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Long non-coding RNAs and enhancer RNAs
regulate the lipopolysaccharide-induced
inflammatory response in human monocytes
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Early reports indicate that long non-coding RNAs (lncRNAs) are novel regulators of biological

responses. However, their role in the human innate immune response, which provides

the initial defence against infection, is largely unexplored. To address this issue, here we

characterize the long non-coding RNA transcriptome in primary human monocytes

using RNA sequencing. We identify 76 enhancer RNAs (eRNAs), 40 canonical lncRNAs,

65 antisense lncRNAs and 35 regions of bidirectional transcription (RBT) that are

differentially expressed in response to bacterial lipopolysaccharide (LPS). Crucially, we

demonstrate that knockdown of nuclear-localized, NF-kB-regulated, eRNAs (IL1b-eRNA) and

RBT (IL1b-RBT46) surrounding the IL1b locus, attenuates LPS-induced messenger RNA

transcription and release of the proinflammatory mediators, IL1b and CXCL8. We predict that

lncRNAs can be important regulators of the human innate immune response.
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G
enome-scale transcriptional responses of protein-coding
genes following lipopolysaccharide (LPS)-induced activa-
tion of the innate immune response in human monocytes

and monocytic cell lines have been extensively studied using both
microarrays1 and serial analysis of gene expression2,3. These
studies have clearly demonstrated the induction of many
members of proinflammatory cytokines (for example, IL1b,
CXCL8, IL6 and tumor necrosis factor alpha (TNFa)),
chemokines and cell surface markers in response to Toll-like
receptor 4 (TLR4) signalling3. Significantly, the advent of next-
generation sequencing technology has allowed for an unbiased
investigation of the full repertoire of transcription from both
coding and non-coding regions of the genome. Evidence for
pervasive transcription across the genome now exists in the form
of large sequenced cDNA libraries4, histone modification
chromatin immunoprecipitation (ChIP)-seq data sets5,6 and
messenger RNA (mRNA) sequencing (RNA-seq) data sets7,8 as
part of multi-centre collaborative projects such as FANTOM,
ENCODE and the HumanBodyMap. These data sets have
revealed the presence of a large number of non-coding RNAs,
which display both tissue- and developmental time point-specific
transcription6,7,9. Several classes of non-coding RNAs have been
characterized, and some, such as microRNAs (miRNA), have
been well studied. Indeed miRNAs have been shown to play a role
in the cellular response to LPS10,11. However, the regulatory
potential of long non-coding RNAs (lncRNAs) has emerged only
recently (reviewed in ref. 12). While the function of the majority
of these RNA species is yet to be elucidated, there is increasing
evidence to support their diverse mechanistic roles. Some act as
structural molecules in the recruitment of histone-modifying
enzymes either in cis or trans (reviewed in ref. 12), while others
are transcribed from enhancer regions (eRNAs13), facilitating
transcription of protein-coding genes via RNA-dependent or
RNA-independent mechanisms14.

Studies in mouse macrophages and bone marrow-derived
dendritic cells have revealed the regulation of intergenic
transcription in response to proinflammatory signals (LPS and
IFNg)6,15,16. Interestingly, transcription from intergenic loci is
not always coincident with canonical promoter histone
modification signatures. Indeed, a large proportion is derived
from regions of the genome that contain a high H3K4me1/
H3K4me3 ratio, suggesting that lncRNAs are commonly
derived from enhancer elements (eRNAs)15,17. Transcriptional
complexity is further increased when we consider the presence of
non-polyadenylated, bidirectional transcripts produced from
additional sets of enhancers18. While the function of lncRNAs
in the human innate immune response is not well described,
recent studies have begun to elucidate the mechanism of action of
some mouse lncRNAs. Thus, Rapicavoli et al.19 identified a
pseudogene for ribosomal protein S15a (Rsp15a), renamed Lethe,
that negatively regulates the inflammatory response through an
interaction with RelA (p65), a component of the NF-kB
complex19. Similarly, Carpenter et al.20 showed rapid induction
in the expression of a lincRNA localized B50 Kb downstream
of COX2 (named lincRNA-Cox2) that mediates both the
activation and repression of inflammatory response through
interaction with the nuclear ribonucleoprotein A/B and A2/B1.
A single publication in human macrophages derived from
human monocytic THP-1 cells has identified a lincRNA named
TNFa and heterogeneous nuclear ribonucleoprotein L-related
immunoregulatory LincRNA from a microarray screen that
regulated the inflammatory response21.

While these studies have been valuable in determining lncRNA
regulation in response to LPS in cells of the mouse innate
immune system, sequencing studies have not yet been performed
in humans. In contrast to the observed global human–mouse

transcriptional conservation of protein-coding genes22, rapid
transcriptional turnover of a vast number of lncRNAs in rodent
species suggests the evolution of lineage-specific transcription23.
This provides the impetus to use human cells to relate lncRNA
transcription to human immune function.

In this study, we aim to characterize the unexplored aspects of
non-coding transcription in cells of the human innate immune
system. Specifically, using ab initio transcript assembly of deeply
sequenced RNA data set, we examine the response of lncRNAs to
TLR4 signalling through LPS stimulation. By integration of
publically available H3K4me1 and H3K4me3 ChIP-seq data from
the ENCODE project, we estimate the proportion of LPS-
regulated lncRNAs that are derived from enhancer elements
(eRNAs) and determine how changes in expression correlate with
changes in proximal protein-coding mRNA expression. We also
characterize the expression of bidirectional transcripts, a class of
elements that have not yet been examined in the innate immune
response and use knockdown experiments to determine the
functional role of lncRNAs. Our data demonstrate that many
lncRNAs in human monocytes show differential expression in
response to LPS stimulation—a subset of which are derived from
uni- and bidirectional enhancer regions that coexpress with
neighbouring inflammatory mediators. Interestingly, knockdown
of an eRNA (IL1b-eRNA) and a region of bidirectional
transcription (IL1b-RBT46) selectively attenuates LPS-induced
expression and release of the proinflammatory mediators, IL1b
and CXCL8. This suggests a general role for lncRNAs in the
regulation of the innate immune response and the release of
inflammatory mediators in human monocytes.

Results
RNA sequencing shows LPS induction of innate immunity. LPS
stimulation produced significant increases in the release of the
inflammatory mediators CXCL8 and TNFa (Fig. 1b), confirming
activation of the immune response. Analysis of RNA-seq data for
Ensembl (version 66)-annotated mRNAs confirmed this activa-
tion at the transcriptional level. A total of 1,621 protein-coding
genes were differentially expressed on LPS stimulation at an false
discovery rate (FDR)o0.05 and fold change42 (Supplementary
Fig. 1a and Supplementary Table 1; 1,045 upregulated, 576
downregulated). Further, cross-platform analysis revealed that
fold changes determined by RNA-seq correlated well with those
from microarray-based analysis of the same data set (see
Supplementary Fig. 1b online; r¼ 0.74) and both methods called
similar sets of genes as differentially expressed (hypergeometric
test; P¼ 1.32� 10� 11). A total of 534 genes were called by both
methods (415 upregulated, 115 downregulated, 4 incongruent),
with 530 representing a robust set of inflammation-regulated
genes. As expected, the upregulated genes from this set were
significantly enriched (FDRo0.05) in KEGG pathways involved
in the inflammatory response including ‘Toll-like receptor sig-
nalling’, ‘cytokine–cytokine receptor signalling’ and ‘chemokine
signalling pathway’ (see Supplementary Fig. 1c online). There
were no significantly enriched pathways in downregulated genes.
This initial evaluation of the data revealed that we could
accurately recapitulate the known transcriptional response of
monocytes to LPS stimulation using our RNA-seq data set.

RNA sequencing reveals expression of novel lncRNAs.
Computational analysis of a set of predicted transcript models as
described in Fig. 1a identified 2,607 multi-exonic monocyte-
derived lncRNA genes (see Supplementary Table 2 online). An
additional 69 regions of bidirectional transcription (RBT) were
also discovered (see later). As lncRNA transcript models are often
fragmentary, we did not consider multiple transcripts of the same
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gene and the term lncRNA therefore refers to a single consensus
gene model. Of these assembled genes, 1,318 (50%) novel
lncRNAs had not been previously identified in GENCODE v13 or
HumanBodyMap lncRNA sets, potentially reflecting monocyte
and/or LPS specificity (Fig. 1c). We found that lncRNAs were
significantly shorter (KS test; D¼ 0.41, Po1� 10� 16), had fewer
exons (Wilcoxon rank sum test; W¼ 8.2� 106, Po1� 10� 16)
and were more lowly expressed than protein-coding genes (KS
test; D¼ 0.41, Po1� 10� 16) (see Supplementary Fig. 2a–c
online), in line with previous findings7,8. The mean fragments per
kilobase exon per million reads mapped (FPKM), length (Kb) and
exon number for lncRNAs (versus mRNAs) was 2.14 (7.03), 2.48
(7.93) and 3 (11), respectively. Furthermore, monocytic lncRNAs
(based on the 1,318 novel lncRNAs) did not show evidence for
coding capacity (see Supplementary Fig. 2d online). Nevertheless,
due to low expression levels and potential for fragmentary gene
models, we cannot exclude the possibility that we include genes
that encode small peptides in our downstream analyses.

As described in Fig. 1a, we operationally classified lncRNAs
based on their proximity and relative orientation to protein-
coding annotations (Ensembl 66). The classifications we used
were as follows: antisense (overlapping a protein-coding gene
locus on the opposite strand), intergenic (45 Kb from a protein-
coding gene) and mRNA-flanking (o5 Kb from a protein-coding
gene (upstream/downstream and sense/antisense)). The distribu-
tion of lncRNAs among the different classes was: intergenic
(55%), antisense (26%), mRNA flanking (19%¼ antisense
upstream (8%)þ sense upstream (4%)þ antisense downstream
(2%)þ sense downstream (5%) (see Supplementary Table 2).
Those lncRNAs classified as sense upstream or sense downstream
were removed from further analyses due to our inability
to accurately resolve true ‘sense’ lncRNAs from expression
emanating from neighbouring protein-coding loci.

LPS induced widespread changes in lncRNA expression. We
hypothesized that along with many mRNAs and miRNAs,
lncRNAs respond to activation of the immune response.
Following LPS stimulation, we found that 221 out of 989 robustly
expressed (FPKM41) lncRNAs were differentially expressed (see
Supplementary Table 3). We observed 182 up and 39 down-
regulated lncRNAs (Fig. 1d), of which 76 were from the novel
lncRNAs identified in primary human monocytes. The majority
of differentially expressed lncRNAs were located 45 Kb from
protein-coding annotations with class representation in the order
of proportion being the following: intergenic (51%), antisense
(33%) and mRNA-flanking lncRNA (antisense upstream (11%)
and antisense downstream (5%)) (Fig. 1e). qRT–PCR analysis of a
subset of differentially expressed lncRNAs confirmed our
RNA-seq results with 14/18 (78%) validated using this method
(Supplementary Fig. 3). Of note, only 2 of the 221 differentially
expressed lncRNAs displayed positional overlap with previously
identified LPS-regulated lncRNA exons from mouse bone
marrow-derived dendritic cells6 and displayed no significant
homology. This result is consistent with rapid transcriptional
turnover of lncRNAs across species23. Our initial differential
expression analysis thus revealed a widespread programme of
LPS-induced expression changes in a class of RNA molecule that
has not been previously studied in primary human monocytes.

LncRNAs are associated with an enhancer-like chromatin state.
Previous studies have reported the presence of transcription at
active enhancers marked by H3k4me1 (ref. 18). While the poised/
active promoter-associated mark, H3k4me3, may also be present
at distal enhancer loci24, the ratio of H3k4me1/H3k4me3 is
commonly used as a discriminatory mark between enhancers and
promoters (reviewed in refs 14,17). To explore whether our
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differentially expressed lncRNAs represent transcription from
enhancer-like regions, we utilized recently available histone
modification ChIP-seq data from the ENCODE consortium.
We downloaded alignments for H3k4me1 and H3k4me3 ChIP-
seq data in CD14þ resting monocytes and assessed the read
coverage over intervals surrounding the transcription start site
(TSS, ±0.5 Kb) of differentially expressed lncRNAs. An
equivalent analysis using differentially expressed protein-coding
genes (n¼ 530) provided a comparison set. To eliminate
confounding influences of marks associated with protein-coding
genes on lncRNA marks, we removed lncRNAs that either
overlapped (that is, antisense) or shared a TSS interval (o2 Kb)
with protein-coding genes. This resulted in the subsequent
analysis of 132/221 lncRNAs (see Supplementary Table 4 online).
We hypothesized that a subset of our lncRNAs would display
canonical mRNA-like promoter histone signatures (H3K4me1/
H3K4me3 low) and a subset, representing enhancer RNAs
(eRNAs), would display enhancer-like signatures (H3K4me1/
H3K4me3 high). As expected, the majority of differentially
expressed protein-coding genes displayed punctate binding of
H3k4me3 around the TSS (Fig. 2a). In contrast, there was a
relatively weaker signal for this histone modification at lncRNA
TSS intervals, with only a small subset displaying a high
H3K4me3 density (Fig. 2b). There was a stronger H3k4me1
signal across intervals for lncRNAs than protein-coding genes,
with more dispersed binding around the TSS than for H3k4me3

(Fig. 2a,b). To investigate transcripts derived from enhancer
regions, we calculated the ratio of H3K4me1/H3K4me3. The
distribution of H3k4me1/H3k4me3 for protein-coding genes was
markedly different from that of lncRNAs (Fig. 2a,b). Protein-
coding genes predominantly displayed characteristic promoter
marks whereas a large proportion of the investigated lncRNAs
were associated with a dominant H3k4me1 histone mark
(Fig. 2a,b), suggestive of transcription occurring from enhancer
regions. Using an H3k4me1/H3k4me3 ratio of 41.2 and o0.8 to
define enhancer and promoter states, respectively, we were able to
show that 76 lncRNAs (58%) were putative eRNAs, 40 (30%) had
canonical promoter signatures and 16 (12%) could not be
assigned to either group, that is, 0.8oH3K4me1/H3K4me3o1.2)
(see Supplementary Table 4 online). Hereafter, we refer to those
RNA transcripts that have higher levels of H3K4me1 compared
with H3K4me3 as eRNAs, which differ from canonical lncRNAs
(can-ncRNAs), where the reverse is true (Fig. 2c).

Correlation in the expression of eRNAs and local protein-coding
genes. Transcription from enhancers has been linked with the
activity of nearby protein-coding loci. To investigate whether
monocytic eRNAs were regulated alongside protein-coding genes,
we assessed the correlation of fold changes between eRNAs and
can-lncRNAs with their closest expressed protein-coding gene
neighbours. Although our eRNAs were no closer in proximity to
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protein-coding genes than can-lncRNAs (Fig. 3a), the correlation
in fold change (LPS-stimulated versus unstimulated) between
eRNAs and their closest protein-coding gene neighbour was
stronger than that of can-lncRNAs (Fig. 3b, r¼ 0.52 and 0.24,
respectively). Of particular interest were eRNAs paired with
protein-coding genes known to have roles in the monocytic
inflammatory response. Such genes included PTGS2, IRF2
(Fig. 3b), ACSL1, MARCKS, IL6 (Fig. 3b), IL10RA, IL10RB and
interleukin 1b (IL-1b) (Fig. 3b) (see Supplementary Table 4
online).

Bidirectional transcription at promoter and enhancer regions.
Bidirectional expression of short transcripts has been described to
occur at promoters and distal enhancers in both human and
mouse cells15,18,25,26. We aimed to exploit the stranded nature of
our RNA-seq data in order to define non-coding regions of the
genome that were characterized by transcription from both
forward and reverse strands. To this end, we merged cufflinks
predicted single exon transcripts, regardless of strand, to produce
a set of multi-transcript loci. A set of high quality intervals were
obtained by only including those that were expressed at an
FPKM41 and had420 read counts in at least two samples. This
resulted in a set of 349 intervals. To address the presence of
regions of bidirectional transcription (RBT), we plotted the
distribution of the forward strand/reverse strand read count ratio
across these intervals. The distribution was tri-modal (Fig. 4a),
demonstrating that a proportion of intervals represent genomic
regions that are transcribed bi-directionally (log2(ratio)B0). This
was in contrast to protein-coding genes and can-lncRNAs/
eRNAs, whose distributions suggested the predominance of
transcription coming from one of either the forward or reverse
strand (Fig. 4a). In order to identify LPS-regulated RBT, we
assessed differential expression across 69 loci that had a forward
strand/reverse strand ratioo2 that is, bi-directionally transcribed.
Interestingly, none of these regions overlapped lncRNAs from
either the Gencode V13 or HumanBodyMap lncRNA catalogues,
suggesting that these are a novel set of transcriptional units.
Importantly, 35 (51%) RBT were differentially expressed on LPS
stimulation (FDRo0.05) (see Supplementary Table 5 online). To
characterize these loci further, we examined histone mark profiles
across each RBT interval (Fig. 4b). A proportion of these loci were
marked by high H3K4me3 compared with H3K4me1, which is
likely due to their close proximity to protein-coding gene
promoters. Indeed, when we removed mRNA-flanking RBTs
that are located within 2 Kb of a protein-coding gene TSS (n¼ 9),

we found that 26/26 could be classified as transcribed enhancers
(that is, H3K4me1/H3K4me341.2). The reason for bidirectional
transcription at these loci remains obscure. Nevertheless, we
observed a positive correlation between LPS-induced changes in
RBT expression and changes in expression of their neighbouring
protein-coding gene (Fig. 4c). As with our described
unidirectional eRNAs, we observed co-regulation of RBT and
important regulators of the immune response. For example,
TRAF1, IL37, CXCR4, IFNGR2 and CCRN4L (Supplementary
Table 5) all have upstream co-regulated RBT. Of particular
interest, we identified an mRNA-flanking RBT (IL1b�RBT46)
and another within an enhancer region (IL1b�RBT47) located
upstream of the important inflammatory mediator, IL1b.
Together with our analysis of multi-exonic eRNAs, these data
suggest that transcriptional regulation at this locus, and
potentially many more, may involve complex regulatory
networks that include transcription from both uni- and
bi-directionally transcribed enhancers.

LPS-induced lncRNAs are enriched for NFjB binding sites.
Given the importance of the inflammatory transcription factor
(TF) NF-kB in regulating the transcriptional response to infec-
tion, we were interested in identifying whether our differentially
expressed lncRNAs showed evidence for NF-kB binding. We used
the genomic association tester27 to assess the overlap of eRNA
and can-lncRNA promoters (±0.5 Kb around TSS) as well
as RBT intervals with TNFa-induced NF-kB binding in
lymphoblastoid cell lines. First, we established the overlap
between differentially expressed protein-coding promoters and
NF-kB. Protein-coding promoters were significantly enriched for
NF-kB binding (Table 1), validating the use of this cell type/
stimulation procedure for the analysis of lncRNAs. Consistent
with immune regulation of can-lncRNAs, we found a significant
enrichment for NF-kB binding (Table 1). However, there was no
significant overlap between eRNA promoters and NF-kB binding
sites (Table 1). To assess whether the difference in NF-kB binding
between can-lncRNAs and eRNAs was due to differences in
binding location, we also assessed NF-kB binding across gene
bodies (TSS-TTS). We found that both eRNAs and can-lncRNAs
were enriched for NF-kB binding across their gene bodies
(Table 1). We did not see a significant overlap between RBT
intervals and NF-kB binding sites, although this may be due
to low numbers in this group. Significantly, where we have shown
uni- and bidirectional non-coding transcription at the IL1b
locus, we also observed coincident NF-kB binding (Fig. 4d).
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This evidence suggests that eRNAs are either regulated by NF-kB
themselves, or that they are transcribed from regions that contain
NF-kB binding sites important for regulating the expression of
nearby mRNA.

Characterization of IL1b eRNA and IL1b RBT46 expression.
Having shown widespread changes in the expression of eRNAs,
can-lncRNAs and RBTs following LPS stimulation, we wanted
to examine whether these regulated the inflammatory response.
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differentially expressed RBT. RBT distally located from protein-coding genes display enhancer chromatin signatures. (c) Scatterplot displaying the

relationship between the fold changes observed (log2) for RBT and fold changes (log2) for their nearest downstream protein-coding gene. Solid line

indicates no change and dashed lines indicate fold changes42. (d) In addition to a uni#directional eRNA downstream of IL1b, 2 upstream RBT are regulated

by LPS and have evidence for NF-kB binding (lower panel).

Table 1 | Association of protein-coding genes can-lncRNAs and eRNAs with NFkB binding.

Gene set Observed Expected Fold Enrichment P-value Q-value

Protein coding 88,011 66,412.75 2.83 1� 10-4 1.6� 10-4
can-lncRNA 11,482 2,764.43 4.15 1� 10-4 8� 10-4
eRNA 7,090 5,076.86 1.40 0.16 0.21
can-lncRNA (gene body) 42,150 6,854.14 6.15 1� 10-4 3.4� 10-4
eRNA (gene body) 39,645 6,260.16 6.33 1� 10-4 3.4� 10-4

Empirical P-values for associations of the respective gene sets with NF-kB binding intervals were calculated using 10,000 randomizations in a simulation procedure implemented using the Genomic
Association Tester (GAT). GAT derived Q-values, used to control for the number of gene sets analysed, are also provided.
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To this end, we focused upon the production and release of IL1b
as a marker of monocyte activation, since this is the second most
highly expressed mediator in response to LPS (Supplementary
Table 1) and is an important driver of the inflammation as-
sociated with the innate immune response28. This cytokine is also
situated in a region that we have shown to display high
transcriptional complexity—it has a downstream eRNA (IL1b-
eRNA) and an upstream mRNA-flanking RBT (IL1b-RBT46)
(Fig. 4d). Given the difficulty in transfecting primary human
monocytes, these studies were performed in the monocytic
THP-1 cell line. For clarity, we have only included the data for the

þ ve strand of RBT46, since the results with –ve strand were
identical. Measurement of the time course showed rapid LPS
induction in IL1b-eRNA (Fig. 5a) and IL1b-RBT46(þ ) (Fig. 5b)
expression that peaked at B2 h and B6 h, respectively. This
correlated with that of IL1b mRNA production as well as the
generation of two additional, highly expressed inflammatory
mediators, CXCL8 and IL6 (Fig. 5c). As might be expected,
mRNA production preceded the extracellular release of IL1b,
CXCL8 and IL6 protein (Fig. 5d). Since our studies have focused
upon LPS stimulation via TLR4, we also examined the profile of
IL1b-eRNA and IL1b-RBT46(þ ) expression in response to a
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Figure 5 | Characterisation of LPS-induced lncRNA and mRNA expression. Following exposure of human monocytic THP-1 cells to buffer or 1 mg ml� 1

LPS, we measured the time course of expression of (a) IL1b-eRNA, (b) IL1b-RBT46(þ ), (c) IL1b mRNA, CXCL8 mRNA and IL6 mRNA and (d) release of

IL1b, CXCL8 and IL6 protein. Subsequent studies determine the expression of IL1b-eRNA, IL1b-RBT46(þ ), IL1b mRNA, CXCL8 mRNA and IL6 mRNA

following 2-sh exposure to a range of inflammatory agonists (e). Data are the mean±s.e.m. of three independent experiments. Statistical significance was

determined using a one-way analysis of variance with a Dunnett’s post test versus untreated control, where *Po0.05, **Po0.01 and ***Po0.001.
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range of alternative inflammatory mediators including IL1b and
other TLR agonists. These studies showed that IL1b, CXCL8 and
IL6 mRNA expression at 2 h was only induced in response to
LPS (via TLR4) and FSL-1 (via TLR-2/6), with a small but
non-significant increase following exposure to Pam3CSK4 (via
TLR-1/2) and HKLM (via TLR-2) (Fig. 5e). In the case of IL6
mRNA expression, this early time point meant that the changes
were not significant. This selective response is likely to reflect the
profile of receptor expression on the monocytic THP-1 cell line.
As might be expected if their activation was mediated via similar
intracellular pathways, we found that the induction of
IL1b� eRNA and IL1b�RBT46(þ ) mirrored that of IL1b
(Fig. 5e)

Having predicted the presence of NF-kB binding sites at the
genomic locations of IL1b-eRNA and IL1b-RBT46, we proceeded
to measure NF-kB binding by ChIP in combination with

qRT–PCR, using an antibody to the p65 RelA DNA binding
subunit. These studies showed a 3.2- and 4.3-fold enrichment in
NF-kB binding (relative to non-treated controls) within the
promoter regions of IL1b-eRNA and IL1b-RBT46(þ ) following
exposure to LPS, respectively (Fig. 6a). This was comparable with
the 3.7-fold enrichment seen within the promoter region of the
NF-kB regulated chemokine, CXCL8. As predicted by the existing
ChIP-seq data in ENCODE, the promoter region of IL1b did
not demonstrate NF-kB binding as measured by ChIP–qPCR
(Fig. 6a). To confirm the ChIP–qPCR data, we examined the
action of TPCA-1, an inhibitor of IkB kinase 2 that is an
upstream activator of NF-kB29. TPCA-1 attenuated the LPS-
induced production of IL1b-eRNA, IL1b-RBT46(þ ) and CXCL8
with an IC50 of 1.0 mM, 0.9 mM and 1.3 mM, respectively (Fig. 6b).
TPCA-1-mediated inhibition of NF-kB binding was confirmed
using ChIP–qPCR (Fig. 6a). Interestingly, despite the absence of
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NF-kB binding, TPCA-1 attenuated IL1b production, giving an
IC50 of, 0.7 mM (Fig. 6b) and suggests that IL1b production might
be indirectly regulated through expression IL1b-eRNA and
IL1b-RBT46(þ ).

Much of the previous functional analysis of lncRNAs and
eRNAs has suggested that these operate within the nucleus to
regulate the transcription of protein-coding mRNAs12,30. We
therefore determined the subcellular localization of IL1b-eRNA
and IL1b-RBT46(þ ). We assessed the effectiveness of our
separation procedure by using MALAT1 lncRNA as a nuclear
marker and the mitochondrial cytochrome c oxidase 1 (MT-CO1)
as a cytoplasmic marker. Figure 6c demonstrates successful
subcellular fractionation, with MALAT1 predominantly
associated with the nucleus and MT-CO1 located in the
cytoplasmic fraction. There was no significant change in the
expression of these markers following exposure to LPS.
Interestingly, both IL1b-eRNA and IL1b-RBT46(þ ) were
predominantly localized in the nucleus of both unstimulated
and LPS-stimulated cells (Fig. 6c). These data show that LPS-
induced IL1b-eRNA and IL1b-RBT46(þ ) expression follows a
similar time course to that of IL1b, is dependent on the activation
of the inflammatory transcription factor NF-kB and if functional,
are acting in the nucleus to regulate gene transcription.

IL1b eRNA and IL1b RBT46 regulate IL1b expression. Given
their genomic position (Fig. 4d) and nuclear localization (Fig. 6c),
we speculated that IL1b-eRNA and IL1b-RBT46 might regulate
the transcription of IL1b. To examine this hypothesis, we
designed a panel of five locked nucleic acid (LNA)-based anti-
sense inhibitors against IL1b-eRNA and IL1b-RBT46(þ ) and
transfected them into the monocytic THP-1 cells. Following LPS
stimulation, we found that in the case of both IL1b-eRNA and
IL1b-RBT46(þ ), only one (of the five) attenuated lncRNA pro-
duction (Fig. 7a). However, these LNA antisense inhibitors, but
not two negative controls, reduced LPS-induced IL1b-eRNA and
IL1b-RBT46(þ ) generation by 85±9% and 53±9%, respectively
(Fig. 7a). Of relevance, we also failed to attenuate LPS-induced
IL1b-eRNA production using a panel of four siRNAs
(Supplementary Fig. 4a) despite showing a 64±4% reduction in
LPS-induced IL6 mRNA production using a positive control
siRNA (Supplementary Fig. S4b). In contrast, we were able to
show knockdown using all five LNA antisense inhibitors targeted
against the constitutively expressed lncRNA, OIP5-mf-lncRNA
(Supplementary Fig. S4c). These studies suggested that unlike
previous reports that have successfully employed both LNA
antisense and siRNA for the knockout of constitutively expressed
lncRNAs and eRNAs31–33, this approach is more problematic
when applied to lncRNAs that are located within the nucleus and
rapidly induced upon exposure to LPS.

Despite these limitations, we demonstrated that knockdown of
IL1b-eRNA and IL1b-RBT46(þ ) attenuated LPS-induced IL1b
mRNA expression and protein release at 24 h (Fig. 7b/c). Thus,
we observed a 40 and 35% reduction in IL1b mRNA (Fig. 7b) and
a 66 and 67% reduction in IL1b protein release (Fig. 7c) following
inhibition of IL1b-eRNA and IL1b-RBT46(þ ), respectively
(Fig. 7c). The effect of IL1b-eRNA and IL1b-RBT46(þ ) knock-
down did not appear to be non-specific since this had no effect
upon LPS-induced expression of IL1a and IL1RN (Fig. 7d), that
are located in the same genomic region or upon expression of the
distally located IL6 (Fig. 7c). Significantly, we showed a 47 and
52% reduction in CXCL8 mRNA (Fig. 7b) that translated into a
small but significant reduction of 35 and 33% in CXCL8 protein
release (Fig. 7c) following inhibition of IL1b-eRNA and IL1b-
RBT46(þ ), respectively (Fig. 7c). Overall, this indicates that these
LPS-induced IL1b-eRNA and IL1b-RBT46(þ ) regulate mRNA

expression and downstream release of IL1b and CXCL8 following
activation of the innate immune response.

Discussion
To further our knowledge on the potential role of lncRNAs
during the activation of the innate immune response, we have
used RNA sequencing of ribosomal RNA (rRNA)-depleted,
stranded RNA libraries to study the human monocytic response
to LPS stimulation. We identified 2,607 lncRNAs using an ab
initio transcript assembly. Interestingly, our data support the
notion that lncRNA expression is tissue-restricted34 as we observe
1318 lncRNAs that have not been previously identified in
GENCODE8 or the HumanBodyMap7. In addition to these
multi-exonic lncRNAs, we uncovered a set of novel bi-
directionally transcribed genomic loci (RBT, n¼ 69), a feature
of our data that was made possible through stranded RNA
sequencing.

Previous studies have shown that exposure to LPS induces
changes in multiple miRNAs that regulate the innate immune
response through targeting the translation of key signalling
proteins10,35. Significantly, we found 221 lncRNAs and 35 RBTs
to be differentially expressed in response to LPS and thus may be
important in monocyte activation. Examination of the position
and homology between these lncRNAs and those previous
identified in mouse bone marrow-derived dendritic cells6

showed virtually no overlap between humans and mice, which
is consistent with rapid transcriptional turnover across species23.
Furthermore, this implies that we must be cautious when
extrapolating functional and mechanistic observations between
species. As an example, a BLAST search failed to identify the
presence in the human genome of the mouse lincRNA-Cox2 that
has been reported to regulate the inflammatory response in
mouse bone marrow-derived macrophages20.

Recent investigations in mouse macrophages have indicated
that many monocyte lncRNAs are transcribed from enhancer
regions14,15,36. In support of this observation, we found that
many of the monocyte expressed lncRNAs (58%) are transcribed
from regions of the genome that are marked by a high H3K4me1/
H3K4me3 ratio, a marker of the existence of enhancer
transcription (eRNAs)37. In addition, we found that changes in
expression of these eRNAs correlated with those of neighbouring
protein-coding mRNAs. Mechanistically, this would imply that
these eRNAs might act in cis to regulate the expression of their
most proximal coding gene, which is consistent with previous
data in mouse macrophages15.

Bidirectional transcription has been shown to be a defining
feature of a subset of active enhancers in mouse cortical neurons
and human fetal lung fibroblasts18,38. These non-polyadenylated
transcripts are regulated by neuronal activity, a feature that
is correlated with activity regulation of their neighbouring
protein-coding gene18. We have shown for the first time, the
phenomenon of stimulus-dependent bidirectional transcription
from both enhancer and promoter regions of activated human
monocytes.

There is now accumulating evidence that lncRNAs regulate
mRNA expression at the level of transcription and transla-
tion12,39. Similarly, recent reports have indicated that eRNAs
regulate in cis local mRNA expression in multiple cell types31,40

including mouse macrophages32. Having established that LPS
induced widespread changes in the expression of lncRNAs
and eRNAs in human monocytes that were located close to
differentially expressed inflammatory genes, it was important
to determine whether these were of functional relevance. Of
particular interest for regulation of the innate immune response,
was our identification of multiple non-coding transcripts that are

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4979 ARTICLE

NATURE COMMUNICATIONS | 5:3979 | DOI: 10.1038/ncomms4979 | www.nature.com/naturecommunications 9

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


situated close to the IL1b gene, an important cytokine that
stimulates inflammatory responses in multiple cell types and
whose overproduction has been implicated in autoimmune
diseases28,41. These included a downstream eRNA (eRNA-IL1b)
and an upstream mRNA-flanking RBT (IL1b-RBT46).
Significantly, we demonstrated that expression of both
IL1b-eRNA and IL1b-RBT46 was mediated by the classical
proinflammatory transcription factor, NF-kB while knockdown
of the IL1b-eRNA and IL1b-RBT46 was shown to attenuate LPS-
induced IL1b transcription and protein release. This therefore
implies that expression of these lncRNAs regulates the release of
this inflammatory mediator and given the genomic position,

it might be speculated that they regulate IL1b transcription in cis.
However, IL1b-eRNA and IL1b-RBT46 also appear to act in trans
since their knockdown inhibited the transcription and release of
CXCL8, albeit to a lesser extent. It is unlikely that this effect was
via a non-specific action of the LNA inhibitors since we observed
no effect upon LPS-induced expression of IL6, IL1a and IL1RN.
Nevertheless, we cannot rule out the possibility that the effect of
CXCL8 is secondary to the inhibition of IL1b, although this is
also unlikely as CXCL8 release precedes that of IL1b (Fig. 5d).

In conclusion, we have shown for the first time that LPS
stimulation of primary human monocytes causes widespread
changes in lncRNA expression. Crucially, we have shown that the
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Figure 7 | IL1b-eRNA and IL1b-RBT46(þ ) regulate LPS-induced IL1b and CXCL8 expression and release. Human monocytic THP-1 cells were

transfected with two negative control LNA or an LNA antisense against either IL1b-eRNA or the mRNA-flanking RBT (IL1b-RBT46(þ )) at a final

concentration of 30 nM. Cells were then treated with either buffer (non-stimulated) or LPS prior to quantification of (a) IL1b-eRNA1 and IL1b-RBT46(þ )

expression at 2 h (b) IL1b mRNA, CXCL8 mRNA and IL6 mRNA at 24 h, (c) IL1b, CXCL8 and IL6 protein release at 24 h and (d) IL1a mRNA and

IL1RN mRNA at 24 h. Data are the mean±s.e.m. of nine independent experiments. Statistical significance was determined using a one-way analysis of

variance with a Dunnett’s post test, where *Po0.05, **Po0.01 and ***Po0.001.
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nuclear-located transcripts, IL1b-eRNA and IL1b-RBT46(þ )
regulate the transcription and release of the key proinflammatory
cytokines, IL1b and CXCL8 although the mechanism is currently
unknown. As with miRNAs, we speculate many of these eRNAs
and lncRNAs are important regulators of the innate immune
response and future studies will need to focus upon the
identification of those that are functionally relevant and the
elucidation of their mechanism of action.

Methods
Treatment of human primary monocytes. All human volunteers gave informed
written consent as approved by the London–Chelsea NRES ethics committee.
Human blood (60 ml) was collected into tubes containing 2% (w/v) EDTA and red
blood cells removed by dextran sedimentation. The leukocyte-rich layer was
centrifuged at 400 g for 10 min at 4 �C, and the granulocytes were separated from
the peripheral blood mononuclear cells (PBMC) fraction using discontinuous
Percoll gradients. Percoll fractions of 81, 68 and 55% (v/v) in Dulbecco’s
phosphate-buffered saline were prepared and the cell pellet from above was
resuspended in 3 ml of 55% (v/v) Percoll and then overlaid onto the pre-prepared
gradient. The cells were then separated according to density by centrifugation at
750 g for 25 min at 4 �C. The PBMC were harvested from the 55%/68% interface
and then washed with Dulbecco’s phosphate-buffered saline. Monocytes were then
isolated from the PBMC fraction using a Miltenyi Monocyte Isolation Kit II
according to manufacturer’s instructions. Monocytes were centrifuged and
resuspended in RPMI 1640 containing 10% (v/v) fetal calf serum, 10 mg ml� 1

(1% (v/v)) penicillin/streptomycin, 2 mM L-glutamine at 1� 106 cells ml� 1 and
incubated for the times indicated in the absence or presence of 10 ng ml� 1 LPS42.
Experimental samples were treated with 10 ng ml� 1 LPS for the indicated time and
the controls were left untreated (n¼ 4 per group). The media was then removed for
measurement of CXCL8 and TNFa by ELISA (R&D Systems) and the cells lysed
prior to RNA extraction.

Culture of human THP-1 cells. Monocytic THP-1 cells were obtained from
ATCC and cultured in RPMI 1640, supplemented with 10% (v/v) FBS, 1% (w/v)
L-glutamine, 1% (w/v) Pen-Strep and 0.1% (v/v) b-mercaptoethanol (Invitrogen
Gibco) and incubated in a 37 �C, 5% (v/v) CO2 humidified incubator. For the time
courses, THP-1 cells were stimulated with 1 mg ml� 1 LPS (Escherichia coli 055:B5,
Sigma-Aldrich) for the indicated period of time (n¼ 3 per group per time point).
For all other experiments, THP-1 cells were stimulated with LPS at 1 mg ml� 1 for
the length of time indicated.

Stimulation of THP-1 with TLR agonists. THP-1 cells were treated with the
following TLR agonists from InvivoGen for 2 h (n¼ 3 per group) at the con-
centrations listed; PAM3CSK4 (100 ng ml� 1), HKLM (108 cells ml� 1), Poly(I:C)
(10 mg ml� 1), Poly(I:C) LMW (10 mg ml� 1), Flagellin (100 ng ml� 1), FSL-1
(100 ng ml� 1), Imiquimod (5 mg ml� 1), ssRNA40 (1 mg ml� 1) and ODN2006
(2mM). THP-1 cells were also treated with buffer as a control, LPS (1 mg ml� 1,
E. coli 055:B5, Sigma-Aldrich) and IL-1b (10 ng ml� 1, recombinant, E. coli,
Sigma-Aldrich).

RNA isolation. Total RNA was extracted using the Qiagen RNeasy kit and
included an on-column DNase treatment. RNA used was of high quality
(Agilent Bioanalyser (RIN49.5)).

RNA library preparation and sequencing. rRNA was depleted using an
early-access version of the Ribo-Zero Gold (human/mouse) rRNA Removal Kit
(Epicentre). Strand-specific Illumina GA-IIx cDNA libraries were prepared using
an early-access version of the ScriptSeq v2 library preparation kit (Epicentre). Two
hundred cycles of sequencing on the Illumina GA-IIx instrument were performed
to generate 2� 100 bp paired-end sequencing reads.

Quality control of RNA sequencing. Quality scores across sequenced reads
were assessed using FASTQC v0.9.2 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). All samples were of high quality. The average score (mean and
median) at each base across reads in each sample was Q428.

Alignment and transcript assembly. Reads were mapped to the human reference
genome (Hg19) using ToHat v1.4.0 (ref. 43). TopHat first maps to the
transcriptome that was supplied as an additional input file. Along with TopHat
discovering known splice junctions, a set of known protein-coding junctions
(Ensembl 66) were supplied. The following options were used for mapping reads:

--mate-inner-dist 60 --num-threads 4 --library-type
fr-secondstrand raw-juncs ojunctions_file4
--transcriptome index otranscriptome index4 -n 2

An average of 44.6M reads were mapped (range 40.86–50.82) corresponding to
an average of 73.18% (range 69.90–76.05%). Consistent with successful ribosomal
RNA (rRNA) depletion, an average of 4.72% (range 1.93–7.32%) of reads mapped
to rRNA.

Transcripts were assembled for each sample ab initio using Cufflinks v1.3.0
(ref. 1) with the following parameterization:

--upper-quartile-norm --min-frags-per-transfrag 1
--pre-mrna-fraction 0.5 --junc-alpha 0.001 --overlap-
radius 100

Assemblies between samples were compared using Cuffcompare, and
transcripts that were present in at least two samples were retained for downstream
analysis.

Prediction of lncRNAs using RNA sequencing data. We utilized the ab initio
assembly output from Cufflinks/Cuffcompare in conjunction with the latest human
lncRNA annotations (GENCODE v13 and the HumanBodyMap7 to classify
transcripts as putative lncRNAs. The outline of the lncRNA prediction pipeline is
provided in Fig. 1a. First we removed any transfrags that overlapped (Z1 bp on the
same strand) transcripts annotated by Ensembl (build 66) as ‘protein_coding’,
‘processed_pseudogene’, ‘unprocessed_pseudogene’, ‘nonsense_mediated_decay’ or
‘retained_intron’. We also filtered any transcripts that overlapped RefSeq annotated
coding (CDS) intervals. Next we employed size selection, retaining transfrags that
were 4200 bp in length and multi-exonic. We then merged our monocyte-derived
lncRNA set with the GENCODE v13 and the HumanBodyMap7 sets, producing a
non-redundant set of lncRNAs.

Assessment of coding potential. We used the coding potential calculator
(CPC version 0.9-r2)44 to assess the coding potential of discovered lncRNAs.

Abundance estimation and differential expression analysis. For correlation
analyses, RNA abundance defined as the FPKM was estimated using Cuffdiff
V2.0.2. Differential expression analysis was performed using the negative binomial
distribution-based method implemented in DESeq45 on the summed exon read
count per gene. Genes were assessed for differential expression if they had an
FPKM41 in either LPS or unstimulated condition (average across replicates).
Genes annotated as ‘protein_coding’ in Ensembl (build 66) were used for analysis
of protein-coding genes. Multiple testing corrections were performed on a total of
1,065 lncRNAs and 15020 protein-coding genes using the Q-value method46.

Profiles of monocyte histone marks across lncRNAs. Aligned ChIP-seq data for
H3K4me3 and H3K4me1 histone modifications in resting CD14þ monocytes
were downloaded from UCSC ENCODE (http://hgdownload.cse.ucsc.edu/gold-
enPath/hg19/ENCODEDCC/wgEncodeBroadHistone/). Two replicate alignment
files for each histone mark were merged using samtools (http://samtools.source-
forge.net/) and profiles were assessed by counting alignments across windows
surrounding the transcription start sites of differentially expressed lncRNAs and
protein-coding genes (� 0.5 to 0.5 Kb) using custom python scripts and BEDTools
(code.google.com/p/bedtools/). Heatmaps of the profiles were produced using the
heatmap2 (gplots) function in R.

Analysis of bi-directional transcription. Monoexonic lncRNAs were obtained
from our initial cufflinks assembly. Overlapping predictions were merged using
BEDTools. This set was filtered, retaining loci that were expressed at an FPKM41
and were present in at least 2/8 samples with420 uniquely mapping reads. Bi-
directional transcription was assessed by counting the number of reads mapping to
the forward and reverse strands. The forward/reverse ratio was used to determine
the presence of bi-directional transcription that is, a ratio of 1 would indicate a
50/50 split between sense and antisense transcription. An interval with a ratio of
less than twofold was considered bi-directionally transcribed. Differential expres-
sion was performed on these loci using DESeq and loci were called differentially
expressed at an FDRo0.05.

Association of lncRNA loci with NFjB binding sites. NFkB ChIP-seq data
(peaks) in TNFa-stimulated lymphoblastoid cell lines were downloaded from
UCSC ENCODE (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/EncodeDCC/
wgEncodeHaibTfbs/). These data were chosen as the most representative set of
TLR4-induced NFkB binding sites currently available. Binding sites across 10
replicates were merged using BEDTools. Intervals were retained for analysis if they
were present (overlapped at least 1 bp with the merged interval) in at least two of
the replicate samples. Using lncRNA promoters (defined as a 1 Kb window around
the TSS) we assessed the overlap between differentially expressed lncRNAs and
NF-kB binding sites. After removing lncRNAs that shared a promoter with
protein-coding genes (within 2 Kb of TSS region), we calculated the statistical
significance of the overlap using the Genomic Association Tester27. Specifically, the
base overlap between differentially expressed lncRNA promoters (query set) and
NF-kB binding sites was tested against the base overlap between all lncRNA
promoters (reference set) from Ensembl annotations, the HumanBodyMap and
novel lncRNAs that were expressed in our monocyte samples (average FPKM41
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in either LPS- or unstimulated cells). The expected overlap was computed by
randomizing the locations of the query set of intervals among the reference set
intervals. From 10,000 randomizations, the procedure computed the expected
overlap and an empirical P-value. The reported fold enrichment is the ratio of the
observed overlap and the expected overlap.

Microarray preparation and data analysis. Microarray data were used for
validation of differentially expressed protein-coding genes from the RNA-seq
analysis. mRNA expression profile was determined using the Agilent SurePrint G3
Human microarrays (v2) following the manufacturer’s instructions. Two channel
microarray data were analysed using LIMMA in R-2.14.1. Raw data were processed
using Agilent Feature Extraction Software and probes were retained for analysis if
they were flagged as being ‘well above background’, ‘not a control probe’ and ‘not
saturated’ in at least three arrays. Background correction, within-array robust-
spline normalization and between-array quantile normalization were performed
using functions in LIMMA. A total of 18,739 probes corresponding to 15,937 genes
were analysed for differential expression using the empirical Bayes procedure
implemented in LIMMA. Genes were called differentially expressed at an
FDRo0.05 and fold change42.

Quantitative PCR validation of lncRNA differential expression. Eighteen
lncRNAs and eRNAs were chosen for validation (n¼ 4 per group). Expression of
lncRNAs, eRNAs and 18S RNA were determined by qRT–PCR using the SYBR
Green PCR mix (Applied Biosystems; primers were obtained from Sigma-Aldrich
and are listed in Supplementary Table 6). The separate well, 2� (DDCt) method
was used to determine relative quantities of individual mRNAs and lncRNAs,
which were normalized to 18S RNA.

Nuclear and cytoplasmic RNA fractionation. THP-1 cells were stimulated with
LPS at 1 mg ml� 1 for the length of time indicated. The cells were centrifuged and
then split into two equal fractions. Total RNA was extracted from one fraction
using the normal Qiagen RNeasy protocol while the other fraction was treated with
RLN buffer on ice for 5 min, in order to lyse the plasma membrane while leaving
the nuclei intact. The nuclei were then isolated by centrifugation at 300 g in a
pre-chilled centrifuge. RNA was then extracted from the nuclear and cytoplasm
fractions using the normal Qiagen RNeasy protocol. In order to quantify gene
expression within the different fractions by qRT–PCR, the 18S values from the total
RNA fraction were used to normalize gene expression across all of the fractions.

Transfection of THP-1 cells with LNA GAPmers. To transfect with LNA
GAPmers, THP-1 cells were seeded at 5� 105 cells per well in 24 well plates, in
200ml of complete growth medium. Transfection mixes were prepared using 190 ml
of serum-free growth medium, 10 ml of HiPerFect (Qiagen) plus LNA GAPmers to
give a final concentration of 30 nM. Cells were subsequently incubated for 16 h,
diluted with 800ml of complete growth medium and stimulated with LPS. Cells
were removed at 2 h and 24 h with the supernatants reserved for analysis of
cytokine release. LNA and siRNA sequences are listed in Supplementary Table 7.

Chromatin immunoprecipitation. ChIP was performed according to the
manufacturer’s guidelines (Active Motif; 53040). In brief, 3� 107 THP-1 cells were
stimulated or not with LPS (1 mg ml� 1) for 60 min. Whole cells were cross-linked
with a 1% formaldehyde solution for 15 min at room temperature. Cells were
sonicated (Branson Sonifier 250) for two cycles (output: 1, duty cycles: 20%, time:
30 s on 30 s off). DNA concentrations were quantified, and 10 mg of chromatin
DNA was used for each ChIP reaction. ChIP assays were performed with 4 mg
of antibody (NFkB p65, C-20, Santa Cruz) and incubated overnight at 4 �C,
precipitated with agarose beads (supplied) and washed. Bead-bound DNA was
reverse cross-linked and purified with DNA Purification columns (supplied).
Samples were then analysed by qPCR using the probes listed in Supplementary
Table S6.
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