
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

How Product Owner Teams Scale Agile Methods to
Large Distributed Enterprises

Julian M. Bass

Received: date / Accepted: date

Abstract Software development teams in large scale offshore enterprise develop-
ment programmes are often under intense pressure to deliver high quality software
within challenging time contraints. Project failures can attract adverse publicity
and damage corporate reputations. Agile methods have been advocated to reduce
project risks, improving both productivity and product quality. This article uses
practitioner descriptions of agile method tailoring to explore large scale offshore
enterprise development programmes with a focus on product owner role tailoring,
where the product owner identifies and prioritises customer requirements. In glob-
alised projects, the product owner must reconcile competing business interests,
whilst generating and then prioritising large numbers of requirements for numer-
ous development teams. The study comprises eight international companies, based
in London, Bangalore and Delhi. Interviews with 46 practitioners were conducted
between February 2010 and May 2012. Grounded theory was used to identify that
product owners form into teams. The main contribution of this research is to de-
scribe the nine product owner team functions identified: groom, prioritiser, release
master, technical architect, governor, communicator, traveller, intermediary and
risk assessor. These product owner functions arbitrate between conflicting cus-
tomer requirements, approve release schedules, disseminate architectural design
decisions, provide technical governance and propogate information across teams.
The functions identified in this research are mapped to a scrum of scrums process,
and a taxonomy of the functions shows how focusing on either decision-making
or information dissemination in each helps to tailor agile methods to large scale
offshore enterprise development programmes.

Keywords agile software development · scrum · large scale offshore enterprise
development programmes · product owner · product owner teams · grounded
theory.

Julian M. Bass
School of Computing Science and Digital Media, Robert Gordon University, Garthdee Road,
Aberdeen, AB10 7GJ, UK
Tel.: +44 1224 262732
E-mail: j.m.bass@rgu.ac.uk

2 Julian M. Bass

1 Introduction

Problems in large scale offshore enterprise software development programmes can
damage the reputation of well-known companies and even challenge the ability of
governments to implement policy. For example, Santander UK plc had problems
with an IT integration project following the take-over of the smaller Alliance &
Leicester bank (Computer Weekly, 2012). Whilst Santander had previously main-
tained a positive IT track record during earlier take-overs, the adverse publicity
that this incident attracted extended beyond technology news outlets (BBC, 2012).

Government decisions to change policies in relation to taxation or social secu-
rity systems often necessitate large scale software implementations, an ability that
has often been questioned. In the UK Parliament, concern has been expressed
regarding the government’s ability to implement a new social security payment
system. In September 2012, Liam Byrne MP, during questions to the Treasury
said “the Universal Credit is late and over budget; there is widespread unease sur-
rounding the implementation of the £2 billion [US $ 3.2 billion approx.] scheme’s
IT system” (Hansard, 2012). In September 2013, a report by the National Audit
Office revealed an IT budget increase of 60%, as well as delays in the roll-out of the
proposed Universal Credit system. The National Audit Office also reported that
the Department for Work and Pensions had written off £34 million [US $ 54.3
million approx] (Glick, 2013). It is therefore apparent that project teams on large
scale offshore enterprise development programmes are under considerable pressure
to deliver successful outcomes.

There is increasing practitioner interest in tailoring agile software methods to
large scale offshore enterprise development programmes (Leffingwell, 2007; Larman
and Vodde, 2008; Ambler and Lines, 2012). According to practitioners, the three
key agile principles are: (1) achievement of customer satisfaction through early
and continuous delivery of valuable software; (2) business and development team
members working together frequently throughout the project; and (3) face-to-face
conversations as the most efficient way to convey information to, and within, the
development team (de Cesare et al, 2010).

These practitioner perceptions are in unanimity with proponents of agile meth-
ods, who argue that they improve team morale, resulting in enhanced productivity
and improved responsiveness to customer needs, culminating in better software
quality (Agile Alliance, 2011). Empirical research suggests that agile methods do
indeed improve job satisfaction, productivity and customer satisfaction (Dyba and
Dingsoyr, 2009), with other research reporting improved communication between
team members, quick releases and the increased flexibility of agile designs (Begel
and Nagappan, 2007). Critical success factors for agile projects have been identi-
fied as: correct delivery strategy, proper practice of agile methods and high calibre
team members (Chow and Cao, 2008). However, there can be challenges with
adoption for large and complex projects (Dyba and Dingsoyr, 2009).

This research contributes to the literature on tailoring agile methods for use
in large scale offshore enterprise development programmes , including five CMMI
maturity level 5 accredited offshore software development vendors. The research
question for this study is “how do practitioners describe the tailoring of agile
method roles and practices in large scale offshore enterprise software development
programmes?” In particular, this article focuses on the research question “how do
practitioners describe enhancement and expansion of functions within the product

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 3

owner role, to meet the needs of large scale offshore enterprise software develop-
ment programmes?”

A further contribution of this research is to add to the literature on product
owner teams. Product owners do not work as individual project stakeholders in
the large projects investigated. Rather, they instead work together in informal
(or sometimes formal) teams, and the functions of the members of these product
owner teams are described in this research.

In answering the research questions, nine product owner functions have been
identified, and each of these functions is described in turn. The functions have
then been mapped to the scrum agile process. More specifically, the functions are
mapped to the scrum of scrums process, which has previously been proposed for
extending scrum to large projects (Leffingwell, 2007). In this article, a taxonomy
of the functions is developed in which the functions are categorised depending
upon the domain (business or technical) and nature of the function (information
gathering or information dissemination).

This article will develop an argument with three main steps (1) that the scope
of product owner functions can be identified in the context of a broader study on
selected software development programmes, (2) that product owner teams emerge
from the functions identified, and (3) that the product owner teams require mem-
bers with different specialist skills. That is, product owner teams often find it
difficult to operate with multi-function team members. These three arguments are
briefly explored in turn.

At its core, product ownership is about communicating a business need to a
development team. The development team know how to design, test and deploy
systems, and the product owner knows what system needs to be built. In large
scale offshore enterprise software development programmes, articulating and com-
municating a business need is itself often a time consuming and difficult task.
This research shows that the identifying, refining and disseminating of a need is
currently performed by people with a wide range of job titles, including: prod-
uct manager, business analyst, project manager and programme manager. The
job functions performed by product owners, proxy product owners and techni-
cal product owners have been collated. These job functions relate to identifying,
refining and disseminating a need in large scale offshore enterprise software de-
velopment programmes. Job functions performed by project managers (such as
project administration and development environment procurement) and product
managers (such as product marketing) that are not connected to communicating
with the development team or refining the business need have been excluded. This
job function selection was conducted using sources including the Skills Framework
for the Information Age (SFIA Foundation, 2014), a taxonomy of IT industry roles
and responsibilities.

The product owner team concept emerges from the product owner functions
identified, due to two main influences: (1) programme scale, and (2) standardisa-
tion of best practice. Firstly, in large scale offshore enterprise software development
programmes, the sponsor is usually a senior executive with high-level responsibil-
ities. However, the findings of this research show that the sponsor cannot commit
the time necessary to determine needs in sufficient detail or to communicate them
to large numbers of development team members. Therefore, intermediaries are
identified in order to perform the detailed functions required to articulate and
prioritise the need.

4 Julian M. Bass

Secondly, in the large scale offshore enterprise software development programmes
studied, a complex range of technical and policy standards was found to exist.
These standards are designed to ensure that development teams comply with
established best practice. The standards fall into two main areas. Firstly, good
development process practices are used (for example, to ensure compliance with
CMMI accreditation requirements); and secondly, that development programmes
comply with technical constraints.

This article will argue that the product owner functions reflect the division be-
tween the knowledge and skills of the business domain, and of the technical domain.
There are, of course, individuals with both business domain and technical skills.
However, these individuals are rare and are in high demand in the employment
market. Furthermore, in large scale offshore enterprise software development pro-
grammes, the level of business domain and technical skills required is high. These
are challenging development programmes with stringent deadlines and complex re-
source needs. This research shows that the individuals with both business domain
and technical skills are very rarely able to show executive level leadership in both
domains. More commonly, product owner teams are populated by team members
with either business or technical domain knowledge. Consequently, it is hard to
find product owners capable of tackling both technical and business functions with
sufficient credibility at high levels within large organisations.

The paper is structured as follows. An overview of agile software development
methods is provided, concentrating first on scrum, which was the most widely
used process in the projects investigated, and then functions within the product
owner role. Next follows a discussion of the research methods adopted, including
the research sites, data collection and data analysis techniques used. The find-
ings describe nine functions that comprise the product owner role in large scale
offshore enterprise development programmes: groom, prioritiser, communicator,
traveller, intermediary, governor, technical architect, risk assessor and release man-
ager. These findings extend understanding of how, in practice, companies scale
agile methods to large scale offshore enterprise development programmes. There
is then a discussion of these findings, with implications for practitioners and for
process tailoring theory. Finally, conclusions and suggestions for future work are
presented.

2 Agile Methods

Agile methods were established during the 1990s, building upon evolutionary de-
velopment approaches that emerged in the 1980s (Larman and Basili, 2003). There
are a range of software development methods that can regarded as being agile, in-
cluding Dynamic Systems Development Methods (DSDM) (Stapleton, 1997); Fea-
ture Driven Development (Coad et al, 1999); Crystal (Cockburn, 2001); Scrum
(Schwaber and Beedle, 2001); Extreme Programming (XP) (Beck and Andres,
2004); and Lean Software Development (Poppendieck and Poppendieck, 2003).

XP comprises engineering practices such as test-driven development, contin-
uous integration, refactoring and pair programming (Beck and Andres, 2004).
Test-driven development advocates writing unit-tests prior to program code devel-
opment (Wilkerson et al, 2012). In test-driven development, new tests are written
before features are added or changed. The technique tends to be used in associa-

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 5

tion with automated unit-test tools. Continuous integration is where changes are
frequently (typically daily) merged into an evolving code base (Cusumano, 2007).
Refactoring is used to evolve the underlying architecture and design in order to ac-
commodate new functionality (Mens and Tourwe, 2004). Pair programming, where
developers work together in a manner analogous to a pilot/co-pilot configuration,
has been studied extensively (Balijepally et al, 2009; Hannay et al, 2010; Lui et al,
2008). Effective XP teams have a shared sense of responsibility, and a relaxed
yet rhythmic approach to working; and good quality code is a jointly-owned and
valued asset (Sharp and Robinson, 2004).

In contrast with the engineering focus of XP, scrum has tended to focus on
the orchestration and management of agile development (Schwaber, 2004). Scrum,
most commonly adopted by the company teams investigated in this study, proposes
short, focused periods of development called sprints, which typically last between
two and four weeks (França et al, 2010).

Software requirements are captured, analysed and prioritised in the form of
brief textual, non-technical descriptions called user stories. These user stories are
prioritised, before the start of each sprint, by a product owner who represents
the strategic needs of the client. Stakeholders, including the development team
members and the product owner, then work together to create work estimates for
each user story, using a consensus-based scoring technique. The development team
members deconstruct each user story into its constituent technical tasks, necessary
for implementation at the start of each sprint.

Project team members communicate using a daily coordination meeting, the
eponymous ‘scrum’. The scrum is traditionally conducted standing up, in a con-
scious effort to minimise the duration of the meeting. Team members are required
to answer three questions: (1) “what have you done since the last meeting?”; (2)
“what will you do between now and the next meeting?”; and (3) “what impedi-
ments that prevent your progress have you encountered or created for others?”

Scrum teams are self-organising, since team members collaborate in order to
develop work estimates, and can select user stories for implementation within the
current sprint (Cohn, 2009; Hoda et al, 2010, 2012; Moe et al, 2010; Monteiro
et al, 2011). Scrum emphasises incremental software development using a ‘feature’
team structure (Schwaber and Beedle, 2001). Feature team members tackle the
holistic development of end-to-end user story functionality (Coad et al, 1999),
which contrasts with traditional approaches that hierarchically distribute team
members into specialist groups around architectural components, such as user
interface, business logic or persistence layer elements.

Some proponents argue that agile methods must be holistically implemented
in their entirety in order to achieve full benefits (Beck and Andres, 2004). How-
ever, the findings presented here suggest that this is not always possible, or even
desirable, in large scale offshore enterprise development programmes.

2.1 Enterprise Agile

As already discussed, the challenges of scaling agile methods to large offshore
enterprise development programmes have received attention from numerous prac-
titioners (Leffingwell, 2007; Larman and Vodde, 2008; Ambler and Lines, 2012).
The simultaneous use of agile methods and plan-based methods in large enterprises

6 Julian M. Bass

Fig. 1 Overall scrum-of-scrums process

has also received interest from researchers (van Waardenburg and van Vliet, 2013).
Large team size, complex business contexts and demanding time constraints can
converge to cause a range of threats to productivity in agile projects (Hannay and
Benestad, 2010), as the co-existence of plan-based and agile methods increases
complexity and impedes the involvement of business stakeholders (van Waarden-
burg and van Vliet, 2013). Large scale projects therefore require a more disciplined
approach to software development (Ambler, 2008). There is also evidence that large
scale projects may exacerbate communication problems (Pikkarainen et al, 2008).

A scrum of scrums approach has been advocated to accommodate large team
size (Leffingwell, 2007). Several scrum teams are formed, each with a scrum master
in the usual way, and each scrum team comprises 7-12 developers. Daily coordina-
tion meetings are held within each scrum team, and in addition, the scrum masters
attend a coordination meeting across the teams (the scrum of scrums). The scrum
of scrums is used to tactically manage and coordinate the progress of iterations
through the various scrum teams.

During the scrum of scrums meeting, each scrum master will report: (1) “what
my team has done since the last meeting”, (2) “what my team will do between
now and the next meeting” and (3) “what impediments that prevent progress
my team has encountered or created for others”. Scrum of scrum meetings with
too many participants can lack focus and relevance (Paasivaara et al, 2012b) and
communication is improved when scrum of scrum meetings are organised around
common interests and participant needs.

The overall software development process is illustrated in Figure 1. The sprint
process, (C) in Figure 1, comprises a requirements backlog, sprint planning, ret-
rospective review and customer demonstration of tested code. Within the sprint,
tasks identified during planning are completed and communication takes place in
scrum meetings.

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 7

Sprints are nested within a product release process, (B) in Figure 1, and releases
comprise one or more sprints. Large projects tend to have a larger number of sprints
within a release. The release comprises a product backlog and release planning.
The product backlog is refined and prioritised, based on user surveys and client
feedback.

At a more strategic level, development programmes (A) in Figure 1, comprise
product releases, while each product release itself is comprised of the sprints shown
in Figure 1. A product roadmap is developed as part of overall product marketing
and this product roadmap will define the features intended to achieve the desired
market penetration within a given market segment.

In the related area of global software development, it has been shown that more
time and personnel are required to undertake cross-site work of similar size and
complexity when compared with same-site work (Herbsleb and Mockus, 2003);
due to increased temporal, geographical and socio-cultural distances. However,
the emphasis, in agile methods, on communication and building trust can help
ameliorate such challenges (Ramesh et al, 2006). In addition, agile methods im-
prove perceived product quality; although there may be challenges around mis-
understood requirements and awkward communication in distributed meetings
(Paasivaara et al, 2008). A meta study of research papers suggests that the most
researched geographically distributed agile practices are continuous integration;
stand-up meetings; pair programming; retrospectives; scrum of scrums; and test-
driven development (Jalali and Wohlin, 2010).

To mitigate the challenges of geographical distribution, multiple modes of com-
munication support are available, including telephone, web camera, teleconference,
video conference, web conference, net meeting, email, shared mailing lists, instant
messaging and short messaging service. A variety of collaboration techniques are
available to scrum teams including visits and periods of co-located working, un-
official meetings, training functions and distributed documentation support tools
to help alleviate sociocultural distance (Hossain et al, 2009).

The focus of the research presented here is on large scale offshore enterprise
development programmes, which includes multiple teams working in onshore and
offshore, and occasionally more complex geographically distributed configurations.

2.2 Product Ownership

Extreme programming advocates an on-site customer, a client representative that
is available to the team on a full-time basis (Beck and Andres, 2004). The on-
site customer role has been extensively explored by Angela Martin (for example,
Martin et al, 2009a,b; Martin, 2009). A set of XP customer practices have been
identified by investigating 66 practitioner participants involved in 11 projects of
varying sizes (Martin et al, 2009a). The concept of an XP customer team is iden-
tified; with groups of practices that include collaboration guides, direction setting
and skill specialists (Martin et al, 2009b).

Scrum defines three roles in its agile processes: the self-organising team, the
scrum master and the product owner (Schwaber and Beedle, 2001). Product own-
ership plays a central role in the overall software development process (Raithatha,
2007), as the product owner is responsible for communication between the cus-
tomer and development teams (Hoda et al, 2011). The product owner is responsi-

8 Julian M. Bass

Table 1 Participating Companies and Project Details

Company Company Sector Total Number
of Employees

Revenue, 2013
(Gross Income)

A IT Service Provider 171,000 US $8.8 billion
B Internet 12,500 US $4.7 billion
C Software Service Provider 2,500 Not Available
D Software Service Provider

(Offshore Provider to
Company E)

7,000 US $550 million
(2009)

E Enterprise CRM 2,500
(Post Takeover)

US $500 million
(Post Takeover)

F Industrial Products 362,000 ¿75 billion
G IT Service Provider 131,000 ¿10 billion
H IT Service Provider 8,000 US $380 million

ble for developing and maintaining the product backlog, the list of user stories that
define the requirements for the project. However, a critique of product owners sug-
gests that they are not always knowledgeable about best practice in requirements
engineering (Ktata and Lévesque, 2009).

Two approaches to establishing product owner teams have been identified: area
product owner and proxy product owner (Paasivaara et al, 2012a). Area product
owners are each responsible for a subset of product features and report to an overall
product owner, whilst proxy product owners operate a shared responsibility model.
Each of these approaches has been seen to offer both strengths and weaknesses
(Paasivaara et al, 2012a).

3 Method

This qualitative study of software engineering practice comprised eight interna-
tional companies and interviews with 45 practitioners, as shown in Table 1.

3.1 Research Sites

The companies were selected from a population of enterprises engaged in large
scale offshore software development programmes . Five of the companies are CMMI
accredited at maturity level 5. The companies chosen had head offices in Germany,
India and USA. The turnover of the two largest companies is almost ¿8 billion and
over US $1.5 billion. The interviews were conducted in Bangalore, India (January
2010 and April 2011); London, UK (February 2010); and Delhi, India (May 2012),
as shown in Table 2.

The companies investigated were involved in either off-shoring (companies B
and F), or out-sourcing (companies A, C, D, E, G and H). Project details, including
team size and product owner location are shown in Table 3. Three of the projects
are geographically distributed (company A, CRM insurance; company G, health-
care; and company F, healthcare). The remaining 15 projects have onshore clients
and offshore teams in various configurations. Off-shoring is typically motivated
by a desire to access and cultivate worldwide talent pools, and both off-shoring
and outsourcing are intended to offer lower cost resource pools, when compared

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 9

Table 2 Participating Companies and Interviewees

Company Interview Locations
and Dates

Interviewee Job Titles

A Bangalore
January 2010

Programme Manager
Senior Project Manager
Team Member

B Bangalore
January 2010
April 2011

Engineering Manager
Product Manager

C Bangalore
January 2010

Development Manager

D Bangalore
January 2010

Project Manager
Product Owner
Scrum Master (3)
QA Lead
Team Member

E London
February 2010

Programme Manager
Project Manager
Director of Engineering

F Bangalore
April 2011

Scrum Master

G Bangalore
April 2011

Engagement Manager

H Delhi
May 2012

Chief Technology Officer
Corporate Lead Architect
General Manager H. R.
Delivery/Programme Manager (3)
Senior/Project Manager (3)
Scrum Master (2)
Technical Analyst/Consultant/Specialist (6)
Team Member (9)
Business Analyst

with in-house onshore resources. For example, Company B is a household name
in the Internet business sector, and retains an onshore development capability in
California, but has also built up an in-house off-shore development team in India
(as well as other territories), in order to reduce costs, while attracting a range of
specialist skills. Company F, with broad interests in the industrial products space,
has headquarters in Europe but also has research and development centres in In-
dia and elsewhere. Work is allocated according to the concentration of expertise
into specialist groups within the enterprise (to avoid duplication of competencies
throughout the organisation). The IT services companies (companies A, C, D, G
and H) are well-known vendors in the world-wide outsourcing sector.

Selection of the companies and research study participants was through a
snowball sampling technique (for example see Patton, 2002; Miles and Huberman,
1994). Professional contacts provided access to the first study participants. Those
participants were then able to provide access to other development teams and com-
panies. Early phases of the study focused on participant breadth, at Companies A,
B, C, F and G, gaining access to a range of project teams and stakeholders with
different perspectives. Participants ranged from Company C, one of whose defining
characteristics is their adherence to agile methods, to agile sceptics, with negative
experiences to report, found at Companies E and G. The later phases of the study
focused on depth, by targeting participants with a range of stakeholder roles within

10 Julian M. Bass

Table 3 Project, Team Size, Team Deployment and Project Type

Company Project Team
Size

Team Deployment Project
Type

CRM (Insurance) 325 17 Countries Bespoke
A CRM (Banking) 50 PO onshore, offshore team Bespoke

CRM (Healthcare) 75 PO onshore, offshore team Bespoke
Internet (Calendar) 25 offshore SPL a

B Internet (Mail) 25 offshore SPL
Internet (Options) 25 offshore SPL

C Transport (Rail Ticketing) 40 3 offshore locations Bespoke
Marketing
(Campaign Management)

25 PO onshore, offshore team SPL

Enterprise CRM (Core) 20 PO onshore, offshore team SPL
D/E Enterprise CRM (Banking) 12 PO onshore, offshore team Bespoke

Enterprise CRM
(Credit Card)

20 PO onshore, onshore team SPL

Enterprise CRM
(Financial Services)

25 PO onshore, offshore team Bespoke

Healthcare (Instruments) 1000 various locations SPL
F

Industrial Automation 200 PO onshore, offshore team SPL
Media Entertainment 50 PO onshore, offshore team Bespoke

G
Healthcare 180 various locations SPL
Travel (Loyalty) 30 3 teams SPL

H Travel
(Airline Reservation)

25 1 team onshore and
2 teams offshore

Bespoke

Risk Management and
Insurance

30 1 team onshore and
2 teams offshore

SPL

a SPL, software product line

the same company or project. Here the interviews at Company H, and Compa-
nies D and E provided developer, QA, project management and corporate-level
perspectives. This in-depth phase of the study is an implementation of intensity
sampling (Patton, 2002, pp. 171). Selecting research participants that provide a
wide range of perspectives, using snowball sampling in an early phase and then
using intensity sampling in a subsequent phase, is a combination sampling ap-
proach, which provides an element of methodological triangulation to the sample.
Combination participant sampling provides insights into both the current status
of the research problem and the motivation that underlies such practices. The
motivations for the use of practices are difficult to obtain using large scale survey
methods.

3.2 Data Collection

A range of documentary sources were used to inform the study. Many of the com-
panies investigated produce corporate guidelines on software development pro-
cesses, and several of these commercially confidential guidelines were studied.
These guidelines outline corporate agile practices, roles, policies and recommenda-
tions. However, it was not possible to obtain permission to access such guidelines
from some of the companies participating in the research, as IT and software
services companies regard these guidelines as highly commercially sensitive.

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 11

Table 4 Product Owner Team Deployment

Company Project Product
Owner
Location

Development Process

CRM (Insurance) Malaysia RUP a Distributed BA Team
A CRM (Banking) UK Scrum

CRM (Healthcare) USA Scrum
Internet (Calendar) India Scrum

B Internet (Mail) USA Scrum
Internet (Options) USA Scrum

C Transport (Rail Ticketing) UK XP Onsite Customer
Marketing
(Campaign Management)

India Scrum

Enterprise CRM (Core) USA Scrum
D/E Enterprise CRM (Banking) New Zealand Scrum

Enterprise CRM
(Credit Card)

UK FDD b (Capsule Development)

Enterprise CRM
(Financial Services)

UK RUP

Healthcare (Instruments) USA Scrum
F

Industrial Automation USA Scrum
Media Entertainment USA Scrum

G
Healthcare USA Scrum
Travel (Loyalty) UK Scrum

H Travel
(Airline Reservation)

UK Scrum

Risk Management and
Insurance

USA Scrum

a RUP, Rational Unified Process
b FDD, feature driven development

Some project documentation has also been investigated, including design and
architecture documents. Marketing materials such as publicly available white pa-
pers, technical reports, case studies and descriptions of vendor capabilities designed
for potential customers, were also reviewed.

Site visits enabled observations of working areas and working practices, and
secure development team work environments were also visited. Coordination meet-
ings (stand-up meetings) were observed in real-time for both co-located and dis-
tributed scrum teams. The work environment arrangements for distributed scrum
coordination meetings using both video- and audio-conferencing technologies were
also investigated. A range of informal, sometimes off-site, discussions with execu-
tives, project management and development team members were conducted.

Face-to-face recorded interviews were conducted with 46 practitioner intervie-
wees (Hove and Anda, 2005; Seaman, 1999) and these recordings were transcribed.
An open-ended semi-structured interview approach was adopted, as open-ended
interviews give respondents the opportunity to raise any topics, issues and concerns
outside the scope of scripted interview questions. The semi-structured approach
adopted in this study contrasts with an interview survey approach, where the same
carefully scripted questions are repeated with each participant. Further, probing
questions were used to elicit more detail about topics raised by interviewees. This

12 Julian M. Bass

approach generates detailed descriptions from each participant, and enables inte-
gration of the varying interviewee perspectives (Weiss, 1994).

An interview guide was used (see Appendix 1), which evolved as the study
focused on scaling agile methods to large offshore enterprise software development
programmes (see Appendix 2). Interviews were typically conducted on company
premises, using small meeting rooms exclusively booked for the purpose.

Research interviews can be viewed from three perspectives, (1) research craft,
(2) social production of knowledge and (3) social practice (Kvale and Brinkmann,
2009). When viewed as a craft, interviewing is seen as a set of practical skills and
personal judgements to be acquired by the researcher through practice. From this
perspective the interview is not rooted in any carefully prescribed methodological
process, and interview quality is judged by the depth and value of the knowledge
produced.

In contrast, interviewing can be seen as an active conversational process be-
tween interviewer and interviewee. This conversational process is contextual, lin-
guistic and narrative. From this perspective, interviewers do not uncover facts
buried in the interview, so much as participate in order to generate knowledge.

Finally, interviews can be viewed as social practice, embedded in a historical
and social context. The interview is laden with ethical issues and potential social
impacts after publication, and there is perceived to be an inherent power asymme-
try within the interview situation. Interviews can therefore provide evidence-based
findings of practice that shape concepts of human behaviour. This research adopted
a social practice conception of interviews. Well executed interviewing can provide
“compelling descriptions on the human world” and “provide us with well-founded
knowledge” (Kvale and Brinkmann, 2009, pp.47).

3.3 Data Analysis

Initially, both the audio interviews and associated written transcripts were care-
fully reviewed to ensure consistency. The transcript text was imported into a
qualitative data analysis software tool, Nvivo V9 (NVivo, 2013).

The grounded theory analysis began with the identification of concepts within
the data. Grounded theory is an analytical process for discovering theory through
the analysis of data (Glaser and Strauss, 1999). The new theories arise from the
data being analysed and are thus grounded in that data. The interview concepts
were coded and then compared within and between interviewees (Gibbs, 2007).
These interview concepts were then iteratively grouped and refined into selected
categories, as shown in Figure 2. Figure 2 illustrates how concepts were combined
to create categories, which were then themselves coded, listed and compared within
and between transcripts from different interviewees. This iterative concept cate-
gorisation was used to organise the large volume of data into a typology. The
categories become saturated as data collection progresses (Glaser, 1992), and the
categorisation forms the basis of the grounded theory (Glaser, 1998).

Categories that emerge from the data using the using the terminology of the
area under exploration are known as ‘in vivo’ categories (Glaser, 1992). Such cat-
egories are also sometimes known as emergent categories, since they emerge from
the data without the prior awareness of the researcher (Patton, 2002). These in

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 13

Fig. 2 Iterative analysis leading to grounded theory.

vivo categories are particularly valued in grounded theory, as they are, by defini-
tion, free from any prior assumptions and prejudices held by the researcher.

In grounded theory, researchers make several visits to the field. Data collection
is performed iteratively, with analysis conducted between these data collection field
visits. Data collection continues until categories become saturated. Subsequent
data collection brings diminishing returns in terms of new insights into categories
under consideration. Thus, in grounded theory, the researcher iterates back and
forth between data collection and analysis. This approach is “close to the common-
sense approach which one might use when trying to understand something which
is complex and puzzling”(Robson, 2011, pp. 148).

3.3.1 Field Notes and Memo Writing

During data collection, a series of field notes were produced. These informal notes
recorded interesting issues arising during the interviews, such as apparent contra-
dictions, areas of possible uncertainty and striking examples of emergent topics.
These field notes were extended during the data analysis with descriptions of se-
lected categories. These notes describing categories are examples of memo writing
during which categories are identified, refined and sharpened (Glaser, 1998, Chap-
ter 12). The memos were used to keep track of the emerging theory; and they
evolved and changed during the analysis as new transcript data was added.

3.3.2 Open Coding

Open coding was conducted on a sentence-by-sentence basis of the interview tran-
scripts. Short descriptive phrases were used as codes, such as “technical product
owner”, “product grooming” and “user story triage”. During the early stages of
analysis the codes were hand-written on to hard copies of the transcripts. This

14 Julian M. Bass

approach provided a quick and easy way to identify and collate the initial codes.
The codes at this stage were tentative and evolved quickly. Subsequently, as the
volume of interview transcript data increased, the coding process was formalised
and the data analysis software tool, Nvivo, was employed (NVivo, 2013).

3.3.3 Constant Comparison

Constant comparison was used to refine and sharpen the categories emerging from
data in this research. Glaser and Strauss (1999, pp.105) identify four main pur-
poses of constant comparison: comparing incidents that apply to each category,
integrating categories and their properties, delimiting the theory, and writing the
theory. The codes from each interview were compared with each other at two key
levels: firstly, within the same organisation or project team; and secondly, with
outside organisations and teams. The codes were honed over time using constant
comparison. For example, “requirements gathering” was a coding category early in
the analysis, but this was later refined into the two codes “product grooming” and
“user story triage”. Similarly, the code “technical product owner” was refined into
“reference architect” and “governance coordinator” as more detailed transcript
data emerged from the intensity sampling stage, as mentioned in Section 3.1.

In summary, data analysis emerged from a process of iteration involving memo
writing, open coding and constant comparison. Early topics, identified using line-
by-line analysis of the transcript data, were recorded in memos. These topics were
subsequently refined and sharpened through constant comparison within and be-
tween interview transcripts. As the volume of interview data increased the topics
became discrete categories. The categories form the basis of the grounded theory
which is described next.

4 Findings

Early proponents of agile methods advocated the use of small, self-organising and
co-located teams. However, in enterprise settings, large work volumes, short dead-
lines and entrenched organisational structures often result in tailored agile ap-
proaches. The contribution of this paper is to provide practitioner descriptions of
product owner functions. The research identifies the emergence of new functions
within product owner teams that allow agile methods to scale-up to large offshore
software enterprise development programmes . Nine functions within the product
owner role are identified.

First, the overall choice of software development process is considered. In gen-
eral, plan-based (or waterfall) methods can be contrasted with agile methods.
Plan-based methods are described by an experienced senior executive, as follows:

“[In]. . . the UK, the model was, we’ll do all requirements, [then] we’ll do
technical design and then, we will do development” (Programme Manager,
Company E, February 2010).

Using plan-based approaches, each phase in the development process is com-
pleted in it’s entirety, with all the requirements analysis, followed by all of the
design, then the implementation, followed by testing. In contrast,

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 15

“The US [team] had this concept of agile, by having what they call ‘cap-
sules.’ So what they did was, they developed the requirements and then
[implemented the] program and tested a capsule then move to the next
one. . . At that time the US [team approach] was to do every thing, in little
capsules” (Programme Manager, Company E, February 2010).

Here the term ‘capsule’ is used to describe the concept of a feature, and each
feature is developed in turn. Each feature comprises requirements analysis, design,
implementation and testing. In feature driven development methods (for example
Coad et al, 1999), each feature is designed to encourage cohesion of closely related
features but independence of unrelated features, to avoid undesirable coupling.

However,

“[using capsules] struck us as a bit dangerous. Because you could get quite
a long way down and find something in a capsule, 10 capsules on, that
affected an earlier capsule that needed reworking” (Programme Manager,
Company E, February 2010).

This highlights the difficulty of ensuring that features are independent. Failure
to fully identify inter-dependencies can cause substantial re-work of previously
implemented features. So, the plan-based approach was advocated, because it “was
a means to avoid rework” (Programme Manager, Company E, February 2010).

Company B also had previous experience of using traditional plan-based meth-
ods “the development cycle used to be pretty huge, you know, huge requirement
document, huge design phase, three or six [month] development cycle and so on”
(Product Manager, Company B, April 2011). However, the time required to con-
duct the plan-based development process undermined customer satisfaction, as
“there was always a huge difference [between] what our customers [were] demand-
ing and what we were giving them” (Product Manager, Company B, April 2011).
This is seen as an inevitable part of the development process “I think thats an in-
herent issue in the waterfall model” (Product Manager, Company B, April 2011).
In summary,

“[in a] typical waterfall model, where you had requirements being collected,
analysed and then, you had a design phase. . . and then a development phase
started and then a QA phase and then you realise everything is broken
and things are not adhering to contracts, so you [the client and software
service provider] fight with each other” (Development Manager, Company
C, January 2010).

The issues arising from the absence of a product owner are illustrated by drawing
on Company E, which conducts (non-agile) customisation projects on client sites,
and uses scrum with an out-sourced development partner for its own product
development. For example:

“there are client representatives at [major international bank, UK] they are
a little ill-defined in what they are actually doing. But there isn’t a stake-
holder that comes and makes any real decisions on the project” (Project
Manager, Company E, February 2010).

This project manager continues “there’s a lot more syndication. . . in coming to a
conclusion [about project status]” (Project Manager, Company E, February 2010).

16 Julian M. Bass

Here this project manager with over 30 years of IT industry experience uses the
word syndication as a euphemism for discussion and equivocation. This illustrates
that, from a development team perspective, it is difficult to get decisions made
about requirements and priorities in the absence of a product owner. At the same
bank

“their governance is actually done on [a] biweekly basis and then, there’s
another level of governance which is done on a four- to six-week basis. . . they
have a traffic light system of reporting on a project, but they have a very
peculiar set of rules about how those traffic lights can go to amber or, very
rarely, can go to red, which is very surprising. . . I would have all the projects
at red at the moment, but they’re either green or possibly only just about
going amber” (Project Manager, Company E, February 2010).

From an enterprise perspective, it is difficult to hold project teams to account in
terms of scope, budgets and deadlines. Enterprises tend to expand the number
of job titles beyond the roles defined in standard agile literature. For example
“there is a team in India of 20 people with a manager. There is a product manager
as well as a project manager, and a product owner and there is me overseeing”
(Engineering Director, Company E, February 2010). Product owner job functions
need to be clarified, due to the lack of standardisation between job titles and
product owner functions. Thus, product owner functions may be conducted by
staff members holding a variety of job titles.

What a product owner actually does is worth considering. From one perspec-
tive, “product [scope], the design, the requirements, the discussion with the busi-
ness side from the customer, that is all done through product owner” (Engineering
Director, Company E, February 2010). The nine functions identified in the research
as falling within the product owner role are outlined below.

4.1 Groom: the groom gathers requirements from business clients

Product grooming “is a list of. . . requirements or features. . . So it is a product own-
ers responsibility to make sure product backlog should be continuously evolving”
(Programme Head, Company H, May 2012). Simply put, “I’d be ready with my
sprint backlog. What are the things we are going to do? Maybe a few additional
features and some backlog from the previous [sprint] where we have received feed-
back from the client” (Engagement Manager, Company G, April 2011). Product
owners reconcile conflicting priorities thus:

“there is a product [management organisation in California]. So, different
regions like APAC and Europe and North America come with some re-
quirements, this is what they want to get done. And they come to the
product manager. . . who keeps on collecting the requirements, prioritises
them. There’s a six-monthly road map discussion. . . where they have a high-
level look at the things we are trying to achieve this year. They act as a
channel between the development team and the market so, for us, they are
the customers.” (Engineering Manager, Company B, January 2010).

The product owner needs to interact with customers in order to gather the re-
quirements “our product owner, luckily, has a very rich experience of interaction

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 17

with customers” (Scrum Master, Company D, January 2010). However, simply
compiling a list of requirements is not sufficient, the requirements must also be
prioritised according to their value to the business.

4.2 Prioritiser: the prioritiser ensures that requirements bring value to the
business

The product owner is also responsible for prioritising requirements in the product
or sprint backlogs. For example, “we keep re-triaging [the backlog] because we have
too many mandatories” (Engineering Director, Company E, February 2010). Also
“if [requirements]. . . are not sequenced properly as for the priority. So whatever
we are delivering will not give that priority value to the end user or the business
user” (Programme Head, Company H, May 2012). Thus, it is the product owner’s
responsibility to identify and reconcile the needs of the different parts of the client
organisation. Product owners become experienced in assessing and prioritising the
needs of different segments of the customer-base, and thus they must have sufficient
stature and seniority to perform that conflict resolution function.

In some cases, such as enterprise products simultaneously aimed at a large
number of end-user territories, project teams can be more directly involved in the
systematic recording of customer requirements: “we call it a requirement template
approach. . . so this particular template recognises what is the basic requirement
which all [of the client territories] will agree. [Each client territory in turn] will say
“okay, this is less priority for me” or there’ll be some variation. So against each
[requirement template] there is some line item that can be done, okay we want
this piece” (Practice Head, Company A, January 2010).

4.3 Release Master: the release master manages and approves release plans

A release master manages and approves release schedules. For example, “a re-
lease plan is prepared. It is sent for approval to the product owner. . . once it’s
approved by the product owner then we stick to that” (Architect, Company D,
January 2010). Backlog grooming, requirements prioritisation and release planning
are standard scrum practices. The other product owner functions practitioners de-
scribed are identified below.

4.4 Technical Architect: the technical architect provides architectural
coordination to large scale offshore enterprise software development programmes

To design, implement and disseminate a reference architecture, a technical function
for the product owner is required. The product owner coordinates technical and
architectural policies between the scrum teams. This includes sufficient documen-
tation and illustrative source code to ensure project teams can understand and fol-
low the guidelines. The product owner must disseminate the reference architecture
to teams, as the project team may legitimately find anomalies and ambiguities that
the product owner should provide guidance on. A significant amount of up-front

18 Julian M. Bass

work should be done by the product owner prior to scrum teams working on in-
crements. These architectural design decisions can often be performed using broad
statements of functional requirements. However, non-functional requirements have
more bearing on the development of a reference architecture, as this is a technical
thought leadership and coordination function. Architectural styles are developed
and disseminated by the product owner in compliance with corporate architecture
guidelines “so we have a [corporate-wide] council, architecture council” (Architect,
Company D, January 2010). The absence of a product owner does not mean that
these decisions are not made, on the contrary, the decisions are made by teams in
an uncoordinated manner. This results in divergent architectural styles in different
parts of the development programme.

There are tensions between performing the architecture design within the self-
organising scrum teams or as a separate function. For example “in an ideal wa-
terfall model, we have separate architects, separate designers, separate developers,
then the testing teams separate. In a scrum team they’re all working together
and there is no differentiation” (Engagement Manager, Company G, April 2011).
The problem is that “I have observed that people who are working in the water-
fall model who were not taking responsibility [for delivering a quality product on
time]” (Engagement Manager, Company G, April 2011). The self-organising teams
must also learn about the reference architecture, “this requires every individual to
put a lot of effort into understanding the R&D and understanding the architec-
ture. . . this responsibility is shared with the team and not just lying with only the
product owner and scrum master” (Scrum Master, Company D, January 2010).

4.5 Governor: the governor ensures project compliance with corporate guidelines
and policies

A large corporate e-Commerce website provides the “public face, in 26 languages,
across the world, right?” (Lead Architect, Company H, May 2012) for their client.
There are significant technical and reputational risks in deploying changes to such
a website without a careful review process. That “website needs to have tech-
nical governance on how changes are made” (Lead Architect, Company H, May
2012). To achieve such technical governance “you need technical product owner-
ship, especially in large programs right? If you are [working on] something like
[MajorAirline.com], right?” (Lead Architect, Company H, May 2012).

The product owner provides a technical governance framework to project teams
working on a development programme. The product owner will liaise with gover-
nance structures, such as technical oversight committees and corporate architec-
ture groups. The product owner will ensure the selection of common tools and
technologies for the project. This function will ensure projects within a develop-
ment programme share an appropriate technology infrastructure.

The product owner must be aware of corporate governance policies and strate-
gic directions. Any proposals made by the product owner should comply with such
governance directives.

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 19

4.6 Communicator: the communicator connects onshore and offshore
geographical distribution

Geographical distribution is not an ideal attribute for a project team, but it never-
theless remains a feature of the globalized nature of large scale offshore enterprise
software development programmes. At a senior level there is a view that geograph-
ical distribution itself is not a major problem to overcome. “I think we are now
very mature. Initially we thought that our biggest challenge would be the geo-
graphical distance, some people here, some people there. So that is definitely a
challenge but that is I would say the easiest to fix” (Chief Architect, Company H,
May 2012).

Geographical distribution within scrum team membership is discouraged in
the companies investigated. Company B avoids geographically distributed scrum
teams, the scrum team is co-located “we do our own things here [offshore]” (En-
gineering Manager, Company B, January 2010). The client is onshore and uses
teleconferencing during coordination meetings, “Product managers and UI de-
signers, they dial in from [onshore]” (Engineering Manager, Company B, January
2010).

The compromise of adding a remotely located technical specialist to the co-
located team is sometimes helpful “We had one engineer working from [California]
join us, she used to directly dial in to our sprint planning meetings, retrospection,
everything” (Engineering Manager, Company B, January 2010). This is onerous
to the individual when the time zone difference is large (since the remote technical
specialist usually has to adopt working patterns to suit the rest of the co-located
development team). Sometimes

“participation in the stand-up is extremely tough because you do it in a
room with a speaker phone and five people talking about different things,
it becomes very tough for a [remote] person to understand what’s going on
and contribute we found it was better to have a one-on-one call with her”
(Engineering Manager, Company B, January 2010).

Development team working patterns can be adapted to increase the overlap be-
tween office hours onshore and offshore. Where the time zone difference is not
too great, offshore scrum teams can work into the evening “our normal shift is
11:00[am]-8:00[pm]” (Software Engineer, Company H, May 2012) and from a dif-
ferent project team “we are working 1pm to 10pm” (Project Manager, Company
H, May 2012). This is an example where time zone differences between Europe and
India are accommodated by shifting work patterns in India to increase the num-
ber of overlapping working hours. Offshore staff members can sometimes expect
to receive extra payments and free meals when working this type of pattern, and
transportation is often provided to staff, whatever shift patterns are being worked.
Working after midnight is not popular with respondents, because it disrupts week-
end, social, and family life; whereas early evening working can be accommodated
without too much disruption.

A more common arrangement is a co-located offshore scrum team working with
a remote product owner: “I’ve got a product owner. . . based in New Zealand” (En-
gineering Director, Company E, January 2010), reflecting a classic onshore/offshore
model. Again, mutual timings for meetings must be found, which is challenging
with such a large time zone difference. Video (and less commonly, audio) confer-

20 Julian M. Bass

encing is used to conduct daily scrum coordination meetings, which are sometimes
conducted as stand-up meetings (using video conferencing technologies).

Communication challenges include the “practical difficulties making sure peo-
ple can interact; such as booking video conference rooms at both ends, Internet
connectivity limitations on video conferencing; tendency to underestimate invest-
ment required in travel and connectivity” (Delivery Manager, Company H, May
2012).

4.7 Traveller: the traveller spends time onshore at client sites, gathering
first-hand knowledge of a client’s needs

Product owner teams have staff members onshore for discussions with clients and
off-shore for disseminating information to development teams. The proxy product
owner will usually spend time (between one and three months, depending on the
scale of the project) on the client site at the start of the project, becoming familiar
with any special features of the client’s requirements. The traveller is important for
supporting development teams: “we have a field person at the customer site who
can answer queries. . . They’re the ones who interact with the customer directly”
(Architect, Company D, January 2010).

The size of the project determines the breakdown of staff assignment between
onshore and offshore “if you are sort of 70 people working from the offshore, [then]
there are 5 to 6 guys at the onsite” (Practice Head, Company A, January 2010).
This has the advantage that staff are onsite “every day at the same time zone [as
the client]” (Practice Head, Company A, January 2010).

Therefore, product owners act as a bridge between the onshore and offshore
divisions. They can be based with clients, or they may travel to clients. Alter-
natively, and at higher cost, entire teams can travel to clients to co-locate with
product owners.

Enterprises may also adopt a range of solutions in terms of co-locating teams.
“One scrum team is based onshore completely, the other scrum team was sent
onshore for a month, had two iterations [onshore], and then came back and started
doing iterations [offshore], and then the third team is a distributed team that has
been formed. So everybody is getting the exposure of working directly with the
[onshore] product owners and the business analysts” (Delivery Manager, Company
H, May 2012).

4.8 Intermediary: the intermediary acts as an interface with senior executives,
driving large scale offshore enterprise software development programmes, and
disseminating domain knowledge to teams

The product owner is supplemented by an intermediary from within the devel-
opment team, to mitigate domain complexity. The “proxy product owner [is] an
extension of the product owner, the product owner’s availability or understanding
of the off-shoring process being limited” (Delivery Manager, Company H, May
2012). The intermediary will need to have extensive experience of the system busi-
ness domain. In Company B,

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 21

“we have some kind of shared product ownership, very limited that is done
by [local Product Manager]. But it is mostly on requirements. . . we have like
four/five different conferences [conference calls] with different stakeholders.
So, like product managers and some other folks, engineering folks, and
some people who are working on performance, for example” (Engineering
Manager, Company B, January 2010).

4.9 Risk Assessor: the risk assessor evaluates technical complexity

Enterprises routinely conduct risk management in order to assess technical com-
plexity and potential shortcomings in the development teams’ skills and capabili-
ties. Product owners perform

“risk management, if something is seen as technically very complex, it will
come up as part of the risk [assessment] of that particular project. Then,
you will have to see how you mitigate that risk; if it requires support from a
centre of excellence within [the company] or stronger [staff technical] profiles
to be a part of that project then we will do that.” (Delivery Manager,
Company H, May 2012).

The risk mitigation might include “assigning people called Technical Analysts,
I mean SMEs [subject matter experts] with respect to their technical domain
understanding” (Programme Head, Company H, May 2012).

Technical Specialists assigned to the scrum team can provide insight into man-
aging complexity. For example, where multiple programming languages are being
used the interfaces between language components require special skills. Similarly
interfaces to external systems and credit card payment gateways require access
to a technical specialist. Intelligent choices need to be made between sharing a
technical specialist between one or more sprint teams. Where the technical com-
plexity is affecting the work of an entire sprint team, then a 100% assignment of a
full-time technical specialist makes sense. Where the technical complexity affects
some aspect of the work of the sprint team, then access to a part-time technical
specialist will usually be sufficient.

5 Discussion

The findings presented here support previous research suggesting that agile meth-
ods can be scaled to large offshore enterprise software development programmes
(Reifer et al, 2003) and used in globally distributed software development set-
tings (Ramesh et al, 2006). A primary function within the product owner role is
to communicate customer needs to software team members, and the negative im-
pact on project outcomes of inadequate customer availability has been highlighted
elsewhere (Hoda et al, 2011).

Sutherland et al (2007) explored scrum developers working together while
based in the USA, Canada and Russia. That study emphasised tailoring agile
method practices rather than the functions performed within roles. One of the
companies studied by Sutherland et al (2007) centralised and co-located scrum

22 Julian M. Bass

masters, product owners and architects, while companies A, B, D, E and H in this
study each had a distributed model of product ownership.

Product owners are required to undertake new work functions in order to man-
age large scale offshore enterprise software development programmes. The product
ownership team concept emerges, at least in part, from a need to manage multiple
offshore development teams and onshore product owners.

Earlier research has focused on XP customer teams (Martin, 2009). Three XP
customer functions have been identified that address collaboration within teams:
geek interpreter, political advisor and technical liaison (Martin et al, 2009b). A
geek interpreter improves communication between technical team members and the
business. The political advisor skilfully navigates political dimensions to achieve
project success. Technical liaison coordinates with other related projects and tech-
nical specialist groups residing within the organisation. The three collaboration
functions exist alongside four direction setting roles: negotiator, diplomat, super-
secretary and customer coach (Martin et al, 2009b). The negotiator gains agree-
ment from stakeholders on a single vision for the software under development.
Diplomats represent a particular stakeholder interest group in project decision-
making. The super-secretary provides administrative support to the XP customer
team, and the XP customer coach nurtures and supports members of the customer
team.

In contrast, this research has focused on practitioner descriptions of functions
found within the product owner role. Its contribution is to articulate the functions
undertaken by product owners, arguing that product owner teams are required to
manage the scale and complexity of product owner functions in large scale offshore
enterprise development programmes.

The findings presented here also confirm other research that advocates focus-
ing scrum of scrum coordination meetings around specific product or feature ar-
eas, rather than across entire development programmes (Paasivaara et al, 2012b).
However, this research develops such ideas further, describing nine functions that
comprise the product owner role in large scale offshore enterprise software de-
velopment programmes: groom, prioritiser, communicator, traveller, intermediary,
governor, technical architect, risk assessor and release manager.

The groom, prioritiser and release manager functions comply with the product
owner role defined in early scrum literature (Schwaber and Beedle, 2001; Schwaber,
2004). The groom cultivates requirements by liaising with clients and customers,
using their domain knowledge and experience of previous similar projects. The
groom corresponds closely to the negotiator XP customer acrtivity identified by
Martin et al (2009b). The prioritiser ensures that high value requirements are iden-
tified and implemented. In this study, more than one product owner talked about
‘triaging’ requirements. This triaging did not appear to be reflected in Martin et al
(2009b). This could suggest that product owners are taking greater responsibililty
for deciding prioritisation than XP customers, who tend to focus on negotiation.
The release manager ensures quality and scope targets are achieved prior to code
release to users. In summary, the groom, prioritiser and release manager functions
identified here closely correspond with aspects of the core product owner role from
the scrum literature.

Technical architect, governor, communicator, traveller, intermediary and risk
assessor functions are not described as product owner functions in early scrum
literature. Architectural coordination on large projects is provided by technical

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 23

architects. The technical architect combines elements of the geek interpreter and
technical liaison XP customer function identified by Martin et al (2009b). This
study did not find evidence of the political advisor, diplomat, super-secretary and
customer coach XP customer activites identified by Martin et al (2009b). It was
found instead that the super-secretary function is performed by project managers
and not product owners in the companies investigated.

Governors ensure project compliance with corporate guidelines and policies.
This corporate governance is partly a requirement for maintaining CMMI matu-
rity level 5 compliance, demonstrating consistent quality standard and procedures
across development programmes. Communicators bridge onshore and offshore geo-
graphical distribution; while travellers spend time onshore at client sites in order to
gather first-hand knowledge of a client’s needs. Communicators and travellers are
conveying on-shore client needs to off-shore development teams. Intermediaries act
as an interface to senior executives driving large scale offshore enterprise software
development programmes, while risk assessors evaluate technical complexity.

5.1 Implications for Product Owners

The product owner functions can be used to mitigate risks of overlooking activities
required on large scale offshore enterprise software development programmes. The
groom, prioritiser and release master are core product owner functions and are
mandatory on all projects. The risk assessor, technical architect, governor and in-
termediary are mandatory to support large scale development programmes. While,
communicator and traveller are mandatory to manage geographical distribution.
Programme managers, product owners and teams should be alert for missing func-
tions, because these are likely to pose risks for successful programme completion.

This research raises three main issues for agile practitioners (such as prod-
uct owners) in large scale offshore enterprise software development programmes.
First, product sponsors in some teams make explicit the process of gathering a
product owner team around themselves. Second, product owner teams comprise
both management and technical representatives. Third, some product owners use
teams to induct and mentor new product owners. This research suggests, there is a
higher degree of maturity in organisations where product owner teams are explic-
itly established. In less mature organisations, the product owner team functions
can be observed but are somewhat unconscious acts of stakeholders and even the
participants themselves. Less mature organisations miss opportunities to develop
product owner skills through induction processes.

The breadth of product owner functions identified in this research extend be-
yond the scope and skill set of a single individual. This breadth of skills illustrates
the need for explicit product owner team formation during the early stages of
large scale offshore enterprise software development programmes, as the explicit
formation of a team with the full range of business and technical skills is required.

The product owner functions can now be mapped to a model of the scrum of
scrums process. The product owner team is comprised of both management-facing
(often business or application domain) specialists and technical-facing specialists.
Figure 3 shows the business facing product owner functions and associated infor-
mation flows. Here groom, prioritiser, communicator, traveller and intermediary
functions are primarily focused on communication between onshore and offshore

24 Julian M. Bass

Fig. 3 Client-side product owner functions and information flows.

actors and product backlog production. The main focus of these activities is to
gather and prioritise requirements in the face of conflicting business needs.

In contrast, Figure 4 shows the development team facing product owner func-
tions. The Figure reflects the scrum of scrum context by showing multiple parallel
sprints. The parallel sprints comprise multiple sprint backlogs, sprints, customer
demonstrations and code releases. The governor, technical architect, risk assessor
and release master functions are focused on these software production practices.
An emphasis here is on meeting the needs of CMMI Level 5 accreditation in areas
such as record keeping and process governance, while retaining the agility and
responsiveness offered by the scrum method. The product owner team can also
be used to induct new staff members into positions of responsibility on large scale
offshore enterprise software development programmes. For example, new technical
architects can be given support roles on larger development programmes, while
taking a leadership role on a smaller development programme. This provides a
well-defined career development route, that also reduces risk.

5.2 Implications for Process Tailoring

Large scale offshore enterprise software development programmes are instructive
for process theorists, since they are at the boundaries of applicability for agile
methods. This research identifies nine product owner team functions, which affect
three main aspects of the software development process; namely: requirements,
technical oversight and on-shore/off-shore communications. Requirements gather-
ing and feature delivery is undertaken during the groom, prioritiser and release
master functions. Technical oversight is undertaken during the governor, technical
architect and risk assessor functions, whilst on-shore/off-shore communications are
performed during the communicator, traveller and intermediary functions.

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 25

Fig. 4 Production-side product owner functions and information flows.

Table 5 A taxonomy of product owner team functions

Information Gathering
(& Decision-Making)

Information Dissemination

Business Groom Communicator
Prioritiser Traveller

Intermediary
Technical Release Master Technical Architect

Risk Assessor Governor

Scrum helpfully provides physical expressions for the requirements gathering
and feature delivery functions, in the form of the product backlog, sprint backlogs
and software releases. However, no physical expressions are defined for technical
oversight or on-shore/off-shore communications. Industry best practices are avail-
able in these areas, such as reference architectures or project wikis, but they are
not currently part of the scrum method.

Scrum also provides ceremonies for the requirements gathering and feature de-
livery functions in the form of sprint kickoffs and customer demonstrations. Again,
alas, scrum does not provide ceremonies for technical oversight or on-shore/off-
shore communications.

A taxonomy of the product owner team functions can be derived from the
results of this research, and is shown in Table 5. The taxonomy emerges from the
analysis of the product owner functions themselves and from their mapping to the
scrum of scrums process presented in Figures 3 and 4. Table 5 shows that groom,
prioritiser, release master and risk assessor functions focus on information gather-
ing leading to decision-making. In contrast, the functions communicator, traveller,
intermediary, technical architect and governor focus on information dissemination.

26 Julian M. Bass

6 Limitations

Three tests for evaluating the quality of descriptive empirical social research have
been identified: construct validity, external validity and reliability (Yin, 2009).
Construct validity can be ensured by using multiple sources of evidence. This has
been achieved through conducting studies at eight companies. As mentioned in
Section 3.1, a combination of snowball and intensity sampling was used. The snow-
ball sampling provided a cross-section of numerous projects, while the intensity
sampling at Companies D, E and H enabled detailed investigations with corporate
executives, project portfolio managers, project managers as well as various devel-
opment team member roles. This intensity sample offers sources of evidence and
occasionally different perspectives on the software development processes used.

External validity is achieved by conducting the studies across eight companies
and through the wide range of project stakeholder respondents. However, the find-
ings and conclusions presented here cannot be generalised to small and medium
sized companies, as smaller companies work under profoundly different commercial
pressures with different quality assurance responsibilities.

Reliability is developed by conducting data collection, coding and analysis until
categories are saturated. Saturation is said to have occurred when no new informa-
tion seems to emerge from the data. Data collection and analysis should continue
by studying first one group and then other groups until categories become settled
and stable. The reliability of categories in this research have been established from
the perspective of different actors within project teams and their surrounding or-
ganisational contexts. Further, the categories have been explored by investigating
actors from different organisations. It is argued saturation has been achieved by
using these techniques.

7 Conclusions

This paper has used practitioner descriptions of agile method tailoring to con-
tribute to the literature on large-scale enterprise software development. Specifi-
cally, tailoring of the product owner role has been investigated. The existence of
product owner teams has also been observed.

Nine product ownership functions that are used to scale agile methods to large
projects have been described: groom, prioritiser, release master, technical archi-
tect, governor, communicator, traveller, intermediary and risk assessor. The groom
gathers requirements from business clients; while the prioritiser ensures that re-
quirements bring value to the business. The release master manages and approves
release plans; and technical architects provide architectural coordination on large
projects. This architectural coordination is achieved by using reference architec-
tures to guide and support self-organising scrum teams. Governors are required to
ensure project compliance with corporate guidelines and policies. The communica-
tor bridges onshore and offshore geographical distribution; while travellers spend
time onshore at client sites, gathering first-hand knowledge of a client’s needs.
The intermediary acts as an interface to senior executives driving large scale de-
velopment programmes, disseminating domain knowledge to teams, and the risk
assessor evaluates technical complexity.

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 27

The product owner functions identified in this research have been mapped to
the scrum-of-scrums process. This mapping reveals two function classes: client-side
and production-side. The client-side functions are: groom, prioritiser, communi-
cator, traveller and intermediary. The production-side functions are risk assessor,
governor, technical architect and release master. The client-side functions pri-
marily concern requirements capture and the dissemination of business needs to
development teams; while production-side functions, in contrast, primarily focus
on technical oversight and the delivery of features.

A taxonomy of the functions has been produced. The taxonomy distinguishes
between business and technical functions, identifying tasks that primarily involve
information gathering; to enable product owner decision-making and information
dissemination functions. The information gathering functions are groom, priori-
tiser, release master and risk assessor. The information dissemination functions
are communicator, traveller, intermediary, technical architect and governor.

These product owner functions provide a layer of governance to agile methods
in the CMMI maturity level 5 accredited companies investigated. Furthermore,
these functions can be performed by members of a product owner team. Thus,
product owners can devolve selected functions to technical and remotely located
colleagues. The product owner team becomes a key tool in tailoring agile methods
for large scale distributed projects.

Future work will explore scrum master functions in large-scale enterprise devel-
opment projects. Scrum masters also form teams, such as when a scrum-of-scrums
project configuration is used. This creates an additonal range of responsibilities
and concerns for scrum masters.

Acknowledgements The anonymous reviewers are thanked for their detailed comments,
which have substantially improved the clarity of the article. I am also grateful to all the
companies and interviewees who were generous enough to contribute their time and resources
to participate in this research. Thanks also go to the current and former students of the
Executive MBA at the Indian Institute of Management, Bangalore, who helped to identify
target companies. The research benefited in part from travel funding from the UK Deputy
High Commission, Bangalore, Science and Innovation Network; the Institute for Innovation,
Design & Sustainability (IDEAS) at Robert Gordon University, UK; and accommodation and
sustenance from Company H during the data collection visit to Delhi, India.

28 Julian M. Bass

Appendix 1

Interview Guide for Off-Shore Agile Software Projects, January 2010

Background Notes

I want to ask you about your experience of geographically distributed agile software
development projects. The research involves interviews with people doing a range
of different roles and from companies with different development models.

I want to learn more about your views on agile processes. I am particularly
interested to know what factors are affected by geographical location and sepa-
ration. The purpose here is to try to understand the factors that affect project
outcomes, successful or otherwise, so that we can try to learn for the future.

Interview Guide

I want to ask you the following questions and tape record your answers. I will
keep your responses completely confidential and nothing will be shared with any
client companies. I do plan to publish interview extracts but I will make names
and companies anonymous.

Can I switch on the recorder?

Your Current Project(s)

How many projects are you working on currently?
What is (was) the title of your current (or most recent) project?
What is the project management structure?
How is the project organised geographically?
Is the project maintenance/evolution or a new build project?
Is the project COTS or bespoke?
How many people are in the project team?

Agile Practices

What are the special features of agile projects (compared with other development
processes)?
What agile project development practices are being used in your project?
What agile practices are not used?

Requirements

How are requirements decided and prioritised?
How do user stories evolve over time?
How do user stories move up or down the backlog?
How do you interact with customer representatives (XP)? Are they onsite?

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 29

Product Owner/Customer (POC)

How do you represent the product development team within the client organisa-
tion?
How do you represent the client organisation within the product development team?
Which remotely located stakeholder groups are most supportive or challenging?
Which remotely located stakeholder groups do you interact with most/least fre-
quently?
What would help make life easier for you?

Releases and Testing

How does unit tested code become a release?
How is user acceptance testing managed?
How are bugs reported back, prioritised and fixed?

Social Media/Cloud

What forms of social media or electronic communication are used in the projects?
What forms of cloud computing services are used in the projects?

Learning

How does learning take place within the team?
How does learning take place for you personally?

Any other comments

Now, I want to check if there is anything else you would like to add?
Do you have any further comments in relation to geographically distributed agile
development projects?

About Your Organisation

Now I want to ask some questions about you and your organisation. These details
will be kept confidential.

What is the name of your organisation?
What industry sector is your organisation in?
What industry sector are your development projects in?
How many people are there in your organisation?

30 Julian M. Bass

About You?

Your name?
Your age?
What is your role (product owner, developer, architect or scrum master)?
What experience or formal qualifications do you have?
How much experience do you have or when did you qualify?
How long have you been working in your current organisation?

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 31

Appendix 2

Interview Guide, Agile Method Tailoring [Company H], May 2012

Background Notes

I want to ask you about your experience of agile software development projects.
The research involves interviews with people holding a range of different roles, and
from companies with different development models.

The purpose here is to try to understand how agile methods are used in [Com-
pany H], so that we can try to learn in the future. I want to ask you the following
questions and tape record your answers. I do plan to publish interview extracts but
I will make names, projects and clients anonymous. Can I switch on the recorder?

Agile Processes

What agile methods and practices are you using?
Would you describe agile methods as being successful for you? In what ways?
What challenges have you encountered with agile methods?

Scaling to Enterprise Projects

Describe any software tools or technologies you use to support agile methods?
Have you adapted agile methods because of the geographical distribution of the
team?
Have you adapted agile methods because the client organisation was geographically
distributed?
Have you adapted agile methods because of a particularly large team?
Have you used agile methods in a context with demanding regulatory compliance?
What adaptations did you make?
Have you used agile methods in a particularly complex domain context? What adap-
tations did you make?
Have you used agile methods on a particularly technically complex project? What
adaptations did you make?
Have you used agile methods with an especially complex range of stakeholder rela-
tionships? What adaptations did you make?
Have you adapted agile methods for use on a strategically important enterprise
architecture programme?

Future Perspectives

What future trends do you forsee in your use of agile methods?
If there was one thing you could change about the way agile methods are used at
[Company H] what would it be?
What advice would you give to improve agile productivity?

32 Julian M. Bass

What advice would you give to improve agile product quality?
What advice would you give to improve transitioning to offshore agile?

About Your Project(s)

Now I want to ask some questions about you and your project. These details will
be kept confidential.

What project are you working on currently? How many projects?
How is the project team structured (for management purposes)?
How is the project team organised geographically?
What is the project domain? What is the project purpose?
How large is the project in terms of team size? In terms of value?
When did the project start?
How much longer will the project run for?

Any other comments

Now, I want to check if there is anything else you would like to say?
Do you have any further comments in relation to agile methods?

About You?

Your name?
Your age?
What is your role (product owner, developer, architect or scrum master)?
How long have you been in your current role?
How long have you been working in your current organisation?
How long have you been working in the software industry?
What formal qualifications do you have, if any?

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 33

References

Agile Alliance (2011) Agile alliance. http://www.agilealliance.org/, [accessed 25-09-2011]
Ambler S (2008) Agile software development at scale. In: Meyer B, Nawrocki J, Walter B

(eds) Balancing agility and formalism in software engineering, lecture notes in computer
science, vol 5082, Springer Berlin Heidelberg, pp 1–12, DOI 10.1007/978-3-540-85279-7 1,
URL http://dx.doi.org/10.1007/978-3-540-85279-7_1

Ambler SW, Lines M (2012) Disciplined agile delivery: A practitioner’s guide to agile software
delivery in the enterprise. IBM Press, Boston, MA, USA

Balijepally V, Mahapatra R, Nerur S, Price KH (2009) Are two heads better than one for
software development? The productivity paradox of pair programming. MIS Quarterly
33(1):91–118, URL http://misq.org/are-two-heads-better-than-one-for-software-
development-the-productivity-paradox-of-pair-programming.html

BBC (2012) BBC news - Bank merger account glitches. http://news.bbc.co.uk/1/hi/
programmes/moneybox/8946199.stm, [accessed 15-09-2013]

Beck K, Andres C (2004) Extreme programming explained, 2nd edn. Addison Wesley, Boston,
MA, USA

Begel A, Nagappan N (2007) Usage and perceptions of agile software development in an in-
dustrial context: An exploratory study. In: Proceedings of the First International Sym-
posium on Empirical Software Engineering and Measurement, IEEE Computer Soci-
ety, Washington, DC, USA, ESEM ’07, pp 255–264, DOI 10.1109/ESEM.2007.85, URL
http://dx.doi.org/10.1109/ESEM.2007.85

de Cesare S, Lycett M, Macredie RD, Patel C, Paul R (2010) Examining perceptions of agility
in software development practice. Commun ACM 53(6):126130, DOI 10.1145/1743546.
1743580, URL http://doi.acm.org/10.1145/1743546.1743580

Chow T, Cao DB (2008) A survey study of critical success factors in agile software
projects. Journal of Systems and Software 81(6):961 – 971, DOI http://dx.doi.org/
10.1016/j.jss.2007.08.020, URL http://www.sciencedirect.com/science/article/pii/
S0164121207002208

Coad P, LeFebvre E, Luca JD (1999) Java modeling in color. Prentice Hall, Englewood Cliffs,
NJ, USA

Cockburn A (2001) Agile software development. Addison Wesley, Reading, MA, USA
Cohn M (2009) Succeeding with agile: Software development using scrum, 1st edn. Addison-

Wesley Professional, Upper Saddle River, NJ, USA
Computer Weekly (2012) Santander migration glitch affects Alliance & Leicester customers.

http://www.computerweekly.com/news/1280093541/Santander-migration-glitch-
affects-Alliance-Leicester-customers, [accessed 15-09-2013]

Cusumano MA (2007) Extreme programming compared with Microsoft-style iterative devel-
opment. Commun ACM 50(10):15–18, DOI 10.1145/1290958.1290979, URL http://doi.
acm.org/10.1145/1290958.1290979

Dyba T, Dingsoyr T (2009) What do we know about agile software development? IEEE Soft-
ware 26(5):6–9, DOI http://doi.ieeecomputersociety.org/10.1109/MS.2009.145

França A, da Silva F, de Sousa Mariz L (2010) An empirical study on the relationship between
the use of agile practices and the success of scrum projects. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Measure-
ment, ACM, New York, NY, USA, ESEM ’10, pp 37:1–37:4, DOI 10.1145/1852786.1852835,
URL http://doi.acm.org/10.1145/1852786.1852835

Gibbs G (2007) Analyzing qualitative data. Sage Publications Ltd, London, UK
Glaser BG (1992) Basics of grounded theory analysis: Emergence vs. forcing. Sociology Press,

Mill Valley, CA, USA
Glaser BG (1998) Doing grounded theory: Issues and discussions. Sociology Press, Mill Valley,

CA, USA
Glaser BG, Strauss AL (1999) Discovery of grounded theory: Strategies for qualitative research.

Aldine Transaction, Piscataway, NJ, USA
Glick B (2013) DWP writes off millions of pounds on universal credit IT, damn-

ing NAO report reveals. http://www.computerweekly.com/news/2240204715/DWP-writes-
off-millions-of-pounds-on-Universal-Credit-IT-damning-NAO-report-reveals, [ac-
cessed 02-11-2013]

Hannay JE, Benestad HC (2010) Perceived productivity threats in large agile development
projects. In: Proceedings of the 2010 ACM-IEEE International Symposium on Empiri-

34 Julian M. Bass

cal Software Engineering and Measurement, ACM, New York, NY, USA, ESEM ’10, pp
15:1–15:10, DOI 10.1145/1852786.1852806, URL http://doi.acm.org/10.1145/1852786.
1852806

Hannay JE, Arisholm E, Engvik H, Sjoberg DIK (2010) Effects of personality on pair pro-
gramming. IEEE Transactions on Software Engineering 36(1):61–80, DOI http://doi.
ieeecomputersociety.org/10.1109/TSE.2009.41

Hansard (2012) House of Commons Hansard debates for 11 Sep 2012 (pt 0001).
http://www.publications.parliament.uk/pa/cm201213/cmhansrd/cm120911/debtext/
120911-0001.htm, [accessed 15-09-2013]

Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering 29(6):481–
494, DOI http://doi.ieeecomputersociety.org/10.1109/TSE.2003.1205177

Hoda R, Noble J, Marshall S (2010) Organizing self-organizing teams. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ACM,
New York, NY, USA, ICSE ’10, pp 285–294, DOI 10.1145/1806799.1806843, URL http:
//doi.acm.org/10.1145/1806799.1806843

Hoda R, Noble J, Marshall S (2011) The impact of inadequate customer involvement on self-
organizing agile teams. Information and Software Technology 53(5):521–534

Hoda R, Noble J, Marshall S (2012) Developing a grounded theory to explain the practices
of self-organizing agile teams. Empirical Software Engineering 17(6):609–639, URL http:
//link.springer.com/article/10.1007\%2Fs10664-011-9161-0

Hossain E, Babar M, Paik Hy (2009) Using scrum in global software development: A system-
atic literature review. In: Global Software Engineering, 2009. ICGSE 2009. Fourth IEEE
International Conference on, pp 175–184, DOI 10.1109/ICGSE.2009.25

Hove S, Anda B (2005) Experiences from conducting semi-structured interviews in empirical
software engineering research. In: Software Metrics, 2005. 11th IEEE International Sym-
posium, pp 10 pp.–23, DOI 10.1109/METRICS.2005.24

Jalali S, Wohlin C (2010) Agile practices in global software engineering - a systematic map.
In: IEEE 5th International Conference on Global Software Engineering (ICGSE), IEEE,
pp 45 –54, DOI 10.1109/ICGSE.2010.14

Ktata O, Lévesque G (2009) Agile development: Issues and avenues requiring a substantial
enhancement of the business perspective in large projects. In: Proceedings of the 2nd
Canadian Conference on Computer Science and Software Engineering, ACM, New York,
NY, USA, C3S2E ’09, pp 59–66, DOI 10.1145/1557626.1557636, URL http://doi.acm.
org/10.1145/1557626.1557636

Kvale S, Brinkmann S (2009) Interviews, learning the craft of qualitative research interviewing,
2nd edn. Sage Publications, Inc, Thousand Oaks, CA, USA

Larman C, Basili V (2003) Iterative and incremental development: A brief history. Computer,
IEEE 36(6):47–56, DOI http://doi.ieeecomputersociety.org/10.1109/MC.2003.1204375

Larman C, Vodde B (2008) Scaling lean and agile development: Thinking and organizational
tools for large-scale scrum: Successful large, multisite and offshore products with large-scale
scrum. Addison Wesley, Upper Saddle River, NJ, USA

Leffingwell D (2007) Scaling software agility: Best practices for large enterprises. Addison
Wesley, Boston, MA, USA

Lui KM, Chan KCC, Nosek J (2008) The effect of pairs in program design tasks. IEEE Trans-
actions on Software Engineering 34(2):197–211, DOI http://doi.ieeecomputersociety.org/
10.1109/TSE.2007.70755

Martin A (2009) The role of the customer in agile projects. PhD thesis, Victoria University of
Wellington, New Zealand

Martin A, Biddle R, Noble J (2009a) Xp customer practices: A grounded theory. In: Agile
Conference, 2009. AGILE ’09., pp 33–40, DOI 10.1109/AGILE.2009.68

Martin A, Biddle R, Noble J (2009b) The xp customer team: A grounded theory. In: Agile
Conference, 2009. AGILE ’09., pp 57–64, DOI 10.1109/AGILE.2009.70

Mens T, Tourwe T (2004) A survey of software refactoring. Software Engineering, IEEE Trans-
actions on 30(2):126–139, DOI 10.1109/TSE.2004.1265817

Miles MB, Huberman AM (1994) Qualitative data analysis: An expanded sourcebook, 2nd
edn. Sage Publications, Inc, Thousand Oaks, CA, USA

Moe NB, Dingsøyr T, Dyb̊a T (2010) A teamwork model for understanding an agile team: A
case study of a scrum project. Inf Softw Technol 52(5):480–491, DOI 10.1016/j.infsof.2009.
11.004, URL http://dx.doi.org/10.1016/j.infsof.2009.11.004

How Product Owner Teams Scale Agile Methods to Large Distributed Enterprises 35

Monteiro CV, da Silva FQ, dos Santos IR, Farias F, Cardozo ES, do A Leitão AR, Neto DN,
Pernambuco Filho MJ (2011) A qualitative study of the determinants of self-managing
team effectiveness in a scrum team. In: Proceedings of the 4th International Workshop
on Cooperative and Human Aspects of Software Engineering, ACM, New York, NY,
USA, CHASE ’11, pp 16–23, DOI 10.1145/1984642.1984646, URL http://doi.acm.org/
10.1145/1984642.1984646

NVivo (2013) NVivo 9 help. http://help-nv9-en.qsrinternational.com/nv9_help.htm, [ac-
cessed 10-09-2013]

Paasivaara M, Durasiewicz S, Lassenius C (2008) Using scrum in a globally distributed project:
A case study. Software Process: Improvement and Practice 13(6):527–544, DOI 10.1002/
spip.402, URL http://dx.doi.org/10.1002/spip.402

Paasivaara M, Heikkilä VT, Lassenius C (2012a) Experiences in scaling the product owner
role in large-scale globally distributed scrum. In: 2012 IEEE 7th International Conference
on Global Software Engineering, IEEE Computer Society, Los Alamitos, CA, USA, pp
174–178, DOI http://doi.ieeecomputersociety.org/10.1109/ICGSE.2012.41

Paasivaara M, Lassenius C, Heikkilä VT (2012b) Inter-team coordination in large-scale globally
distributed scrum: Do scrum-of-scrums really work? In: Proceedings of the ACM-IEEE
international symposium on Empirical software engineering and measurement, ACM, New
York, NY, USA, ESEM ’12, pp 235–238, DOI 10.1145/2372251.2372294, URL http://
doi.acm.org/10.1145/2372251.2372294

Patton MQ (2002) Qualitative research & evaluation methods, 3rd edn. Sage Publications,
Inc, Thousand Oaks, CA, USA

Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The impact of agile practices
on communication in software development. Empirical Software Engineering 13(3):303–
337, DOI 10.1007/s10664-008-9065-9, URL http://dx.doi.org/10.1007/s10664-008-
9065-9

Poppendieck M, Poppendieck T (2003) Lean software development: An agile toolkit. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA

Raithatha D (2007) Making the whole product agile: A product owners perspective. In: Pro-
ceedings of the 8th international conference on Agile processes in software engineering
and extreme programming, Springer-Verlag, Berlin, Heidelberg, XP’07, pp 184–187, URL
http://dl.acm.org/citation.cfm?id=1768961.1769003

Ramesh B, Cao L, Mohan K, Xu P (2006) Can distributed software development be agile?
Commun ACM 49(10):4146, DOI 10.1145/1164394.1164418, URL http://doi.acm.org/
10.1145/1164394.1164418

Reifer D, Maurer F, Erdogmus H (2003) Scaling agile methods. Software, IEEE 20(4):12–14,
DOI 10.1109/MS.2003.1207448

Robson C (2011) Real world research, 3rd edn. John Wiley and Sons Ltd., Chichester, UK
Schwaber K (2004) Agile project management with scrum. Microsoft Press, Redmond, WA,

USA
Schwaber K, Beedle M (2001) Agile software development with scrum. Prentice Hall, Upper

Saddle River, NJ, USA
Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE

Transactions on Software Engineering 25(4):557–572, DOI http://doi.ieeecomputersociety.
org/10.1109/32.799955

SFIA Foundation (2014) SFIA - skills framework for the information age. http://www.sfia-
online.org/, [accessed 15-04-2014]

Sharp H, Robinson H (2004) An ethnographic study of XP practice. Empirical Software Engi-
neering 9(4):353–375, DOI 10.1023/B:EMSE.0000039884.79385.54, URL http://dx.doi.
org/10.1023/B\%3AEMSE.0000039884.79385.54

Stapleton J (1997) DSDM: Dynamic systems development method. Addison Wesley, Harlow,
England

Sutherland J, Viktorov A, Blount J, Puntikov N (2007) Distributed scrum: Agile project
management with outsourced development teams. In: System Sciences, 2007. HICSS 2007.
40th Annual Hawaii International Conference on, p 274a, DOI 10.1109/HICSS.2007.180

van Waardenburg G, van Vliet H (2013) When agile meets the enterprise. Information and
Software Technology 55(12):2154 – 2171, DOI http://dx.doi.org/10.1016/j.infsof.2013.07.
012, URL http://www.sciencedirect.com/science/article/pii/S0950584913001584

Weiss RS (1994) Learning from strangers: The art and method of qualitative interview studies.
Free Press, New York, NY, USA

36 Julian M. Bass

Wilkerson JW, Nunamaker JF, Mercer R (2012) Comparing the defect reduction benefits of
code inspection and test-driven development. IEEE Transactions on Software Engineering
38(3):547–560, DOI http://doi.ieeecomputersociety.org/10.1109/TSE.2011.46

Yin RK (2009) Case study research: Design and methods, 4th edn. Sage Publications, Inc,
Thousand Oaks, CA, USA

