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EXECUTIVE SUMMARY 
 

Despite their global acceptance as a sustainable and cost-efficient technology for water 

pollution control including urban wastewater contaminated with hydrocarbons, treatment 

performance of vertical-flow constructed wetlands can be hampered by clogging of the 

substrate media pores of the wetland filters. This clogging usually leads to blockage of filter 

substrate, progressive diminution of porosity and reduction of active pore volume, permeability 

and substrate hydraulic conductivity subsequently leading to poor water quality production by 

the wetland filters. This operational problem hinders the wider application and acceptability of 

these systems worldwide. In this study, different laboratory-scale vertical-flow constructed 

wetlands filled with gravel and planted with common reed were constructed and operated 

between June 2011 and March 2014 to assess treatment performances and their relationship 

with clogging, and diesel spill treatment as a function of hydraulic and organic loading rates, 

media size, and contact and rest time. Furthermore, to evaluate the hydrocarbon spill, 

approximately 130 grams of diesel fuel was poured into each of four wetland filters. This is the 

equivalent of a one-off inflow concentration of 20 g/l. A range of hydraulic loading rates was 

applied across the systems using real urban wastewater. Analysis of total petroleum 

hydrocarbon concentrations of outflow waters along with other water quality parameters was 

carried out to monitor both clogging and treatment performance variations.  

Overall, all constructed wetland systems have shown relatively high removal efficiencies for 

the key water quality parameters regardless of filter set-up before the hydrocarbon spill and no 

clogging observed. The removal efficiencies dropped for those filters impacted by the diesel 

spill. The filter with the highest COD loading but no diesel contamination performed the best 

in terms of COD and BOD removal. Furthermore, filters contaminated by diesel performed 

worse in terms of COD and BOD, but considerably better regarding nitrate-nitrogen removal 

without any apparent negative impact of within bed clogging 

xvii 
 



Pertaining to seasonal variability, findings show that COD, nitrate-nitrogen and ammonia-

nitrogen have shown a seasonal trend with high removal in summer compared to other seasons, 

while BOD removal was efficient in winter compared to summer and turbidity was greatly 

removed in autumn compared to other seasons. However, no clear seasonal pattern of ortho-

phosphate-phosphorus and SS removal were noted. Furthermore, in the hydrocarbon 

contamination period, all filters regardless of the pollution, design or operation had higher 

removal in winter than autumn for COD, BOD, ammonia-nitrogen and ortho-phosphate-

phosphorus while no seasonal trend was observed for other water quality parameters. 

Investigation regarding treatment performance and clogging evolution revealed that none of 

the systems has shown any signs of clogging after about three years of operation even with 

high rate Filters 7 and 8. The simulation model confirms the empirical findings that 

considerable filter clogging restricting the operation has not occurred. However, a small 

aggregate diameter, a short contact time, a long resting time and a low COD inflow 

concentration were most beneficial in reducing SS accumulation within the wetland filters. 

Treatment of the hydrocarbon pollutants was also assessed, and the investigation revealed that 

all the hydrocarbon components treated in the wetland filters were highly degraded (>80% 

removal efficiency) in all contaminated filters with some even attenuated below the detection 

limit.  

The overall outcome of this research may give useful information to wetland engineers and 

scientists to redesign and model configuration and operation of vertical-flow systems to 

increase performance and sustainability by maximizing contaminants removal efficiency for 

pollutants found in urban wastewater and preventing clogging occurrence in the systems. 

Consequently, this will help in saving cost for stakeholders in terms of operation and 

maintenance, and allow for progressive management of the wetland systems. Moreover, it will 

provide beneficial judgement for petroleum and related water industries to have confidence to 

xviii 
 



incorporate wetland systems in their wastewater treatment technologies with no fear of 

clogging, particularly for control of hydrocarbon spills that may be released in sewage 

discharged to the municipal treatment plants and can also be discharged with industrial 

wastewater.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The aim of this chapter is to ascertain the concept of wetlands including definition, background, 

characteristics, importance, types, processes and principle of their application in brief. 

Moreover, the chapter is further partitioned into sections. Section 1.2 presents the wetland 

background. Justification, aim and objectives are discussed in section 1.3 and thesis outline in 

section 1.4. 

1.2 Background 

The major source of global water supply is through rainfall which produces 40,000 to 45,000 

km3 annually (Kivaisi, 2001) and expected to support the whole world population which 

steadily increases approximately by 85 million annually (Stikker, 1998). The rapid increase in 

urbanization and industrialization due to the rise in world population has led to a decrease in 

this water supply (Al-Baldawi et al., 2013a; Almuktar & Scholz, 2015 ) and can cause many 

water conflicts (Samso, 2014). Moreover, about 80 countries and regions worldwide are 

encountering water stress with some suffering great water shortage part of each year (Gleick, 

1993). As a result, Scheierling et al. (2011) envisaged that by 2050, the world’s population 

living in water stressed areas will hit 44%, subsequently leading to a conclusion by some 

authors that wastewater should be augmented as a viable alternative option to support this 

increasing population and world fresh water supply shortage (Bichai, Polo-Lopez, & Ibanez, 

2012; Noori, Mehdi, & Norozi, 2013, 2014; Almuktar & Scholz, 2015). Moreover, traces of 

petroleum hydrocarbons from diesel spills associated with urban runoff or industrial effluent 

are a more recent challenge (Scholz, 2010; García-Delgado et al., 2012; Almuktar et al., 2015a; 

Almuktar et al., 2015b).  
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Excessive use and pollution of freshwater resources are nowadays global environmental issues 

that exert pressure on the sustainability of global ecosystems. Organic and inorganic pollutants 

from different sources such as domestic, industrial, and agricultural (Imfeld et al., 2009; Ijeoma 

& Achi, 2011; Robles-Molina et al., 2014) accumulate in surface waters, ground waters, 

substrates and plants leading to water quality degradation, subsequently impacting negatively 

on the receiving ecosystem. In 2008, environmental damage, climate change, waste of potential 

agricultural nutrient resources, and the lives of 2.5 billion people were reported to be imperilled 

as a result of food and water pollution (World Health Organization and United Nations 

Children’s Fund Joint Monitoring Program for Water Supply and Sanitation [JMP], 2008). 

Furthermore, population increase globally, accompanied by sharp increase in urbanization, 

industrial and agricultural land use has resulted in a tremendous increase in discharge of a wide 

diversity of these pollutants including petroleum hydrocarbons, biochemical oxygen demand 

(BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids 

(TSS), turbidity, nitrogen compounds, toxic metals such as Cd, Cr, Ni and Pb, and faecal 

coliform to receiving water courses and has caused deleterious effects on the different 

components of the water environment including fisheries, thus making such water unsuitable 

for drinking, irrigation and aquatic life. The realization by the public of the negative impacts 

of these pollutants on the eco system and health problems, forced governments at various levels 

to impose regulations and guidelines with regard to treatment of wastewater before disposal to 

the receiving watercourses (Doble & Kumar, 2005; Fountolakis et al., 2009; Tram Vo et al., 

2014).  

Presently, petroleum is the most crucial derived source of energy globally (Onifade & 

Abubakar, 2007). However, leaks and spills occur regularly during exploration, production, 

refining, transport and storage of petroleum products from the petrochemical industries which 

contaminate the environment. Moreover, the pollution of the environment with these petroleum 
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hydrocarbons, as a result of spills from the activities of these industries and pipe vandalization 

by saboteurs, is a phenomenon frequently occurring in oil-producing countries all over the 

world. This contamination gives rise to serious problems for many countries because it is 

increasing as petroleum hydrocarbons continue to be used as the principle source of energy and 

often results in huge disturbances and disastrous consequences for the biotic and abiotic 

components of the ecosystem (Mueller et al., 1992; Eke & Scholz, 2008; Liu et al., 2011; 

Viggor et al., 2013; Wang et al., 2014). Usually, these pollutants are released into the 

environment by anthropogenic activities such as accidental spills or leaks from underground 

storage tanks or pipelines, and drain into gutters, water drains, open vacant plots, farm lands, 

run off and lastly to receiving water courses causing a negative impact. The release of pollutants 

often occurs in sewage discharged to the municipal treatment plants and pollutants can also be 

discharged with industrial wastewater, from small factories and public utilities and with 

domestic sewage (Escalas et al., 2003; Fountolakis et al., 2009; Almuktar&Scholz, 2015). 

Petroleum hydrocarbon-contaminated wastewaters also contain pollutants such as chemical 

oxygen demand (COD), biochemical oxygen demand (BOD), nitrogen and phosphorus 

(Knight, Clarke Jr., & Bastian, 1999; Fountolakis et al., 2009; Abou-Elela et al., 2013; 

Vymazal, 2014). Even release of these petroleum hydrocarbons in small quantities into water 

bodies can cause their concentration to exceed regulatory limits (Spence et al., 2005; Eke & 

Scholz, 2008; Guittonny-Philppe et al., 2015b).  

An example of these petroleum hydrocarbon pollutants is diesel oil, which refers to petroleum-

derived fuel composed of approximately 75% saturated hydrocarbons (primarily paraffins, 

including n-, iso-, and cycloparaffins) and 25% aromatic hydrocarbons (including naphthalenes 

and alkylbenzenes) (Toxicological Profile for Fuel Oils [TPFO], 1995). Furthermore, diesel 

fuel has low water solubility because of its predominant composition of hydrophobic organic 

compounds (Pazos et al., 2011; Al-Baldawi et al., 2013c). It also contains volatile organic 
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compounds (VOCs) which are usually harmful and carcinogenic and may cause serious 

environmental problems to the ecosystem. These VOCs may also cause adverse effects to 

human health, even in low concentrations (Benmaamar & Bengueddach, 2007; Chen et al., 

2012; Guittonny-Philppe et al., 2015b). They are known to integrate a group of compounds 

that contribute most to the formation of photochemical ozone and secondary organic aerosols 

(SOAs), increasing global warming (Hu et al., 2008). Generally, total petroleum hydrocarbons 

(TPH) are divided into gasoline range organics (GRO) corresponding to small chain alkanes 

(C6-C10) with low boiling point (60–170°C) and diesel range organics (DRO) including longer 

chain alkanes (C10-C40) with high boiling point (240–340°C) (Kamath et al., 2012). 

Furthermore, Viggor et al. (2013) investigated and revealed that diesel fuel is comprised of 

hydrocarbons of 9–16 carbons in length under the aforementioned temperature and is a 

widespread fuel used in engines. Several studies reported that this diesel fuel is toxic to many 

organisms and detrimental to human health (Moreira et al., 2011; Viggor et al., 2013; Al-

Baldawi et al., 2015). So, eliminating these pollutants is imperative but strenuous with 

traditional methods. 

Continuous increase in environmental crises such as pollution as a result of water shortages, 

climatic changes (Hartemink, 2006; Tram VO et al., 2014), rapid population growth and several 

compelling reasons, such as underground tank leakages, pipe vandalization by saboteurs, 

industrial oil spills, etc., necessitate the need for sustainable wastewater treatment technology 

that could be environmental friendly, easy to operate, less energy-intensive, and cost-effective. 

This is because most of the traditional treatment technologies used by the petroleum and water 

industries such as hydro cyclones, coalescence, flotation, centrifuges and various separators 

are not efficient concerning the removal of dissolved organic components including diesel in 

the dissolved water phase (Lin & Mendelssohn, 2009). Furthermore, other technologies such 

as advanced oxidation, biofiltration, separation by membrane, absorption and adsorption have 
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been studied and developed in order to remove these organic compounds. However, it happens 

that many of these procedures, due to high operating costs, are unviable. Their high cost has 

produced economic pressures and has compelled engineers to search for creative, cost effective 

and environmentally sound ways to control water pollution especially in the petroleum 

industry. Moreover, physical, chemical, and biological technologies have been developed to 

treat petroleum hydrocarbon-polluted wastewater and restore environmental quality. However, 

their costs are high and most of them are difficult to use under field conditions (Ji, Sun, & Ni, 

2007). Therefore, it remains necessary to study natural, simple, and cost-effective techniques 

for treating such wastewater, such as wetland mesocosoms. 

The artificial wetland mesocosoms, hereafter referred to as constructed wetlands (CWs) are 

engineered systems used worldwide as a result of their low energy requirement, convenience, 

environmental friendliness, mechanical simplicity and low cost of operation qualities (Scholz, 

2007; Kayranli et al., 2010; Abou-Elela et al., 2013; Wu et al., 2014) as an alternative efficient 

means of water pollution control to treat a variety of wastewaters including agricultural and 

urban runoff, industrial effluents, animal wastewaters, sludge and mine drainage (Scholz & 

Lee, 2005; Scholz, 2006, 2010), petroleum wastewaters (Omari et al., 2003; Eke & Scholz, 

2008; Tang et al., 2010; Wallace et al., 2011; Albaldawi et al., 2013a, b, c; Albaldawi et al., 

2014; Al-Isawi et al., 2014; Vymazal, 2014; Al-Isawi et al., 2015) and have recently been 

applied successfully to treat domestic wastewater (Scholz, 2010; Dong et al., 2011; Sani et al., 

2013a; Sani, Scholz, & Bouillon, 2013b; Dzakpasu et al., 2015; Paing et al., 2015). The 

technique of using artificial wetlands in the treatment of these various pollutants has been 

gaining reputation and increasing acceptance as a tool for environmental pollution control 

worldwide. The functions of these constructed wetlands follow the same principle as natural 

wetlands and the purification process involves variegated interconnection of wetland plants, 

5 
 



soils, and other microbial organisms to aid in the treatment of the wastewater (Scholz, 2006, 

2010; Vymazal, 2014). 

However, the performance abilities of wetland systems vary according to the system 

arrangement, nature, wetland plants, and microbial and weather conditions of the region (Vacca 

et al., 2005; Picek, Cizkova, & Dusek, 2007; Ström & Christensen, 2007; Weishampel, Kolka, 

& King, 2009; Scholz, 2011). The concept of artificial wetlands was not advanced only to solve 

environmental pollution problems, but also to enhance eco-friendly values through 

rehabilitation of likely hidden ecological substructures such as wetlands (Scholz, 2011; Tanner 

et al., 2012; Stefanakis et al., 2014).  

Surface flow (SF) and subsurface flow (SSF) CWs have been reported as the main two classes 

of CWs (Kadlec & Knight, 1996; Kadlec et al., 2000; Langergraber et al., 2009; Knowles et 

al., 2011; Nivala et al., 2012; Vymazal, 2013a; Wu et al., 2014). The surface flow constructed 

wetland (SFCW) is massively planted with macrophytes and has an exposed water surface 

which is different to the subsurface flow constructed wetland (SSFCW) that has no clear water 

surface. As a result of water movement direction in the treatment systems (Langergraber et al., 

2009; Vymazal et al., 2013a; Wu et al., 2014), SSFCWs can be further divided into horizontal 

flow (HF) and vertical flow (VF) systems. Generally, the substrate in HFCWs is inundated 

with water, unlike the substrate in VFCWs that is ponded and drained as the water is being 

applied intermittently into the systems (Vymazal & Kröpfelová, 2008; Knowles et al., 2011; 

Stefanakis, Akaratos, & Tsihrintzis, 2014). 

VFCWs are the state of the art in wetland technology worldwide (Tsihrintzis et al., 2007; 

Scholz, 2010; Sani et al., 2012; Stefanakis et al., 2014). Furthermore, many authors (Cooper, 

1999; Prochaska et al., 2007; Fan et al., 2012, Fan et al., 2013; Li, Wu, & Dong, 2015) reported 

that these systems are very competent in achieving a high rate of oxygen transfer. Sun, Gray, 

and Biddlestone (1999), Zhao, Sun, and Allen (2004), Eke and Scholz (2008), Vymazal and 
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Kröpfelová (2008) and Stefanakis et al. (2014) reported that wastewater applied in the systems 

inundates the wetland surface initially and then permeates through the wetland body by gravity. 

As wastewater passes through the wetland media, air enters the substrate pores (Vymazal et 

al., 2006; Fan et al., 2012; Fan et al., 2013; Stefanakis et al., 2014) enhancing the aeration and 

the microbial activity. VF systems perform well in chemical and oxygen demand variables 

(COD and BOD), wastewater particles and in adequate phosphorus treatment as reported by 

Brix and Arias (2005) and (Prochaska, Zouboulis, and Eskridge, 2007; Scholz, 2010; Paing et 

al., 2015) because of the inadequate time to allow full interaction of the wastewater and the 

wetland media. Furthermore, they can achieve a satisfactory level of nitrification (Vymazal et 

al., 2006; Langergraber et al., 2007; Gikas & Tsihrintzis, 2012; Fan et al., 2012; Fan et al., 

2013; Song et al., 2015).  

However, an inevitable drawback limiting the competitiveness and efficiency of VFCWs 

systems is the concomitant biological clogging and physical clogging induced as a result of 

excessive formation of biomass from degradation of pollutants and macrophyte litter, and 

retention of inert suspended fine particles, respectively. This leads to inner and outer blockage 

of filter substrate, and progressive reduction of active pore volume, substrate hydraulic 

conductivity and permeability. Eventually, the substrate may become so clogged that hydraulic 

malfunction occurs; e.g., untreated wastewater bypassing the system (Babatunde, 2010; Hua et 

al., 2014). This can greatly affect the lifetime of the system subsequently leading to poor 

effluent water quality to receiving water courses. Furthermore, clogging is often a seasonal 

phenomenon and usually leads to deterioration of water quality. Temporal variations in wetland 

performance depend often on the corresponding macrophyte growth rates (Picard et al., 2005; 

Kouki et al., 2009; Sani et al., 2013b; Al-Isawi et al., 2015). However, Merlin, Pajean, and 

Lissolo (2002) and Vymazal (2011a) reported that the influence of temperature seems to be 
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weak in their studied wetlands with regard to process efficiency because there were no 

significant seasonal variations.  

1.3 Justification, aim and objectives 

Most of the previous works on SSFCW performance and clogging focused on assessing the 

wetland performance efficiency based on clogging occurrences, causes, mechanisms, and 

modelling (Langergraber et al., 2003; Knowles, Griffin, & Davies, 2010; Knowles et al., 2011; 

Hua et al., 2013; Hua et al., 2014; Meyer et al., 2014,; Samso, Meyer and Garcia, 2015) while 

in some studies, processes, phenomena, parameters, consequences, measurements and 

management of clogging in relation to the system performance were investigated (Nivala & 

Rousseau, 2009; Nivala et al., 2012; Song et al., 2015). In the UK, few studies if any gave 

attention on assessing performance efficiency and clogging in SSF wetland systems 

particularly in VF ones (Knowles et al., 2010; Knowles et al., 2011; Hill-Casey et al., 2014). 

Concerted efforts were also made to explore the use of SSFCWs in treating hydrocarbons 

(Omari et al., 2003; Eke & Scholz, 2008; Tang et al., 2009; Tang et al., 2010; Wallace et al., 

2011; Wu et al., 2012; Albaldawi et al., 2013a, b, c; Albaldawi et al., 2014; Guittonny-Philippe 

et al., 2015a). However, a few studies (Omari et al., 2003) investigated the performance of 

horizontal subsurface flow (HSSF) wetland systems to treat diesel as the target peteroleum 

hydrocarbon while Eke & Scholz (2008), Tang et al. (2009) and Tang et al. (2010) assessed 

benzene in vertical subsurface flow (VSSF) systems in the UK, though a study was recently 

conducted on phytoremediation of DRO hydrocarbons in the sediment of Horsea Island lagoon 

in Southern England (Pinchin, 2012).  

Despite the numerous articles published on wetlands over the past decades, there is a notable 

gap in the literature regarding research on the long-term treatment performance and its 

relationship with clogging of VFCWs treating urban waste water contaminated with diesel 

because most of the works reported on CW performance, clogging and hydrocarbon treatment 
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have been on HSSF systems with little or none that focused on VCFW systems treating 

domestic wastewater contaminated with diesel. 

This study particularly provides the wetland modelling community with statistically validated 

long-term data interpretation. This will allow modellers to define long-term and seasonal 

removal coefficients for individual water quality parameters, and wetland managers with 

insight into long term and seasonal removal processes, allowing them to revise wetland 

management plans accordingly. Furthermore, this research may give useful information to 

petroleum and related water industries to incorporate wetland systems in their wastewater 

treatment technologies particularly for control of petroleum hydrocarbon spills that may be 

released in sewage discharged to the municipal treatment plants and can also be discharged 

with industrial wastewater, from small factories and public utilities, and with domestic sewage. 

The aim of the study was therefore to assess the impact of design and operational variables on 

treatment performance and its relationship with clogging of vertical-flow wetland mesocosoms 

treating domestic wastewater contaminated with diesel.The key objectives were to evaluate: 

 the current literature on performance, clogging and diesel treatment relevant to vertical-

flow wetlands; 

 critically the overall inflow and outflow water quality of the vertical-flow wetlands with 

or without diesel; 

 the influence of design and operational parameters on the overall treatment 

performances and its relationship to clogging of different wetland filters in treating 

domestic wastewater with or without diesel; 

 a simulation model assessing the impact of sedimentation of SS on the clogging 

processes of experimental wetland filters; 
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 critically the overall seasonal inflow and outflow water quality of vertical-flow 

wetlands with or without diesel 

 the overall and seasonal treatment performances and their relavance to clogging of 

different wetland filters in treating domestic wastewater with or without diesel; 

 overall performance efficiency of the vertical-flow wetland filters in hydrocarbon 

removal in both contaminated and uncontaminated filters 

1.4 Thesis outline 

This dissertation report begins by reviewing the existing information on wetlands and 

constructed wetlands applied for treatment of different wastewaters including urban 

wastewater. The study then investigates treatement performances and its relationship to 

clogging of the experimental vertical-flow constructed wetlands applied for domestic 

wastewater contaminants removal. Furthermore, biodegradation and removal efficiency of 

diesel as the model petroleum hydrocarbon in different wetland filters were assessed and 

interpreted. The report is divided into the following sections below: 

 

 Chapter one describes the background, justification, aims and objectives, and thesis 

outline. 

 Chapter two presents the literature review on clogging and performance in terms of 

treatment of different types of pollutants in constructed wetland systems from previous 

researches. An overview is given of the constructed wetlands enumerating the role of 

main wetland components (macrophytes, substrate, etc.) and different classes of flow 

systems (surface flow, subsurface flow (vertical and horizontal) and hybrid types). A 

significant proportion of the chapter is devoted to the published literature on wetlands 

clogging and modelling, values and benefits of wetlands, preference of some classes of 

wetlands over the others and different removal mechanisms of pollutants.  
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 Chapter three describes the materials, the experimental set-up and operation methods 

applied for the study. The chapter explains the experimental filter design, and aggregate 

compositions as well as their physical arrangement. It also includes the sampling in the 

green house, water quality parameters determination in the laboratory, calibration of 

equipments used for water quality analysis and statistical method applied in analysing 

the data. Furthermore, materials and methods used in petroleum hydrocarbon analysis, 

etc. are also reported.  

 

 Chapter four presents the overall treatment results and discussions. The chapter shows 

the water quality performance with and without diesel contamination in the different 

filters used in this research. The performance efficiency in each filter is also statistically 

compared to assess the role of design components and operation conditions, and the 

result of the key water quality variables such as COD and their significant differences 

are also discussed. Furthermore, results and discussion with regard to treatment 

performance and its relevance to clogging of different filters, and the modelling of the 

systems is also presented. 

 Chapter five discusses the seasonal variations in the performance efficiency of the 

wetland systems in both diesel and none diesel filters. Furthermore, seasonal 

assessment of treatment performance of the wetland systems and their relationship to 

clogging impact on water quality variables is also described. 

 Chapter six talks about diesel assessment in different wetland filters along with other 

water quality parameters such as COD and BOD, their removal efficiency in percentage 

terms and interpretation of other forms of the petroleum hydrocarbon components 

including diesel and gasoline range organics in both inflow and outflow water . 

 Chapter seven presents the conclusion and recommendation for further research.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In this chapter, an in-depth historical and technical review of existing information about natural 

and constructed wetlands is presented, showing the hydrology, components, types and removal 

mechanisms of contaminants in wetlands. The chapter is also categorized into specific sections 

as follows: 2.1 introduces the chapter, 2.2 describes historical development of wetlands, and 

classification of constructed wetlands is presented in section 2.3. The components of wetlands, 

design and operational impact of constructed wetlands on performance, clogging processes, 

types of clogging, problems, advantages causes and remedial measures, and numerical 

modelling in constructed wetlands are presented in sections 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9 

respectively. Lastly, removal mechanisms of pollutants in wetlands are presented in section 

2.10, while values of wetlands and the choice of vertical over horizontal-flow systems are 

shown in sections 2.11 and 2.12 respectively. 

2.2 History of constructed wetlands 

Constructed treatment wetlands are engineered wastewater purification systems that encompass 

biological, chemical and physical processes, which are all akin to processes occurring in natural 

treatment wetlands (Scholz, 2006; Kayranli et al., 2010; Kayranli et al, 2010; Abou-Elela et al., 

2013; Vymazal, 2014; Wu et al., 2015). For ages, natural wetlands served as a convenient means 

of wastewater and sewage management which subsequently resulted in many forms of wetlands, 

such as marshes, deteriorating as they filled up with nutrients and became seriously polluted. It 

has been observed (Kadlec & Knight, 1996) that natural wetlands were probably used for 

disposal of collected wastewater as far back as 1912. The pioneer research with wastewater 
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treatment wetlands planted with macrophytes was carried out by a German scientist (Kathe 

Seidel) in 1952 at the Max Planck Institute, Germany (Seidel, 1965a). She conducted many 

experiments using macrophytes on phenol, dairy and livestock wastewaters (Seidel, 1955, 1961, 

1965a, 1966, 1976), as discussed by Vymazal, (2005). Furthermore, in the early 1960s, she 

increased her effort in exploring the use of wetland plants in wastewater, different types of 

sludge, and also concentrated on upgrading the treatment of provincial and decontrolled 

wastewater systems from low performance efficiency (Vymazal, 2005). Because septic tank 

systems are anaerobic and need to be improved, Seidel incorporated a mud separation system 

across the permeated substrate bed and an eradication set-up in the horizontal direction to 

improve the treatment (Seidel, 1965b) which consequently led to the origination of new types of 

wetlands known as “Hybrid” which were re-established at the end of the year 2000 as reviewed 

by Vymazal (2005, 2011a, 2014). Cooper et al. (1996) and Vymazal (2005, 2009, 2011a, 2014) 

reported that the original type of vertical-flow wetlands are those started by Seidel in Germany. 

Moreover, interest in their use began to diminish shortly after their original design, but recovered 

six years later due to their nitrification ability being better than that of horizontal-flow systems. 

Moreover, the horizontal-flow systems were discouraging operators and designers because of 

their low ability in oxidising ammonia to nitrate. However, Vymazal, (2005, 2014) observed that 

in Europe, vertical subsurface-flow constructed wetlands are not used as much as horizontal 

subsurface-flow constructed wetlands. 

In the 1960s, Seidel and Kickuth invented new horizontal-flow wetlands which used what is 

known as the “Root zone method” (RZM). This new system differed from the earlier Seidel 

design by having sticky substrate predominantly of clay soils and is the early wetland system 

used at Othfresen, Germany for municipal sewage treatment in 1974 (Kickuth, 1977, 1978, 

1981; Brix, 1987; Vymazal, 2005, 2009). Furthermore, Kickuth advanced with the 

experimental research and disseminated this concept with his colleagues in Europe and led to 
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the establishment of nearly 200 municipal and industrial waste treatment systems (Bastian & 

Hammer, 1993). This resulted in the growth of interest of these RZM systems which spread 

throughout Europe in the mid-1980s. However, in the United States of America (USA), land 

treatment alternatives were advanced with the help of convincing research and development 

trials financed by some agencies in the USA such as the US Army Corps of Engineers 

(USACE) and the US Environmental Protection Agency (USEPA) (Bastian & Hammer, 1993). 

Moreover, experimental research studies on the exploration of the constructed wetlands started 

in Europe and the USA for wastewater treatment in the 1950s and late 1960s respectively. The 

research was expanded in the USA between 1970 and 1980 and between 1980 and 1990 

(USEPA, 2000), plus a considerable role was played by Federal agencies involving the 

Tennessee Valley Authority (TVA) and the US Department of Agriculture (USDA) at the end 

of 1980 and beginning of 1990 respectively. Nevertheless, constructed wetlands became 

popular and accepted in the United Kingdom (UK) in the mid-1980s when the UK Water 

Industry became familiar with the RZM which had then just begun to be operated in Denmark 

(Cooper et al., 1996). The then Water Authorities also accepted the system because of its ability 

to treat wastewater in small village communities with population densities of 50 to 1000 person 

equivalent (Pe), though later they found out that there were many problems with the system 

that needed to be solved (Cooper et al., 1996) leading to the choice of subsurface vertical-flow 

systems by designers and researchers. 

Today, the application of constructed wetlands in various wastewater purification systems is 

popular all over the globe (Hoffman et al., 2011; Abou-Elela & Hellal, 2012; Abou-Elela et al., 

2013; Vymazal, 2014; Wu et al., 2015). However, constructed wetlands were not pervasive in 

developing countries (particularly in warm tropical and sub-tropical climates) such as Nigeria, 

and Tanzania as a result of unawareness of their significant role in environmental pollution 

control, though a few researches have been published recently in Egypt (Abou-Elela & Hellal, 
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2012; Abou-Elela et al., 2013) and Kenya (Kimani, Mwangi, & Gichuki, 2012). Furthermore, 

there was no technical knowhow for advancing the research technology on a geographical basis 

(Kivaisi, 2001), despite the fact that about 50% of the wetland area (Neue et al., 1997) in the 

world is in the Torrid Zone. Therefore, the knowledge of the potential for the application of the 

technology with regard to water pollution control and ecology enhancement needs to be 

disseminated and fully understood there (Mohamed, 2004; Heers, 2006; Kamau, 2009; Abou-

Elela et al., 2013; Al-Baldawi et al., 2014,2015). In contrast, wetland technology and its 

application in wastewater treatment has been practised since the 1990s and the exploration of 

its research keeps increasing in other developing countries such as China (Xinshan, Qin, & 

Denghua, 2010; Zhang et al., 2012; Meng et al., 2014; Song et al., 2015) and India (Sheoran & 

Sheoran, 2006; Choudhary, Kumar, & Sharma, 2011; Sharma et al., 2013).  

2.3 Classification of constructed wetlands 

2.3.1 Overall classification  

There are three categories of constructed wetlands. Kadlec and Knight (1996), Kadlec et al. 

(2000), Haberl et al. (2003), Langergraber et al. (2009) and (Hoffman et al, 2011; Sharma et 

al., 2013; Stefanakis et al., 2014; Vymazal, 2014) reported that classifications of wetlands are 

based on water level on the bed which is either free water surface-flow (FWSF CWs) or 

subsurface-flow (SSF CWs), based on wetland plants, and based on the direction of water 

movement in the wetlands. Moreover, based on the water flow direction, the wetlands are also 

classified into vertical and horizontal systems. However, to achieve maximum removal 

efficiency of pollutants, horizontal and vertical-flow wetlands are combined as a single stage 

known as hybrid systems (Vymazal, 2014). Recently some wetland studies showed that 

constructed wetlands are classified based on their objectives into: constructed wetlands for 

habitat creation, flood control and wastewater treatment (Vymazal 2013a; Stefanakis et al., 
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2014; Vymazal, 2014). These wetlands use macrophyte plants which are aquatic plants that 

grow in or near water.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Classification of constructed wetlands 
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2.3.2 Free water surface-flow constructed wetlands  

FWSF CWs operate like a natural wetland (Vymazal et al., 1998; Vymazal, 2006; El-Sheikh 

et al., 2010; Stefanakis et al., 2014; Wu et al., 2014). The wetland pool is shallow and sealed 

so that there is no wastewater seepage to the belowground aquifer. The wetland substrate is 

soil and covers up to the height of 40 cm thick, thus allowing the establishment of wetland 

plants (Stefanakis et al., 2014). The wetland systems are flooded from the top and water flows 

horizontally on top of the wetland media, developing a depth of water column of about 20 to 

40 cm (Vymazal et al., 2006) or up to 80 cm (Akratos et al., 2006). The wastewater infiltrates 

the media or is evaporated to the atmosphere as shown in Figure 2.2. 

 Figure 2.2: Schematic representation of free water surface-flow constructed wetlands with 
emergent macrophytes

 
The wastewater in FWSF CWs flows via the wetland bed slowly coming in contact with the 

soil and plants, subsequently leading to provision of a conducive environment for physical, 

chemical and biological removal processes to take place. These processes contribute to the 

attenuation of numerous wastewater contaminants (El-Sheikh et al., 2010; Stefanakis et al., 

2014). 
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In terms of wastewater treatment, FWSF CWs are very good for removal of SS, biochemical 

oxygen demand (BOD5), nitrogen, pathogens, and other contaminants such as heavy metals 

(Kadlec & Knight, 1996; Vymazal, 2007; Kadlec & Wallace, 2009; Kotti, Gikas, & Tsihrintzis, 

2010; Tsihrintzis & Gikas, 2010) as reported by Stefanakis et al. (2014). 

The application and use of these FWSF CWs has been reported to be common in North America 

(Kadlec & Wallace, 2009) and applied exclusively for municipal wastewater treatment. These 

systems can be planted with different types of macrophytes such as emergent, free floating, 

floating-leaved, bottom rooted or submersed macrophytes. However, despite their advantages 

of low cost of operation and simple technology, the FWS CWs need a large land area and the 

water is potentially exposed to human contact (International Water Association [IWA] 

Specialist Group, 2000; Stefanakis et al., 2014). Furthermore, their nearly standing water 

intensifies the likelihood of mosquito breeding (Stefanakis et al., 2014). 

2.3.3 Subsurface-flow constructed wetlands 

2.3.3.1 Vertical-flow constructed wetlands 

SSF CWs are wetland systems composed of a substrate media planted with macrophytes, which 

wastewater passes through for quality enhancement (Knowles et al., 2011). In these systems, 

the arrangement set-up of sand or gravel media, allows the inundation of the wetlands with 

wastewater at the inlet which later, after gravitational downward movement, remains below the 

substrate bed. The substrate in this kind of arrangement gives a favourable avenue for the 

microorganisms to treat the pollutants and also buttresses processes such as filtration and 

adsorption (Hoffman et al., 2011). Furthermore, the authors reported that while sand beds 

originated in Europe and are now applied all over the world, gravel beds are used in North 

Africa, South Africa, New Zealand, Asia and Australia. Moreover, Fan et al. (2012), Fan et al. 

(2013), Nivala et al. (2013), Song et al. (2015) and Wu et al. (2015) revealed that subsurface-

flow systems are very efficient in nitrogen and carbon compounds elimination due to high 
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oxygenation in their substrate bed and have high performance efficiency within the small area 

they occupy compared to SF CWs (Hoffman et al., 2011; Abou-Elela & Hellal, 2012; Abou-

Elela et al., 2013; Stefanakis et al., 2014). 

VF CWs systems were originally used and developed by Seidel in 1965 in Germany, when she 

inserted them in-between a septic tank and HSF CWs (Vymazal et al., 2006; Vymazal & 

Kröpfelová, 2011). The systems became pertinent in application gradually when people 

realized the inability of HSF systems to oxidize ammonia-nitrogen efficiently from wastewater 

as a result of limited oxygen in their substrate bed (Cooper, 1999; Vymazal, 2005; Stefanakis 

et al., 2014; Vymazal, 2014). Typically, the media in (VF) CWs goes through filling and 

draining cycles as the water is being dosed periodically into the systems (Vymazal & 

Kröpfelová, 2008; Knowles et al., 2011; Wallace, 2013; Stefanakis et al., 2014; Li et al., 2015) 

which makes the systems competent in achieving a high rate of oxygen transfer (Cooper, 1999; 

Vymazal & Kröpfelová, 2008; Knowles et al., 2011; Wallace et al., 2013; Stefanakis et al., 

2014; Li et al., 2015). According to Sun et al. (1999) and Zhao et al. (2004), the wastewater is 

applied and inundates the wetland surface initially and then permeates through the wetland 

body by gravity (Figure 2.3). As the wastewater penetrates, air enters the substrate pores 

(Vymazal et al., 2006; Fan et al., 2012; Fan et al., 2013; Song et al., 2015) enhancing the 

aeration and the microbial activity.  

Numerous studies were conducted to assess the performance efficiency of VF systems, and 

predicated that the systems are good treatment technologies with regard to water quality 

parameters. For instance, Brix and Arias (2005), Prochaska et al. (2007), Chang et al. (2012), 

and Paing et al. (2015) mentioned that VF systems perform well in the treatment of chemical 

oxygen demand, biochemical oxygen demand, suspended solids and limited phosphorus 

because of the inadequate interaction of the wastewater and the filter media. Furthermore, 

Vymazal et al. (2006), Langergraber et al. (2007), Gikas and Tsihrinitzis (2012) and Zhi et al. 
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(2015) noted that the systems can also achieve a satisfactory level of nitrification. Though some 

researchers referred to them as poor denitrifiers (Vymazal, 2005; Scholz, 2010; Vymazal & 

Kröpfelová, 2011) several studies recently showed that VFCW systems with intermittent 

loading regimes can denitrify well with modification (Weedon, 2003; Arias, Brix, & Marti, 

2005; Gross et al., 2007; Weedon, 2010; Fan et al., 2013; Song et al., 2015).  

The composition of VFCWs consists of a porous substrate bed of either gravel or sand with 

size gradation increment with depth (Vymazal et al., 2006). The bed arrangement is from top 

to bottom with depth between 45 cm and 120 cm and slope of 1–2% that facilitates easy 

movement, drainage, and collection of the treated wastewater effluent out of the system. 

The intermittent application of VF systems allows the creation of temporary ponding of the 

wastewater in the range of 3–5 cm (Stefanakis et al., 2014) before it drains gravitationally 

downward. This application method enhances more aeration in the bed as the wastewater 

spreads on the wetland surface area and moves downward, subsequently sucking the fresh air 

into the substrate bed and removing the captured air. This type of operation enhances aeration 

into the bed and becomes more advanced when aeration pipes are inserted in the systems. The 

high bed oxygenation provides improved conditions for nitrification and organic matter 

decomposition in comparison to HF systems (Vymazal et al., 2006; Vymazal, 2007; Kadlec & 

Wallace, 2009; Stefanakis & Tsihrintzis, 2012; Stefanakis et al., 2014). Though vertical-flow 

systems have the advantage of occupying a small space because of their size and good treatment 

of high organic loading rates and nutrients, several studies have shown that clogging can be 

their operational problem (Cooper, Griffin, & Cooper, 2005; Knowles et al., 2011; Liu et al., 

2012; Fu et al., 2013; Hua et al., 2013; Song et al., 2015). However, some studies reported that 

bioclogging can be mitigated when intermittent operation was applied in VF systems, because 

a resting operation could effectively improve porosity and the hydraulic conductivity after 

some days of the resting period (Hua et al., 2014; Paing et al., 2015; Wu et al., 2015).  
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VF systems are mainly explored in Europe, particularly in France, Denmark, Austria, Germany, 

UK and USA (USEPA, 1995; Kadlec & Wallace, 2009). Presently, their application is 

developing gradually in other parts of the world including Asia and Africa (Kivaisi, 2001; 

Abou-Elela & Hellal, 2012; Abou-Elela et al., 2013; Song et al., 2015; Wu et al., 2015).  
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Figure 2.3 Schematic representation of vertical-flow constructed wetlands 

2.3.3.2 Horizontal flow constructed wetland 

Horizontal subsurface-flow constructed wetlands (HSSF CWs) are purification systems where 

the movement of the wastewater is in a horizontal direction and it passes gradually through the 

filter substrate, macrophyte roots and rhizomes till it reaches the outflow control valve where 

it is collected for sampling and analysis (Vymazal, 2009, 2013a, 2014). Typically, the media 

in (HF) CWs is permanently flooded with water, and pollutant treatment takes place through 

the interconnection of various microbial, physical and chemical processes (Kadlec & Knight, 

1996; Vymazal, 2014). In the process of the wastewater permeation, the wastewater passes 

through aerobic, anoxic and anaerobic regions. Brix (1987), Cooper et al. (1996) and Vymazal, 

(2014) noted that oxygen availability in the substrate was provided by roots and rhizomes in 

the aerobic regions.  
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HF systems are composed of gravel, sand or their combination as a bed substrate, usually 

planted with reeds (Vymazal et al., 2006; Vymazal, 2014) and the wastewater passes 

horizontally from the inlet to the outlet beneath the porous substrate and plant roots (Figure 

2.4). The substrate media provides support for the wetland plants to grow and its depth varies 

between 0.3 and 0.8 m (Vymazal et al., 2006; Akratos & Tsihrintzis, 2007) though the media 

depth depends on the type of macrophytes planted and their root depth. The slope of these 

systems is between 1–3% so that gravitational wastewater flow is promoted and the bottom is 

sealed with an impenetrable geo-membrane (Kadlec & Wallace, 2009; Stefanakis et al., 2014). 

Vymazal et al. (2006) stated that if these systems are properly designed, the wastewater will 

not be visible on the surface of the media, but will be maintained in the range of 5–15 cm below 

it. This leads to reduced health risk to humans and wild life habitats. Furthermore, breeding of 

mosquitoes is avoided (Kadlec & Wallace, 2009; Stefanakis et al., 2014). 

Many researches have shown that existence of plant roots and porous media in HF systems 

favours the development of biofilm, which improves the removal of organic matter and SS, 

thus, making them good in municipal wastewater treatment, though nutrients (N and P) 

treatment is low (Vymazal et al., 2006; Akratos & Tsihrintzis, 2007; Kadlec & Wallace, 2009; 

Gikas et al., 2010; Vymazal, 2013a, 2014).  

HF systems are usually used in Europe and USA (Vymazal et al., 2006; Vymazal, 2011c, 2014) 

and acquire a small area when compared with SFCWs systems, but have high investment costs 

(Tsihrintzis et al., 2007; Kadlec & Wallace, 2009). 
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Figure 2. 4  Schematic representation of horizontal subsurface-flow constructed wetlands 

2.3.3.3 Hybrid constructed wetlands  

Hybrid constructed wetlands are purification systems established mainly to achieve larger 

nitrogen removal by exploring the operational processes of denitrification and nitrification in 

vertical and horizontal flow systems together, concomitantly treating the wastewater (Vymazal, 

2005; Vymazal & Kröpfelová, 2011; Ayaz et al., 2012; Vymazal, 2013a, 2014). The vertical 

flow systems, as a result of high oxygenation in the beds, have the ability to oxidize ammonia 

while nitrate has been effectively treated in the horizontal systems (Vymazal & Kröpfelová, 

2011; Vymazal, 2013a, 2014). Vymazal (2005, 2014) reported that the hybrid systems were 

originally used by Seidel between 1960 and 1969 in Germany and subsequently few full scales 

were constructed, e.g. in Saint Bohaire, France between 1980 and 1989 and Oaklands Park in 

the UK between 1990 and 1999. However, because of the need for strict discharge limits for 

nitrogen and more complex water treatment, their application expanded between the late 1990s 

and early 2000 (Vymazal, 2013a).  
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Presently, hybrid constructed wetlands are used globally for their ability to remove ammonia, 

nitrate and total nitrogen from various types of wastewaters (Vymazal, 2005, 2007; Ye & Li, 

2009; Xinshan et al., 2010; Vymazal & Kröpfelová, 2011; Ayaz et al., 2012; Vymazal, 2013a, 

2014). Furthermore, they are also applied to treat a variety of wastewaters including winery 

wastewaters (Serrano et al., 2011), pharmaceuticals and personal care products (PPCPs) 

(Reyes-Contreras et al., 2011), oil field produced water (Alley et al., 2013), grey water 

(Commino, Riggio, & Rosso, 2013) and industrial effluents (Vymazal, 2014). 

According to Vymazal (2013a), hybrid constructed wetlands are categorized into the following 

combinations: VF-HF systems, multistage VF-HF systems, VF hybrid systems, and hybrid 

constructed wetlands with FWSFCW systems. He however, noted that VF-HF hybrid systems 

are marginally more effective in ammonia treatment than the other types of the hybrid systems. 

2.4 Composition of wetland  

2.4.1 Macrophytes- 

Wetland vegetation is a very important and prime component of a wetland ecosystem (Scholz, 

2006; Lee & Scholz; 2007; Scholz, 2010; Vymazal, 2011c, 2013b; Villa et al., 2014) including 

constructed systems and, probably because of its presence, the systems are termed green 

technology (Stefanakis et al., 2014). Although these emergent plants are prominent constituents 

of the wetland ecosystem, purification of wastewater is carried out by the unification of various 

processes: chemical, physical and biological and between the macrophytes, substrate and the 

association of wetland microorganisms. Macrophytes are commonly used plant species in 

treatment wetlands (Vymazal, 2002, 2011c; Stefanakis et al., 2014) and include the following: 

cattail (Typha spp), common reed (Phragmites spp), rush (Juncus spp) and bulrush (Scirpus 

spp) Moreover, the macrophytes absorb contaminants in their tissue and furnish the 

microorganisms with a favourable growing environment (Vymazal, 2002, 2011c). While 
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growing in the filter substrate, the roots of the macrophytes dissolve organic matter and avert 

clogging by forming openings for the water to permeate within the substrate of an intermittent 

loading vertical-flow system. Furthermore, the macrophyte itself stabilizes the media in the 

wetland, reduces clogging build up, improves hydraulic conductivity, generates suitable 

avenue for the growth of bacteria, absorbs nutrients and supplies oxygen to the water (Li et al., 

2008; Stefanakis et al., 2014). Conversely, some studies have shown that Phragmites australis 

(Cav.) Trin. ex Steud.(figure 2.5) is the universally accepted wetland plant species (IWA 

Specialist Group, 2000; Scholz, 2006; Vymazal, 2011c, 2014). Despite their wide use all over 

Europe and Northern America in treatment wetlands, the function of macrophytes plus the 

influence of various plant types on the treatment wetland is questionable (Scholz, 2006). 

 

Figure 2.5: Cluster of common reeds (Phragmites australis) picture taken during autumn 
months 

Some previous studies reported a considerable contribution of macrophytes to contaminant 

treatment. For example,
 
the reduction percentage of about 89% in COD and BOD was found 

to be greater in planted than control systems that have a reduction percentage of about 85% 

(Akratos & Tsihrintzis, 2007).
 
Karathanasis, Potter, and Coyne (2003) also found the reduction 

percentage of TSS and BOD to be very much lower in control systems (46%) and (63%) than 
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in uncontrolled systems (88–90%) and (70–75%) respectively for SSF wetlands. Fountoulakis 

et al. (2009) investigated removal of polycyclic aromatic hydrocarbons (PAHs) and linear 

alkylbenzene sulfonates (LASs) from domestic wastewater in pilot constructed wetlands and a 

gravel filter in Greece. The authors found that the vegetated filter recorded 79.2% and 55.5% 

removal efficiency of PAHs and LASs respectively compared to 73.3% and 40.9% for the 

gravel filter. Recently, in their review, Verlicchi and Zambello (2014) reported that high 

removal efficiency has been observed in planted wetlands treating pharmaceuticals including 

caffeine, naproxen, diclofenac and ibuprofen in comparison with unplanted ones. However, in 

a study to assess the removal of antibiotics from urban wastewater by constructed wetland 

optimization, Hijosa-Valsero et al. (2011) reported that their unvegetated SF systems exhibited 

higher removal of clarithromycin and trimethoprim compared to vegetated ones. However, in 

some studies, it was shown that, there is no significant contribution of macrophytes with regard 

to pollutants attenuation in planted and unplanted wetland systems. Scholz and Xu (2002) and 

Scholz (2006) found (BOD) removal efficiency of constructed wetlands basically the same 

irrespective of growing periods of the wetland plants while Balizon et al. (2002) observed 

insignificant removal efficiencies in their systems planted with duckweed, reed and algae. 

2.4.2 Substrate 

Substrate is the media used in wetland construction. The media are also called aggregates or 

wetland media and encompass one of the following: gravel, rock, organic materials such as 

compost, soil and sand. Many studies, including Stottmeister et al. (2003), Tietz et al. (2007), 

Dordio and Carvalho (2013), Meng et al. (2014) and Stefanakis et al. (2014), revealed that the 

primary support for the growth of macrophytes and microorganisms biofilm in constructed 

wetlands is soil. Furthermore, the origin and the soil composition have a significant impact on 

the hydraulic mechanisms of the system. In addition to contaminants adsorption by substrate 

media in constructed wetlands, the substrate also plays an important role in providing a 
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favourable thriving atmosphere for wetland plants and microbes to biodegrade wastewater 

pollutants (Tietz et al., 2007; Dordio & Carvalho, 2013; Ge et al., 2015). However, the size of 

the media should not be excessively large because, media with a large size does not provide an 

adequate surface area for biofilm establishment (Meng et al., 2014). Brix and Arias (2005) also 

revealed that small-sized-grain media, such as organic soil, provide a surface area for biofilm 

growth while media with narrow pore diameters lead to media pore blockage  

Choice of pervious filter media has been reported (Hoffman et al., 2011; Meng et al., 2014; 

Song et al., 2015) to play a significant role with regard to hydraulic loading rate in SSFCWs 

because clogging of the media pores may be a problem and can affect the system performance 

when media porosity is not suitably selected for the corresponding organic loading application. 

The filtration media used in constructed wetlands depend on the objectives that need to be 

attained. Constructed wetlands have been designed and built with substrates ranging from fine 

texture soil to field stone. A coarse-grained material with high hydraulic conductivity will 

prevent the filter from getting clogged and close-grained material will be more efficient in 

reducing suspended solids and turbidity (Table 2.1). Substrate media in wetlands are regarded 

as hydric when they are either saturated or inundated with water. Under saturated conditions, 

the air in the substrate pore spaces is displaced by the water and the dissolved oxygen is utilized 

by the microbes. The oxygen utilized by microbes in the wetlands media is more than what 

will be restored through diffusion, hence the media become anoxic. However, in inundation or 

flooded conditions the substrate media become anaerobic (USEPA, 2000; Scholz, 2006, 2010; 

Stefanakis et al., 2014). A mixture of sand and gravel is recommended to improve hydraulic 

conditions and the removal of contaminants (IWA Specialist Group, 2000; Stottmeister et al., 

2003). However, some studies suggested that smaller-sized are better than excessively large-

sized media because biofilm growth is better established in the former than in the latter thus 

achieving a higher biodegradation ability by microbes (Dordio & Carvalho, 2013; Meng et al., 
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2014), while substrates with fine pores leads to clogging of the media (Brix & Arias, 2005; 

Wallace & Knight, 2006; Song et al., 2015). Aggregates within wetland systems ease settling 

of SS and provide a surface area for the biofilms to develop and putrefy dissoluble 

contaminants. Multiple layers of gravel are organized in such a way that the size of the gravel 

increases from the top to the bottom layer. However, many studies have reported that the 

occurrence of clogging relates to this conventional arrangement of aggregates (Langergraber 

et al., 2003). Therefore, Sun, Zhao, and Allen (2007) proposed an anti-sized reed bed system, 

which was more effective than a conventional mono-sized reed bed with regard to the removal 

of several major pollutants from a high strength piggery wastewater.  

Nevertheless, a recent study conducted by Song et al. (2015) expounded that an increasing-

sized packing media strategy relieved clogging with high removal of COD, ammonia and 

nitrogen in their assessed vertical-flow wetland systems. Many studies were also conducted to 

assess the possibility of increasing the adsorption capacity of filter media with different 

substrates. For example, some publications confirmed that substrates like rice husk and 

organic mulch have improved total nitrogen removal because of their organic carbon content 

(Saeed & Sun, 2011; Tee et al., 2012; Saeed & Sun, 2013) as reviewed by Meng et al. (2014).  

Table 2. 1: Wetland media substrate characteristics (modified from Chen, Malone, & Fall, 
1993; Sundaravadivel & Vigneswaran, 2009).

 
Media type         Grain size (mm)         Porosity

 
(η)             Hydraulic conductivity (ks, m s-1) 

Coarse sand                 2                               0.32                                       1.2 x 10-2 

Gravely sand               8                               0.35                                       5.8 x 10-2 

Fine gravel                 16                              0.38                                       8.7 x 10-2 

Medium gravel           32                              0.40                                      11.6 x 10-2 

Coarse rock                128                            0.45                                     115.7 x 10-2 
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However, there have been contradictory views regarding the function of expensive filter media 

in the treatment process of constructed wetlands. Scholz and Xu (2002) in their study noted 

that using expensive adsorption media, like granular activated carbon, to enhance filtration 

performance of constructed wetlands did not improve the media adsorption capacity. 

Furthermore, Stefanakis and Tsihrintzis (2012) found no significant improvement in their 

systems performance when they used zeolite and bauxite substrates in their wetland study. 

2.4.3 Microorganisms 

Several studies have shown that various microbial communities exist in both aerobic and 

anaerobic zones of wetlands, including different forms of bacteria, fungi, algae and protozoa 

(Kadlec & Night, 1996; Cooper et al., 1996; Scholz, Xu, & Dodson, 2001; Paredes et al., 2007; 

Faulwetter et al., 2009; Shao et al., 2013; Meng et al., 2014). In wetlands, the interaction of 

biological, physical and chemical processes results in wastewater organic contaminants 

purification and transformation of nitrogen and phosphorus. The contaminants reduction is 

accomplished by the support of these wetland microbial communities (Figure 2.6). The 

microbial community in constructed wetlands plays a major role in the treatment of waste 

pollutants and has functional importance in the wetland environment as a result of microscopic 

size of the microorganisms which allows them to touch and feed the pollutants directly using 

their enzymes (Francis, 1996; Truu, Juhanson, & Truu, 2009). Furthermore, the 

microorganisms that revive, thrive and are capable of having metabolic activity in wetland 

systems partake in contaminants removal. The ability of constructed wetlands to remove 

pollutants depends on the interaction of microorganisms, wetland media and macrophytes. 

Organic matter decomposition in the wetland system is also accomplished by microorganisms 

in aerobic and anaerobic situations. Kadlec and Wallace (2009) and Meng et al. (2014) reported 

that biodegradation of organic matter is generally related mostly to autotrophic and 

heterotrophic bacteria, certain specific protozoa, and fungi including basidiomycetes and 
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yeasts. The microorganisms can also adapt to transformations in the wastewater delivered to 

them and grow rapidly when a favourable environment and sufficient nutrients are available. 

Hilton (1993) and Truu et al. (2009) pointed out that the numerous microorganisms become 

dormant in wetlands when there is no favourable condition for their growth and survival. 

Moreover, they can stay dormant for many years as long as the conditions are not favourable.  

Microbes perform very important activities in wetlands such as transforming numerous organic 

and inorganic materials from harmful to harmless ones, and changing oxidation/reduction 

reactions of the wetland
 
media, and hence influence the physical, chemical and biological 

processes aiding in the nutrients reprocessing (USEPA, 2000;
 
Truu et al., 2009; Ji, Zhi, & Tan, 

2012; Ji, He, & Tan, 2013; Wang et al., 2015). However, the biodegradation of chemicals by 

microbes is a complex process that involves a series of biochemical reactions and generally 

differs depending on the microbes involved (Meng et al., 2014). For instance, microbes 

involved in nitrogen removal include some bacterial groups such as β-Proteobacteria and γ-

Proteobacteria (Faulwetter et al., 2009) for ammonia oxidation. Furthermore, bacterial groups 

like Enterobacter and Micrococcus are involved in denitrification (Meng et al., 2014) while 

planctomycete-like bacteria Candidatus Brocadia anammoxidans are involved for anaerobic 

ammonium oxidation.  

Microorganisms that naturally live in water, substrate, or roots of wetland macrophytes 

consume organic substances or nutrients thus reducing, breaking down or entirely removing a 

wide variety of contaminants from the wastewater. Functions of wetlands are greatly controlled 

by microbes and their metabolism (Wetzel, 1993; Faulwetter et al., 2009; Truu et al., 2009; 

Saeed & Sun, 2012; Meng et al., 2014). The association of microbes in constructed wetlands 

comprises of internal (indigenous) and external (foreign) microorganisms (Truu et al., 2009). 

Internal microorganisms are characterized by the following qualities: ability to have metabolic 

activity, flourish and live in wetland systems partaking in contaminants treatment, while 
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external microorganisms such as pathogens in the influent wastewater have no significant role 

to play in the wetland environment because they do not survive, as the wetland environment is 

hostile to non-indigenous microorganisms (Vymazal, 2005). 

  

                                                       

Figure 2. 6: Components that can influence microorganisms associations, anatomy and 
functions in constructed wetlands. Source: Truu et al. (2009). 

2.4.4 Hydrology
 

Hydrology, which contributes to the anaerobic condition, is the constant or intermittent 

saturation of a substrate media in a wetland area and serves as the avenue where general 

biogeochemical operations take place (Sheoran & Sheoran, 2006; Eke, 2008; Scholz, 2010;
 

Morandeira &Kandus, 2015). The operations lead to the growth of typical wetland media that 

provide a better environment for a predominant macrophyte society suited to existing in 

saturated media (Mitsch & Gosselink, 1993; Interstate Technology and Regulatory Council 

Wetlands Team [ITRC], 2003). In wetlands, hydrology is defined by two parameters: hydro 

period and depth of flooding (Gosselink & Turner, 1978). The hydro period is the time during 

which the soil is flooded or saturated, expressed in percentage, and is affected by numerous 

natural factors such as topography, geology, groundwater, subsurface soil characteristics, and 

weather conditions. The depth of flooding in a natural wetland varies between +2 m and –1 m 
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relative to the ground surface, with an average of approximately +1 m. These two parameters 

highly affect the characteristics (oxygen concentration, pH, nutrients, plants, etc.) and stability 

of the wetlands (Scholz & Lee, 2005; Scholz, 2006; Scholz, 2010). 

However, In the case of constructed wetlands, the hydrological characterization of the wetland 

has been more complex. In wastewater treatment wetlands, the inflow is rather regular and the 

amount of pollutant brought in is quite constant. Furthermore, in intermittently dosed systems, 

the filters are flooded and drained (temporarily flooded) on a regular basis, facilitating oxygen 

transfer by drawing the water table down periodically to allow oxygen to penetrate into deeper 

levels of the filters. When the wetland is drained, the retreating water acts as a passive siphon 

and pulls atmospheric oxygen into the matrix as reported by Green, Friedler, and Safrai (1998), 

Sun et al. (2003), Vymazal and Kröpfelová (2008), Knowles et al. (2011), Wallace et al. (2013), 

Stefanakis et al. (2014) and Li et al., (2015). 

Hydraulic retention time (HRT), is the average time that water stays in the wetland and a very 

significant variable in designing and evaluating treatment performance of wetland treatment 

systems (Hammer & Kadlec, 1983; Breen, 1997; Ghosh & Gopal, 2010). Furthermore, it is 

very important in designing and operating a constructed wetland and in determining the 

performance efficiency of settling solids, biochemical processes, and plant uptake (Kadlec & 

Knight, 1996; Ghosh & Gopal, 2010; Stefanakis et al., 2014). 

2.5 Design and operational impact of constructed wetlands on performance
 

Vertical-flow constructed wetlands were reported (Kayranli et al., 2010; Scholz, 2010; Dong 

et al., 2011; Saeed & Sun, 2012; Abou-Elela et al., 2013; Vymazal, 2014; Paing et al., 2015) 

to improve several types of wastewaters with high performance efficiency. Dong et al. (2011) 

assessed the impact of design and operational parameters on the treatment performance and 

clogging processes of industrial-scale wetland systems treating domestic wastewater near 

Monaghan, Ireland. All wetland cells had a natural liner (compacted soil). The treatment 
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performance was high for most water quality variables; 98% for the biochemical oxygen 

demand (BOD), 94% for suspended solids (SS) 92% for chemical oxygen demand (COD), 90% 

for nitrate-nitrogen, 96% for total nitrogen, 97% for ammonia-nitrogen and 96% for ortho-

phosphate-phosphorus. The large footprint of the system resulted in a high hydraulic retention 

time of approximately 92 days. The groundwater was not contaminated, possibly due to natural 

clogging processes and biomass development. In their study, Stefanakis and Tsihrintzis (2012) 

reported removal efficiency in organic matter (BOD5 and COD) and nitrogen (TKN and NH4+-

N) above 78% and 58%, respectively and 37% for phosphorus (total phosphorus [TP] and 

ortho-phosphate phosphorus [OP]). The authors attributed the system performance to the 

improved aeration in the media bed. The performance of the constructed wetland removing 

petroleum hydrocarbons in wastewaters containing aromatics and gasoline-range organics with 

100% efficiency, with non-detectable concentrations in the effluent (Wallace et al., 2011) was 

also attributed to aeration of the media bed. 

Tanner, Clayton, and Upsdell (1995), Rousseau et al. (2008), Gikas and Tsihrintzis (2012) and 

Abou-Elela et al. (2013) indicated that the pollutant removal efficiency of constructed wetlands 

was a function of the hydraulic loading rate and hydraulic retention time; i.e. if the hydraulic 

loading rate is high and the retention time is low, highly contaminated wastewater passes 

through the wetland quickly, which results in a corresponding relative decrease of the treatment 

efficiency due to insufficient time for biodegradation processes. Many researchers (Stefanakis 

& Tsihrintzis, 2012; Zhi et al., 2015) pointed out that water quality outflow parameters such as 

chemical oxygen demand (COD) are relatively unstable during the experimental setting-up 

phase, when the wetland is maturing. Furthermore, a long contact time results in higher removal 

efficiencies for ammonia-nitrogen, regardless of plant maturity. Nitrification and 

biodegradation in general can be promoted by relatively long resting times (artificially induced 

drying and aeration times). However, Stefanakis et al. (2014) noted that the biodegradation of 
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organic matter in VFCWs depends on the contents of the organic matter and hydraulic contact 

time applied during the wastewater treatment. As a result, the authors concluded that readily 

biodegradable organics are quickly oxidized due to high oxygenation in the wetland media bed 

while the recalcitrant ones are only partly degraded because of insufficient contact time. 

Furthermore, the organic matter decomposition was predominantly taking place in the top 10–

20 cm as a result of that high oxygen availability and microbe population density in the upper 

wetland media bed (Tietz et al., 2007; Kadlec & Wallace, 2009; Stefanakis & Tsihrintzis, 

2012).  

The design of VFCWs to operate with intermittent wastewater application creates a flood on 

the media bed surface when the wastewater is applied before it subsequently drains 

gravitationally downward in a vertical direction. This type of operation provides a high amount 

of oxygen for aerobic microorganisms subsequently leading to high biodegradation processes 

(Vymazal, 2007; Stefanakis & Tsihrintzis, 2012) including aerobic decomposition of organic 

compounds containing nitrogen (Fan et al., 2012; Fan et al., 2013; Stefanakis et al., 2014; Zhi 

et al., 2015). 

2.6 Processes of clogging within constructed wetlands 

Clogging is defined as the developed process over operational time that leads to the blockage 

of substrate pores and the subsequent diminution of the corresponding hydraulic conductivity 

induced as a result of excessive formation of microbial biofilms build-up from pollutants 

degradation inside the pore space (Knowles et al., 2010, 2011; Thullner, 2010; Pedescoll et al., 

2011; Nivala et al., 2012; Fu et al., 2013; Hua et al., 2014; Song et al., 2015). These pollutants 

come into the wetlands in the form of organic and inorganic solids from the influent stream. 

Wetland scientists have recently embarked on their research on clogging as a result of its 

significant negative implication on the treatment efficiency of the systems (Platzer & Mauch, 
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1997; Zhao et al., 2004; Langergraber et al., 2009; Hua et al., 2010; Knowles et al., 2010, 2011; 

Le Coustumer et al., 2012; De la Varga, Díaz, & Ruiz, 2013;Hua et al., 2014; Song et al., 2015). 

However, clogging processes are very complex phenomena and no specific factors were stated 

to be the actual causes of the clogging in the systems. Some studies revealed that clogging was 

developed as a result of substrate pore blockage by suspended solids build up, sedimentation 

of biomass and growth of microorganisms (Tanner, Sukias, & Upsdell, 1998; Caselles-Osorio 

& Garcia, 2006; Hua et al., 2010). Conversely, Nguyen (2000) and Molle et al. (2005) 

attributed clogging of their systems to organic matter accumulation while Langergraber et al. 

(2003) and Winter and Goetz (2003) expounded that, though clogging in their systems was due 

to solids accumulation, biomass growth and SS loading, the latter played a significant 

contribution towards their systems clogging in comparison with biomass growth that has only 

a lesser effect compared with SS accretion. Moreover, Pedescoll et al. (2011) showed that root 

system development and system design were the causes of clogging while Chazarenc et al. 

(2009) related the problem to system operation (batch flow operation). Some studies however, 

revealed that in addition to the solids and the biomass growth, microorganism development has 

also contributed in the clogging of the media (Hua et al., 2010; Thullner, 2010; Hua et al., 2013, 

2014). Yet, the factors leading to clogging are not well known (Knowles et al., 2011; Fu et al., 

2013; Hua et al., 2014; Song et al., 2015).  

The deposition of the organic and inorganic solids at the wetland surface leads to a clogging 

mat (outer blockage) and deposition of solids within pores results in substrate clogging (inner 

blockage). The process of clogging consists of the puncture phase for the pollutants, the 

formation phase of the deposition blanket-like layer, and the formation and compaction phase 

of the clogging layer (Scholz, 2006, 2010). Hua et al. (2010) showed that the clogging layer 

caused by suspended solids within vertical subsurface-flow wetlands develops gradually from 

the upper substrate layer to the lower substrate layer. A deposition blanket is formed on the top 
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of the substrate. Particulate solids are absorbed by electrostatic forces and van der Waal’s 

forces. Larger solids are constrained into flowing through the filter, as the accumulated solids 

act as a sieve. A layer responsible for clogging may develop from filtered solids and from 

biological processes within the biomass. Clogging results in low hydraulic conductivity but it 

also functions as an excellent biological filter, which enhances the treatment efficiency of the 

system. Blazejewski and Murat-Blazejewska (1997) observed that wetlands treating sewage 

through filtration by sands are being clogged only shallowly (up to a few centimetres) while 

gravels clog much more deeply and allow solids to enter much further into the bed (Zhao, Zhu, 

& Tong, 2009). However, Hua et al. (2010) reported that clogging occurred in a 0-4 cm upper 

layer in their wetland systems. The decline of sand permeability due to SS clogging may be 

estimated by using equations such as the Kozeny-Carman one, which describes changes of sand 

porosity with time. The aggregates within wetland systems ease settling of SS and provide a 

surface area for the attachment of biofilms that decompose soluble pollutants. Multiple layers 

of gravel are organized in such a way that the size of the gravel increases from the top to the 

bottom layer, which has been recently reported to relieve clogging in vertical-flow constructed 

wetland systems (Song et al., 2015). However, many studies have reported that the occurrence 

of clogging relates to this conventional arrangement of aggregates (Langergraber et al., 2003), 

and therefore, some authors (Sun et al., 2007) proposed an anti-sized reed bed system, which 

was demonstrated to be more effective than a conventional mono-sized reed bed with regard 

to the removal of several major pollutants from a high strength piggery wastewater. The anti-

sized reed bed counteracts the clogging of the bed matrix by allowing SS to be filtered and 

deposited more uniformly inside the bed. 

One of the worst problems within subsurface-flow constructed wetlands is substrate clogging, 

which may only occur after a relatively long period of about five years (Geary & Moore, 1999; 

Scholz, 2010) or ten years (Knowles et al., 2011; Hill-Casey et al., 2014). Substrate clogging 
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results also in anaerobic conditions, which usually reduces the treatment performance even 

further (Scholz, 2010). 

2.7 Types of clogging  

2.7.1 Biological clogging  

This is defined as the accretion and growth of microbial biomass within the substrate pores of 

wetland base material, leading to a reduction of the porosity of wetland media and a 

corresponding considerable decrease in hydraulic conductivity. Consequently, this blocks the 

penetration of oxygen in the wetland media leading to low treatment performance as pointed 

out by Thullner (2010), Knowles et al. (2011), Hua et al. (2013), Hua et al. (2014) and Song et 

al. (2015). Eventually, it may become so clogged (the substrate) that hydraulic malfunctions 

occur leading to progressive diminution of porosity and reduction of active pore volume, 

permeability and substrate hydraulic conductivity (Zhao et al., 2004; Davison et al., 2006; 

Pedescoll et al., 2011; De la varga et al., 2013; Song et al., 2015) which can greatly affect the 

lifetime of the system subsequently leading to poor effluent water quality to receiving 

watercourses.  

Subsurface-flow wetlands separate and restrain biofilms (additional solids contributions from 

microorganisms) through transport and attachment processes (Hermansson, 1999; Tufenkji, 

2007; Knowles et al., 2011). Once microbes colonize the wetland media surface, biomass 

further infiltrates inside the substrate media opening spaces. This will subsequently lead to 

clogging of the wetland media. Clogging of the media as a result of biofilm growth was 

reported (Caselles-Osorio & Garcia, 2006) to decrease inlet hydraulic conductivity by 64% in 

comparison to outlet hydraulic conductivity in their studied HSSF wetlands. However, these 

biofilms (Thullner, 2010) have variable impact with regard to wetland hydraulic conductivity 

because they are complicated naturally. For example, Mays and Hunt (2005) noted that they 

make assemblies with filaments under saturated conditions, establishing a thread-like net over 
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the media openings that may retain solids adeptly compared to homogenous biofilm layers. 

Tanner and Sukias (1995) also noted that majority of biofilms secrete cells and associated extra 

cellular polymeric substances are typically 99% water. They are a mucus-like gel, a smaller 

size in diameter on the nanometric scale, hence becoming nearly impenetrable (Vandevivire & 

Baveye, 1992) and plugging the pores between aggregates. Moreover, if these biofilms join up 

on another substrate fragment separately, Wallace and Knight (2006) noted that substrate 

clogging may eventuate and the hydraulic conductivity of the whole media can move in the 

direction of the hydraulic conductivity of the biofilm. Furthermore, Hua et al. (2013) found 

that these biofilms aggravate clogging of substrate media even if the inflow suspended solids 

concentration is less than 10 mg l-1 by enabling the solids to combine easily subsequently 

leading to their quick settling and interception. With this, the biofilms secrete their extracellular 

polysaccharide gel which adds to the stickiness of the substrate, blocking the pores and finally 

clogging the media. Soares et al. (1991), Winter and Goertz (2003), Zhao et al. (2009) and Hua 

et al. (2014) also reported that biological clogging can be noted particularly when nutrient 

loadings are relatively high. 

Clogging of substrate media in subsurface-flow treatment wetland (SSF TW) as a result of 

vegetation has been controversial (Knowles et al., 2011). Some studies have the notion that 

vegetation counteracts media clogging while some have not. For example, with reference to 

the effect of vegetation counteracting clogging, Kickuth and Konemann’s patent (US Patent 

No. 4,793,929, 1998), Fu et al. (2004) and Zhao et al. (2009) reported clogging counteracted 

by macrophyte root growth. The tubular structure of the roots makes channels in the substrate 

while growing and improves permeability, hydraulic conductivity and averts media clogging 

(Le Coustumer et al., 2012). Furthermore, recently, Fu et al. (2013) reported clogging 

abatement as result of growing macrophytes in their system. The authors attributed the 

abatement to penetration of the roots and rhizome of the wetland plants through the bed, 
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pollutants absorption, aeration improvement in the bed matrix and acceleration of 

microorganism growth by the plant released oxygen. Nevertheless, some studies noted that 

vegetation aggravates clogging. Scholz and Xu (2002) in their experiment observed that 

wetland plant decay may also lead to clogging of the top aggregate layer by decomposing reed 

litter if the top biomass is not harvested, because plant litter decays and contributes to elevated 

levels of SS and dissolved nutrients. Furthermore, Pedescoll et al. (2011) observed clogging in 

their systems as a result of macrophytes root growth with hydraulic conductivity and porosity 

reduction in planted wetlands compared to unplanted ones. 

2.7.2 Physical clogging 

This is the occurrence of clogging due to accumulation of solid particles (organic or inorganic). 

Inflow wastewater applied to wetlands constitutes particles of different diameters and contents. 

A large number of wastewater particles fall into the size of approximately 1–2 µm in diameter 

(Tchobanoglous, 1993) and cannot be eliminated via inactive and additional mechanical 

influences, and also since they are copious or large in number they cannot be affected by 

electrostatic forces (Zamani & Maini, 2009). However, particles in the diameter range of 0.7–

2 µm have been noted by Puigagut et al. (2008) to be ultimately plentiful in the inflow and 

outflow of their studied wetland in Spain. Moreover, particulate solids (<100 µm) have been 

reported to be the cause of clogging in vertical-flow wetlands evaluated by Winter and Goertz 

(2003) and Hua et al. (2010). 

The deposition of solids at the subsurface and at the surface of SSF TW slows down the 

hydraulic conductivity inside the subsurface of the wetlands and prevents water penetration of 

surface flow through to the subsurface of the SSF TW (Knowles et al., 2011; De la Varga et 

al., 2013). The mechanisms of filtration and retention of suspended solids in SSF treatment 

wetlands is through the principle of transport and attachment (Yao, Habibian, & O’Melia, 

1971) as reviewed by Knowles et al. (2011). In the former, the solid particles collide with each 
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other in the transportation process and stick to themselves upon impact in the latter case (Swift 

& Friendlander, 1964; Knowles et al., 2011). The retention of solids on media surfaces is due 

to electrostatic and van der Waal’s forces, and the bonding intensity (Hermansson, 1999; Hua 

et al., 2010) relies on the corresponding charge of the solids, gravel or soil surfaces and the 

entire wastewater. These retained solids are capable of stacking with each other, subsequently 

forming dendrites which further enter into the pore spaces of the media and increase the 

likelihood of solid interception (Hubbe, Chen, & Heitmann, 2009; Hua et al., 2010; Hua et al., 

2014; Song et al., 2015) leading to clogging of the wetland media.  

Initially, clogging of the substrate media was assumed to be due to inorganic particle 

contribution while organic solids would decompose sufficiently (Knowles et al., 2011). 

However, it has been reported by several studies that both organic and inorganic solids cause 

clogging of wetland media. For example, regarding clogging caused by inorganic solids, 

Suliman et al. (2006) attributed the clogging of their horizontal flow wetlands in Norway to 

blockage of the soil pores by sediment particles in the range of 6 mm diameter. In other studies, 

Llorens, Puigagut, and Garcia (2009) and Pedescoll et al. (2009) also revealed that more than 

75% of the particles which clogged their experimental HSSF TWs in Catalonia, Spain were 

inorganic in nature. Furthermore, Platzer and Mauch (1997) noted in their experiment that 

clogging was due to accumulation of more than 90% inorganic solid materials. Regarding 

clogging as a result of predominantly organic solid materials, Zhao et al. (2009), Fu et al. (2013) 

and Song et al. (2015) have attributed clogging of their systems primarily to accumulation of 

organic solid materials in the wetland substrates. In terms of quantification, Tanner et al. (1998) 

and Nguyen (2000, 2001) noticed 80% accumulated solids in the dairy wastewater of their 

study contained 63–96% relatively refractory organic matter fractions composed of humic, 

humin and fulvic acids, originating from lignocellulosic and humic substances. The humic 

substances are highly colloidal and nebulous with greater potentiality and mechanical bonding 
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attributes which give them the ability to block media pores subsequently causing clogging of 

the systems (Tanner & Sukias, 1995; Nguyen, 2000). Furthermore, Fu et al. (2013) reported 

that labile organic solids and fulvic acid are the major contributing factors that lead to clogging 

of their vertical-flow wetlands in China. 

2.8 Problems, advantages, causes and remedial measures of clogging  

This section briefly outlines the potential problems (and some advantages) and causes 

associated with clogging. In summary, the key problems are as follows: 

 The accumulation of solids within the media matrix favours the formation of short-

circuiting and, consequently, the decrease of the hydraulic conductivity and effective 

volume. 

 Clogging promotes the presence of water over the matrix by occlusion of interstitial 

spaces. 

 The reduced oxygen content in the wetland due to clogging may lead to a reduction of 

the pollutant removal efficiency, resulting in a negative impact such as eutrophication 

on the receiving watercourses. 

Key causes for clogging: 

 Organic solids deposit on the constructed wetland surface blocking pores. 

  Accumulation of SS inside the voids of the filter media. 

 The initial mean void diameter is too small. 

 Matrix with heterogeneous gravel (different diameters). 

 Anomalies in the distribution and/or water collection systems. 

 The rapid growth of microorganisms. 
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 Chemical precipitation and deposition within the pores. 

 Obstruction of the pores caused by the growth of rhizomes and roots. 

The following processes (not covered previously) usually play a minor role: 

Chemical precipitation and deposition within the pores (Platzer & Mauch, 1997), chemical 

precipitation of metal hydroxides and sulphides (Sheoran & Sheoran, 2006), calcium carbonate 

(Fleming, Rowe, & Cullimore, 1999), elemental sulphur (Kadlec & Wallace, 2009)  

Table 2. 2: Some literature on clogging and the representative countries 
Location Media and size Findings Recommendations Title of the paper 
Poland 

 
Soil 

 
Under sewage filtration, 
sand clogs shallowly up 
to few centimetres while 
gravels clog deeper into 
the bed more than 100 m. 
Decline of sand 
permeability due to SS 
application can be 
predicted due to Cozny 
Karman equation and a 
relationship describing 
changes of sand porosity 
with time.  
 

Further investigations to 
confirm and expand the 
rate of validity of the 
developed model are 
needed 

Blazejewski and Murat-
Blazejewska (1997) Soil 
clogging phenomena in 
constructed wetlands 
with subsurface flow 
 

Germany 
 

Soil Clogging occurs only in 
the upper 0-15 cm of the 
bed. Clogging is 
dependent on the height 
of organic mass loading. 
 

In terms of the 
appropriate length of 
loading and recovery 
periods, more knowledge 
has to be gained 

Platzer and Mauch 
(1997) Soil clogging in 
vertical-flow reed beds - 
Mechanisms, 
parameters, 
consequences and..... 
solutions? 
 

Austria 
 

Sand with a gravel size 
of 0.06/4 mm and 1/4 
mm 
 

Substrate clogging is by 
far the biggest 
operational problem of 
vertical flow constructed 
wetlands. Reasons for 
substrate clogging 
include accumulation of 
suspended solids, 
surplus sludge 
production, chemical 
precipitation and 
deposition in the pores, 
growth of plant-
rhizomes and roots, 
generation of gas and 
compaction of the 
clogging layer  
 

 Langergraber et al. 
(2003) Evaluation of 
substrate clogging 
processes in vertical 
flow constructed 
wetlands 
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Table 2.2 (cont 

Location Media and size Findings Recommendations Title of the paper 
Germany 

 
 
 
 
 
 
 

Sand based 
 

The content of SS and 
especially particles > 50 
μm are considered to 
play a key role. These 
particles are the same 
size as the pores in which 
seepage mainly occurs. 
Thus their potential for 
surface blocking is high. 
It is concluded that the 
construction and size of 
the primary settling has 
to ensure that the mean 
concentration of SS after 
settling does not exceed 
100 mg l–1. The results of 
this study indicate that 
the area of the VFCW 
should be designed for a 
maximum loading rate of 
5 g m–2 d–1 and the COD 
load should not exceed 
20 g m–2 d–1. 
Choice of media 
including coarse fraction 
can abate adverse effect 
of clogging to some 
degree. 
 

 Winter and Goetz (2003) 
The impact of sewage 
composition on the soil 
clogging phenomena of 
vertical flow constructed 
wetlands 
 
 
 
 
 

     

 

Norway 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sand and light weight 
aggregate 0.063–8 mm 
 

It was found that a 
clogging layer forms at 
the interface between the 
filter and underlying soil, 
irrespective of the inflow 
regime of both water and 
sediment. It was also 
found that clogging is 
much slower if the water 
level is kept at a constant 
level than if it varies 
within the column, due to 
formation of a sediment 
plug that “shelters” the 
filter/soil interface. Most 
importantly it was shown 
that physical clogging is 
mainly caused by 
migration of sediment 
particles less than 6 mm 
in diameter. A simple 
regression model was 
proposed and tested for 
the prediction of 
clogging due to storm 
water sediment 
 
 

Future research is needed 
to verify and test the 
model for other cases, 
and to modify the model 
to predict transport of 
particles through the 
filter media of at least 
two-dimensional 
systems. 
 
 

Suliman et al. (2006) 
Change in flow and 
transport patterns in 
horizontal subsurface 
flow constructed 
wetlands as a result of 
biological growth. 
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Table 2.2 (cont) 

Location Media and size Findings Recommendations Title of the paper 
USA 

 
Sand and gravel of 10.5, 
6.4 and 13 mm sizes 
 

Results showed that the 
growth of biofilms 
within the substratum 
pores certainly caused 
remarkable reduction of 
effective porosity, 
especially for the strong 
organic wastewater, 
whereas its influence on 
infiltration rate was 
negligible. It was 
implied that the most 
important contribution of 
biofilm growth to 
clogging was 
accelerating the 
occurrence of clogging. 
 

Extend the study of 
operating HFCWs to 
other regions and 
incorporate heuristic 
knowledge acquired as a 
result of implementing 
the proposals the 
protocol produced. 
 

Siriwardene, Deletic, 
and Fletcher (2007) 
Clogging of storm water 
gravel infiltration 
systems and filters: 
Insights from a 
laboratory study 
 
 
 
 
 
 
 
 
 
 
 
 

     
     

China 
 

1 mm sand and 10–20 
mm gravel 
 

The management of 
literature knowledge and 
a proposal for an 
operation and 
maintenance protocol for 
clogging prevention and 
some recommendations 
to improve the 
performance of HFCW 
technology 

 Lianfang, Wei, and Wei 
(2009) Clogging 
processes caused by 
biofilm growth and 
organic particle 
accumulation in lab-
scale vertical flow 
constructed wetlands 
 
 

Spain 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acquisition, analysis 
and integration of 
available data and 
knowledge and secondly 
the management of all 
this information 

Provision of information 
and knowledge to be 
used to prevent and 
manage clogging 
problems associated with 
constructed wetlands 

Further research needed 
on biomass 
accumulation and 
organics degradation on 
clogging. 
 

Turon, Comas, and Poch 
(2009) Constructed 
wetland clogging: A 
proposal for the 
integration and reuse of 
existing knowledge 
 

China 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Perplex columns with 
gravel of 3, 10 and 20 
mm 
 

Clogging layer gradually 
develops from top of the 
media and the formation 
of deposition blanket 
layer on top of the 
substrate. The intensity 
of clogging reduces with 
depth and the SS solids 
were trapped in the 0-4 
cm. Process of clogging 
is divided into 3: 
Puncture phase for 
pollutants, formation of 
deposition blanket layer 
and formation of 
compaction phase of the 
clogging layer. 
 

Underlying mechanisms 
of clogging related to 
design, operation and 
maintenance should be 
researched further. The 
degree of root system 
impact on clogging 
particularly for other 
wetland plants is 
recommended. 
 

Hua et al. (2010) 
Clogging pattern in 
vertical-flow 
constructed wetlands: 
Insight from a laboratory 
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Table 2.2 (cont) 
Location Media and size Findings Recommendations Title of the paper 

China 
 

Perplex columns with 
gravel of 3, 10 and 20 
mm 
 

Clogging layer gradually 
develops from top of the 
media and the formation 
of deposition blanket 
layer on top of the 
substrate. The intensity 
of clogging reduces with 
depth and the SS solids 
were trapped in the 0-4 
cm. Process of clogging 
is divided into 3: 
Puncture phase for 
pollutants, formation of 
deposition blanket layer 
and formation of 
compaction phase of the 
clogging layer. 
 

Underlying mechanisms 
of clogging related to 
design, operation and 
maintenance should be 
researched further. The 
degree of root system 
impact on clogging 
particularly for other 
wetland plants is 
recommended. 
 

Hua et al. (2010) 
Clogging pattern in 
vertical-flow constructed 
wetlands: Insight from a 
laboratory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UK 
 

3–9 mm gravel, all 
media types and sizes 
 

It is concluded that 
uneven inlet distribution, 
continuous surface 
loading and high 
rhizosphere resistance is 
responsible for the clog 
formation observed in 
this system. The average 
inlet hydraulic 
conductivity was 2 m d-1, 
suggesting that current 
European design 
guidelines, which 
predict that the system 
will reach an equilibrium 
hydraulic conductivity 
of 86 m d-1, do not 
adequately describe the 
hydrology of mature 
systems. 
 

Subsequent work will 
compare a large cross-
section of operational 
wetlands with a variety 
of ages, operating 
conditions and design 
characteristics that may 
help explain the clogging 
mechanism and allow 
guidelines to be 
stipulated which help 
maximize the longevity 
of these systems. 
 

Knowles et al. (2010) 
Complementary 
methods to investigate 
the development of 
clogging within a 
horizontal sub-surface 
flow tertiary treatment 
wetland 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Germany 
 

All types of media and 
sizes 
 

Bio clogging of 
experimental wetland 
columns is by far 
different from the field 
scale studies because of 
the complex nature of 
the real wetland natural 
porous media.  
 

Improve understanding 
of microbial process 
relation to bio clogging 
in subsurface flow 
wetlands at the pore 
scale. 
  

Thullner (2010) 
Comparison of bio  
clogging effect in 
saturated porous media 
within one and two 
dimensional flow 
systems: A review 
 
 

Europe and US 
 

All media sizes 
 

Hydraulic and solids 
loading rates have to be 
taken into account for a 
design of a system to 
operate actively. 
Hydraulic overloading 
makes horizontal 
systems more easily 
exposed to clogging than 
vertical ones. 
 

Future research should 
focus on elucidating the 
underlying mechanisms 
of clogging as they relate 
to the design, operation, 
and maintenance of 
subsurface flow 
treatment wetlands. 
 

Knowles et al. (2011) 
Clogging in sub surface 
treatment wetlands: 
Occurrence and 
contributing factors 
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Table 2.2 (cont) 
Location Media and size Findings Recommendations Title of the paper 

China 
 

8–16, 4–8 and 4 mm 
gravels 

Results show that growing 
plants delayed the medium 
clogging process in the 
wetland, and for this purpose 
Canna indica is more 
effective than Cyperus 
alternifolius. The percentage 
of each component of 
organic matter was affected 
by the type of plants. C. 
indica promoted more 
strongly the accumulation of 
the active organic matter 
whereas C. alternifolius was 
more effective in enhancing 
production of fulvic acid. 
Both plant species led to 
lower humin contents in the 
wetland medium. Among all 
the components of organic 
matter, labile organic matter 
and fulvic acid were the 
leading factors causing 
wetland clogging, with the 
former playing the most 
prominent role in the process 

 Fu et al., (2013) 
Medium clogging and 
the dynamics of organic 
matter accumulation in 
constructed wetlands 
 

 

China 
 

 Both the growth and 
detachment of biofilm were 
found to play positive 
roles in the clogging process 
under commonly used 
hydraulic loading in vertical 
constructed 
wetland. In addition, the 
existence of the biofilm 
enabled the suspended solids 
to combine much easier, 
which accelerated the 
settlement and interception 
of the solids. 

 

The quantitative effects 
of the biofilm 
on clogging are still 
desirable to be studied 

 

Hua et al. (2013) The 
role of biofilm in 
clogging process in 
vertical flow constructed 
wetland 
 

China 
 

0.12 mm coarse sand, 10 
cm gravels 

 

The results showed that the 
resting operation could 
effectively alleviate 
bioclogging because the 
hydraulic conductivity and 
effective porosity were 
improved after 3, 7 and 10 
days of resting. In the upper 
0–10 cm layer, the hydraulic 
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and growth of plant roots (Vymazal, 2002). However, a major problem is the quantification of 

any clogging processes. Here is a summary of the key remedial measures to combat clogging: 
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regular inspections using clogging tests; reduction of the water level; pre-treatment of the 

inflow; dosing the water intake; replacing the matrix; applying coarse gravel; cleaning the 

water distribution tubes. 

2.9 Numerical modelling of wetland processes 

Due to their enormous diversity, categories and operational strategies, proper functioning of 

CWs is complex and not fully understood (Meyer et al., 2014; Samso, 2014; Samso, Meyer 

and Garcia, 2015). Numerical models can be applied as a tool to aid in understanding the 

internal processes taking place in the CW systems as well as better their design (Langergraber, 

2007; Langergraber et al., 2009; Hua et al., 2013; Meyer et al., 2014; Samso et al., 2015). 

Numerical modelling of constructed wetlands has gained popularity over the past decade. 

Wetlands are complex systems in which varied physical, chemical and biological processes 

such as sedimentation, filtration, precipitation, sorption, plant uptake, microbial decomposition 

and nitrogen transformations take place (Rousseau, Vanrolleghem, & De Pauw, 2004). These 

processes are active in parallel and mutually influence each other (Langergraber et al., 2009). 

Realistic descriptive models can produce reliable predictions of the performance of constructed 

treatment wetlands (Langergraber, 2007). Realizing the importance of modelling in designing 

and operation of CWs systems, recently, several concerted efforts were made to develop many 

numerical models as tools to aid in understanding numerous complex processes occurring in 

SSF wetland systems (Langergraber, 2007, 2008; Langergraber et al., 2009; Toscano et al., 

2009; Giraldi, Vitturi, & Iannelli, 2010; Hua et al., 2013; Meyer et al., 2014; Samso, 2015; 

Samso et al., 2015). For instance, looking back to the history of numerical wetland modelling, 

as reviewed by Rousseau et al. (2004), the primitive first-order models by Kadlec and Knight 

(1996), which simply regarded wetlands as a “black box”, used a first-order rate constant to 

evaluate the effects of autochthonous production, sedimentation, temperature and retention 

time (Shepherd, Tchobanoglous, & Tchobanoglous, 2001) on the variation of the 
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concentrations of the contaminants in treated water. Due to oversimplification by using the 

first-order rate assumption, further efforts using a variable order (known as Monod-type of 

models) have been made to evaluate the contaminant removal rate (Kemp & George, 1997; 

Mitchell & McNevin, 2001). Multi-component reactive transport models were proposed to 

model both the transport and reactions of the main constituents of municipal wastewater in the 

subsurface-flow processes through wetlands (Langergraber et al., 2009). The reactive transport 

model highlighted the essential requirement for the description of the clogging process, which 

significantly influences the hydraulic conductivity of porous substrate beds and, consequently, 

the long-term behaviour of wetlands. Demaret et al. (2009) proposed a simple biological 

clogging model, which takes account of the effect of biomass growth on hydraulic conductivity 

(Eq. 1). The biomass growth model is assumed to account for spatial diffusion (Eq. 2). The 

biomass diffusion coefficient (DM is estimated by using a mesoscopic biofilm model (Eq. 3). 

 

                                                                            (1)   

 

 

Where K is the hydraulic conductivity, M is biomass density, a and b are two empirical 

parameters and Mclog is the biomass density beyond which no further reduction of hydraulic 

conductivity is observed. 

logc

logc

b

logc

MM

MM

a
aK

a

a
M

M

K

K

>

<

















+

+

+









−

=

1

1

1

0

0

48 
 



 
 









−

+
+∇∇=

∂
∂ Mk

Ck
CMkMD

t
M

M 4
2

3)( εε
                                          

(2) 

 

Where ε is the porosity of the porous substrate beds of wetlands, M is biomass density, t is 

time, DM is the biomass diffusion coefficient, k2, k3 and k4 are empirical parameters, and C is 

the concentration of the dissolved substrates (soluble reactive components) in water. 
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Where DM is the biomass diffusion coefficient, d, α and β are empirical parameters, M is 

biomass density, ε is the porosity of the porous substrate beds of wetlands, and Mmax denotes 

the maximum biomass density. 

Cooke, Rowe, and Rittmann (2005) discussed a rather detailed clogging model called BioClog, 

in which the clogging matter consists of five distinct components, each represented by a 

separate film layer: propionate degraders, acetate degraders, butyrate degraders, inert biomass 

and an inorganic layer composed of mineral precipitates and other inorganic solids. In BioClog, 

clogging accumulation and rates of species conversion are computed, and used to update the 

porosity (plus specific surface) and the source or sink terms of all species considered in the 

transport equation. 
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Recently, Giraldi et al. (2010) developed a reactive transport model for vertical-flow 

constructed wetlands called FITOVERT. In this model, 13 components are taken into account 

using the Activated Sludge Model 1 (Henze, 2000). Its transport model treats the dissolved 

component and particulate components separately. Clogging is described in terms of the 

porosity reduction due to biological growth and the filtration of particulate components using 

a parameter called the total volumetric specific deposit (Dvtot). The effect of porosity reduction 

on the hydraulic conductivity is then estimated according to Eq. 4, which follows the Carman-

Kozeny methodology (Carman, 1956). 
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Where K is the hydraulic conductivity, K0 represents K when the filter is clean during the start-

up phase, p, x and y are empirical parameters, Dvtot is the total volumetric specific deposit, and 

ε0 is the porosity of the porous substrate beds during the start-up phase of the treatment 

wetland. 

2.10 Removal mechanisms in a wetland 

2.10.1 Mechanisms of suspended solids removal 

The inflow wastewater applied to wetlands contains solids particles, either organic or 

inorganic, of various sizes and compositions. Wetlands have the mechanical ability to eliminate 

suspended solids in the wastewater. In a constructed wetland, many publications confirmed 

that solids and particulate matter removal are achieved (Kadlec & Knight, 1996; Green et al., 

1997; Leonard, 2000; ITRC, 2003; Garcia et al., 2010; Hua et al., 2013) via settling and 
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sedimentation, adsorption, and microbial degradation in wetland systems. However, the 

primary physical removal pathways in contaminant removal entail settling and sedimentation. 

These processes achieve effective eradication of suspended solids and particulate matter 

(Kadlec & Knight, 1996; ITRC, 2003; Kadlec, 2009; Abou-Elela et al., 2013). Moreover, van 

der Waal’s forces of attraction and electric forces have been reported (Metcalf and Eddy Inc., 

1991) to reduce SS concentration in constructed wetlands though the forces can repel or attract 

but that depends on the charges on the surface media. 

In surface flow wetlands, the prevalent mechanical means (Environmental Protection Agency 

[EPA], 2000; Kadlec & Wallace, 2009) to eradicate suspended solids have been found to be 

flocculation/sedimentation and filtration. The sedimentation of SS relies upon flow 

discontinuation that subsequently results in settling down of the solids by force of gravity. 

Furthermore, SS interact and adhere to numerous contaminants like heavy metals, pathogens, 

organic matter and nutrients, and this helps their elimination (Sundaravadivel & Vigneswaran, 

2001). Generally, treatment wetlands have been reported to efficiently reduce total suspended 

solids by around 80 to 90% (IWA Specialist Group, 2000). However, some recent studies have 

shown >90% removal efficiency in their wetland systems (Gikas & Tsihrintzis, 2012; Abou-

Elela et al., 2013; Paing et al., 2015). 

Manios, Stentiford, and Millner (2003) noted that the reduction of SS in vertical-flow wetlands 

depends on features of the filter media microorganisms and hydraulic load. VSF wetlands are 

very efficient in SS reduction (EPA, 1999; Tierz et al., 2007; Gikas & Tsihrintzis, 2012; Song 

et al., 2015) as a result of their media large surface area which allows suspended solids to settle 

by gravity, constrict, and adhere to media and macrophyte surfaces. However, Manios et al. 

(2003) observed that the main problem linked to the sedimentation and filtration of solids is 

the risk of media pores blockage as the wastewater permeates through subsequently causing 

clogging with corresponding low hydraulic conductivity resulting in water losses at the inlet of 
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the wetland. This clogging problem is negated by the decomposition of organic matter by 

microorganisms. However, the non-biodegradable mineral content of the solids, which is not 

disintegrated by microorganisms, contributes to the clogging of the filters.  

2.10.2 Mechanisms of organic matter removal 

The elimination of COD and BOD (organic matter) in constructed wetlands was accomplished 

quickly via entanglement and gravity settling of coarse organic matter in the pore openings of 

the substrate media as noted by EPA (1993) while BOD reduction in CWs was mainly due to 

aerobic microbial degradation and sedimentation/filtration processes. However, some studies 

indicated that organic matter removal in constructed wetlands is mainly through aerobic, 

anaerobic, adsorption, filtration, and microbial metabolism (Karathanasis et al., 2003; Song et 

al., 2006; Stefanakis et al., 2014) and can be assessed by the change in COD and BOD 

concentrations in the wetlands. Furthermore, the removal of soluble organic substances is 

accomplished by the growth of microorganisms on the media, adhered on the rhizomes and 

roots of the macrophytes (Song et al., 2006). The function of constructed wetlands is largely 

dependent on organic matter accretion, dissipation and cycling. Organic matter accumulation 

in wetlands supplies energy to microorganisms for denitrification by providing a long-term 

source of carbon and sustainable source of nutrients. However, the accreted organic matter may 

lead to media clogging by obstructing wastewater penetration through the substrate pores 

thereby reducing the retention time of the wastewater and nutrient removal capacity (Nguyen, 

2000). Furthermore, Tanner and Sukias (1995), Winter and Goetz (2003), Zhao et al., (2009), 

Hua et al. (2014) and Song et al. (2015) observed a linear relationship between clogging, COD 

and TSS loading rates in their studies. They indicated that an increase in COD load 

concentration leads to an increase in TSS concentration and severity of clogging. Constructed 

wetlands usually provide high BOD and COD removal (Scholz, 2010; Dong et al., 2011; Gikas 

& Tsihrintzis, 2012; Abou-Elela et al., 2013; Paing et al., 2015). Biochemical conversions are 
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crucial mechanisms to degradable organic matter in wetlands and improve water quality. This 

can be responsible for organic substances elimination as a result of mineralization or 

gasification and the formation of organic matter via synthesis of fresh biomass. DeBusk (1999), 

observed that organic matter has approximately 45 to 50% carbon (C), which serves as a source 

of energy to various microorganisms. This organic carbon is converted into carbon dioxide in 

the root zone by the macrophytes which supply the oxygen necessary for the conversion. 

Furthermore, organic matter can also be removed via adsorption/absorption processes. 

However, EPA (2000) reported that the ratio and strength of adsorption depend on the surface 

media, macrophytes, litter and organic matter properties. Bacteria and fungi are decomposers 

in CWs and through mineralization and gasification have been reported (Choudhary et al., 

2011) to play the main role of organic matter elimination. Additionally, these microorganisms 

synthesize biomass and form organic metabolic by products. Moreover, it has been noted 

(Hong et al., 2001; Ma & Burken, 2003) that further to phytovolatilization, some wetland plants 

release contaminants to the atmosphere by absorbing them in their roots first and subsequently 

transpire them via their transpiration stream .  

2.10.3 Mechanisms of nutrients removal 

In wastewater treatment, removal of nitrogen and phosphorus are very important issues because 

of their environmental and health implications. Receiving water courses become eutrophic 

when they receive large amounts of nitrogen and phosphorus nutrients subsequently promoting 

enormous plant growth that leads to the depletion of oxygen in the water environment. Nitrogen 

removal within constructed wetlands is usually mainly by microbial nitrification and 

denitrification (Table 2.3 and Figure 2.8). In the nitrification process, ammonia is oxidized 

largely to nitrate. As a result of the oxidation of ammonia to nitrate, nitrate is reduced to 

gaseous nitrogen by the denitrification process. Nitrogen removal in many constructed wetland 

systems without adequate active or passive aeration is insufficient, mainly because of the lack 
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of available oxygen used for aerobic biological degradation (Scholz, 2010; Saeed & Sun, 2011; 

Fan et al., 2012; Fan et al., 2013; Vymazal, 2014; Song et al., 2015). However, some studies 

reported that processes involved in nitrogen elimination in constructed wetlands are 

nitrification, ammonia volatilization, fixation, nitrate ammonification, ammonification, 

denitrification, organic nitrogen burial, anammox, plant and microbial uptake and ammonia 

adsorption, (Choudhary et al., 2011). Nevertheless, Vymazal (2007) noted that out of the 

above-mentioned processes for nitrogen removal from the wastewater, denitrification, 

ammonia adsorption, annamox, organic nitrogen burial and ammonia volatilization are the 

ultimate ones for removing the nitrogen while others, like nitrification or ammonification, are 

actually converters of nitrogen from its different types in the wastewater. In wetlands, the 

conversion of organic nitrogen to ammonia for example, leads to an increase in the quantity of 

the ammonia as a result of the ammonification process. Furthermore, Vymazal, (2007) 

observed that generally nitrogen removal processes depend on the type of constructed wetlands, 

for example total nitrogen removal was found to be in small quantities in a single stage wetland 

except in a wide treatment surface area. As a result, combined systems such as hybrid 

constructed wetlands should be an alternative choice for complete elimination of the total 

nitrogen (Vymazal & Kröpfelová, 2011; Ayaz et al., 2012; Vymazal, 2013a, 2014). 

Nevertheless, in various constructed wetlands, the main elimination pathway is the 

combination of nitrification and denitrification (Vymazal, 2007; Scholz, 2010). 

The denitrification/nitrification mechanisms require both aerobic and anaerobic environments. 

However, parameters such as pH, dissolved oxygen and temperature affect the performance of 

nitrifying bacteria (IWA Specialist Group, 2000). On the other hand, the enzyme needed for 

denitrification may be suppressed in the presence of dissolved oxygen. 

Nitrification/denitrification can therefore occur simultaneously only in a soil which has both 

aerobic and anaerobic zones (Cooper et al., 1996). Nitrification rate was reported (Neralla et 
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al., 2000; Vymazal, 2007) to be higher in vertical SSF wetlands, due to the good aeration of 

the soil through regular bed draining, than in the horizontal SSF system due to the anoxic nature 

of the wetlands. Therefore, many authors, (Luederitz et al. 2001; Vymazal, 2005; Vymazal & 

Kröpfelová, 2011; Ayaz et al., 2012; Vymazal, 2013a, 2014; Mietto et al., 2015) proposed 

intermittent loading as a viable option to guarantee long flowing distance and supply the 

organic substances necessary for denitrification to achieve high N removal. 

The removal capability of N in constructed wetlands decreases (Kadlec, 1999; Werker et al., 

2002; Kuschk et al., 2003; Akaratos & Tsihrintzis, 2007; Gikas & Tsihrintzis, 2010, 2012) 

during the winter months, implying that N removal processes are temperature dependent. This 

indicates that temperature can be a determinant factor in N removal, when designing 

constructed wetlands in cold climate regions since the higher the temperature, the higher the 

growth of microbes and nitrification. Nevertheless, some authors (Harbel, Perfler, & Mayer, 

1995; Reed, Middlebrooks, & Crites, 1995) noted that seasonal temperature has no clear 

relationship with removal efficiency of nutrient. Moreover, Kadlec (1999) reported that the 

removal efficiencies should be affected by annual cycles of numerous parameters such as 

temperature, humidity, precipitation and vegetation. 

Phosphorus in constructed wetlands comes as phosphate in both organic and inorganic forms 

in different wastewaters (Vymazal, 2007; Choudhary et al., 2011) but because of its 

bioavailability, macrophytes and algae utilize orthophosphate phosphorus straight. 

Furthermore, it is a medium between the two forms of phosphorus cycling in wetlands as 

reported by Vymazal (2007). In constructed wetlands, phosphorus elimination takes place 

through sediment retention, adsorption, desorption, fragmentation, plant or microbial uptake, 

mineralization and leaching (Vymazal, 2007) but predominantly removed by porous media 

adsorption and microbial consumption (Gikas & Tsihrintzis, 2012), mechanisms that are not 

directly influenced by temperature (Kadlec & Wallace, 2009). However, the quick 
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multiplication of the microorganisms, like algae, bacteria and fungi, and their inability to 

accumulate much phosphorus, means they speedily absorb it instead (Vymazal et al., 2006).  

Type of wetland also determines the extent to which the phosphorus can be stored or removed. 

For example, Vymazal et al. (1998) reported that soil media in VSF adsorbs phosphorus but 

the absorption capacity depends on the media type while in FWS wetlands, the adsorption is 

by the emergent floating macrophytes but harvesting and returning the dead macrophytes 

results in the maximization of phosphorus eviction in the wetland. Phosphorus eradication in 

planted vertical SSF wetlands takes place through the following processes: sorption to media, 

biofilm absorption and macrophyte ingestion (Lantzke et al., 1999) and the eradication quantity 

by the three processes is in the following order: media greater than wetland plants, greater than 

macrophytes, greater than biofilm, in the brief-regime, while macrophyte (70%) greater than 

media, (20%) >> biofilm (10%), in the long-term. Furthermore, it was reported that plant 

harvesting eliminated additional phosphorus in the range of 10–20% (Lantzke et al., 1999).  

Phosphorus removal mechanisms, like precipitation and adsorption, may cause media clogging 

in constructed wetlands (Knowles et al., 2011) through binding of the media substrate as a 

result of precipitation reaction of media chemical properties with metal hydroxides and 

sulphides (Sheoran & Sheoran, 2006), with calcium carbonate (Fleming et al., 1999) and with 

elemental sulphur (Kadlec & Wallace, 2009). In this kind of situation, media in constructed 

wetland systems treating wastewater containing high amounts of industrial compounds may 

clog if there is high biological activity and interaction with the high concentration of these 

compounds (Kadlec & Wallace, 2009; Dotro, Larsen, & Palazolo, 2010). Nivala et al. (2007) 

reported clogging in their study as a result of iron fouling of the media treating land fill leachate 

and attributed the problem to ferric hydroxide precipitation which under high oxidizing 

conditions adsorbed to media surfaces, decreased porosity, and subsequently gummed the 

media together. Furthermore, different cations can precipitate phosphate under certain 
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conditions in wetland environments such as apatite, hydroxyapatite, variscite, strengite, 

vivianite and wavellite (Reddy & D’Angelo, 1994). 

2.10.4 Mechanisms of hydrocarbon removal 

Hydrocarbons are defined as either oil, grease, crude petroleum, tars, vegetable, mineral oil, 

animal tars, light fuel, heavy fuel or a combination of them (Eman, 2013) which are not soluble 

or not well soluble in water. Imfeld et al. (2009) revealed that these hydrocarbons are evaluated 

usually as total petroleum hydrocarbons (TPH), total hydrocarbons (THC), volatile organic 

contaminants (VOCs), and diesel and gasoline range organics (DRO & GRO) in wetland 

studies. They further expounded that, the debilitation of organic contaminants including the 

hydrocarbons in wetland systems requires the combination of chemical, biological and physical 

processes. However, they noted that the role of a specific process changes and depends on the 

type of pollutant being treated, the type of wetland, type of operational design, type of 

macrophytes in the wetlands, environmental conditions and the type of substrate media used.  

Concerted efforts were made from various researchers to remove different forms of 

hydrocarbons from contaminated environments in wetlands ranging from oily water 

(Litchfield, 1993; Ji et al., 2002, 2007), crude and chemically dispersed oil (Page et al., 2002), 

VOCs such as BTEX (Lu, Lin, & Chu, 2002; Wallace & Kadlec, 2005; Vymazal, 2009; 

Ranieri, Gikas, & Tchobanoglous, 2013), benzene (Yeom & Yoo, 1999; Eke & Scholz, 2008; 

Tang et al., 2009; De Biase et al., 2011), TPHs (Gessner, Kadlec, & Reaves, 2005; Lin & 

Mendelssohn, 2009; Zhang et al., 2014), PAHs (Zappi et al., 1996; Fountoulakis, 2009; 

Haritash & Kaushik, 2009, Zhang et al., 2014), gasoline range organics (Wallace & Kadlec, 

2005; Vymazal, 2009), diesel range organics (Omari et al., 2003; Lin & Mendelssohn, 2009; 

Bergier, 2011; Liu et al., 2011; Wang et al., 2011; Albaldawi et al., 2013a, b, c; Albaldawi et 

al., 2014,2015) to total hydrocarbons (THC) in a mixture (Guittonny-Philippe et al., 2015a)  
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and these authors have attributed the abatement of these hydrocarbon pollutants to either 

chemical, physical or biological removal pathways individually or in combination (Table 2.3).  

In constructed wetland systems, chemical sorption and adsorption processes effectively 

eliminate hydrocarbon pollutants in the wastewater. Sorption, a chemical attachment between 

wastewater particles and media surfaces, influences hydrocarbon contaminants retention in the 

wetland aggregates particularly during the early stages of the wetland operation when the 

adsorption sites are free. At this time, the wetland substrate media serves as a sink and may 

possess enough binding capacity to retain the contaminants due to their high adsorption 

capacity (Omari et al., 2003; Tang et al., 2009). For example, Cottin and Merlin (2007, 2008) 

and Omari et al. (2003) found out that sorption was the strong removal pathway that led to the 

elimination of PAHs and diesel fuel respectively in their wetland systems. However, in their 

review, Imfeld et al. (2009) elucidated that when the adsorption sites reach a saturation stage 

and can no longer adsorb hydrocarbon pollutants in the media, no further net loss occurs, rather, 

the pollutants are retained via a reversible sorption process. Furthermore, they noted that this 

retention may subsequently expose the pollutants to microorganisms and enhance their 

biodegradation by increasing the pollutants residence time (RT).   
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Table 2. 3: Hydrocarbon removal mechanisms 
Hydrocarbon Removal mechanism Reference 
Hexachlorobenzene Mechanical settling Pardue et al., 1993 
Petroleum hydrocarbons Mechanical settling Thurston, 1999 
Benzene Air stripping Yeom & Yoo, 1999 
Oil: total saturated and 
aromatic hydrocarbons 

Biodegradation and physical 
flushing processes 

Page et al., 2002 

DRO: C10-C26 Adsorption and plant uptake Omari et al., 2003 
VOCs: BTEX Aerobic biodegradation and 

volatilization 
Wallace & Kadlec, 2005 

 
TPH, AHC, C7-C30 

 
Volatilization and microbial 
degradation 

 
Gessner et al., 2005 

Oil Plant uptake Ji et al., 2007 
Benzene Volatilization Eke & Scholz, 2008 
PAH Absorption Fountoulakis, 2009 
Diesel, PAH, TPH Plant uptake Lin & Mendelssohn, 2009 
Benzene Adsorption Tang et al., 2009 
DRO: C7-C30, C7-C14 Plant uptake Bergier et al., 2011 
VOCs Volatilization and microbial 

degradation 
De Biase et al., 2011 

BTEX Plant uptake and 
biodegradation 

Gikas, Ranieri, & 
Tchobanoglous, 2011  

Diesel Plant uptake Liu et al., 2011; Wang et al., 
2011 

Diesel Plant uptake Wang et al., 2011 
Diesel Plant uptake and 

biodegradation 
Albaldawi et al., 2013a, b, c; 
Albaldawi et al., 2014, 2015 

PAHs and PBDEs Plant uptake and tidal regime Zhang et al., 2014 
PAH 
THC 

Phytodegradation 
Adsorption, aeration and 
microbial degradation 

Zhang et al., 2014 
Guittonny-Philippe et al., 
2015a 

 

Physical sedimentation and volatilization processes are important hydrocarbon removal 

pathways in constructed wetlands. Sedimentation, a phenomenon, referring to physical settling 

down of wastewater solids to wetland aggregate occurs when hydrocarbon pollutant particles 

interact with particulate organic matter (POM). As a result of this interaction, the POM and the 

pollutants settle down or are mechanically retained (Imfeld et al., 2009). Further, the 

researchers claimed that in highly polluted wastewater containing large amounts of POM, the 

most feasible way to remove organic compounds including petroleum hydrocarbons attached 

to the wastewater solids is mechanical filtration. Thurston (1999) and Pardue et al. (1993) 
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reported mechanical settling as the removal pathway for the attenuation of petroleum 

hydrocarbons and hexachlorobenzene respectively in their studies. In volatilization, the 

contaminant is directly emitted as a vapour from the aqueous wastewater phase to the 

atmosphere. However, in some wetlands, the physical volatilization process is not direct but 

goes through a biological removal pathway. Initially, the macrophytes absorb the contaminants 

in their roots and then transfer them to the atmosphere via their transpiration system, a process 

known as phytovolatilization (Hong et al., 2001; Ma & Burken, 2003) while in other wetland 

plants like helophytes, Pardue (2002) disclosed that the transfer of the contaminants is via the 

aeranchymatous tissue. Wallace (2002), Wallace and Kadlec (2005), Vymazal (2009), De 

Biase et al. (2011) and Ranieri et al. (2013) have reported that volatilization was an important 

removal process for volatile hydrophobic compounds such as BTEX. However, Kadlec and 

Wallace (2009) predicated that in surface flow wetlands, the volatilization of the contaminant 

is expected to be more noticeable than in subsurface flow wetlands as a result of direct contact 

of the wastewater with the atmosphere. As a result of this direct volatilization, some authors 

(McCutcheon & Rock, 2001) envisaged that the volatilization may lead to air pollution and 

contaminant dispersal in the environment. Moreover, they argued that this, and lack of stable 

risk assessment, presently hinders the wide acceptance by regulatory bodies of a 

phytoremediation strategy for VOCs attenuation. 

In the biological attenuation process, microbial degradation and plant bioremediation are very 

important removal mechanisms of organic compounds including petroleum hydrocarbons from 

wastewater in natural and constructed wetlands. In the microbial process, microorganisms eat 

and biodegrade the hydrocarbon contaminants as their source of energy (Al-Baldawi et al, 

2013a; Al-Baldawi et al., 2014, 2015; Guittonny-Philippe et al., 2015a). However, the 

degradation of the contaminant depends on its physical and chemical properties, for example, 

the nature and number of carbon atoms constituting the contaminants or its functional groups 
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(Imfeld et al., 2009). Recently, some studies, (Albaldawi et al., 2013a; Albaldawi et al., 2014, 

2015) assed the phytotoxicity of hydrocarbons in surface and subsurface flow wetlands using 

the bulrush plant. The authors revealed that the systems efficiently removed more than 80% of 

TPH using diesel as a hydrocarbon model and attributed the removal to degradation of the 

TPHs by microorganisms residing in the rhizosphere. They further concluded that the SSFW 

removes the hydrocarbons more efficiently than the FWSW. In addition, Bhatia and Goyal 

(2014) reported that the rhizosphere of macrophytes such as Phragmites, Typha, Juncus, 

Spartina and Scirpus provides a favourable environment for the microbial degradation of 

organic pollutants including PAHs. Hydrocarbon, such as diesel, remediation in wetlands is 

very effective because of the inborn ability of the macrophytes to aerate the rhizosphere, this 

leads to an increase in aerobic degradation of hydrocarbons (Hambrick, DeLaune, & Patrick 

Jr, 1980; Salminen et al., 2004). Furthermore, phytoremediation as a result of high root biomass 

from the macrophytes might produce reasonable root exudates that may advance the roots 

activity in the rhizosphere subsequently leading to an increase in diesel degradation (Hegde & 

Fletcher, 1996; Yoshitomi & Shann, 2001). In their study of subsurface flow wetlands in a 

green house, Li et al. (2009) and Albaldawi et al. (2013a, b, c) found that wetland plants 

contributed in the aeration of the rhizosphere which in turn stimulated the activity of the 

rhizobacteria, subsequently leading to the high removal of diesel hydrocarbon (more than 

70%). However, Sun, Zhao, and Allen (2005), Leonard, Key, and Srikanthan (2003), Mander 

et al. (2003) and Lee and Scholz (2006) reported that organic compounds and other nutrients 

removal in vertical-flow constructed wetlands were good under aerobic and/or anaerobic 

decomposition, microbial assimilation and plant uptake. Table 2.4 shows some constructed 

wetland performances based on percentage in diesel treatment and their representative 

countries.  
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Table 2. 4: Average influent (in) and effluent (out) concentrations and treatment efficiency of 
diesel hydrocarbon in constructed wetlands in representative countries 

Country Diesel concentration mg/l Treatment 
efficiency (%) 

Authors/year of 
publication 

Title of the paper 

 Inflow                      Outflow    
UK n/a     

n/a 
         80.1±9.8% Omari et al., 2003 Hydrocarbon 

removal in an 
experimental gravel 
bed constructed 
wetlands 

USA 20, 40, 80, 
160
   
n/a 
and 320   
 

All in the range of 
95% and above 

Lin and 
Mendelssohn, 
2009 

Potential of 
restoration and 
phytoremediation 
with Juncus 
roemerianus for 
diesel contaminated 
coastal wetlands 

China 1000, 5000, 
15000,
  
n/a 
and 20000 

All in the range of 
67.42±8.92% 

Liu et al., 2011 Degradation of 
diesel-originated 
pollutants in 
wetlands by Scirpus 
triqueter and 
microorganisms 

Malaysia 8,700                                     n/a 
17, 400                                  
n/a 
26,100                                   
n/a 
 

77.0% 
91.5% 
81.1% 

Albaldawi et al., 
2013a 

Phytotoxicity test of 
Scirpus grossus on 
diesel contaminated 
water using a 
subsurface flow 
system 
comparative  
 

Malaysia 1%                                          n/a 
2%                                          n/a 
3%                                          n/a 
 

>80% for SSF & 
<80% for FSF 
>80% for SSF & 
<80% for FSF 
>80% for SSF & 
<80% for FSF 

Albaldawi et al., 
2013b 

Performance of free 
surface and sub-
surface flow systems 
in the 
phytoremediation of 
hydrocarbons using 
Scirpus Grossus 

Malaysia 0.100%                                   
n/a 
0.175%                                   
n/a 
0.250%                                   
n/a 

All 72.5% Albaldawi et al., 
2014 

Optimized conditions 
for phytoremediation 
of diesel by Scirpus 
grossus in horizontal 
subsurface flow 
constructed wetlands 
(HSFCWs) using 
response surface 
methodology 

 

n/a: not applicable 
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2.10.5 Mechanisms of heavy metals removal in constructed wetlands  

Heavy metals elimination in wetlands occurs through various physical, chemical, and 

biological processes including settling, sedimentation sorption, adsorption, complexation, 

oxidation and reduction, cation and anion exchange, chemical precipitation and co-

precipitation as insoluble salts, photodegradation, phytoaccumulation, biodegradation, 

microbial activity, and plant uptake (Denga, Yea, & Wonga, 2004; Sheoran & Sheoran, 2006; 

Galletti, Verlicchi, & Ranieri, 2010; Ranieri & Young, 2012; Guittonny-Philippe et al., 2014; 

Guittonny-Philippe et al., 2015a). Moreover, they tend to accumulate on the top layer (sediment 

and litter) in vertical-flow systems and near the inlet in horizontal-flow systems irrespective of 

the removal pathways (Cheng et al., 2002; Scholz & Xu, 2002). However, in their review, 

Sheoran and Sheoran (2006; Guittonny-Philippe et al, 2014 ) noted that the whole of these 

elimination pathways depend on each other making the entire process of the heavy metals 

removal mechanism very complex in wetlands. In constructed wetlands, most metals are 

removed from wastewater via substrate media interaction, after which the macrophytes serve 

as a polishing system (Matagi, Swai, & Muganbe, 1998; Denga et al., 2004; Guittonny-Philippe 

et al, 2014; Guittonny-Philippe et al., 2015a).  

In wetland systems, physical settling and sedimentation processes effectively remove heavy 

metals in wastewater associated with particulate matter (ITRC, 2003; Prestes et al., 2006; 

Terzakis et al., 2008; Guittonny-Philippe et al, 2014 ) as a result of the occurrence of many 

dynamic transformations irrespective of whether the systems are passive or active (Johnston, 

1993; Matagi et al., 1998; Sheoran & Sheoran, 2006). The metals solids can move from the 

wastewater to either the substrate media or microbes or in a different manner subsequently 

leading to their filtration and retention in the wetlands. However, in slow water, metal particles 

denser than water will settle down. Though it has been noted that the physical sedimentation 

process is the predominant pathway of heavy metal removal in both natural and artificial 
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wetlands, Walker and Hurl (2002) noted in their study that sedimentation only takes place after 

the metals have been agglomerated into bigger particles, denser than the water solids via other 

chemical removal processes like the physical ones, subsequently leading to the heavy metals 

entrapment in the wetland sediment. 

Additionally, in sedimentation processes, pads of wetland floating macrophytes in surface 

wetlands provide an avenue for trapping of metals suspended particles as the wastewater passes 

slowly or eases through the wetland systems as a result of typical sheet flow and resistance 

exhibited by the roots of the floating macrophytes. Moreover, some authors attributed heavy 

metals removal predominantly to accumulation in biomass in their evaluated wetland systems 

(Madera-Parra et al., 2015). However, some studies revealed that metals are believed to 

aggregate in the wetland sediment and plant tissues including roots, shoots, stems and leaves 

(Guittonny-Philippe et al, 2014) because they are eliminated from the wastewater but not 

destroyed (Ranieri & Young, 2012). 

In wetland media, one of the most important chemical removal pathways for heavy metals is 

sorption, a process comprising of adsorption, absorption and precipitation reactions (Marchand 

et al., 2010). It leads to binding and accumulation of metals to particles in the substrate media 

from the wastewater as the wastewater enters the wetland system. Nevertheless, Seo, Yu, and 

DeLaune (2008) acclaimed that the adsorption of metals to the particles is either through ion 

exchange or chemisorption and depends on the availability and types of elements at the 

adsorption sites. For instance, retention of some metals such as Pb, Cu, and Cr by adsorption 

is higher than Zn, Ni, and Cd (Sheoran & Sheoran, 2006). In some studies, the removal 

mechanism was attributed to co-precipitation and cation exchange capacity (Lizama Allende, 

McCarthy, & Fletcher, 2014). They have reported a removal efficiency of more than 80% of 

As and Fe in the zeolite and limestone and cocopeat media used in their systems. Conversely, 

in redox and co-precipitation processes, metals such as Fe, Al, and Mn can form insoluble 
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compounds via oxidation that subsequently result in the production of array of oxides, 

oxyhydroxides and hydroxides while sulphates are reduced to sulphides (Murray-Gulde et al., 

2005) that combine with numerous elements like As, Hg, Se, and Zn to co-precipitate in 

comparatively insoluble forms under chemically reducing conditions as reviewed by Marchand 

et al. (2010). 

In the biological process, microorganisms and plants interact to remove pollutants in wetland 

systems. The roots of wetland plants provide a suitable environmental condition for the survival 

of the microorganisms (rhizosphere). The root surface is also enveloped with bacteria and these 

growing roots may transfer the bacteria through the substrate (Trapp & Karlson, 2001). The 

complementary bacteria provides certain metabolic functions such as nitrogen fixation, 

pathogens attack prevention, and contaminants detoxification including metals to their host 

(Mastretta et al., 2009; Sultana et al., 2014). Furthermore, Lemanceau et al. (2009) and Mench 

et al. (2009) found that microbes in the wetland systems produce siderophores that inter-react 

with metals and lessen their toxicity or increase their labile pools and uptake by plants (Sultana 

et al., 2014). Plant uptake is another metal removal mechanism in wetland systems. Suspended 

organic matter and metals (Galletti, Verlicchi, & Ranieri, 2010; Scholz & Hedmark, 2010; 

Grisey et al., 2012; Guittonny-Philippe et al., 2014) are easily eliminated by macrophytes in 

the wetland systems through the immobilization process in the roots and the aerated 

rhizosphere (Ye et al., 2001; Sultana et al., 2014), subsequently colonizing and absorbing a 

broad species of heavy metals like Pb, Zn, Cu and Cd as noted by Denga et al. (2004) in their 

field study and translocating them in the below-ground biomass (Baldantoni, Lagrone, & 

Alfani, 2009; Zhang et al., 2010). However, the capability of the wetland plants to uptake heavy 

metals differs broadly and depends on the nature of the macrophyte specie, heavy metals 

concentration, sediment pH, organic matter content, temperature, and sediment chemistry 

(Sheoran, 2004; Sheoran & Sheoran, 2006; Liu et al., 2007; Marchand et al., 2010). For 
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example, Lizama Allende et al. (2014) noted high metals removal efficiency of more than 85% 

attributable to wetland media and less than 3% removal associated with macrophytes. They 

further expounded that the process include As co-precipitation with Fe by the substrate media 

in their study was due to pH adjustment and facilitated by the cation exchange capacity, while 

Liu et al. (2007) attributed the high removal efficiency of heavy metals of their research to 

macrophytes via phytoextraction and site provision for metal precipitation (Mays & Edwards, 

2001). 

2.10.6 Mechanisms of other contaminants removal 

Apart from the well-known common pollutants treated in wetlands, such as COD, BOD, SS, 

nitrogen compounds, petroleum hydrocarbons, heavy metals, etc., others, such as trace 

elements, personal care products, pharmaceuticals, pesticides, herbicides, phenols, endocrine 

disruptive chemicals (EDCs) or linear alkylbenzensulfonates (LASs), polychlorinated 

biphenyls (PCBs), etc. were also treated by various constructed wetlands through physical, 

chemical, or biological processes, or the combination of them (Figure 2.8). In wetland systems, 

the trapping of sediment is the physical elimination mechanism of solids and organic particles 

in the wastewater. When the wastewater passes through the wetland substrate media, the 

particles settle on the media bed or plant roots as a result of the slow water movement 

influenced by the macrophytes and broad sheet flow subsequently enhancing the sedimentation 

process (DeBusk, 1999; Karathanasis et al., 2003; Chazarenc & Merlin, 2005; Gikas & 

Tsihrintzis, 2012; Molle, 2014; Paing et al., 2015). In their review, Imfeld et al. (2009) reported 

that Pardue et al. (1993), Leppich (1999) and Jackson (1999) attributed sedimentation as one 

of the removal pathway for chlorobenzenes and fuel (Kadlec, 1992; Wright, Weaver, & Webb, 

1997; Salmon et al., 1998; Thurston, 1999; Groudeva, Groudev, & Doycheva, 2001; Boopathy, 

2003) removal respectively. Contaminants including PCBs (Campanella, Bock, & Schröder, 

2002), pesticides (Sherrard et al., 2004) xenobiotics derived from the pharmaceutical industry, 

66 
 



 
 
personal care products, hormones, etc. (Vymazal, 2009) and inorganic contaminants derived 

from motor way suspended on solids (Hares & Ward, 2004) have also been treated with 

constructed wetlands via sedimentation and filtration as removal mechanisms among other 

processes. However, there are some contaminants which are not removed singly in constructed 

wetlands, but have to be complimented with another mechanism. For example, Türker, 

Vymazal, and Türe (2014), reported in their review that sedimentation is complimented with 

plant uptake to remove boron in constructed wetlands under favourable environmental 

conditions. Further, the authors also reported that Türker, Böcük, and Yakar (2013a) and 

Türker et al. (2013b) achieved 32% and 40% removal efficiency of boron in their wetland 

systems via sedimentation and plant uptake processes respectively.  

In chemical removal processes, sorption, photo oxidation, and volatilization are also considered 

as some of the major contaminant removal mechanisms (Imfeld et al., 2009). Sorption, a 

process referring to the chemical attachment of wastewater molecules to the surfaces of 

substrate media, is a very important removal mechanism in wastewater treatment in constructed 

wetlands. It includes the processes of adsorption and precipitation. In photo oxidation, the 

power of sunlight is converted to break and oxidize organic compounds such as pesticides and 

pathogens while volatilization is the breaking down of compounds and emission into the air as 

a gaseous state (DeBusk, 1999; Sundaravadivel & Vigneswaran, 2001; Imfeld et al., 2009). 

Organic contaminants like herbicides and phenols were reported to be treated in wetlands via 

the adsorption process as a chemical removal pathway (Zhang et al., 2014). Conversely, 

Kröpfelová et al. (2009), after 28 months of their study of inorganic contaminants removal in 

horizontal flow wetlands in Czech Republic, predicated that 34 trace elements were mostly 

removed via the adsorption process. Matamoros, Garcia, and Bayona (2005) proclaimed that 

pharmaceuticals such as carbamazepine are treated via sorption of the particles to the substrate 

media from the water phase and therefore accumulate in the sediments of the constructed 
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wetlands. Furthermore, (Matamoros & Bayona, 2006), explored subsurface flow wetlands in 

Barcelona, Spain to remove 11 pharmaceuticals and personal care products (PPCPs). The 

authors claimed that more than 80% removal efficiency was achieved for caffeine, salicylic 

acid, methyl dihydrojasmonate, and carboxy-ibuprofen. Others include 50– 80% removal for 

ibuprofen, hydroxy-ibuprofen, and naproxen, while more than 80% removal of Ketoprofen, 

diclofenac, galaxolide and tonalide was achieved in their systems and this removal was 

accomplished via sorption of these contaminants to the media substrate. In their study, Grove 

and Stein (2005) and Polprasert, Dan, and Thayalakumaran (1996) treated acetone and phenol 

in their constructed wetlands, and attributed the removal as a result of volatilization and 

phytovolatilization respectively. Furthermore, lower chlorinated benzenes (MacLeod, 1999; 

Keefe et al., 2004) and chlorinated ethenes (Bankston et al., 2002; Ma & Burken, 2003) were 

reported to be treated via the volatilization and phytovolatilization removal processes in 

wetland systems. 

Plant uptake, phytodegradation, and phytoaccumulation are important mechanisms in 

biological contaminants removal processes in wetland systems. Chu, Wong, and Zhang (2006a) 

assed the accumulation, distribution, and transformation of DDT 

(dichlorodiphenyltrichloroethane) and PCBs by Phragmites australis and Oryza sativa L. in 

their study of constructed wetland systems; the authors found that plant uptake and 

accumulation were the main removal pathways for the contaminants removal. Furthermore, 

treatment of nutrients of agricultural importance, but harmful to plants when in excess, with 

constructed wetlands has been documented (Gross et al., 2007; Kröpfelová et al, 2009; Allende, 

Fletcher, & Sun, 2012; Türker et al., 2013a, b) and has achieved considerable removal. For 

example, Türker et al. (2013a) assessed the ability of macrophytes for boron removal in their 

wetland systems in Turkey and found that Typha latifolia and Phragmites australis absorbed a 

considerable amount of boron in their roots which later transferred to leaves and stems of the 

68 
 



 
 
wetland plants (Rees et al., 2011). Hence, the authors concluded that phytoaccumulation was 

the main removal mechanism. In the assessment of their subsurface-flow wetlands, (Karimi, 

Ehrampoush, & Jabary, 2014) also associated removal of indicator pathogens to macrophytes 

when they got a high removal efficiency of more than 70% of Escherichia coli and total 

coliform in the planted wetlands compared to the control ones. Therefore, the authors 

concluded that plant uptake was one of the removal mechanisms of the pathogens.  

Phytodegradation, a phenomenon, referring to breaking down of organic contaminants by plant 

enzymes, has been found (Bankston et al., 2002; Wang et al., 2004) to occur in many wetland 

macrophytes such as common reed (Phragmites australis), cattail (Typha latifolia), and some 

poplar species (populous sp.). For example, Wang et al. (2004) predicated that 

phytodegradation was the removal mechanism in their study treating contaminated carbon 

tetrachloride wastewater by poplar plants. In addition to phytoaccumulation, plant uptake, and 

phytodegradation, microorganisms also play an important role in contaminants remediation in 

wetland systems. Braeckevelt et al. (2007) found in their research that chlorobenzenes are 

biodegraded by microorganisms in constructed wetland ecosystems in both aerobic and anoxic 

conditions. Gessner et al. (2005) investigated the potential of their pilot-scale free water surface 

constructed wetlands in America to remediate complex and free cyanide and associated 

contaminants in water from a groundwater spring. The authors concluded that the removal 

efficiency is over 80% for total cyanide and attributed the reduction to microbial degradation 

in the rhizosphere of the macrophytes. Conversely, in their study, De Biase et al. (2011) 

reported that biodegradation was the main removal mechanism of MTBE (methyl tert-butyl 

ether) contaminant in their wetland systems, though there was only 46% removal. 

Overall, constructed wetlands, horizontal, vertical or their combination have been 

demonstrated to treat different types of contaminants in waste water with high efficiency in 
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different parts of the globe (Vymazal, 2014). Table 2.5 and figure 2.7 show a summary of 

pollutants removal processes in wetland systems. 

Table 2.5: Overview of primary contaminants removal mechanisms (modified from ITRC, 
2003; Imfeld et al., 2009; Choudhary et al., 2011; Abou-Elela et al., 2013; Guittonny-Philippe 
et al., 2015a)

 
Contaminants Removal Mechanism 

COD Settling, biodegradation, plant uptake 

BOD Settling, oxidation, biodegradation 

NO3-N, NH4-N Settling, biodenitrification, nitrification 

Organic N, NO2 Plant uptake 

PO4-P Settling, precipitation, microbes 

Organic P Adsorption, plant uptake 

BTEX, TPHs, fuels, oil and 

grease 

Volatilization, photochemical oxidation, 

biodegradation/photodegradation/phytoremediation 

PAHs, chlorinated and non-

chlorinated solvents 

Diffusion, oxidation, photodegradation, settling, 

photovolatilization/evapotranspiration 

Metals: Al, As, Cd, Cr, Cu, Fe, 

Pb, Mn, Ni, Se, Ag, Zn 

Settling, precipitation, biodegradation, adsorption/ion 

exchange, photovolatilization, phytoremediation  

Pathogens UV radiation, microbes die off 

SS and turbidity Settling, adsorption 
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Figure 2. 7: Removal processes occurring in a wetland. Source: ITRC (2003). 

2.11 Essential values of wetlands 

Natural wetlands from which the ecological engineering constructed wetlands emerged, have 

been in existence since the time of human history. Their values are multiple, and play a vital 

role in the history of humanity including the prime civilizations like Egypt and Mesopotamia 

who used to live close to the wetland areas, that supplied an array of numerous economic and 

essential resources to them. However, despite all these multiple values and the historical 

contribution of these wetlands, it was during the last 50 years that humans realized the various 

positive impacts of them to their society (Stefanakis et al., 2014; Vymazal, 2014). Wetlands as 

a water body encompass diversity of animals and plant species. Furthermore, they give support 

to the lives of these flora and fauna living in the ecosystem and supply numerous important 

ecosystem services that help in human development such as provision of food, fuel wood, 

water, regulation of flood control, water quality and supply, habitat like biodiversity, and 

cultural services such as recreation and aesthetic enhancement (The Economics of Ecosystems 

and Biodiversity [TEEB], 2010). Other values include carbon dioxide absorption leading to 

global warming reduction, supporting the food chain indirectly by fish production and other 
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related edible water animals (Stefanakis et al., 2014), flood abatement, regulation of micro- 

and macro-climatic changes, contaminants degradation and erosion control (Minga et al., 

2007). Because of their good qualities, such as water pollution control, they have been termed 

as “Earth’s kidneys” by some wetland scientists since they filter and retain the pollutants 

passing through them before they reach the receiving water courses (Kadlec & Knight, 1996; 

Kivaisi, 2001; USEPA, 2004: Scholz & Lee, 2005; Cui et al., 2012). Moreover, they are also 

referred to as biological supermarkets (Barbier, Acreman, & Knowler, 1997; Mitsch & 

Gosselink, 2000; Chen & Zhang, 2001; Chen & Lu, 2003) because they are among the natural 

environments with high natural production on Earth.  

For over two decades, concerted efforts were made by several scientists to classify and 

summarize values of wetlands. For instance, Vymazal et al. (1998) and Cui et al. (2012) 

classified the values of wetlands as follows: 

• Hydrological and hydraulic values which include erosion and flood control recharge of 

ground water aquifers, and floodplain hydrodynamics; 

• Climatic effects including buffering global warming, carbon fixation and CO2 balance, 

and micro-climatic influences; 

• Biodiversity functions including wild life enhancement, breeding ground for water 

fowl, fish and invertebrates like shrimps, crabs, oysters, clams, and mussels, 

preservation of gene pools, and conservation of flora and fauna; 

• Research studies such as training and nature studies; 

• Recreational and reclamation uses which include sightseeing, aesthetic benefits, 

swimming and sailing; 

• Energy production; 

• Development of aquaculture and integrated systems, fishing and rice cultivation; and 

• Mining activities. 
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In their studies, Millennium Ecosystem Assessment (MEA; 2005), De Groot et al. (2006), 

Ghermandi et al. (2010) and Cui et al, (2012) defined the values of the wetlands as groundwater 

aquifers embellishment, management/reformation of flood incidents (protective buffers), 

retaining of sediments and other materials, reduction of carbon dioxide, storage and heat 

release, reduction of solar radiation and relevant support to food chains. However, Stefanakis 

et al. (2014) noted that the values of these wetlands can be classified as ecological, socio-

cultural, and economical (Figure 2.8). Furthermore, the authors suggested that the combination 

of these classes of values will give the overall general values of the wetlands. Schuyt and 

Brander (2004) and MEA (2005) in their studies, shortlisted the following values as the entire 

values of wetlands including ecological, socio-cultural and economical ones which include 

biodiversity, water supply, irrigation, fishery, livestock, water quality reclamation and flood 

abatement. Others are recreation, culture, CO2 emission protection, improvement of climate, 

prey value, scientific value, and educational value. The authors also mentioned timber 

provision, source of hydroelectric power supply, salt provision, provision of sand, anti-

corrosiveness, warm restoration and transportation. 

From an economic perspective, concerted researches were conducted to estimate the values of 

wetlands on monetary bases. Costanza et al. (1997) assed the monetary value of the world’s 

wetlands and predicated that their total estimation using American dollars reached up to a total 

amount of US$ 14.9 trillion. Furthermore, Schuyt and Brander (2004) reported the economic 

monetary value of global wetlands to be US$ 70 billion annually based on the estimated Ramsar 

Convention wetland area of 12.8 million km2 including values such as biodiversity, scientific, 

ecological, sociocultural, and other important ones. The authors also calculated the economic 

value provided by US coastal wetlands in protecting storm events in monetary terms to be US$ 

23.2 billion annually and a reduction from US$ 3–8 billion to US$ 1.5 billion if a new 
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wastewater treatment plant were to be constructed to supply the equal amount of free water 

supply provided by the natural wetland existing reservoirs.  

  Realizing the aforementioned values of wetlands by human society, including the ability to 

control and mitigate flood incidents from causing negative impacts to the receiving ends and 

wastewater purification capacity, has made them become progressively more and more 

recognized (Stefanakis et al., 2014; Vymazal, 2014). Today, wetlands are recognized to have 

the ability to remove various types of pollutants including organics, inorganics, metals, trace 

elements etc. from wastewater through natural physical, chemical and biological processes. 

This recognition stimulated the research on manmade constructed wetlands to explore the 

wetland potentials for different technological applications. The fundamental idea of these 

wetland constructions is to duplicate the numerous wetland processes in a more advantageous 

way to humanity under controlled environmental conditions such as flood prevention and 

improvement of water quality.  

With regard to these man made constructed wetlands, some researchers also tried to assess their 

values as previously done for natural wetlands. Knight et al. (2001), in the assessment of their 

subsurface-flow wetlands as a habitat for wild life and humans, found that these systems 

provide habitat for wildlife and diversity, provision of recreational activities, such as bird-

watching, water storage, and aesthetic enhancement in urban or rural environments, among 

others. However, while some studies revealed that both natural and artificial wetlands have the 

same ecological values (Campbell, Cole, & Brooks, 2002) others reported that constructed 

wetlands have more values than the natural ones when they did a comparative    
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                            Figure 2. 8: essential values of wetlands adapted from (De Grot et al., 2006; Stefanakis et al., 2014) 
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research of 186 different natural and constructed wetland systems (Ghermandi et al., 2010).  

2.12 Choice of vertical-flow constructed wetlands over horizontal-flow  

The exploration of vertical and horizontal subsurface flow wetlands as alternative means of 

wastewater purification from different sources is increasing globally (Liu, Dahab, & 

Surampalli, 2005; Yalcuk & Ugurlu, 2009; Konnerup, Trang, & Brix, 2011; Abou-Elela et al., 

2013; Kantawanichkul & Wannasri, 2013; Paing et al., 2015; Wu et al., 2015) as a result of 

their advantages like low cost of operation, aesthetic enhancement, easy maintenance and 

simple to operate (Scholz, 2006, 2010). However, despite these aforementioned qualities 

associated with the two types of wetlands, some research has proposed that vertical flow 

constructed wetlands are better than horizontal flow constructed wetlands in some water quality 

variables. For example, Cooper (1996) expounded that in VFCWs, draining of the substrate 

bed avows the reduction of BOD and ammonia nitrogen removal efficiently and provides 

excellent conditions for nitrification (Vymazal, 2005; Vymazal et al., 2006; Langergraber, 

2007; Gikas & Tsihrintzis, 2012; Fan et al., 2012, Fan et al., 2013; Li et al., 2015; Paing et al., 

2015) unlike in continuously saturated anaerobic horizontal flow wetland systems. Brix and 

Arias (2005) and Prochaska et al. (2007) also stated that VF systems perform satisfactorily in 

wastewater particle removal, and chemical and biochemical oxygen demand variables (COD 

and BOD). Though some researchers referred to them as poor denitrifiers (Vymazal, 2005), 

several studies recently showed that VFCW systems with intermittent loading regimes can 

denitrify well with modification. For example, Arias et al. (2005) and Gross et al. (2007) 

reported removal efficiency between 50% and 69% for total nitrogen (TN) and more than 90% 

for COD and BOD5 after recirculating the effluent. Furthermore, Weedon (2003, 2010) found 

that their VFCWs systems successfully denitrified and removed 90% of SS, BOD5, and NH4 

+- N after 10 years of operation in the UK for the treatment of pre-settled urban wastewater at 
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typical loading rates after recirculation. The author claimed that the system was enhanced using 

sand as the major filter media, intermittently fed and the aeration time used was the interval 

between the wastewater application regimes, demonstrating that these systems are capable of 

achieving high treatment standards (Stefanakis et al., 2014). Furthermore, wetland systems 

evaluated by Shen et al. (2015) in China to enhance removal of nitrate using starch blends as 

solid carbon source indicated high denitrification with 98% nitrate removal efficiency. 

However, in their research, Li et al. (2015) have shown 95% removal of organic matter and 

ammonia-nitrogen without any modification.  

In constructed wetland systems, VFCWs are the state of the art technologies used in water 

pollution control, and interest in them is increasing rapidly worldwide, probably due to the 

lower area demand advantage compared to HFCWs (Abou-Elela et al., 2013; Stefanakis et al., 

2014; Paing et al., 2015). They require 1–2 square metres per person equivalent (m2/pe) unlike 

horizontal flow that needs 5–10 m2/pe. Many countries, including the UK, are exploring these 

VFCWs systems and use this unit area per person equivalent (Cooper, Smith, & Maynard, 

1997; Cooper & Green, 1998; Cooper, 1999, 2005; Weedon, 2010). Other countries include 

Czech Republic with 1–1.5 m2/pe (Vymazal & Kröpfelová, 2011), Germany with 1.6 m2/pe 

(Olsson, 2011), Greece with 1–1.5 m2/pe (Stefanakis & Tsihrintzis, 2012), and Canary Islands 

with 1.5 m2/pe (Vera, Martel, & Márquez, 2013) as reported by Stefanakis et al. (2014).  

With regard to treatment of other contaminants, apart from the traditional ones like BOD, COD, 

SS, etc., other pollutants found in wastewater including both organic and inorganic, have been 

shown to be better treated with VFCWs in comparison to HFCW systems. In their study to 

compare the removal efficiency between VFCWs and HFCWs in treating landfill leachate in 

Turkey, Yalcuk and Ugurlu (2009) revealed that vertical-flow systems removed heavy metals 

including Cr, Cu, Zn, Pb, and Ni present in the leachate efficiently in comparison to horizontal-

flow systems. Furthermore, in Vietnam, a tropical country, Konnerup et al. (2011) assessed the 
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potentiality of HFCW and VFCW systems in improving the quality of the degraded river water 

as a result of pollution from aquaculture practices which lead to the eutrophication of the 

receiving water courses. The authors concluded that the vertical-flow wetland systems have a 

higher potential to remediate the fish pond effluents with minimal environmental negative 

impact than horizontal-flow wetland systems. Similarly in Vienna, Canga et al. (2011) reported 

that their VFCW systems were better in eliminating nitrogen than the horizontal wetland 

systems when they investigated the removal rates of different constructed wetland designs in 

Boku University after 4 years of operation. 

Recently, some publications on municipal wastewater treatment studies also suggested that 

VFCW systems should be preferred in terms of water quality improvement over horizontal 

systems. For instance, Pandey et al. (2013) compared the performance of the two systems in 

treating municipal wastewater in Nepal to assess their treatment efficiency. They stated that 

vertical-flow systems did better than the horizontal-flow ones after a 7-month assessment. 

Furthermore, in their long-term study of 3 years, Abou-Elela et al. (2013) reported that VFCW 

systems were the preferred option compared to HFCWs because they were demonstrated to be 

more effective in removing the wastewater pollutants treated in the municipal sewage than the 

latter.  

With regard to choice of either VFCWs or HFCWs in terms of clogging (a phenomenon 

referring to the blockage of substrate media pores in constructed wetland systems, leading to 

hydraulic conductivity reduction, substrate permeability and ponding of wastewater on the 

media in the worst case subsequently affecting the full performance of these systems) few 

studies have assessed their suitability. In their review, Knowles et al. (2011) compared the 

vertical and horizontal constructed wetland systems in terms of clogging susceptibility and 

found that horizontal-flow tertiary treatment systems in the UK are more prone to clogging 

issues in comparison to vertical-flow systems in France as a result of hydraulic loading rates, 
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hence the vertical-flow systems are the preferred choice in France. Therefore, the authors 

concluded that for both the systems to operate effectively, the hydraulic and solid loading rate 

has to be considered in their design. Comparison of these systems emphasized that both 

hydraulic loading rate and solids loading rate need to be considered when designing systems 

to operate robustly, i.e. hydraulic overloading makes horizontal-flow tertiary treatment systems 

in the UK more susceptible to clogging problems than vertical-flow primary treatment systems 

in France. Moreover, considering that absence of oxygen is prevalent in HFCWs (Vymazal, 

2014) and high oxygenation in VFCWs (Hua et al., 2013, 2014; Song et al., 2015), which 

counteracts clogging, HFCWs, can be considered more prone to clogging than VFCWs. 

However, many publications have shown that clogging phenomenon is a very complex problem 

and not well understood in both HFCWs and VFCWs (Turon et al., 2009; Pedescoll et al., 

2011; Fu et al., 2013; Hua et al., 2014; Song et al., 2015). 

2.13 Summary  

This chapter describes the historical development of constructed wetland systems and presents 

the early concepts of the technology. It also covers the discussion on wetland composition, 

types, removal mechanisms and numerical modelling. Furthermore, the chapter talks about 

petroleum hydrocarbon components and their attenuation in wetland systems. Diesel, heavy 

metals, and other contaminants removal are also explained. Lastly, the chapter closes with 

elucidation on essential values of wetlands to humans and the ecosystem environment, and 

preference of vertical-flow wetland systems over horizontal-flow systems. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

The methodology used in conducting this experimental research is discussed generally in this 

chapter. The chapter is further divided into five sections. Sections 3.1and 3.2 introduce the 

chapter and layout of the experimental CWs respectively. Furthermore, composition and design 

of the model vertical-flow wetlands set-up used in conducting this research is explained in this 

section. Mode of operation of the wetland systems and the method of analysing water quality 

parameters is described in section 3.3 and 3.4 while the clogging test and modelling is 

explained in section 3.5. Petroleum hydrocarbon selection, determination, risk assessment, and 

completion are stated in sections 3.6, 3.7, 3.8, and 3.9 respectively. Statistical analysis used to 

interpret the data is described in section 3.10. The research limitations are elucidated in section 

3.11 and lastly a summary of the chapter is given in section 3.12.  

3.2 Experimental set-up in the greenhouse 

Ten laboratory-scale vertical-flow CWs were constructed from Pyrex tubes with an inner 

diameter of 19.5 cm and a height of 120 cm (Figure 3.1). All filters have the same dimensions 

including diameter and were filled with siliceous (minimum of 30%) pea gravel up to a depth 

of 60 cm (Figure 3.2) and planted with Phragmites australis (Cav.) Trin. ex Steud. (Common 

Reed) to investigate treatment performance of different filters in terms of aggregate size, 

hydraulic and contaminant loading rate, contact time, resting time and the nature of wastewater 

and inert particles deposition on the evolution of clogging. Dead macrophyte plant material 

was harvested in winter and returned to the corresponding wetland filters by placing it on top 

of the litter zone (Sani et al., 2013a; Sani et al., 2013b). The main outlet valve was located at 

the bottom of each constructed wetland system.  
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Figure 3.1 Laboratory set-up of the vertical-flow constructed wetlands 

The systems are located within a greenhouse on top of the roof of the Newton Building of The 

University of Salford, Greater Manchester, UK. Note that the two filters in the middle are not 

in operation. They are essentially controls receiving clean water. 

 

 

Figure 3. 2: substrate used for the construction of the wetland systems in the green house (a) 
pea gravels used for filters 3 to 10 and (b) pea gravels used for filters 1and 2 

 

(a) (b) 
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Eight further valves (used to test for clogging) were located on the sidewall of each wetland 

column. The sidewall valves were located at heights of 10, 20, 30, 40, 45, 50, 55 and 60 cm 

from the bottom of each column (Figure 3.3).  

The preliminary treated urban wastewater used for the inflow water was obtained from the 

Davyhulme Sewage works, one of the largest wastewater treatment plants in Europe 

(http://en.wikipedia.org/wiki/Davyhulme), operated by the water company United Utilities in 

Greater Manchester. Fresh wastewater was collected approximately once per week, and was 

stored and aerated by standard aquarium air pumps in a cold room before use. The wastewater 

quality was highly variable, and comprised domestic and a small amount of industrial 

wastewater as well as surface water runoff. Furthermore, Aqua Medic Titan chillers 

(Aquacadabra, Barnehurst Road, Bexleyheath, UK) were used to keep the temperature of the 

below-ground part of the wetland systems at about 12°C. This temperature simulates the 

temperature of the upper earth layer where the root system of the wetland plants of a real 

treatment system would be.In order to simulate a one-off diesel fuel (100% pure; no additives) 

spill, 130 g (equivalent to an inflow concentration of 20 g/l) of diesel fuel (100% pure; no 

additives) was poured into Filters 1, 3and 7, and into one of the two control column (Control 

A) on 26 September 2013 (Table 3.1). The fuel was obtained from a petrol station operated by 

Tesco Extra (Pendleton Way, Salford, UK). 
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Figure 3.3: A picture of constructed wetland filter in the green house 

 

Table 3.1 indicates an overview of the experimental set-up used in the study to test the impact 

of four variables. Filters 1 and 2 compared to Filters 3 and 4 test the influence of a larger 

aggregate diameter.  

120 cm 

195 mm 

5 cm 

Out flow 

Valve 

Reed 

Aluminium sheeting  

 

10 cm 
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Table 3.1: Experimental set-up used in the study 
 
Wetland filters                                    Design and/or operational variable 

 Aggregate 
diameter 

Contact time Resting time Chemical 
oxygen demand 

 (mm) (h) (h) (mg/l) 

     

Filters 1 and 2 20 72 48 138.9 

Filters 3 and 4 10 72 48 138.9 

Filters 7 and 8 10 72 48 272.9 

Filter 9 10 36 48 138.9 

Filter 10 10 36 24 138.9 

Control A 10 72 48 2.1 

Control B 10 72 48 2.1 

 

Filters 7 and 8 compared to Filters 3 and 4 check the impact of a higher loading rate. The 

application of a lower contact rate is tested if Filter 9 is compared with Filters 3 and 4. Finally, 

a lower resting time is the difference between Filters 9 and 10. Undiluted wastewater was 

introduced to wetlands with a high loading rate (Filters 7 and 8). The remaining Filters 1 to 4 

and Filters 9 and 10 received wastewater diluted with de-chlorinated tap water. All wetland 

columns received 6.5 l of inflow wastewater during the feeding mode (Table 3.1) Furthermore, 

all columns except 9 and 10 have replicates until the date when petroleum hydrocarbon was 

introduced (only the second replicates received diesel) because of lack of enough resurces and 

space to accommodate them. 

Note: Annually treated approximate volumes of wastewater: Filters 1 to 8, 470 l/a (except 5 

and 6, which receive tap water); Filter 9, 624 l/a; Filter 8, 858 l/a. Filters 2, 4 and 8 are replicates 
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for the most common operational scenarios. On 26 September 2013, 130 g of diesel was added 

to Filters 1, 3, 7 and Control A (formally Filter 5). Furthermore, the COD was used as the 

criterion to differentiate between low and high loads (Table 3.1). An inflow target COD of 

about 273 mg/l (usually between 122 and 620 mg/l) was set for wetlands with a high loading 

rate (Filters 7 and 8). The remaining Filters 1, 2, 3, 4, 9 and 10 received wastewater diluted 

with de-chlorinated tap water. The target inflow COD for these filters was approximately 139 

mg/l (usually between 43 and 350 mg/l). 

3.3 Mode of operation 

The wetland system was designed to operate in batch flow mode. Two types of water were 

used for the study as the influent: raw wastewater and raw waste water mixed with tap water. 

Wetlands 7 and 8 are fed with raw wastewater without dilution while other filters are fed with 

raw waste water diluted with tap water except for controls that receive only tap water. The 

application is intermittent, as a batch through the surface of the filter, and then gradually 

percolates downward through the gravel drainage network to the bottom of the wetlands. 

Wetland columns received 6.5 L of inflow water during the feeding mode, which was different 

between several filters (Table 3.1). Columns 1–6 were sampled after 72 h contact time and then 

left to rest for 48 h, while columns 7 and 8 were sampled after 36 h contact time and left to rest 

for 48 and 24 h, respectively. This resting allows air to refill the wetland systems, and the next 

dose traps this air – leading to much improved oxygen transfer. The treatment technology 

generally relies on processes similar to those used extensively in gravel “ filter beds” , enhanced 

by the extensive rhizomatous root system of the reed plants (Phragmites australis) which can 

transfer limited quantities of oxygen into the surrounding media, stimulating bacterial 

communities. 
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3.4 Water quality analyses 

During over 2-years of operation, water samples were collected from the wetland systems and 

routine obstruction observations, and water quality sampling were carried out according to 

American Public Health Association (APHA; 2005) unless stated otherwise to monitor 

clogging evolution and treatment performance, respectively. The spectrophotometer DR 2800 

Hach Lange (www.hach.com) was used for standard water quality analysis for variables 

including chemical oxygen demand (COD), ammonia-nitrogen (NH4-N), nitrate-nitrogen 

(NO3-N), orthophosphate-phosphorus (PO4-P) and suspended solids (SS). All of these 

parameters were tested using standard laboratory procedures and methods, and all analyses 

were completed within 24 h of sample collection. 

COD and BOD5 were measured by the potassium dichromate-boiling method and incubation 

method, respectively. The BOD5 in this research was determined in all water samples with the 

OxiTop IS 12-6 system, a manometric measurement device, supplied by the Wissenschaftlich-

Technische Werkstatten (WTW), Weilheim, Germany. The measurement principle is based on 

measuring pressure differences estimated by piezoresistive electronic pressure sensors. 

Nitrification was suppressed by adding 0.05 ml of 5 g-L N-Allylthiourea (WTW Chemical 

Solution No. NTH 600) solution per 50 ml of sample water. COD analysis was performed with 

Palintest Tubetest with product code LCK 314. In the Palintest COD method, the water sample 

is oxidized by digesting in a sealed reaction tube with sulphuric acid and potassium dichromate 

in the presence of a silver sulphate catalyst. This reaction takes place in Palintest pre-prepared 

tubetest that contain the above required reagents. The amount of dichromate reduced is 

proportional to the COD. The absorbance of the COD samples was read with the Palintest 

Spectrophotometer model instrument. COD values were recorded as this model is a direct 

reading user-friendly photometer pre-programmed for Palintest water tests.  
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Nutrients were determined by automated precision colorimetry methods using a 

Palintest Tubetest with product code LCK 339 for nitrate, LCK 303 for ammonia and LCK 049 

for otho-phosphate phosphorus. Nitrate was reduced to nitrite by cadmium and determined as 

an azo dye at 540 nm (using a Perstorp Analytical EnviroFlow 3000 flow injection analyzer) 

following diazotisation with sulfanilamide and subsequent coupling with N-1- 

naphthylethylendiamine dihydrocloride (Allen, 1974). Ammonia-N and ortho-phosphate-P 

were determined by automated precision colorimetry in all water samples from reaction with 

hypochlorite and salicylate ions in solution in the presence of sodium nitrosopentacyanoferrate 

(nitroprusside), and reaction with acidic molybdate to form a phosphomolybdenum blue 

complex, respectively (Allen, 1974). The coloured complexes formed were measured 

spectrometrically at 655 and 882 nm, respectively. 

Turbidity, pH and SS were measured with a Turbicheck Turbidity Meter (Lovibond Water 

Testing, Tintometer Group, www.lovibond.com), sensION+Benchtop Multi-Parameter Meter 

(Hach Lange, Düsseldorf, Germany) and spectrophotometer DR 2800 respectively by placing 

composite water samples directly in to the instruments. These handy, easy to use, robust and 

waterproof instruments perform with low costs the most important parameters for wastewater 

monitoring. These meters come complete with sensors, calibration and maintenance solutions 

for measurement.  

Temperature data for the first year of operation were recorded outside and in the shade at an 

official weather station in Woodford located south-east of Salford. The raw data were supplied 

by the UK Met Office (www.metoffice.gov.uk). Concerning the second and third year of 

operation, inside temperature measurements were performed by research group team members 

inside and outside the greenhouse. 

For all the above parameters analysed above, calibration of the equipments used in their 

measurement was performed at and when necessary as instructed in their user manual. For 
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example, calibration is done with water before SS determination was conducted as prescribed 

in Hach Lange (www.hach.com) user manual, while turbidity and pH instruments are calibrated 

when the digital screen on their measuring equipments indicated the need for the calibration, 

and is also carried out in accordance with their user manual book (www.lovibond.com) and 

(Hach Lange, Düsseldorf, Germany) respectively. 

3.5 Clogging tests and modelling 

Overall hydraulic conductivity measurements to assess the severity of clogging were 

performed. The columns were regularly filled with wastewater to the top of the debris layer 

and subsequently emptied after a resting time of two hours to allow for air bubbles to escape 

from the media. The time taken to drain each column and the associated water volume captured 

were noted. The average hydraulic conductivity can be calculated by using Darcy’s Law as 

shown in Eq. 5. Darcy’s law is generally used to describe the water flow through porous media. 

For a constant flow rate, the hydraulic gradient between an upstream and downstream point 

must increase as clogging reduces the hydraulic conductivity. For the case of vertical-flow 

constructed wetlands, Darcy’s law can be expressed as shown in E                                                                                                                                                                                                                

)( 21 hhA
LQK

W −×
×

=
                                                                                                                                      (5) 

Where K (m/d) is the saturated hydraulic conductivity of the media; Aw (m2) is the wetted 

cross-sectional area of the reactor in the axial flow direction; Q (m3/d) is the flow rate; L (m) 

is the distance between an upstream and a downstream point in the axial flow direction; h1 (m) 

is the water depth at the upstream point; and h2 (m) is the water depth at the downstream point. 
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Where u is the velocity of the flowing solution, K is the hydraulic conductivity, H is the water 

head, and z is the elevation. 

As an indirect measure of clogging, SS samples were taken from the inflow wastewaters, the 

layer of debris on top of each filter, the eight sampling ports of each column and the outflows. 

The results were used as input data for the mathematical model, which was developed to 

analyse the major influences and sub-mechanisms involved in the clogging processes. 

A project-specific model was used to simulate the evolution of the liquid-solid mixture 

consisting of light particles within the filter column. Three major mechanisms that affect the 

particle transport in the filter were taken into consideration, namely, diffusion, sedimentation 

and adsorption of particles. A one-dimensional model was created because of the linear 

structure of the filter column. The mathematical model describes mass transport of SS and 

associated sedimentation through the wetland column. Solutions to the model are obtained by 

using the finite element analysis performed for different time periods. Initial coefficients were 

chosen for sedimentation, damping, adsorption and diffusion. The model output was compared 

with the experimental data to get a better insight into the particle transport processes.  

Meyer et al. (2014) undertook a comparative review of the scope and aims of a wide range of 

constructed wetland models. The Wang-Scholz model was the most suitable model for this 

case study, because it is the only suitable model concerned with solid deposition in vertical-

flow wetlands treating urban wastewater. Furthermore, the model has already been previously 

calibrated for the same wetland system (Sani et al., 2013b) using earlier data. 

The Wang-Scholz model (Eq. 7; Massoudieh et al., 2008) was applied to simulate both settling 

and aggregation mechanisms. By neglecting the effect of the varied sizes of SS and the lateral 

flow along the walls of the filters, Eq. 7 can be simplified to Eq. 8. The mechanical dispersion 

of SS can be described with Eq. 9. 

89 
 



 

inii
i

i
ii

A
zq

z
vu

z
D

t ,2

2 )()( ϕψϕϕϕ
+±

∂
∂

−−
∂
∂

=
∂
∂

                                                                        (7) 

Where φi is the concentration of SS with particle sizes of range i, t is time, D is the dispersion 

coefficient, z is the vertical elevation position, u is the vertically flowing water velocity 

(positive upward), vi is the fall velocity or settling velocity of the SS of particle size i, ψi is the 

source or sink term of the SS of particle size I and is used to take account of the effect of the 

aggregation or break-up of particles, q(z) is the lateral inflow to the wetland, A is the wetland 

area, and φi,in is the concentration of the SS of size i in the lateral flow. 

Applying the model described by Eq. 7 for vertical-flow constructed wetland systems, the 

particles sizes and the lateral flow are not accounted for. As a result, the effects of aggregation 

and break-up of SS particles will be reflected by the dispersion coefficient and the settling 

velocity. A modified mass conservation governing model is expressed in Eq. 8, which requires 

four sub-models for the dispersion coefficient D, the vertically flowing water velocity u, the 

fall velocity v and the source or sink term R.  
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                                                                                                  (8) 

Where φ is the concentration of SS particles of all sizes within the treated wastewater, t is time, 

D is the dispersion coefficient, z is the vertical elevation position, u is the vertically flowing 

water velocity (positive upward), v is the fall velocity or settling velocity of the SS, and R is 

the source or sink term of suspended solids particles due to the physical adsorption on the 

surface of the pebbles within the constructed wetland bed. 

uDmd ⋅=α                                                                                                                        (9)                                                                                                                                          
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Where Dmd is the mechanical dispersion, α is the dispersivity, and u is the velocity of the 

flowing solution, which for continuous flow, may be estimated using Darcy’s law (Eq. 6).  

A relatively simple model for the settling velocity v of the SS is shown in Eq. 10. This model 

uses the hindered settling function described by Davis and Gecol (1994). A popular hindered 

settling function is shown in Eq. 11 (Richardson & Zaki, 1954). The empirical parameter n in 

Eq. 11 may have the value 5.1 (Rowe & Babcock, 2007). 

i
i

i fwv 0=                                                                                                                                (10) 

Where v is the settling velocity of a particle with size i, wi
0 is the terminal settling velocity of 

an isolated particle of size i, and fi is the hindered settling velocity. 

n
if )1( ϕ−=                                                                                                                         (11) 

Where fi is the hindered settling velocity, φ is the total particle fraction or concentration, and n 

is an empirical parameter. To solve Eq. 8, the value of R must be calculated. Suspended solids 

within wastewater provide surface area to adsorb dissolved substances. Adsorbed biomass 

located on aggregates promotes the aggregation of particles. A particle adsorbed onto a pebble 

surface may provide the nucleus site for subsequent biomass growth. The growth of biomass 

will provide further surface area for more particle adsorption. The Monod reaction kinetic rate 

has been widely used to model the biomass growth in wetlands (Langergraber, 2007; Soleimani 

et al., 2009). In this work, Eq. 12 relates the particle absorption to biomass growth. Using Eq. 

2 to describe biomass growth, Eq. 12 can be written as: 

 

                                                                                                             (12) 
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Where R is the source or sink term of suspended solids due to the physical adsorption on the 

surface of the pebbles within the constructed wetland bed, MT is the biomass concentration, qm 

is the maximum growth rate, φ is the total particle fraction or concentration, and φs is a 

constant, the particle concentration in wastewater when the growth rate is the half of the 

maximum value qm. 

The model introduced above has been applied to simulate the SS sedimentation processes 

within the experimental wetland filters. Values obtained from the above literature have been 

used for parameters where no measurements were available. Moreover, appropriate 

assumptions regarding the boundary conditions, which are subject to underlying mechanisms 

and the operation of the filters, have been made. 

3.6 Petroleum hydrocarbon selection 

Diesel was used as a model petroleum hydrocarbon to assess the removal of low water 

solubility hydrophobic organic compounds and was chosen for the following reasons: 

 It is a fuel used everywhere in the world, particularly in industry and has turned into 

one of the most frequent organic pollutants in the environment as a result of the 

increase in technological development (Albaldawi et al., 2013a), and is toxic and 

detrimental to human health (Moreira et al., 2011). Therefore, diesel is of major 

concern owing to its toxicity and carcinogenicity effects. 

 It is part of a group of compounds that contribute the most to the formation of 

photochemical ozone and secondary organic aerosols (SOAs), increasing global 

warming (Hu et al., 2008). 

 It is a known carcinogen and harmful organic compound, and may cause serious 

environmental problems to the ecosystems even in small concentrations (Benmaamar 

& Bengueddach, 2007). 
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 It has a lower rate of volatilization than other types of fuels such as kerosene and 

gasoline (Truax, Britto, & Sherrard, 1996), thus assessment of microorganisms could 

be explored correctly. 

 Traditional treatment technologies used by the petroleum and water industries such 

as hydro cyclones, coalescence, flotation, centrifuges and various separators are not 

efficient concerning the removal of dissolved organic components of hydrocarbons 

including diesel in the dissolved water phase (Lin & Mendelssohn, 2009) but are 

effective in heavy hydrocarbons removal (Eke & Scholz, 2008). 

3.7 Petroleum hydrocarbon analysis 

TPHs were determined by gas chromatography and flame ionization by Exova Health Sciences 

(Hillington park, Glasgow, UK) according to their own accredited “TPH in Waters (with 

Aliphatic/Aromatic Splitting) Method” (Exova Health Sciences, 2014), which is accredited to 

the British Standard (BS) method BS EN ISO IEC 17025 by the United Kingdom Accreditation 

Service and compatible with the International Organization for Standardization (ISO) standards 

(e.g., ISO17025), BS method BS DD 220 1994, and American Standard methods (United States 

Environmental Protection Agency (USEPA) Method 3510C and USEPA SW846 Method 

8015). 

In order to assess the natural volatilization process in the wetland filters, 500 ml of pure diesel 

was poured into an open round container of 10 cm diameter, and kept in the greenhouse to 

mimic the natural volatilization process of the simulated diesel spill wetland filters. Another 

container with 500 ml diesel was kept in a laboratory fume cupboard for comparison. 

3.8 Risk assessment 

Diesel fuel, a hydrocarbon containing different forms of organic compounds such as aromatic 

and saturated, is usually harmful and carcinogenic. Considering this, a risk assessment was 

required before the beginning of the experiment. The risk assessment was carried out using the 
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University of Salford’s Control of Substances Hazardous to Health Regulations (COSHH) and 

Product Safety Data Sheet (PSDS) forms. These forms document the risk assessment and safe 

work systems information related to the hazardous properties of the substances used in the 

research. The procedures governing the application of the hazardous substances (diesel) in the 

experimental research were listed in order to ensure that the research was carried out with 

minimum risk to health of the research students or other people that may be affected. 

Furthermore, directives were stated to ensure safety in each step of the research including the 

types of materials which needed to be used such as clothes to be worn in the laboratory or 

greenhouse. The research student was also trained and advised with regard to the health risks 

associated with possible exposure routes such as inhalation, absorption via the skin and oral 

ingestion when working with hazardous substances like diesel.  

3.9 Risk assessment completion for activities involving hazardous substances  

After reading the COSHH assessment code of practice, the risk assessment forms were 

completed and their content delivered to the users of the hazardous substances and their 

acceptance was obtained and recorded in the appropriate declaration section. A brief 

description of the work was addressed in the assessment as shown below: 

 Safe storage of the hydrocarbon (diesel) in a secure and suitable storage place, such as 

in a laboratory cupboard, when not in use. 

 Preparation of the petroleum hydrocarbon (diesel) in a fume cupboard. 

 Transportation of the prepared solution from the fume cupboard to the wetland filters 

in the greenhouse in an air tight container that is securely sealed. 

 Pouring of the diesel from the container into the different experimental filters. 

 Analysis of treated wastewater effluent. 

 Removal and disposal of treated wastewater through the recognized chemical waste 

stream. 
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In addition to above assessment, we ensured that Chemical Safety Information Sheet (CSIS) 

was obtained from the supplier. Furthermore, we made sure that where the substance (diesel) 

is spilled out as a result of the activity, its hazardous properties and exposure routes were 

checked with special caution regarding the following: 

 The substance or group of substances to be used, or produced, in the above activity 

were named and listed in the Hazardous substances (HS) form. Where the substance 

presents an inhalation hazard and has been assigned an Occupational Exposure Limit 

(OEL), caution was taken and the OEL stated. 

 Each of the substances was classified according to one, or both, of the following 

categories: toxic or harmful. 

The risk assessment was carried out at the Peel building of the School of Environmental and 

Life Sciences (Public Health Department). 

3.10 Data analysis 

After data collection, data were subjected to a normality test before validation and subsequent 

analysis. Because of high variability, the data were not normally distributed even after 

transformations with transformers such as arc sine, square root, log, etc. and as a result, easy 

statistical tools that will fit the abnormal distributed data such as non-parametric tools were 

sought and applied. Microsoft Excel (www.microsoft.com) was used for the general data 

analysis. The non-parametric Mann-Whitney U-test was computed using IBM SPSS Statistics 

Version 20 and used to compare the medians of two (unmatched) samples since virtually all 

sample data (even after data transformation) were not normally distributed, so that an analysis 

of variance could not be applied. 

3.11 Limitations of the experimental research 

In this study, despite the fact that the experimental constructed wetlands used are not 

comparable to large scale systems used in industries, some studies performed based on similar 
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wetland columns (Babatunde et al., 2011; Sani et al., 2013a; Sani et al., 2013b; Al-Isawi et al., 

2014; Almuktar et al., 2015a) were reported to demonstrate results applicable to field scale and 

therefore accepted by the scientific community. 

The wetlands assessed in this experimental study are in the greenhouse under semi-controlled 

environments and cannot be compared with other wetlands in real field situations. However, 

the results of the research can serve as a model to be used in the design and up-scaling of new 

wetlands to be operated in different climates. Furthermore, considering that wetlands in real 

life situations utilize a large land area coupled with abundant natural energy inputs to build-up 

a self-maintaining structure, which will provide favourable environment for various types of 

microorganisms as a result of its diverse microenvironments, the wetland set-up used in this 

study could not represent the actual requirement of the enormous land area involved in actual 

field scale. Moreover, actual large constructed wetlands may serve as a home to many types of 

different animals which will have an effect on the processes occurring in the wetland which 

are not considered in these small wetlands. 

As a result of lack of enough resources and space to accommodate the required number of 

replicates needed for this experimental research, some of the wetland filters like filters 1 and 

2, 3 and 4, 5 and 6, and 7 and 8 are replicated while filters 9 and 10 are not. Furthermore, one 

out of these each replicates received petroleum hydrocarbon 2 years after the start of the 

experiment in the former filters. As a result, the wetland systems used in this experiment could 

not represent the actual wetland set-ups with full replication though many studies were 

conducted using the same wetland columns (Sani et al., 2012; Almuktar and Scholz, 2015) and 

accepted by scientific community. 

Direct clogging assessment could not also be possible within the small experimental vertical-

flow wetlands because doing so could destroy the systems. Furthermore, the experimental 

wetlands are being used continuously by both under and post graduate researchers for their 

projects. As a result, we used indirect means of measuring clogging such as hydraulic 
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conductivity and suspended solids concentration in different side pots of the wetland filters and 

the outflow waters to estimate clogging evolution.  

3.12 Summary 

This chapter explains the wetlands set-up used for the experimental research including their 

design and operation. It also describes the different types of analyses carried out for various 

water quality parameters, clogging and modelling. Furthermore, petroleum hydrocarbon 

selection is elucidated in addition to risk assessment undertaken while conducting the research. 

Finally, the method of data analysis used to interpret the results and limitations of the research 

are explained.  
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CHAPTER 4 

ASSESSMENT OF OVERALL TREATMENT PERFORMANCE 

4.1 Overview 

This chapter explains overall summary results and discussion of the key water quality 

parameters and its relation to clogging for the period of study. Section 4.1 introduces the   

chapter itself while 4.2 discusses the overall treatment performance of the wetland filters 

including influent and effluent water quality. Furthermore, in this section, statistical differences 

between the variables are also presented. Assessment of clogging based on water quality 

variables and the simulation model are interpreted in 4.3 and 4.4 sections respectively while 

summary of the chapter is shown in section 4.5. 

4.2 Overall performance of wetland filters and their relationship with clogging 

4.2.1 Inflow water quality 

Average mean inflow concentrations of water quality parameters monitored in a wetland 

operation for about three years of operation were analysed in this section. The raw domestic 

waste water quality was examined, tabled and interpreted. Table 4.1 shows the overall inflow 

water quality before dilution for the four experimental periods. The wastewater quality was 

highly variable, and was comprised mainly of domestic wastewater and surface water runoff. 

The industrial wastewater component was minimal. The data variability was relatively high, 

reflecting the use of real urban wastewater (Sani et al., 2013b; Al-Isawi et al., 2014; Al-Isawi 

et al 2015). The COD was used as the criterion to differentiate between low and high loads. An 

inflow target COD of about 273 mg/l (usually between 122 and 620 mg/l) was set for wetlands 

with a high loading rate (Filters 7 and 8). The remaining Filters 1 to 4 and Filters 9 and 10 

received wastewater diluted with de-chlorinated tap water. The target inflow COD for these 

filters was approximately139 mg/l (usually between 43 and 350 mg/l).  
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Table 4.1: Overall inflow water quality of the raw domestic waste water mixed with urban 
runoff (before dilution) from 27/06/11 to 30/04/14 

Parameter Unit Number Mean Minimum Maximum Standard 
deviation 

First experimental phase 27/06/11 to 25/09/11 

COD mg/l 34 356.5 90.0 620.0 185.88 

NH4-N mg/l 15 21.6 3.0 36.1 9.78 

NO3-N mg/l 10 0.9 0.2 1.7 0.56 

PO4-P mg/l 20 9.0 5.7 13.6 2.61 

SS mg/l 18 209.6 54.0 400 138.01 

Second experimental phase 26/09/11 to 25/09/12 

COD mg/l 116 267.7 125.0 620.0 118.25 

BOD mg/l 28 103.3 42.0 150.0 32.60 

NH4-N mg/l 84 45.2 14.9 86.0 22.66 

NO3-N mg/l 72 3.4 0.3 14.4 3.86 

PO4-P mg/l 80 17.0 2.4 40.0 10.88 

SS mg/l 98 77.0 2.4 294.8 68.73 

TBD mg/l 36 303.4 90.0 450.0 103.54 

Third experimental phase 26/09/12 to 25/09/13 

COD mg/l 58 239.8 122.0 390.0 91.39 

BOD mg/l 117 151.2 40.0 330.0 67.83 

NH4-N mg/l 60 59.1 0.1 131.8 23.44 

NO3-N mg/l 54 7.7 0.3 20.9 5.94 

PO4-P mg/l 50 13.0 2.9 32.1 9.11 

SS mg/l 132 232.25 18.0 760.0 177.47 

TBD mg/l 98 120.7 6.7  457.0              94.43 
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Table 4.1 (cont) 

Fourth experimental phase 26/09/13 to 30/04/14 

Parameter Unit Number Mean Minimum Maximum Standard 
deviation 

COD mg/l 16 246.1 112.0 360.0 93.02 

BOD mg/l 68 133.3 10.0 360.0 98.45 

NH4-N mg/l 22 32.4 3.1 70.0 24.06 

NO3-N mg/l 20 3.7 0.4 14.0 4.32 

PO4-P mg/l 18 16.3 9.3 27.6 5.77 

SS mg/l 70 143.9 27.0 474.0 113.13 

TBD mg/l 65 89.5 12.3 391.0 86.30 

Note: only filters 7 and 8 received the above water characteristics. The remaining filters 
received diluted waste water (i.e. 1 part de-chlorinated tap water and 1 part wastewater). 

The undiluted influent concentrations for COD, BOD, ammonia-nitrogen, nitrate-nitrogen, 

ortho-phosphate-phosphorus, SS and turbidity were 278 mg/l, 129 mg/l, 40 mg/l, 16 mg/l, 14 

mg/l, 166 mg/l and 171 NTU (nephelometric turbidity units), respectively.  

4.2.2. Comparison of outflow water qualities 

4.2.2.1 Comparison of oxygen demand variables (COD and BOD) 

COD and BOD are used to evaluate organic matter concentration in constructed wetlands. 

Their removal mechanisms include aerobic, anaerobic, adsorption, filtration, and microbial 

metabolism (Karathanasis et al., 2003; Song et al., 2006; Stefanakis et al., 2014). Overall 

performance with regard to water quality parameters is shown in Tables 4.2, 4.3, 4.4 and 4.5 

including the chemical and biochemical oxygen demand variables. The result shows that all 

filters demonstrated relatively good COD removal (excluding the time close to the start-up and 

period of petroleum hydrocarbon contamination) as depicted in Figure 4.1. This can be 

explained by the fact that, close to the start-up period, the biological activity necessary for 

microbial degradation takes time to develop and as such, the treatment efficiency can be 
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expected to improve after microbial acclimatization (Scholz, 2006, 2010; Sani et al., 2012; Sani 

et al., 2013a; Sani et al., 2013b, Al-Isawi et al., 2014; Al-Isawi et al 2015; Almuktar et al., 

2015a)  while during the period of petroleum hydrocarbon contamination, the sharp decline in 

COD removal efficiency (Table 4.5 and Figure 4.1) could be attributed to the artificial 

contribution of petroleum hydrocarbon to the COD of the inflow water poured in the wetland 

filters. This has been confirmed by Al-Isawi et al. (2014) and Al-Isawi et al. (2015) who in 

their recent study, reported a sharp increase in COD outflow concentrations of their wetland 

filters when subjected to diesel spill as a result of the indirect increase of the COD in the inflow 

wastewater. 

 
 
Table 4.2: Comparison of outflow water quality and air temperature for first experimental 
phase (27/06/11 to 25/09/11) 
 

Parameter        Unit Number Mean Rem (%) Minimum Maximum Stdev 

Filter 1 and 2 

COD mg/l 11 81.0 55.1 34.8 135.0 33.07 

NH4-N mg/l 7 7.9 44.6 0.8 21.8 6.83 

NO3-N mg/l 5 0.6 -17.4 0.4 1.3 0.26 

PO4-P mg/l 10 2.0 58.1 0.2 3.3 0.88 

SS mg/l 9 25.7 75.1 6.0 85.0 23.02 

Filter 3 and 4        

COD mg/l 10 75.6 58.1 36.4 120.0 29.45 

NH4-N mg/l 7 11.1 22.0 3.8 30.9 8.06 

NO3-N mg/l 5 0.4 12.2 0.3 0.6 0.10 

PO4-P mg/l 10 2.0 56.7 1.0 3.2 0.75 

SS mg/l 9 27.2 73.7 7.0 120.0 33.31 

Filter 7 and 8        

COD mg/l 11 167.9 53.0 84.2 452.0 104.66 

NH4-N mg/l 7 28.0 -29.7 12.9 62.8 17.58 

NO3-N mg/l 5 0.7 20.0 0.5 0.9 0.19 
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Table 4.2 (cont) 
Parameter Unit Number Mean Rem (%) Minimum Maximum Stdev 

PO4-P mg/l 10 4.6 48.5 2.4 7.4 1.75 

SS mg/l 8 35.6 83.0 9.0 75.0 18.29 

Filter 9 
COD mg/l 11 102.3 43.4 58.2 255.0 55.55 

NH4-N mg/l 7 18.2 -27.9 8.2 35.8 9.60 

NO3-N mg/l 4 0.5 0.8 0.4 0.6 0.12 

PO4-P mg/l 11 2.5 45.6 1.8 3.3 0.56 

SS mg/l 10 33.6 67.5 9.0 85.0 27.73 

Filter 10 

COD mg/l 13 345.5 54.2 90.0 620.0 185.88 

NH4-N mg/l 9 11.7 18.0 6.5 18.7 4.35 

NO3-N mg/l 6 0.3 29.7 0.2 0.5 0.09 

PO4-P mg/l 13 2.2 53.1 1.4 3.9 0.66 

SS mg/l 14 18.6 81.8 7.0 45.0 10.97 

AT oC 28 14.9 n/a 11.1 18.1 2.10 

n/a, not applicable. 
 

Table 4.3: Comparison of outflow water quality and air temperature for second experimental 
phase (26/09/11 to 25/09/12) 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Parameter        Unit Number Mean Rem 
(%) 

Minimum Maximum Stdev 

Filter 1 and 2 

COD mg/l 52 56.7 57.5 5.0 135.0 29.22 

BOD mg/l 13 36.2 30.5 15.0 70.0 18.11 

NH4-N mg/l 37 9.1 75.4 0.3 25.3 5.90 

NO3-N mg/l 34 1.1 14.4 0.0 7.8 1.81 

PO4-P mg/l 40 3.0 69.7 0.0 6.0 1.36 

SS mg/l 49 7.3 83.8 0.2 52.0 10.16 

TBD NTU 15 1.7 99.0 0.0 5.1 1.87 

        Filter 3 and 4        

COD mg/l 50 56.6 59.9 6.0 165.0 33.73 

BOD mg/l 13 32.2 38.1 10.0 65.0 19.96 
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Table 4.3 (cont) 

Parameter        
Unit 

Number Mean Rem 
(%) 

Minimum Maximum Stdev 

NH4-N mg/l 37 6.9 81.3 0.1 31.2 5.68 

NO3-N mg/l 34 1.6 -28.1 0.0 11.9 2.64 

PO4-P mg/l 40 2.6 73.1 0.0 6.5 1.25 

SS mg/l 49 6.1 86.4 0.0 60.0 11.01 

TBD NTU 15 1.2 99.3 0.0 3.9 1.28 

Filter 7 and 8 

COD mg/l 50 89.9 66.4 20.5 240.0 48.95 

BOD mg/l 13 41.5 59.8 0.0 130.0 37.44 

NH4-N mg/l 41 15.7 65.3 0.9 35.8 8.65 

NO3-N mg/l 37 3.1 9.9 0.0 21.2 4.53 

PO4-P mg/l 40 4.5 73.5 0.0 8.2 2.25 

SS mg/l 47 11.1 85.6 1.4 84.0 15.95 

TBD NTU 15 4.9 98.4 0.0 12.1 3.57 

Filter 9 

COD mg/l 57 59.1 56.2 10.9 158.0 31.04 

BOD mg/l 14 23.2 55.4 0.0 70.0 17.05 

NH4-N mg/l 44 5.6 84.9 0.0 14.8 3.61 

NO3-N mg/l 47 4.2 -232.8 0.0 14.6 4.00 

PO4-P mg/l 47 2.5 74.3 0.0 4.9 1.16 

SS mg/l 55 7.2 84.2 0.0 50.0 9.85 

TBD NTU 19 2.5 98.6 0.0 9.1 2.77 

Filter 10 

COD mg/l 59 54.8 59.3 11.8 128.0 27.29 

BOD mg/l 14 16.1 69.1 0.0 55.0 14.03 

NH4-N mg/l 46 5.5 85.1 0.2 13.7 3.41 

NO3-N mg/l 45 3.3 -164.7 0.0 12.7 3.47 

PO4-P mg/l 48 2.3 76.2 0.0 4.8 1.17 
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The BOD removal efficiencies generally improved over time (Tables 4.2, 4.3, 4.4 and 4.5). 

This improvement can be attributed to the development of a mature biomass adjusted to the 

environmental boundary conditions of the wetland system (Sani et al., 2013a; Sani et al., 

2013b; Al-Isawi et al., 2014; Al-Isawi et al., 2015; Almuktar et al., 2015a).  

With regard to clogging of the wetland systems due to organic matter particles within the period 

of this research, none of the filters have shown any sign of clogging (Tables 4.7 and 5.6 of 

chapter 5) restricting their treatment performance efficiency even before and during the period 

of petroleum hydrocarbon pollution (Tables 4.2, 4.3, 4.4 and 4.5) despite the fact that numerous 

studies have revealed that accreted organic matter (COD and BOD) in form of solids overtime  

may lead to media clogging by obstructing wastewater penetration through the substrate pores 

thereby reducing the retention time of the wastewater and pollutants removal capacity (Tanner 

&Sukias, 1995; Nguyen, 2000). The plausible reason for this good performance observed in 

the current study, could be attributed to gradual microorganism’s ability to biodegrade the 

accumulated organic matter particles overtime in addition to the intermittent aeration that might 

have enhanced the biodegradation of the pollutants and averting aggregation of the organic 

particles in the substrate media, subsequently leading to within bed clogging abatement of the 

wetland systems.  This phenomenon has been confirmed by Al-Isawi et al. (2015) and 

Almuktar et al. (2015a) lately in their research. However, there was a prescence of litter zone 

formed on top of each filter (Table 5.6 of chapter 5) which was partly due to both the high 

Table 4.3 (cont) 

Parameter        
Unit 

Number Mean Rem 
(%) 

Minimum Maximum Stdev 

SS mg/l 60 6.0 86.8 0.0 40.0 8.51 

TBD NTU 19 2.1 98.8 0.0 6.8 2.18 

AT °C 141 12.7 n/a 0.8 28.0 4.20 

AT, air temperature, OC, degrees celcius, n/a not applicable. 
 
 

104 
 



 

strength and SS load of the wastewater, but mainly due to the dead macrophyte plant material 

that was harvested in winter and returned to the corresponding wetland filters confirming data 

by Sani et al. (2013a), Sani et al. (2013b) and Al-Isawi et al.  (2014).  

 The overall mean COD and BOD removal efficiencies for Filters 7 and 8 (both with high 

loading rate) were higher than those for Filters 3 and 4 (both with low loading rate). This 

difference was statistically significant as shown in Table 4.6, which summarizes an assessment 

of the statistically significant differences between outflow water quality variables of different 

filters using the non-parametric Mann-Whitney U-test. The opposite is the case for the 

equivalent COD loads. A comparison of Filters 3 and 4 with Filter 9 gives insight into the effect 

of contact time on the treatment performance. The overall removal efficiencies were rather 

similar. The COD and BOD removals for Filters 1 to 4 were also similar, indicating that 

aggregate size may not matter. 

Table 4.4: Comparison of outflow water quality and air temperature for third experimental 
phase (26/09/12 to 25/09/13) 

Parameter        Unit Number Mean Rem (%) Minimum Maximum Stdev 

Filter 1 and 2 

COD mg/l 29 64.4 49.3 39.1 117.0 17.07 

BOD mg/l 61 37.2 51.2 0.0 105.0 21.70 

NH4-N mg/l 29 11.6 69.4 0.4 31.2 9.90 

NO3-N mg/l 27 2.1 47.8 0.1 9.7 2.83 

PO4-P mg/l 25 3.0 56.7 1.4 6.2 1.27 

SS mg/l 65 7.8 93.3 0.0 46.0 8.80 

TBD NTU 50 6.9 89.5 0.0 44.0 8.35 

Filter 3 and 4        

COD mg/l 29 57.9 54.4 23.2 95.1 13.82 

BOD mg/l 61 33.8 55.6 0.0 150.0 25.72 

NH4-N mg/l 29 8.4 77.8 0.2 28.0 8.21 
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Table  4.4 (cont) 
Parameter Unit Number Mean Rem (%) Minimum Maximum Stdev 

NO3-N mg/l 27 3.0 26.4 0.1 10.5 3.15 

PO4-P mg/l 25 2.5 62.8 1.3 6.0 0.97 

SS mg/l 65 5.8 95.0 0.0 26.0 5.28 

TBD NTU 50 6.5 90.1 0.0 63.4 8.53 

Filter 7 and 8 
COD mg/l 29 81.3 66.0 32.1 126.0 20.92 

BOD mg/l 60 48.6 67.9 5.0 245.0 35.59 

NH4-N mg/l 29 25.0 57.7 1.2 62.2 20.06 

NO3-N mg/l 28 6.0 9.9 0.1 24.8 6.15 

PO4-P mg/l 25 4.2 68.0 1.0 7.8 1.72 

SS mg/l 65 8.6 96.3 0.0 48.0 9.04 

TBD NTU 50 10.9 90.9 0.0 65.4 13.36 

Filter 9 

COD mg/l 26 55.8 56.1 16.8 78.3 15.37 

BOD mg/l 65 28.28 63.0 0.0 75.0 16.13 

NH4-N mg/l 32 8.0 79.0 0.4 27.2 6.69 

NO3-N mg/l 30 5.6 -37.1 0.3 17.5 4.40 

PO4-P mg/l 26 3.0 56.5 1.7 6.8 0.94 

SS mg/l 69 7.3 93.8 0.0 49.0 9.56 

TBD NTU 56 6.9 89.5 0.0 30.9 7.93 

Filter 10 

COD mg/l 27 62.4 50.9 24.9 88.2 12.73 

BOD mg/l 73 27.9 63.4 0.0 68.0 17.30 

NO3-N mg/l 29 4.9 -18.8 0.1 17.5 4.69 

PO4-P mg/l 24 3.1 54.1 1.7 8.4 1.32 

SS mg/l 87 8.8 92.4 0.0 39.0 10.03 

TBD NTU 61 8.6 87.0 0.0 53.1 10.93 

AT °C 306 13.1 n/a 1.0 29.0 3.5 

AT, air temperature, OC, degrees celcius, n/a not applicable. 
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During the period of petroleum hydrocarbon contamination, the overall mean COD and BOD 

removal efficiencies for Filter 7 with high loading rate were higher than those of Filter 3 with 

low loading rate (though both have low efficiencies). The statistical difference was 

insignificant, implying that the loading rate may also not matter (Table 4.6).  

Figure 4.2 shows the distribution of the biochemical oxygen demand variable, BOD. The 

traditional UK standard for BOD removal from secondary wastewater is 20 mg/l and 25 mg/l 

for sensitive and less sensitive (e.g., many coastal discharges) areas, respectively (Royal 

Commission on Sewage Disposal, 1915). Regarding sensitive watercourses, Filters 1, 3 and 7 

Regarding sensitive watercourses, Filters 1, 3 and 7 before hydrocarbon contamination were 

63, 60, and 61 times non-compliant, while after the contamination, they were 16, 17 and 16 

times respectively. 

Table 4.5: Comparison of outflow water quality and air temperature for last experimental phase 
(26/09/13 to 30/04/14) 

Parameter        Unit Number Mean Rem (%) Minimum Maximum Stdev 

Filter 1  

COD mg/l 9 108.0 12.3 36.7 346.0 94.44 

BOD mg/l 34 22.4 66.2 0.0 70.0 16.34 

NH4-N mg/l 11 6.6 63.8 1.1 29.0 7.99 

NO3-N mg/l 10 0.5 76.2 0.2 0.9 0.26 

PO4-P mg/l 8 3.3 61.2 1.1 10.8 3.09 

SS mg/l 36 12.4 81.8 0.0 52.0 11.59 

TBD NTU 36 10.3 81.4 3.5 28.4 6.23 

Filter 2        

COD mg/l 5 48.2 61.0 18.4 93.2 35.28 

BOD mg/l 33 13.9 79.0 0.0 36.0 8.82 

NH4-N mg/l 11 6.2 65.7 0.5 18.6 6.21 

NO3-N mg/l 9 3.4 -68.5 0.3 8.6 3.24 

107 
 



 

        

Table 4.5 (cont) 
Parameter Unit Number Mean Rem (%) Minimum Maximum Stdev 

PO4-P mg/l 8 3.1 63.7 1.9 5.2 1.34 

SS mg/l 36 7.1 89.6 0.0 49.0 11.38 

TBD NTU 36 6.4 88.4 2.0 46.1 6.84 

Filter 3 
COD mg/l 9 115.2 6.7 53.2 332.0 87.18 

BOD mg/l 34 25.7 61.4 0.0 98.0 19.31 

NH4-N mg/l 11 4.3 76.6 0.7 16.9 4.82 

NO3-N mg/l 10 0.5 77.7 0.1 1.1 0.36 

PO4-P mg/l 8 3.0 64.7 0.9 9.5 2.80 

SS mg/l 36 13.0 81.0 0.0 54.0 11.21 

TBD NTU 36 11.0 80.2 2.9 30.7 6.39 

Filter 4 

COD mg/l 5 42.1 65.9 10.4 90.6 36.72 

BOD mg/l 31 13.0 80.5 0.0 40.0 10.33 

NH4-N mg/l 10 4.9 73.2 0.1 15.2 4.81 

NO3-N mg/l 9 0.6 -73.4 0.1 1.0 0.41 

PO4-P mg/l 8 3.1 63.2 1.7 5.7 1.39 

SS mg/l 36 8.0 88.4 0.0 50.0 12.55 

TBD NTU 36 6.6 88.1 1.9 27.3 6.25 

Filter 7 

COD mg/l 9 160.7 34.7 60.5 356.0 113.06 

BOD mg/l 32 25.7 80.7 0.0 78.0 19.98 

NH4-N mg/l 11 14.1 56.5 5.7 61.5 15.89 

NO3-N mg/l 10 1.1 71.6 0.2 2.8 0.81 

PO4-P mg/l 8 4.6 71.6 1.0 13.6 4.19 

SS mg/l 37 14.8 89.7 0.0 68.0 15.25 

TBD NTU 36 11.4 87.2 4.1 35.8 7.84 

Filter 8 

COD mg/l 5 61.7 75.0 27.8 139.0 47.47 
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Table 4.5 (cont) 

Parameter Unit Number Mean Rem (%) Minimum Maximum Stdev 

BOD mg/l 33 18.0 86.5 0.0 44.0 13.60 

NH4-N mg/l 10 12.9 60.1 0.5 54.2 15.62 

NO3-N mg/l 9 3.5 6.9 0.2 17.9 5.57 

PO4-P mg/l 8 4.2 74.3 2.0 13.5 3.86 

SS mg/l 37 8.4 94.2 0.0 41.0 10.31 

TBD NTU 36 7.0 92.2 2.1 27.0 6.34 

Filter 9        

COD mg/l 6 39.5 68.0 14.1 106.0 36.56 

BOD mg/l 39 13.9 79.0 0.0 42.0 9.80 

NH4-N mg/l 11 4.8 73.4 0.1 20.7 7.96 

NO3-N mg/l 9 4.3 -114.8 0.4 10.4 3.47 

PO4-P mg/l 8 3.2 61.8 1.8 7.8 2.05 

SS mg/l 40 2.2 96.8 0.0 13.1 3.23 

TBD NTU 39 3.3 94.1 1.8 13.3 1.98 

 
Filter 10 

COD mg/l 6 47.6 61.5 18.3 102.0 34.2 

BOD mg/l 46 14.7 77.8 0.0 36.0 8.71 

NH4-N mg/l 10 2.8 84.42 0.09 17.4 5.2 

NO3-N mg/l 9 3.7 -88.2 0.4 10.8 4.38 

PO4-P mg/l 7 3.5 58.3 1.8 7.5 2.28 

SS mg/l 49 2.6 96.1 0.0 16.0 3.58 

TBD NTU 51 3.9 92.8 1.8 12.7 2.14 

Control A 

COD mg/l 8 72.1 ned 6.9 312.0 99.31 

BOD mg/l 33 13.0 ned 0.0 42.0 10.58 

NH4-N mg/l 11 1.8 ned 0.0 4.6 1.71 

NO3-N mg/l 10 0.6 ned 0.0 2.0 0.61 
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Table 4.5 cont)        

Parameter Unit Number Mean Rem (%) Minimum Maximum Stdev 

PO4-P mg/l 8 3.2 ned 1.8 7.8 2.05 

SS mg/l 36 6.5 ned 0.0 39.0 9.70 

TBD NTU 36 4.9 ned 2.2 21.3 4.46 

Control B 

COD mg/l 5 35.1 ned 3.5 90.3 36.80 

BOD mg/l 34 8.1 ned 0.0 34.0 8.59 

NH4-N mg/l 10 2.0 ned 0.1 6.9 1.95 

NO3-N mg/l 9 0.6 ned 0.1 1.0 0.41 

PO4-P mg/l 7 3.5 ned 1.9 7.6 2.28 

SS mg/l 36 2.7 ned 0.0 16.0 3.58 

TBD NTU 36 5.3 ned 1.2 27.5 5.58 

AT °C 158 11.3 n/a 2.0 20.0 3.8 

 AT, air temperature, OC, degrees celcius ned not enough data, n/a not applicable   
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Figure 4. 1: Overall variations in COD for inflow and outflow 

 

With regard to Filters 2, 4, 8, 9 and 10, they were 65, 66, 75, 64 and 68 times non-compliant 

respectively. In comparison, Filters 1, 3 and 7 before and after petroleum hydrocarbon 

contamination, were 51, 44, 42 and 13, 12 and 10 times non-compliant for less sensitive areas, 

respectively. The relative poor performance of Filters 7 and 8 can be explained by the high 

inflow loading rates. However, Filters 9 and 10 perform relatively well due to a low loading 

rate. 
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Figure 4.2: Overall variations in BOD5 for inflow and outflow 

 

4.2.2.2 Comparison of nutrients variables 

Removal of nutrients in constructed wetlands is imperative because of their environmental and 

health implications. Receiving water courses become eutrophic when they receive large 

amounts of these nutrients subsequently promoting enormous plant growth that leads to the 

depletion of oxygen in the receiving water environment. Nitrogen removal in constructed 

wetlands is primarily by microbial nitrification and denitrification.   

In the nitrification process, ammonia is oxidized largely to nitrate. As a result of the oxidation 

of ammonia to nitrate, nitrate is reduced to gaseous nitrogen by the denitrification process 

However, the removal is insufficient without active and passive aeration, mainly because of 

inadequate oxygen available for aerobic biodegradation (Scholz, 2010; Saeed & Sun, 2011; 

Fan et al., 2012; Fan et al., 2013; Vymazal, 2014; Song et al., 2015). 

Removal of ammonia in constructed wetlands is a complex process (Vymazal, 2007) and 

involves series of chemical, physical and biological reactions within the wetland media. 
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However, several publications have demonstrated that high aeration (Fan et al., 2012; Fan et 

al., 2013; Liu et al., 2014), which promotes the build-up of ammonia oxidizing bacteria leads 

to high ammonia nitrification (Zhi et al., 2015). 

In this research, Tables 4.2, 4.3, 4.4 and 4.5 above show comparisons of the overall nutrients 

outflow water quality in different experimental phases, while Table 4.6 summarizes an 

assessment of the statistically significant differences between outflow water quality variables 

of different filters using the non-parametric Mann-Whitney U-test.  

The overall reduction rates of ammonia-nitrogen were relatively high, partially due to 

temperatures usually being above 15°C during the warm seasons (Tsihrintzis et al., 2007) and 

aeration (Fan et al., 2012; Fan et al., 2013; Liu et al., 2014; Zhi et al., 2015). The removal 

efficiencies were low if undiluted wastewater was used. Table 4.6 indicates that inflow water 

high in COD results in a statistically significant (P<0.05) difference between the mean daily 

values of Filters 7 and 8 in comparison to the mean daily values of Filters 3 and 4. However, 

aggregate size, resting time and contact time were not important for the overall ammonia-

nitrogen removal. 

A typical standard by UK regulations (UK Government, 1994) was not set for ammonia-

nitrogen that would relate to the treatment system used in this experiment. However, a realistic 

guideline threshold value concerning secondary wastewater treatment in this experiment would 

be 20 mg/l (Sani et al., 2013b). Filters 1 to 8 were 9, 10, 5, 5, 64, 33, 6 and 6 times non-

compliant, respectively before petroleum hydrocarbon contamination. After the contamination 

however, Filters 1 and 7 were one-times non-compliant while Filter 3 complied (Figure 4.3). 

In comparison, a common standard set by environment agencies for the second nitrogen 

variable, nitrate-nitrogen, concerning secondary treatment of wastewater is 50 mg/l (Sani et al., 

2013b). All filters were compliant.   
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Figure 4.3: Overall variations for ammonia-nitrogen in the inflow and outflow 

Denitrification in wetlands has been reported in many publications (Scholz, 2010; Ji et al., 

2012; Ji et al., 2013) and positively correlated with organic carbon supply from macrophytes 

(Bastviken et al., 2005; Souza et al., 2008; Shen et al., 2015) and temperature (Stefanakis & 

Tsihrintzis, 2012; Mietto et al., 2015). Although the nitrate-nitrogen concentration in the inflow 

was relatively low (Table 4.1), the outflow concentrations were relatively high for all filters 

(Tables 4.2, 4.3, 4.4 and 4.5). Only Filters 3, 4, 7, 8, 9 and 10 had positive removal efficiencies 

(though very small). In contrast, other filters functioned as sources for nitrate-nitrogen in the 

first experimental phase. In the second and third experimental phases, however, Filters 1, 2, 7, 

8 and Filters 1, 2, 3, 4, 7 and 8 had low positive removal efficiencies respectively. In contrast, 

the outflow concentration of other filters served as a source for nitrate-nitrogen. The negative 

removal efficiencies for nitrate-nitrogen indicated that denitrification was likely to be only a 

minor removal mechanism (Kayranli et al., 2010; Sani et al., 2013a; Sani et al., 2013b; Al-

Isawi et al., 2014). However, the necessary conditions for denitrification to occur (e.g., anoxic 
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environment and presence of easily bio-degradable organic carbon) were not directly 

monitored within the entire small wetlands, because this would have been too destructive (Sani 

et al., 2013b). 

The nitrate-nitrogen reduction was higher for smaller compared to larger aggregate sizes. Long 

contact and resting times, and a low COD loading were also positive (Table 4.2). The mean 

overall daily nitrate-nitrogen values of Filters 3 and 4 compared to Filter 9 were statistically 

significantly different from each other (Table 4.6).   

Overall performance of wetland filters regarding the nutrients variables shows that all the 

nutrients were relatively removed from all filters though removal was better in filters without 

petroleum hydrocarbons compared to those filters contaminated with except for nitrate-

nitrogen which showed better removal in the latter. The overall removal efficiency was 

relatively high with no significant difference between the filters (Table 4.6). The nitrogen 

removal could be attributed to biodegradation processes of diesel spills in Filters 1, 3 and 5 

which reduced the availability of nutrients to microorganisms and P. australis. However, as 

the biodegradation of diesel progresses, small amounts of remaining petroleum hydrocarbon 

promote the growth of some microorganisms, which increase the degradation rate (Al-Isawi et 

al., 2014; Al-Isawi et al., 2015).  

Literature has shown that there is a direct relation ship between accumulated total nitrogen and 

total carbon inform of organic matter accumulation overtime in CWs and leads to a significant 

media clogging and declined treatment performance (Tanner, 1994; Nguyen, 2000). However, 

in this research, though direct measurement of clogg matter (organic and inorganic solids) was 

not conducted because doing that will destroy the experimental wetlands, indirect measurement 

of clogging by measuring SS outflow concentration from the wetland’s main outlet and side 

wall valves,  and hydraulic conductivity (Tables 4.7 and 5.6 of chapter 5) was performed.  The 

result from the wetland’s performance efficiency in both pre and post petroleum hydrocarbon 
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pollution (Tables 4.2, 4.3, 4.4 and 4.5) of this research, indicated that none of the wetland 

systems was negatively affected with regard to within bed filter pore clogging as a result of 

high nitrogen compounds removal, improved permeability and low outflow SS concentration 

recorded from the wetland filters (Tables 4.7 and 5.6 of chapter 5). The explanation behind this 

could be due to high biodegradation activity by nitogen oxidizing bacteria stimulated by bed 

oxygenation during resting times of the wetland induced by the intermittent operation mode. 

Several authors have indicated that a resting operation could effectively improve porosity and 

the hydraulic conductivity after some days of the resting period and improve treatment 

performance efficiency (Hua et al., 2014; Paing et al., 2015; Wu et al., 2015). However, the 

litter zone observed on top of each filter was partly due to both the high strength and SS load 

of the wastewater, but mainly due to the dead macrophyte plant material that was harvested in 

winter and returned to the corresponding wetland filters (Sani et al., 2013a; Sani et al., 2013b; 

Al-Isawi et al., 2014). Furthermore, petroleum hydrocarbon has been reported to supply energy 

for rhizomicrobes, thus increasing nitrogen degradation in the wetland systems leading to the 

observed high removal of the nitrogen compouds (Al-Baldawi et al., 2015; Al-Isawi et al., 

2015) without filter clogging and negative impact on the systems porosity and hydraulic 

permeability (Al-Isawi et al., 2015; Song et al., 2015) confirming the data of the current study. 

Removal mechanisms of phosphorus in constructed wetland systems have been reported to 

include plant uptake (Vymazal, 2011c, 2013a), microbial uptake and accretions in wetland 

media (Gikas & Tsihrintis, 2012), retention by wetland substrate and precipitation in water 

column (Gikas et al., 2007). Furthermore, several publications have shown that phosphorus is 

one of the most difficult pollutants to remove by constructed wetlands (Pant, Reddy, & Lemon, 

2001; Fia et al., 2014; Vera et al., 2014).  

In this study, the ortho-phosphate-phosphorus removal efficiencies ranged between 46 and 

58%, 70 and 76%, 54 and 68% and 58 and 72% for all filters regardless of the loading rate in 
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first, second, third and fourth experimental phases respectively (Tables 4.2, 4.3, 4.4 and 4.5), 

which is surprising, considering that an overall statistically significant difference for COD has 

been noted (Table 4.6). Furthermore, aggregate size and resting time were not crucial 

parameters in terms of overall ortho-phosphate-phosphorus removal. This can be explained by 

the fact that phosphorus is usually present in particulate form, and does not dissolve well in 

filters that are not yet saturated by phosphorus or other compounds competing for adsorption 

sites (Scholz, 2006, 2010). 

In CWs, phosphorus particles are attached to suspended solids and are removed due to 

settlement, adsorption and microbial consumption (Gikas & Tsihrintzis, 2012). However, the 

accumulation of these suspended solids via the adhesion of biofilms due to microorganism 

growth contributes to clogging (Hua et al., 2010; Zhao et al., 2009) consequently limiting the 

competitiveness and efficiency of the wetland systems. In this research, the overall wetland 

performance in removing the phosphorus after and before petroleum hydrocarbon pollution 

was relatively good in all filters without any negative sign of clogging and hydraulic 

conductivity (Tables 4.2, 4.3, 4.4, 4.5, 4.7 and 5.6 in chapter 5). This has been confirmed by 

Al-Isawi et al. (2014) and Al-muktar and Scholz (2015) who noted high phosphorus removal 

efficiency in their wetland systems without any within bed clogging of the filter media and 

attributed the better performance as a result of high aeration and microbial activity that 

promoted the high phosphorus biodegradation, porosity and hydraulic conductivity 

improvement. Nevertheless, as a result of both high strength and SS load of the wastewater, 

and dead macrophyte plant material that was harvested in winter and returned to the 

corresponding wetland filters, a litter zone accumulation on top of each filter was evident.  

All filters performed insufficiently in terms of phosphorus removal compared to other key 

parameters such as COD and ammonia-nitrogen. Findings confirm those by several studies 

(Smith et al., 2006; Sani et al., 2013a; Al-Isawi et al., 2014) indicating that constructed 
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wetlands were not efficient in removing phosphate in Nordic countries, especially during 

prolonged high loading periods. The regulations (UK Government, 1994) set a value of 2 mg/l 

for total phosphorus for communities between 10,000 and 100,000 inhabitants. A threshold for 

ortho-phosphate-phosphorus that would relate to the treatment system discussed in this thesis 

does not exist. However, a realistic guideline threshold value for ortho-phosphate-phosphorus 

could be 1 mg/l (Sani et al., 2013b). Filters 1 to 8 were 71, 74, 71, 73, 72, 75, 83 and 82 times 

non-compliant, respectively from first to third experimental phases while petroleum 

hydrocarbon contaminated filters 1, 3 and 5 were all non-compliant after the contamination 

(Figure 4.4). 

 
Figure 4.4: Overall variations for ortho-phosphate-phosphorus in the inflow and outflow  

 

4.2.2.3 Comparison of particles 

Although, a publication by Vymazal (2014) revealed that sedimentation, filtration, aggregation 

and surface adhesion are the primary removal mechanisms for suspended solids, several studies 

confirmed that solids and particulate matter removal are achieved (Kadlec & Knight, 1996; 
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Green et al., 1997; Leonard, 2000; ITRC, 2003; Garcia et al., 2010; Hua et al., 2013) via settling 

and sedimentation, adsorption, and microbial degradation in wetland systems.  

The overall removal efficiencies for SS were high (Tables 4.2, 4.3, 4.4 and 4.5). A higher 

loading rate had a significantly (P<0.05) negative impact on the overall treatment performance 

before petroleum hydrocarbon contamination (Table 4.6). Suspended solids accumulated in the 

top part of the filters as a result of litter layer formation two years later, confirming findings by 

Hua et al. (2010), Scholz (2010) and Sani et al. (2013b). The presence of different aggregates 

did not seem to have an influence on solids retention, at least in the early stages of operation. 

Despite numerous publications relating clogging with SS accumulation in the wetland media 

and poor treatment performance of wetland systems, the current study result indicated that there 

was no evident of within bed clogging as a result of high SS removal efficiency of more than 

80% observed in all filters even in the period after the systems are polluted with petroleum 

hydrocarbons (Tables 4.2, 4.3, 4.4, 4.5 and 4.7). This indicates that the observed SS 

concentration and hydraulic conductivity values were relatively low (Table 5.6 of chapter 5) 

and have not impacted negatively and restricted porosity, permeability and  the overall 

treatment performance of the wetland systems,. The plausible reason for this could be, high 

solids biodegradation achieved as a result of high intermittent aeration during the operation 

mode that might have stimulated and enhanced the activity of the rhizomicrobes in the 

contaminants removal, confirming findings by Hua et al.(2014), Paing et al.(2015) and Song 

et al.(2015).  

The traditional UK standard for SS removal from secondary wastewater is 30 mg/l (Royal 

Commission on Sewage Disposal, 1915). Overall, uncontaminated filters 1 to 8 were 8, 12, 4, 

7, 14, 10, 9 and 13 times non-compliant, respectively. However, contaminated filters 1, 3 and 

5 were 3, 4 and 5 times non-compliant accordingly after the contamination. More recently, the 

regulations (UK Government, 1994) have set a value of 35 mg/l. Uncontaminated filters 1 to 8 
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were 5, 9, 4, 7, 11, 10, 8 and 8 times non-compliant, respectively (Figure 4.5). However, 

authorities try to comply with the more stringent traditional guideline. 

 

 

 

 

Figure 4.5: Overall variations for suspended solids in the inflow and outflow 
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Table 4.6: Overview of the statistically significant differences between outflow water quality 
variables of different wetland filters using the non-parametric Mann-Whitney U-test (27/06/11-
30/04/14) 

Parameter Unit Statistics Aggregate 
diametera 

Contact timeb Resting 
timec 

Chemical 
oxygen 

demandd 

First to third experimental phase (27/06/11-25/09/13) 
Chemical 
oxygen demand 

mg/l P-value 0.355 0.526 0.804 <0.000 
 h 0 0 0 1 

Biochemical 
oxygen demand 

mg/l P-value 0.183 0.068 0.476 0.011 
 h 0 0 0 1 

Ammonia-
nitrogen 

mg/l P-value 0.079 0.856 0.676 <0.000 
 h 0 0 0 1 

Nitrate-nitrogen mg/l P-value 0.237 <0.000 0.095 0.025 
 h 0 1 0 1 

Ortho-
phosphate-
phosphorus 

mg/l P-value 0.080 0.134 0.241 <0.000 
 h 0 0 0 1 

Suspended 
solids 

mg/l P-value 0.025 0.483 0.519 <0.000 
 h 1 0 0 1 

Turbidity mg/l P-value 0.832 0.983 0.543 0.031 
 h 0 0 0 1 

Parameter Unit Statistics Aggregate 
diametere 

Contact timef Resting 
timeg 

Chemical 
oxygen 

demandh 

Fourth experimental phase (26/09/13-30/04/2014) 
Chemical 
oxygen demand 

mg/l P-value 0.895 0.025 0.423 0.200 
 h 0 1 0 0 

Biochemical 
oxygen demand 

mg/l P-value 0.554 0.001 0.472 0.520 
 h 0 1 0 0 

Ammonia-
nitrogen 

mg/l P-value 0.200 0.224 0.972 0.002 
 h 0 0 0 1 

Nitrate-nitrogen mg/l P-value 0.406 0.001 0.691 0.049 
 h 0 1 0 1 

Ortho-
phosphate-
phosphorus 

mg/l P-value 0.462 0.345 0.817 0.294 
 h 0 0 0 0 

Suspended 
solids 

mg/l P-value 0.505 <0.000 0.184 0.978 
 h 0 1 0 0 

Turbidity mg/l P-value 0.454 <0.000 0.005 0.640 
 h 0 1 1 0 

Parameter Unit Statistics Aggregate 
diameteri 

Contact timej Resting 
timek 

Chemical 
oxygen 
demandl 

Fourth experimental phase (26/09/13-30/04/2014) 
Chemical 
oxygen demand 

mg/l P-value 0.347 1.000 0.423 0.251 
 h 0 0 0 0 

Biochemical 
oxygen demand 

mg/l P-value 0.272 0.281 0.472 0.129 
 h 0 0 0 0 

Ammonia-
nitrogen 

mg/l P-value 0.496 0.418 0.972 0.121 
 h 0 0 0 0 

Nitrate-nitrogen mg/l P-value 0.627 0.480 0.691 0.895 
 h 0 0 0 0 

Ortho-
phosphate-
phosphorus 

mg/l P-value 0.753 0.600 0.817 0.638 
  

h 
 

            0 
 

         0 
 

         0 
 

         0 
Suspended 
solids 

mg/l P-value 0.991 0.001 0.184 0.649 
 h 0 1 0 0 

Turbidity mg/l P-value 0.275 <0.000 0.005 0.937 
 h 0 1 1 0 

aComparison between the mean daily values of Filters 1 and 2, and the mean daily values of Filters 3 and 4 
bComparison between the mean daily values of Filters 3 and 4, and Filter 9 
cComparison between Filters 9 and 10 
dComparison between mean daily values of Filters 3 and 4, and mean daily values of Filters 7 and 8 
eComparison between the mean daily values of Filters 1 and 3 
fComparison between the mean daily values of Filters 3 and 9 
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gComparison between Filters 9 and 10 
hComparison between mean daily values of Filters 3 and 7 
iComparison between the mean daily values of Filters 2 and 4 
jComparison between the mean daily values of Filters 4 and 9 
kComparison between Filters 9 and 10 
lComparison between mean daily values of Filters 4 and 8 
Note: P-value, probability of obtaining a test statistic at least as extreme as the one that was actually observed, 
assuming that the null hypothesis is true; h, response indicator; if h=1, filters are statistically significantly different 
(P-value < 0.05) for the corresponding water quality parameter; if h=0, the difference is not significant 
 

4.3 Performance assessment of filter clogging based on water quality variables 

A review discussing clogging of vertical-flow wetland systems has been published by Knowles 

et al. (2011). The key operational parameters in terms of clogging were hydraulic and solids 

loading rate. With respect to this work, no significant differences in hydraulic conductivity 

were usually recorded for all filters. For water quality variables with high (i.e. above 100 mg/l; 

Table 4.2) overall mean inflow concentrations, Table 4.6 indicates that an elevated COD inflow 

load and a smaller aggregate size makes a significant difference in terms of overall COD and 

SS outflow concentrations in the first to third experimental phases while only a significant 

difference in contact time was noticed in the fourth phase (Table 4.6). The development of a 

litter zone on top of each filter was observed after over two years of operation in spring 2013. 

This was partly due to both the high strength and SS load of the wastewater, but mainly due to 

the dead macrophyte plant material that was harvested in winter and returned to the 

corresponding wetland filters. Most SS accumulated in the litter zone of all filters. These 

findings confirm results from previous studies (Hua et al, 2010; Scholz, 2010; Sani et al., 

2013a; Sani et al., 2013b; Al-Isawi et al., 2014). Furthermore, the effluents were usually below 

the threshold value of 30 mg/l (traditional UK standard) for SS removal from secondary 

wastewater (Royal Commission on Sewage Disposal 1915). The removal efficiencies for SS 

were generally relatively high, particularly for the first three phases (Tables 4.2, 4.3 and 4.4) 

before the diesel spill. However, some effluent values during the set-up phase, where the filter 

biomass was immature, were far above 30 mg/l due to the release of fines associated with the 

aggregates and the in ability of the weak biofilm to retain solids originating from the 
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wastewater (Sani et al., 2013a; Al-Isawi et al., 2014). Table 4.6 indicates clearly that filters 

with petroleum hydrocarbon contamination showed elevated SS concentrations compared to 

those without. Furthermore, depending on the stage of biodegradation overtime, initially dying 

contaminated biomass and later on degraded diesel contributed to elevated SS and turbidity 

values within the filters (Table 4.5) as confirmed by Al-Isawi et al. (2014) and Al-Isawi et al. 

(2015). Concerning filter bed clogging evolution measured in terms of SS accumulation, none 

of the systems have shown any signs of serious within-bed clogging after over two years of 

operation even for the high rate Filters 7 and 8, which contrasts with the expectation of noticing 

clogging phenomena for this system by Sani et al. (2013a) and Al-Isawi et al. (2014). This 

justified the overall good treatment performance of the wetland systems in about 30 month 

period of operation in the current study without any serious substrate media clogging, reduced 

hydraulic conductivity and porosity. However, a very modest but statistically significant 

breakthrough of turbidity has been noticed for high rate filters (Tables 4.2, 4.3, 4.4 and 4.5). 

4.4 Performance assessment of filter clogging using the simulation model 

A comparison between the experimental mean seasonal SS accumulation profiles and the 

modelled profiles for the experimental wetlands is shown in Figures 4.7, 4.8, 4.9, 4.10 and 

4.11. Serious clogging was neither observed nor modelled. Modelling performance was rather 

poor for the set-up period, adequate for the first 2 years after the set-up period, and very variable 

after the petroleum hydrocarbon spill. Overall, the modelling results of the SS sedimentation 

show that the clogging model was suitable particularly for Filters 1-8 after the set-up period 

and are in broad agreement with the experimental findings (Sani et al., 2013a) except for the 

litter zone that could not be modelled. The model referred to as the Wang-Scholz model was 

used to compare between measured and predicted values. This clogging model was particularly 

appropriate after the first experimental phase (Figures 4.7b, 4.7c, 4.8b, 4.8c, 4.9b and 4.9c) and 

before the introduction of petroleum hydrocarbon. However, the original model was not 
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designed to deal with petroleum hydrocarbon spills resulting in unforeseen SS contributions in 

the first place. Furthermore, in his review, Meyer et al. (2014) demonstrates that there are 

currently no specific models addressing this challenge.  

 

Figure 4.6 

 
Figure 4.7 

 

*Note that figures 4.6 to 4.10 have been published  in  Al-Isawi, R., Scholz, M., Wang, Y., & Sani, A. (2014). Clogging of vertical-flow 
constructed wetlands treating urban waste water contaminated with diesel spill. Environmental Science Pollution Research. doi: 
10.1007/s11356-014-3732-8 

 

Figure 4.6: Comparison between the measured and modelled distribution of suspended solids 
(SS) with depth within Filter 1 combined with Filter 2 after (a) set-up period, (b) first year after 
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set-up and (c) second year after the set-up, as well as at (d) the end of experiment for Filters 1 
and 2 separately. Note that the value 86 mg/l for (a) has not been displayed. In Figure 4.7, (a) 
is a set-up period for Filters 3 and 4 combined, (b) first year after set-up and (c) second year 
after set-up, while at (d) the end of the experiment for Filters 3 and 4 separately. 

 

From the beginning of the experiment in 2011, the litter layer was absent and the model 

explained reality well by simulating the mechanical dispersion of SS below the litter zone. In 

comparison, a litter layer associated with elevated SS values was formed later. A clear SS 

profile that decreases from the top to the bottom of all filters was evident. The profile can be 

explained by the maturation of the filter biomass retaining SS and not by a gradual increase in 

clogging of filter pores (Sani et al., 2013a; Sani et al., 2013b; Al-Isawi et al., 2014). The SS 

particle sedimentation process and its effect on clogging can be modelled for all wetland filters 

using equations introduced in sections 2.7 and 3.4 of chapters 2 and 3 respectively. A 

simulation model was applied to assess filter clogging predominantly based on SS 

accumulation within the wetland filters. Solids entrapment is classified as physical or 

mechanical clogging. Suspended solids are filtered and therefore retained by wetland media, 

debris and roots via attachment processes. Wastewater contains waste particles of different size 

and composition. As these particles build up within the filters, the efficiency of subsequent 

removal is reduced due to the decrease in pore space. Some particles are electro-statically 

attracted and stack onto each other, often forming dendrites. These dendrites block the pore 

space, thus increasing particle interception. 
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Figure 4.8 

 
Figure 4.9 

 
Figure 4.10 

 
Figure 4. 8: Comparison between the measured and modelled distribution of suspended solids 
(SS) with depth within Filter 7 combined with Filter 8 after (a) set-up period, (b) first year after 
the set-up period and (c) second year after the set-up period, as well as at (d) the end of the 
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experiment for Filters 7 and 8 separately. In Figures 4.9 and 4.10, (a) is a set-up period, (b) 
first year after set-up, (c) second year after set-up, while (d) is separately the end of the 
experiment for Filters 9 and 10.  

 

Ponding, which occurs in heavily clogged filter systems, was not observed, because the 

hydraulic conductivity was not sufficiently low to stop inflow water from infiltrating. However, 

a higher loading rate led to the accumulation of more biomass. Overall, Table 4.7 shows that 

there is no clear indication of imminent clogging for any wetland filter. This observation has 

been confirmed by several studies (Sani et al., 2013a; Sani et al., 2013b; Al-Isawi et al., 2014) 

implying that vertical-flow constructed wetlands do not clog and restrict the hydraulic 

conductivity of the wetland filters even with petroleum hydrocarbon spill over a long-term, 

subsequently, leading to the overall good treatment performance efficiency of the wetland 

systems observed in the present study. The values obtained with Darcy’s Law (Eq. 1) represent 

the average media hydraulic conductivity of the cross-sectional area in the axial flow direction, 

but do not reveal whether clogging is more severe at specific vertical locations within that cross 

section. The application of Darcy’s Law only provides an approximation of the media hydraulic 

conductivity as it cannot take into account the varying thickness of the water table resulting 

from the porous media flow energy balance (i.e., Aw varies between the upstream and 

downstream point (Bear, 1979) for horizontal flow systems as discussed by Nivala et al. 

(2012)). Therefore, the SS profile was obtained to assess where the flow restriction is likely to 

be the greatest. However, all SS values within the filter are rather small. 
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Table 4.7: Hydraulic conductivity performance of the wetland filters measured as the mean 
volume (l) of drained outflow per second 
                                    
                                Second experimental phase (26/09/11 to 25/09/2012); n=5 
Draining time (s) 60 120 180 240 300 360 420 480 

Filters 1 and 2 2.31 1.88 1.34 1.30     

Filters 3 and 4 2.07 1.76 1.37 0.84 0.40 0.40 0.28  

Filters 7 and 8 1.60 1.41 1.24 0.93 0.83 0.40   

Filter 9 2.53 2.08 1.67 0.67     

Filter 10 2.32 2.07 1.76 1.81 0.06    

Filters A and B 2.04 1.93 1.62 0.63 0.54    

                                 Third experimental phase (26/09/12 to 25/09/2013); n=24 

Filters 1 and 2 2.10 1.77 1.37 0.88 0.51 0.41 0.42 0.24 

Filters 3 and 4 2.17 1.82 1.48 0.85 0.55 0.54 0.24 0.19 

Filters 7 and 8 1.69 1.48 1.29 1.03 0.64 0.29 0.37 0.16 

Filter 9 2.32 2.05 1.56 0.83 0.41    

Filter 10 2.45 2.04 1.59 0.73 0.49 0.13   

                                 Fourth experimental phase (26/09/13 to 30/04/2014); n=9 

Filter 1 1.98 1.77 1.40 0.77 0.23    

Filter 2 2.58 2.11 1.46 0.44     

Filter 3 2.38 1.97 1.52 0.29     

Filter 4 2.04 1.83 1.45 0.91 0.55 0.18   

Filter 7 1.58 1.38 1.22 1.01 0.60 0.35   

Filter 8 2.19 1.74 1.53 0.87 0.91 0.22   

Filter 9  2.16 1.81 1.51 0.86 0.44    

Filter 10 2.14 1.86 1.38 0.89 0.55 0.36   

Filter A 2.42 2.01 1.74 0.92 0.44    

Filter B 1.85 1.53 1.36 1.17 0.69 0.32 0.33  
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4.5 Summary 

This chapter discussed the overall treatment performance and its relationship with clogging of 

the wetland filters for the period of study. This includes quality of the inflow water, comparison 

of the outflow water quality variables including the oxygen demand variables, nutrients and 

particles both during and before the period of petroleum hydrocarbon contamination. 

Furthermore, elucidation of overall statistical differences between the variables, and 

assessment of clogging based on water quality variables and modelling was also described in 

this chapter.  
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CHAPTER 5 

ASSESSMENT OF SEASONAL TREATMENT PERFORMANCE 

5.1 Overview 

The seasonal performance and its relation to clogging of the wetland systems are discussed in 

this chapter in different sections. Moreover, the chapter explains the summary of the overall 

seasonal results and discussions of the key water quality parameters, and seasonal assessment 

of SS accumulation in the wetland filters as index of clogging for the period of study. Section 

5.1 discusses the seasonal treatment performances of the wetland filters including influent 

water quality of all the variables while effluent water quality and statistical differences between 

the variables are presented in section 5.2. Assessment of clogging based on water quality 

variables is interpreted in section 5.3. 

5.2 Seasonal performance of wetland filters and their relationship with clogging 

5.2.1 Seasonal inflow water quality 

Average seasonal inflow performance data of over 30 months of wetland operation were 

analysed. Furthermore, the study monitored seasonal changes recorded over time in an attempt 

to understand the inflow water quality variables and their relationship in the system. Table 5.1 

shows the seasonal inflow water quality of the undiluted wastewater used for the study period 

from June 2011 to March 2014. The mean inflow concentrations for COD, ammonia-nitrogen, 

nitrate-nitrogen, ortho-phosphate-phosphorus and SS were relatively high and variable. In 

2011, the COD concentrations in summer were higher than in autumn. Similarly, the COD 

values in summer 2012 were higher than in autumn and spring. In contrast, BOD5 

concentrations in 2012 were lower in summer when compared to autumn. However, in 2013, 

autumn and summer COD concentrations were higher than those of winter and spring 

respectively, unlike high BOD inflow concentrations recorded in spring and summer compared  
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Table 5.1: Seasonal inflow water quality parameters (value and sample number in brackets, and standard deviation) of domestic wastewater mixed 
with urban runoff before dilution 

Parameter Summer 2011a Autumn 2011b Winter 2011/12c  Spring 2012d Summer 2012e Autumn 2012f 

Chemical oxygen 
demand 

407(10) ± 207.0 391.3(15) ±151.87 256.0(8) ±85.16 183.4(14) ±33.02 312.1(13) ±12.05 261.0(14) ±96.75 

Biochemical oxygen 
demand 

nml nml nml nml 101.0 (13) ±32.68 108.6 (12) ±12.44 

Ammonia-nitrogen 20.4(8) ±8.8 21.2(10) ±5.82 27.9(7) ±10.45 49.1(12) ±13.6 71.5(11) ±7.53 65.0(14) ±13.5 
Nitrate-nitrogen 0.8(5) ±0.56 0.8(10) ±0.35 0.3(4) ±0.06 5.5(10) ±4.27 3.5(11) ±3.36 6.7(14) ±4.00 
Ortho-phosphate-
phosphorus 

9.0(9) ±2.77 12.9(15) ±8.15 5.0(6) ±2.34 14.7(9) ±4.53 29.9(11) ±8.20 20.9(9) ±10.52 

Suspended solids 185.8(8) ±126.2 145.3(11) ±132.9 49.1(6) ±9.32 27.5(16) ±12.90 132.0(16) ±55.54 125.7(14) ±77.28 

Turbidity nml nml nml nml 297.4(18) ±108.81 115.9(14) ±91.43 
 

Parameter Winter 2012/13g Spring 2013h Summer 2013i Autumn 2013j Winter 2013/14k Spring 2014 

Chemical oxygen 
demand 

230.3(11) ±91.94 186.0(2) ±2.83 244.7(3) ±110.73 352.5(2) ±10.61 200.7(3)±73.22 nml 

Biochemical oxygen 
demand 

118.0(16) ±67.76 221.2(15) ±33.50 150.4(17) ±64.1 167.1(14) ±110.0 104.3(12) ±72.56 nml 

Ammonia-nitrogen 46.0(12) ±21.99 69.4(2) ±4.81 79.07(3) ±46.4 32.2(3) ±28.10 41.4(5) ±25.04 nml 
Nitrate-nitrogen 11.8(9) ±6.51 5.2(2) ±5.61 0.5(3) ±0.21 0.8(2) ±0.12 5.7(5) ±5.48 nml 
Ortho-phosphate-
phosphorus 

7.2(11) ±2.43 17.8(2) ±15.68 14.36(3) ±6.48 14.9(2) ±4.31 16.4(4) ±5.04 nml 

Suspended solids 158.5(17)±100.83 379.9(18) ±206.44 232.9(18) ±162.11 166.6(14) ±102.83 147.5(14) ±138.50 nml 
Turbidity 85.2(4) ±32.49 166.3(14) ±125.60 108.6(17) ±75.02 71.37(16) ±34.04 118.03(12) ±133.14 nml 

a21/06/11 to 22/09/11; b23/09/11 to 21/12/11; c22/12/11 to 19/03/12; d20/03/12 to 19/06/12; e20/06/12 to 21/09/12; f22/09/12 to 20/12/12; g21/12/12 
to 19/03/13; h20/03/13 to 20/06/13; i21/06/13 to 21/09/13; j22/09/13 to 20/12/14; k21/12/14 to 19/03/14; and lnot measured 
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with other seasons. Only mean inflow data of winter season are recorded in 2014, as a result, 

no trend in seasonal variability. 

With regard to nutrients variables, the mean inflow concentrations of nitrogen compounds have 

shown an unsteady seasonal trend (Table 5.1) for the period of study. However, ortho-

phosphate-phosphorus has shown a clear seasonal trend throughout the study period. Ammonia 

and nitrate-nitrogen inflow concentrations showed no clear seasonal trend in 2011. In 2012 

however, ammonia recorded high values in summer and autumn compared to spring and winter 

while nitrate nitrogen concentrations were higher in autumn and spring than in summer and 

winter. In contrast, high ammonia inflow concentrations were recorded in summer and spring 

2013 while autumn and winter recorded low concentrations. Nitrate-nitrogen indicates a 

seasonal variability in 2013 with high values in winter and spring, and low values in summer 

and autumn (Table 5.1). The mean inflow seasonal variations for ortho-phosphate-phosphorus 

show that values in autumn were higher than values in summer in 2011. In contrast, higher 

values were recorded in summer and autumn 2012 compared with spring and winter which 

recorded lower values. In 2013, however, spring recorded the highest ortho-phosphate-

phosphorus concentrations and winter recorded the lowest (Table 5.1), while no clear seasonal 

trend can be identified in 2014 because only mean inflow concentrations of the winter season 

are evident. 

Seasonal variability with mean inflow solid particles data has demonstrated a clear trend (Table 

5.1) throughout the over-two-year wetland operation. The results indicated that suspended 

solids and turbidity have shown a seasonal trend in 2011 and 2012 with high values in summer 

and autumn respectively, and low values in winter and spring for the former in 2012. 

Furthermore, in 2013, they both recorded high values in spring and summer compared with 

autumn and winter which recorded low values for SS. In contrast, turbidity recorded low values 

in winter and autumn in 2013. However, in 2014, a clear seasonal trend was absent since only 
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average inflow concentrations of solid particles in the winter season are recorded. Overall, the 

seasonal inflow water quality parameters (Table 5.1) show relatively high variability with 

seasons. 

5.2.2 Seasonal comparison of outflow water qualities 

5.2.2.1 Comparison of oxygen demand variables 

Organic matter removal in constructed wetlands is mainly through aerobic, anaerobic, 

adsorption, filtration, and microbial metabolism (Karathanasis et al., 2003; Song et al., 2006) 

and can be assessed by the change in COD and BOD concentrations in the wetlands. Overall 

seasonal mean effluent concentrations of the organic matter for the wetland filters operated for 

the entire study period were analysed and are presented in Tables 5.2 and 5.3. Assessment of 

statistically seasonal significant differences between effluent water quality variables is 

accordingly shown in Tables 5.4 and 5.5. The result shows that all filters demonstrated 

relatively good seasonal COD removal (with the exception of the time close to the start-up 

period and period of hydrocarbon contamination). This good removal can be attributed to the 

development of biological activity necessary for microbial degradation that took place over 

time and as such, the treatment efficiency can be expected to improve after microbial 

acclimatization (Scholz, 2006, 2010; Babatunde et al., 2011; Sani et al., 2012; Sani et al., 

2013a; Sani et al., 2013b; Al-Isawi et al., 2014; Al-Isawi et al., 2015). Furthermore, the tables 

show a clear seasonal trend with high COD values in autumn and low COD values in summer, 

which confirms previous findings (Song et al., 2006; Sani et al., 2013b), but contradicts data 

by Merlin et al. (2002) and Vymazal (2011b) who reported no significant seasonal COD 

variations in their study However, the possible reason for this contradiction could be due to the 

fact that the wetlands reported in the contradicting literature are fully matured (6years old and 

bove) and operated in many treatment stages (more than one stage).
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Table 5.2: Comparison of seasonal mean quarterly outflow water quality and mean quarterly air temperature for the period of first to third 
experimental phase (27/06/11 to 25/09/13 all in mg/l (except turbidity in NTU)) 
Filters 1 and 2 combined Parameters 

Seasons Year Temp (in) Temp 
(out) 

COD BOD NH4-N NO3-N PO4-P SS TBD 

Summer 2011a nm 14.9 73.5 nm 7.9 0.5 1.6 19.6 nm 
Autumn 2011b nm 7.8 89.8 nm 13.0 0.3 3.2 31.4 nm 
Winter 11/12c nm 3.7 58.4 nm 13.7 1.1 2.5 6.0 nm 
Spring 2012d nm 9.2 63.7 nm 7.0 2.5 3.2 5.2 nm 

Summer 2012e 21.6 18.9 39.3 32.9 3.9 0.2 2.7 4.3 1.6 
Autumn 2012f 11.8 10.1 57.3 23.1 9.4 1.1 2.4 5.0 2.5 
Winter 12/13g 9.0 7.0 64.4 10.3 11.9 4.0 2.5 4.0 1.0 
Spring 2013h 17.9 14.3 82.5 23.0 25.1 0.6 5.4 11.4 11.3 

Summer 2013i 24.1 20.8 77.1 33.5 0.3 0.01 4.1 10.0 10.2 
Filters 3 and 4 combined 

Summer 2011a nm 14.9 72.2 nm 11.1 0.4 1.6 16.8 nm 
Autumn 2011b nm 7.8 93.3 nm 11.7 0.3 2.9 31.5 nm 
Winter 11/12c nm 3.7 53.8 nm 7.8 1.1 2.1 4.9 nm 
Spring 2012d nm 9.2 58.6 nm 5.3 2.5 2.9 3.4 nm 

Summer 2012e 21.6 18.9 32.0 29.2 3.2 0.2 2.4 3.3 1.2 
Autumn 2012f 11.8 10.1 51.6 19.6 7.0 1.1 2.0 4.6 0.8 
Winter 12/13g 9.0 7.0 59.5 8.4 8.1 4.0 2.2 3.7 6.3 
Spring 2013h 17.9 14.3 69.2 23.3 20.0 0.6 2.5 6.8 9.7 

Summer 2013i 24.1 20.8 64.9 30.1 0.2 0.01 4.0 8.94 10.2 
Filters 7 and 8 combined 

Summer 2011a nm 14.9 164.6 nm 28.0 0.6 4.0 30.2 nm 
Autumn 2011b nm 7.8 149.8 nm 18.3 0.3 6.0 40.9 nm 
Winter 11/12c nm 3.7 87.5 nm 22.0 1.1 3.2 10.7 nm 
Spring 2012d nm 9.2 86.8 nm 13.4 2.5 4.9 7.1 nm 

Summer 2012e 21.6 18.9 61.8 37.5 11.6 0.2 3.1 6.9 4.9 
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a21/06/11 to 22/09/11(data collection started on 01/07/11); b23/09/11 to 21/12/11; c22/12/11 to 19/03/12; d20/03/12 to 19/06/12; e20/06/12 to 
21/09/12; f22/09/12 to 20/12/12; g21/12/12 to 19/03/13; h20/03/13 to 20/06/13; and i21/06/13 to 22/09/13. Note: nm, not measured and NTU 
nephelometric turbidity unit.                                                       

Table 5.2 (cont.) 
Seasons Year Temp (in) Temp 

(out) 
COD BOD NH4-N NO3-N PO4-P SS TBD 

Autumn 2012f 11.8 10.1 78.0 25.8 21.4 1.1 3.9 5.1 0.9 
Winter 12/13g 9.0 7.0       80.1       10.7 22.7 4.0 7.1 3.7 7.6 
Spring 2013h 17.9 14.3 108.4 30.3 46.2 0.6 6.9 11.9 19.7 

Summer     2013i 24.1 20.8 76.7 46.6 1.0 0.01 6.77 14.2 14.5 
Filter 9 

Summer 2011a nm 14.9 101.3 nm 18.2 0.5 2.6 27.9 nm 
Autumn 2011b nm 7.8 90.6 nm 8.8 0.3 2.1 28.3 nm 
Winter 11/12c nm 3.7      54.6 nm 6.3 1.1 1.4 5.8 nm 
Spring 2012d nm 9.2 59.0 nm 4.4 2.5 3.0 4.4 nm 

Summer 2012e 21.6 18.9 40.3 19.6 4.1 0.2 3.0 6.6 2.7 
Autumn 2012f 11.8 10.1 52.4 21.7 7.8 1.1 2.9 6.3 2.4 
Winter 12/13g 9.0 7.0 62.6 7.8 7.0 4.0 2.7 4.8 8.9 
Spring 2013h 17.9 14.3 64.2 11.3 12.8 0.6 2.7 5.6 8.0 

Summer 2013i 24.1 20.8 41.2 28.9 9.5 3.3 4.3 10.9 9.1 
Filter 10 

Summer 2011a nm 14.9 82.5 nm 11.7 0.3 2.2 29.1 nm 
Autumn 2011b nm 7.8 76.2 nm 9.2 0.3 2.3 23.7 nm 
Winter 11/12c nm 3.7 52.5 nm 5.7 1.1 1.5 6.1 nm 
Spring 2012d nm 9.2 62.3 nm 4.7 2.5 2.8 4.1 nm 

Summer 2012e 21.6 18.9 35.3 16.1 3.9 0.2 2.6 3.6 2.2 
Autumn 2012f 11.8 10.1 60.0 18.3 9.4 1.1 3.0 5.0 2.0 
Winter 12/13g 9.0 7.0 62.7 7.1 8.6 4.0 2.7 4.8 10.0 
Spring 2013h 17.9 14.3 75.0 11.1 23.1 0.6 2.8 7.9 10.3 

Summer 2013i 24.1 20.8 60.9 30.7 16.7 0.8 4.5 16.0 12.2 
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Furthermore, the wetland systems have a well-developed and established microbial population, 

and are planted with many species of macrophytes compared to the current experimental lab-

scale wetlands which are smaller in size, planted with only common reed and have just over 

two years in operation. Several studies have shown that mature and large-scale wetlands 

remove organic matter well, including COD, due to higher biological degradation rates 

(Piccard et al., 2005; Kayranli et al., 2010). The high biodegradation of organic matter was 

attributed to high microbial population activity of the aerobic and anaerobic bacteria, which 

are temperature independent and function even at low temperatures of about 5°C (Vymazal, 

2002; Vymazal, 2011a; Gikas & Tsihrintzis, 2012). Furthermore, the organic matter removal 

capacity is very high due to the large wetland size providing high mean retention times. There 

are also references which indicated that wetlands planted with different types of macrophytes, 

as in the case of reported contrasting studies, could be more effective in performance compared 

to wetlands planted with only one species of macrophyte as in the case of the present wetlands. 

For instance, Karathanasis et al. (2003) and Abou-Elela et al. (2013) have reported that the 

presence of various species of wetland plants provide a more effective distribution of roots and 

favourable environment, which stimulate the development of a great diversity of microbial 

communities. This root diversity delays the waste water movement in the wetlands which in 

turn increases the detention time, subsequently leading to higher removal efficiencies 

throughout the seasons (Prochaska et al., 2007; Abou-Elela et al., 2013). In this research, the 

observed low COD outflow concentrations in summer can be attributed to increased 

biodegradation and decomposition of organic compounds by microorganisms as a result of an 

increase in temperature in the wetland systems during warm summer months (Kayser & Kunst, 

2005; Prochaska et al., 2007). There was a statistically significant seasonal variation for COD 

noted when filters with a low loading rate are compared to those with high ones (Table 5.4)                       

. 
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Table 5.3: Comparison of seasonal outflow water quality and air temperature for the period of fourth experimental phase, a period after petroleum 
hydrocarbon spill (25/09/13 to 19/03/14 all in mg/l) except turbidity in NTU 

Seasons Parameters 
Filter 1 Year Temp (in) Temp (out) COD BOD NH4-N NO3-N PO4-P SS TBD 
Autumn 2013 14.9 12.7 240.5 28.3 14.9 0.4 6.93 12.9 10.6 
Winter 13/14 10.7 8.8 72.0 18.3 4.5 0.5 1.92 14.7 11.3 
Filter 2           
Autumn 2013 14.9 12.7 86.4 18.3 12.0 3.6 4.10 6.1 5.7 
Winter 13/14 10.7 8.8 24.9 9.4 3.9 2.9 3.08 9.6 8.4 
Filter 3           
Autumn 2013 14.9 12.7 181.7 33.6 9.9 0.37 6.65 12.3 10.1 
Winter 13/14 10.7 8.8 83.1 22.3 2.9 0.42 1.79 16.0 13.0 
Filter 4           
Autumn 2013 14.9 12.7 81.4 18.9 8.9 4.3 3.76 8.1 6.2 
Winter 13/14 10.7 8.8 81.6 8.0 3.5 3.2 3.36 9.2 7.5 
Filter 7           
Autumn 2013 14.9 12.7 356.0 37.9 26.87 0.7 10.65 19.2 14.5 
Winter 13/14 10.7 8.8 112.2 19.5 8.12 1.0 3.01 14.8 11.1 
Filter 8           
Autumn 2013 14.9 12.7 107.6 27.6 23.0 9.3 8.12 10.0 9.0 
Winter 13/14 10.7 8.8 29.5 8.7 11.7 2.2 3.07 7.8 6.2 
Filter 9           
Autumn 2013 14.9 12.7 82.5 18.1 7.3 2.5 5.26 5.2 4.6 
Winter 13/14 10.7 8.8 19.4 10.1 1.4 4.2 2.86 1.0 2.6 
Filter 10           
Autumn 2013 14.9 12.7 174.4 19.6 6.5 5.6 4.74 4.5 5.0 
Winter 13/14 10.7 8.8 18.85 9.8 1.2 3.1 3.32 1.1 3.1 
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This can be explained by the fact that high rate filters are likely to be overloaded in summer 

and autumn 2011, winter, spring, summer and autumn 2012 and winter 2013. However, after 

hydrocarbon contamination in the fourth experimental phase, the period after some selected 

filters were contaminated with diesel, the result shows that all filters contaminated with diesel 

demonstrated poor COD removal compared to those without diesel in all seasons (Table 5.3). 

This difference can be explained by the increase of the inflow COD as a result of diesel 

application which might have resulted in the sharp increase of the outflow COD values 

recorded by the affected filters (Al-Isawi et al., 2014; Al-Isawi et al., 2015). However, 

aggregate diameter, resting time, contact time and loading rates showed no clear statistical 

difference on seasonal COD removal trends (Table 5.5). 

Figures 5.1 and 5.2 show the seasonal variations of COD and BOD variables from summer 

2011 to winter 2014 respectively. Table 5.2 indicates a seasonal trend with high BOD values 

in summer and low BOD values in winter, which confirms previous findings (Scholz, 2011; 

Sani et al., 2013b; Amteghy, 2014) but contradicts some studies reported elsewhere (Song et 

al., 2006; Vymazal, 2011a) which found low BOD values in summer and high BOD values in 

winter. This contradiction could be attributed to the fact that in addition to the small size of the 

experimental wetlands used in the conduction of this research compared to that of the 

contrasting authors, the high temperature of 22°C observed in the current study, could have 

stimulated evaporation rates to be high in the summer, consequently causing the outflow 

concentration of the BOD to increase. Papaevangelou, Gikas, and Tsihrintzis (2012) explained 

that the effect of evapotranspiration starts being significant at temperatures above 15°C which 

is in agreement with the current study temperature. However, in the case of the contradicting 

literature, their wetlands are larger in size with high microbial activity and optimal plant 

function due to higher temperature observed in summer, subsequently leading  
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Figure 5.1: Overall seasonal variations in chemical oxygen demand 

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; 

g 21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on  

26/09/13 and data collection started on 27/06/11 and stopped on 19/03/14. Note that the following sampling points have not been displayed: a) 

452 (Filter 7) in summer 2011; b) 346 (Filter 1) in autumn 2013; c) 332 (Filter 3) in autumn 2013; and d) 356 (Filter 7) in autumn 2013        
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Figure 5.2: Overall seasonal variations in biochemical oxygen demand 

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; g 

21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 

26/09/13 and data collection started on 27/06/11 and stopped on 19/03/14                                                                                                 
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to higher removal efficiency of the BOD concentration in comparison to the current study 

wetlands. Furthermore, in the current study, the return of the harvested biomass into the 

wetland systems during the previous season might have contributed to the increase of the 

outflow BOD concentration after decomposition by the activity of microorganisms due to 

increase of temperature in the summer period, in contrast to the reference literature in which 

there was no report of returning harvested biomass in the wetland systems. In their studies, 

Thomas, Glover, and Kalaroopan (1995), Hunt and Poach (2001) and Karathanasis et al. (2003) 

expounded that constructed wetland plants gradually add carbon and other compounds, 

including the BOD, in the wetland systems as a result of plant litter production, thus, the 

systems cannot remove the compounds entirely. On the other hand, the relative low seasonal 

BOD outflow observed in winter in this research, could be attributed to microbial degradation 

and decomposition by aerobic and anaerobic bacteria that are temperature independent 

(Vymazal, 2002; Vymazal, 2011a; Gikas & Tsihrintzis, 2012) which can biodegrade organic 

matter efficiently even in low temperatures.  

Organic matter particles in CWs accumulate in media pores and if not biodegraded, cause 

gradual substrate clogging. However, overall seasonal treatment performance of the wetland 

filters in this study indicated that, these wetland systems are robust and relatively efficient in 

organic matter removal as a result of high biodegradation of the organic matter solids in form 

of COD and BOD regardless of the seasonal variation, which is attributed to the development 

of biological activity and aeration that took place over time in the wetland systems, and as such, 

the treatment efficiency was gradually improved leading to clogging abatement with 

maintained hydraulic conductivity and porosity (Tables 5.2 and 5.3) even after petroleum 

hydrocarbon contamination confirming data elsewhere (Al-Isawi et al., 2015).   

A statistically significant seasonal variation for BOD was only recorded in summer 2013 when 

filters with low loading rates are compared with high ones. This could be explained by the fact 
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that high rate filters are probably overloaded during the season. However, aggregate diameter, 

resting time and contact time had no clear influence on seasonal BOD removal trends (Table 

5.3). 

In the petroleum hydrocarbon contamination period, BOD removal shows a clear seasonal 

trend with low values in winter and high values in autumn for contaminated and 

uncontaminated filters respectively, though contaminated filters recorded higher values 

compared to uncontaminated ones confirming data by Al-Isawi et al. (2015) but in 

disagreement with Eke (2008) who reported no clear trend with BOD outflow concentrations 

in his study with petroleum hydrocarbon contaminated filters. This might be due to the fact that 

in the current research, the assessment of seasonal petroleum hydrocarbon treatment is based 

on only two seasons (autumn and winter), which is probably insufficient to give a clear 

conclusion compared to the referenced reported literature where seasonal assessment of the 

water quality parameters including BOD was consistently monitored for over 30 months of 

operation. Furthermore, the high dose of petroleum hydrocarbon applied in the current research 

wetland systems is based on a one-off spill application of 130 grams (equivalent to an inflow 

concentration of 20 g/l) in the selected wetland filters compared to only 1 g/l of petroleum 

hydrocarbon used as inflow reported in the referenced literature. However, the low and high 

effluent BOD concentrations observed in winter and autumn seasons could probably be 

attributed to biodegradation of petroleum hydrocarbon compounds, which might have 

contributed to the high elevated concentration of BOD in autumn when a large amount of diesel 

was applied in the selected filers. Several studies confirmed that petroleum hydrocarbon 

residual and its biodegradation products were the significant source of carbon contributing to 

high concentration of organic matter including BOD in the wetland systems (Tang et al., 2010; 

Al-Isawi et al., 2015).    
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Table 5.4: Assessment of the statistically significant differences between seasonal outflow 
water quality variables (only shown if seasonally measured) of different filters using the non-
parametric Mann-Whitney U-test 
Parameters Unit Statistic Aggregate 

diametera 
Contact 
timeb 

Resting 
timec 

Chemical oxygen 
demandd 

First to third experimental phase (27/06/11 to 25/09/13) 
Summer 2011e  
COD mg/l P-value 0.713 0.191 0.210 0.006 
  h 0 0 0 1 
BOD mg/l nm nm nm nm nm 
NH4-N mg/l P-value 0.225 0.110 0.064 0.013 
  h 0 0 0 1 
NO3-N mg/l P-value 0.463 0.805 0.107 0.028 
  h 0 0 0 1 
PO4-P mg/l P-value 0.705 0.010 0.075 0.001 
  h 0 1 0 1 
SS mg/l P-value 0.916 0.385 0.402 0.011 
  h 0 0 0 1 
TBD NTU nm nm nm nm nm 
Autumn 2011f  
COD mg/l P-value 0.983 0.772 0.299 0.004 
  h 0 0 0 1 
BOD mg/l nm nm nm nm nm 
NH4-N mg/l P-value 0.130 0.449 0.762 0.028 
  h 0 0 0 1 
NO3-N mg/l P-value 0.570 0.173 0.623 0.130 
  h 0 0 0 0 
PO4-P mg/l P-value 0.740 0.556 1.000 0.000 
  h 0 0 0 1 
SS mg/l P-value 0.793 0.511 0.921 0.250 
  h 0 0 0 0 
TBD NTU nm nm nm nm nm 
Winter 2011/12g 
COD mg/l P-value 0.418 0.874 0.627 0.018 
  h 0 0 0 1 
BOD mg/l nm nm nm nm nm 
NH4-N mg/l h 0.025 0.643 0.269 0.006 
  0 1 0 0 1 
NO3-N mg/l P-value 0.209 0.675 0.916 0.917 
  h 0 0 0 0 
PO4-P mg/l P-value 0.522 0.465 0.916 0.144 
  h 0 0 0 0 
SS mg/l P-value 0.248 0.230 0.880 0.059 
  h 0 0 0 0 
TBD NTU nm nm nm nm nm 
Spring 2012h 
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Table 5.4(cont.) 
Parameters Unit Statistic Aggregate 

diametera 
Contact 
timeb 

Resting 
timec 

Chemical oxygen 
demandd 

  h 0 0 0 1 
COD mg/l P-value 0.371 0.700 0.925 0.031 
  h 0 0 0 1 
BOD mg/l nm nm nm nm nm 
NH4-N mg/l P-value 0.102 0.270 0.563 0.052 
  h 0 0 0 0 
NO3-N mg/l P-value 0.718 0.059 0.262 0.105 
  h 0 0 0 0 
PO4-P mg/l P-value 0.377 0.947 0.504 0.077 
  h 0 0 0 0 
SS mg/l P-value 0.212 0.061 0.680 0.002 
  h 0 0 0 1 
TBD NTU nm nm nm nm nm 
Summer 2012i 
COD mg/l P-value 0.334 0.138 0.461 0.001 
  h 0 0 0 1 
BOD mg/l P-value 0.542 0.204 0.333 0.749 
  h 0 0 0 0 
NH4-N mg/l P-value 0.450 0.602 0.948 0.002 
  h 0 0 0 1 
NO3-N mg/l P-value 0.895 0.001 0.870 0.066 
  h 0 1 0 0 
PO4-P mg/l P-value 0.450 0.040 0.247 0.166 
  h 0 1 0 0 
SS mg/l P-value 0.019 0.111 0.144 0.002 
  h 1 0 0 1 
TBD NTU P-value 0.201 0.138 0.871 0.003 
  h 0 0 0 1 
Autumn 2012j 
COD mg/l P-value 0.383 0.963 0.097 0.002 
  h 0 0 0 1 
BOD mg/l P-value 0.456 0.827 0.891 0.382 
  h 0 0 0 0 
NH4-N mg/l P-value 0.250 0.438 0.448 0.018 
  h 0 0 0 1 
NO3-N mg/l P-value 0.613 0.011 0.906 0.098 
  h 0 1 0 0 
PO4-P mg/l P-value 0.130 0.010 0.771 0.001 
  h 0 1 0 1 
SS mg/l P-value 0.695 0.148 0.345 0.693 
  h 0 0 0 0 
TBD NTU P-value 0.976 0.840 0.840 0.976 
  h 0 0 0 0 
Winter 2012/13k 
COD mg/l P-value 0.158 0.433 0.958 0.000 
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Table 5.4 (cont) 
Parameters Unit Statistic Aggregate 

diametera 
Contact 
timeb 

Resting 
timec 

Chemical oxygen 
demandd 

  h 0 0 0 1 
BOD mg/l P-value 

h 
0.472 
0 

0.970 
0 

0.626 
0 

0.178 
0 

       
NH4-N mg/l P-value 0.140 0.577 0.805 0.008 
  h 0 0 0 1 
NO3-N mg/l P-value 0.450 0.405 0.734 0.241 
  h 0 0 0 0 
PO4-P mg/l P-value 0.693 0.014 0.761 0.000 
  h 0 1 0 1 
SS mg/l P-value 0.283 0.291 0.819 0.316 
  h 0 0 0 0 
TBD NTU P-value 0.538 0.379 0.871 0.538 
  h 0 0 0 0 
Spring 2013l 
COD mg/l P-value 1.000 1.000 0.121 0.121 
  h 0 0 0 0 
BOD mg/l P-value 0.624 0.015 0.942 0.097 
  h 0 1 0 0 
NH4-N mg/l P-value 0.439 0.439 0.439 0.121 
  h 0 0 0 0 
NO3-N mg/l P-value 0.121 0.121 0.121 0.439 
  h 0 0 0 0 
PO4-P mg/l P-value 0.121 0.121 1.000 0.121 
  h 0 0 0 0 
SS mg/l P-value 0.121 0.156 0.496 0.309 
  h 0 0 0 0 
TBD NTU P-value 0.089 0.182 0.713 0.007 
  h 0 0 0 1 
Summer 2013m 
COD Mg/l P-value 0.153 0.275 0.275 0.827 
  h 0 0 0 0 
BOD mg/l P-value 0.335 0.454 0.625 0.018 
  h 0 0 0 1 
NH4-N mg/l P-value 0.513 0.513 0.513 0.05 
  h 0 0 0 1 
NO3-N mg/l P-value 1.000 0.127 0.275 0.376 
  h 0 0 0 0 
PO4-P mg/l P-value 0.827 0.827 0.513 0.127 
  h 0 0 0 0 
SS mg/l P-value 0.653 0.233 0.071 0.062 
  h 0 0 0 0 
TBD NTU P-value 0.547 0.446 0.178 0.249 
  h 0 0 0 0 
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aComparison between the mean daily values of Filters 1 and 2, and the mean daily values of Filters 3 and 
4; bComparison between the mean daily values of Filters 3 and 4, and Filter 9; cComparison between Filters 9 and 
10; dComparison between mean daily values of Filters 3 and 4, and mean daily values of Filters 7 and 8; e21/06/11 
to 22/09/11 (data collection started on 01/07/11); f23/09/11 to 21/12/11; g22/12/11 to 19/03/12; h20/03/12 to 
19/06/12; i20/06/12 to 21/09/12; j22/09/12 to 20/12/12; k21/12/12 to 19/03/13; l20/03/13 to 20/06/13; m21/06/13 
to 22/09/13. Note: P-value, probability of obtaining a test statistic at least as extreme as the one that was actually 
observed, assuming that the null hypothesis is true; h, response indicator; if h=1, filters are statistically 
significantly different (P-value < 0.05) for the corresponding water quality parameter; if h=0, the difference is not 
significant. 
 
However, after subsequent consumption of the organic matter by the wetland microbes, which 

are active even in low temperatures, the BOD concentration is reduced in the winter season 

(Table 5.3). Significant statistical difference in contact time was noted in winter when a longer 

contact time was compared with a shorter one which led to greater removal of BOD. This could 

be attributed to the fact that the longer contact time provides enough duration for pollutants to 

be biodegraded by microorganisms in the wetland systems (Song et al., 2006; Prochaska et al., 

2007; Gikas & Tsihrintzis, 2012).        

5.2.2.2 Comparison of nutrients variables 

Nitrogen removal within constructed wetlands is usually mainly by microbial nitrification and 

denitrification. In the nitrification process, ammonia is oxidized largely to nitrate. As a result 

of oxidation of ammonia to nitrate, nitrate is reduced to gaseous nitrogen by the denitrification 

process. Nitrogen removal in many constructed wetland systems without adequate active or 

passive aeration is insufficient, mainly because of the lack of available oxygen used for aerobic 

biological degradation (Scholz, 2010). 

Table 5.2 shows the seasonal trend of nitrate-nitrogen, ammonia-nitrogen and ortho-phosphate-

phosphorus. With regard to nitrate-nitrogen, the result indicates high values in winter and low 

values in summer confirming previous findings (Werker et al., 2002; Kuschk et al., 2003; Gikas 

et al., 2007; Sani et al., 2013b) but contradicting data by Kayranli et al. (2010) who reported 

high values in summer compared to low values in winter. This contradiction could be attributed 

to the large wetland size and their exposure to high temperature because the systems are open, 
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as a result, the effluent nitrate-nitrogen concentration could be higher due to increase in 

evapotranspiration, indicating a considerably higher nitrification rate in summer than in winter 

due to high microbial activity, and the presence of easily available organic carbon leading to 

greater removal of nitrate-nitrogen in winter than in summer in comparison to the higher 

removal achieved in summer than in winter with regard to small size wetlands used in the 

present study. Some studies revealed that the consumption of organic carbon by heterotrophs 

which is supplied by macrophytes leads to an increase in the heterotrophic activity, 

subsequently leading to oxygen consumption by the heterotrophs (Souza, Araujo, & Coelho, 

2008). 

Table 5.5: Assessment of the statistically significant differences between seasonal outflow 

water quality variables (only if seasonally measured) of different filters using the non-

parametric Mann-Whitney U-test 

Parameters Unit Statistics Aggregate 
diametern 

Contact 
timeo 

Resting 
timep 

Chemical 
oxygen 
demandq 

Fourth experimental phase (26/09/13 to 19/03/14) 
Autumn 2013r 
COD mg/l P-value 0.564 0.248 0.564 0.076 
  h 0 0 0 0 
BOD mg/l P-value 0.967 0.145 0.854 0.152 
  h 0 0 0 0 
NH4-N mg/l P-value 0.564 1.000 1.000 0.248 
  h 0 0 0 0 
NO3-N mg/l P-value 0.439 0.439 0.439 0.121 
  h 0 0 0 0 
PO4-N mg/l P-value 1.000 0.439 0.439 0.439 
  h 0 0 0 0 
SS mg/l P-value 0.624 0.002 0.888 0.085 
  h 0 1 0 0 
TBD NTU P-value 0.663 0.002 0.443 1.66 
  h 0 1 0 0 
Winter 2013/2014s 
COD mg/l P-value 0.855 0.053 1.000 0.144 
  h 0 0 0 0 
BOD mg/l P-value 0.418 0.006 0.736 0.136 
  h 0 1 0 0 
NH4-N mg/l P-value 0.221 0.317 0.317 0.180 
  h 0 0 0 0 
NO3-N mg/l P-value 1.000 0.317 0.317 0.317 
  h 0 0 0 0 
PO4-N mg/l P-value 1.000 1.000 1.000 0.121 
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Table 5.5 (cont) 
Parameters Unit Statistics Aggregate 

diametern 
Contact 
timeo 

Resting 
timep 

Chemical 
oxygen 
demandq 

  h 0 0 0 0 
SS mg/l P-value 0.382 0.000 0.429 0.428 
  h 0 1 0 0 
TBD NTU P-value 0.419 0.000 0.095 0.254 

 

  h 0 1 0 0 
Autumn 2013x 
COD mg/l P-value 0.439 1.000 0.564 0.439 
  h 0 0 0 0 
BOD mg/l P-value 0.950 0.820 0.854 0.058 
  h 0 0 0 0 
NH4-N mg/l P-value 0.121 1.000 1.000 1.000 
  h 0 0 0 0 
NO3-N mg/l P-value 1.000 1.000 0.439 0.439 
  h 0 0 0 0 
  h 0 0 0 0 
SS mg/l P-value 0.643 0.256 0.888 0.208 
  h 0 0 0 0 
TBD NTU P-value 0.182 0.086 0.443 0.412 
  h 0 0 0 0 
Winter 2013/2014y  
       
TBD NTU P-value 0.182 0.086 0.443 0.412 
       
  h 0 0 0 0 
COD mg/l P-value 0.121 1.000 1.000 0.121 
       
  h 0 0 0 0 
BOD mg/l P-value 0.341 0.234 0.736 0.907 
       
  h 0 0 0 0 
N H4-N mg/l P-value n/a n/a n/a n/a 
  h - - - - 
NO3-N mg/l P-value 0.221 0.317 0.317 0.317 
  h 0 0 0 0 
PO4-N mg/l P-value 0.121 1.000 1.000 0.683 
  h 0 0 0 0 
SS mg/l P-value 0.259 0.034 0.429 0.428 
  h 0 1 0 0 
TBD NTU P-value 0.852 0.012 0.095 0.885 
  h 0 1 0 0 

nComparison between the mean daily values of Filters 1 and 3; oComparison between the mean daily values of 
Filters 3 and 9; pComparison between the mean daily values Filters 9 and 10; qComparison between mean daily 
values of Filters 3 and 7; r23/09/13 to 21/12/13; s22/12/13 to 19/03/14; tComparison between mean daily values 
of Filters 2 and 4; uComparison between mean daily values of Filters 4 and 9; vComparison between mean daily 
values of Filters 9 and 10; wComparison between mean daily values of Filters 4 and 8; x23/09/13 to 21/12/13; 
and y22/12/13 to 19/03/14. Note: P-value, probability of obtaining a test statistic at least as extreme as the one that 
was actually observed, assuming that the null hypothesis is true; h, response indicator; if h=1, filters are 
statistically significantly different (P-value < 0.05) for the corresponding water quality parameter; if h=0, the 
difference is not significant. 
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As a result, Bastviken et al. (2005) reported that the oxygen concentration in the wetlands 

reduced and contributed to the increase in denitrification. However, the high removal of nitrate-

nitrogen observed in summer in comparison to low removal observed in winter reported in the 

current research, could be attributed to lower temperatures and lack of easily available carbon, 

which negatively affects the activity of microorganisms to denitrify in winter (Gikas et al., 

2007; Sani et al., 2013b). Differences in contact time are significant during warm months. A 

longer contact time leads to greater removal of nitrate-nitrogen. In comparison, differences in 

loading rate only result in significant variations of nitrate-nitrogen during warm months (Table 

5.4). This can be explained by the fact that high rate filters are likely to be overloaded during 

summer 2011. However, during the period of petroleum hydrocarbon contamination, Table 5.3 

shows no clear trend in terms of nitrate-nitrogen seasonal variations which has been confirmed 

by previous findings (Tang et al., 2010). Furthermore, aggregate diameter, contact time, resting 

time and loading rate show no significant differences on seasonal nitrate-nitrogen removal 

(Table 5.5). 

With regard to ammonia-nitrogen seasonal removal, Table 5.2 shows a clear seasonal trend 

with high values in spring and low values in summer, which confirms the findings by Song et 

al. (2006), Gikas and Tsihrintzis (2012) and Sani et al. (2013b) but contradicts data by Kayranli 

et al. (2010) who noted higher effluent values in winter compared to other seasons. The 

probable reason for this contradiction could be low microbial activity as a result of low 

temperatures and lack of oxygen, which might have reduced the nitrification process within the 

wetland systems, consequently leading to the observed high values. A study conducted by 

Werker et al. (2002) has shown that, at temperatures of about 10°C, nitrification rates in 

constructed wetland systems are impeded and quickly drop at 6°C. However, in comparison, 

aerobic and anaerobic bacteria which are temperature independent are probably responsible for 

the effective removal of ammonia-nitrogen in the winter period of the present study. Kuschk 
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et al. (2003) and Gikas et al. (2007) reported that at temperatures below 15°C, bacteria 

responsible for nitrogen elimination do not work proficiently, and plant growth stops which is 

in agreement with current research.  

The high removal efficiency of ammonia-nitrogen obtained in summer compared to other 

seasons in this study could be attributed to high temperature and plant growth with elevated 

microbial activity, oxygen and carbon for the high nitrification process in the wetland systems. 

Akratos and Tsihrintzis (2007), Gikas and Tsihrintzis (2010), Kotti et al. (2010), and Gikas and 

Tsihrintzis (2012) expounded that nitrogen compounds such as ammonia are effectively 

removed at temperatures above 15°C. Effect of loading rate has shown significant differences 

for ammonia-nitrogen when filters with low loading rate are compared to those with high ones 

(Table 5.4). This could be explained by the fact that, it is likely that high rate filters are 

overloaded at least during colder months. 

In the Petroleum hydrocarbon contamination period, contaminated filters recorded high values 

of ammonia-nitrogen in autumn compared to low values in winter and higher values than those 

recorded in uncontaminated wetland filters (Table 5.3). The high removal efficiency of 

ammonia-nitrogen noted in winter could be attributed to progressive biodegradation of the 

petroleum hydrocarbon compounds by microorganisms after the contamination in autumn 

which led to a high nitrogen concentration. Recently, Al-Isawi et al. (2014) and Al-Isawi et al. 

(2015) have shown that after a hydrocarbon spill in their constructed wetlands in autumn, the 

spill-contaminated filters recorded high values of ammonia-nitrogen at the beginning but after 

subsequent degradation by microorganisms, the concentration became low in winter which is 

in agreement with the current findings. However, aggregate diameter, contact time, resting time 

and loading rate have no significant influence on the seasonal removal of ammonia-nitrogen 

during the period of petroleum hydrocarbon contamination (Table 5.5). 
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Nutrients solid particles accumulate in wetland media and cause gradual clogging of the 

substrate in CW systems by blocking the media pores. However, as a result of relatively high 

treatment performance and removal efficiency of nitrogen compounds in all seasons from the 

wetland systems observed in this research in both pre and post petroleum hydrocarbon 

contamination, which was attributed to progressive microbial degradation and aeration of the 

media bed, has lead to opening of the substrate pores from solids blockage, mitigating clogging 

development, and maintaining hydraulic conductivity and porosity in the wetland filters 

confirming data by Hua et al.(2014) and Song et al.(2015).   

Figures 5.3, 5.4 and 5.5 show the seasonal variations of outflow nitrate-nitrogen, ammonia 

nitrogen and ortho-phosphate-phosphorus for the entire study period.  

In constructed wetlands, phosphorus elimination takes place through sediment retention, 

adsorption, desorption, fragmentation, plant or microbial uptake, mineralization and leaching 

(Pant et al., 2001; Vymazal, 2007). However, the quick multiplication of the microorganisms 

like algae, bacteria and fungi and their inability to accumulate much quantity of phosphorus, 

means they speedily absorb it instead (Vymazal, 2006).Table 5.2 indicates no clear seasonal 

trend for phosphorus removal confirming previous findings (Sani et al., 2013b) but 

contradicting data by Merlin et al. (2002) who noted low values for summer and high values 

for winter in their study. This contradiction could be due to high storage of phosphorus in the 

organic matter accumulated over time in the mature wetlands (over 6 years old) which could 

be higher in the summer as a result of elevated microbial activity and optimal growth of 

macrophytes. Wallace and Knight (2006) stated that detritus serves as a source of carbon to 

wetland microbes for denitrification and helps with long-term phosphorus accumulation. In 

comparison to the present study, the possible reason for not observing a seasonal trend could 

be the fact that the wetland systems have been in operation for less than three years old with 

free adsorption sites that are not saturated, thus leading to phosphorus sequestration in all 
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seasons without differences. A study by Tanner, Sukias, and Upsdell (1999) found that 

constructed wetlands remove phosphorus effectively in the initial years of operation but 

removal starts to diminish after five years of operation. High COD inflow concentrations 

(Table 5.1) had a significantly positive influence on the treatment efficiency for ortho-

phosphate-phosphorus. Ortho-phosphate-phosphorus removal seems to be independent of 

temperature if contact time and loading rate vary. This could be explained by the dominant 

physical and not biological removal processes (Scholz, 2010). In the period of petroleum 

hydrocarbon contamination however, Table 5.3 shows that all filters show a seasonal trend for 

phosphorus removal with high values in autumn and low values in winter but aggregate 

diameter, contact time, resting time and loading rate have no significant influence on the 

seasonal removal trends. The high concentration of phosphorus observed in autumn could be 

attributed to initial dying contaminated biomass and later on degraded diesel depending on the 

stage of biodegradation over time whichsubsequently reduces in winter by microbial 

degradation (Al-Isawi et al., 2014; Al-Isawi et al., 2015).      
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Figure 5.2: Overall seasonal variations in outflow nitrate-nitrogen 

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; 

g 21/12/12 to 19/03/13;h 20/03/13 to 20/06/13;I 21/06/13 to 22/09/13 j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 

26/09/13and.data.collection.started.on.27/06/11.and.stopped.on.19/03/14                                                                                                                                            
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Figure 5. 3: Overall seasonal variations in outflow ammonia-nitrogen      

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; g 

21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 26/09/13 

and data collection started on 27/06/11 and stopped on 19/03/14                                                   .                                                          
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Figure 5. 4: Overall seasonal variations in outflow ortho-phosphate-phosphorus 

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; g 

21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 26/09/13 

and data collection started on 27/06/11 and stopped on 19/03/14 
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5.2.2.3 Comparison of particles variables 

The primary removal pathways for suspended solids and particulate matter in wetland systems 

are settling and sedimentation, adsorption, and microbial metabolism (Kadlec & Knight, 1996; 

Green et al., 1997; Leonard, 2000; ITRC, 2003). Figures 5.6 and 5.7 indicate seasonal SS and 

turbidity outflow concentrations for the entire study period. Table 5.2 indicates no clear 

seasonal trend for SS in the outflow of all filters confirming previous findings (Gikas & 

Tsihrintzis, 2012; Sani et al., 2013b) but contradicting data by Song et al. (2006) who found 

higher outflow concentration of SS in autumn compared to other seasons. The possible reason 

for this contradiction can probably be attributed to composition of the SS particles. The authors 

of the referenced contradicting literature claimed reed harvesting as the contributing factor to 

the high effluent SS concentration observed in the autumn period since the SS removal was 

due to sedimentation and filtration and was not biological indicating that the SS particles are 

inorganic in nature. In comparison, the high removal of SS throughout all seasons in this 

research could be attributed to both physical and biological removal processes. Karathanasis et 

al. (2003) reported that rooted biomass of the planted wetland systems gives more efficient 

filtration of the SS load and provides complimentary treatment of the organic portion of the SS 

load via microbial degradation processes which is in agreement with this study. However, 

significant seasonal variation for SS was noted when filters with small size aggregates were 

compared to filters with large size aggregates in summer 2012. Furthermore, when filters with 

a low loading rate were compared to those with a high one in summer 2011, spring 2012 and 

summer 2012, statistical significant difference was also evident (Table 5.4), probably because 

the high loading rate filters are likely overloaded in summer and spring of 2011 and 2012 while 

lack of adequate surface area for biofilm establishment in the larger aggregates compared to 

smaller ones might have been the possible reason for the observed 
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Figure 5. 5: Overall seasonal variations in outflow suspended solidsa 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 

to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; g 21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 

21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 26/09/13 and data collected started on 27/06/11and stopped on 19/03/14.
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Difference (Meng etal. 2014) in summer2012. 

With regard to turbidity, Table 5.2 indicates that high turbidity values are recorded in spring 

while low values are recorded in autumn. There are no internationally recognized outflow 

compliance values for turbidity. Statistical significant differences in loading rate were noted 

for turbidity removal in summer 2012 and spring 2013 (Table 5.4). Results reflect those for SS 

during warm months, indicating a good relationship between turbidity and microbial activity 

leading to organic matter degradation and subsequently to an increase in particles (Karathanasis 

et al., 2003; Sani et al., 2013b). However, in the period of petroleum hydrocarbon 

contamination, a seasonal statistical significant difference was recorded for contact time in 

autumn 2013 and winter 2014 for SS and turbidity respectively (Table 5.5). This difference 

could be attributed to insufficient time for microbial degradation in autumn and winter seasons.                                             

Clogging of the wetland media has been attributed to the blockage of substrate pores by SS 

particles leading to poor treatment performance efficiency and the subsequent diminution of 

the corresponding hydraulic conductivity. However, in this study, even in the perod of 

petroleum hydrocarbon pollution, there was no apparent sign of media clogging observed as 

the SS concentration values were below the threshold value of 30mg/l in all seasons except at 

the start up period and on top of the litter zone for all filters. The gradual development of the 

wetland biomass and microbial activity as the wetland systems mature overtime might have 

enhanced the high biodegradation of the SS particles leading to the observed good treatment 

performance of the wetland filters with no apparent sign of within bed clogging while immature 

biomass and the in ability of the weak biofilm to detain SS originating from the influent, and 

both the high strength and SS load of the wastewater and diesel degradation components and 

initial dying biomass depending on the stage of biodegradation were the cause for the high SS 

concentration during the set-up period and on top of the litter zone respectively                                  .                                                 

.   
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Figure 5. 6: Overall seasonal variations in outflow turbidity 

a 21/06/11 to 22/09/11; b 23/09/11 to 21/12/11; c 22/12/11 to 19/03/12; d 20/03/12 to 19/06/12; e 20/06/12 to 21/09/12; f 22/09/12 to 20/12/12; g 

21/12/12 to 19/03/13; h 20/03/13 to 20/06/13; i 21/06/13 to 22/09/13; j 23/09/13 to 21/12/13; k 22/12/13 to 19/03/14. Diesel was applied on 26/09/13 

and data collected started on 27/06/11 and stopped on 19/03/14.         
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5.3 Seasonal assessment of filter performance based on SS accumulation in the substrate 

bed and its relationship to clogging  

Tables 5.6 and 5.7 show the overall seasonal assessment of SS accumulation in the wetland 

filters and its relationship to clogging. For water quality variables with high (i.e. above 100 

mg/l; Table 5.4 above) seasonal mean inflow concentrations, Table 5.4 indicates that only an 

elevated COD inflow load makes a significant difference in terms of seasonal COD 

concentrations in all seasons and SS outflow concentrations in summer 2011, spring 2012 and 

summer 2012. The development of a litter zone on top of each filter was observed after the first 

year of operation from summer 2012 to summer 2013 (Table 5.6). This was partly due to both 

the high strength and SS load of the wastewater (Sani et al., 2013a). However, concerning filter 

bed clogging evolution, measured in terms of SS accumulation, none of the systems have 

shown any signs of serious within-bed clogging after more than two years of operation (Sani 

et al., 2013b; Al-Isawi et al., 2014; Al-Isawi et al., 2015) even for the high rate Filters 7 and 8 

in all seasons including the period of petroleum hydrocarbon contamination (Tables 5.6 and 

5.7). However, a very modest but statistically significant breakthrough of turbidity was noticed 

for high rate filters in summer 2012 and spring 2013 (Table 5.4) indicating a good treatment 

efficiency by the wetland systems which was achieved as a result of gradual microbial 

acclimation and biomass development as the wetlands mature and intermittent aeration during 

the feeding mode operation subsequently, leading to high solids degradation, opening the 

blocked media pores, improving the hydraulic conductivity and the corresponding porosity of 

the substrate pores with observed low SS concentration. In the period after petroleum 

hydrocarbon application, Table 5.7 shows that all filters particularly those contaminated with 

diesel recorded high values of SS concentration within and on top of the litter zone compared 

to the pre-petroleum hydrocarbon application period. This increase in SS concentration can be 

attributed to diesel degradation components and initial dying biomass depending on the stage 
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of biodegradation that might have, over time, accumulated in the contaminated filters (Al-Isawi 

et al., 2014; Al-Isawi et al., 2015). Furthermore, some diesel components are recalcitrant in 

nature (Al-Baldawi et al., 2013a; Al-Baldawi et al, 2014), and might have led to the high 

concentration observed within the bed and on top of the litter zone.  

 
Table 5.6: Mean suspended solids (SS) concentration within the filters (27/06/11 to 
25/09/13; first to third experimental phase) all in mg/l 
Sampling location Filters 1 

and 2 
Filters 3 

and 4 
Filters 7and 

8 
Filter 9 Filter 10 

Summer 2011 (21/06/11 to 22/09/11) 
Litter layer of filter - - - - - 
60 cm above outlet - - - - - 
55 cm above outlet 14.0 7.0 15.0 - - 
50 cm above outlet 14.8 10.0 25.5 7.0 15.0 
45 cm above outlet 11.0 15.6 23.9 27.0 17.3 
40 cm above outlet 8.6 13.3 19.9 12.0 17.3 
30 cm above outlet 14.2 14.3 22.4 15.5 16.5 
20 cm above outlet 11.7 15.2 24.0 15.5 27.8 
10 cm above outlet 11.8 15.0 22.1 16.5 35.3 
Outflow water 22.6 20.9 40.7 32.8 19.5 
Summer 2012 (20/06/12 to 21/09/12) 
Litter layer of filter 81.9 63.5 114.8 82.8    68.0 
60 cm above outlet 25.0 19.0 26.8 23.3 16.1 
55 cm above outlet 14.9 19.3 21.1 19.6 13.0 
50 cm above outlet 14.8 17.0 19.0 14.1 11.1 
45 cm above outlet 11.9 13.9 11.9 10.3 8.5 
40 cm above outlet 9.8 9.0 12.1 13.1 8.3 
30 cm above outlet 6.8 5.9 10.0 7.4 5.3 
20 cm above outlet 6.2 5.5 7.1 7.6 5.1 
10 cm above outlet 4.3 5.1 6.6 6.3 6.3 
Outflow water 5.1 3.3 6.6 6.6 3.6 
Autumn 2012 (22/09/12 to 20/12/12) 
Litter layer of filter 42.7 29.1 34.7 54.4 29.0 
60 cm above outlet 11.6 6.2 10.4 9.6 13.2 
55 cm above outlet 7.1 10.6 8.3 13.2 9.0 
50 cm above outlet 4.7 3.2 6.4 5.8 7.0 
45 cm above outlet 4.4 3.7 6.9 3.4 4.0 
40 cm above outlet 4.3 3.2 6.3 3.2 3.8 
30 cm above outlet 4.3 2.5 6.1 3.6 3.4 
20 cm above outlet 3.1 4.5 4.7 2.8 1.8 
10 cm above outlet 3.4 2.2 5.6 2.2 3.2 
Outflow water 4.5 4.3 5.2 6.3 5.0 
Winter 2012/13 (21/12/12 to 19/03/13) 
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Table 5.6 (cont) 
Sampling location Filters 1 

and 2 
Filters 3 

and 4 
Filters 7and 

8 
Filter 9 Filter 10 

Litter layer of filter 65.2 48.4 69.8 40.3 35.2 
60 cm above outlet 13.0 12.1 19.9 11.6 8.2 
55 cm above outlet 6.4 8.3 16.8 9.0 5.8 
50 cm above outlet 4.3 5.1 8.4 6.7 3.3 
45 cm above outlet 3.2 4.1 6.9 3.6 4.0 
40 cm above outlet 3.7 3.1 6.4 2.4 1.3 
30 cm above outlet 2.9 3.5 5.8 3.6 2.2 
20 cm above outlet 2.5 2.8 5.1 3.0 3.7 
10 cm above outlet 2.7 2.2 3.8 2.1 1.3 
Outflow water 4.2 3.7 4.8 4.8 4.8 
Spring 2013 (20/03/13 to 20/06/13) 
Litter layer of filter 245.0 257.3 401.2 260.8 289.3 
60 cm above outlet 29.2 40.9 47.9 49.7 38.8 
55 cm above outlet 18.4 11.6 30.0 25.2 21.2 
50 cm above outlet 11.3 9.0 26.3 15.3 14.5 
45 cm above outlet 14.4 7.0 15.3 13.0 11.2 
40 cm above outlet 12.2 7.1 12.9 8.3 8.8 
30 cm above outlet 12.6 13.0 15.3 5.7 5.0 
20 cm above outlet 12.6 8.3 11.2 3.7 4.3 
10 cm above outlet 14.4 8.6 12.1 2.7 4.7 
Outflow water 12.1 6.0 9.6 5.6 7.9 
Summer 2013 (21/06/13 to 22/09/13) 
Litter layer of filter 143.6 133.9 244.9 149.1 197.3 
60 cm above outlet 18.1 10.1 33.6 35.6 17.5 
55 cm above outlet 15.8 7.5 23.8 9.8 17.4 
50 cm above outlet 6.7 8.5 49.0 17.3 10.3 
45 cm above outlet     9.0     12.7     33.4    15.0    23.4 
40 cm above outlet 12.4 7.1 16.7 13.9 12.5 
30 cm above outlet 12.8 5.8 17.3 6.5 22.8 
20 cm above outlet 9.4 9.6 24.3 5.1 17.6 
10 cm above outlet 11.7 11.9 22.6 8.4 19.0 
Outflow water 10.0 8.94 14.2 10.9 16.0 

However, there was no significant sign of within bed noted in terms of measured SS 

accumulation in all filters including high loading rate Filters including high loading rate Filters 

7 and 8 (Table 5.7) 
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Table 5.7: Seasonal mean suspended solids (SS) accumulation within the wetland filters (26/09/13 to 20/12/13; data collection started on 22/09/13) 
after hydrocarbon application on 26/09/13 all measured in mg/l 

 

Autumn 2013 (22/09/13 to 20/12/13) 
Sampling location Filter 1 Filter 2 Filter 3 Filter 4 Filter 7 Filter 8 Filter 9 Filter 10 
Litter layer of filter 451.8 395.3 479.3 333.8 249.3 134.8 194.0 234.2 
60 cm above outlet 62.3 52.3 66.0 32.3 34.25 35.8 20.8 18.6 
55 cm above outlet 35.5 38.0 44.0 25.0 28.3 34.0 15.5 12.8 
50 cm above outlet 24.8 25.5 37.3 14.5 26.5 30.0 9.8 9.2 
45 cm above outlet 20.3 25.8 33.3 17.0 22.3 25.8 7.5 4.4 
40 cm above outlet 20.3 34.3 26.5 13.0 18.5 22.3 5.7 4.8 
30 cm above outlet 23.3 22.3 21.5 18.5 22.8 22.0 8.3 4.8 
20 cm above outlet 14.8 22.0 25.3 16.0 20.8 19.0 5.5 5.6 
10 cm above outlet 14.5 17.8 19.5 18.8 25.0 205 8.0 7.8 
Outflow water 12.9 6.1 12.3 8.1 19.2 10.0 5.2 4.5 
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5.4 Summary 

This chapter discussed overall seasonal performance and clogging of different filter wetlands 

in both pre- and post-petroleum hydrocarbon periods in addition to seasonal inflow variability. 

The impact of different seasons on the key water quality parameters in various wetland systems 

was evaluated and discussed in detail. Moreover, seasonal trends were noted and their possible 

reasons were also interpreted in both petroleum hydrocarbon and non-petroleum hydrocarbon 

contaminated filters during and after the petroleum hydrocarbon pollution. Suspended solids 

concentration as the index of clogging has been also assessed in all the filters. Furthermore, 

they are evaluated based on seasonal variability and probable rationale of any variation 

observed has been elucidated and described.  
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CHAPTER 6 

PETROLEUM HYDROCARBON REMOVAL IN DIFFERENT WETLAND FILTERS 

6.1 Overview 

In this chapter, section 7.1 introduces the summary of the overall performance of the wetland 

filters in post hydrocarbon period. The chapter is also divided into sections 7.2, 7.3 and 7.4. 

Section 7.2 discusses the inflow water quality and performance of the wetland filters after 

hydrocarbon pollution including the oxygen demand variables, nutrients and the particles. 

Treatment of different hydrocarbon components in various filters was also assessed and is 

interpreted in section 7.3, while a summary of the chapter is discussed in section 7.4.  

6.2 Performance evaluation of water quality parameters in petroleum hydrocarbon 
contaminated wetland filters 

6.2.1 Inflow water quality 

Average mean inflow concentrations of water quality parameters monitored in a wetland 

operation for about one year of petroleum hydrocarbon contamination are analysed in this 

section. The raw domestic wastewater quality was examined, tabled and interpreted. Table 7.1 

shows the overall inflow water quality before dilution for the period when some filters were 

selected and subjected to a one-off diesel spill as a target hydrocarbon to assess their 

performance efficiency with regard to petroleum hydrocarbon. The undiluted influent 

concentrations for COD, BOD, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate-

phosphorus, SS and turbidity were 246 mg/l, 133 mg/l, 32 mg/l, 4 mg/l, 16 mg/l, 144 mg/l and 

90 NTU, respectively. 
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 Note: only Filters 7 and 8 received the above water characteristics. The remaining filters received diluted 
wastewater (i.e. 1 part dechlorinated tap water and 1 part wastewater) 

6.2.2 Comparison of petroleum hydrocarbon outflow water qualities 

6.2.2.1 Comparison of oxygen demand variables (COD and BOD) 

Organic matter expressed in the form of COD and BOD is removed via aerobic, anaerobic, 

adsorption, filtration, and microbial metabolism (Karathanasis et al., 2003; Song et al., 2006; 

Stefanakis et al., 2014) in wetlands. Furthermore, its concentration in urban wastewater is 

enormous (Stefanakis et al., 2014) and particularly COD can reach up to values of between 

100,000 and 1,000,000,000 mg/l in hydrocarbon spill contamination (Scholz, 2010). Average 

performance data for about one year of wetland operation during the period of petroleum 

hydrocarbon pollution were monitored and are analysed in this section. The study examined 

changes over time in the wetland filters with or without petroleum hydrocarbon contamination 

regarding the water quality variables. 

Overall performance with regard to water quality parameters is shown in Table 7.2 including 

the chemical and biochemical oxygen demand variables. The operation of the wetland filters 

without petroleum hydrocarbon spill was relatively good for key water quality parameters 

except nitrate-nitrogen (Table 7.2). However, the result with reference to COD shows that, all 

filters with hydrocarbon spill (1, 3, 7 and control A ) showed poor COD removal efficiencies 

(less than 35%) and relatively lower BOD removal efficiencies (66–81%) compared to their 

corresponding filters without petroleum hydrocarbons (78–87% of BOD) and (35–75% of 

Table 6.1: Inflow water quality: (raw (i.e. before dilution) domestic wastewater mixed with 
urban runoff) from 26/09/13 to April 2014 when some selected filters were subjected to a 
one-off diesel spill. 
Parameters Unit Number Mean Minimum Maximum Standard 

deviation 
COD mg/l         16 246.1 112.0 360.0 93.02 
BOD mg/l         68 133.3 10.0 360.0 98.45 
NH4-N              mg/l         22 32.4 3.1 70.0 24.06 
NO3-N              mg/l         20 3.7 0.4 14.0 4.32 
PO4-P                mg/l         18 16.3                9.3    27.6                  113.13 
SS mg/l         70 143.9              27.0              474.0 86.30 
TBD NTU 65 89.5 12.3              391.0 0.32 
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COD). This demonstrates that diesel spills resulted in a sharp decline of the removal efficiency 

of the COD in petroleum hydrocarbon spill wetland filters probably because of the indirect 

artificial contribution of the COD in the inflow water, which might have elevated the outflow 

COD values observed (Chavan & Mukherji, 2008; Lohi et al., 2008; Al-Isawi et al., 2014; Al-

Isawi et al., 2015) since it has been reported that petroleum hydrocarbons such as diesel are 

associated with high COD values (Scholz, 2010). However, in this study, note that the 

calculated removal efficiencies do not take account of the additional COD and BOD associated 

with the diesel spill. On the other hand, the relatively high COD and BOD removal efficiencies 

observed in the uncontaminated wetland filters could be attributed to the gradual improvement 

in macrophytes growth and wetland microbe’s acclimation as the wetland systems mature, 

subsequently leading to high pollutants biodegradation (Scholz, 2006, 2010; Babatunde et al., 

2011; Sani et al., 2012; Sani et al., 2013a; Sani et al., 2013b). 

Pollution of urban wastewater with a petroleum hydrocarbon spill adversely affects organic 

matter treatment in constructed wetlands (Al-Isawi et al., 2014; Al-Isawi et al., 2015) because 

of the associated high amount of different petroleum hydrocarbon compounds in the spill. 

Furthermore, as a result of their recalcitrant nature, these petroleum hydrocarbon components 

(Sun et al., 2010; Al-Baldawi et al., 2014) perturb the physical, chemical and biological 

properties in the wetland systems (Sutton et al., 2013; Ying et al., 2013) subsequently leading 

to low organic matter depuration. In this research, the overall mean COD and BOD removal 

efficiencies for Filter 8 without petroleum hydrocarbon are higher than those of Filter 7 with 

petroleum hydrocarbon (both with high loading rate). This difference was not statistically 

significant as shown in Table 7.3, which summarizes an assessment of the statistically 

significant differences between outflow water quality variables of different filters using the 

non-parametric Mann-Whitney U-test. A comparison of Filter 1 with Filter 2, and Filter 3 with 

Filter 4 gives an insight into the effect of low loading rate on the treatment performance with 
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and without petroleum hydrocarbon. The overall removal efficiencies were also higher for 

filters without hydrocarbon than those with, though the difference is not great with regard to 

BOD (Table 7.2). A comparison between Filters 3 and 4 has shown a statistical significant 

difference in petroleum hydrocarbon impact. The relatively poor performance of the 

contaminated filters can be explained by the high inflow loading rates, which could also 

contribute to the influence of the high applied petroleum hydrocarbon in the influent 

wastewater as mentioned previously (Al-Isawi et al., 2014; Al-Isawi et al., 2015). Nevertheless, 

there were no significant differences with all filters observed when the period of contamination 

was compared with the uncontaminated one (Table 7.3).  

With respect to COD however, there was a significant difference in all filters contaminated 

with petroleum hydrocarbons during the contamination period if compared with the 

corresponding period before they were polluted (Table 7.3) which could probably be due to the 

indirect artificial contribution of the COD in the inflow water, which might have elevated the 

outflow COD values observed (Chavan & Mukherji, 2008; Lohi et al., 2008; Al-Isawi et al., 

2014; Al-Isawi et al., 2015). 

Regulatory agencies for environmental pollution control set standard threshold values for 

wastewater contaminants like COD and BOD in secondary wastewater treatment. For example, 

the common standard set by environment agencies like The Urban Waste Water Treatment 

(England and Wales) Regulations (UK Government, 1994), which implements the Council 

Directive 91/271/EEC Concerning Urban Waste Water Treatment (European Community, 

1991), sets a threshold value of 125 mg/l for COD removal in secondary wastewater treatment. 

Filters 1, 3 and 7 were 2, 2 and 4 times non-compliant with this standard, respectively (Figure 

7.1). With regard to BOD however, 20 mg/l and 25 mg/l were set for sensitive and less sensitive 

(e.g., many coastal discharges) areas, by the traditional UK  

168 
 



 

 

Figure 6. 1: Temporal variations of chemical oxygen demand for the effluent of filters with diesel contamination. The diesel was applied in the 
filters on 26/09/13. Data collection started from 27/06/11 and stopped on 19/03/13. MAL, maximum allowable limit
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Figure 6. 2: Temporal variations of biochemical oxygen demand for the effluent of filters with diesel contamination 

The diesel fuel was applied in the filters on 26/09/2013. Data collection started from 27/06/11 and stopped on 19/03/14. MAL – maximum allowable 

limit 
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standard for BOD removal from secondary wastewater (Royal Commission on Sewage 

Disposal, 1915). With respect to sensitive watercourses, Filters 1, 3 and 7 were 16, 17 and 16 

times non-compliant, while in less sensitive areas, they were 13, 12 and 10 times non-

compliant, respectively (Figure 7.2). 

6.2.2.2 Comparison of nutrient variables (P and N) 

In constructed wetlands, removal of nitrogen is predominantly by microbial nitrification and 

denitrification. However, the removal is insufficient without active and passive aeration, 

mainly because of inadequate oxygen available for aerobic biodegradation (Scholz, 2010; 

Saeed & Sun, 2011; Fan et al., 2012; Fan et al., 2013; Vymazal, 2014). Overall performance 

of wetland filters regarding the nutrient variables shows that all the nutrients were relatively 

removed from all filters, though removal was better in filters without petroleum hydrocarbon 

compared to those filters contaminated with it, except for nitrate-nitrogen which shows better 

removal in the latter. 

Ammonia removal in constructed wetlands is intricate (Vymazal, 2007) and involves series of 

chemical, physical and biological reactions within the wetland media. However, numerous 

studies have shown that high aeration (Fan et al., 2012; Fan et al., 2013; Liu et al., 2014), which 

promotes the build-up of ammonia oxidizing bacteria, leads to high ammonia nitrification (Zhi 

et al., 2015). Overall reduction rates of ammonia-nitrogen in this study were relatively high 

ranging from 57% to 84% in all filters (Table 7.2) regardless of petroleum hydrocarbon 

contamination (though better in low loading rate filters than high loading ones) confirming 

findings by Eke and Scholz (2007) and De Biase et al. (2011) who reported 83% and 73–76% 

ammonia-nitrogen removal respectively in their hydrocarbon treatment wetlands but 

contradicting data elsewhere (Wu et al., 2012). The high removal of ammonia-nitrogen 

observed in this study could be attributed to the fact that intermittent aeration, increase in 

aerobic bacteria and established macrophytes growth as a result of improved wetland 
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maturation that took place over time, might have promoted the nitrification process leading to 

high ammonia removal (Fan et al., 2013; Al-Isawi et al., 2014; Al-Isawi et al., 2015). However, 

the possible reason why contrasting findings reported are in disagreement with the current 

study data could be due to the fact that despite the assessed wetlands in the reported literature 

being mature (over 6 years), the combined effect of sulphate and other inorganic compounds 

present in the wetland might have hindered the nitrification process, hence leading to the 

observed dropped value of ammonia removal from 75 to 42%. Previous studies have reported 

on the effect of sulphate on ammonia oxidation in constructed wetlands. Aesoy, Odegaard, and 

Bentzen (1998) and Wiessner et al. (2008) have shown that the high sulphide concentration 

effect on sulphate in their wetland systems impacts negatively on the oxidation and nitrification 

process of ammonia-nitrogen. The authors attributed the inhibition to sulphide toxicity and an 

increase in the reduction rate of sulphate which inhibit the growth and activity of wetland 

microbes leading to a high concentration of ammonia in the outflow (Van der Welle et al., 

2007). Moreover, low aeration due to continuous loading in the reference literature could also 

be another reason for the lower removal values. Fan et al. (2012) and Fan et al. (2013) have 

stated that intermittent aeration leads to an increase in the growth of ammonia oxidizing 

bacteria with high nitrification activity.  

Table 7.3 indicates an overview of statistically significant differences between outflow water 

quality variables of different wetland filters in the pre- and post-petroleum hydrocarbon period 

and with or without petroleum hydrocarbon contamination using the non-parametric Mann-

Whitney U-test. With regard to ammonia, all filters, regardless of petroleum hydrocarbon 

contamination period and whether or not contaminated, have shown no statistical significant 

differences between the water quality parameters (Table 7.3). 

Regarding a threshold value for ammonia removal in secondary wastewater treatment, the 

Urban Waste Water Treatment (England and Wales) Regulations (UK Government, 1994), did 
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not set a common standard typical for ammonia-nitrogen that would relate to the treatment 

system used in this experiment. However, a realistic guideline threshold value concerning 

secondary wastewater treatment in this study would be 20 mg/l (Sani et al., 2013b). After the 

hydrocarbon contamination, Filters 1 and 7 were one-time non-compliant while Filter 3 

complied (Figure 7.3). 

Nitrate-nitrogen removal in constructed wetlands is by denitrification (Scholz, 2010; Ji et al., 

2012; Ji, He, & Tan, 2013). Several studies have reported positive correlation between 

denitrification of nitrate and supply of organic carbon, by macrophytes, to heterotrophs 

(Bastviken et al., 2005; Souza et al., 2008; Shen et al., 2015), and temperature (Stefanakis & 

Tsihrintzis, 2012; Mietto et al., 2015), subsequently leading to an increase in the heterotrophic 

activity and oxygen consumption, and hence higher denitrification. However, an inadequate 

denitrification process has been noted in some tidal flow constructed wetland studies as a result 

of insufficient carbon supply to allow the denitrification process to occur, which is reliant on 

the degradation preference of organic matter, and elevated nitrate concentration in the wetland 

outflow caused by aerobic environment in the wetland media bed. This situation impedes the 

activity and growth of the denitrifying microbes (Li et al., 2015). In this study, despite the fact 

that nitrate-nitrogen concentration in the inflow was relatively low, the outflow concentrations 

were relatively high for all filters. Only Filters 1, 3, 7 and 8 had positive removal efficiencies. 

In contrast, all other filters functioned as sources for nitrate-nitrogen because of the observed 

negative efficiency values in the outflow. The negative removal efficiencies for nitrate-nitrogen 

indicated that denitrification was likely to be only a minor removal mechanism (Kayranli et al., 

2010; Sani et al., 2013a; Sani et al., 2013b; Al-Isawi et al., 2014). However, the necessary 

conditions for denitrification to occur were not directly investigated because these conditions 

(e.g. anoxic environment and presence of easily bio-degradable organic carbon) were not 

directly monitored within the entire small wetlands as this would have been too destructive
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 (Sani et al., 2013b). The overall nitrate-nitrogen removal efficiency observed in the present 

research is relatively high with little difference between the filters (Table 7.2). The nitrogen 

removal could be attributed to the high biodegradation processes of diesel spills in the 

contaminated filters, which over time promoted the growth of some microorganisms, providing 

a high source of carbon and energy (Chavan & Mukherji, 2008; Tang et al., 2010), and 

subsequently stimulating the nitrogen reduction via petroleum hydrocarbon degradation by, the 

wetland microbes (Scholz, 2010; Al-Isawi et al., 2014; Al-Isawi et al., 2015). Several 

hydrocarbon treatment studies have indicated that established macrophytes growth greatly 

absorbs nitrogen which elevates microbial activity in the wetland systems, resulting in high 

total nitrogen reduction (Ji et al., 2007) as a result of hydrocarbon degradation processes (Tang 

et al., 2010), confirming the data of the present study. The mean overall daily nitrate-nitrogen 

values of all filters with or without petroleum hydrocarbon and during the pre- and post-

petroleum hydrocarbon period were not statistically significantly different from each other 

(Table 7.3). A common standard set by environment agencies for the nitrate-nitrogen variable 

disposal concerning secondary treatment of wastewater is 50 mg/l (Sani et al., 2013b) and all 

filters were compliant (Figure 7.4). Removal mechanisms of phosphorus in constructed 

wetland systems have been reported to include plant uptake (Vymazal, 2011c, 2013a), 

microbial uptake and accretions in wetland media (Gikas & Tsihrintzis, 2012), and retention 

by wetland substrate and precipitation in water column (Gikas et al., 2007). However, some 

studies have shown that it is one of the most difficult pollutants to remove by constructed 

wetlands (Pant et al., 2001; Prochaska & Zouboulis, 2006; Fia et al., 2014; Vera et al., 2014) 

The ortho-phosphate-phosphorus removal efficiencies in this study ranged between 58 and 

74% for all filters regardless of the loadin rate and petroleum hydrocarbon contamination 

(Table7.2), confirming findings within the range reported in literature (Eke & Scholz, 2007;
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  Chavan & Mukherji, 2008; Al-Isawi et al., 2014; Al-Isawi et al., 2015) for petroleum 

hydrocarbon treatment wetlands. The relatively high ortho-phosphate-phosphorus removal can 

be attributed to gradual maturity and improvement of the wetland systems, established biomass 

as a result of macrophytes growth, high aeration due to intermittent feeding mode, and 

microbial acclimatization, which might have enhanced the high phosphorus reduction. 

Furthermore,petroleum hydrocarbon applied in the selected filters might have influenced the 

activity of the system microbes via the provision of carbon as the source of energy from its 

biodegradation processes (Chavan & Mukherji, 2008; Lohi et al., 2008; Al-Isawi et al., 2014; 

Al-Isawi et al., 2015) leading to subsequent microbial consumption. Phosphorus removal has 

been reported as the function of porous media adsorption and microbial uptake, processes not 

affected directly by temperature (Gikas & Tsihrintzis, 2010; Kadlec & Wallace, 2009; 

Stefanakis et al., 2009) and plant consumption (Vymazal, 2011b; Gikas & Tsihrintzis, 2012; 

Vymazal, 2013a).  
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Figure 6. 3: Temporal variations of ammonia-nitrogen for the effluent of filters with diesel contamination 

The diesel fuel was applied in the filters on 26/09/2013. Data collection started from 27/06/11 and stopped on 19/03/14. MAL – maximum allowable 

limit 
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Figure 6. 4: Temporal variations of nitrate-nitrogen for the effluent of filters with diesel contamination 

 The diesel fuel was applied in the filters on 26/09/2013. Data collection started from 27/06/11 and stopped on 19/03/14. MAL – maximum allowable 

limit. 
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a not enough data; na, not applicable 

  

Table 6. 1: Comparison of outflow water quality and air temperature for the period of one-off 
petroleum hydrocarbon spill (26/09/2013 to 30/04/2014) 

Parameter     Unit Number Mean Removal 
% 

Minimum Maximum Standard 
deviation 

Filter 1 
COD mg/l 9 108.0 12.3 36.7 346.0 94.44 
BOD mg/l 34 22.4 66.2 0.0 70.0 16.34 
NH4-N mg/l 11 6.6 63.8 1.1 29.0 7.99 
NO3-N mg/l 10 0.5 76.2 0.2 0.9 0.26 
PO4-P mg/l 8 3.3 61.2 1.1 10.8 3.09 
SS mg/l 36 12.4 81.8 0.0 52.0 11.59 
TBD NTU 36 10.3 81.4 3.5 28.4 6.23 
Filter 2 
COD mg/l 5 48.2 61.0 18.4 93.2 35.28 
BOD mg/l 33 13.9 79.0 0.0 36.0 8.82 
NH4-N mg/l 11 6.2 65.7 0.5 18.6 6.21 
NO3-N mg/l 9 3.4 -68.5 0.3 8.6 3.24 
PO4-P mg/l 8 3.1 63.7 1.9 5.2 1.34 
SS mg/l 36 7.1 89.6 0.0 49.0 11.38 
TBD NTU 36 6.4 88.4 2.0 46.1 6.84 
Filter 3 
COD mg/l 9 115.2 6.7 53.2 332.0 87.18 
BOD mg/l 34 25.7 61.4 0.0 98.0 19.31 
NH4-N mg/l 11 4.3 76.6 0.7 16.9 4.82 
NO3-N mg/l 10 0.5 77.7 0.1 1.1 0.36 
PO4-P mg/l 8 3.0 64.7 0.9 9.5 2.80 
SS mg/l 36 13.0 81.0 0.0 54.0 11.21 
TBD NTU 36 11.0 80.3 0.9 30.7 6.39 
Filter 4 
COD mg/l 5 42.1 65.9 10.4 90.6 36.72 
BOD mg/l 31 13.0 80.5 0.0 40.0 10.33 
NH4-N mg/l 10 4.9 73.2 0.1 15.2 4.81 
NO3-N mg/l 9 0.6     -73.4 0.1 1.0 0.41 
PO4-P mg/l 8 3.1 63.2 1.7 5.7 1.39 
SS mg/l 36 8.0 88.4 0.0 50.0 12.55 
TBD NTU 36 6.6 88.1 1.9 27.3 6.25 
Filter 7 
COD mg/l 9 160.7 34.7 60.5 356.0 113.06 
BOD mg/l 32 25.7 80.7 0.0 78.0 19.98 
NH4-N mg/l 11 14.1 56.5 5.7 61.5 15.89 
NO3-N mg/l 10 1.1 71.6 0.2 2.8 0.81 
PO4-P mg/l 8 4.6 71.6 1.0 13.6 4.19 
SS mg/l 37 14.8 89.7 0.0 68.0 15.25 
TBD NTU 36 11.4 87.2 4.1 35.8 7.84 
Filter 8 
COD mg/l 5 61.7 75.0 27.8 139.0 47.47 
BOD mg/l 33 18.0 86.5 0.0 44.0 13.60 
NH4-N mg/l 10 12.9 60.1 0.5 54.2 15.62 
NO3-N mg/l 9 3.5 6.9 0.2 17.9 5.57 
PO4-P mg/l 8 4.2 74.3 2.0 13.5 3.86 
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Table 6.2 cont. 
Parameter     Unit Number Mean Removal 

% 
Minimum Maximum Standard 

deviation 
SS mg/l 37 8.4 92.2 0.0 41.0 10.31 
TBD NTU 36 7.0 92.2 2.1 27.0 6.34 
Filter 9 
COD mg/l 6 39.5 68.0 14.1 106.0 36.56 
BOD mg/l 39 13.9 79.0 0.0 42.0 9.80 
NH4-N mg/l 11 4.8 73.4 0.1 20.7 7.96 
NO3-N mg/l 9 4.3  -114.8 0.4 10.4 3.47 
PO4-P mg/l 8 3.2 61.8 1.8 7.8 2.05 
SS mg/l 40 2.2 96.8 0.0 13.1 3.23 
TBD NTU 39 3.3 94.1 1.8 13.3 1.98 
Filter 10 
COD mg/l 6 47.6 61.5 18.3 102.2 34.2 
BOD mg/l 46 14.7 77.8 0.0 36.0 8.71 
NH4-N mg/l 10 2.8 84.2 0.09 17.4 5.2 
NO3-N mg/l 9 3.7     -88.2 0.4 10.8 4.38 
PO4-P mg/l 7 3.5 58.3 1.8 7.5 2.28 
SS mg/l 49 2.6 96.1 0.0 16.0 3.58 
TBD NTU 51 3.9 92.8 1.8 12.7 2.14 
Filter A 
COD mg/l 8 35.1 neda 6.9 312.0 99.31 
BOD mg/l 33 8.1 neda 0.0 42.0 10.58 
NH4-N mg/l 11 2.0 neda 0.0 4.6 1.71 
NO3-N mg/l 10 0.6 neda 0.0 2.0 0.61 
PO4-P mg/l 8 3.5 neda 1.8 7.8 2.05 
SS mg/l 36 2.7 neda 0.0 39.0 9.7 
TBD NTU 36 5.3 neda 2.2 21.3 4.46 
Filter B 
COD mg/l 5 35.1 neda 3.5 90.3 36.80 
BOD mg/l 34 8.1 neda 0.0 34.0 8.49 
NH4-N mg/l 10 2.0 neda 0.1 6.9 1.95 
NO3-N mg/l 9 0.6 neda 0.1 1.0 0.41 
PO4 -P mg/l 7 3.5 neda 1.9 7.6 2.28 
SS mg/l 36 2.7 neda 0.0 16.0 3.58 
TBD NTU 36 5.3 neda 1.2 27.5 5.58 
Air To OC 158 113 na 2.0 2.0 3.8 

 

However, there are some studies of treatment wetlands treating wastewater contaminated with 

petroleum hydrocarbons and other organic compounds which reported more than 90% 

phosphorus removal efficiency, though the efficiency declined to 10% after a certain period of 

operation (Wu et al., 2012). These findings are in disagreement with the present study. The 

possible reason for this can be explained by the fact that despite the wetlands in the reported 

literature being more mature than the current ones of this study (6 years of operation), the 

inflow phosphorus concentration is low (5 mg/l) compared to the one used in this study (16 
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mg/l). Furthermore, the wetlands are larger in size with a larger foot print and surface area 

which might have elevated the high removal efficiency reported. Nevertheless, the authors 

attributed the decrease in the removal efficiency to sulphate toxicity, as a result of high sulphide 

concentration in the contaminated wastewater which negatively affected the phosphorus 

outflow concentration observed.  

Petroleum hydrocarbon contamination of the wetland filters and the effect of the pre- and post-

pollution period on water quality parameters were not statistically significantly different in 

terms of overall ortho-phosphate-phosphorus treatment (Table 7.3). The regulations (UK 

Government, 1994) set a value of 2 mg/l for total phosphorus for communities between 10,000 

and 100,000 inhabitants. A threshold for ortho-phosphate-phosphorus that would relate to the 

treatment system discussed in this research does not exist. However, a realistic guideline 

threshold value for ortho-phosphate-phosphorus could be 1 mg/l. Filters 1, 3 and 7 were all 4 

times non-compliant, after the pollution (Figure 7.5). 
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Figure 6. 5: Temporal variations of ortho-phosphate-phosphorus for the effluent of filters with diesel contamination. 

The diesel fuel was applied in the filters on 26/09/2013. Data collection started from 27/06/11 and stopped on 19/03/14.MAL – maximum allowable 

limit.  

0

1

2

3

4

5

6

7

8

9

10

01/06/11 04/10/11 06/02/12 10/06/12 13/10/12 15/02/13 20/06/13 23/10/13 25/02/14

O
rt

ho
-p

ho
sp

ha
te

-p
ho

sp
ho

ru
s 

(m
g/

l)

Date (day)

Outflow of Filter 1 Outflow of Filter 3 Outflow of Filter 7 Outflow of Filter CA

Pre-petroleum hydrocarbon period Post-petroleum hydrocarbon period

MAL

181 
 



 

6.2.2.3 Comparison of particles (SS and TBD) 

Elimination of solids and particulate matter has been reported to be achieved (Kadlec & Knight, 

1996; Green et al., 1997; Leonard, 2000; ITRC, 2003; Garcia et al., 2010; Hua et al., 2013) via 

settling and sedimentation, adsorption, and microbial degradation in wetland systems. 

However, Vymazal (2014) revealed that sedimentation, filtration, aggregation and surface 

adhesion are the primary removal mechanisms for suspended solids.  

The results in this study regarding SS and turbidity, show that all filters, including those 

contaminated with petroleum hydrocarbons, demonstrated high removal efficiency (more than 

80%) though filters with petroleum hydrocarbon contamination showed elevated SS 

concentrations compared to those without petroleum hydrocarbons immediately after the 

pollution, confirming findings by Al-Isawi et al. (2014) and Al-Isawi et al. (2015) (Table 7.2). 

This could be attributed to biodegradation process products of diesel spills in the affected filters 

that reduced the availability of nutrients to microorganisms and P. australis, thus reducing the 

biodegradation of the solids which might have led to the elevation of the SS and turbidity 

concentration particularly in the upper layers of wetland filters (Eke & Scholz, 2008). 

Furthermore, depending on the stage of biodegradation over time, initially dying contaminated 

biomass and later on degraded diesel might have contributed to the elevated values of SS within 

the filters. However, as the biodegradation of diesel progresses, small amounts of remaining 

hydrocarbon promote the growth of some microorganisms, which might have increased the 

degradation rate, subsequently leading to lower SS and turbidity concentration again (Al-Isawi 

et al., 2014; Al-Isawi et al., 2015). The high removal efficiency observed in suspended solids 

and turbidity could be due to sedimentation, plant uptake and microbial degradation as a result 

of improved macrophytes growth and high microbial activity as the wetland matures 

(Babatunde et al., 2011; Sani et al., 2012; Sani et al., 2013a; Sani et al., 2013b; Al-Isawi et al., 

2014; Al-Isawi et al., 2015).  
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Several studies have shown a high positive correlation between wetland systems maturity and 

TSS removal (Karathanasis et al., 2003; Gikas & Tsihrintzis, 2012; Paing et al., 2015).  

Nevertheless, a study conducted by Lohi et al. (2008) to assess diesel contaminated wastewater 

in a laboratory bioreactor has shown a suspended solids removal of 99% which is apparently a 

little higher than the current experimental highest value of 90% and 97% in diesel and non-

diesel contaminated filters respectively. A possible reason for this difference might be due to 

the fact that, despite high inflow TSS concentration of 900 mg/l reported in the referenced 

literature compared with 144 mg/l in the current research, the relatively high influent diesel 

concentration of 20,000 mg/l in this study might have been the cause of the lower 

concentration-based removal efficiency of 90% SS. While the 1200 mg/l diesel fuel 

concentration reported in the referenced literature was probably enough to provide sufficient 

carbon as the source of energy to the reactor microorganisms, thus resulting in higher 

degradation of the TSS with very low outflow concentration. Tang et al. (2010), Al-Isawi et al. 

(2014), and Al-Isawi et al. (2015) reported that petroleum hydrocarbon residual and its 

degradation materials were the essential source of carbon as a source of energy that promotes 

the growth of some microorganisms, which increase the degradation rate. Moreover, a high 

amount of petroleum hydrocarbon degraded materials combined with initial and accumulated 

over time dying biomass from constructed wetlands contribute to increase in SS and turbidity 

concentrations (Al-Isawi et al., 2014; Al-Isawi et al., 2015), which might also be another reason 

for the lower 90% SS removal efficiency observed in this study compared to the one of the 

referenced literature. The impact of petroleum hydrocarbon pollution on suspended solids and 

turbidity in the pre- and post-petroleum hydrocarbon periods has shown a significant statistical 

difference (Table 7.3). This difference can be explained by the fact that diesel fuel artificially 

applied in the wetland filters might have led to the increased observed value.  
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aComparison between Filters 1 and 2; bComparison between Filters 3 and 4; cComparison between Filters 7 and 

8; dComparison between Filter 1 pre- and post-hydrocarbon; eComparison between Filter 3 pre- and post-

hydrocarbon; and fComparison between Filter 7 pre- and post-hydrocarbon. Note P-value is a probability of 

getting a test statistic at least as extreme as the one that was actually observed. Filters are statistically significantly 

different only if the P-value is <0.05 for the corresponding water quality parameter.

Table 6. 3: Overview of the statistically significant differences between P-values regarding 
outflow water quality variables (mg/l) of different wetland filters using the non-parametric 
Mann-Whitney U-test (26/09/13 to 19/03/14) 
Parameter Impact of petroleum  

hydrocarbona 
Impact of petroleum 
hydrocarbonb 

Impact of petroleum 
hydrocarbonc 

Chemical oxygen 
demand 

0.126 0.126 0.089 

Biochemical oxygen 
demand 

0.054 0.003 0.146 

Ammonia-nitrogen 0.355 0.348 0.297 
Nitrate-nitrogen 0.149 0.275 0.275 
Ortho-phosphate-
phosphorus 

0.564 0.564 0.149 

Suspended solids 0.001 0.001 0.008 
Turbidity 0.001 0.000 0.001 
Parameter Impact of petroleum 

hydrocarbond 
Impact of petroleum 

hydrocarbone 
Impact of petroleum 

hydrocarbonf 

Chemical oxygen 
demand 

0.028 0.002 0.000 

Biochemical oxygen 
demand 

0.052 0.411 0.049 

Ammonia-nitrogen 0.527 0.411 0.484 
Nitrate-nitrogen 0.322 0.105 0.054 
Ortho-phosphate-
phosphorus 

0.266 0.138 0.141 

Suspended solids 0.000 0.000 0.000 
Turbidity 0.000 0.000 0.000 
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6.3 Petroleum hydrocarbon treatment in the wetland filters 

Organic compounds degradation in constructed wetlands has been documented in numerous 

researches (Imfeld et al., 2009; Scholz, 2010; Tang et al., 2010; De Biase et al., 2011; Ranieri 

et al., 2013; Al-Isawi et al., 2014; Al-Isawi et al., 2015). In vertical-flow constructed wetlands, 

attenuation of petroleum hydrocarbon compounds has been attributed to volatilization and 

biodegradation (De Biase et al., 2011; Al-Isawi et al., 2014; Al-Isawi et al., 2015) and 

adsorption, aeration and microbial degradation (Al-Isawi et al., 2014; Al-Isawi et al., 2015; 

Zhang et al., 2014; Guittonny-Philippe et al., 2015a ). Table 7.4 shows diesel fuel as the model 

petroleum hydrocarbon evaluated in this study and its constituents with their corresponding 

concentration values in the diesel before and after their treatment in the wetland filters. The 

analysed constituents are aliphatic, aromatic, total petroleum hydrocarbon (TPH), methyl 

tertiary butyl ether (MTBE), benzene, toluene, ethylene, xylene (BTEX), o-xylene, m-p xylene 

and volatile petroleum hydrocarbon (VPH). However, all these diesel compounds were found 

to be below the 10 μg/l detection limit in Filters 2, 4, 8, 9, 10 and control B outflow 

concentrations indicating very little or none of the pollutant compounds in the background 

inflow wastewater of these low loading filters since they are not contaminated with the 

petroleum hydrocarbons. Despite their high concentration in the diesel fuel, aliphatic and 

aromatic hydrocarbons with equivalent carbon (EC) index numbers 5-7 and 7-8 respectively 

were also below the 10 μg/l detection limit in all uncontaminated filters and less than 1 μg/l in 

the contaminated ones (Table 7.4). Furthermore, MTBE, BTEX, m-p xylene, o-xylene, other 

volatile petroleum hydrocarbon (OVPH) and total volatile petroleum hydrocarbon (TVPH) 

have also shown to be in the range of less than 10 μg/l in both polluted and unpolluted filters 

in spite of their high concentration in the diesel fuel except the MTBE (which even in the diesel 

and the inflow wastewater has a value below 10 μg/l). However, an aromatic with EC index 

number 35-44 has very low diesel concentration, but below 10 μg/l in all uncontaminated filters 

compared to the contaminated ones which are below 1 μg/l with the exception of Filter 10 that 
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recorded the concentration of 10 μg/l. Overall, results of the petroleum hydrocarbon removal 

efficiencies for each petroleum hydrocarbon component in different wetland filters, including 

natural background concentrations of diesel species in the raw wastewater which were low 

after the analysis, are depicted in Table 7.5. However, the findings are based only on a one-off 

sample. The overall removal efficiency is relatively very high for all petroleum hydrocarbon 

components with little difference between the filters except in controls (Table 7.5). The 

observed good performance in the different wetland filters could be explained by the fact that 

high aeration, as a result of the intermittent operation mode applied to the wetland systems, 

established reed growth and biomass achieved over time due to wetland maturity, and high 

microbial activity could have enhanced the biodegradation and removal of the petroleum 

hydrocarbon efficiently. Several studies have confirmed the above findings by showing a 

positive correlation between petroleum hydrocarbon removal and the aforementioned factors. 

For example, De Biase et al. (2011), Al-Baldawi et al. (2014), and Guittonny-Philippe et al. 

(2015a) have shown that an increase in aeration in the wetland systems stimulates the activity 

of petroleum hydrocarbon degradation bacteria leading to high removal efficiency of the 

organic compounds in the rhizosphere (Imfeld et al., 2009; Gikas, Ranieri, & Tchobanoglous, 

2013). Furthermore, enzymatic and organic acid secretions (Zhang et al., 2011) from the 

wetland plant high root biomass, as a result of established reed growth achieved from the 

mature wetlands over time, increases the density, diversity, and activity of particular wetland 

microbes, which subsequently, degrade the petroleum hydrocarbons (Hedge & Fletcher, 1996; 

Yoshitomi & Shann, 2001; Li et al., 2009; Al-Baldawi et al., 2013a; Al-Baldawi et al., 2013b; 

Al-Baldawi et al., 2013c). In their study, Omari et al. (2003), Salminen et al. (2004), Al 

Mahruki, Alloway, and Patzelt (2006), and Bhatia and Goyal (2014) have indicated that 

common reed plants have the ability to enhance petroleum hydrocarbon degradation in wetland 

systems. 

186 
 



 

Table 6. 2: Overall overview of the analysis of petroleum hydrocarbon and its constituents in different wetland filters for 10 March 2014. 

Analyte (μg/l)                                                                              Wetland filters 

Aliphatics              Method     Filter 1   Filter 2  Filter 3 Filter 4    Filter 7     Filter 8    Filter 9  Filter 10  Control A  Control B   Inflow      Diesel 

EC5-7  AN15-1 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              71900 

EC>7-8  AN15-1 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              538000 

EC>8-10 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             99 <1*              <10             185 19465 

EC>10-12 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              73 <10             76 1180882 

EC>12-16 SOPO5 28 <10             14 <10             <1*              <10             <10             <1*              124 <10             16 273642 

EC>16-35 SOPO5 72 <10             55 <10             14 <10             <10             <1*              70 <10             31 246575 

EC>35-44 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              419 

TEC5-44 I SOPO5 100 <10             69 <10             <1*              <10             <10             99 267 <10             309           2330883 

Aromatics 

EC5-7  AN15-1 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              366000 

EC>7-8  AN15-1 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              63000 

EC>8-10 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             17 <1*              <10             19 572 
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Table 6.4 (cont.) 
Aliphatics              Method     Filter 1   Filter 2  Filter 3 Filter 4    Filter 7     Filter 8    Filter 9  Filter 10  Control A  Control B   Inflow      Diesel 

              

EC>10-12 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              41 <10             54 3296 

EC>12-16 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              37 <10             215 8672 

EC>16-21 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             157 6672 

EC>21-35 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             27 7866 

EC>35-44 SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             <1*              <1*              <10             <1*              36 

TEC5-44  SOPO5 <1*              <10             <1*              <10             <1*              <10             <10             17              79 <10             473             456114 

TTPHa I and II SOPO5 100 <10             69 <10             14 <10             <10             116 346 <10             782 2786997 

MTBEb III AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             

Benzene IV AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             65120 

Toluene V AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             302300 

E benzene VI AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             9405 

m-p Xylene VII AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             34890 
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Table 6.4 (cont.) 
Aliphatics              Method     Filter 1   Filter 2  Filter 3 Filter 4    Filter 7     Filter 8    Filter 9  Filter 10  Control A  Control B   Inflow      Diesel 

o-Xylene VIII AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             17570 

Other VPHc IX AN15a <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             1038900 

Total VPHd AN15 <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             <10             1467185 
Note: The detection limit was 10 µg/l. Figures indicated by a * were less than the detection limit. The equivalent carbon number index is indicated 
by EC. atotal petroleum hydrocarbon, bmethyl tertiary butyl ether, other cvolatile petroleum hydrocarbon, dtotal volatile petroleum hydrocarbon. 
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via atmospheric oxygen transfer to their roots and support the microbial population and their 

activity by deriving carbon as their energy source from the petroleum  hydrocarbon (Chen et 

al., 2012), hence the higher removal efficiency of the organic compounds. 

6.3.1 Petroleum hydrocarbon components degradation and removal in the wetland filters 

Investigations have shown (Imfeld et al., 2009) that removal of petroleum hydrocarbons in 

wetland systems requires either a chemical, biological or physical process, or a combination of 

these, which are evaluated as TPH, total hydrocarbons (THC), VOCs, diesel range organics 

(DRO) and gasoline range organics (GRO). The DRO are composed of aromatics and aliphatics 

(Lin & Mendelson, 2009; Liu et al., 2011; Zhang et al., 2014) in addition to other petroleum 

hydrocarbon components. In this study, diesel, as the model petroleum hydrocarbon, is 

analysed into its various species, their concentration in inflow and outflow, and associated 

removal efficiency in different wetland filters. Figures 7.1, 7.2 and 7.3 show the removal 

efficiencies of TPH, total aromatcs and aliphatics of contaminated filters.  The removal 

efficiencies of total aliphatics and total aromatics with all petroleum hydrocarbon fractions (C8 

to C35) are shown in Table 7.5. All filters without petroleum hydrocarbon (2, 4, 8, 9, 10 and 

control B) have shown very high removal efficiencies for all hydrocarbon fractions (>96%, 

Table 7.4 (though data for percentage removal are not shown)). However, in the contaminated 

filters, except for the control A, the total aliphatics are within the range of 68 to 78% for low 

loading rate filters and 97% for the high loading one (Figure 7.1), while in the total aromatics, 

all filters and control A have shown high removal efficiencies of more than 96% and 83% 

respectively (Figure 7.2), irrespective of loading rate or contamination indicating that the 

removal efficiency of Filter 7 with high loading rate in total aliphatics was better than that of 

Filters 1 and 3 with low loading rate (Table 7.5). This can be explained by high degradation 

activity as a result of high microbial population in Filter 7 due to the high amount of nutrients 

from the undiluted wastewater received over time by the high loading rate filter in addition to 
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that from the petroleum hydrocarbon compound as a source of carbon and energy (Awe et al., 

2008), thus the better removal observed in Filter 7 compared to the corresponding Filters 1 and 

3. Furthermore, the high removal efficiency removal of 83% in the control can be attributed to 

the influence of the inherent microorganisms capable of degrading petroleum hydrocarbons in 

the filter (Liu et al., 2011), while lack of mature biomass, as a result of low nutrients 

concentration to boost the growth and activity of the indigenous microbes, could be the possible 

reason for the observed lower value of 83% efficiency compared to other filters. Moreover, the 

experimental findings indicated that total aromatics are more biodegraded than total aliphatics 

in all filters, confirming data by Lin and Mendelson (2009) who in their pot study to evaluate 

the potential of restoration and phytoremediation with Juncus roemerianus for diesel-

contaminated coastal wetlands, found high removal efficiency in the range of 85 to 99.8% in 

the aliphatic hydrocarbons, while the aromatic hydrocarbons recorded efficiency in the range 

of 84 to 100%, with phytoremediation being more effective in degrading aromatics than 

aliphatic components.Nevertheless, investigation by Liu et al. (2011) in their research to 

evaluate degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and 

microorganisms, recorded high removal efficiency of different diesel components in the 

fractions of C16-C24 in the range of 57 to 67% with aliphatic hydrocarbons being more 

degraded than aromatics by the degradation microbes in the roots rhizosphere, which is in 

disagreement with the current study data (68 to 97%). The possible reason for the difference 

observed between the present experimental data and that of contradicting literature could be 

the combined impact of improved and well matured macrophytes and microorganisms in the 

relative long-term operated wetland systems (about three years) in the present research, which 

resulted in high microbial degradation of the petroleum hydrocarbon components, with the 

corresponding high removal.  
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Table 6. 3: Overview of the analysis of the petroleum hydrocarbon components in the diesel fuel (value and petroleum hydrocarbon removal efficiency 
in brackets) for 10th March, 2014. Filters 1, 3, 5 and Control A were contaminated with diesel. The detection limit was 10 µg/l. Figures indicated by 
a * were actually returned as less than the detection limit. 
Analyte (µg/l) Filter 1 Filter 3 Filter 7 Filter 8 Filter 9 Filter 10 Control A Inflow Diesel 

Aliphatic >EC8-10 <1* <1* <1* <10 <10 99 <1* 185 19465 
 (99.5) (99.5) (99.5) (94.6) (94.6) (46.5) (99.5)   
Aliphatic >EC10-12 <1* <1* <1* <10 <10 <1* 73 76 1180882 
 (98.7) (98.7) (98.7) (86.8) (86.8) (98.7) (3.9)   
Aliphatic >EC12-16 28 14 <1* <10 <10 <1* 124 16 273642 
 (-75.0) (12.5) (93.8) (37.5) (37.5) (93.8) (-675.0)   
Aliphatic >EC16-35 72 55 14 <10 <10 <1* 70 31 246575 
 (-132) (-77) (54.8) (67.7) (67.7) (96.8) (-125.8)   
Total Aliphatics EC5-44 (I) 100 69 14 <10 <10 99 267 309 2330883 

 (67.6) (77.7) (95.5) (96.8) (96.8) (68.0) (13.6)   
Aromatic >EC8-10 <1* <1* <1* <10 <10 17 <1* 19 572 
 (94.7) (94.7) (94.7) (47.4) (47.4) (10.5) (94.7)   
Aromatic >EC10-12 <1* <1* <1* <10 <10 <1* 41 54 3296 
 (98.1) (98.1) (98.1) (81.5) (81.5) (98.1) (24.1)   
Aromatic >EC12-16 <1* <1* <1* <10 <10 <1* 37 215 8672 
 (99.5) (99.5) (99.5) (95.3) (95.3) (99.5) (82.8)   
Aromatic >EC16-21 <1* <1* <1* <10 <10 <1* <1* 157 6672 
 (99.4) (99.4) (99.4) (93.6) (93.6) (99.4) (99.4)   
Aromatic >E21-35 <1* <1* <1* <10 <10 <1* <1* 27 7866 
 (96.3) (96.3) (96.3) (63.0) (63.0) (96.3) (96.3)   
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Table 6.5 (cont.) 
Analyte (µg/l) Filter 1 Filter 3 Filter 7 Filter 8 Filter 9 Filter 10 Control A Inflow Diesel 
Total Aromatics EC5-44 (II) <1* <1* <1* <10 <10 17 79 473 456114 
 (99.8) (99.8) (99.8) (97.9) (97.9) (96.4) (83.3)   
Total TPH (=I+II) 100 69 14 <10 <10 116 346 782 2786997 
 (87.2) (91.2) (98.2) (98.7) (98.7) (85.2) (55.8)   
 

EC, equivalent carbon number index; TPH, total petroleum hydrocarbon. 
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efficiencies, compared to the two-month short-term experimental findings reported in the 

referenced literature.  

With regard to the observed biodegradation of aliphatics being greater than that of aromatics 

in the referenced literature, which is the reverse of the present findings, data could be attributed 

to type of macrophyte plants, and nature and selectivity differences of the consortium bacteria 

involved in the degradation process (Greenwood et al., 2008; Binazadeh, Karimi, & Li, 2009), 

since debilitation of petroleum hydrocarbon in the plants rhizosphere is a function of the 

degrading microbes (Greenwood et al., 2008; Al-Baldawi et al., 2014; Al-Isawi et al., 2014; 

Al-Isawi et al., 2015).  

Findings from this research (Table 7.5) also indicate that aliphatics EC12-16 and EC16-35 have 

negative removal efficiencies in Filters 1, 3 and control A suggesting that these filters 

functioned as sources of these organic compounds in their outflow concentrations rather than 

as sinks (Al-Isawi et al., 2015). The plausible reason for this could be the accumulation over 

time of the background aliphatics received from the inflow domestic water that might have 

become resistant to degradation by the wetland consortium of the microbes, leading to an 

increase in the observed effluents concentration, higher than the inflow with negative values. 

Aliphatic hydrocarbon compounds are reported to be more biodegradation resistant than 

aromatics because of their high number of molecular weight, and their resistance increases with 

increase in molecular weight (Agency for Toxic Substances and Disease Registry [ATSDR], 

2004; Greenwood et al., 2008; Liu et al., 2011). Furthermore, low microbes as a result of low 

concentration of nutrients in the diluted wastewater received by the affected Filters 1, 3 and 

control A could not biodegrade the aliphatics efficiently compared to the high loading rate 

Filter 7 with high nutrient concentration that has enough microbes to degrade the aliphatics 

effectively without the negative values (Awe et al., 2008).  
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  Figure 6. 6: Total aromatic removal efficiency (%) in different wetland filters 

 

Figure 6. 7: Total aliphatic removal efficiency (%) in different wetland filters 

 

           Figure 6. 8: Total petroleum removal efficiency (%) in different wetland filters 

With respect to other petroleum hydrocarbon components, TPH compounds were virtually 

entirely removed from all filters with 87% as the lowest and 99% as the highest depuration 
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efficiency in all contaminated filters except for control (Figure 7.3), probably due to high 

aeration supported by the intermittent operation regime in the wetland systems (Scholz, 2010; 

Al-Baldawi et al., 2014; Al-Isawi et al., 2014; Al-Isawi et al., 2015), which stimulated and 

elevated microbial degradation of the organic compounds. Several studies have reported 

similar results to the current research findings. For example, Chavan and Mukherji (2008), Al-

Baldawi et al. (2013a) and Guittonny-Philippe et al. (2015a) recorded a removal efficiency of 

TPH as the index hydrocarbon in the range of 90 to 100% in their treatment systems and 

attributed the elimination to microbial degradation. However, note that all other diesel 

components like MTBE, VPH, BTEX, etc., whose removal efficiencies are not shown, were 

below 10 μg/l in all filters including control regardless of contamination or operation (Table 

7.4) indicating their complete removal (>99%). This could be attributable to the combined 

effect of volatilization and phytovolatilization in addition to biodegradation since they are 

volatile in nature (Imfeld et al., 2009). Moreover, based on the evaporation experiments, about 

30% of the diesel had evaporated after a month, and no further evaporation was noticed on 

visual inspection after that, suggesting that volatilization and phytovolatilization are the main 

removal mechanisms during the first few days of petroleum hydrocarbon application. This has 

been confirmed recently by Al-Isawi et al. (2014) and Al-Isawi et al. (2015) who noted total 

elimination of volatile organic compounds including MBTE, VPH and BTEX with outflow 

concentration below the detection limit from their wetland systems. 

Environmental regulatory agencies for water pollution control have set a limit for disposal of 

hydrocarbon compound pollutants in wastewater for secondary wastewater treatment. For 

example, a common standard set by these agencies for aliphatics in the range of C8-C35 

hydrocarbon fractions concerning secondary treatment of wastewater is 300 μg/l (WHO, 2005) 

and all filters were compliant (Table 7.6). Also, aromatics in the class of C10-C16 and total 

aromatics with C5-44 hydrocarbon compounds should not exceed the threshold values of 100 
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μg/l and 300 μg/l respectively. The standard for TPH however, is set at 5000 μg/l by the 

environmental agencies (EPA, 2005). All filters complied.  

In order to evaluate the performance of the present wetland filters in terms of petroleum 

hydrocarbon treatment, findings of the present research was compared with studies conducted 

and reported in literature regarding treatment wetlands treating urban wastewater contaminated 

with, specifically, petroleum hydrocarbons like aromatics, aliphatics and TPH (Table 7.6). 

Overall results indicated that all the effluent concentrations of the contaminated filters in this 

study are below the outflow values reported in the reference literature except for the control 

and the non-polluted filters with respect to aliphatics and aromatics, which may be due to lack 

of mature biomass and nutrients in the former, and insufficient microorganisms in the latter to 

achieve the hydrocarbon degradation. However, TPH values were higher than the reported 

values in the contaminated filters, probably due to high inflow petroleum hydrocarbon 

concentration in comparison with the reported literature (Table7.6). Investigations regarding 

treatment wetlands treating domestic wastewater contaminated with petroleum hydrocarbons 

are limited (Giraud et al., 2001; Fountoulakis et al., 2009; Al-Isawi et al., 2014; Al-Isawi et al., 

2015). In this research, aromatic hydrocarbon fractions of EC12-16 with total aromatics of 

EC5-44, and TPH, have outflow concentration in the contaminated filters below the detection 

limit, and in the region of 14 μg/l and 100 μg/l, except in control, for the former and latter 

respectively.                                         .
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Table 6. 4: Overview of references summarizing typical petroleum hydrocarbon concentrations in wetlands and associated standard thresholds 
measured in μg/l 

EC, equivalent carbon number index; TPH, total petroleum hydrocarbons; aWHO (2005); bEPA (2005); cScottish Environmental Protection Agency (2004); dKadlec and Knight 
(1996); eMoshiri (1993); fTchobanoglous and Burton (1991); gBergier (2011); hAl-Baldawi (2013a); iFountoulakis et al.(2009); j Wallace et al. (2011); and kGiraud et al. (2001).  
 

 

Analyte                   Unit Typical outflow of 
wetlands treating domestic 
wastewater 

Secondary wastewater 
treatment standards for 
petroleum hydrocarbon 

Typical outflow of 
wetlands treating 
specifically petroleum 
hydrocarbons 

Aliphatic >EC8-10 μg/l − 300a 25g 

Aliphatic >EC10-12 μg/l − 300a 55g 
Aliphatic >EC12-16 μg/l − 300a 210g 
Aliphatic >EC16-35 μg/l − 300a 73g 

Total Aliphatics EC5-44 μg/l − − 101g 
Aromatic >EC8-10 μg/l − 20c 0.6j 
Aromatic >EC10-12 μg/l − 100a 0.5j 
Aromatic >EC12-16 μg/l Non detectk 100a Non detecth 
Total Aromatics EC5-44 μg/l 0.17)i 300a 0.17i 
TPH μg/l 25000h 5000b 0.12 -0.28d,e,f 
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The outflow TPH values reported by Al-Baldawi et al. (2013a) were even above the values 

noted in the contaminated filters of this study (Tables 7.5 and 7.6) probably because of the 

integrated effect of established matured biomass, high microbial activity and high aerobic 

environment in the wetland systems that was achieved over time (about 3 years), which resulted 

in high biodegradation of the petroleum hydrocarbon in the present study compared to the 

short-term experiment undertaken in the reference literature (72 days). However, the results of 

Giraud et al. (2001) and Fountoulakis et al. (2009) are in agreement with the present findings 

data with respect to aromatic EC12-16 and total aromatic EC5-44 outflow concentration (Table 

7.6). 

6.4 Summary 

This chapter discussed the inflow water quality and overall treatment of petroleum hydrocarbon 

and its associated compounds in the wetland filters, alongside water quality parameters. It also 

addressed the impact of petroleum hydrocarbon on the performance of different wetlands in 

treating the wastewater contaminants. Furthermore, removal efficiency of both organic and 

inorganic pollutants recorded in both contaminated and uncontaminated wetland filters were 

evaluated and interpreted. Biodegradation and removal of diesel components alongside 

treatment efficiency were also appraised and discussed. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATION FOR FURTHER RESEARCH 

7.1 Conclusion  

Experimental vertical-flow constructed wetland rigs were operated and used to evaluate the 

internal processes and efficacy of the wetlands and impact of design and operational variables 

on treatment performance and its relationship on clogging evolution of the systems. 

Furthermore, the wetlands were also explored for treating petroleum hydrocarbon spill in shock 

loading (one-off dose) alongside clogging and other water quality parameters. The overall 

results show that none of the laboratory scale vertical-flow constructed wetlands showed any 

signs of clogging after about three years of operation. Moreover, the systems were shown to be 

highly efficient for the treatment of petroleum hydrocarbon and other water quality variables.  

The main conclusions emanating from this research are summarized as follows: 

 Overall, all constructed wetland systems have shown relatively high removal 

efficiencies for the key water quality parameters regardless of filter set-up before the 

petroleum hydrocarbon spill, which impeded plant development and led to poor water 

quality (except for nitrate-nitrogen used for biodegradation of diesel) (chapters 4, 5 

and 7).  

 In the first experimental phase, the start-up period, relatively high removal efficiencies 

of COD, ortho-phosphate-phosphorus, and SS were noted. The removal efficiencies 

exceeded 43, 46, and 68% respectively in all filters irrespective of loading or aggregate 

size. Greater removal efficiencies of COD, BOD, ammonia-nitrogen, ortho-phosphate-

phosphorus, turbidity and SS were also recorded in the second experimental phase, a 

period after start-up; the reduction efficiencies observed in all filters were above 56, 

30, 69, 65, 98 and 83%, respectively, regardless of operational and design parameters. 

Findings in the third experimental period indicated that a minimum reduction of 49, 
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51, 57, 54, 92 and 87% of COD, BOD, ammonia-nitrogen, ortho-phosphate 

phosphorus, SS and turbidity was noted in all wetland filters.  

 However, in the period after petroleum hydrocarbon pollution of some selected filters, 

the filter with the highest COD loading but no diesel contamination performed the best 

in terms of COD and BOD removal. Furthermore, filters contaminated by diesel 

performed worse in terms of COD and BOD, but considerably better regarding nitrate-

nitrogen removal. In this period, the key water quality parameters, COD, BOD, 

ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate-phosphorus, SS and turbidity 

have removal efficiency of more than 12, 6 and 34% , 66, 61 and 80% , 63, 61 and 56%, 

76, 77 and 71%, 61, 64 and 71%, 80, 80 and 89%, and 81, 80 and 87% in hydrocarbon 

contaminated Filters 1, 3 and 7 respectively, while 60, 65, 74, 67 and 61%, 78, 80, 86, 

78 and 77%, 65, 73, 60, 73 and 84%, 63, 63, 74, 61 and 58%, 89, 88, 94, 96 and 96%, 

and 88, 88, 92, 94 and 92% for COD, BOD, ammonia-nitrogen, ortho-phosphate-

phosphorus, SS and turbidity in non-contaminated Filters 2, 4, 8, 9 and 10 respectively. 

However, some filters, including both contaminated and non-contaminated, recorded 

negative values in their outflow concentration for nitrate-nitrogen indicating that the 

filters served as a source for the nitrate-nitrogen (chapters 4 and 7).  

 With regard to modelling, the proposed Wang-Scholz model developed to assess the 

filter clogging is simple, transparent and delivers good estimations for less complex 

filter operations. Furthermore, the model performed well with respect to the prediction 

of SS within the filters. The modelling results were generally poor for the set-up period, 

adequate for the first two years after the set-up period and variable after the diesel spill. 

However, the model runs consistently under-predicted the SS concentrations within 

the litter zones and the model does not account for biological growth, decay of plant 

matter, degrading leaves and stems, and diesel spills. All these contribute to SS 

accumulation on top of the filter and the model was never designed to deal with them.  
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 Pertaining to the clogging evolution however, the results show that none of the systems 

has shown any signs of clogging after about three years of operation, and serious 

clogging phenomena impacting negatively on the treatment performance and the 

hydraulic conductivity were also not observed, which is surprising considering that the 

wastewater load is high and the filters can be regarded as mature. The simulation model 

confirms the observation based on the water quality analysis of all filters that 

considerable filter clogging restricting the operation has not occurred after these years 

of operation indicating that vertical-flow wetlands under intermittent operation mode 

can effectively treat inorganic and organic contaminants in about three years without 

clogging. However, a small aggregate diameter, a short contact time, a long resting 

time and a low COD inflow concentration were most beneficial in reducing SS 

accumulation within the wetland filters. 

 The result of investigation of seasonal influence on the performance and its relationship 

to evolution of clogging of the wetland systems revealed that all constructed wetlands 

have high removal of key water quality variables COD, BOD, ammonia-nitrogen, 

nitrate-nitrogen, ortho-phosphate-phosphorus, turbidity and SS without any sign of 

within bed clogging except at the period of start-up and petroleum hydrocarbon 

contamination, though high inflow seasonal variability was noted. Findings also 

indicate that some variables showed a seasonal removal trend while some have no 

pattern. For instance, COD, nitrate-nitrogen and ammonia-nitrogen have shown a 

seasonal trend with high removal in summer compared to other seasons, while BOD 

removal was efficient in winter compared to summer and turbidity was greatly 

removed in autumn compared to other seasons. However, no clear seasonal pattern of 

ortho-phosphate-phosphorus and SS removal were noted. With regard to the petroleum 

hydrocarbon contamination period, all filters, regardless of the pollution, design or 

operation, had higher removal in winter than autumn for COD, BOD, ammonia-
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nitrogen and ortho-phosphate-phosphorus while no seasonal trend was observed for 

other water quality parameters. These data indicate that intermittent vertical-flow 

systems are dynamic, robust and reliable eco-technologies that can efficiently treat 

both traditional and petroleum hydrocarbon pollutants even in low temperature seasons 

without being clogged. 

 Degradation of the petroleum hydrocarbon pollutants was also assessed, and the 

investigation revealed that all the petroleum hydrocarbon components treated in the 

wetland filters were highly degraded (>80% removal efficiency) in all contaminated 

filters with some even attenuated below the detection limit. For example, non-detect 

values were recorded for TVPH, MTBE, BTEX, etc. in all filters. However, with 

regard to water quality parameters, the filter with the highest COD loading but no 

diesel contamination performed the best in terms of COD and BOD removal. Filters 

contaminated by diesel performed worse in terms of COD and BOD, but considerably 

better regarding nitrate-nitrogen removal. Furthermore, the findings demonstrate that 

even with the high dose of the hydrocarbon spill in the wetland filters, clogging and 

low hydraulic conductivity to restrict the system performance were not observed. This 

result has shown the robustness of vertical-flow wetlands under intermittent operation 

mode in eliminating various types of contaminants including organic compounds in 

urban wastewater, even in shock loading, without being clogged. The successful 

removal of the aromatic and aliphatic hydrocarbon components and other pollutants 

will make constructed treatment wetland a very attractive and sustainable technology 

capable of meeting a zero discharge goal without clogging in the production, storage, 

refining and transportation sectors of the oil and gas industry. 
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  Considering the result of a separate evaporative study, findings suggest that 

volatilization, phytovolatilization and biodegradation are likely to be the major 

petroleum hydrocarbon removal mechanisms in the wetland systems 

7.2. Recommendations for future work 

Though clogging was not observed, its effect on the treatment performance of vertical-flow 

wetlands in terms of petroleum hydrocarbon removal in a long-term controlled experiment is 

recommended for further investigation. Moreover, research under controlled laboratory 

conditions or field scale should be undertaken to find out more about the microbial removal 

processes responsible for ammonia-nitrogen, nitrate-nitrogen and plant-originating SS 

reduction. The investigation of a real wetland becoming more mature until it requires 

decommissioning, which might, however, take as long as 20 years, will be an additional 

advantage. 

Although this research has demonstrated the potential for future use of CWs for treatment of 

petroleum hydrocarbon and other traditional contaminants without clogging, there is an 

obvious need for numerical process modelling and long-term process assessments of water 

quality parameters in vertical-flow CWs treating wastewater subjected to different hydrocarbon 

one-off and regular dosages of diesel. This could form the data base for an improved Wang-

Scholz model. Furthermore, the long-term monitoring of wetland plants to evaluate their 

tolerance to different petroleum hydrocarbon species and concentrations should be considered.  

With regard to volatilization, phytovolatilization and biodegradation, as the possible removal 

mechanisms of petroleum hydrocarbon treatment in constructed wetlands, further research 

should focus on the specification of biodegradation products and quantification of the 

proportion of petroleum hydrocarbons being lost through volatilization and phytovolatilization 

to the atmosphere under varying temperatures and other environmental conditions in field-scale 

wetland systems.  
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The potential causes of treatment efficiency decline of some water quality parameters, 

particularly COD removal in the petroleum hydrocarbon pollution period, need to be assessed 

further more preferably in field-scale wetlands in a long-term study for about five to ten years.  
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