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Abstract  20 

A farmer’s decision on whether to control a pest is usually based on the perceived 21 

threat of the pest locally and the guidance of commercial advisors. Therefore farmers in a 22 

region are often influenced by similar circumstances, and this can create a coordinated 23 

response for pest control that is effective at a landscape scale. This coordinated response is 24 

not intentional, but is an emergent property of the system. We propose a framework for 25 

understanding the intrinsic feedback mechanisms between the actions of humans and the 26 

dynamics of pest populations, and demonstrate this framework using the European corn 27 

borer, a serious pest in maize crops. We link a model of the European corn borer and a 28 

parasite in a landscape with a model that simulates the decisions of individual farmers on 29 

what type of maize to grow. Farmers chose whether to grow Bt-maize, which is toxic to the 30 

corn borer, or conventional maize for which the seed is cheaper. The problem is akin to the 31 

snow-drift problem in game theory; that is to say, if enough farmers choose to grow Bt maize 32 

then because the pest is suppressed an individual may benefit from growing conventional 33 

maize. We show that the communication network between farmers’ and their perceptions of 34 

profit and loss affects landscape scale patterns in pest dynamics. We found that although 35 

adoption of Bt maize often brings increased financial returns, these rewards oscillate in 36 

response to the prevalence of pests.  37 

  38 
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Author summary 39 

A farmer’s decision on whether to control a pest is usually based on the perceived threat of 40 

the pest locally and the guidance of commercial advisors. Therefore farmers in a region are 41 

often influenced by similar circumstances, and this can create a coordinated response to a 42 

pest. This coordinated response, although not intentional, can affect ecological systems at the 43 

landscape scale. Using the European corn borer as an exemplar system, we develop a 44 

framework to explore the feedback mechanisms between pest populations and farmers’ 45 

decisions. We show that the form of communication network and the farmers’ perceptions of 46 

profit and loss influence the decisions made on pest control. Our work has implications for 47 

other systems, whereby the ecology of a system is driven by individual decision makers 48 

following similar heuristics and experiencing similar influences. Indeed, by understanding the 49 

feedback mechanisms between pest populations and farmers’ decisions we can predict 50 

landscape-scale dynamics and determine how to manipulate these to sustain control.  51 

 52 

  53 
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Introduction 54 

The European corn borer (Ostrinia nubilalis) (ECB), a serious pest of maize, cost the 55 

American economy an estimated 1 billion US dollars annually at its worst in the early 1990s 56 

[1, 2]. In 1996, Bt maize, a transgenic crop that expressed insecticidal proteins from the soil-57 

dwelling bacterium Bacillus thuringiensis, was introduced for control of the pest. Since then, 58 

farmers have had to choose whether to plant conventional or Bt maize (Fig. 1). Their 59 

decisions rest on the economic viability of Bt, given that future infestations of ECB cannot be 60 

predicted. Specifically, farmers must predict whether increased returns from Bt will exceed 61 

the technology fee, a financial premium for buying the transgenic seed [3, 4]. In some 62 

situations, farmers believe that the economics favor conventional seed; more than half of 63 

them believe that the price of Bt maize is too high to merit purchase [1, 5], particularly if their 64 

crops have not recently been infested.  65 

 66 

Fig. 1. Influences on farmers’ decisions and their impacts. A schematic illustrating the 67 

influences on farmers' decisions on what varieties of maize to grow, and how this impacts the 68 

population dynamics of the European corn borer and the profitability of farming at a 69 

landscape scale. The width of the green arrows indicates the approximate appropriation of 70 

agricultural resources. 71 

 72 

Hutchison et al. [1] showed that Bt maize generated an estimated $230 million annual 73 

benefit to maize growers in Illinois, Minnesota and Wisconsin. Much of this economic 74 

benefit (75%) accrued to farmers who did not plant Bt maize; these farmers did not pay 75 

technology fees but still benefitted from the area-wide suppression provided by those farmers 76 
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who cooperated to use Bt to reduce pest densities [1]. Other systems, such as cotton, have 77 

shown similar benefits from area wide suppression of pests [6]. 78 

As such, the control of ECB can be evaluated through game theory because the 79 

mechanisms of cooperation, such as reciprocity, reputation and spatial structure are 80 

embedded in the farmer networks that mediate the population dynamics of the pest [7–10]. 81 

The system is akin to a ‘snow drift’ game [8]. The snow drift game is a metaphor for a 82 

situation whereby the benefit that an individual, in this case a farmer, obtains for a given 83 

strategy depends on the actions of others. In particular, if a farmer chooses to grow 84 

conventional maize in a landscape where the pest is supressed by other farmers growing Bt 85 

maize, then this individual will benefit from the pest suppression without paying the 86 

technology fee. On the other hand, in a situation where the pest is not suppressed at landscape 87 

scale it is likely to be more profitable for an individual to grow Bt maize.  88 

When deciding whether to plant Bt maize, farmers negotiate between ‘expert’ and 89 

‘local’ knowledge (Fig. 1). For example, Kaup’s [5] hierarchy of influences showed maize-90 

seed dealers and crop consultants appeared to have substantial influence, neighbors had 91 

moderate influence, and extension agents had little influence on the farmers’ decisions to 92 

plant Bt maize. More than 50% of farmers who anticipated having ECB problems chose to 93 

plant Bt maize. The results emphasize an important principle in pest control: farmers’ 94 

perceived risks, rather than actual losses, play an important role in pest management [5, 11, 95 

12]. This principle of 'risk perception' is crucial. If farmers’ underestimate the risk of 96 

infestation and grow conventional maize then the pest will flourish and diminish yields. If on 97 

the other hand farmers exaggerate the risk and plant too much Bt maize then there is an 98 

increased risk that the pest will adapt to its new host and threaten the long-term production of 99 

maize.  100 
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Here we build a framework for exploring understanding of the intrinsic feedback 101 

mechanisms between the actions of humans and the dynamics of pest populations in a 102 

structured landscape, and use the European corn borer in maize as an example. Our example 103 

is intended to demonstrate the plausibility of the framework and so is illustrative rather than 104 

predictive. Our models are kept simple to both aid the elucidation of our results and to reduce 105 

the runtimes of the simulations. This particular example was chosen because there is a rich 106 

source of data to support it. We build a mechanistic model of the population dynamics of 107 

ECB in a 700-km long strip of the US Corn Belt. The models are parameterised to reflect a 108 

maize system similar to that in the part of the US Corn Belt that passes through Minnesota 109 

and Wisconsin. The model of the population dynamics includes the life cycle, dispersal and 110 

ecology of the pest including its relationship with the pathogen Nosema pyrausta 111 

(Microsporidia: Nosematidae), which is one of the most important natural enemies of the 112 

ECB; this parasite reduces the number of surviving offspring, and is cited as the primary 113 

reason for the observed cycle in the population density [13–16]. The landscape model is 114 

spatially-explicit and parameterized so that one half has similar county sizes, farm sizes, and 115 

density of maize crops to those in Minnesota and the other to those in Wisconsin. We show 116 

how this model captures the behavior of the ECB-population dynamics in the observed 117 

empirical data at a coarse spatial scale. Importantly, analysis of the model shows that even 118 

when the infected population is reduced to small numbers, it retains the capacity to recover 119 

and so the natural control persists.  120 

We then introduce a sociological layer to the model. We simulate the processes by 121 

which individual farmers decide whether to grow Bt maize or conventional maize. The 122 

decision is based predominantly on likely profit: the probability that a farmer will chose a 123 

given strategy is based on the information that he or she has on the profits achieved under Bt 124 

maize and conventional maize in recent seasons. For any given farmer, the source of this 125 
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information will depend on the network of communication. Here we explicitly model four 126 

different networks of communication. In particular we explore how the form of the network 127 

affects the uptake of Bt maize over time, the pest population dynamics and the long term 128 

profits of the farmers in the landscape. We show that the form of the network impacts the 129 

feedback mechanism between pest populations and farmers' decisions that affect landscape-130 

scale dynamics. We show that independent decision makers that follow similar heuristics and 131 

are influenced by the same circumstances can create an apparent coordinated response which 132 

affects ecological systems at landscape scales. This coordinated response is not intentional, 133 

but is an emergent property of the system.   134 

 135 

Methods 136 

Below we present the components of the model framework, including the pest dynamics 137 

model, the farmer decision model and four different communication networks. We then use 138 

this framework to explore the effect of the different communication networks and the 139 

responsiveness of the farmers to loss on (i) the pest dynamics, (ii) the uptake of Bt maize and 140 

(iii) the long term losses of the farmers.   141 

European corn borer and Nosema pyrausta model 142 

We developed a model to explore the population dynamics of ECB and its natural 143 

enemy, the pathogen Nosema pyrausta, and the impact of ECB on maize crops in a 144 

landscape. This landscape was based on national agricultural census statistics from 1997, 145 

2002 and 2007 on county sizes, farm sizes and numbers, harvested areas and the area of 146 

maize grown in Wisconsin and Minnesota [17–19]. We used a grid of 300 x 1400 cells that 147 

equates to a 150km x 700km strip. Each cell represents 25 ha (0.5km x 0.5km), similar to the 148 
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typical size of maize fields in the region. One half of the simulated landscape was 149 

parameterised to be similar to Wisconsin and the other to Minnesota. We partitioned the two 150 

states into counties, with county sizes reflecting the actual distribution of county sizes in each 151 

state. We defined farms as connected cells in which arable crops could be grown. The 152 

number of farms in each simulated county, and the distribution of their sizes, reflected the 153 

true distribution of arable land on farms in each state. Simulated farms were fitted into the 154 

county, along with uncropped areas at random (see S1). The landscape was generated 155 

stochastically and so is a realisation of a random process.    156 

Crops were assigned county by county. On average, maize accounted for 44% of the 157 

cropped area in Minnesota and 37% in Wisconsin [17–19]. Cropped cells were then allocated 158 

at random as maize or other. Each year, the proportion of maize in a given county was 159 

resampled, and cropped cells allocated again at random to maize or other. This process 160 

allowed for a proportion of fields to have maize crops grown consecutively and others to 161 

have rotations with a non-host crop for ECB. We made the simplifying assumption that ECB 162 

only develops in grid cells with maize. In each of these cells we use an abundance-based 163 

population model to describe the development of a population of ECB that is susceptible to 164 

the pathogen N. pyrausta and one that is infected. Our model did not include the effect of 165 

other natural enemies of ECB or climate, and so was not expected to accurately describe the 166 

historic dynamics of the ECB. Rather, its purpose was to capture the population cycle 167 

attributed to N. pyrausta and to simulate the effect of Bt maize on larval survival.  168 

In the model, eggs hatch into larvae that pass through five instar stages. The survival 169 

of the larvae through to pupation is density dependent. We assume that the Bt toxin reduces 170 

the number of larvae that reach instar 3 by 99.9% [20]. We do not consider insecticides as a 171 

control measure as these are considered largely ineffective because after the neonate stage, 172 

the ECB larvae are concealed within the maize plant, thus avoiding direct contact with an 173 
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insecticide's active ingredients. Adults emerge following pupation, then disperse and mate, 174 

and then females disperse before oviposition and the cycle starts again. We assume two 175 

generations of ECB per year, as is typical in Minnesota and Wisconsin. The larvae from the 176 

second generation overwinter in stalks, and so their survival rate is lower than that of the first 177 

generation. Infection by N. pyrausta travels through both horizontal and vertical pathways. 178 

We assume that infected adult males do not pass infection to their young, but that females 179 

pass on infection to 85% of their eggs [21]. Infection passes horizontally through the 180 

population during the larvae stage when susceptible (uninfected) larvae come into contact 181 

with frass from infected larvae. The infection rate is modelled as density dependent. The 182 

survival of the infected population at each stage is smaller than the healthy population. The 183 

parameter values of the model were based on the body of work by Onstad and colleagues [12, 184 

21, 22] (see S2 for full model description).  185 

We modelled the dispersal of the populations in four stages: pre-mating dispersal, 186 

mating, post-mating dispersal of females, and oviposition. The dispersal functions represent 187 

the integration of the movement of moths over a period of days. The dispersal of insects is 188 

often modelled with an exponential dispersal kernel which has a mode at the origin. The 189 

literature [23–24] suggest that in the case of the corn borer, however, this may not be 190 

appropriate as instinct and environmental factors force large numbers of adults from their 191 

natal fields. For this reason, and for computational efficiency we chose to model dispersal 192 

using a beta distribution, which has a flexible mode. We assume dispersal is the same in all 193 

directions, and that at the boundary of the landscape the moths are reflected back.  194 

We base our dispersal estimates on observations in the literature which demonstrate 195 

seasonal differences in the dispersal of spring and summer adults [23–26]. Crop rotation and 196 

lack of adequate humidity in crops during the day time can force newly emerged adults to 197 

move from their overwintering field before initiating sexual activity [27]. The probability 198 
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density function (PDF) that describes the pre-mating dispersal in spring has a mode of 10km 199 

and 90% of the population travelling less than 30 km. The dispersal of infected moths is 200 

reduced by 80%. Dispersal in summer is more conservative with a mode of 1km and 90% of 201 

the adult moths fly less than 15km. Under typical conditions, the pre-oviposition period has a 202 

mean of 3.6 days [14]. Thereafter the mean oviposition period is approximately 10 days with 203 

oviposition decreasing with time. During this time a female could cover a considerable area. 204 

We assumed that for spring the mode of the post-mating PDF was 35 km and that 90% of the 205 

population travel less than 60 km, and that in summer the mode was 5 km with 90% of the 206 

population traveling less than 30 km (see Fig. 2).  207 

 208 

Fig. 2. The functions used to model the dispersal of the European corn borer.  The 209 

dispersal functions for adult moths pre- and post- mating in spring and summer. 210 

The model of the ECB population density expresses the cycle of infestation caused by N. 211 

pyrausta observed in the field data with a similar wavelength [2]. When Bt was introduced 212 

into the landscape, the cycle collapsed and the pest was suppressed in a way similar to 213 

observed patterns [2] (Fig. 3).  214 

 215 

Fig. 3. Overwintering larvae. Average numbers of overwintering lavae from Minnesota 216 

over time (solid black line) during a period where the proportion of Bt maize broadly 217 

increased (dashed red line). Our simulation model (solid blue line) captures the behavior 218 

observed in the field with a cycle in the population of similar wavelength to that observed in 219 

the data. The introduction of Bt maize results in this cycle being damped but still persisting 220 

(the cycle is under-damped in this case — see S2).  221 
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Modelling the decision process 222 

In the model, farmers growing maize face the decision of whether to plant Bt or 223 

conventional maize. As described above, the decisions on which type of maize to grow 224 

directly impacts the survival of the ECB larvae and so the population dynamics of the pest. 225 

Kaup [5] surveyed 4000 farmers in Wisconsin and Minnesota and found that the most 226 

common reasons for growing Bt maize were: (i) to increase yield; (ii) to control insects 227 

better; and (iii) they anticipated ECB problem. The most common reasons for not using Bt 228 

maize were (i) the price of Bt seed was too high; or (ii) no ECB problem was anticipated. 229 

Although growers may misconceive the financial impact of the drivers described above, these 230 

drivers imply a profit-based decision. Other factors including farm size, age, education and 231 

available market information have been shown to influence the adoption of GM crops and 232 

complex empirical models have been proposed to describe these effects on farmer decisions 233 

[28]. To both ensure the easy interpretation of our results, we chose to use a simple model 234 

based on perceived profit.    235 

We assumed that the decision process is driven by the financial impact of ECB, and 236 

that farmers make decisions based on recent years’ experience [5]. We used data from 237 

Wisconsin and Minnesota on the estimated benefit ($ ha
-1

) from Bt maize and the increase in 238 

the area of Bt maize grown (as a percentage of total maize grown) between 1995 and 2009 to 239 

model the probability (p) of farmers changing cropping strategy (Hutchison et al., [1]). The 240 

following exponential function was used based on empirical and theoretical considerations:  241 

1 e )xp ( A fp r r      where A Fr r  242 

0p   otherwise. 243 

(1) 244 
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Here  is a parameter, Fr  is the reward the farmer perceives was attained under the chosen 245 

strategy and Ar  is the reward the farmers perceives would have been attained under the 246 

alternative strategy, so that the difference A Fr r  measures the perceived net benefit for Bt 247 

maize adoption. This model is not only more parsimonious than a more traditional logistic 248 

model, but also has better goodness of fit criteria (S3). Furthermore, the exponential model is 249 

a constant absolute risk aversion utility function for the representative farmer with parameters 250 

estimated to fit the observed state-level Bt maize adoption data and estimated benefit [29, 30]. 251 

The parameter   quantifies farmer responsiveness to the perceived gain from Bt maize 252 

adoption (or equivalently, ECB loss). The regression estimate for   was 0.0055 with a 253 

standard error of 0.00174 with no evidence to support separate parameters for each state. In 254 

practice it would be possible to influence farmer responsiveness (i.e.  ) through subsidy, 255 

taxation or education. For example if farmers were encouraged to be cautious about returning 256 

to conventional maize then farmers growing Bt maize would be less responsive when they 257 

experienced an apparent benefit reduction. We used the fitted value ± three standard errors to 258 

define the range of values for   that we explored in our analysis. 259 

For each season, we sample an individual farmer’s decision from a distribution whereby 260 

the probability of changing strategy is p (as defined in Equation 1). This allows us to 261 

implicitly include a range of individual behaviors from the intransigent farmer who finds a 262 

preferred strategy and will not change, to the receptive farmer who will try new practices. It 263 

also implicitly includes other social factors which we do not explicitly account for.  264 

 265 

The farmer’s reward is given by the average financial reward from his maize fields 266 

calculated as  267 
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) ,( L Pmr Y FY       (2) 268 

Where Y  is the expected yield in a ECB-free crop (t ha
-1

), LY  is the loss in yield due to the 269 

ECB (t ha
-1

), 
pm  is the crop price ($ t

-1
) and F  is the technology fee ($), which is the seed 270 

price difference between conventional and Bt maize. We do not include varietal effects that 271 

could modify yields slightly, but assume that all maize crops have the same expected yield 272 

(10 t ha
-1

). We assume that this yield is reduced by ECB according to the function given in 273 

the supplementary information of Hutchison et al., [1]: 274 

1.16

2 2 0.29

0.021(2.56 5.65 )
,

[(2.56 5.65 ) (3.4 1.73 ) ]
L

x x
Y

x x x
Y




  
     (3) 275 

Where x  is the average number of overwintering larvae per plant.  To be consistent with the 276 

data used to parameterise the landscape model we assume 16F  $ ha
-1

 and a crop price (
pm ) 277 

of 99 $ t
-1 

which are averages for Minnesota and Wisconsin between 1996 and 2009 [1].  278 

Communication networks 279 

Given that we can calculate the reward (r) for growing maize in any particular field we 280 

must consider how to calculate the reward the farmer perceives was attained under each 281 

strategy (i.e. Fr and Ar ). The reward for a given strategy may be calculated from the rewards 282 

obtained for this strategy over a given area of the landscape, i.e. a farmer’s perceived reward 283 

depends on the network of communication and how much credence the farmer gives to the 284 

information available to them. Kaup [5] showed that growers who had reported an insect 285 

problem in one year were likely to grow Bt maize in the next, which is consistent with 286 

farmers who grow other Bt crops [31]. In Kaup’s study the state-reported insect levels did not 287 

significantly influence behavior. Therefore we assume that a farmer perceives that the reward 288 
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for their chosen strategy ( Fr ) is given by the average reward from across their fields, taking 289 

no account of the success of that strategy in their neighborhood.  290 

To inform on the perceived reward from the alternative strategy we consider four 291 

networks of communication that we shall refer to as: (i) landscape-network; (ii) neighbor-292 

network; (iii) Kaup-network and (iv) varying-response-network. There are two theoretical 293 

extremes: the first is where each farmer has information from across the whole landscape, 294 

akin to accessing web-based crop data. In this scenario the perceived reward for the 295 

alternative strategy is the average of the rewards for the alternative strategy across the 296 

landscape. We call this the ‘landscape-network’. The second is where each farmer has 297 

information only from farms that neighbor their own, which may reflect how traditional 298 

farming decisions are made alone or within cooperatives. In this scenario the reward for the 299 

alternative strategy is given by the average reward that this strategy attains in farms that 300 

neighbor the farmer. We call this the ‘neighbor-network’.  301 

Research shows that when farmers decide which varieties to grow they may consult 302 

family and friends, other farmers, commercial newsletters, county extension agents and 303 

university specialists. Kaup [5] reports that 40.2% of farmers acknowledged that a major 304 

reason to grow Bt was that it was recommended by their seed dealers or consultants. 305 

Similarly 7.9% of farmers acknowledged recommendation by a neighbor, and 3.4% 306 

acknowledged recommendation by university or extension agencies. Normalizing these 307 

percentages to sum to 100%, we simulate a communication network whereby a farmer has a 308 

probability of 0.78 of being influenced by a consultant, a probability 0.15 of being influenced 309 

by a neighbour and a probability of 0.07 of being influenced by a university. According to 310 

those probabilities each farm is assigned a communication network type. For those assigned 311 

to be neighbor-influenced we calculate the reward of the alternative strategy by averaging the 312 
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scores of this strategy from farms within 1km. We assume consultants operate over a county, 313 

and so for farmers assigned to be consultant-influenced we calculated the reward as the 314 

average reward across a county. Finally we assume universities operate at the state level and 315 

so the reward for those assigned to be university-influenced is given by the average reward 316 

across the state. This network, which we refer to as the ‘Kaup-network’, is arguably more 317 

common in today's farming environment than the two former scenarios. For each network we 318 

set the responsiveness parameter   (Equation 1) to 0.0055, 0.0003 and 0.0108, which are the 319 

value fitted to the data, and that value ± three standard errors.    320 

Kaup [5] showed that if farmers had planted Bt in the past then they were more likely 321 

to use it in the future. This tendency is incorporated into the model by scaling β in Equation 322 

(1) so that farmers who have used Bt maize in the past are more responsive to loss of profit. 323 

Our final network, the ‘varying-response-network’, incorporates a reluctance for farmers to 324 

change back from Bt-maize to conventional maize. It assumes a Kaup-network with the 325 

probability of a farmer switching to Bt maize, having previously tried it given by Equation (1) 326 

with  =0.0055 otherwise  =0.0003.  327 

 328 

Implementing the model 329 

We ran each simulation for 100 seasons. At the end of each season the reward 𝑟F(𝑖) is 330 

calculated for each farm 𝑖 along with the perceived reward for the alternative strategy 𝑟A(𝑖). 331 

The probability that the farm strategy will change is calculated according to the farmer’s 332 

responsiveness to loss. This probability is used to determine if they change strategy. Crops 333 

are rotated and fields growing maize are assigned to Bt or conventional maize according to 334 

the calculated strategy.  335 

 336 
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Results 337 

Analysis of the European corn borer and Nosema pyrausta model 338 

To explore the behavior of the solutions of the model we considered the equations 339 

without the spatial component. Ignoring dispersal, the model equations listed in S2 reduce to 340 

the following set of difference equations: 341 

( )( ( ) ( ))e
( )

( ) ( )

P ta S t cP t
S t

S t P t








 
 342 

( )[ ( ) ( ( ) ( ))(1 e )]
( )

( ) ( )

P tk P t b S t cP t
P t

S t P t





  


 
 343 

( )

1

( ( ) ( ))e
( 1)

( ) ( )

P ta S t cP t
S t

S t P t







 

 
 344 

( )[ ( ) ( ( ) ( ))(1 e )]
( 1)

( ) ( )

P tk P t b S t cP t
P t

S t P t





  
 

 
 345 

(4) 346 

where S(t) and P(t) represent the number of susceptible and infected eggs in year t, for the 347 

first generation respectively and ( )S t and ( )P t  are for the second generation. The first pair of 348 

equations describes the summer generation and the second pair the autumn-spring generation. 349 

Many of the parameters result from combinations of biologically meaningful parameters from 350 

the full model (see S2). Parameters a = 929.8 and k = 85.6 capture the population increase 351 

from births modulated by survival rates for susceptible and healthy populations respectively. 352 

Parameter c = 0.15 is the proportion of susceptible eggs produced by an infected female. The 353 

term
( )(1 e )P t  determines the proportion of the healthy population that becomes infected, 354 
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where α=0.72 controls the infection transfer from the infected to susceptible population. 355 

Parameter b=2.31 relates to the survival of this recently infected population. The carrying 356 

capacity parameter ν=130.7 controls the density dependent survival of the larvae, parameters 357 

ω1=0.081 and ω2=0.02835 relate to the overwintering survival of the susceptible and infected 358 

populations respectively. 359 

Analysis of these equations shows three steady-states, i.e. solutions where the rates of change 360 

of healthy population (S) and the infected population (P) are zero: (C1) [P* = 0, S* = 0], (C2) 361 

[P* = 0, S* =
2 2

1a

a

 






], and (C3) [P* = P0, S* = S0], where both P0 and S0 are positive real 362 

values. Linearization around these points determines the behavior of the solutions of the 363 

equations [32]. The first steady-state (C1) relates to the trivial solution whereby both healthy 364 

and infected populations become extinct; the second (C2) relates to the solution where the 365 

infected population becomes extinct; and the third steady-state (C3) relates to the solutions 366 

where both the healthy and the infected population densities are larger than zero and the total 367 

population cycles. It can be shown that (C3) exists, implying that N. pyrausta survives in the 368 

system, for parameter combinations such that 
2

ˆ
1

ˆ

bS

S

k 




 
  

 
, where 

2 2

1ˆ a
S

a

 







. For 369 

the model parameters used, and a wide range around these parameters, the steady-state (C3) 370 

always exists supporting the hypothesis that even if ECB is suppressed to low levels, the 371 

infected population will survive and the natural control given by N. pyrausta persists.  372 

 373 

The snow-drift game  374 

Under the landscape-network simulation shown in Figs 4a and 4b, the percentage of 375 

Bt maize oscillates between approximately 1% and 95% over time. Larval populations are 376 



18 
 

driven by the Bt adoption and oscillate similarly, with the largest levels prior to the maxima 377 

in the Bt cycle. Increasing farmer responsiveness to economic loss (i.e. increasing the 378 

parameter   in Equation 1) increases the frequency and amplitude of the oscillation; 379 

reducing farmer responsiveness reduces the frequency and amplitude of the oscillation. The 380 

average larval density is held near or below the economic threshold (0.06 larvae per plant for 381 

the model parameterization reported here), however, in some parts of the landscape the 382 

density was much higher. The results from the Kaup-network are similar to the landscape-383 

network, but with a slightly higher oscillation frequency and slight dampening (see S4).  384 

 385 

Fig. 4. Results from the landscape-network, neighbor-network, and varying-response-386 

network simulations. The top pane of each pair shows the proportion of Bt maize and 387 

bottom panes show the average number of overwintering larvae per plant across the two areas 388 

of the landscape, one in Wisconsin and the other in Minnesota. The simulation was started 389 

with 1% of the maize as Bt distributed randomly in the landscape.  390 

 391 

In the neighbor network the solution slowly converges to a state where the proportion 392 

of Bt maize is approximately 0.67 in Minnesota and 0.24 in Wisconsin (Fig 4c). The 393 

difference in adoption rate results because the neighborhood connections are stronger in 394 

Minnesota than in Wisconsin due to a greater density of farms in Minnesota. Indeed, in the 395 

simulated Wisconsin landscape, more farms are likely to be isolated and so have no 396 

neighbors growing Bt maize to compare profits with (see Fig 5a). Simulated ECB populations 397 

in Minnesota are lower than those in Wisconsin, where adoption of Bt maize was smaller (Fig 398 

4d). Figure 5b shows the average number of overwintering larvae per plant in each cell for a 399 

single year of the simulation. The average numbers of larvae in Wisconsin reach larger levels, 400 
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and even for isolated farms in Minnesota the pest is supressed by the larger amount of Bt 401 

maize grown in the surrounding area. For example between years 30 and 50 of the simulation 402 

shown in Fig. 4 the maximum number of ECB in any cell was 8.12 larvae per plant for 403 

Wisconsin and 2.69 for Minnesota. The responsiveness of the farmer to loss (parameter  ) 404 

affects the convergence rate with smaller values of   taking longer to converge.   405 

Results from the simulation where farmers were more responsive to loss from 406 

conventional maize if they had experience of growing Bt maize (varying-response-network 407 

simulations) are shown in Figs 4e and 4f. The simulation illustrates that adoption of Bt maize 408 

is more rapid than that of conventional maize.  409 

 410 

Fig. 5. The spatial distribution of crops and larvae in a single year of the simulation.  (a) 411 

The land use in year 73 of simulated landscape under the neighbor-network. The left half of 412 

the landscape represents Minnesota (abscissa from 0 to 350 km) and the right Wisconsin 413 

(abscissa from 350 to 700 km); (b) shows the corresponding average number of 414 

overwintering larvae per plant. Enlarged sections show the spatial distributions in more 415 

detail. 416 

 417 

Table 1 lists the average losses ($ ha
-1

 year
-1

) across the landscape between year 20 418 

and 100 under each simulation, and the average proportion of the maize that is Bt. Initial 419 

years were excluded to allow the simulation to stabilize. Losses (𝐿) were calculated from a 420 

baseline whereby conventional maize was grown in an ECB-free landscape, i.e., 421 

L pL FY m  , where LY  is the yield loss caused by the ECB, pm  is the crop price and F is 422 

the technology fee. These results are based on 10 realisations of each simulation. The average 423 
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proportions of Bt maize are similar across the networks ranging between 0.41 (when 424 

0.0108  ) and 0.67 (when 0.0003  ). The standard deviation of the proportions of Bt 425 

maize were generally smaller for the less responsive farmers ( 0.0003  ). For the values   426 

considered, mean losses are least in the varying-response-network scenario and greatest in the 427 

neighbor-network scenario. We also simulated losses under scenarios where the proportion of 428 

Bt in the landscape was fixed at a given proportion, with the smallest simulated losses 429 

averaging 11 $ ha
-1

 year
-1

 with a proportion of Bt of 0.61. The sensitivity of our results to 430 

model assumptions is discussed in S5. 431 

 432 

Table 1. The average losses and the average proportion of the crop that is Bt between year 20 433 

and 100 under each simulation according to communication network type and value of the 434 

parameter β, which changes the responsiveness of the farmer to loss. The standard deviations 435 

are given in parentheses.  436 

Network type Value 

of   

Loss/$ ha
-1

 year
-1 

 Proportion of Bt 

Landscape-

network 

0.0003 15.63 (0.182) 0.67 (0.073) 

 0.0055 14.28 (0.302) 0.45 (0.319) 

 0.0108 14.02 (0.216) 0.51 (0.312) 

Neighbor-network 0.0003 30.02 (0.420) 0.50 (0.045) 

 0.0055 27.51 (0.548) 0.51 (0.043) 

 0.0108 27.64 (0.749) 0.50 (0.039) 

Kaup-network 0.0003 17.15 (0.132) 0.58 (0.089) 
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 0.0055 16.12 (0.141) 0.43 (0.304) 

 0.0108 15.96 (0.278) 0.42 (0.275) 

Varying-response-

network 

– 13.90 (0.285) 0.56 (0.088) 

 437 

Comparison of the dynamics of farmer behaviour with data 438 

 439 

To test the plausibility of the results from our model, we compared the observed and 440 

simulated dynamics of the relationships between loss incurred by growing conventional 441 

maize (calculated as above) and the percentage of maize that was Bt (Fig. 6). The relationship 442 

between these two variables changes year on year depending on the corn borer population in 443 

the landscape. The dynamics observed in the data from Minnesota and the simulations for the 444 

varying-response-network are broadly similar (Fig. 6a and e). The percentage of Bt maize 445 

grown increases until it is not profitable to grow Bt, then farmers start to move back to 446 

conventional maize only to return to Bt maize as losses increase later. The period of dis-447 

adoption shown in Fig 6a is unlikely to be solely driven by the farmers’ perceptions of loss 448 

from corn borer infestation as it coincides with a period where there was a drop in confidence 449 

for the marketability of Bt maize, however our analysis gives support to the hypothesis that 450 

farmers’ perceptions of loss might explain dynamics. The Minnesotan data shows a second 451 

small drop in adoption over a two year period when the losses reach 13  $ ha
-1

 thereafter 452 

there is a steady increase in the percentage of Bt maize grown with no relationship to loss. 453 

Observed dynamics for Wisconsin show slower uptake of Bt maize compared with Minnesota 454 

(Fig. 6b). This may reflect the fact that maize is grown on a much larger scale in Minnesota 455 

compared to other states including Wisconsin, which in turn may have implications for the 456 
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way in which information is shared and how fields are managed in these states [33]. Similar 457 

to the neighbor network we also see that levels of Bt maize that initially control losses are 458 

subsequently less effective at the landscape scale and so the use of Bt is increased. No ECB 459 

resistance to Bt maize has been reported and so these changes in loss result from other factors 460 

such as climate or N. pyrausta.  461 

 462 

Fig. 6. The loss in profit incurred by growing conventional maize compared with growing Bt 463 

maize plotted against the percentage of maize that is Bt. The arrow indicates the direction of 464 

time. Subplots (a) and (b) are based on data from states in the Corn Belt and subplots (c) to 465 

(e) are based on simulations.  466 

 467 

Discussion 468 

Liu et al. [34] highlighted the importance of linking sociological influences to ecological 469 

systems. In our simulation we show how economic conditions can result in the suppression of 470 

a pest throughout a landscape. Our results accord with the findings of Bell et al. [2] who 471 

observed the impact of a coordinated response to ECB, and showed the planting of Bt maize 472 

in Minnesota led to a collapse in the cycle of ECB caused by N. pyrausta. In Wisconsin, 473 

however, where less Bt maize was grown, the cycle persisted. Similarly, Hutchison et al. [1] 474 

showed that farmers who grew conventional maize benefited from the area-wide suppression 475 

from Bt maize in the region. Our model shows a similar phenomenon, particularly 476 

exemplified in the neighbor-network simulation where a smaller proportion of Bt maize in 477 

Wisconsin resulted in a larger density of ECB compared with Minnesota, so that ECB 478 

population density continued to exhibit the N. pyrausta driven cycle. The landscape scale 479 
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effects of the decisions made by individuals have been observed in other agricultural systems 480 

in which farmers’ decisions are influenced by social or economic factors or both and appear 481 

to be coordinated. The farmers’ behaviors results in substantial impacts on the population 482 

dynamics of species across landscapes. For example, Bianchi et al. [35] reported that 483 

coordinated changes in landscape composition negatively impact natural pest control, and 484 

Klein et al. [36] showed how agricultural intensification threatens wild bee pollination 485 

services at the landscape scale.  486 

In our example, we show that decisions made by farmers on an individual basis impact 487 

ECB populations and the profitability of growing maize in the landscape. These decisions are 488 

driven by a range of external influences, from the advice of neighbors to information from 489 

extension specialists. We showed that the form of the network and the farmer responsiveness 490 

to loss substantially impact the dynamics of the system at all trophic levels. Generally we 491 

found that Bt-maize adoption oscillated in response to the prevalence of ECB in the 492 

landscape, and that the communication network and responsiveness of the farmer to loss 493 

influenced the amplitude and frequency of this oscillation. As the scale of communication 494 

networks increased so did the rate at which change occurred. This phenomenon was observed 495 

by Lambin et al. [37] who reported that rapid land-use changes often result when global 496 

influences replace local drivers. For example the global markets demand for certain 497 

commodities may rapidly change landscapes from longstanding diverse land-use patterns to 498 

more uniform cropping. 499 

Of the networks we considered, the varying-response-network performed the best in 500 

terms of minimising losses and showed a reasonably constant proportion of Bt maize grown 501 

across time (Table 1). The farmers in this simulation had good access to information from 502 

across the landscape and were quicker to re-adopt Bt maize at the first sign of losses from 503 

ECB, yet slower to return to the more risky strategy of growing conventional maize. 504 
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Importantly, our simulations show that to avoid extreme events some resistance to change 505 

must be inherent in the system. The varying-response-network did not outcompete the 506 

simulation with a fixed percentage of 61% Bt maize however. This outcome is compatible 507 

with the initial US-EPA resistance management requirements for ECB of at least 20% non-Bt 508 

maize planted each year, to serve as a refuge to maintain non-Bt selected susceptible moths in 509 

the landscape [1]. 510 

One aspect that we did not consider is that seed companies use market power to protect 511 

against the sales of Bt maize oscillating by selling the ECB-Bt maize seed bundled with other 512 

desirable seed traits and by reducing ECB-Bt maize prices so that farmers continue to buy the 513 

ECB-Bt-maize [38]. Similarly, seed dealers may promote Bt maize seed over conventional 514 

because they themselves receive a better rate of commission for Bt maize. The effect of such 515 

actions would be to inflate the reward farmers perceive is obtained from growing Bt maize, 516 

and so increase the adoption of Bt maize and drive the trajectories shown in Fig. 4 to the 517 

right. Indeed any volatility in the price of seed or the harvested crop will impact the dynamics 518 

of the system. Increases in the price of maize or a reduction in the technology fee result 519 

would result in a lower tolerance to corn borer larvae. Another area not included in our 520 

analysis is the effect of farmer decisions on the evolution of resistance ECB to Bt maize. A 521 

recent review by Tabashnik et al.[39] found no evidence of a decrease in the susceptibility of 522 

ECB to Cry1Ab in Bt maize in the field. Others have used modelling to evaluate the effect of 523 

refuge planting strategies and including two or more toxins within a cultivar (pyramided 524 

toxins) on the rate of resistance evolution [22, 40─42]. These studies aim to guide regulatory 525 

policy designed to mitigate the threat of resistance. It is generally held that the greater the 526 

density of Bt maize in the landscape the faster the evolution of resistance. It follows that 527 

within the context of farmer behaviour, social factors that increase the use of Bt maize in the 528 

landscape would increase the rate of the evolution of resistance. Increased resistance of ECB 529 
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to Bt maize would in turn result in farmers seeking alternative methods of control perhaps in 530 

the form of new toxins, or cropping strategies. 531 

Our work has implications for other systems, whereby the ecology of a system is driven 532 

by individual decision makers following similar heuristics and experiencing similar 533 

influences. Examples include important systems where co-ordinated control can result in 534 

area-wide suppression of a pest or diseases. These systems typically involve insect pests that 535 

either cause damage to crops by herbivory (e.g. Meligethes aeneus F, Spodoptera exempta 536 

Walker) or act as a vector for disease [43]. The model framework presented here also has 537 

application to other areas such as disease prevention in a public health setting. There are clear 538 

parallels between landscape suppression of pests and diseases, and the herd immunity 539 

afforded when sufficient numbers of the population vaccinate. A number of modelling studies 540 

have been done to explore behaviour in the context of vaccination to try to understand the 541 

conditions that cause vaccine coverage to fall [44─46]. The conceptual difference between 542 

the vaccination studies and our study is that in our study the host of the insect pest is fixed in 543 

space and the insect moves across space, whereas in the case of human diseases the hosts 544 

move and transmit disease to one another. Our decision model was based on the farmers’ 545 

perceived profits. However, other social factors such as perceived food safety, the threat to 546 

non-target species and resistance management can effect decisions [47]. These factors often 547 

do manifest as economic factors but where they do not, they could be included in a model 548 

framework such as the one described by using opinion dynamics models [48]. Vaccination 549 

uptake is an example of a situation where often decisions are based on a perception of the 550 

safety rather than financial incentives (44). By understanding the dynamics of farmer 551 

decisions we can determine how to manage better the system, through improved 552 

communication, subsidy or taxation, to achieve robust and cost effective area-wide control, 553 

while minimizing the risk of the evolution of resistance to control strategies.   554 
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