variants, although it is now clear that this
novel variant was in fact Type C. The presence of
Type C in Hawaii implies that this variant is
widespread and not specific to the United Kingdom.
It also confirms that it has not emerged recently as
the Hawaiian sample originates from Kauai that has
yet to be colonised by Varroa (Martin et al., 2012),
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Figure 3 Bayesian phylogeny of the polyprotein encoding nucleotide sequence using an MCMC model (BEAST). Node labels show the
age and the posterior probability in brackets. The branches are labelled with the clock rate as a relaxed clock rate was used. Genomes
sequenced from this study are labelled with an asterisk (*) and are available from the European Nucleotide Archive under the accession
numbers ERS657948 (type A) and ERS657949 (Type C). Scale bar represents years based on a relaxed molecular clock.

suggesting Type C is part of the wild-type DWV
quasispecies.

The high levels of heterogeneity within viral RNA
populations mean that viruses are able to occupy
large areas of sequence space and consequently are
able to exist in multiple hosts (Domingo and
Holland, 1997). DWV is a ‘generalist’ known to
infect bumblebees (Genersch et al, 2006; Furst et al.,
2014), V. destructor (Ongus et al., 2004) and other
insects (reviewed in Manley et al., 2015). Further
work is required to ascertain whether Type C causes
acute wing deformities in honey bees or its presence
is because of viral ‘spill over’ from another host.
Three of the four samples in this study were taken
from a hive (GD1) that went on to collapse from OCL.
However, as type A and the type A—C 5’ recombinant
were also present, it remains unclear which variant
was responsible for OCL. It is worth noting however
that between 85% and 98% of the reads in hive GD1
were Type C that make up the Type C or the A-C
recombinant genomes (Supplementary Table S1).
The second hive (GD2) that survived OCL contained
roughly equal levels of type A and C reads (which
includes reads that make up the A—C recombinant);
yet, the coverage indicates that the viral load was
much lower in this hive. Moreover, the low
abundance of DWV type B in these Devon colonies

appears to confirm the observation made in the
colonies from Swindon (Mordecai et al., 2015); that
is, DWV type B is not present at sufficient levels to
protect the honey bee from the virulent type A, or
possibly C variants (as well as any recombinants
between A and C). In addition, Varroa mites in the
Devon colonies were controlled using chemical
methods, thereby potentially preventing the mites
from transmitting type B into the honey bees; as
observed in the Swindon Apiary (Mordecai et al.,
2015).

A recombinant between DWV type A and B has
been reported previously (Moore et al., 2011), and
found to be hypervirulent as it was more efficient at
replicating than other variants when co-injected
directly into the haemolymph of honey bee larvae
(Ryabov et al., 2014). As it is presently unclear
whether the Type C variant or the A—C recombinant
lead to disease, further direct manipulation experi-
ments such as those carried out by Ryabov et al.
(2014 could be crucial in determining whether the
novel Type C genome and any of its recombinants
are hypervirulent.

The large number of DWV Type C and A-C
recombinant reads in the Devon samples
(Supplementary Table S1 and Supplementary
Figure S1) suggests that these variants are able to

)
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replicate in honey bees. The capacity of DWV to exist
as a swarm of recombining variants and occupy large
amounts of sequence space may be one of the factors
contributing to its capability to maintain a persistent
infection. Defining DWV as a quasispecies with
discrete master variants is comparable with the
current categorisation of several other RNA viruses.
The genetic variability within Hepatitis C virus has
been classified into four hierarchical strata: geno-
types, sub-genotypes, isolates and finally back-
ground variation of the quasispecies (Farci and
Purcell, 2000). A total of seven Hepatitis C virus
genotypes exist to date, differing from each other by
>15% over their complete coding region (Smith
et al., 2014). Similarly, Japanese encephalitis virus is
currently classified into five genotypes based on
sequence identity that differ in replication efficiency
in a range of hosts (Han et al.,, 2014). In order to
further our understanding of DWV and the impact
of the virus on honey bees as well as other hosts, a
more progressive classification of the DWV
quasispecies would be prudent, that is, the new
classification of DWV as a quasispecies with at least
three master variants that can recombine with
each other.

Bioinformatics pipelines designed for eukaryotes
and prokaryotes are not necessarily suited to study-
ing viral systems. For example, pipelines incorporat-
ing reference assemblers could hinder the discovery
of novel virus variants. The genome sequences
presented here are representative of the different
variants found within a sample; however, the Vicuna
pipeline is not suited to analysing the further level of
diversity around these variants, for which diversity
models are better suited, such as those developed by
Wood et al. (2014).

As well as being of significance to globally
important honey bee health, the ability to study
highly heterogeneous virus genomes is of wider
importance. Cross-species virus transmission and
emergence of new epidemic diseases such as severe
acute respiratory syndrome, Ebola and influenza are
major threats to public health (Parrish et al., 2008).
Exploring the extent of viral diversity in RNA
quasispecies, of which DWV may be a suitable
model, may offer insight into the mechanisms by
which viruses are able to transmit between different
hosts as well as how viruses are able to develop
resistance to antiviral therapies (Domingo et al.,
2012). Further study of the DWV quasispecies may
help to explain how DWYV is able to exist as multiple
variants in many hosts, and may elucidate mechan-
isms by which it establishes a persistent infection
among several hosts but only proves pathogenic
in some.
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