
 

 

 
Canine echinococcosis in 

Kyrgyzstan: detection, 
diagnosis, and dynamics. 

 

“Multa novit canis, verum echinus unum magnum” 

Alexander James Mastin 

Submitted in partial fulfilment of the requirements 

of the degree of Doctor of Philosophy, 5th May 2015 

 

University of Salford, 

School of Environment and Life Sciences 
 

 



 

 

Contents 
Acknowledgements and declaration ...................................................................................... i 

Acknowledgements .......................................................................................................................... ii 

Declaration ....................................................................................................................................... iv 

Abstract ..................................................................................................................................... v 

Chapter 1: Introduction and Literature Review .................................................................... 1 

1.1 Introduction .................................................................................................................................. 2 

1.2 Echinococcus biology .................................................................................................................. 5 

1.2.1 Basic  lifecycle ........................................................................................................................ 5 

1.2.2 Species and strains of Echinococcus ................................................................................... 7 

1.2.3 Biological parameters ......................................................................................................... 10 

1.3 Echinococcosis ........................................................................................................................... 10 

1.3.1 Human infection .................................................................................................................. 10 

1.3.2 Detection of echinococcosis .............................................................................................. 12 

1.3.3 Risk factors for canine infection ........................................................................................ 21 

1.4 Echinococcus control ................................................................................................................ 22 

1.4.1 Methods of control .............................................................................................................. 22 

1.4.2 Economics of control ......................................................................................................... 24 

1.5 Echinococcus ecology ................................................................................................................ 25 

1.5.1 Overdispersion ..................................................................................................................... 25 

1.5.2 Spatial overdispersion ........................................................................................................ 28 

1.5.3 Echinococcus in definitive hosts ....................................................................................... 30 

1.5.4 Echinococcus in intermediate hosts ................................................................................. 31 

1.5.5 Spatial factors associated with echinococcosis ................................................................ 32 

1.6 Mathematical modelling of Echinococcus .............................................................................. 34 

1.6.1 Modelling macroparasites .................................................................................................. 34 

1.6.2 Modelling overdispersion .................................................................................................. 36 

1.6.3 The Reproduction Ratio ..................................................................................................... 38 

1.6.4 Models of Echinococcus granulosus ................................................................................. 39 

1.6.5 Models of Echinococcus multilocularis ............................................................................ 44 

1.6.6 Modelling coinfection ........................................................................................................ 49 

1.6.7 Modelling control measures .............................................................................................. 50 

1.6.8 Complexity, self-organised criticality and fractal analysis............................................. 50 



 

 

1.7 Kyrgyzstan .................................................................................................................................. 53 

1.7.1 Background .......................................................................................................................... 53 

1.7.2 Echinococcosis in Kyrgyzstan ........................................................................................... 55 

1.8 Aims of current study ............................................................................................................... 56 

1.8.1 Study setting ........................................................................................................................ 56 

1.8.2 Study aims ........................................................................................................................... 57 

1.8.3 Chapter description ............................................................................................................ 58 

Chapter 2: Research Methodology ....................................................................................... 60 

2.1 Kyrgyz study sites ...................................................................................................................... 61 

2.2 Kyrgyz sample collection ......................................................................................................... 63 

2.3 Chinese samples ........................................................................................................................ 67 

2.4 Sample testing ........................................................................................................................... 67 

2.5 Data processing ......................................................................................................................... 69 

Chapter 3: Methods of classification of Echinococcus coproantigen ELISA data. .......... 70 

3.1 Introduction ............................................................................................................................... 71 

3.1.1 Echinococcosis ..................................................................................................................... 71 

3.1.2 Diagnostic testing ............................................................................................................... 71 

3.1.3 Gaussian distribution cut-off ............................................................................................. 73 

3.1.4 ROC curves .......................................................................................................................... 74 

3.1.5 Mixture models ................................................................................................................... 75 

3.1.6 Aims and objectives ............................................................................................................ 78 

3.2 Materials and Methods ............................................................................................................. 78 

3.2.1 Samples ................................................................................................................................ 78 

3.2.2 Cut-off determination ........................................................................................................ 79 

3.3 Results ........................................................................................................................................ 81 

3.4 Discussion .................................................................................................................................. 89 

3.4.1 Gaussian approaches .......................................................................................................... 89 

3.4.2 ROC curves ......................................................................................................................... 91 

3.4.3 Selection of negative and positive panels ........................................................................ 92 

3.4.4 Mixture modelling ............................................................................................................. 95 

3.4.5 Application to field data .................................................................................................... 97 

3.4.6 Limits of detection ............................................................................................................. 98 

3.4.7 Coinfections ........................................................................................................................ 99 



 

 

3.5 Conclusions ................................................................................................................................ 99 

Chapter 4: Development of a Bayesian mixture model to enhance interpretation of 

coproantigen ELISA data. .................................................................................................... 101 

4.1 Introduction ............................................................................................................................. 102 

4.1.1 Diagnosis of echinococcosis ............................................................................................. 102 

4.1.2 Issues with dichotomisation ............................................................................................ 102 

4.1.3 Finite mixture models ...................................................................................................... 105 

4.1.4 Polya trees ......................................................................................................................... 106 

4.2 Materials and Methods .......................................................................................................... 107 

4.3 Results ...................................................................................................................................... 111 

4.4 Discussion................................................................................................................................ 117 

4.4.1 Population level interpretation ....................................................................................... 118 

4.4.2 Individual level interpretation ....................................................................................... 119 

4.4.3 Overdispersion ................................................................................................................. 121 

4.4.4 Model limitations ............................................................................................................ 122 

4.5 Conclusions ............................................................................................................................. 124 

Chapter 5: Use of multiple correspondence analysis to classify dog ownership and 

potential risk factors for canine echinococcosis .............................................................. 126 

5.1 Introduction ............................................................................................................................. 127 

5.1.1 Echinococcosis in Kyrgyzstan .......................................................................................... 127 

5.1.2 Surveillance prior to control ............................................................................................ 127 

5.1.3 Multiple correspondence analysis ................................................................................... 129 

5.2 Materials and methods ........................................................................................................... 131 

5.2.1 Samples .............................................................................................................................. 131 

5.2.2 Data processing ................................................................................................................ 132 

5.2.3 MCA model ....................................................................................................................... 135 

5.3 Results ...................................................................................................................................... 136 

5.4 Discussion ................................................................................................................................ 149 

5.4.1 Comparison of prevalences ............................................................................................. 150 

5.4.2 Interpretation of dimensions .......................................................................................... 150 

5.4.3 Investigation of associations with supplementary variables ....................................... 151 

5.4.4 Diagnostic test interpretation ........................................................................................ 156 

5.4.5 Individual cloud interpretation ...................................................................................... 158 

5.4.6 Caveats .............................................................................................................................. 159 



 

 

5.5 Conclusions ............................................................................................................................. 160 

Chapter 6: Temporal dynamics of canine echinococcosis in southern Kyrgyzstan 

during a praziquantel dosing scheme. .............................................................................. 162 

6.1 Introduction ............................................................................................................................. 163 

6.1.1 Echinococcosis................................................................................................................... 163 

6.1.2 Control and surveillance .................................................................................................. 163 

6.1.3 Regression modelling ....................................................................................................... 165 

6.1.4 Model development and selection ................................................................................. 167 

6.1.5 Assessing model fit ........................................................................................................... 170 

6.1.6 Study aims ......................................................................................................................... 172 

6.2 Materials and methods ........................................................................................................... 172 

6.2.1 Data analysis ..................................................................................................................... 172 

6.2.1 Data exploration and processing .................................................................................... 174 

6.2.2 Model development ......................................................................................................... 175 

6.3 Results ...................................................................................................................................... 181 

6.3.1 Data description ................................................................................................................. 181 

6.3.2 Model checking .................................................................................................................. 189 

6.3.3 Models generated .............................................................................................................. 190 

6.3.4 Model output ..................................................................................................................... 194 

6.3.5 Model predictions .............................................................................................................. 202 

6.4 Discussion ............................................................................................................................... 207 

6.4.1 Quantifying infection status ........................................................................................... 208 

6.4.2 Model development ......................................................................................................... 210 

6.4.3 Temporal trends ............................................................................................................... 213 

6.4.4 Seasonal trends ................................................................................................................ 215 

6.4.5 Effect of praziquantel dosing .......................................................................................... 218 

6.4.6 Other identified risk factors ........................................................................................... 219 

6.4.7 Further development....................................................................................................... 221 

6.5 Conclusions ............................................................................................................................... 223 

Chapter 7: A mathematical modelling framework for the investigation of 

Echinococcus granulosus and Echinococcus multilocularis in a coendemic area........ 225 

7.1 Introduction ............................................................................................................................. 226 

7.1.1 Differential equation modelling ...................................................................................... 226 

7.1.2 Modelling macroparasites ................................................................................................ 227 



 

 

7.1.3 Mathematical modelling of Echinococcus spp .............................................................. 229 

7.1.4 Model context ................................................................................................................... 230 

7.2 Materials and Methods ........................................................................................................... 230 

7.2.1 Setting of model ................................................................................................................ 230 

7.2.2 Model structure ................................................................................................................ 231 

7.2.3 Differential equations ...................................................................................................... 235 

7.2.4 Parameterisation .............................................................................................................. 236 

7.2.5 Model building ................................................................................................................. 247 

7.2.6 Simulation of control strategies ..................................................................................... 247 

7.2.7 Interpretation of results .................................................................................................. 250 

7.3 Results ...................................................................................................................................... 250 

7.4 Discussion ................................................................................................................................ 265 

7.4.1 Model structure evaluation ............................................................................................. 266 

7.4.2 Model applicability to study area ................................................................................... 274 

7.4.3 Force of infection ............................................................................................................... 279 

7.4.4 Model validation ................................................................................................................ 283 

7.4.5 Simulation of dosing strategies ...................................................................................... 291 

7.4.6 Further work .................................................................................................................... 293 

7.5 Conclusions ............................................................................................................................. 296 

Chapter 8: Canine echinococcosis in Kyrgyzstan:   detection, diagnosis, and dynamics.

................................................................................................................................................ 297 

8.1 Introduction .............................................................................................................................. 298 

8.2 Practical framework of thesis: explaining the thesis motivation ....................................... 299 

8.3 Conceptual framework of thesis: explaining the thesis title .............................................. 300 

8.4 Philosophical framework of thesis: explaining the thesis subtitle .................................... 302 

8.5 Description of study output ................................................................................................... 303 

8.5.1 Diagnostic test interpretation ......................................................................................... 303 

8.5.2 Classification of dog ownership in the Alay valley ....................................................... 304 

8.5.3 Longitudinal evaluation of a control scheme in the Alay valley ................................. 305 

8.5.4 Development of a novel mathematical model of Echinococcus transmission .......... 307 

8.6 Areas of further study ............................................................................................................ 308 

Appendix ............................................................................................................................... 313 

A1. The Reproduction Ratio ......................................................................................................... 314 

A2. Healthcare and pastoralism in Kyrgyzstan .......................................................................... 322 



 

 

A2.1 Public health in Kyrgyzstan ............................................................................................. 322 

A2.2 The Kyrgyz healthcare system ........................................................................................ 323 

A2.3 Livestock management in Kyrgyzstan ........................................................................... 324 

A3. Questionnaire forms used throughout the study ............................................................... 327 

A3.1 Household questionnaire, May 2012 ............................................................................... 327 

A3.2 Dog questionnaire, May 2012 .......................................................................................... 328 

A3.3 Healthcare/economic questionnaire, May 2012 ............................................................ 330 

A3.4 Questionnaire, September 2012 and April 2013 ............................................................. 334 

A3.5 Questionnaire, September 2013 ...................................................................................... 334 

A3.6 Questionnaire, April 2014 ................................................................................................ 335 

A3.7 Questionnaire, September 2014 ...................................................................................... 335 

A4. R code for Bayesian mixture model (using Xinjiang data) ................................................ 336 

A5. R code for Bayesian mixture model (May 2012 Kyrgyzstan data) ..................................... 342 

A6. R code for mathematical model ........................................................................................... 356 

A7. Manuscript submitted to the “Journal of Helminthology” ................................................ 372 

References ............................................................................................................................ 381 

 

  



 

 

Figures 
Figure 1.1. Lifecycles of Echinococcus granulosus and Echinococcus multilocularis. ................... 2 

Figure 1.2. Geographical distribution of E. granulosus and E. multilocularis ............................... 4 

Figure 1.3. Representation of theoretic right-skewed distribution .............................................. 26 

Figure 1.4. ‘Ecological’ determinants of pathogen transmission. ................................................. 29 

Figure 1.5. Processes affecting Echinococcus transmission stability. ........................................... 33 

Figure 2.1. Location of Kyrgyzstan and areas of interest ............................................................... 62 

Figure 2.2. Locations of dogs sampled from Sary-Mogol and Taldu-Suu in May 2012. .............. 65 

Figure 2.3. Locations of dogs sampled from Kashka’Suu and Kara-Kabak in May 2012............. 65 

Figure 3.1. Distribution of OD values for all necropsied dogs. ..................................................... 84 

Figure 3.2. Distribution of OD values for all necropsied dogs and all live dogs. ........................ 85 

Figure 3.3. Unadjusted and adjusted estimates of the coproantigen prevalence for the different 

villages. ................................................................................................................................................. 88 

Figure 4.1. Conceptual modelling approach used in the current study.. ................................... 110 

Figure 4.2. Distribution of test results and median estimates of the mixture model 

components ....................................................................................................................................... 112 

Figure 4.3. Posterior estimates of mixture model parameters .................................................... 112 

Figure 4.4. Posterior estimates of the overall prevalence of infection from the mixture model, 

and estimates of the parameters of the linear regression model ................................................. 113 

Figure 4.5. Median posterior probabilities of positivity for samples and for all OD values 

between 0.0 and 1.0. .......................................................................................................................... 114 

Figure 4.6. Distribution of median posterior probabilities of infection for all samples .......... 114 

Figure 4.7. Median posterior scores for samples. ......................................................................... 115 

Figure 4.8. Distribution of median posterior scores for all samples .......................................... 116 

Figure 4.9. Relationship between worm burden and median score for unadjusted and log-

adjusted burden estimates. .............................................................................................................. 116 

Figure 5.1. Distribution of OD values for all samples tested ....................................................... 137 

Figure 5.2. Predicted distribution of mixture model components for the four villages .......... 138 

Figure 5.3. Distribution of median score estimates from the mixture model ........................... 139 

Figure 5.4. Eigenvalue estimates for the dimensions created in MCA ...................................... 140 

Figure 5.5. Individual clouds for the first four dimensions ......................................................... 141 

Figure 5.6. Variable clouds for the first four dimensions ............................................................ 142 

Figure 5.7. Category clouds for the first four dimensions. .......................................................... 143 

Figure 5.8. Supplementary variable category clouds for the first four dimensions .................. 144 

Figure 5.9. Correlation circles for supplementary quantitative variables for the first four 

dimensions......................................................................................................................................... 145 

Figure 6.1. ROC curves for all sample batches.............................................................................. 173 

Figure 6.2.Numbers of dogs undergoing coproantigen testing per household ........................ 181 

Figure 6.3. Relative frequencies of individual household visits over the study period ............ 183 

Figure 6.4. Temporal trends in the proportion of male dogs over the sampling period ......... 183 

Figure 6.5.Temporal trends in the age distribution and proportion of adult dogs over the 

sampling period ................................................................................................................................ 184 

Figure 6.6.Temporal trends in the weight distribution and proportion of small dogs over the 

sampling period ................................................................................................................................ 185 



 

 

Figure 6.7. Temporal trends in the distribution of most recent praziquantel dosing, and in the 

proportion of recently dosed dogs over the sampling period ...................................................... 186 

Figure 6.8. Temporal trends in the proportion of dogs which had received praziquantel at 

some point in the past, over the sampling period ......................................................................... 187 

Figure 6.9. Temporal trends in coproantigen prevalence over the sampling period ............... 187 

Figure 6.10. Temporal trends in E. granulosus G1 (top), E. canadensis G6 (middle) and 

E. multilocularis (bottom) PCR prevalence over the sampling period........................................ 188 

Figure 6.11. ROC curves of comparison between model predictions and data. ........................ 189 

Figure 6.12. Comparison of averaged model predictions from Echinococcus coproantigen 

ELISA model with average household prevalences over the study period ................................. 198 

Figure 6.13. Comparison of averaged model predictions from E. granulosus G1 model with 

average household prevalences over the study period. ................................................................ 199 

Figure 6.14. Comparison of averaged model predictions from E. canadensis G6 model with 

average household prevalences over the study period. ................................................................ 200 

Figure 6.15.Comparison of averaged model predictions from E. multilocularis model with 

average household prevalences over the study period. ................................................................ 201 

Figure 6.16. Temporal predictions of praziquantel effect from coproantigen model for 

households in Sary-Mogol with and without young dogs ............................................................ 203 

Figure 6.17. Temporal predictions of praziquantel effect from E. granulosus G1 model ......... 204 

Figure 6.18. Temporal predictions of praziquantel effect from E. canadensis G6 model ........ 204 

Figure 6.19. Temporal predictions of praziquantel effect from E. multilocularis model ......... 205 

Figure 6.20. Temporal predictions of effect of presence of young dogs and small dogs from 

coproantigen model. ......................................................................................................................... 206 

Figure 6.21. Temporal predictions of effect of presence of young dogs and small dogs from 

E. canadensis G6 model.. .................................................................................................................. 206 

Figure 7.1. Geographical context for the mathematical model. .................................................. 231 

Figure 7.2. Conceptual structure of model. .................................................................................. 234 

Figure 7.3. Location of Karakenja in Tajikistan in relation to study villages ............................ 239 

Figure 7.4. Reduction in average daily egg contamination or mean worm burden for 

E. multilocularis and E. granulosus over a year with different months of administration of a 

single dose of praziquantel to every member of the dog population .......................................... 249 

Figure 7.5. Relative dynamics of infection during the initial stages after seeding. .................. 252 

Figure 7.6. Initial trends of E. granulosus and E. multilocularis worm burden, cyst burden and 

egg contamination following seeding of the model. ..................................................................... 253 

Figure 7.7. Trends in E. granulosus and E. multilocularis worm burden, cyst burden and egg 

contamination 10 years after initial seeding. ................................................................................. 254 

Figure 7.8. Effect of three years of regular praziquantel dosing on the simulated mean 

E. granulosus and E. multilocularis burden/contamination ........................................................ 255 

Figure 7.9. Effect of three years of regular praziquantel dosing on the simulated mean 

E. granulosus and E. multilocularis burden/contamination with no seasonality in any 

parameters ......................................................................................................................................... 256 

Figure 7.10. Effect of three years of regular praziquantel dosing on the simulated mean 

E. granulosus and E. multilocularis burden/contamination with seasonality in egg survival only

 ............................................................................................................................................................ 257 



 

 

Figure 7.11.Effect of three years of regular praziquantel dosing on the simulated mean 

E. granulosus and E. multilocularis burden/contamination with seasonality in host population 

density only ....................................................................................................................................... 258 

Figure 7.12.Effect of three years of regular praziquantel dosing on the simulated mean 

E. granulosus and E. multilocularis burden/contamination with seasonality in host mortality 

only ..................................................................................................................................................... 259 

Figure 7.13. Effect of different random dosing frequencies on simulated mean E. granulosus  

and E. multilocularis burden/contamination over the course of 100 years ................................ 260 

Figure 7.14. Effect of different seasonality assumptions on simulated mean protoscolex burden 

in ruminants and rodents, and mean adult worm burden in foxes, over the course of 100 years..

 ............................................................................................................................................................ 261 

Figure 7.15. Effect of administering a single dose of praziquantel during specified months on 

the simulated mean E. granulosus and E. multilocularis burden/contamination over the course 

of three years, at the new steady state ............................................................................................ 262 

Figure 7.16. Effect of targeted and regular dosing on relative E. granulosus biomass over the 

course of one year at the new steady state. .................................................................................... 263 

Figure 7.17. Effect of targeted and regular dosing on relative E. multilocularis biomass over the 

course of one year at the new steady state. .................................................................................... 264 

Figure 7.18. Schematic representation of the reason for the lack of E. multilocularis 

persistence in foxes predicted from the model. ............................................................................ 288 

 

  



 

 

Tables 
Table 1.1. Strains and species of Echinococcus .................................................................................. 9 

Table 3.1. Distribution of worm burdens and coproantigen ELISA OD values amongst the 16 

Echinococcus spp positive dogs identified by necropsy. ................................................................ 81 

Table 3.2. Properties of components identified by the mixture models. ..................................... 82 

Table 3.3. Test characteristics using different methods of classification ..................................... 86 

Table 3.4. Effect of different cut-offs on point coproantigen prevalence and estimated true 

prevalence, and exact 95% confidence intervals (using the Blaker method), whilst accounting 

for test sensitivity and specificity (using the Reiczel method) for six villages in Xinjiang. ........ 87 

Table 3.5. Advantages and disadvantages of different positive/negative panels for 

determination of cut-off points ......................................................................................................... 94 

Table 4.1. Mean proportion of high-OD negative panel samples included in the final mixture 

model.................................................................................................................................................. 113 

Table 5.1. Numbers of samples analysed from the four study villages ....................................... 133 

Table 5.2. Variables considered in the risk factor modelling process. ....................................... 133 

Table 5.3. Coproantigen prevalence/prevalence estimates for the four study villages ............ 138 

Table 5.4. Eigenvalues and inertia ('variance') explained by the first five dimensions ............ 140 

Table 5.5. Variable categories associated with dimension 1 ........................................................ 146 

Table 5.6. Variable categories associated with dimension 2 ....................................................... 146 

Table 5.7. Variable categories associated with dimension 3........................................................ 147 

Table 5.8. Variable categories associated with dimension 4 ....................................................... 147 

Table 5.9. Associations between the first four MCA dimensions and the categorical 

supplementary variables. ................................................................................................................. 148 

Table 5.10. Associations between the first five MCA dimensions and the continuous 

supplementary variables .................................................................................................................. 148 

Table 5.11. Interpretation of first five dimensions extracted from MCA .................................... 149 

Table 6.1. Cut-off points and estimated sensitivities and specificities for each batch of 

samples. .............................................................................................................................................. 173 

Table 6.2. Variables considered for inclusion in the current study............................................ 175 

Table 6.3. Numbers of samples included in the ELISA analysis. ................................................ 181 

Table 6.4. Numbers of samples which underwent PCR analysis. ............................................... 182 

Table 6.5. Concordance indices (area under the ROC curve) and Nakagawa and Schielzeth’s R2 

estimates for the four full models ................................................................................................... 190 

Table 6.6. Best models of coproantigen positivity, as determined by those with AICc values 

within 2 of the model with the lowest value. All models contained month, season, praziquantel 

use, presence of young dogs, and interactions between praziquantel use and both month and 

presence of young dogs. ................................................................................................................... 190 

Table 6.7. Best models of E. granulosus G1 PCR positivity .......................................................... 191 

Table 6.8. Best models of E. canadensis G6 PCR positivity ......................................................... 192 

Table 6.9. Best models of E. multilocularis PCR positivity .......................................................... 193 

Table 6.10. Coefficient estimates from model averaged results of models of Echinococcus 

coproantigen positivity. ................................................................................................................... 194 

Table 6.11. Coefficient estimates from model averaged results of models of E. granulosus G1 

PCR positivity .................................................................................................................................... 195 



 

 

Table 6.12. Coefficient estimates from model averaged results of models of E. canadensis G6 

PCR positivity .................................................................................................................................... 196 

Table 6.13. Coefficient estimates from model averaged results of models of E. multilocularis 

PCR positivity .................................................................................................................................... 197 

Table 7.1. Average monthly temperatures in Karakenja, Tajikistan and associated predicted 

durations of egg survival. ................................................................................................................. 238 

Table 7.2. Seasonal population density parameters used in the model. Variables are detailed in 

table 7.4. ............................................................................................................................................. 240 

Table 7.3. Seasonal mortality and prey preference parameters in model .................................. 240 

Table 7.4. Parameters included in the model ............................................................................... 242 

 

 



i 

 

Acknowledgements and declaration 

 

“No man is an island, entire of itself. Every man is a piece of the continent, 
 a part of the main.” 

John Donne (1572 – 1631) 

  



ii 

 

Acknowledgements 

[This thesis is nearly 100,000 words long already, so I’ll try to keep this short!] 

Professor Phil Craig – for being an excellent supervisor, field biologist and general 

all-round inspiration. You gave me the freedom to take this thesis in the direction I 

wanted to, which has made it what it is. It has truly been an honour to work with you 

(and to have been your last PhD student before your retirement). 

Dr. Freya van Kesteren – what can I say? The best colleague I have ever had, or will 

ever have. We complemented each other perfectly, and without you there is literally 

no way I could have finished the field work (and that’s not to mention the fact that 

you are responsible for all of the sample testing upon which this whole thesis is 

based). I can’t thank you enough for your friendship and support. Give me a call once 

you’ve got over this behavioural ecology phase and are ready to return to echino! 

My wife (and best friend), Kim Casement-Mastin – for offering infinite support when 

things were challenging, for giving me the freedom to work when I needed to, for 

pulling me away from work when I didn’t need to, and for keeping things in 

perspective throughout (whilst also expertly managing two small children!). 

My two sons, Rowan and Oran Mastin – one of whom arrived six weeks before I 

started working at Salford, and one of whom got me out of a fieldwork trip 19 months 

later – for bringing joy (amongst a range of other emotions!) into my life.  

All my friends at Salford University, especially the original crew of Patrick Killoran, 

Gemma Lace-Costigan, Manisha Patel, and Chris Harrison. You made my time at 

Salford an absolute joy – I can’t thank you all enough. 

Our team of Professors: Paul Torgerson, Patrick Giraudoux, Mark Danson, and 

Mike Rogan. Thank you all for giving me inspiration and support. I’m so grateful I 

managed to avoid vomiting on you all that night in Sary-Mogol! 



iii 

 

Professor Dirk Pfeiffer – for starting me off on this course, and for helping craft my 

philosophy of science. I never forgot I was an epidemiologist, even when I was living 

amongst the parasitologists! 

Our other collaborators, inside and outside Kyrgyzstan. 

Iskender Ziadinov for making sure fieldwork ran smoothly (and for accepting frantic 

phonecalls from me in the middle of the night from Osh airport!). 

Akjol Tagaibekov and Turdumamat Sultanov (and your fantastic families), for 

incredible hospitality in the field. I hope to see you all again someday soon. 

Bermet Mytynova, Dastanbek Sydykov, and Almaz, for helping out with fieldwork, 

translating, and for being great field companions. 

The rest of the Cestode Zoonoses Research Group at Salford (past and present): 

Dr. Belgees Boufana, Helen Bradshaw, Dr. Tony Bodell, Judy Mwangi, and 

Rebecca Rushworth. It’s been an absolute pleasure working with you all.  

The Wellcome Trust – for funding this project and for therefore giving me the 

opportunity to visit the beautiful country of Kyrgyzstan, as well as to attend a range of 

wonderful conferences and workshops. 

And last but not least, my parents, Keith and Brenda Mastin, for always being there 

for me, for supporting me through vet school (and beyond), and for encouraging me 

to always ask questions. 

 

  



iv 

 

Declaration 

This thesis is the product of approximately three and a half years’ worth of work, 

commencing in November 2011, and was generously funded by the Wellcome Trust, 

(grant number #094325/10/Z/10). Whilst the author (with a little help from Google) 

was responsible for the direction the thesis took and the methods applied, the project 

itself was a collaborative one.  

Freya van Kesteren assisted with collection of most of the faecal samples used in the 

study, along with Professors Phil Craig and Mike Rogan and Iskender Ziadinov in the 

early stages of the project. Along with Iskender, Bermet Mytynova and Dastan Sydykov 

were responsible for administering questionnaires over the course of the project. 

Freya van Kesteren was also responsible for collection of the faecal samples from 

Xinjiang, China, used in chapter 3. Professor Phil Craig conducted many of the dog 

necropsies from which the panel used in this chapter and in the subsequent chapters 

(especially chapter 4) were derived. 

All faecal sample testing was conducted solely by Freya van Kesteren, with laboratory 

support where needed from Dr Belgees Boufana, who also provided many of the 

control samples used. Professor Paul Torgerson and Dr Ruby Chang offered some 

initial statistical advice for chapter 4, and Professor Patrick Giraudoux made some 

suggestions for the model selection strategy used in chapter 6.  

 
 

  



v 

 

Abstract 

 

The point is not merely to understand the world, 
but to change it. 

Karl Marx (1818 - 1883) 

  



vi 

 

Human echinococcosis is an increasing public health issue in Kyrgyzstan, where 

Echinococcus granulosus and Echinococcus multilocularis are coendemic and domestic 

dogs are considered the primary source of human infection. A control scheme based 

upon dosing dogs with praziquantel was commenced in Kyrgyzstan in 2012 and was 

evaluated using ELISA tests to measure levels of Echinococcus-specific ‘coproantigens’ 

in canine faeces. The current study describes methods of interpretation of coproELISA 

test results, both prior to and during a control scheme, using data collected from dogs 

in southern Kyrgyzstan over a period of three years. 

Current methods of coproELISA test interpretation based upon selection of a single 

cut-off value are described and found to have considerable limitations. To address 

this, Bayesian mixture modelling was used to transform raw coproantigen data into a 

metric which approximates the possible worm burden in individual dogs and reduces 

test misclassification at the population level. This approach was validated using data 

from a panel of faecal samples of known status and was applied to data from samples 

of unknown status collected from Kyrgyz dogs. Multiple correspondence analysis was 

used to characterise the Kyrgyz study sites and identify possible associations with 

canine infection status (incorporating both coproELISA and coproPCR results), but 

did not identify any strong relationships. A mixed effects logistic regression modelling 

approach combined with model averaging was used to identify temporal and seasonal 

trends in coproantigen and coproPCR prevalence. A trend of decreasing test 

prevalence over time with pronounced seasonality was found for some test results. 

Finally, a mathematical model of transmission of both Echinococcus granulosus and 

Echinococcus multilocularis in Kyrgyzstan was developed and used to simulate the 

effects of a number of different dog dosing strategies. Canine echinococcosis 

surveillance and control could be improved by tailoring methods of diagnostic test 

interpretation (population-level/individual-level, categorical/continuous) to the 

situation at hand. 
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Chapter 1: Introduction and Literature Review 

 

“Study the science of art. Study the art of science. 
Develop your senses—especially learn how to see.  

Realize that everything connects to everything else.” 

Leonardo da Vinci (1452 – 1519) 
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1.1 Introduction 

Echinococcosis, resulting from infection with cestodes of the genus Echinococcus, is 

an important disease of people and animals worldwide. It has been classified by the 

World Health Organisation (WHO) as a ‘Neglected Zoonotic Disease’ (NZD) (WHO, 

2009), within the wider group of ‘Neglected Tropical Diseases’ (NTDs) (Craig et al., 

2007a; WHO, 2010a; b, 2013a; Molyneux, 2012), which have the potential to ‘impede 

development within a country’. Although species classification is currently in a state of 

flux, two main species groups are generally involved with human infection: 

Echinococcus granulosus sensu lato (the cause of cystic echinococcosis) and 

Echinococcus multilocularis (the cause of alveolar echinococcosis). Echinococcus 

species have an indirect lifecycle (see figure 1.1), requiring both an intermediate and a 

definitive host.  

 

Figure 1.1. Lifecycles of Echinococcus granulosus and Echinococcus multilocularis. Adapted 

from McManus et al. (2003) 

 



3 

 

In the case of E. granulosus (s.l.) and E. multilocularis, the definitive hosts are canid 

species (primarily domestic dogs in the case of E. granulosus, and traditionally foxes in 

the case of E. multilocularis), in which infection is usually asymptomatic. Intermediate 

hosts for E. granulosus are usually ruminant livestock species, in which infection can 

lead to clinical effects and can lead to offal condemnation and reductions in 

productivity. Infection in humans also often leads to clinical effects, and the overall 

economic impact of both human and animal echinococcosis worldwide is considerable 

(Torgerson et al., 2000, 2001, 2010; Torgerson and Dowling, 2001; Torgerson, 2003a; 

Budke et al., 2004, 2005c, 2006). Additionally, within developing countries, 

echinococcosis tends to predominantly affect poorer pastoral communities, and as 

such may exacerbate poverty (Craig et al., 2007b; Maudlin et al., 2009).  The 

geographical distribution of E. granulosus and E. multilocularis is shown in figure 1.2 

(Eckert and Deplazes, 2004). 

Despite its considerable public health and economic burden worldwide. 

echinococcosis is rarely given priority in disease control schemes nationally or 

internationally. One possible reason for this is the fact that human infection is 

commonly found to be heterogeneously clustered within rural communities (Craig et 

al., 1992), which may be geographically isolated and physically difficult to reach as well 

as politically marginalised. Additionally, it has been argued that a high disease burden 

alone should not necessarily indicate a priority candidate for disease control – instead, 

the availability of cost-effective control strategies should be considered (Canning, 

2006). Whilst echinococcosis is considered to be a ‘preventable disease’ by the World 

Health Organisation due to the availability of effective treatments for canine infection 

and practical measures which can reduce human infection risk (WHO, 2013b), 

instigating an echinococcosis control scheme is not a trivial issue. Due to the 

persistence of the parasite in intermediate hosts, and the difficulties in treating all 

definitive hosts in a community, control of echinococcosis can take long periods of 

time even in optimal situations (Craig and Larrieu, 2006), and in many cases may need 

to run indefinitely. 
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Figure 1.2. Geographical distribution of E. granulosus (top) and E. multilocularis (bottom). 

Taken from WHO/OIE (2001a); Torgerson and Budke (2003);  and Eckert and Deplazes (2004) 

 

An important component of disease control is the ability to detect disease. As 

described above, echinococcosis in definitive hosts is asymptomatic, and therefore 
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diagnostic tests are required to detect infection in order to assess the potential risk of 

human infection (through eggs released by adult worms in the definitive host) or the 

effect of a control scheme. The faecal coproantigen test (Deplazes et al., 1992; Allan et 

al., 1992) offers an effective method of surveillance of definitive host infection during 

control campaigns, but relatively little attention has been given in recent years to the 

optimal approach for surveillance. This is a central concept explored throughout the 

current thesis, and will be described in more detail below and in later chapters. 

1.2 Echinococcus biology 

1.2.1 Basic  lifecycle 

The lifecycle and epidemiology of Echinococcus spp has been well described elsewhere 

(Smyth, 1964; Thompson, 1995; WHO/OIE, 2001b), and as such will be only briefly 

covered here. As for all taenid tapeworms, Echinococcus spp have an indirect lifecycle, 

requiring mammalian intermediate and definitive hosts (although some species can 

act as both intermediate and definitive hosts), with transmission through predator-

prey interactions. The intermediate hosts for the different species differ, but small 

ruminants and small rodents are the intermediate hosts most commonly responsible 

for definitive host infection with E. granulosus (s.l.) and E. multilocularis, respectively. 

Domestic dogs are the main definitive host for E. granulosus (s.l.) (which includes a 

number of recently classified different species of Echinococcus), and although foxes 

are the traditional definitive host of E. multilocularis, domestic dogs are known to be 

susceptible to infection (Kapel et al., 2006; Matsumoto and Yagi, 2008), and are 

thought to play a major role in human infection with this parasite (Craig et al., 2000; 

Li et al., 2005; Wang et al., 2006a; Craig and The Echinococcosis Working Group in 

China, 2006; Yang et al., 2006). 

Eggs released by definitive hosts contain an onchosphere within a protective layer 

known as the embryophore, which offers protection from environmental conditions 

(Gemmell and Lawson, 1986). Following ingestion (Dévé, 1949) or inhalation (Borrie et 

al., 1965) by an intermediate host, the onchosphere is released from the embryophore 
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and is activated. In the case of enteral activation (the most common route), the 

onchosphere is able to penetrate the small intestine and enter the bloodstream or 

lymphatic system, through which it can be carried to an eventual site of encystment 

such as the liver or lungs (Heath, 1971; Harris et al., 1989). Here, development proceeds 

to the metacestode stage, which comprises singular or multiple cystic structures 

formed of parasite tissue (the germinal and laminated layers). In the case of 

Echinococcus granulosus, the cysts are surrounded by a fibrotic response from the 

host, known as the adventitial layer (Cameron and Webster, 1969), although this is not 

present in the case of Echinococcus multilocularis (Sakamoto and Sugimura, 1970). 

Through proliferation of the germinal layer (endogenously in the case of E. granulosus, 

and both endogenously and exogenously in the case of E. multilocularis), ‘brood 

capsules’ are formed. Proglottids develop within these through further proliferation 

and budding. Although proliferation of E. multilocularis metacestodes in normal 

definitive hosts is curtailed, this does not occur in the case of human infection, where 

proliferation tends to continue indefinitely (Rausch and Wilson, 1973). 

Following ingestion of a fertile cyst by a definitive host, evagination of the protoscolex 

suckers, rostellum and hooks takes place in the upper duodenum, and the 

protoscolices move into the crypts of Lieberkühn, where they attach to the mucosa 

through the use of suckers and hooks. Development to the adult worm follows over a 

period of weeks, with each protoscolex being potentially able to form an individual 

adult worm. E. granulosus worms tend to be located in the proximal small intestine 

(Gemmell et al., 1986c; Lymbery et al., 1989), whereas E. multilocularis are generally 

found in the distal small intestine (Thompson and Eckert, 1983; Morishima et al., 

1999a; Umhang et al., 2011). The adult worms are hermaphroditic and are able to self-

fertilise, although in some situations sexual reproduction may also take place. Eggs are 

fertilised and develop in the terminal proglottid, and comprise an embryo (known as 

the onchosphere) surrounded by several layers. Eggs are released in the faeces of the 

definitive host, either free or within the released terminal proglottids (likely in 

different stages of maturation and therefore varying infectivity), and the cycle 

continues as described above  (Thompson, 1995).  
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1.2.2 Species and strains of Echinococcus 

Wide variations in the phenotypic characteristics and behaviour of different members 

of the Echinococcus genus are recognised, suspected to be due largely to genetic 

variation, but which may also be induced during the lifecycle of the parasite 

(Thompson, 1991, 1995). As such, appropriate classification of different species and 

strains within the genus has been complex, and there is ongoing debate regarding the 

most appropriate method of taxonomic classification. It has been known for some 

time that the original classification system used for E. granulosus was inappropriate 

(Bowles et al., 1992, 1995), and current evidence suggests that there are at least six 

separate species of Echinococcus: E. granulosus, E. equinus, E. ortleppi, 

E. multilocularis, E. vogeli and E. oligarthus / E. oligartha (Kumaratilake and 

Thompson, 1982; Thompson and McManus, 2002; Thompson, 2008; Nakao et al., 2013). 

Other distinct species have been suggested, including one affecting camels and/or pigs 

as intermediate hosts (currently classified as two ‘strains’ of E. granulosus: G6 and G7) 

(Thompson et al., 1995; Nakao et al., 2007), and one affecting pika (E. shiquicus, which 

appears to be related to E. multilocularis) (Xiao et al., 2006b). It has also been 

proposed that G6, G7, G8 and G10 be combined into a single species known as 

E. canadensis (Moks et al., 2008), or that (based on nuclear DNA) G8 and G10 should 

together be termed E. canadensis, and G6, G7 and G9 termed E. intermedius (Saarma 

et al., 2009). The former classification is more generally accepted, and will be used in 

the current study. 

Genetic variation within E. multilocularis has until relatively recently been overlooked 

largely due to the relatively low variation compared to that within E. granulosus (s.l.) 

(which as described above, actually represents a number of different species) (Bowles 

et al., 1995; Nakao et al., 2009). Investigation of E. multilocularis has identified a 

number of different isolates found in different locations – suggesting development in 

geographic isolation from each other. The main three isolates identified have been 

named as the ‘European’, ‘Asian’ and ‘North American’ clades, with their names 

describing their geographical location (central-eastern Europe; central-eastern Asia 

and Alaska; and Alaska  and central North America). The Asian clade is likely to have 
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given rise to the European and North American forms, with both Asian and North 

American clades being found in Alaska, although a separate, distinct clade has also 

been identified in Inner Mongolia (Nakao et al., 2009).  

Different species and strains of Echinococcus vary in their predilection for definitive 

and intermediate hosts (including humans), as well as in their distribution. A recent 

paper (Nakao et al., 2013) summarised some these differences, as shown in table 1.1. 

Due to the complexities of classification and the limited relevance of some of these 

species/strains to the current investigation, only E. granulosus and E. multilocularis 

(and their accompanying strains/associated species) will be considered further here.
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Table 1.1. Strains and species of Echinococcus, based upon Nakao et al. (2013) 

Species/strain Distribution Main intermediate host(s) Main definitive host(s) Human 

infection 

Echinococcus granulosus (G1,G2,G3) Worldwide Sheep, goat, cattle Dog Most common 

Echinococcus equinus (G4) Worldwide Horse Dog Unknown 

Echinococcus ortleppi (G5) Worldwide Cattle Dog Uncommon 

Echinococcus canadensis (G6,G7) Worldwide Pig, camel, cattle, goat, 

sheep 

Dog Common 

Echinococcus canadensis (G8) Northern arctic/boreal Moose, wapiti Wolf Uncommon 

Echinococcus granulosus/intermedius (G9) Poland Pig Dog Uncommon 

Echinococcus canadensis (G10) Northern arctic/boreal Moose, reindeer, wapiti Wolf, dog Uncommon 

Echinococcus multilocularis Holarctic Arvicoline rodents Red fox, arctic fox, dog Common 

Echinococcus shiquicus Tibetan plateau Pika Tibetan fox Unknown 

Echinococcus oligarthus/oligarthra Neotropical Agouti Wild felids Uncommon 

Echinococcus vogeli Neotropical Paca Bush dog Uncommon 

Echinococcus ortleppi Worldwide Cattle Dog Uncommon 

Echinococcus felidis Africa Unknown Lion Unknown 
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1.2.3 Biological parameters 

The prepatent period of E. granulosus in definitive hosts has been reported as between 

six and twelve weeks (Gemmell et al., 1986c; Gemmell and Roberts, 1995; WHO/OIE, 

2001b), and that for E. multilocularis is around four weeks (WHO/OIE, 2001c; Kapel et 

al., 2006). Mathematical modelling techniques have estimated the lifespan of 

E. granulosus and E. multilocularis in the definitive host to be around nine months 

and around 3-4 months, respectively (Ziadinov et al., 2008). The duration of egg 

production in foxes and dogs experimentally infected with E. multilocularis has been 

estimated as around four to six weeks (Kapel et al., 2006). In sheep, E. granulosus 

growth is slow, requiring around seven years for half of the infections to reach fertility, 

whereas fertile cysts of E. multilocularis in rodents may be present after only two 

months (WHO/OIE, 2001c). 

1.3 Echinococcosis 

1.3.1 Human infection 

Infection of humans with E. granulosus or E. multilocularis can result in the 

production of tissue cysts – a condition named cystic echinococcosis (CE) in the case 

of E. granulosus, and alveolar echinococcosis (AE) in the case of E. multilocularis. 

Humans, whilst acting as an intermediate host in these cases, are commonly referred 

to as a ‘dead end host’, as they very rarely play any further role in parasite transmission 

following infection. CE is characterised by individual, well-encapsulated cysts, whereas 

AE presents with numerous proliferating small cysts which are not well encapsulated 

and are able to metastasise in the blood or lymphatic systems to other sites 

(Thompson, 1995). Although E. multilocularis metacestodes in humans rarely contain 

protoscolices (Rausch and Wilson, 1973), AE is generally a much more serious 

condition than CE, and is less responsive to the usual surgical techniques used to treat 

CE (Torgerson et al., 2008, 2010). The primary cysts of both species most commonly 

develop in the liver, although E. granulosus cysts may also develop in the lung (or, in 

rare cases, in other organs). Secondary spread of infection from these primary sites can 

occur following cyst rupture, or through blood or lymph-borne metastasis in the case 
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of AE. Due to the slow-growing nature of the cysts, many years may pass before 

clinical disease is observed (generally resulting from the space-occupying effect of the 

cyst or due to organ pathology), and although AE is generally ultimately fatal if left 

untreated (Torgerson et al., 2008), this is not the case for CE, which can in some cases 

remain asymptomatic indefinitely (Schaefer and Khan, 1991) – especially in the case of 

liver cysts (Larrieu and Frider, 2001).  

As mentioned earlier, CE and AE are a considerable disease burden in terms of 

morbidity, surveillance, treatment costs and mortality in endemic communities 

(Torgerson et al., 2000, 2001, 2010; Torgerson and Dowling, 2001; Torgerson, 2003a; 

Budke et al., 2004, 2005c, 2006). Although treatment is available for both CE and AE, 

this can be costly and challenging, often requiring surgical intervention and/or long 

periods of chemotherapy with albendazole (Brunetti et al., 2010). Infection of livestock 

with E. granulosus is also a cause of additional economic losses due to reduced 

productivity and condemnation of animal products (Torgerson, 2003a). These 

economic issues are exacerbated by the fact that those individuals and communities 

most affected tend to be poorer, rural communities which are often geographically 

and/or behaviourally isolated to some degree from healthcare systems (Craig et al., 

2008; Maudlin et al., 2009; Molyneux et al., 2011). In particular, nomadic or 

seminomadic groups with livestock and people in close contact with dogs are more 

commonly affected by echinococcosis. Dog ownership has frequently been found to be 

a risk factor for human infection with E. granulosus (s.l.) (Campos-Bueno et al., 2000; 

Larrieu et al., 2002; Yang et al., 2006; Moro et al., 2008), although this association is 

not invariably found (Carmona et al., 1998; Dowling and Torgerson, 2000; Dowling et 

al., 2000; Yamamoto et al., 2001; Torgerson et al., 2003a, 2009b). Domestic dog 

ownership or contact with dogs has also been identified as a risk factor for human 

infection with E. multilocularis in a number of studies (Craig et al., 2000; Li et al., 

2005; Wang et al., 2006a; Craig and The Echinococcosis Working Group in China, 

2006; Yang et al., 2006).  
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1.3.2 Detection of echinococcosis 

Detection of echinococcosis in intermediate and definitive hosts can be challenging. 

Due to the longevity of cysts in intermediate hosts, the most accurate reflection of the 

current infection pressure is obtained by diagnosing infection in definitive hosts (i.e. 

canids in the case of the species and strains of interest here)(Walters, 1978; Palmer et 

al., 1996; Craig and Larrieu, 2006), although livestock (the normal intermediate hosts 

of E. granulosus, and accidental hosts of E. multilocularis) may be useful as sentinels, 

for assessing levels of environmental contamination with eggs, and for surveillance in 

low endemic areas (such as in the later stages of a control scheme). Diagnostic testing 

for echinococcosis has been reviewed in a recent paper (Torgerson and Deplazes, 

2009). 

1.3.2.1 Definitive hosts 

As mentioned above, for the species of Echinococcus of interest to this project, the 

definitive hosts are canid species. Detailed reviews of diagnostic testing for 

echinococcosis in these species are available (WHO/OIE, 2001d; Craig et al., 2003; 

Torgerson and Deplazes, 2009), and so only a brief description will be given here. The 

‘gold standard’ test for infection in these hosts is considered to be necropsy and 

examination of the small intestine for adult worms using the sedimentation and 

counting technique (SCT) (WHO/OIE, 2001d; Eckert, 2003). This method involves 

gross examination of the small intestinal mucosa for adult worms, followed by 

stripping of mucosa, sedimentation and microscopic examination of the sediment. 

However, this method is relatively time-consuming, is biohazardous if performed with 

fresh intestines, and requires culling of dogs (which is both logistically challenging 

and problematic in communities reliant on their dogs). A similar method which is less 

time consuming is the intestinal scraping technique (IST), in which 15 deep mucosal 

scrapings are taken from equal intervals along the intestine, and the squash 

preparations are examined microscopically. This method has been reported to have a 

sensitivity of 78% and a specificity of 100% from a sample of 170 foxes (87 of which 

were found to infected by the SCT) (Hofer et al., 2000). 
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For much of the 20th century, arecoline purgation was the mainstay of investigation of 

canine infection in living dogs (with the additional benefit of being a treatment 

method), despite having a low diagnostic sensitivity (Schantz, 1997; Lahmar et al., 

2007b). Enteral administration of preparations of arecoline can both induce paralysis 

in any cestodes present and encourage the expulsion of intestinal contents. The 

material evacuated can then be inspected for worms using sieving techniques. 

However, as for necropsy, this method is biohazardous and time-consuming, requires 

skilled personnel, carries a potential risk of dog death, and is not always successful. 

One study in Tunisia estimated that arecoline purgation had a sensitivity of around 

65% after one dose and around 78% after two doses for detection of E. granulosus 

(compared to necropsy), with a specificity of 100% (Schantz, 1997). This and another 

study found that less than 70% of dogs purged after one dose, and less than 90% 

purged after two doses (Schantz, 1997; Lahmar et al., 2007b). Little is known about the 

performance of purgation in the detection of E. multilocularis, although analysis of 

data collected from Kyrgyzstan using a variety of diagnostic tests has estimated the 

sensitivity of purgation to be around 40% for E. granulosus and 20% for 

E. multilocularis (with overlap in the 95% credible intervals for these two estimates)  

(Ziadinov et al., 2008). A method based on latent class analysis of data collected from 

the Tibetan plateau has given point estimates of purgation sensitivity of between 30% 

and 55% for E. granulosus, and between 55 and 75% for E. multilocularis (again, often 

with overlap in the 95% credible intervals) (Hartnack et al., 2013). 

In order to address some of the challenges associated with purgation or necropsy, 

methods based upon analysis of normally voided faeces have been developed, and 

offer a potentially useful method of diagnosing infection easily with minimal 

invasiveness. Traditional parasitological techniques such as examination of faeces for 

eggs or proglottids are problematic due to irregular excretion of eggs, their small size 

and the inability to distinguish Echinococcus spp eggs from those of Taenia spp (which 

are also likely to be commonly found in endemic communities, but which rarely pose 

a risk to humans) (Allan and Craig, 2006). As well as having a low sensitivity and 

specificity, these methods are also quite labour-intensive (Craig et al., 1988). 
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Therefore, detection of infection from faecal samples is predominantly based upon 

molecular methods such as the detection of faecal ‘coproantigens’ and PCR-based 

methods (Deplazes et al., 2003). 

Coproantigens are large carbohydrate-based molecules, thought to be 

excretory/secretory or turnover material derived from the surface glycocalyx of the 

adult tapeworm (Elayoubi et al., 2003; Elayoubi and Craig, 2004) (although it appears 

they are also present to some degree in prepatent infections (Deplazes et al., 1992; 

Malgor et al., 1997; Lahmar et al., 2007b)).  They are passed out in the faeces of 

infected dogs and remain relatively stable in both faeces and in a variety of climatic 

conditions, meaning that faeces do not need to be fresh (Deplazes et al., 1990; Jenkins 

et al., 2000; Raoul et al., 2001). As with many ELISAs, antigen detection is based upon a 

reaction involving a colour change, which is quantified by recording the optical 

density (OD) at a specified wavelength in a plate reader or spectrophotometer. 

Evidence has been found of a broad linear correlation between coproantigen ELISA 

OD values and worm burdens when worm burdens are high (Deplazes et al., 1992; 

Allan et al., 1992; Craig et al., 1995; Ahmad and Nizami, 1998; Morishima et al., 1999a; 

Raoul et al., 2001; Reiterová et al., 2005; Buishi et al., 2005b). Whilst this means that 

test sensitivity is expected to be lower in cases of low worm burden (often stated to be 

less than 50 or 100 worms) (Allan et al., 1992; Deplazes et al., 1994; Nonaka et al., 1996; 

Reiterová et al., 2005; Allan and Craig, 2006)), this also indicates that OD data could 

be interpreted in a semi-quantitative manner (Raoul et al., 2001). A number of ELISA 

tests for the detection of Echinococcus spp coproantigens are available (Deplazes et al., 

1992; Allan et al., 1992; Malgor et al., 1997; Casaravilla et al., 2005; Huang et al., 2007; 

Morel et al., 2013), and due to their ease of use (hundreds of samples can be tested per 

day), these now provide the mainstay of large-scale surveillance of echinococcosis 

(Deplazes et al., 2003), as has been recommended by the WHO and the FAO 

(WHO/OIE, 2001d), as well as the PAHO (Morel et al., 2013).  

A crude meta-analysis (Allan and Craig, 2006) of a number of studies comparing 

coproantigen ELISA results to those of necropsy (Deplazes et al., 1992, 1999; Allan et 

al., 1992; Malgor et al., 1997; Morishima et al., 1999a; El-Shehabi et al., 2000; Jenkins et 
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al., 2000; Machnicka et al., 2003; Reiterová et al., 2005; Buishi et al., 2005b) has 

suggested that coproantigen ELISA methods have a sensitivity of around 80% and a 

specificity of over 95% for both E. granulosus and E. multilocularis. However, these 

characteristics would be expected to vary according to the worm burdens of individual 

canids (with higher sensitivity for detection of higher burden infections), and 

therefore according to the overall distribution of burdens in the community under 

study. Despite this, the coproantigen test is usually interpreted in a dichotomous 

manner, classifying individual samples as ‘positive’ or ‘negative’ for Echinococcus 

coproantigens. The difficulties associated with this dichotomous classification of a 

continuous variable (the OD value) in any diagnostic situation are well recognised, 

and are especially true in the case of coproantigen testing of faecal samples in the field 

situation, where the quality and quantity of sample material may be lower than those 

used in initial test evaluation (indeed, evaluation of these tests is commonly 

performed using experimental infections rather than field data, and the performance 

of the test in the field may be unknown (Torgerson and Deplazes, 2009)). 

To date, coproantigen ELISA tests are unable to distinguish between different species 

or strains of Echinococcus, meaning that their use is limited in coendemic areas. PCR-

based methods of detection of Echinococcus spp egg DNA in faecal samples 

(‘coproPCR’ testing) (Craig et al., 1988; Bretagne et al., 1993; Mathis and Deplazes, 

2006) are currently the main method of Echinococcus species/strain determination 

based on analysis of faecal samples. These approaches are generally unsuitable for 

high-throughput situations such as routine surveillance due to the difficulties 

associated with both extraction of DNA from faeces and from the PCR protocol itself, 

meaning that the rate of sample analysis is an order of magnitude lower than for 

coproantigen methods (Deplazes et al., 2003; Torgerson and Deplazes, 2009). The 

relatively low numbers of eggs passed in the faeces, the presence of inhibitory 

substances in faeces (Opel et al., 2010), the protection afforded by the embryophore 

(Bretagne et al., 1993), and the lack of any cell-free DNA in faeces can all have 

detrimental impacts on test performance; meaning that additional processing steps 

are required before PCR can be undertaken. These may consist of faecal DNA 
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extraction methods (for ‘copro-DNA PCR’ (Bretagne et al., 1993; Monnier et al., 1996; 

Dinkel et al., 1998; van der Giessen et al., 1999; Abbasi et al., 2003; Boufana et al., 

2013)), or taeniid egg extraction using flotation/sieving procedures (for ‘egg-DNA PCR’ 

(Mathis et al., 1996; Stefanić et al., 2004; Trachsel et al., 2007; Al-Sabi’ et al., 2007; 

Boubaker et al., 2013)).  

Despite the issues described above, coproPCR remains a useful tool as it generally has 

a very high specificity (although coprophagia has been suggested as a source of false 

positive results (Ziadinov et al., 2008; Hartnack et al., 2013)), and allows identification 

of individual species and strains of Echinococcus, which cannot be achieved currently 

using ELISA methods. A variety of PCR primers have been developed for faecal testing 

for E. multilocularis (Bretagne et al., 1993; Monnier et al., 1996; Dinkel et al., 1998; van 

der Giessen et al., 1999; Boufana et al., 2013) and various strains/species of 

E. granulosus (s.l.) (Abbasi et al., 2003; Stefanić et al., 2004; Dinkel et al., 2004; 

Boufana et al., 2013) (some of which have been evaluated at the species/strain level 

(Boufana et al., 2008)). A number of studies have suggested that, as for coproantigen 

detection, the probability of detection of DNA is positively correlated with worm 

burden (Dinkel et al., 1998; Lahmar et al., 2007b). More recent developments using 

quantitative real-time PCR techniques may allow quantification of DNA levels and 

therefore potentially estimate the worm burden (Knapp et al., 2014).  DNA detection 

has been reported prior to patency, although this appears to have little relationship to 

coproantigen results (Deplazes et al., 2003; Lahmar et al., 2007b; Boufana et al., 2008). 

Due to these issues, any statement regarding the sensitivity of PCR tests will depend 

on a wide variety of factors – including the species/strain(s) of Echinococcus present, 

the stage of infection, and the worm burden in the animal itself; as well as the exact 

processing approaches used for DNA extraction prior to PCR. Estimates of sensitivity 

for most PCRs are generally higher than 50%, although estimates as low as 20%, or as 

high as 100%, have been reported (Bretagne et al., 1993; Mathis et al., 1996; Dinkel et 

al., 1998; van der Giessen et al., 1999; Abbasi et al., 2003; Stefanić et al., 2004; Mathis 

and Deplazes, 2006; Trachsel et al., 2007; Ziadinov et al., 2008). A concurrent 

evaluation of three E. granulosus-specific primers (Abbasi et al., 2003; Stefanić et al., 
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2004; Dinkel et al., 2004) has estimated PCR sensitivity amongst naturally infected 

dogs of between 50% and 100%, with variable specificities for the different species and 

strains of Echinococcus (Boufana et al., 2008). The latent class model mentioned 

earlier has also been used to estimate the sensitivity and specificity of E. granulosus- 

(Abbasi et al., 2003) and E. multilocularis- (Dinkel et al., 1998) –specific primers, which 

gave point estimates of sensitivity of between 80 and 90%, and specificity of over 80%, 

for each (Hartnack et al., 2013). 

Finally, it should be noted that some work has been conducted on serological 

diagnosis of infection in canid hosts (Gasser et al., 1988, 1993, 1994; Jenkins et al., 1990; 

Gottstein et al., 1991). Although these tests often gave a high sensitivity, their 

specificity was low (considerably lower than the coproantigen ELISA (Craig et al., 

1995)). As such, further work is required in order to develop a useful serological test 

for canine infection – which will likely require the development of better recombinant 

antigens (reviewed in (Carmena et al., 2006)). 

1.3.2.2 Environment 

The most commonly used form of environmental sampling for egg contamination is 

based upon the collection and testing of environmental canid faeces – usually fox 

faces, in order to test for E. multilocularis infection and gain an estimate of the overall 

levels of infection in an area (Morishima et al., 1999b; Tsukada et al., 2000; Raoul et al., 

2001; Knapp et al., 2014). Although many coproantigen surveillance schemes based on 

the collection of faecal samples from domestic dogs can be considered to be a form of 

environmental sampling, these samples are usually matched to individual dogs, with 

interpretation accounting for this rather than being set at the ‘ecological’ level 

(although there are some exceptions to this (Vaniscotte et al., 2011; van Kesteren et al., 

2013)). When environmental faeces are studied, the molecular methods described 

above such as coproantigen ELISA and coproPCR are usually used for diagnosis. 

Relatively few studies have directly investigated levels of ‘true’ environmental (e.g. 

soil) contamination with Echinococcus eggs, despite this being of potential importance 

to human exposure and ongoing transmission. The reason for this is that most 
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approaches require initial isolation of eggs, which can be very labour-intensive if egg 

densities are low (although methods are available (Matsuo and Kamiya, 2005)). An 

early study of environmental contamination used immunological methods to 

differentiate Echinococcus spp eggs from those of other taeniids (Craig et al., 1988), 

but PCR-based methods such as those described above are most commonly used 

currently (Matsudo et al., 2003; Shaikenov et al., 2004).  

One other method of detection of environmental contamination is through the use of 

‘sentinel animals’: usually sheep, pigs or goats which are known to not be infected 

with Echinococcus spp prior to the study. These are left in the field site of interest for a 

short period of time (such as two weeks), and are then removed to an Echinococcus-

free location and killed after a suitable period of time in order for detailed necropsy to 

be undertaken (Gemmell and Johnstone, 1977; Eckert et al., 1982; Lloyd et al., 1991, 

1998). Sheep are a good sentinel for pasture egg contamination, as they do not appear 

to develop immunity to reinfection (Torgerson et al., 2003b). Measuring infection of 

cattle with E. granulosus has also been suggested as a similar method of surveillance 

for egg contamination, despite cattle rarely playing a role in the transmission of 

E. granulosus (s.s.). From a diagnostic testing perspective, the presence of cysts in this 

animal is more likely to represent E. granulosus than other pathologies, and these 

animals are more likely to enter the abattoir system than small ruminants. Therefore, 

by combining data on cattle infection with GIS data relating to the farm of origin of 

infected cattle, surveillance and control efforts may be better targeted to those areas 

with a higher transmission intensity (Cringoli et al., 2007; Rinaldi et al., 2008; Temple 

et al., 2013; Cassini et al., 2014).  

1.3.2.3 Intermediate hosts, excluding humans 

As infection in domestic livestock is usually relatively asymptomatic, infection is most 

commonly identified at necropsy.  However, ultrasound examination has also been 

used to detect liver cysts in some cases (Maxon Sage et al., 1998; Lahmar et al., 2007a; 

Dore et al., 2014), with one study estimating a sensitivity of 54% and specificity of 98% 

compared to necropsy (Maxon Sage et al., 1998), although differentiation between the 
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metacestodes of E. granulosus and Taenia hydatigena may be difficult (Maxson et al., 

1996). Two other problems with examination using either of these methods is the 

small size of young cysts (which may mean that new infections or infections in young 

animals are missed) and the length of time required for cysts to develop (which will 

result in a temporal lag between infection and detection). One solution to this 

problem in the case of necropsy is to thinly slice the organs of interest for close 

examination and histological examination as required (Lloyd et al., 1991, 1998). As 

described above, PCR techniques (‘tissue-DNA PCR’) are also available to confirm 

whether detected cysts are those of Echinococcus spp, or to determine the strain or 

species of Echinococcus present (Dinkel et al., 2004; Boufana et al., 2008). 

Attempts to develop serological screening tests for echinococcosis in livestock 

intermediate hosts have faced difficulties, with reported low sensitivities and cross-

reactions with other cestodes (Yong et al., 1984; Ibrahem et al., 1996; Craig, 1997; 

Kittelberger et al., 2002). One particular issue is that many studies have compared 

serology to visual inspection at slaughter. For the reasons described above, accurate 

identification of infected individuals (or distinction of E. granulosus lesions from those 

caused by other taeniid species) may be difficult, meaning that the ‘gold standard’ test 

used for comparison may be imperfect. One study which made a concerted effort to 

reduce this problem found that serology gave reasonable estimates of sensitivity (85%) 

and specificity (97%), compared to histological examination and Western Blotting 

(Gatti et al., 2007). 

Medical imaging approaches have also been used to detect E. granulosus infection in 

intermediate hosts. Early work used thoracic radiography to detect lung cysts (Wyn-

Jones and Clarkson, 1984), with a view towards identification of infected sheep for 

pharmacological studies. However, most recent attention has focussed on abdominal 

ultrasound scanning (US) to detect liver cysts (Craig, 1993). Studies comparing US to 

inspection at slaughter suggested that this strategy has a reasonable sensitivity and 

specificity (Maxon Sage et al., 1998; Dore et al., 2014). Another potential advantage of 

US for diagnosis of infection is that cyst types may be determined, in order to 



20 

 

distinguish ‘active’ forms from ‘inactive’ or ‘transition’ forms (WHO/OIE, 2001e; 

Lahmar et al., 2007a; Dore et al., 2014). 

In the case of E. multilocularis infection in short-lived small mammals, careful 

necropsy of captured animals is the most commonly used method of detection, often 

combined with tissue-DNA PCR techniques (Stieger et al., 2002; Abdyjaparov and 

Kuttubaev, 2004; Afonso et al., 2015). As the prevalence of infection is commonly very 

low, large sample sizes are often required in order to detect infected individuals. This 

means that comprehensive studies of small mammal infection are relatively rarely 

undertaken.  

1.3.2.4 Humans 

A large number of human cases of CE or AE are detected through passive surveillance 

(i.e. diagnosis in hospital after presentation to a physician), which will tend to result in 

the preferential detection of more advanced, clinical, cases of disease (Schantz, 1997). 

However, recent improvements in ultrasound scanning technology and development 

of portable ultrasound scanners has made active surveillance in the form of screening 

campaigns possible, even in the remote communities traditionally affected by the 

disease (Macpherson et al., 1987). A system of grading and classifying CE cysts 

according to their ultrasonographic appearance has also been developed by the World 

Health Organisation (WHO/OIE, 2001e; Wang et al., 2003; WHO Informal Working 

Group, 2003). Whilst ultrasonography is suitable for the detection of hepatic cysts, it is 

less useful for the detection of pulmonary cysts, which may require methods such as 

radiography or computed tomography. 

A variety of serological tests are also available for the detection of both CE and AE, and 

are well reviewed elsewhere (Gottstein, 1992; Lightowlers and Gottstein, 1995; 

WHO/OIE, 2001e; Zhang et al., 2003). As with most serological tests, options are 

available for the detection of antibodies against the parasite (Kagan, 1968; Gottstein, 

1985), or against parasite antigens themselves (Gottstein, 1984; Craig, 1986). Antibody 

detection for E. multilocularis is generally viewed as more reliable than that for 

E. granulosus (Gottstein et al., 1993; Ito et al., 2003a), making it more appropriate for 
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use alone in screening and surveillance campaigns, whereas surveillance for 

E. granulosus will generally require the use of multiple tests and/or modalities (Eckert 

and Deplazes, 2004). 

1.3.3 Risk factors for canine infection 

A review of risk factor studies for canine echinococcosis has recently been published 

(Otero-Abad and Torgerson, 2013), and so only a brief description of some of the most 

commonly recognised risk factors will be given here. It should be noted that different 

studies measured different outcomes – with some measuring coproantigen positivity, 

some measuring ‘true’ positivity, and others measuring worm burdens. All of these 

outcomes will be grouped together here as ‘canine infection’, although they do 

represent slightly different measures. The most commonly identified risk factor for 

canine infection with E. granulosus was access to infected offal – whether this is due to 

purposeful feeding of offal/home slaughtering (Moro et al., 1999; Buishi et al., 2006; 

Acosta-Jamett et al., 2010), lack of restraint/free roaming (Buishi et al., 2005a, 2006; 

Guzel et al., 2008; Huang et al., 2008; Mastin et al., 2011), proximity to possible infected 

offal (Bchir et al., 1987; Wang et al., 2001; Elshazly et al., 2007; Acosta-Jamett et al., 

2010), or dog type (farm/working dogs and stray dogs frequently had a higher 

probability of positivity) (Moro et al., 1999; Shaikenov et al., 2003; Buishi et al., 2005b; 

Inangolet et al., 2010). A number of studies have also found that older dogs had a 

lower probability of positivity than younger dogs, which may suggest some degree of 

acquired immunity (Sharifi and Zia-Ali, 1996; Torgerson et al., 2003c; Buishi et al., 

2005b, 2006; Inangolet et al., 2010; Acosta-Jamett et al., 2010). As expected, a lack of 

knowledge about echinococcosis and a lack of recent praziquantel dosing were also 

associated with increased probability of positivity (Buishi et al., 2005a; b; Huang et al., 

2008; Acosta-Jamett et al., 2010).  

Studies of E. multilocularis infection in domestic dogs have found similar risk factors 

to those for E. granulosus: with free roaming (Budke et al., 2005a; Ziadinov et al., 

2008), proximity/access to intermediate hosts (Wang et al., 2007, 2010; Antolová et al., 

2009)  and other spatial factors (Dyachenko et al., 2008) commonly identified. 
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1.4 Echinococcus control 

1.4.1 Methods of control 

The main eim of echinococcosis control is generally to reduce the number of human. 

In the remote communities where human echinococcosis is most common, the 

logistics of the required surveillance and provision of suitable medical and surgical 

care can present a considerable barrier to effective control of human infection. As a 

result, control of human echinococcosis in these areas is often achieved by 

management of the definitive host (usually domestic dogs) in an attempt to perturb 

the parasite lifecycle (Craig et al., 2000).  Praziquantel is an isoquinolone drug which 

causes tetanic muscle contractions and damage to the tegument of adult Echinococcus 

worms, resulting in worm detachment and death (Conder et al., 1981; Elsheikha et al., 

2011). Treatment is effective against all species and strains of adult Echinococcus spp 

(although it does not appear to be particularly effective against metacestode forms 

(King and Mahmoud, 1989)). To date, there have been few reports on the development 

of resistance amongst Echinococcus spp to praziquantel, as has been reported for 

many other anthelmintic drugs. Despite these promising attributes, instigating an 

effective praziquantel dosing scheme is very challenging. Praziquantel has no residual 

action on worms, meaning that repeated treatment is required to prevent reinfection, 

and it has been shown that when dosing is not supervised by trained operatives, 

control of Echinococcus is often not achieved (likely due to dogs not being dosed in 

these cases) (Craig and Larrieu, 2006). Additionally, this approach will generally not 

impact upon unowned dogs in the community, which can also be a source of infection 

(Inangolet et al., 2010). Techniques involving slow-releasing praziquantel (such as 

subcutaneous implantation of praziquantel-loaded bars (Wei et al., 2005; Cheng et al., 

2010)) have been attempted, but can be labour intensive and have not yet been fully 

evaluated. Despite these issues, praziquantel dosing of dogs has become the 

predominant control strategy for domestic dog-associated echinococcosis worldwide 

(Economides and Christofi, 2000; WHO/OIE, 2001f; Jenkins, 2005; Craig et al., 2007b; 

Zhang et al., 2009, 2015; Larrieu and Zanini, 2012; Barnes et al., 2012).  
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Dog population management – in particular, culling campaigns – are also commonly 

used as a method of control of disease and other problems associated with dogs 

(Deplazes and Hegglin, 2004; Kachani and Heath, 2014). These campaigns are most 

commonly focussed on reducing the risks of dog bites and rabies, especially due to 

unowned dogs, but can also be applied to echinococcosis control. A number of 

methods of euthanasia are still in use worldwide, including strychinine and cyanide 

poisoning which are currently considered inhumane and so should be avoided 

(Tasker, 2008; OIE, 2010).  More humane methods of culling include shooting with a 

free bullet (with an accurate shot to the head, which will require an experienced 

marksman) and use of injectable anaesthetics (Tasker, 2008). A well-organised culling 

campaign based tailored to the community in question and carried out with full 

knowledge of the local community can be an effective supplemental method of 

controlling echinococcosis, but culling as a control strategy remains controversial 

(Johansen and Penrith, 2009). Therefore, it is important to work with a community 

when controlling echinococcosis. Dog culling is a contentious subject, and 

implementing culling campaigns without the consent of a community can risk 

damaging relations and result in reduced ongoing cooperation (Atema and Hiby, 

2015). 

Another method of control is vaccination of intermediate livestock hosts against 

E. granulosus (Lightowlers et al., 1996, 1999; Heath et al., 2003, 2004; Zhang and 

McManus, 2008). Although this is relatively labour intensive and would not be 

expected to have an immediate effect on the risk of human infection, this can be a 

useful adjunct to dog dosing campaigns (Torgerson, 2003b, 2006a). It is also possible 

that it can be combined with ongoing livestock vaccination schemes (such as for 

brucellosis or peste des petits ruminants), in order to minimise logistical and financial 

hurdles. 

Methods of infection control in the small mammal intermediate hosts of 

E. multilocularis are much less effective and more challenging than in other hosts. 

Culling campaigns are likely to have considerable ecological repercussions, and may 

have little effect on the levels of infection in definitive hosts (since some species of 
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intermediate host are predated preferentially despite their population density 

(Hegglin et al., 2007; Raoul et al., 2010)). One possible avenue for exploration is 

modifying land management practices in order to indirectly alter intermediate host 

population densities (Viel et al., 1999; Wang et al., 2006b; Giraudoux et al., 2006; 

Hegglin and Deplazes, 2013). 

Reducing human exposure directly would not be expected to impact upon the natural 

lifecycle of the parasite, but could be a useful adjunct to control schemes. Education of 

people about the risks from dogs, encouraging avoiding contact with dogs, and/or 

ensuring hands are washed after dog contact are also potential strategies for directly 

reducing transmission to humans. Additionally, increasing public knowledge of the 

risks would be expected to increase compliance with other control measures. As such, 

education campaigns and community involvement are important tools in the control 

of echinococcosis. However, the failure of most control schemes using this as a sole 

method of control suggests that it should be combined with other approaches in order 

to be effective at actually reducing Echinococcus burdens (Craig and Larrieu, 2006).  

1.4.2 Economics of control 

The economics of Echinococcus control have a considerable impact on the ultimate 

effect of a control scheme, as any control scheme will need to be run for a considerable 

period of time (in some cases, indefinitely) in order to be effective (Craig and Larrieu, 

2006). Also, due to the time lag between infection and development of disease in 

humans or livestock, the economic benefits would not be expected to become 

apparent immediately. Although praziquantel is relatively cheap, the logistical costs 

required for effective (i.e. supervised) dosing, and the relatively high frequency and 

long durations required for an effective dosing scheme can make a dosing scheme 

expensive. Another challenge associated with the long periods required is that of 

public perception: if a control scheme is successful, then the perception of risk in the 

community will tend to decrease and so will demand for control. However, ending an 

effective control scheme prematurely can result in a complete failure of control, as was 

seen in Wales (Craig and Larrieu, 2006). 
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As E. granulosus affects both livestock and humans, its control may become 

economical from both a health (measured using Disability-Adjusted Life Years 

(DALYs)) and a financial perspective. A study modelling the control of brucellosis 

(which also has effects on both livestock and humans) in Mongolia suggested that a 

benefit-cost ratio of around 3.2 (with a net present value of around US$ 8million) can 

be achieved, as benefits result from both reduced human infection and from reduced 

animal losses (Roth et al., 2003). A study on the eastern Tibetan plateau (where 

E. granulosus and E. multilocularis are coendemic) suggested that combined 

anthelmintic dosing of livestock and praziquantel dosing of dogs offered a financial 

benefit, as well as being cost-effective for reduction of DALYs, especially if cost sharing 

between the public health and agricultural sectors was attempted (Budke et al., 

2005c). The economics of E. granulosus control from a financial perspective have been 

reviewed elsewhere (Torgerson et al., 2000, 2001; Torgerson and Dowling, 2001; 

Torgerson, 2003a). 

1.5 Echinococcus ecology 

1.5.1 Overdispersion 

Overdispersion has been described as ‘one of the most important features of the 

epidemiology of helminth parasites’ (Anderson and May, 1991a), and therefore a 

considerable amount of attention has been (and continues to be) focussed on this 

aspect of parasite ecology (Anderson and May, 1978, 1985; May and Anderson, 1978; 

Pacala and Dobson, 1988; Quinnell et al., 1995, 1990; Medley, 1992; Barbour and 

Kafetzaki, 1993; Grenfell et al., 1995; Shaw et al., 1998; Galvani, 2003; Churcher et al., 

2005). Overdispersion is a characteristic of the relationship between many metazoan 

parasites (‘macroparasites’) and their hosts, and is broadly described as the situation 

where parasite biomass appears to be ‘clustered’ within certain hosts. In the most 

extreme possible example of an overdispersed distribution, the entire parasite 

population would be found within only one host (Anderson and Gordon, 1982) 

(conversely, ‘underdispersion’ would be seen in each host in the population harboured 

the exact same number of parasites). The host-parasite relationship, as with any 
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ecological relationship, can be best understood by study at the population level 

(Crofton, 1971a) – in particular, through investigation of the frequency distribution of 

parasite burdens amongst different hosts (Shaw and Dobson, 1995). Given that counts 

of parasite burdens could be considered to follow a Poisson distribution if randomly 

distributed between hosts, overdispersion can be framed in a statistical context, where 

it represents the situation in which the variance of this frequency distribution is 

greater than the mean (in a Poisson distribution, the mean and the variance would be 

expected to be equal). This would appear visually as a distribution with a strong right 

skew – such as that shown in figure 1.3, which is a (theoretical) right-skewed 

distribution of burdens with a mean of 114 and a variance of 30,000. 

 

Figure 1.3. Representation of theoretic right-skewed distribution, as is commonly 

observed with parasite burdens 

It has been noted that ‘it is difficult, if not impossible…to try to reach conclusions 

about the biological mechanisms generating a particular distribution pattern by 

simply examining the resultant observed distribution of parasite numbers per host’ 

(Anderson and May, 1978). Despite this, identification of overarching patterns and 

relationships is a key area of exploration in parasite ecology (Poulin, 2007). A power 
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law relationship (see later) has been identified between the mean and the variance of 

various animal and plant populations (Taylor, 1961) as well as in host-parasite 

relationships (Shaw and Dobson, 1995; Poulin, 2007, 2013). However, most work on the 

investigation of overdispersion in parasitism is based upon the use of mathematical 

models (Anderson and May, 1985; Medley, 1992). Early mathematical modelling work 

suggested that overdispersion conferred some stability on macroparasites (Anderson 

and May, 1978), with further work suggesting that the relationship between the mean 

and the variance (the ‘dispersion’), rather than aggregation per se, was the key factor 

in generating this stability (Adler and Kretzschmar, 1992; Kretzschmar and Adler, 

1993). A wide range of mathematical models have been developed over the last 40 

years to further investigate overdispersion in parasite distribution - a full description 

of which is beyond the scope of the current report. However, some general points will 

be made below. 

Particular consideration has been given to identification of the processes which give 

rise to overdispersion, with particular attention focussed on variations of the construct 

of stochasticity in host susceptibility to infection, and stochasticity in host exposure to 

infection (such as ‘clumping’ in the number of parasites acquired per infection) 

(Anderson et al., 1978; Anderson and Gordon, 1982; Anderson and May, 1985; Quinnell 

et al., 1990). These are examples of ‘environmental stochasticity’, and result from 

variation in the transmission processes above and beyond those solely expected due to 

the natural probabilistic nature of these events (described as ‘demographic 

stochasticity’) (Anderson and Gordon, 1982; Engen et al., 1998). A recent study 

investigated the relative effects of these processes by modelling the infection process 

as the product of ‘encounters’ (i.e. the number of times a host is exposed to parasites) 

and ‘successes’ (which could be considered to represent the number of parasites 

acquired per exposure). When these two processes were allowed to vary randomly 

(representing demographic stochasticity only), an overdispersed distribution resulted 

– suggesting that demographic stochasticity alone is able to produce overdispersion 

(Gourbière et al., 2015). The generating processes underlying overdispersion are of 

potential importance when considering the effect of control, since variation in host 
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susceptibility has been proposed to result in increased parasite stability compared to 

that resulting from clumping of infection (Rosà and Pugliese, 2002). However, the 

interplay of other related processes such as density dependence within hosts would 

also be expected to have an effect on stability and should also be considered when 

investigating parasite overdispersion (Keymer, 1982; Churcher et al., 2005). 

1.5.2 Spatial overdispersion 

The Russian parasitologist and geographer Yevgeny Pavlovsky developed the original 

concept of spatial epidemiology in the 1930s, which he described as ‘landscape 

epidemiology’ (Pavlovsky, 1966). This concept can be summarised in three general 

points: firstly, zoonotic and vector-borne diseases (i.e. those not dependent solely on 

human-human contact) tend to be geographically clustered; secondly, this clustering 

results from variation in the physical or biological environment; and thirdly, if these 

factors can be mapped, then current and possible future risk of disease can be 

predicted (Ostfeld et al., 2005). Despite the apparent ease with which these general 

concepts can be described, the consequence of this idea is that study of diseases 

should be conducted at the landscape level, accounting for both static and dynamic 

characteristics of the relevant factors (along with their interactions) at a variety of 

spatial scales. Application of these concepts to a number of case studies of zoonotic 

disease resulted in the identification of ten important principles requiring 

consideration when studying diseases from this ‘ecological’ perspective. These were 

summarised in a figure, reproduced here as  Figure 1.4 (Lambin et al., 2010), and were 

as follows: 

1. Landscape attributes may influence transmission 

2. Presence, area and spatial configuration of habitats affect the spatial 

distribution of transmission risk 

3. Transmission risk also depends on the connectivity of vector and host habitats 

4. In the case of multi-host pathogens, the landscape can be considered a proxy 

for specific associations of different hosts 

5. Pathways of pathogen transmission between different hosts and the 

environment are of importance to spatial variations in transmission risk 
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6. Different factors acting at different scales affect the spatiotemporal emergence 

and distribution of transmission 

7. Landscape and meteorological factors affect the emergence, the spatial 

concentration, and the spatial diffusion of transmission risk 

8. Land use as well as land cover is of importance to transmission risk 

9. The relationship between land use and the probability of contact between 

vectors and animal hosts and human hosts is influenced by land ownership 

10. Human behaviour is a crucial controlling factor of vector-human contacts, and 

therefore transmission  

 

Figure 1.4. ‘Ecological’ determinants of pathogen transmission. From Lambin et al., 

2010. Numbers relate to the ten principles identified in the text. 

These general concepts are equivalent to those identified in the ecological study of 

organisms. This is logical, as infection and disease can be considered to be a form of 

ecological interaction between pathogens and hosts, and is likely to be particularly 

true in the case of macroparasites – the study of which exists on the frontier of 

epidemiology and ecology. As expected, spatial aggregation is commonly seen with 
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macroparasites (May, 1978; Woolhouse and Chandiwana, 1989; Shaw and Dobson, 

1995), and (similarly to aggregation within hosts) is thought to stabilise parasite 

dynamics to some degree, possibly in association with variability in acquisition of 

parasites by hosts (Pacala et al., 1990; Hassell et al., 1991a; Holt and Hassell, 1993; 

Brockhurst et al., 2006). Indeed, it has been suggested that the majority of the spatial 

variation observed may be due more to variation in acquisition than it is to some ‘true’ 

underlying spatial variation in parasite location per se (Reeve et al., 1994). In 

particular, it has been found that fragmented yet interconnected distribution of 

smaller populations (i.e. a ‘metapopulation’) can stabilise parasite presence (Hassell et 

al., 1991b; Bonsall et al., 2002).  

1.5.3 Echinococcus in definitive hosts 

Early experimental work on E. granulosus in domestic dogs was conducted by 

Gemmell, Lawson and Roberts (Gemmell et al., 1986c), which found that worm 

burdens were overdispersed. Linear relationships were found between the log of the 

number of protoscolices administered and the resultant log mean worm burden, and 

between the log mean worm burden and the log of the dispersion (based on the ratio 

of the variance to the mean of the burden distribution), for each dose of protoscolices 

administered.  

Due to the challenges associated with obtaining a sufficient sample size to effectively 

evaluate levels of overdispersion (Kapel et al., 2006), many studies are based upon 

field data rather than experimental data. These studies have invariably found evidence 

of overdispersion, with the majority of the population harbouring no Echinococcus 

worms, and the majority of the total Echinococcus biomass being found in a small 

proportion of the infected population (Jenkins and Morris, 1991; Hofer et al., 2000; 

Stieger et al., 2002). Where E. granulosus data were fitted to the negative binomial 

distribution, estimates of the negative binomial constant, k, were generally less than 

0.1, suggesting considerable overdispersion (Jones and Walters, 1992; Ming et al., 1992; 

Gasser et al., 1994; Parada et al., 1995; Eslami and Hosseini, 1998; El-Shehabi et al., 

2000; Lahmar et al., 2001; Torgerson et al., 2003c; Torgerson and Heath, 2003; Budke et 
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al., 2005b; Azlaf et al., 2007; Ziadinov et al., 2008). A similar result was seen in 

E. multilocularis infections of domestic dogs (Budke et al., 2005b; Ziadinov et al., 2008) 

and foxes (Hofer et al., 2000). 

1.5.4 Echinococcus in intermediate hosts 

Many studies of echinococcosis in intermediate hosts have investigated the numbers 

of cysts. However, it should be remembered that the infectious agent in the 

metacestode stage of Echinococcus spp is not the cyst, but the protoscolices within the 

cyst. Another issue with the investigation of cyst burdens is the fact that not all cysts 

will be fertile; meaning that there are two possible measurements to consider: the 

total number of cysts and the number of viable cysts. Experimental work by Gemmell, 

Lawson and Roberts found that both the total number of cysts and the number of 

viable cysts were overdispersed. As was the case for canine infection, broadly linear 

relationships between the log of both total cyst and viable cyst numbers and the log 

number of eggs administered were found, and a positive correlation between the 

number of cysts (either total or viable) and the dispersion were also observed. It 

should be noted however that only three different doses of eggs were administered to 

these animals, so the numbers of data points are few (Gemmell et al., 1986c). 

Interestingly, a study of the number of cysts in sheep of different ages in Tunisia found 

evidence of overdispersion, but that the degree of overdispersion reduced as age 

increased – meaning that aggregation of cysts was lower in older animals (Lahmar et 

al., 1999). This ‘density dependence’ was hypothesised to result from either space 

constraints limiting further cyst development or immunological effects. A study of the 

protoscolex burden of Kyrgyz sheep also found evidence of considerable 

overdispersion, with older sheep constituting only 28% of the sampled population, but 

containing around 80% of all protoscolices (Torgerson et al., 2009a). 

Despite the difficulties in sampling rodent hosts of E. multilocularis (as described 

above), overdispersion of this parasite has also been observed in these hosts (Roberts 

and Aubert, 1995; Burlet et al., 2011). This has been suggested to result from spatial 

factors, and mathematical modelling of E. multilocularis infection of intermediate 
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hosts and foxes has suggested that landscape characteristics resulting in 

heterogeneous inactivation of eggs (rather than variation in host location or 

susceptibility) were most able to reproduce empirical data (Hansen et al., 2004), which 

would also be expected to ultimately result in a heterogeneous distribution of infected 

foxes (Hansen et al., 2003). 

1.5.5 Spatial factors associated with echinococcosis 

It is well known that spatial heterogeneity is an important characteristic of 

E. multilocularis infection in human accidental hosts (Craig et al., 2000; Danson et al., 

2003, 2006; Graham et al., 2005; Giraudoux et al., 2006, 2013a; b), and in fox definitive 

hosts (Staubach et al., 2001; Stieger et al., 2002; Pleydell et al., 2004). Evidence of 

spatial aggregation in domestic dog infection with E. multilocularis has also been 

found (Wang et al., 2012). Little is known of the spatial risk factors for infection in wild 

intermediate hosts due to the difficulties inherent in diagnosis of infection in these 

animals, but as mentioned above, differential egg survival (for example, due to soil 

moisture content) has been postulated to be of importance (Hansen et al., 2003, 2004).  

Attempts to identify risk factors for the spatial distribution of E. multilocularis have 

identified suggested that different processes may operate at different spatial scales 

(Tackmann et al., 1998; Danson et al., 2003; Giraudoux et al., 2003; Graham et al., 

2005). The majority of the work investigating this has been conducted in China, where 

three spatial scales have been suggested: the continental scale; the more local 

‘regional’ scale; and the very narrow ‘patch’ scale. At the continental scale, the 

presence of E. multilocularis is generally associated with climatic and landscape factors 

– in particular, the presence of grassland and meadows (Zhou et al., 2000; Danson et 

al., 2003; Giraudoux et al., 2013a). However, within these areas, at the regional scale, 

parasite presence appears to be associated with the presence and the dynamics of 

suitable intermediate hosts. The ratio of optimal to marginal habitat has been 

suggested to be associated with the population dynamics of small mammals (Lidicker, 

2000), and may therefore be of relevance to the risk of E. multilocularis infection 

(Giraudoux et al., 2003, 2013b). In particular, E. multilocularis risk to humans has been 
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found to be associated with areas of low intermediate host biodiversity and therefore a 

predisposition to large population increases (Giraudoux et al., 2013a). One 

consequence of this relationship is that human activities which affect small mammal 

dynamics and distribution, such as deforestation, may have a considerable impact 

upon the risk of E. multilocularis infection (Giraudoux et al., 2003, 2006; Yang et al., 

2012). It has been suggested that echinococcosis in intermediate hosts is stabilised 

through the “metapopulation” of hosts, which links processes occurring at different 

spatial and temporal scales, as shown in figure 1.5. 

 

Figure 1.5. Processes affecting Echinococcus transmission stability. Taken from 

Giraudoux et al., 2006. 

Despite the associations identified above, overdispersion and clustering of 

E. multilocularis presence at the narrow spatial scale remains, making the exact 

distribution of the parasite difficult to predict. This has been postulated to result from 

a combination of variation in the presence of suitable intermediate hosts (with 
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clumped infections); movement of infected foxes (also with clumped infections); and 

environmental-associated variation in egg persistence due to microclimatic factors 

(Hansen et al., 2000, 2003, 2004; Danson et al., 2003, 2006; Giraudoux et al., 2006; 

Shaikenov, 2006).  

1.6 Mathematical modelling of Echinococcus  

1.6.1 Modelling macroparasites 

The study of the epidemiology of helminths has undergone periods of growth and 

relative decline over the last 100 years (Anderson and May, 1985). Early developments 

in the field were likely facilitated by the availability of relatively crude diagnostic 

techniques such as faecal egg detection using flotation and microscopy. However, in 

order to fully understand helminth epidemiology, data relating to worm burden is 

required. This results from the fact that most helminths do not reproduce directly 

within their host, meaning that the burden will often reflect the balance of parasite 

immigration (infection) and death. This can result in a variety of different patterns of 

infection within individual hosts – with effects upon the processes such as 

transmission and morbidity.  

A wide variety of modelling approaches are available which can lend an insight into 

the biology and epidemiology of helminths, but only mathematical models of 

helminth population dynamics will be described here. These can broadly be classified 

into two types: differential equation models and agent-based models, of which most 

focus here will be placed upon the former. Differential equations can be used to model 

the instantaneous rate of change of the variables of interest (rather than focussing on 

modelling these directly) over time. The advantage of this strategy is that time is 

modelled in a continuous nature, rather than as a series of discrete time steps (which 

could result in compounding errors over time and can become overly complex in the 

case of large systems). 

The central aim of mathematical modelling (as with any form of modelling) is the 

representation of a system or process in a simplified form. There has been some 
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debate about the validity of mathematical modelling when applied to more complex 

systems such helminth infections. As described above, in order to effectively model 

these systems, the burden of infection should be accounted for. Other challenges 

relate to aggregation of parasites (both within hosts and spatially), the presence of 

more complex lifecycles (such as those requiring intermediate hosts), and dioecy in 

some cases. It has been argued, however, that in order to definitively state that 

mathematical modelling approaches are unsuitable, they should be attempted and 

evaluated for the system in hand. The presence of apparently complex dynamical 

processes per se is not proof that these were themselves generated by complex 

processes (indeed, it has been shown that complex patterns can be generated from 

relatively simple models (May, 1976; Bolker and Grenfell, 1993)). Additionally, some 

relevant aspects of epidemiological processes may be identified from simple models 

even if the complete system under study cannot be accurately modelled. As such, it is 

important to remember that mathematical models are specialised tools with a defined 

purpose – whether this is to shed light on data gaps; predict the future (such as the 

evaluation of possible control schemes); identify characteristics of a host:parasite 

relationship; or to quantify what would otherwise be unmeasurable (such as the force 

of infection).  

Although the concept of mathematical modelling is therefore appropriate, 

parameterising a model can be challenging – and this is a particular issue for helminth 

infections. Despite the importance of incorporating burden data into a model, as 

described above, these data are rarely available. Therefore, a large amount of work to 

date (especially in the case of helminth infections of humans) has relied upon the use 

of indirect measures of abundance such as faecal egg counts. As these do not offer an 

exact estimate of the true burden, this should be accounted for in the analytic process 

or in the final interpretation of the results.  

It is important to consider the limitations of models when interpreting their results: in 

the words of George Box, “Essentially, all models are wrong, but some are useful” (Box 

and Draper, 1987), and the quality of any model is largely dependent on the quality of 

the data used for parameterisation and validation (Hollingsworth, 2009). 
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1.6.2 Modelling overdispersion 

As described by Crofton, ‘one of the few methods of expressing a quantitative 

relationship between hosts and their parasites is by the use of frequency distributions’ 

(Crofton, 1971a), and a variety of frequency distributions are available to enable this 

(although robust methods of fitting data to these distributions have only relatively 

recently become available). Earlier attempts to represent overdispersion in parasite 

burdens have either log-transformed burden estimates (Wilson et al., 1996), or 

concentrated on the use of the negative binomial distribution (Fisher, 1941; Bliss and 

Fisher, 1953; Crofton, 1971a; Roberts et al., 1986; Shaw and Dobson, 1995; Budke et al., 

2005b) or its limiting form, the Log series distribution (Williams, 1964; Crofton, 1971a).  

Because the numbers of Echinococcus worms present, unlike with many 

macroparasitic infections, can commonly reach into the thousands (Gemmell et al., 

1986c), early fitting procedures usually required grouping of the data in order to fit to 

a negative binomial distribution (O Carroll, 1962). One way to view the negative 

binomial distribution is as a compound probability distribution, created from a 

Poisson distribution where the rate parameter, lambda, itself follows a gamma 

distribution (Boswell and Patil, 1970). Although the use of the negative binomial is a 

largely phenomenological construct, it can be considered in biological terms, resulting 

from environmental stochasticity in the infection pressure (through whatever 

mechanism – whether variation in host susceptibility or in clumping of infection). If 

the “force of infection” (and therefore the ‘expected’ infection burden) could be 

considered to vary between the individual hosts in a population according to a gamma 

distribution, then the resultant parasite burdens would be expected to follow a 

negative binomial distribution. This is because the actual parasite burden (for any 

given force of infection) would be expected to vary according to a Poisson distribution 

(i.e. demographic stochasticity, conditional on the force of infection), and the Poisson 

‘sampling’ of a gamma process results in the negative binomial. Despite this broadly 

biologically plausible background (although there is little evidence to suggest that the 

distribution of infection pressure varies according to a gamma distribution), fitting a 

negative binomial distribution to the data will sometimes result in the 
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underestimation of the number of negative individuals (possibly associated with the 

inability of a Poisson distribution to have a rate parameter of zero). One approach to 

remedy the issue of these ‘excess zero’ counts is through the use of zero-inflated 

distributions, such as the zero-inflated negative binomial distribution (Heilbron, 1994; 

Nødtvedt et al., 2002; Denwood et al., 2008; Ziadinov et al., 2010). The sources of zero 

burdens (whether ‘true’ zeros, due to animals which have never been infected, or 

‘false’ zeros, due to animals which have been exposed but not infected or which are 

infected but not detected) can also be modelled in some cases, which may help 

improve the accuracy and interpretability of the results obtained (Tyre et al., 2003; 

Martin et al., 2005; Zuur et al., 2009).  

An alternative, more biologically sound, approach to modelling parasite burdens has 

been proposed by Heinzmann and others (Heinzmann et al., 2009, 2011a), and uses 

‘compound processes’: a compound mixed Poisson process for intermediate host 

infection, and a shot-noise process for definitive host infection. The compound mixed 

Poisson process for intermediate hosts estimates the number of cysts acquired by time 

point 𝑡 as the sum of 𝑁𝑡 independent and identically distributed random variables (𝑆𝑗). 

𝑁𝑡 is a mixed Poisson process with a randomly distributed rate parameter which 

represents the number of ‘clumps’ of eggs ingested on pasture up to time 𝑡. The 𝑆𝑗s 

follow a zero-truncated negative binomial distribution, and describes the number of 

successfully established cysts per ingested clump. (Heinzmann et al., 2009). The shot 

noise process for definitive hosts similarly models infection with ‘clumps’ of parasites 

(protoscolices in this case) over time, but allows a decrease in parasite burden over 

time. The model structure remains very similar to the compound mixed Poisson 

process described above, but the rate parameter of the Poisson process (representing 

the number of clumps of protoscolices acquired by time 𝑡) was fixed, and the 

independent and identically distributed random variables (representing the number of 

successfully established worms per ingested clump of protoscolices) were first 

multiplied with a decay function (representing the loss of parasites over the time 

period in question). When fitted to data from Kazakhstan, China and Libya, the 

number of parasites per clump was best described using a lognormal distribution, and 
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the decay function of established parasites was best described using either a Poisson 

or a Uniform process. (Heinzmann et al., 2011a). 

1.6.3 The Reproduction Ratio 

The basic reproduction ratio, 𝑅0, is very commonly used in epidemiological analysis in 

order to quantify the transmissibility of a pathogen, and in particular whether it is 

likely to spread within a population. In the case of microparasite epidemiology, it can 

be broadly defined as the average number of secondary cases resulting from each 

infection in a totally susceptible population (Anderson and May, 1982). However, in 

cases where heterogeneities in transmission are present in the population, the 

estimation of 𝑅0 can become more challenging. As a result of this, the 𝑅0 has been 

defined mathematically as the ‘dominant eigenvalue of a positive linear operator’ 

relating the number of infected hosts in one generation to that in the next generation 

(Diekmann et al., 1990). Estimation of 𝑅0 for agents with a complex lifecycle (where 

transmission may be mediated through vectors or intermediate hosts), and/or 

macroparasites (where the burden of infection is of relevance to transmission) is also 

challenging (Roberts and Grenfell, 1991, 1992; Mollison et al., 1994; Heesterbeek and 

Roberts, 1995). Anderson and May defined 𝑅0  for macroparasites as ‘the average 

number of offspring … produced throughout the reproductive life span of a mature 

parasite that themselves survive to reproductive maturity in the absence of density-

dependent constraints on population growth’ (Anderson and May, 1991b), which is the 

same interpretation given to the quantity 𝑄0 developed by Roberts, Grenfell and 

Heekesterbeek (Roberts and Grenfell, 1991; Heesterbeek and Roberts, 1995). In a 

mathematical construct, the ‘𝑄0’ is the dominant eigenvalue of a matrix (𝐾) of 

transmission functions, raised to the power 𝑘, where 𝑘 is the number of stages in the 

model (Heesterbeek and Roberts, 1995; Roberts and Heesterbeek, 1995). As well as 

retaining the threshold properties of 𝑅0  (which is arguably the main output of 

importance), this approach allows the incorporation of different stages of parasite, 

different types of hosts and/or different parasites (e.g. competition between similar 

species), as required, in the model. 
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Further discussion of 𝑅0 estimates, and methods of estimation for Echinococcus spp, is 

included in the appendix (A1). 

1.6.4 Models of Echinococcus granulosus 

1.6.4.1 Modelling parasite burden 

The first model of definitive host infection with Echinococcus focussed on modelling 

the numbers of worms in individuals (Roberts et al., 1986), in a similar fashion to the 

first mathematical model of helminth infection (described in “Symbiose, Parasitisme 

et Évolution” by Kostitzin (1934) (Anderson and May, 1985)). Details of this original 

‘Roberts, Lawson and Gemmell’ model will be given here (Roberts et al., 1986), as this 

model (or slight variations of it) is still commonly used. This model considered four 

general host statuses for definitive hosts: infected, noninfected, immune (𝑦) and 

nonimmune (𝑥). Within infected individuals, the number of worms (𝑛) was explicitly 

modelled: 

𝜕𝑥𝑛

𝜕𝑡
=  −(𝛽 + 𝜇)𝑥𝑛 +  𝛽(1 − 𝛼𝑛−1)𝑥𝑛−1 + 𝛾𝑦𝑛 

𝜕𝑦𝑛

𝜕𝑡
=  −(𝛾 + 𝜇)𝑦𝑛 +  𝛽𝛼𝑛−1𝑥𝑛−1 

The differential equations for the numbers of uninfected dogs over time are as follows: 

𝜕𝑥0

𝜕𝑡
=  −𝛽𝑥0 + 𝛾𝑦0 + 𝜇 ∑ 𝑥𝑛 +  𝜇𝛿𝑛 ∑ 𝑦𝑛

∞

𝑛=1

∞

𝑛=1

 

𝜕𝑦0

𝜕𝑡
= 𝛾𝑦0 + 𝜇(1 − 𝛿) ∑ 𝑦𝑛

∞

𝑛=1

 

Where 𝑥  denotes susceptible dogs, and 𝑦  denotes immune dogs.  𝑛  is the worm 

burden; 𝛽 is the infection pressure; 𝜇 is the rate of complete parasite loss (including 

host death); 𝛼 is the probability of development of immunity upon exposure; and 𝛿 is 

the probability of loss of immunity upon loss of parasites (or replacement of dead 
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hosts with naive individuals). 𝛾 denotes the rate of loss of immunity amongst immune 

animals, and is related to 𝛽 (since reinfection is likely to boost immunity). 𝑡 may 

either represent time (if creating an overall model of transmission) or age of dog (in a 

closed population, where the relationship between age and level of infection is being 

investigated). 

In the absence of immunity, the following equations can be used: 

𝜕𝑥𝑛

𝜕𝑡
=  −(𝛽 + 𝜇)𝑥𝑛 +  𝛽𝑥𝑛−1 

𝜕𝑥0

𝜕𝑡
=  −𝛽𝑥0 + 𝜇 ∑ 𝑥𝑛

∞

𝑛=1

 

For the investigation of infection in intermediate hosts, it can be assumed that 

infections are permanent (i.e. 𝜇=0), meaning that the rate of change in the mean 

number of cysts (𝑚) over time (𝑡) can be modelled as the product of the infection 

pressure (in terms of the rate of acquisition of parasites in the absence of density-

dependent constraints) and the proportion of susceptible individuals. If it is assumed 

that the infection pressure is constant, the differential equation can be formulated as: 

𝜕𝑚

𝜕𝑡
=  (

𝛾ℎ

𝛾 + 𝑎ℎ
) +  

𝑎ℎ2

𝛾 + 𝑎ℎ
(𝑒𝑥𝑝−(𝛾+𝑎ℎ)𝑡) 

This model differentiates between exposures and infections, due to the clustered 

nature of infection. 𝑁  is the number of parasites which become established per 

exposure; 𝛽 is the infection pressure in terms of rate of exposure (which varies with 

time); ℎ is the infection pressure in terms of rate of acquisition of parasites (ℎ = 𝑁𝛽); 

and 𝑎 is the rate of development of immunity per parasite (𝑎 =  𝛼
𝑁⁄ ). 

1.6.4.2 Estimating model parameters from field data 

Estimation of model parameters can be achieved by fitting age-stratified field data 

collected at an endemic ‘steady state’ to a model using maximum likelihood or 
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Bayesian techniques. This approach is known as ‘catalytic modelling’, as movement 

between groups (such as the ‘uninfected’ group to the ‘infected’ group) takes at a 

particular rate (in this example, the ‘force of infection’), which is not dependent upon 

the numbers of individuals in the groups themselves (Muench, 1959). This will 

therefore differ from the ‘force of infection’ used in transmission models, which will 

depend upon the numbers of infectious and susceptible individuals in the population.  

For both intermediate and definitive hosts, the instantaneous rate of change in the 

proportion of susceptible animals over time is estimated as the balance of the rate of 

loss of immunity amongst immune individuals (1 − 𝑆) and that of acquisition of 

immunity amongst susceptible individuals (𝑆) (this equation can also be obtained by 

summing the equations for 𝑥𝑛 and 𝑥0 above): 

𝜕𝑆

𝜕𝑡
=  𝛾(1 − 𝑆) − 𝑎ℎ𝑆 

This differential equation can be solved to obtain the following formula for estimating 

the proportion of susceptible animals by age 𝑡 (Torgerson et al., 2003c): 

𝑆(𝑡) =  
1

𝛾 + 𝑎ℎ
(𝛾 + 𝑒𝑥𝑝−(𝛾+𝑎ℎ)𝑡) 

As the rate of change of parasite abundance (𝑀) over time will be related to the 

balance of the basic infection pressure (ℎ) and the parasite death rate (𝜇), this can be 

represented by the following differential equation: 

𝜕𝑀

𝜕𝑡
= ℎ𝑆 − 𝜇𝑀 

These two equations can be combined and solved to give an equation for the expected 

variation in the number of parasites over time (Torgerson et al., 2003c): 

𝑀(𝑡) =  
𝑎ℎ2

(𝛾 + 𝑎ℎ)(𝜇 − 𝛾 − 𝑎ℎ)
(𝑒𝑥𝑝−(𝛾+𝑎ℎ)𝑡 − 𝑒𝑥𝑝−𝜇𝑡) +

𝛾ℎ

𝜇(𝛾 + 𝑎ℎ)
(1 − 𝑒𝑥𝑝−𝜇𝑡) 

In the absence of immunity, 𝑎=0 and the equation becomes: 
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𝑀(𝑡) =  
ℎ

𝜇
(1 − 𝑒𝑥𝑝−𝜇𝑡) 

This approach was used in a Bayesian framework to parameterise a transmission 

model of E. granulosus in Kazakhstan, which suggested that farm dogs were 

developing immunity, whereas village dogs were not (Torgerson et al., 2003c). A 

similar strategy was used in Kyrgyzstan, incorporating the results of a number of 

imperfect tests in order to evaluate test characteristics and estimate the force of 

infection for E. granulosus (and E. multilocularis) in dogs (Ziadinov et al., 2008).  

1.6.4.3 Modelling prevalence of infection 

Due to the highly overdispersed nature of infection in both intermediate and 

definitive hosts, attempting to model the prevalence of infection rather than the 

parasite burden is not ideal. However, in some cases it is not possible to obtain 

suitable estimates of worm burden and so only prevalence data may be available. A 

model based upon the burden model described above has been developed, and has 

been applied to field data in China and Kyrgyzstan (Budke et al., 2005b; Ziadinov et al., 

2008). Infected dogs are classified in one of two groups: 

𝜕𝑌

𝜕𝑡
=  −(𝛾 + 𝜇)𝑌 +  𝛼𝛽𝑆 

𝜕𝑋

𝜕𝑡
=  −(𝛽 + 𝜇)𝑋 +  𝛽(1 − 𝛼)𝑆 +  𝛾𝑌 

Where 𝑌 represents the proportion of dogs which are infected but immune, and 𝑋 

represents those which are infected but susceptible to further infection. The total 

proportion of dogs which are susceptible to further infection (whether already 

infected or not) is represented as 𝑆 and is modelled in the same fashion as described 

earlier: 

𝜕𝑆

𝜕𝑡
=  𝛾(1 − 𝑆) − 𝛼𝛽𝑆 
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The prevalence of infection, 𝑃(𝑡), can be either estimated as 𝑋(𝑡) + 𝑌(𝑡), or estimated 

directly in the absence of immunity from the following equation: 

𝑃(𝑡) =  
𝛽

𝛽 + 𝜇
(1 − 𝑒𝑥𝑝−(𝜇+𝛽)𝑡) 

The equation used to estimate susceptibility above can also be adjusted in order to be 

used for prevalence data as follows: 

𝑆(𝑡) =  
1

𝛾 + 𝛼𝛽
(𝛾 + 𝛼𝛽𝑒𝑥𝑝−(𝛾+𝛼𝛽)𝑡) 

1.6.4.4 Simulation modelling 

Individual-based simulation models which operate at the level of the individual 

animals involved in the transmission cycle have also been developed in an attempt to 

explicitly account for stochasticity in individual infection with E. granulosus 

(Heinzmann et al., 2011b; Huang et al., 2011). These model individual animals as 

autonomous units and aim to reproduce the complex behaviour of these units using 

simple rules, and so differ from the population-based differential equation methods 

described above. The first of these models is based on the compound process models 

described earlier (Heinzmann et al., 2009, 2011a; b), which were fitted to data from 

Kazakhstan (Torgerson et al., 2003b; c). Independent models of the infection of sheep 

by eggs and of the infection of dogs by protoscolices were linked by simulating a 

contact pattern between the two hosts in order to create a complete simulation model. 

Dogs become exposed through ingesting sheep offal, with the infection risk (and 

therefore the proportion of dogs becoming infected/reinfected in each time step) 

being related to the number of fertile cysts, modelled as one minus the probability 

that none of the cysts are fertile. Sheep become exposed through contact with dog 

faeces, with the probability of contact with faeces selected for each individual sheep at 

birth/start of simulation from a gamma distribution. Infectivity of canine faeces is not 

assumed to be related to the worm burden. Deaths of sheep and dogs result in removal 

from the population and replacement with a new uninfected animal of age zero. 
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Model fit and parameter estimation was based on the component models, and the 

model was used to evaluate the possible effects of praziquantel dosing of dogs and of 

seasonality on transmission of infection (Heinzmann et al., 2011b).  

The model by Huang (Huang et al., 2011) was a largely theoretical model using 

parameters (often point estimates) from other studies and surveys. Dogs, intermediate 

hosts, parasites and egg contaminations were specified as the agents of interest, each 

of which functions according to defined characteristics (including survival, ageing and 

acquisition of infection). The model also includes ‘objects’ (in this case, the number of 

egg contaminations and the number of deaths of infectious intermediate hosts), which 

are not autonomous but are dependent upon the status of the agents, and the 

environment (a community in western Sichuan province). The model was used to 

investigate the possible effects of a wide range of control strategies. 

1.6.5 Models of Echinococcus multilocularis 

The approaches used in the modelling of E. multilocularis depend to some degree on 

whether the intention is to capture the sylvatic cycle which exists between foxes and 

small mammals, or the semi-domestic cycle between domestic dogs and small 

mammals (no models to date have attempted to capture both simultaneously, which is 

an issue addressed in chapter 7 of the current thesis). 

One of the first models of the E. multilocularis sylvatic cycle attempted to combine the 

dynamics of infection in both foxes and voles with transmission between these species 

in one formulation (Roberts and Aubert, 1995). This model is based upon the following 

structure: 
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Where λ𝑓 is the infectious contact rate for foxes, λ𝑣 is the infectious contact rate for 

voles, 𝜏𝑓  is the prepatent period (time to worm maturity) in foxes 

(=1
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑚𝑠⁄ ), 𝜏𝑣 is the prepatent period (time to cyst maturity) 

in voles (= 1
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑚𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑦𝑠𝑡𝑠⁄ ) , 𝜂  is the duration of egg production 

(= 1
𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦 𝑜𝑓 𝑎𝑑𝑢𝑙𝑡 𝑤𝑜𝑟𝑚⁄ ) , 𝛿𝑣  is the mortality rate of voles, 𝛿𝑓  is the 

mortality rate of foxes, and 𝑁𝑓 is the density of foxes. 

More recent models have also attempted to incorporate the spatial and/or temporal 

factors which can affect the distribution and location of intermediate and definitive 

hosts. Temporally-explicit models have accounted for the variability in parasite and 

host survival at different times of the year (Ishikawa et al., 2003; Ishikawa, 2006; 

Nishina and Ishikawa, 2008), and spatially-explicit models have accounted for either 

the locations of different hosts types in relation to each other (Hansen et al., 2003, 

2004), or habitat suitability from an ecological perspective (Milner-Gulland et al., 

2004). One challenge faced when constructing a spatial model is deciding on which 

spatial scale the model should be developed: intermediate hosts often have a smaller 

home range than definitive hosts, and so some models have been developed based on 

the definitive host range. However, working at the level of the range of a single 

definitive host will result in the modelling of few (possibly only one) definitive hosts. 

As variation in susceptibility between hosts is suspected to be an important factor 

affecting the distribution of parasites within hosts, ideally a reasonable number of 
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hosts should be modelled (Morgan et al., 2004). However, increasing the scale of the 

model will also increase the computational load. A major challenge for spatially 

explicit modelling of E. multilocularis therefore lies in finding a suitable balance 

between these two issues.  

The most commonly adopted approach to the modelling of the semi-domestic cycle of 

E. multilocularis is to treat it in a similar way to E. granulosus, as described above. 

Although no models to date have attempted to model transmission dynamics over 

time, the force of domestic dog infection with E. multilocularis in Tibetan and Kyrgyz 

communities has been estimated in the same way as that described for E. granulosus 

above (Budke et al., 2005b; Ziadinov et al., 2008).  

1.6.5.1 Compartmental models 

The models developed by Roberts and Ishikawa are forms of compartmental model, 

which rather than specifically modelling the numbers of worms, classify fox infection 

into compartments (uninfected, prepatent infection, infectious for the Roberts model 

(Roberts and Aubert, 1995); uninfected, prepatent infection, peak egg production, and 

declining egg production for the Ishikawa model (Ishikawa et al., 2003); non-infectious 

and infectious for the Vervaeke model (Vervaeke et al., 2006)). This approach is 

similar to the simple ‘SEIS’ (susceptible, exposed, infectious, recovered) 

compartmental model used for microparasites such as bacteria and viruses. In the case 

of the Ishikawa model, both juvenile foxes and adult foxes are also modelled, with 

different mortality rates. Similarly, voles were classified as belonging to one of two or 

three compartments: uninfected, infected but not yet infectious (left out in the final 

form of the Vervaeke model), and infectious (Roberts and Aubert, 1995; Vervaeke et 

al., 2006), with five different age classes (0-1 months; 1-2 months; 2-3 months; 3-4 

months; > 4 months) considered in the Ishikawa model. The Vervaeke model included 

a compartment for abundance of eggs in the environment (Vervaeke et al., 2006), and 

the density of foxes and voles were varied according to season in the Ishikawa model 

(Ishikawa et al., 2003). More recently, stochastic models of transmission have been 

developed in order to account for individual variation between foxes (Nishina and 
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Ishikawa, 2008). A compartmental model classifying foxes as either infected or 

uninfected was recently incorporated with an economic model for the evaluation of 

fox anthelmintic dosing schemes (Kato et al., 2010). 

1.6.5.2 Measuring the force of infection 

A recent model used a Bayesian framework to identify the force of vulpine infection 

with E. multilocularis from prevalence data. Conceptually, this was an extension of the 

force of infection models described earlier (Budke et al., 2005b; Ziadinov et al., 2008), 

but estimated transmission parameters (probability of immunity upon exposure, 

number of insults per unit time, rate of immunity loss, parasite mortality rate) directly 

from the application of the system of differential equations to age-stratified prevalence 

data, rather than using the algebraic solutions of the differential equations. Using this 

technique, a number of different models were compared (with different immunity and 

force of infection structures). This model suggested seasonal and geographical 

differences in the force of infection, with periodic increases in the force of infection 

during the winter months and higher forces of infection for foxes in non-urban areas 

(Lewis et al., 2014). 

1.6.5.3 Mean worm burden models 

Although these can be considered a form of compartmental model, they will be 

described separately here as the formulation is quite different. A common approach to 

modelling transmission of other helminths is based upon the mean worm burden 

(MWB), as first described by Macdonald (1965) (despite a number of challenges 

incorporating overdispersion into this framework (Gurarie et al., 2010)). However, this 

approach has not been commonly adopted in the modelling of echinococcosis. The 

only examples of models for echinococcosis based upon the MWB at the population 

level are the models of Takumi and others (Takumi and van der Giessen, 2005; Takumi 

et al., 2008). These models describe the dynamics of E. multilocularis infection by 

modelling the parasite biomass within a 1km2 area, divided according to the stage of 

the parasite: total eggs, total protoscolices, and total adult worms. The latter two 



48 

 

estimates are adjusted according to the number of available hosts in order to estimate 

the “mean worm” or “mean protoscolex” burden within these hosts. As this model 

therefore functions at the level of the parasite rather than the host, it is able to directly 

incorporate a lag period prior to patency for both intermediate and definitive host 

infection as well as the persistence of eggs in the environment – making it useful for 

evaluation of potential control schemes (Takumi and van der Giessen, 2005). However, 

it does not account for seasonality in infection, the age structure of the population, or 

density dependence in transmission. This model was developed further in chapter 7 of 

the current thesis in order to incorporate the E. granulosus transmission cycle, along 

with some seasonal effects. Another modified version of the model included a spatial 

spreading component of the model, allowing the spread of infection from an initial 

focus to be modelled (Takumi et al., 2008).  

1.6.5.4 Simulation models 

The ‘Echi’ model developed by Hansen is a spatially explicit simulation model 

combining individual- and grid- based modelling approaches, allowing it to 

incorporate both spatial factors and individual fox movements (Hansen et al., 2003, 

2004). Despite incorporating a lot of information, the general rules governing the 

model remain relatively simple. This model has been useful in both the evaluation of 

different control measures (Hansen et al., 2003) and in the investigation of various 

characteristics relevant to the transmission of E. multilocularis (Hansen et al., 2004). 

The importance of incorporating spatial factors in modelling of the sylvatic 

(fox-based) cycle E. multilocularis is well-recognised (Milner-Gulland et al., 2004; 

Morgan et al., 2004; Pleydell et al., 2004), but the importance of this in the case of the 

semi-domestic cycle is less clear. 

1.6.5.5 Metapopulation models 

Another spatially-explicit model framework, developed by Milner-Gulland et al, used 

an ecological approach derived from the concept of metapopulation dynamics in order 

to investigate the transmission of E. multilocularis (Milner-Gulland et al., 2004). 
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Metapopulations are ‘populations of populations’, which although spatially separated 

by unsuitable habitat types, interact on some level (Hanski, 1991, 1998). Although this 

concept was originally introduced from an ecological perspective, it can also be 

applied to infectious pathogens and parasites (Hess, 1996; Grenfell and Harwood, 

1997). The Milner-Gulland model adapted this approach to E. multilocularis by 

modelling populations of parasites (whether in the adult, metacestode or egg form) 

with hosts (and the environment, in the case of eggs) treated as habitats. Therefore, 

like the Takumi models (Takumi and van der Giessen, 2005; Takumi et al., 2008), this 

model operates at the parasite level rather than the host level. 

1.6.6 Modelling coinfection 

Coinfection between two parasite species may need to be explicitly modelled if there is 

evidence to suggest that infection with one affects infection with the other. In 

particular, the presence of immunity in sheep towards T. hydatigena has been 

suggested to act to reduce infection with T. ovis, despite the 𝑅0 of this species being 

greater than unity (Roberts et al., 1987). In this particular case, the effect of a control 

scheme including education campaigns aimed at reducing the feeding of sheep offal to 

dogs was to reduce exposure to T. hydatigena, which resulted in a loss of natural 

immunity against this parasite. The effects of this were, firstly, more infections with 

T. hydatigena in older animals, and secondly, an increase in infection with T.  ovis. 

Alongside this, infection with E. granulosus, which does not appear to be considerably 

regulated by immunity, was pushed towards the extinction steady state (Roberts et al., 

1987). Although coinfections between E. granulosus and E. multilocularis are relatively 

rarely reported and tend to affect different areas in the small intestine (Thompson and 

Eckert, 1983; Gemmell et al., 1986c; Lymbery et al., 1989; Morishima et al., 1999a; 

Umhang et al., 2011), this may also need to be considered when developing a 

mathematic model for areas where both species are coendemic. 
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1.6.7 Modelling control measures 

As mentioned earlier, the intended output of a large number of the mathematical 

models of Echinococcus spp transmission is some idea of the effect of various control 

measures. Integration of these control measures within a model require that various 

model parameters are adjusted. Precise adjustments will depend on the form of the 

model in question (Torgerson, 2003b, 2006a; Takumi and van der Giessen, 2005; 

Heinzmann et al., 2011b; Huang et al., 2011), and so will not be described in detail here. 

However, it is worthy of note that whilst most models have evaluated the effect of 

control strategies on parasite dynamics, one model has explicitly combined a 

transmission model and an economic model in order to identify economically optimal 

strategies for control  in different settings and at different time points during the 

control process (Kato et al., 2010). 

1.6.8 Complexity, self-organised criticality and fractal analysis 

Echinococcus spp transmission (as with many systems in epidemiology and ecology 

(Anderson, 1994; Horwitz and Wilcox, 2005)) has a number of characteristics of a 

‘complex system’, with numerous interconnected objects and processes operating at 

different scales in a nonlinear manner (for example, through nesting and feedback 

loops) (Anderson, 1994; Goldenfeld and Kadanoff, 1999; Horwitz and Wilcox, 2005; 

Pearce and Merletti, 2006). Parasites exist within their hosts, which themselves exist 

within a local ecosystem, which exists within the regional ecosystem, and so on. Each 

of these levels do not exist in isolation, and changes at one level can have 

repercussions in the others. As such, study of the constituent components in isolation 

is unlikely to be able to fully capture the full dynamics of transmission, even if 

relatively simple rules and patterns are apparent in the system when viewed at an 

appropriate scale. This “nested” relationship has been demonstrated through spatial 

analysis of risk factors for E. multilocularis infection in people: at the continental scale, 

climatic conditions and availability of grassland is of importance; at the local scale 

(kilometres), proximity of human populations to suitable landscapes is important; at 

the patch scale (villages/households), human behaviour is important; and at the 
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individual person level, genetic and immunological factors are important (Danson et 

al., 2003). Considering this, attributing any form of ‘causality’ to infection with 

E. multilocularis is challenging, as it would be expected to differ at different spatial 

levels. Indeed, the concept of ‘causality’ in epidemiological studies is currently 

undergoing a transition, with a move away from the identification of individual-level 

exposure-outcome relationships towards a more ‘ecological’ interpretation, set in a 

wider scale (such as at the societal level) (Susser and Susser, 1996a; b; Rothman and 

Greenland, 2005). This paradigm shift is of particular relevance in the presence of 

complexity, where traditional techniques are likely to give variable and potentially 

misleading results (Glattre and Nygård, 2004; Glattre et al., 2012). 

The concept of ‘criticality’ is increasingly being applied to epidemiological and 

ecological scenarios, since it provides a possible explantion for two commonly 

observed characteristics: threshold behaviour and spatial ‘patchiness’ in distribution 

(Pascual and Guichard, 2005). Criticality describes the situation in which large 

systemic changes can occur in a system in response to small changes in the underlying 

system conditions, and commonly results in a scale-invariant distribution of outcomes 

(that is, a power law relationship between the size of event and the frequency of 

event). Different forms of criticality have been identified, and the form may have 

considerable repercussions for potential control measures (Zinck et al., 2011). For 

example, ‘self-organising criticality’ was introduced by Per Bak and others (Bak et al., 

1987; Bak and Chen, 1991) as a possible method whereby complexity arises in nature. 

Under this theory, dynamic systems naturally evolve into a ‘critical’ state, which is 

only barely stable, and can therefore destabilise given particular conditions. The 

example given in the original paper was that of a pile of sand, with grains being 

continually added to it. The pile will tend to exist at a particular height and slope (any 

less than which, and more sand can be added; any greater than which, and 

‘avalanches’ of sand of varying magnitudes will occur). It can be shown that a power 

law relationship exists between the size of ‘avalanches’ and the frequency of these 

events (Bak et al., 1987). However, other forms of criticality have been proposed which 

are not self-organising, and which may develop in response to changes or variation in 
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underlying parameters and conditions (Pascual and Guichard, 2005; Zinck et al., 2011). 

This difference is of great importance to the predicted efficacy of control measures, 

since a system governed by self-organising criticality would tend towards the critical 

state regardless of intervention, whereas other systems may be more conducive to 

particular interventions, depending upon their position in relation to the criticality 

‘threshold’. This issue is discussed largely in relation to wildfire dynamics in Zinck et 

al. (2011), but equally could apply to epidemiological issues. There are possible 

parallels between the concept of criticality and that of the endemic persistence of a 

pathogen in a population (including ‘endemic stability’, whereby high levels of 

infection conversely can result in lower incidence of clinical disease (Gemmell, 1978; 

Coleman et al., 2001)). In the endemic/hyperendemic situation, there is little change in 

levels of infection over time, yet a disturbance to the system (for example, with 

praziquantel dosing, in the case of hyperendemic cysticercosis in New Zealand 

described above (Gemmell, 1978)) can lead to large changes in infection levels.  

One method of investigating possible complexity is through fractal analysis, which is 

based upon investigation of the ‘scale invariance’ often seen in complex systems. This 

entails identifying a pattern within the ‘fractal dimension’ which may be a more 

appropriate method of description of the situation than those available using more 

traditional Euclidean or Gaussian techniques. The fractal dimension can be viewed as 

a form of scaling parameter which measures the ‘complexity’ in a system – whether the 

scaling is on a spatial, temporal or some other level. The first example of this concept 

was described by Benoit Mandelbrot, in an investigation of the ‘self-similar’ nature of 

the British coastline. The central concept identified here was that the measured length 

of the British coastline will vary according to the length of the item used to measure it, 

due to differences in fine ‘resolution’ at different spatial scales. The fractal dimension 

describes the relationship between the measured length of the coastline and the 

length of the measuring tool used, with higher values (closer to 2) indicating a greater 

effect of the length of the tool on the measured length (and therefore greater 

‘complexity’), and lower values (closer to 1) suggesting lower complexity (Mandelbrot, 

1967). This same concept can also be applied in a non-geographical context, for 
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example to epidemiology (Skjerve and Glattre, 2006; Glattre et al., 2008, 2012) and 

physiology and medicine (Goldberger, 1996).  

One characteristic of fractal processes is self-similarity, which may present as a power 

law relationship: a scale-invariant relationship between two quantities which presents 

as a linear function on the logarithmic scale. The possible power law relationship 

governing parasite distributions in hosts has been known for some time, with 

Anderson and May reporting that ‘it is not uncommon to find 80 per cent or more of 

the macroparasites contained within 20 per cent or fewer of their human hosts’ 

(Anderson and May, 1991c), followed by the assertion being substantiated through 

empirical analysis (Woolhouse et al., 1997; Perkins et al., 2003). This ‘80:20’ pattern is 

characteristic of a Pareto distribution: a type of power law relationship. Identification 

of the form of these relationships may be of great relevance to statistical testing and 

modelling of Echinococcus spp, and may also assist in establishing whether there is 

evidence of self-organised criticality in Echinococcus transmission. Attempts were 

made during the current thesis to investigate some of these concepts further, 

especially in the context of coproELISA OD distributions. However, time constraints 

prevented comprehensive investigation, and therefore this area of exploration is 

briefly mentioned as an area worthy of potential further investigation in chapter 8 

only. 

1.7 Kyrgyzstan 

1.7.1 Background 

Kyrgyzstan (Кыргызстан) is a poor, mountainous country in Central Asia. It is totally 

landlocked and is bordered to the north by Kazakhstan, to the southeast by China, to 

the southwest by Tajikistan, and to the west by Uzbekistan. As over 90% of the 

country is mountainous (Schmidt, 2001), seminomadic pastoralism was traditionally 

practiced in order to make full use of the pastureland available, with people and their 

livestock moving between higher and lower ground with the seasons (Schillborn-van 

Veen, 1995). The country became part of the Russian empire in the late eighteenth 
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century, and subsequently became a constituent republic of the Soviet Union. 

Seminomadic practices remained common in rural communities despite attempts at 

settlement under soviet rule (Farrington, 2005). Independence from the Soviet Union 

was declared in 1991, and was followed by economic and political instability as 

attempts were made to develop a democratic republic. Since independence, the 

proportion of ethnically Kyrgyz inhabitants in the country has gradually increased, 

leading to nationalism and intermittent outbreaks of sectarian violence. Kyrgyzstan 

was the first of the Commonwealth of Independent States to join the World Trade 

Organisation, since which time, exports of gold, cotton, electricity and tobacco have 

supported economic recovery (World Bank, 2005). Although many of the inhabitants 

of Kyrgyzstan live in urban centres, agriculture remains an important economic sector, 

and market reforms since independence have been more progressive than in other ex-

Soviet states. Nomadic or semi-nomadic pastoralism remains a way of life in rural 

communities, and is the optimal method of livestock husbandry in many areas due to 

the poor quality of the pasture and the mountainous environment. However, due to 

the costs associated with movement of livestock to summer pastureland (‘Jailoo’), 

there has been a trend towards sedentarisation in recent years. As livestock ownership 

has remained common, this led to overgrazing of the land around many settlements 

(World Bank, 2006; Liechti, 2012), and reduced use of Jailoos (Dörre and Borchardt, 

2012). Despite most people (especially in the south of the country) being nominally 

Muslim, dogs are often tolerated due to their guarding (and, to a lesser degree, 

herding) abilities. However, they are often minimally cared for.  

The Alay valley is a high mountain valley (around 3,000m above sea level) situated in 

the south of Kyrgyzstan (see figure 2.1); bordered to the south by the Pamir 

Mountains, to the north by the Alay Mountains, and connecting the Xinjiang Uyghur 

Autonomous Region of the People’s Republic of China in the east with Tajikistan in 

the west. Most villages in the Alay Valley were founded in the 1940s as supply bases for 

the predominantly Kyrgyz settlement of Murghab in modern day Tajikistan 

(Paarmann, 2009). Although the valley lies within the oblast (province) of Osh (Ош 

областы), the valley is administratively divided into two raions (districts), with the 
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westernmost portion of the valley forming Chon-Alay raion (Чоң-алай району; 

capital: Daroot-Korgon/Дароот-коргон), and the eastern portion (along with the area 

within the Alay Mountains to the north of the valley) forming Alay raion (Алай 

району; capital: Gulcha/Гүлчө). Roads to the Alay valley have until recently been of 

relatively poor quality, although recent restoration work has been conducted in order 

to improve these as the area provides a useful overland link between Osh and both 

China and Tajikistan. One mountain pass must be crossed before reaching the Alay 

valley from Osh or Gulcha, which in winter and poor weather may become 

non-traversable. 

A discussion of healthcare and livestock management in Kyrgyzstan is provided in the 

appendix (A2). 

1.7.2 Echinococcosis in Kyrgyzstan 

Passive surveillance of hospital records and active surveillance through ultrasound 

scanning campaigns have suggested that cystic and alveolar echinococcosis (CE and 

AE, respectively) is highly endemic in Kyrgyzstan (Torgerson et al., 2003a; Kuttubaev 

et al., 2004; Usubalieva et al., 2013), and has been increasing in prevalence in recent 

years. This is thought to be associated with the loss of controls over animal ownership 

and slaughter, reduced coordinated surveillance and management of animal disease, 

and increased poverty since independence from the soviet regime (Torgerson et al., 

2003a; Torgerson, 2013). The long latent period between infection and clinical CE or 

AE has resulted in a ‘lag period’ before the increases in infection seen around the time 

of independence have become apparent. In response to this (and increases in the 

prevalence of a number of other zoonotic diseases such as brucellosis (Pappas et al., 

2006)), a World Bank–funded project aiming to improve surveillance and control of a 

number of zoonotic pathogens (including Echinococcus spp) has recently been 

implemented in the country (World Bank, 2005, 2010). Whilst the majority of the 

interventions (foot and mouth disease, anthrax, brucellosis, sheep pox, peste des petits 

ruminants, tuberculosis) were targeted at livestock and were based on vaccination, the 

echinococcosis control scheme targeted domestic dogs and was based largely on 
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regular praziquantel dosing of domestic dogs every three months by local government 

veterinarians and paraveterinarians. Other components of the echinococcosis control 

scheme were based upon education, dog registration, stray dog control, use of 

slaughterhouses and vaccination of lambs with the EG95 vaccine (WHO, 2011). 

Studies of canine infection have recently been conducted in Naryn oblast in the centre 

of the country, which have demonstrated high levels of infection (Ziadinov et al., 

2008), and recent surveillance has also suggested that there are high levels of human 

infection with AE in the Alay Valley (Professor Bakhadyr Bebezov, Kyrgyz-Russian 

Slavic University, personal communication) (Torgerson et al., 2015). This led to a 

Kyrgyz-led expedition to the Alay valley in order to conduct ultrasound surveillance of 

the inhabitants of two villages in Alay raion: Sary-Mogol (Сары-Могол; on the border 

with Chon-Alay raion), and Taldu-Suu (Талды-Суу; around 7km to the east of Sary-

Mogol). These villages were selected as some of the first reported cases of human 

infection in the area came from Sary-Mogol, and this scanning campaign found high 

prevalences of AE in both communities. It is noteworthy that these villages are some 

of the most isolated from central administration in Kyrgyzstan, with Sary-Mogol 

situated around 140km from the raion capital, and around 200km from the oblast 

capital. Until recently, Sary-Mogol was nominally owned by Tajikistan, and was leased 

to Kyrgyzstan (as the vast majority of its occupants were Kyrgyz). However, although 

still Tajik in appearance, the village is now in full Kyrgyz ownership, and its 

inhabitants are almost invariably ethic Kyrgyz.  

1.8 Aims of current study 

1.8.1 Study setting 

As described above, an epidemic of human echinococcosis appears to be developing in 

Kyrgyzstan, due to factors associated with independence from the Soviet Union over 

20 years ago (Torgerson et al., 2003a), with indications that Kyrgyzstan may be a 

substantial focus of E. multilocularis transmission in particular (Usubalieva et al., 2013; 

Giraudoux et al., 2013b; Torgerson et al., 2015). Despite this, relatively little work has 
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been conducted in Kyrgyzstan, especially in the southern districts of Osh province, 

which appear to have a high prevalence of human alveolar echinococcosis (Professor 

Bakhadyr Bebezov, Kyrgyz-Russian Slavic University, personal communication). 

Following on from pilot studies in the area, a decision was made to conduct a 

multidisciplinary study of echinococcosis in the area: focussing on canine infection, 

human infection and rodent infection/distribution. Along with the original two 

villages of Sary-Mogol and Taldu-Suu, two additional villages were visited: Kashka’Suu 

(Кашка’Суу) and Kara-Kabak (Кара-Кабак); both of which are located to the west of 

Sary-Mogol and Taldu-Suu, in the adjacent district of Chon-Alay. Although these 

villages are further from Osh (around 220km), they are considerably closer to their 

raion capital, Daroot-Korgon (around 40km away).  

In May and October 2012, dogs in these four villages were registered and faecal 

samples collected. Dogs in Sary-Mogol and Taldu-Suu were given praziquantel, and 

those in the other two did were not given praziquantel. Coincidentally, a World Bank–

funded canine praziquantel dosing campaign (World Bank, 2010) was commenced in 

the area in late 2012, and offered an opportunity to investigate the epidemiology of 

Echinococcus spp in this area. Praziquantel dosing continued in all four villages under 

this campaign, which continued for the remainder of the study (until September 2014). 

Faecal samples were collected from dogs in all four villages twice annually over this 

time. 

1.8.2 Study aims 

The central aims of the current study are to investigate the epidemiology of 

Echinococcus spp infection amongst dogs in rural communities in the Alay valley, 

evaluate an ongoing praziquantel-based control scheme, and identify possible 

methods of improving surveillance and control in remote areas such as those in the 

Alay valley. This latter focus is the major thesis aim, since whilst surveillance is well 

accepted to be a central component of any control scheme, little work to date has 

investigated how to achieve this in the remote, rural communities most impacted by 

echinococcosis, and where obtaining high quality data will be challenging. 



58 

 

1.8.3 Chapter description 

Chapter 2 describes the collection, testing, and initial interpretation of faecal samples 

over the 28 months of the study. All samples underwent coproantigen ELISA testing 

(Deplazes et al., 1992; Allan et al., 1992), which gives an optical density (OD) value for 

each sample. Evaluation and identification of methods of interpretation of this output 

was the main focus of chapters 3 and 4. A selection of samples also underwent 

coproPCR testing, using three primers: two of which have been previously described 

(Boufana et al., 2013), and one of which was developed as part of the current work (van 

Kesteren, 2015). A method of combining PCR results with coproELISA results was 

investigated in chapter 5, and both PCR and ELISA data were interpreted 

independently in chapter 6. 

Chapter 3 describes an evaluation of different strategies for determination of a cut-off 

value for coproELISA OD data. This was evaluated using faecal samples collected from 

dogs of known Echinococcus status (as identified by necropsy) in Xinjiang province 

(van Kesteren et al., 2015). Different approaches were then applied to a number of 

samples of unknown status in order to evaluate the effects of differences in cut-off on 

the estimated coproprevalence and the adjusted true prevalence of infection. 

Chapter 4 develops a novel strategy for interpretation of coproantigen ELISA data 

which does not depend upon dichotomisation, using a Bayesian mixture model. This 

approach uses a panel of concurrently tested samples of suspected negative status to 

estimate the probability of any individual sample being a true ‘positive’ sample, and 

also gives an estimate of the true prevalence of infection amongst the samples tested. 

This output is then combined with the output of a Bayesian logistic regression in order 

to allocate a score relating to the expected log worm burden to each sample. This 

approach therefore can allow extra information to be obtained from the coproantigen 

test.  

Chapter 5 describes a method of combining the results of ELISA and PCR testing 

whilst also identifying types of dogs in the study villages. A multiple correspondence 
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analysis was conducted on the individual dog data collected prior to the start of the 

control scheme in order to broadly identify dog types, and associations between these 

and the results of diagnostic testing were identified. It is hoped that strategies such as 

this will help to better characterise communities and improve ongoing surveillance 

and control. 

Chapter 6 describes a logistic regression analysis of trends in coproantigen and 

coproPCR prevalence over time, during the control scheme. As individual dog identity 

was not known for individual samples, data were aggregated by household, which may 

offer a useful strategy for evaluation of control schemes in areas with multi-dog 

households where it is not possible to sample individual dogs directly. 

Chapter 7 details a framework for a novel mathematical model of Echinococcus 

transmission in areas coendemic for both E. granulosus (sensu lato) and 

E. multilocularis, incorporating seasonal effects and prepatent periods prior to fertility 

in the intermediate and definitive host. Whilst most of the chapter discusses the 

model framework and parameterisation, simulation outputs for trends over time in 

the presence and absence of dog dosing strategies are shown and described.  

Chapter 8 gives an overview of the thesis, drawing general conclusions from the 

previous chapters and details possible strategies for ongoing surveillance and control 

in Kyrgyzstan. Areas worthy of further work and investigation are also described. 
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Chapter 2: Research Methodology 
 

“What we observe is not nature itself, 

but nature exposed to our method of questioning.”  

Werner Heisenberg (1901 – 1976) 
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2.1 Kyrgyz study sites 

As described in the previous chapter, the Alay Valley was selected for the current 

study due to a high reported prevalence of human alveolar echinococcosis (AE) in the 

area (Professor Bakhadyr Bebezov, Kyrgyz-Russian Slavic University, personal 

communication; Usubalieva et al., 2013). The Alay valley is bordered to the north by 

the Alay Mountains, and to the south by the Pamir Mountains. The Pamir Mountains 

form the border with Tajikistan, which also borders the valley to the west, and to the 

east is the border with Xinjiang province, China. Two study communities were initially 

selected, based upon reports of high human AE prevalences: Sary-Mogol (Сары-

Могол [39.68°, 72.89°]) and Taldu-Suu (Талды-Суу [39.70°, 72.98°]). Two additional 

communities were selected based upon proximity to the primary study villages: 

Kashka’Suu (Кашка’Суу [39.64°, 72.67°]), and Kara-Kabak (Кара-Кабак [39.66°, 

72.72°]). Figure 2.1 shows the location of Kyrgyzstan in the Eurasian landmass, and the 

locations of the four study communities (and associated settlements). These four 

communities all lie along a major road, the A372, which runs the length of the Alay 

valley, from the Chinese border to the Tajik border. 
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Figure 2.1. Location of Kyrgyzstan (top) and location of areas of interest within the country 

(bottom). In the lower map, the four study villages are shown in red, and are (from west to 

east) Kashka’Suu, Kara-Kabak, Sary-Mogol and Taldu-Suu. Raion (district) capitals are shown 

in green: Daroot-Korgon (west) and Gulcha (east). The oblast (province) capital, Osh, is shown 

in blue. Map imagery provided by Natural Earth (naturalearthdata.com) 
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2.2 Kyrgyz sample collection 

Villages were first visited in May 2012 (van Kesteren et al., 2013), by a team of 

researchers from the University of Salford, the University of Zurich, the University of 

Franche-Comté and Bishkek Veterinary Institute. In Sary-Mogol (SM) and Taldu-Suu 

(TS), researchers travelled from house to house, georeferenced each occupied house 

using a Garmin® GPS60 unit, and administered an oral questionnaire in Kyrgyz or 

Russian with the person who answered the door (or the head of the household, if this 

was preferred). Details of the questionnaires administered are given in the appendix 

(A3). The “household questionnaire” contained information regarding household 

demographics, behaviour and dog and livestock. If dogs were owned and not based 

permanently in mountain pasture (“Jailoo”), a copy of the “dog questionnaire” was 

administered for each dog. This contained questions about dog demographics, dog 

management and recent praziquantel treatment. An attempt was also made to collect 

a faecal sample from each dog registered. If dogs were present, an attempt was made 

to collect faeces per rectum (by experienced veterinarians). However, if dogs were not 

present, could not be restrained, or had recently defaecated, samples were collected 

from the floor (with attempts made to ascertain faeces ‘ownership’ with the owner 

wherever possible). Fresh samples were obtained wherever possible due to the risk of 

DNA degradation in older samples. Samples were divided upon collection, with some 

stored in 35ml universal  tubes containing 0.3% PBS Tween (Fisher  Scientific,  

Loughborough,  UK) buffer with 10% formalin (sourced locally) for coproantigen 

ELISA; and some stored in bijoux  tubes or 15ml polypropylene  tubes containing 70% 

ethanol (sourced locally) for PCR testing. Finally, a random sample of 40 households 

from Sary-Mogol and Kashka’Suu and 20 households from Taldu-Suu were selected to 

receive an additional questionnaire relating to healthcare and economic issues. 

If dogs were present at the time of visit, they were dosed with praziquantel at a dosage 

of 5mg/kg. If dogs were not present (either in an unknown location or temporarily at 

summer pasture), an estimate of their weight was given by the owner and a suitable 

number of tablets were left with the owner for dosing upon return.  
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The same process was repeated in Kashka’Suu (KS) and Kara-Kabak (KK), but without 

praziquantel dosing (with the exception of a number of dogs in KK selected to 

undergo arecholine purgation). In KS, households were selected in groups of six due to 

proximity to a number of randomly generated points within the village boundaries (as 

estimated visually from recent ’SPOT’ satellite imagery taken from Google Earth). A 

broad estimate of the required sample size for each of these two villages were 

estimated using the equation: 𝑛 =
𝑃(1−𝑃)

𝑑2 . Using an expected coproantigen prevalence 

(𝑃) of 20%, and 95% confidence intervals (1.96 × 𝑑) of ±10%, this was estimated at 

around 60-70 dogs. As population estimates for the villages were not available prior to 

the visit, no adjustment for finite population size was made, but approximately 25% of 

the households in KS were ultimately visited, and due to its small size all households 

in KK were visited. Maps of all sampled dogs in each of the four villages are shown in 

figures 2.2 and 2.3. 

In TS and KK, a total of 33 dogs (convenience sampled with the assistance of the local 

veterinarian) underwent arecoline purgation. Owners restrained the dogs whilst they 

were administered a 0.4% solution of arecoline hydrobromide in water orally (7mg 

arecoline/kg body weight), which was repeated if there was no purge within 30 

minutes.  The initial faecal void was collected and stored as described above, and the 

purge was filtered and closely inspected for adult worms by an experienced 

veterinarian (Iskender Ziadinov). Due to logistical difficulties, it was not possible to 

match the purges collected from dogs in TS to individual households, although this 

was possible in KK. As a public health precaution, all purged dogs (including those in 

Kara-Kabak) were given praziquantel. 
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Figure 2.2. Locations of dogs sampled from Sary-Mogol (west) and Taldu-Suu (east) in May 2012. 

Imagery from Google Earth (satellite image taken 20
th

 Jan, 2012 from SPOT 5 satellite) 

 

Figure 2.3. Locations of dogs sampled from Kashka’Suu (west) and Kara-Kabak (east) in May 

2012. Imagery from Google Earth (satellite image taken 20
th

 Jan, 2012 from SPOT 5 satellite) 
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A second visit to the field site was made in October 2012 by two researchers from the 

University of Salford and one veterinarian from the Bishkek Veterinary Institute. Each 

household in SM, TS and KK which reported owning dogs during the previous visit 

was revisited again (including any household which had not been visited previously), 

and all dogs present were identified. Those in SM or TS were dosed with praziquantel 

as before (either supervised dosing, or tablets left with the owner). In KK, any dogs 

which had previously undergone arecholine purgation were also given praziquantel. A 

shortened version of the previous questionnaire was also administered (see appendix), 

and faecal samples were collected from all available dogs. Due to the difficulties 

previously experienced with rectal sampling, a decision was made to collect most 

faecal samples from the floor during this visit. Due to a large culling campaign in the 

village, fewer dogs were present at this visit, and therefore all available dogs were able 

to be registered and sampled in these three villages.  

A random sample of households in KS were visited in order to sample any dogs 

present and conduct a questionnaire for each dog. Households were selected 

randomly from a sampling frame of houses generated from imagery collected by the 

‘SPOT5’ satellite in 2010 (images taken from Google Earth), and households were 

sequentially visited until around 60 dogs had been sampled. Households without dogs 

were recorded but did not undergo a questionnaire.  

Following the October visit, a World Bank -funded praziquantel dosing scheme was 

commenced in the area. Raion capitals provided praziquantel and a consent form for 

canine dosing (detailing the effect of the tablet and required faeces management 

measures following dosing), although local veterinarians and paraveterinarians needed 

to collect the tablets and make photocopies of the consent forms themselves. All 

signed consent forms were to be returned to the raion capital for monitoring. 

Therefore, on the subsequent visits to the field site in April and September 2013 and 

April and September 2014, a decision was made to not interfere with the ongoing 

dosing campaign (which was also providing funding to local vets). As such, only faeces 

were collected (from the ground) and questionnaires completed, with no overall 

census conducted and no praziquantel administered. 
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2.3 Chinese samples 

Sample collection for this study has been described in a recent paper (van Kesteren et 

al., 2015). In April/May 2012, a total of 38 unwanted domestic dogs from northern 

Xinjiang province in the People’s Republic of China were euthanased using ketamine 

followed by intravenous injection of air. Necropsy was performed on each dog and the 

intestines were closely studied by experienced fieldworkers in order to estimate the 

burden of infection with various helminths (including Echinococcus and Taenia spp). 

Faecal samples were collected rectally for coproantigen ELISA testing and stored in 

10% formal saline, and the presence and burden of Echinococcus spp was recorded, 

together with other intestinal helminths (van Kesteren et al., 2015). These samples will 

be referred to as the ‘necropsy panel’. 

Additionally, a sample of owned dogs in the area was made using a spatial technique 

based upon the World Health Organization Expanded Program on Immunization 

(EPI) cluster survey method for evaluation of vaccination coverage (Henderson et al., 

1973). Investigators moved from the approximate centre of the village in a randomly 

selected direction, and selected houses using a systematic sampling method. The 

inclusion criterion was dog ownership, and after each house was visited, the process 

was repeated again in a random direction from that house. A total six villages were 

visited, from each of which a sample of between 19 and 26 canine faeces were collected 

from the floor (originally in order to evaluate coproantigen prevalence using a Lot 

Quality Assurance Sampling (LQAS) approach (Valadez et al., 2002; Hedt et al., 2008; 

Pagano and Valadez, 2010)). These samples will be referred to as the ‘field panel’, and 

totalled 125 faecal samples. 

2.4 Sample testing 

All samples were transported back to the University of Salford, England, where they 

were decontaminated at -80°c for a minimum of four days prior to further analysis 

(WHO/OIE, 2001d). Full details of the coproantigen ELISA protocol are described 

elsewhere (van Kesteren, 2015). Samples were homogenized with a wooden spatula, 
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shaken, centrifuged, and the supernatant tested using a well-known sandwich ELISA 

protocol for coproantigen detection (after Allan et al. (1992), with modifications in 

that the capture and conjugate antibodies were raised from two different 

hyperimmune rabbit sera). All samples undergoing coproantigen ELISA were tested 

using the same reagents in the same batch period (no more than four days), with each 

sample tested in duplicate (in adjacent wells). A plate of samples of known status 

(from the Xinjiang necropsy panel described above) was tested with each batch of 

other samples. Samples from non-endemic and low-endemic areas were added to each 

plate as negative controls, and known infected samples or samples spiked with 

Echinococcus spp. whole worm extract were added to each plate as positive controls.  

After following the ELISA protocol (van Kesteren, 2015), substrate (SureBlue® TMB 

(Insight  Biotechnology, Wembley, UK)) was added to each well, the plate was 

incubated for a further 20 minutes in darkness, and was then read on a Thermo 

Scientific Multiscan FC platereader at 620nm. The optical density (OD) readings for 

the blank well was manually subtracted from OD estimates for each well, but the 

coproantigen readings were not adjusted in any other way prior to interpretation. 

All samples collected in ethanol in May 2012 underwent PCR testing, along with a 

random sample of 30% of subsequent samples (regardless of the ELISA status, contrary 

to normal protocol, which usually suggests the use of the ELISA test as a screening test 

and the PCR test as a confirmatory test (Eckert and Deplazes, 2001; Eckert, 2003; Craig 

et al., 2003)). This strategy is discussed further in chapter 6. Full details of the PCR 

testing procedure are available elsewhere (van Kesteren, 2015). DNA was extracted 

from the ethanol-fixed faecal sample using a commercial DNA extraction kit 

(QIAamp® DNA stool kit); using 1g of faeces instead of the suggested 180-220mg and 

increasing the volume of lysis buffer, but otherwise following manufacturer’s 

guidelines (Qiagen, 2010). PCR testing was attempted using highly specific primers 

targeting the NADH dehydrogenase subunit 1 (ND1) mitochondrial gene for 

E. granulosus G1 and for E. multilocularis (Boufana et al., 2013). Primers for the 

detection of E. canadensis G6 were developed specifically for the current project, and 

are described in more detail elsewhere (van Kesteren, 2015). 
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2.5 Data processing 

Initial data processing for questionnaire data, GPS data, and sample data was 

conducted using Microsoft Access 2010. Further data processing and analysis was 

conducted using R version 3.1.1 (R Development Core Team, 2014). The difference in 

coproantigen ELISA OD between the two duplicates for each sample was calculated 

and the Studentized residuals of an intercept-only linear regression were inspected for 

outliers. A Bonferroni correction was applied to the t-test p-value threshold of 0.05 

using the “outlierTest” function in the “car” package for R (Fox and Weisberg, 2011), 

and results with p-values lower than this were classified as failures of replication. 

These results were removed from the dataset and the samples retested if possible. 

Most final data processing and analysis varied according to the particular analysis 

being conducted, and therefore will be described in the relevant chapters. 
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Chapter 3: Methods of classification of Echinococcus 

coproantigen ELISA data. 

 

“Errors using inadequate data are much less than those using no data at all” 

Charles Babbage (1791 – 1871) 
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3.1 Introduction 

3.1.1 Echinococcosis 

As mentioned in chapter 1, echinococcosis has been identified by the World Health 

Organization as one of five main ‘Neglected Zoonotic Diseases’ in need of further 

attention (WHO, 2009), with a view towards the eradication of cystic echinococcosis 

as a public health problem in selected countries (WHO, 2013b). Domestic dogs play an 

integral role in human echinococcosis in a number of situations, being the main 

definitive host for most species and strains of E. granulosus sensu lato, and a host of 

importance for human infection with E. multilocularis in a number of locations. 

Although canine infection with the adult worms is asymptomatic, investigation of the 

prevalence of infection in dogs can be a useful measure of the risk to humans in an 

area (Cohen et al., 1998), and is also invaluable for surveillance during a control 

scheme (Schantz et al., 1995; Gemmell and Schantz, 1997; Schantz, 1997). Although a 

number of methods are available for detection of canine echinococcosis, coproantigen 

ELISA tests (Deplazes et al., 1992; Allan et al., 1992; Malgor et al., 1997; Casaravilla et 

al., 2005; Huang et al., 2007; Morel et al., 2013), are currently recommended as the 

mainstay of surveillance by the WHO and the FAO (WHO/OIE, 2001d), as well as the 

PAHO (Morel et al., 2013). A coproantigen ELISA has been developed at Salford 

University, which uses polyclonal antibodies against Echinococcus spp to detect these 

coproantigens (Craig et al., 1988, 1995; Allan et al., 1992; Craig, 1997). Individual 

samples undergoing this test are usually interpreted in a dichotomous fashion by 

identifying an optical density threshold for positivity, three standard deviations higher 

than the mean of a known negative panel (the ‘Gaussian approach’) (Deplazes et al., 

1992; Allan et al., 1992). However little attention to date has focussed on whether this 

is the optimal strategy for test interpretation.  

3.1.2 Diagnostic testing 

Diagnosis of infection or exposure to infectious agents is a fundamental concept in 

human and animal epidemiology, and ranges from individual-level diagnosis with a 
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view towards instigating appropriate treatment, through to surveillance at the 

population or regional level. ELISA tests are commonly used to detect antibodies or 

antigens in the sera or other compartments, and generally give results on a continuous 

scale (such as the optical density [OD] of a colour change reaction), before samples are 

classified as either ‘negative’ or ‘positive’ according to their OD in relation to a cut-off 

value. As an overlap in OD values of positive and negative samples is commonly 

observed, one major issue resulting from this dichotomised interpretation is that of 

misclassification of samples. These limitations are well known for the  Echinococcus 

coproantigen ELISA test (Allan and Craig, 2006), and therefore care must be taken 

when interpreting coproantigen data, as the test prevalence is unlikely to represent 

the true prevalence. This can be a particular problem during eradication campaigns 

when the true prevalence is low, meaning that false positive results (in the case of an 

imperfect test specificity) can result in a low positive predictive value at the individual 

level (Christofi et al., 2002; Eckert, 2003; Torgerson and Deplazes, 2009).  

At the population level, the degree of misclassification associated with a diagnostic 

test can be quantified using estimates of the sensitivity and specificity of the method 

of test interpretation, which are the conditional probabilities of a positive result in a 

positive sample and a negative result in a negative sample, respectively (Altman and 

Bland, 1994a). These can then be taken to account in the final interpretation of the 

results if desired. The best known approach to adjustment of test results in order to 

account for test sensitivity and specificity is the Rogan Gladen estimator (Rogan and 

Gladen, 1978), which allows an estimate of the true prevalence (𝑝) to be made, based 

upon the test prevalence (𝑝′), sensitivity (𝑆𝑒) and specificity (𝑆𝑝): 

𝑝 =  
𝑝′ + 𝑆𝑝 − 1

𝑆𝑒 + 𝑆𝑝 − 1
 

In order to account for random error resulting from sampling, confidence intervals 

can be estimated for 𝑝 (Clopper and Pearson, 1934; Sterne, 1954; Blaker, 2000; Reiczigel 

et al., 2010), and methods of incorporating random error in the estimates of 𝑆𝑒 and 𝑆𝑝 
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themselves (as described by (Cameron and Baldock, 1998)) have also been developed 

(Reiczigel et al., 2010; Lang and Reiczigel, 2014).  

More sophisticated approaches of diagnostic test interpretation based upon 

approaches such as latent class analysis have been developed, which do not necessarily 

require knowledge of test characteristics (Hui and Walter, 1980; Enøe et al., 2000; 

Johnson et al., 2001; Black and Craig, 2002; Toft et al., 2005) and applied to 

Echinococcus data (Ziadinov et al., 2008; Torgerson and Deplazes, 2009; Hartnack et 

al., 2013). These methods allow an estimate of the true prevalence of infection to be 

made, as well as extracting information on test performance in the field. However, 

although these methods are powerful, they generally require that at least two tests 

have been conducted on a relatively large number of samples (and in the case of only 

one population being studied, three tests are required for identifiability (Hui and 

Walter, 1980; Johnson et al., 2001)). It may not always be possible, due to limited 

resources, to conduct this many tests – especially during ongoing surveillance in the 

face of  a control strategy.  

The current report investigates three different general approaches to classify samples 

as positive or negative based on coproantigen ELISA (coproELISA) test data. Two of 

these methods: the Gaussian distribution method and ROC curves (or approaches 

based upon this principle) are already commonly used, whereas the other (mixture 

modelling) is a novel method of coproantigen data analysis.  

3.1.3 Gaussian distribution cut-off 

The method most commonly used for selection of an ELISA test cut-off is known as 

the ‘Gaussian distribution method’. It is based upon the assumption that the 

distribution of OD values amongst negative samples is approximately Gaussian, and 

uses the properties of a Gaussian distribution in order to select a cut-off with a low 

probability of false positives (i.e. a high specificity). In order to calculate the cut-off, 

the mean and standard deviation of OD values for a panel of known negative samples 

are calculated, and the cut-off point is identified as the OD value three standard 
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deviations above the mean (Deplazes et al., 1992; Allan et al., 1992). This cut-off is 

usually determined during test optimisation (see below), and is then used for all 

subsequent tests without re-evaluation. According to the characteristics of a Gaussian 

distribution, only 0.1% of true negative samples would be expected to have an OD 

greater than or equal to this value, meaning that the test specificity would be expected 

to be 99.9% (although reported coproELISA test specificities are often lower than this, 

possibly due to cross-reactions with other cestodes (Deplazes et al., 1992; Allan et al., 

1992; Allan and Craig, 2006)). It is unclear why three standard deviations are used 

rather than two standard deviations (as has been reported in some other ELISA studies 

– for example, (Richardson et al., 1983)). As this approach does not explicitly account 

at all for the distribution of positive samples (and therefore does not account for test 

sensitivity), particular attention is paid to maximising the signal:noise ratio (i.e. the 

ratio of the OD of known positive samples to that of negative samples) during 

antibody screening and optimisation. If this ratio is high (at least 5.0), the difference 

between the OD values of positive samples and those of negative samples should be 

high, which would hopefully result in an adequate sensitivity.  

3.1.4 ROC curves 

Receiver operating characteristic (ROC) curves are a graphical method for the 

investigation of the effect of varying the cut-off point on two ‘operating characteristics’ 

of the test: the true positive proportion (TPP; i.e. the sensitivity) and the false positive 

proportion (FPP; i.e. one minus the specificity) (Zweig and Campbell, 1993; Greiner et 

al., 2000). By plotting the FPP against the TPP for a variety of cut-offs, the optimal 

cut-off for the study in question can be determined. As for the Gaussian distribution 

method described above, this approach requires a panel of known negative samples, 

but additionally requires a panel of known positive samples. However, as the 

distributions of both negative and positive samples are explicitly accounted for, 

estimates of both sensitivity and specificity are obtained, and the cut-off can be 

adjusted in relation to these as required (for example, if a perfect specificity is 

required, the cut-off point for this can be estimated from a ROC curve). The area 

under a ROC curve can also provide useful information on the overall ability of the 
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test to discriminate between positive and negative samples, regardless of the cut-off 

chosen (Swets, 1988). Adjustments to ROC curve analysis have also been suggested, for 

example by allowing the determination of an ‘intermediate’ range of test results as well 

as positives and negatives (Greiner et al., 1995). However, most commonly, a single 

cut-off point maximising both sensitivity and specificity (assuming equal weighting for 

both) is desired. This approach is the basis for the Youden index (Youden, 1950; 

Guezala et al., 2009), which is calculated as the sum of the sensitivity and specificity at 

the cut-off point which maximises both of these, minus 1. The Youden index can 

therefore be used for both estimation of a cut-off point, and for comparison of the 

differentiating ability/performance of different tests (with values close to 1 indicating 

good differentiating ability, and those close to zero indicating poor differentiating 

ability).  

3.1.5 Mixture models 

As described above, the concept of the identification of component distributions 

within a group of biological samples was first introduced in 1894 (Pearson, 1894), in 

one of the first examples of the application of statistical principles to the analysis of 

biological data (McLachlan and Peel, 2000c). Mixture models (or similar approaches) 

have subsequently been frequently applied to the problem of diagnostic test 

interpretation (Rushforth et al., 1971; Grannis and Lott, 1978; Parker et al., 1990; Gay, 

1996; Neuenschwander et al., 2000; Baughman et al., 2006; Vyse et al., 2006; Hardelid 

et al., 2008), where they have potential use as a method of classification in the absence 

of a gold standard test. Due to the logistical and practical difficulties associated with 

the identification of known infected and uninfected dogs in the field, mixture models 

were investigated here as a potential approach to coproELISA classification. 

Finite mixture models (FMMs) are a form of cluster analysis method whereby a finite 

number of subpopulations (‘components’) can be identified within a population based 

on the distribution of the data rather than through association with external variables 

(meaning that they can also be described as a type of ‘person-centred’ rather than 

‘variable-centred’ analysis tool (Muthén and Muthén, 2000; Jung and Wickrama, 
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2008)). FMMs can also be described as form of ‘model-based clustering’, which groups 

individuals based upon explicit assumptions regarding the distributional qualities of 

the components – most commonly, that these follow a Gaussian distribution (in the 

case of Gaussian Finite Mixture Models, as are used in the current report). This gives 

the model a clear statistical foundation, as well as potentially having some biological 

basis. The output of an FMM includes a description of the parameters of the 

component distributions, along with the a priori probability of membership of each 

component (that is, the ‘relative size’ of each component). From this, estimates of the 

posterior probability of component membership for individual samples can be made, 

and if desired, these can be allocated to particular components according to modal 

probability. Despite being first proposed over 100 years ago (Newcomb, 1886; Pearson, 

1894), it is only in recent years that computational advances such as the expectation-

maximisation algorithm (Dempster et al., 1977; McLachlan and Peel, 2000a) and 

Markov Chain Monte Carlo (MCMC) methods (Hastings, 1970; McLachlan and Peel, 

2000b) have allowed reasonable model fitting (Aitkin and Rubin, 1985; McLachlan and 

Peel, 2000c). 

The statistical background to mixture models has been reviewed elsewhere 

(McLachlan and Peel, 2000c), and will be only briefly introduced here. As they are a 

model-based approach, a statistical model can be explicitly defined. For a simple 

univariate Gaussian FMM, 𝑌 represents a vector of length 𝑛, relating to a random 

sample of 𝑛  individuals from a population (𝑌𝑗;  𝑗 = 1: 𝑛) . The probability density 

function of 𝑦𝑗, 𝑓(𝑦𝑗), can be presented as the sum of 𝑔 components, each of which has 

its own mixing proportion (or weight), 𝜋𝑖: each of which lie between zero and one, and 

sum to one. Each component is distributed with its own normal distribution, 

𝑓𝑖(𝑦𝑗)~ 𝑁(𝜇𝑖, 𝜎𝑖
2); (𝑖 = 1: 𝑔). This can be presented as follows: 

𝑓(𝑦𝑗) =  ∑ 𝜋𝑖𝑓𝑖(𝑦𝑗)

𝑔

𝑖=1

 

As such, in order for the model to be created, the number of mixture components, 𝑔, 

must be specified. This is one of the main difficulties encountered when constructing 



77 

 

a mixture model, as in most cases, it is unknown - leading to a roundabout problem of 

model assessment prior to model creation. Possible options for achieving this have 

been recently reviewed (Oliveira-Brochado and Martins, 2005), and will not be fully 

described here. A common method of comparing different numbers of groups in 

FMMs is by creating models with different numbers of components and comparing 

these using complexity-penalised information criteria such as Akaike’s Information 

Criterion (AIC) (Akaike, 1973) or the Bayesian Information Criterion (Schwarz, 1978). 

Traditional hypothesis tests of the effect of adding an extra component to the model, 

such as the likelihood ratio test, are complicated by the fact that models with different 

numbers of components are not nested within one another (Aitkin and Rubin, 1985). 

This problem can be circumvented using bootstrapping approaches (McLachlan, 1987; 

Efron and Tibshirani, 1993). A bootstrap sample is taken from the data under the “null 

hypothesis” of 𝑔 components in the model, and the likelihood estimated. This is 

repeated for the “alternative hypothesis” of (𝑔 + 1) components, and the likelihood 

ratio of the null and alternative hypotheses (λ) is estimated. From this, −2ln (λ) can be 

estimated (as is usually used in the likelihood ratio test). This process is then repeated 

multiple times, allowing the full distribution of −2ln (λ) to be estimated. Evidence 

against the null hypothesis can therefore be obtained if the likelihood ratio statistic 

obtained from the data differs from that predicted from these replications, as is the 

case with any null hypothesis test (Hope, 1968; Aitkin et al., 1981; McLachlan, 1987). 

Given that the estimated p-value is below the significance threshold, this process is 

then repeated with the null hypothesis of (𝑔 + 1) components, and an alternative 

hypothesis of (𝑔 + 2) components, and continues until there is no evidence against 

the null hypothesis. 

Assuming that the number of components is known, the remaining issue, as alluded to 

earlier, is fitting of the model. The likelihood of the model with the distributional 

parameters (𝜇𝑖, 𝜎𝑖
2) = 𝜃𝑖 is as follows: 

L(𝜃1: 𝜃𝑔 ;  𝜋1: 𝜋𝑔 |𝑌) =  ∏ ∑ 𝜋𝑖𝑓𝑖(𝑦𝑗|𝜃𝑖) 

𝑔

𝑖=1

𝑛

𝑗=1
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Where 𝑦𝑗 indicates an individual observation. Maximising this likelihood in order to 

estimate the parameters 𝜃𝑖  and 𝜋𝑖  can be facilitated through the use of the 

expectation-maximisation (EM) algorithm, which was developed by Dempster et al 

and has been described elsewhere (Dempster et al., 1977; Jeff Wu, 1983; McLachlan and 

Peel, 2000a; Fraley and Raftery, 2002). Basically, the EM algorithm in the context of 

FMMs assumes that along with the dataset 𝑌, there are missing/unobserved variables 

relating to component membership, which need to be taken into account when 

maximising the likelihood. This can be presented as each observation in the ‘complete 

data’, 𝑥𝑗 , being comprised of the individual observations (𝑦𝑗) and the 𝑛 unobserved 

variables associated with these (𝑧𝑗) which relate to component membership. Each 𝑧𝑗 is 

a vector of length g (𝑧𝑗 =  (𝑧𝑗1: 𝑧𝑗𝑔)), where 𝑧𝑗𝑖 = 1 if 𝑦𝑗 is in component 𝑖, and 𝑧𝑗𝑖 = 0 

otherwise. The algorithm itself is an iterative procedure consisting of an ‘expectation 

step’, where 𝑧𝑗𝑖 is estimated, based upon 𝑌 and current estimates of 𝜃𝑖 and 𝜋𝑖; followed 

by a ‘maximisation step’, whereby 𝑧𝑗𝑖 is assumed fixed and the log-likelihood of 𝜃𝑖 and 

𝜋𝑖 are maximised, conditional on 𝑌. 

3.1.6 Aims and objectives 

The aim of the current study is to evaluate the current approaches used for the 

dichotomous classification of dog faecal coproantigen data (Gaussian cut-off and ROC 

curves/Youden index), and to investigate the use of alternative methods of achieving 

this using mixture models. Finally, the effect of the different classification systems on 

both the coproantigen prevalence and the estimated true prevalence is investigated. 

3.2 Materials and Methods 

3.2.1 Samples 

Samples were collected from a control scheme evaluation in northern Xinjiang 

province in the People’s Republic of China, as described in the previous chapter and in 

recent reports (van Kesteren et al., 2015). Both necropsy (n=38) and field samples 
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(n=125) were used in the current analysis. One ‘field panel’ sample, from village ‘N’, 

was removed from further study due to failure of replication.  

3.2.2 Cut-off determination 

The necropsy panel was used to estimate cut-off values for positivity using the three 

broad methods described earlier. All cut-offs were interpreted as being the threshold 

for positivity – meaning that any samples with the same OD as the cut-off were 

interpreted as being positive. Firstly, the standard protocol based on selecting a point 

three standard deviations above the mean of a selection of validation samples from a 

nonendemic area was used (‘predetermined Gaussian’ method). This same approach 

was then repeated using samples collected from the field in Xinjiang, from dogs which 

were negative on necropsy (‘Gaussian 1’ method). As the distribution of the OD values 

of these samples did not conform to the Gaussian distribution expected for this 

approach, outliers (defined as those points which were greater than 1.5 times the 

interquartile range above or below the upper or lower quartile, respectively) were 

identified using the ‘boxplot’ command in R, and were removed, before repeating the 

process (‘Gaussian 2’ method). Secondly, ROC curve analysis was used in order to 

select the cut-off point which maximises both the sensitivity (𝑆𝑒) and specificity (𝑆𝑝) 

of the test simultaneously, using the R package ‘ROCR’ (Sing et al., 2005) (although 

the Youden index was not calculated here, this method would be expected to give the 

same cut-off value).  

Finally, a Gaussian finite mixture model was created using the R package ‘mixtools’ 

(Benaglia et al., 2009). Selection of the appropriate number of components was 

achieved using an iterative bootstrap analysis of the effect of adding an extra class to 

the model (described above), using a p-value of 0.05 or less to suggest an improved fit. 

Three methods were then used to allocate samples to a ‘positive’ or ‘negative’ status. 

The first of these was based on characterisation of the ‘negative’ component, followed 

by selection of a cut-off point three standard deviations above the mean of this 

distribution in a similar manner to the Gaussian distribution method described earlier 

(‘MM1’ method). In the case of a solution including more than two components, 
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different cut-offs were estimated according to the distribution of the data. The second 

mixture model method was based on allocation of individual samples to either a 

‘negative’ or ‘positive’ group according to the modal posterior probability of 

component membership (‘MM2’ method). The final mixture model approach (‘MM3’) 

was based upon a ROC curve analysis approach to the mixture model output. ‘Positive’ 

and ‘negative’ components were identified (in the case of models with more than two 

components, intermediate groups were ignored), and the posterior probabilities of 

membership in each of these components for each individual sample were estimated. 

Samples were then ordered according to OD, and a range of different OD cut-off 

points were applied to the data. For each cut-off point, the sum of all the probabilities 

of ‘negative’ component membership for samples classified as negative, and the sum of 

all the probabilities of ‘positive’ component membership for samples classified as 

positive were estimated, and these were expressed as a proportion of the total sum of 

all probabilities within the group in question (in order to ensure equal weighting of 

negative and positive groups in unbalanced studies). These estimates were then 

summed, and the cut-off which maximised this total was selected.  

In order to assess the potential use of mixture models in the absence of a gold 

standard test, Gaussian mixture models were also created using the field data, and 

cut-off points were estimated as described for the MM1 and MM3 methods (allocation 

according to modal probability was not performed as it does not result in a cut-off, 

and so could not be validated). The 𝑆𝑒, 𝑆𝑝, and overall accuracy (proportion of 

samples correctly classified) of each method was estimated using the necropsy panel 

results. Finally, the effect of a selection of these different methods on the coproantigen 

prevalence estimate from the field data (stratified by village, due to the stratified 

sampling approach used) was also estimated. The Rogan-Gladen approach (Rogan and 

Gladen, 1978) described above was used to give a point estimate of the true prevalence 

of infection, and exact Blaker confidence intervals (accounting for test sensitivity and 

specificity) were calculated (Blaker, 2000; Reiczigel et al., 2010), using the ‘epi.prev’ 

command in the ‘epiR’ package for R (Stevenson et al., 2013). 
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3.3 Results 

The ‘Gaussian 1’ method, based on a panel of faeces from 43 dogs from nonendemic 

areas, estimated a cut-off OD of 0.065. A total of 38 faecal samples were collected by 

necropsy in Xinjiang, of which 16 (42%) were found to contain Echinococcus spp. The 

number of Echinococcus worms present amongst infected dogs ranged from 2 to over 

10,000, with a median of 100, as shown in Table 3.1. A total of 22 dogs were negative on 

necropsy, and were used in the ‘Gaussian 2’ approach to give a cut-off OD of 0.331. 

After the removal of three high OD outliers, the ‘Gaussian 3’ approach gave a cut-off of 

0.180. ROC curve analysis including all 38 samples suggested that a cut-off of 0.117 

maximised the overall accuracy of test classification. 

Application of mixture models to the necropsy data identified two components, as 

detailed in Table 3.2. Based upon the distribution of the ‘negative’ component, a 

cut-off of 0.149 was estimated with the ‘MM1’ approach. When the adjusted ROC curve 

approach was applied to the posterior probabilities of sample component membership 

(the ‘MM3’ approach), the optimal cut-off was found to be 0.117. 

Table 3.1. Distribution of worm burdens and coproantigen ELISA OD values amongst 

the 16 Echinococcus spp positive dogs identified by necropsy. 

OD Number of Echinococcus worms Number of Taenia spp 

0.117 2 1 
0.088 3 7 
0.155 10 1 
0.176 20 2 
0.252 50 2 
0.171 50 1 
0.087 50 Not recorded 
0.461 100 0 
0.240 100 0 
0.373 100 7 
0.396 300 4 
0.462 500 5 
0.571 >5,000 6 
0.793 >10,000 0 
0.680 >10,000 6 
0.665 >10,000 2 
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Table 3.2 Properties of components identified by the mixture models. Components 

have been ordered according to their means (smallest to largest). 

Dataset 

Mixture 

Model 

component 

Proportion 
Mean OD in 

component 

OD  standard 

deviation 

Necropsy 
‘negative’ 0.45 0.075 0.025 

‘positive’ 0.55 0.335 0.198 

Living 

dogs 

‘negative’ 0.81 0.091 0.041 

‘positive’ 0.19 0.339 0.132 

‘negative’ 0.22 0.044 0.012 

‘intermediate’ 0.59 0.108 0.034 

‘high’ 0.19 0.336 0.132 

When a mixture model was applied to the field data (collected from living dogs), the 

optimal number of components was found to be three, with an ‘intermediate’ 

component between the negative and positive ones identified in the necropsy data 

(see Table 3.2). As this was unexpected, a mixture model was first created with only 

two components, as had been used for the necropsy data (‘MM1a’), which gave a 

cut-off of 0.215. As the status of dogs in the intermediate component of the three 

component model was not clear, cut-off methods were applied including it as both a 

negative (‘MM1b’) and as a positive (‘MM1c’) group. These gave cut-off points of 0.079 

and 0.209, respectively. Finally, the adjusted ROC curve approach (‘MM3’) applied to 

these models, which gave an optimal cut-off of 0.200 for the two component model 

and 0.180 for the three component model. 

Figures 3.1 and 3.2 show the overall distribution of OD values for all samples (necropsy 

dogs and field dogs), both in the form of a histogram and a kernel density plot 

(created using the ‘density’ command in R). Cut-off estimates are overlaid (some of the 

less reliable and more problematic cut-offs have been excluded, for ease of 

interpretation). 
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Table 3.3 shows the estimated sensitivities and specificities of the different 

classification methods. The average of the sensitivity and specificity is also presented 

(rather than the overall classification accuracy of the test), in order to ensure that 

negative and positive samples have equal weighting. Finally, Table 3.4 and figure 3.3 

show the effect of some of the different cut-offs on the point estimates of the 

coproantigen prevalence and the Rogan-Gladen ‘true’ prevalence (and exact 95% 

confidence interval) for the six villages visited. The ‘Gaussian 1’ and three-component 

mixture model approaches were not evaluated here, due to suspected limitations in 

their applicability. The ‘predetermined Gaussian’ approach was primarily included for 

comparison purposes rather than due to its suspected validity, since this is the current 

approach used for estimation of a cut-off point. 
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Figure 3.1. Distribution of OD values for all necropsied dogs. The top graph shows 

results for those with no Echinococcus spp. adult worms on intestinal inspection, and 

the graph below shows the results for all those with at least one adult worm. 
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Figure 3.2. Distribution of OD values for all necropsied dogs (top) and all live dogs 

sampled in the field (bottom). 
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Table 3.3. Test characteristics using different methods of classification (sensitivity, specificity and overall accuracy estimated from necropsy data). The ‘predetermined Gaussian’ 

method is a Gaussian method using nonendemic controls; and the ‘Gaussian 1’ and ‘Gaussian 2’ methods use necropsy data (with the latter excluding outliers). The ‘MM1’ approach 
estimates a Gaussian cut-off from the ‘negative’ component of a mixture; the ‘MM2’ approach allocates individuals to mixture model components according to modal probability; and 
the ‘MM3’ approach uses a modified ROC curve-type approach to identify a cut-off which maximises the probability of membership in the ‘negative’ and ‘positive’ mixture model 
components. 

Method Cut-off 
Sensitivity 
(n=16 positives) 

Specificity 
(n=22 negatives) 

Accuracy 

 

Predetermined Gaussian 
(3sd above mean of nonendemic panel tested separately) 

0.065 16/16 = 100% 8/22 = 36% 68% 

E
st

im
a

te
d

 f
ro

m
 n

e
cr

o
sp

y
 

p
a

n
e

l 

Gaussian 1 
(3sd above mean of necropsy negative panel from field) 

0.331 8/16 = 50% 22/22 = 100% 75% 

Gaussian 2 
(as for Gaussian 1 but ‘outliers’ removed) 

0.180 11/16 = 69% 19/22 = 86% 78% 

ROC curve 
(maximising Se + Sp; based on necropsy data from field) 

0.117 15/16 = 94% 17/22 = 77% 86% 

Necropsy MM1 
(3sd above mean of ‘negative’ component)  

0.149 14/16 = 88% 17/22 = 77% 82% 

Necropsy MM2 
(component allocation according to modal posterior probability) 

N/A 14/16 = 88% 17/22 = 77% 82% 

Necropsy MM3 
(ROC curve evaluation of posterior probabilities) 

0.117 15/16 = 94% 17/22 = 77% 86% 
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Field data MM1a 
(two component model as for MM1) 

0.215 11/16 = 69% 19/22 = 86% 78% 

Field data MM1b 
(three component model; 
as for MM1 with intermediate group classified as negative) 

0.079 16/16 = 100% 11/22 = 50% 75% 

Field data MM1c 
(three component model; 
as for MM1 with intermediate group classified as positive) 

0.209 11/16 = 69% 19/22 = 86% 78% 

Field data MM3a 
(ROC curve evaluation of two component model) 

0.200 11/16 = 69% 18/22 = 82% 75% 

Field data MM3b 
(ROC curve evaluation of three component model) 

0.180 11/16 = 69% 18/22 = 82% 75% 
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Table 3.4. Effect of different cut-offs on point coproantigen prevalence (upper percentages) and estimated true prevalence (according 
to the Rogan-Gladen method) and exact 95% confidence intervals (using the Blaker method), whilst accounting for test sensitivity and 
specificity (using the Reiczel method) (lower percentages) for six villages in Xinjiang. 

Method used  
(cut-off) 

Village 

A B C N Q T 

Predetermined Gaussian 
(0.065) 

13/19 = 68% 
13% (0 – 60%) 

18/20 = 90% 
73% (13 – 95%) 

13/21 = 62% 
0% (0 – 46%) 

12/20 = 60% 
0% (0 – 43%) 

19/26 = 73% 
26% (0 – 66%) 

11/19 = 58% 
0% (0 – 39%) 

Gaussian 2 
(0.180) 

1/19 = 5% 
0% (0 – 21%) 

8/20 = 40% 
48% (13 – 90%) 

2/21 = 10% 
0% (0 – 30%) 

1/20 = 5% 
0% (0 – 19%) 

5/26 = 19% 
10% (0 – 44%) 

2/19 = 11% 
0% (0 – 33%) 

ROC /Necropsy MM3 
(0.117) 

6/19 = 32% 
12% (0 – 46%) 

14/20 = 70% 
67% (35 – 89%) 

8/21 = 38% 
22% (0 – 52%) 

3/19 = 15% 
0% (0 – 20%) 

12/26 = 46% 
33% (8 – 61%) 

8/19 = 42% 
27% (0 – 60%) 

Necropsy MM1 
(0.149) 

3/19 = 16% 
0% (0 – 25%) 

10/20 = 50% 
42% (10 – 74%) 

3/21 = 14% 
0% (0 – 19%) 

1/20 = 5% 
0% (0 – 2%) 

6/26 = 23% 
1% (0 – 30%) 

5/19 = 26% 
6% (0 – 42%) 

Field data MM 1a 
(0.215) 

3/19 = 16% 
4% (0 – 46%) 

10/20 = 50% 
66% (28 – 100%) 

3/21 = 14% 
1% (0 – 39%) 

1/20 = 5% 
0% (0 – 19%) 

6/26 = 23% 
17% (0 – 52%) 

5/19 = 26% 
23% (0 – 66%) 

Field data MM3a 
(0.200) 

2/19 = 11% 
0% (0 – 26%) 

8/20 = 63% 
43% (5 – 89%) 

2/21 = 10% 
0% (0 – 24%) 

1/20 = 5% 
0% (0 – 11%) 

5/26 = 19% 
2% (0 – 39%) 

2/19 = 11% 
0% (0 – 26%) 
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Figure 3.3. Unadjusted (top) and adjusted (bottom) estimates of the coproantigen 

prevalence for the different villages, using different cut-offs. Bars indicate 95% 

confidence intervals. 
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3.4 Discussion 

The current paper details an attempt to improve the method of classification of canine 

faecal samples when using an Echinococcus coproantigen ELISA test. As well as 

reviewing two general approaches in common use currently, a number of novel 

methods based on mixture modelling are described. It is hoped that these 

methodologies will offer some prospect for improvements in canine echinococcosis 

surveillance, by both assisting in the selection of an appropriate approach to 

diagnostic test interpretation, and by illuminating some of the limitations associated 

with dichotomous interpretation of any data on a continuous scale, such as ELISA OD 

data.  

3.4.1 Gaussian approaches 

Based on the results shown here, the ‘predetermined Gaussian’ approach to cut-off 

determination, based upon selection of a cut-off three standard deviation above the 

mean OD of samples taken from a nonendemic area, does not perform well as a 

diagnostic test. The estimated cut-off using this strategy was low, and therefore the 

test specificity was also low. Although the sensitivity was 100% in this particular case, 

this strategy does not implicitly incorporate positive samples in its calculation, and 

therefore this could be an incidental finding. The low specificity resulted from the 

nonendemic negative panel generally having lower OD values than negative samples 

from the necropsied dogs. This may have resulted from variations in ELISA conditions 

(as the nonendemic samples were not tested at the same time as the others presented 

here, as per the usual protocol for the predetermined Gaussian approach), or may 

suggest that the variation and mean of these samples was lower than that observed in 

the field data (see Table 3.5). It is possible that dogs from nonendemic communities 

differ in various ways from those in endemic communities, and as such may not 

present an optimal panel for selection of a cut-off point to apply to field data. One 

possible way in which these dogs may differ is in terms of concurrent worm burdens – 

in particular, other cestodes such as Taenia spp. Although preliminary analysis of the 

necropsy data used here gave no evidence of an association between Taenia spp 
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burdens and OD values (following adjustment for the effect of Echinococcus spp 

burden – data not shown), previous studies have suggested that this may exist at a low 

level (Deplazes et al., 1992; Allan et al., 1992; Allan and Craig, 2006). The presence of 

this cross-reactivity could possibly result in greater variation in OD values amongst 

Echinococcus negative animals from endemic communities compared to those from 

nonendemic communities. One other possibility is that of misclassification of the 

necropsy panel (meaning that necropsy negative samples may not have been true 

negatives) – which, if true, would be expected to improve the estimated specificity of 

the predetermined Gaussian method. This issue is dealt with below. 

The ‘Gaussian 1’ approach suffered the opposite problem to the predetermined 

Gaussian method – giving a high cut-off, and therefore a low sensitivity. The cause of 

this was the presence of a number of high-OD outliers amongst the otherwise 

relatively Gaussian-distributed negative samples from the necropsy panel, which 

increased both the standard deviation and estimated mean of these OD values. As the 

presence of these outliers violated the basic assumption of the Gaussian approach, the 

three most extreme values were removed (although a further two remained outside 

the expected Gaussian distribution). This demonstrates the dangers of not visually 

inspecting the distribution of data before applying a technique such as this. The 

reason for the outliers is unclear, but as they are rarely seen when using a panel of 

negative dogs from a nonendemic area (author’s personal observation), they may 

represent dogs with low burdens which have been overlooked during necropsy. 

Alternatively, they may be taken from dogs which have been recently dosed with a 

cestocidal drug: as seen with other cestodes (Deplazes et al., 1990; Allan et al., 1990), it 

has been found that it can take 2-4 days for E. granulosus coproantigens to disappear 

following treatment (Jenkins et al., 2000). This demonstrates a potential limitation 

with the use of field data as a negative control panel (see Table 3.5). Another 

possibility is that the distribution of negative samples truly does not follow a Gaussian 

distribution, as has been suggested from a study of coproantigen ELISA OD densities 

for fox faeces in France (where samples were diagnosed using the ‘gold standard’ of 

necropsy and sedimentation and counting technique (WHO/OIE, 2001d; Eckert, 
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2003)) (Raoul et al., 2001). If this was the case, any approach based upon the Gaussian 

method (as well as the Gaussian mixture model) will be flawed. 

As well as the specific issues described above, one clear limitation of any Gaussian 

cut-off method is that the distribution of ‘positive’ OD values is not accounted for at 

all. As such, selection of a cut-off aims to maximise the test specificity without any 

consideration of the impact this has on the sensitivity. An ideal coproantigen ELISA 

test would have complete separation between negative and positive OD values, and so 

this would not be an issue (indeed, this is often seen when evaluating the test using 

nonendemic negative samples and high burden or spiked positive samples). However, 

this is not likely to be the case in the field situation, in the presence of negative dogs 

with high concurrent worm burdens (and therefore possible cross reactions, as 

described above), and positive dogs with low worm burdens (as described below) or 

prepatent infections.  

3.4.2 ROC curves 

Traditional ROC curve analysis of the necropsy data appeared to give the best results 

of all of the methods assessed here, with a very high sensitivity and a good specificity 

(although definitive conclusions are difficult to make based on such a small sample 

size). ROC curve analysis is also the only method detailed here which specifically 

allows the determination of a cut-off point according to the requirements of the test 

(Greiner et al., 2000), and which does not make any assumptions about the frequency 

distribution of OD values amongst negative or positive samples. Although the current 

approach has aimed to maximise both the sensitivity and specificity, in some cases 

(such as monitoring for introduced infection in a nonendemic community, where any 

possible positive dogs need to be identified quickly), it may be of greater use to select 

a cut-off giving a maximal sensitivity, even if this results in a reduced specificity. 

Additionally, as the sensitivity and specificity are explicitly estimated as part of the 

ROC curve estimation approach, a greater appreciation may be gained of the 

limitations in test interpretation.  
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Despite these positive aspects, it should be noted that the cut-off determined in the 

nonparametric ROC curve analysis used here can only take the value of one of the OD 

values in the panel investigated – which can lead to some loss of accuracy in the 

overlapping area between negative samples and positive samples (which is the area of 

interest), especially when sample sizes are relatively small (as was the case in the 

current study). For example, both ROC curve-based approaches towards classification 

of necropsy data identified the cut-off for positivity as 0.117 (to 3 significant figures), 

which relates to one particular sample (which had an OD of 0.11685). Therefore, all 

values with an OD of 0.11685 or more were classified as positive. The sample with the 

next highest OD value to this one had an OD of 0.11585 – meaning that it could equally 

be stated that the cut-off for negativity was 0.116 (i.e. all samples with an OD of 0.11585 

or less were classified as negative). Whilst both of these methods give the same result 

when applied to the necropsy data here, the use of these slightly different cut-off 

interpretations to field data could give different results if intermediate OD values 

between 0.116 and 0.117 were present. An alternative to this would be to use parametric 

ROC curves, which assume that both negative and positive samples follow Gaussian 

distributions. This approach may not be appropriate with the relatively small sample 

sizes in this case, and may be problematic if the distribution of OD values amongst 

infected individuals (see below) or uninfected individuals (see above) did not follow a 

Gaussian distribution. Another approach is ‘two-graph ROC’ (TG-ROC) analysis, 

which can allow the estimation of an ‘intermediate range’ (Greiner et al., 1995). 

3.4.3 Selection of negative and positive panels 

The two classification methods described above (Gaussian method and ROC curves) 

require the use of a panel of samples of known status (either a negative panel, in the 

case of the Gaussian approach, or both a negative and a positive panel, in the case of 

the ROC curve analysis). The panel is commonly either taken from necropsy samples 

from the area in question (purge samples are of limited use, since false negatives are 

relatively common (Schantz, 1997; Lahmar et al., 2007b; Ziadinov et al., 2008; 

Hartnack et al., 2013)), or from either faeces collected from dogs in a known 

nonendemic area (negative panel) or faeces confirmed by necropsy/purgation to be 
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positive (positive panel). Selection of this panel can be problematic for a number of 

reasons, as detailed in Table 3.5. Bayesian approaches to ROC curve analysis which do 

not require known samples have been developed (Branscum et al., 2008; Jafarzadeh et 

al., 2010), and would be expected to resolve this problem to some degree. 

 

  



94 

 

Table 3.5. Advantages and disadvantages of different positive/negative panels for 
determination of cut-off points 

Panel used Advantages Disadvantages 

Samples from study area 

(confirmed by necropsy 

or purgation) 

More likely to relate to 

epidemiological situation in the 

field. 

Positive results provide conclusive 

evidence of presence of infection 

(and good quality material for 

PCR analysis). 

 

Logistically difficult to carry out. 

Necropsy panels likely to over 

represent unwanted/stray dogs 

(which may less represent the 

dogs of interest in the 

community). 

May include false negative dogs 

(especially those with low worm 

burdens). 

Less useful when prevalence of 

infection very low, as may not 

obtain many positive dogs. 

Samples collected will invariably 

be per rectum, which are likely to 

be of higher quality than ground 

samples (so there may be 

differences in OD values). 

Negative panel from 

nonendemic area 

or 

Positive panel from 

various necropsy/purge 

campaigns 

Logistically easier to use (do not 

need to be sampled for each field 

site). 

Can be used regardless of the 

echinococcosis situation in the 

field site. 

May not represent the situation in 

the field, as dogs may differ in 

various ways from those in the 

areas under investigation, 

resulting in an inappropriate 

cut-off estimate (e.g. possible 

reduction in mean burden 

amongst positives in face of 

control scheme, or high OD 

values in negatives due to 

concurrent Taenia spp infection). 

Samples from study area 

classified by ELISA 

(usually along with PCR 

confirmation) 

Readily available in most cases. 

No conclusive evidence of 

presence of infection (possible 

false positive PCR results). 

Methodologically questionable to 

use ELISA test as validation for 

itself. 
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3.4.4 Mixture modelling 

The mixture model approach described here was an attempt to circumvent the 

problem of negative/positive panel selection by identifying the infection status from 

coproantigen field data alone. It appears, by relation back to the necropsy panel, that 

this approach gave reasonable estimates of sensitivity and specificity, although 

difficulties in objective interpretation arose when more than two components were 

identified in the mixture model. The ‘ROC curve’ approach to interpretation of 

mixture model results gave reasonable estimates of sensitivity and specificity 

compared to the other approaches, and did not require interpretation of the 

intermediate component in these cases. Additionally, this approach could also be 

adjusted in order to select cut-offs which maximised either the ‘sensitivity’ (sum of 

‘positive’ component probabilities) or the ‘specificity’ (sum of ‘negative’ component 

probabilities), as required. However, this method may experience problems if the 

intermediate component is very large, as estimates will then be based on fewer 

samples. When a mixture model is applied to nonendemic negative samples only, only 

one component is identified (data not shown), suggesting that mixture modelling 

would also be appropriate for identification of truly uninfected communities.  

Despite the potential for the use of mixture modelling in the classification of field 

data, there are considerable limitations. Firstly, the mixture model assumes that each 

of the components follow a Gaussian distribution. One feature of the Gaussian 

distribution is that it is unbounded, and therefore can take any value between −∞ and 

+∞. Since coproantigen OD data is expressed as the difference in OD from a “blank” 

well, it would be expected to invariably be positive. This could cause possible 

problems for the parameterisation of the “negative” component of a mixture model, as 

the mixture model could predict support for negative numbers. This could be a 

particular problem if low OD positive samples were included in the negative 

component, as this would widen the variance of the component and could therefore 

lead to support for negative OD values. Despite this, the Gaussian distribution was 

retained in the current example due to its ease of specification, and the fact that the 
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mean and variance estimates could be specified independently of each other. A 

truncated Gaussian distribution could alternatively be used. 

Whilst it could be reasonably be expected that the OD values of negative samples 

would be distributed according to a Gaussian distribution (although even this may not 

be the case (Raoul et al., 2001)), it is unlikely that the same is true for the positive 

samples. It is well-recognised that infections with Echinococcus spp, as with most 

parasitic infections and infestations, follow a highly aggregated distribution, whereby 

most infected hosts carry very few parasites (Crofton, 1971a; Anderson and May, 1978; 

Anderson and Gordon, 1982; Gemmell et al., 1986c). It has been reported by numerous 

authors that there is a broad linear correlation between OD values and worm burdens 

when worm burdens are high (Deplazes et al., 1992; Craig et al., 1995; Raoul et al., 2001; 

Reiterová et al., 2005; Buishi et al., 2005b), and inspection of the current data suggests 

that a linear relationship exists between the natural logarithm of the burden and the 

OD value, even at lower worm burdens (see chapter 4). Therefore, some degree of 

overdispersion in the distribution of OD values amongst positive individuals (which 

would be seen as a “right skew” in the distribution) would be expected. Therefore, it is 

not reasonable to suspect the distribution of OD values amongst infected dogs will 

follow a Gaussian distribution. Despite this, Gaussian mixture models are relatively 

flexible to these distributional issues, as many overdispersed distributions can be 

recreated using a mixture of Gaussians (Priebe, 1994) (although in order to effectively 

capture this, a large sample size may be required, which may not be available from a 

field survey). The converse potential problem with mixture modelling where the 

number of components is extracted from the data is the risk of overfitting, which 

could result in erroneous conclusions relating to the underlying components being 

drawn (Lin et al., 2007). One solution to this issue would be to explicitly model the 

overdispersion in the positive samples (whilst attempting to ensure that the negative 

samples still follow a normal distribution, as expected). One potential method of 

achieving this would be to use the Skew Normal distribution (which includes the 

Gaussian distribution as a special case) in the mixture model (Azzalini, 1985; Lin et al., 

2007), or by modelling the positive component of the mixture model using 
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“nonparametric distributions” such as Polya trees (Ferguson, 1974; Hanson, 2006). This 

latter strategy is explored further in the next chapter. 

3.4.5 Application to field data 

There were considerable variations in the estimated canid coproantigen prevalence 

between the different villages sampled, and between different strategies of test 

interpretation. As mentioned earlier, the small sample sizes selected were chosen in an 

attempt to evaluate the potential use of LQAS methodology in the rapid appraisal of 

infection status in communities, and were not originally intended to be used for 

coproantigen prevalence estimation. As a result, the expected confidence intervals 

were very large, meaning that large apparent differences in point prevalence estimates 

are not necessarily statistically significant. However, one other possible reason for this 

variability in coproantigen prevalences with different cut-offs is the fact that the 

different cut-offs would be expected to result in different test sensitivities and 

specificities. Following adjustment for sensitivity and specificity, the results show less 

variation than the ‘raw’ coproantigen prevalence, although the wide confidence 

intervals make clear discrimination of prevalence estimates between villages rare. 

Most point estimates could be broadly subjectively classified as ‘high’ (village B), 

‘medium’ (villages Q and T) or ‘low’ (villages C and N). Village A appeared to lie 

somewhere between the medium and low estimates. This general strategy may 

ultimately allow categorisation at the village level using broad bands of coproantigen 

prevalence, as is commonly used in the investigation of schistosomiasis (Montresor et 

al., 1998; Mitchell and Pagano, 2012). An alternative approach would be to identify 

those villages which are likely to have some degree of infection (either following the 

protocol described in (Cameron and Baldock, 1998), or determined as a 95% 

confidence interval which does not include zero. In this case, there is only clear 

evidence for infection in village Q. Although adjustment of the coproantigen results 

according to point estimates of sensitivity and specificity which are based on a sample 

of only 38 samples is not ideal, this approach was considered to be the best approach 

for the available data, and at the very least go some way towards demonstrating the 
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potential dangers inherent in presenting point estimates of coproantigen prevalence 

without adjustment for test sensitivity and specificity.  

3.4.6 Limits of detection 

One of the primary challenges in the interpretation of this evaluation of coproantigen 

ELISA data is that although necropsy is considered a ‘gold standard’ test (WHO/OIE, 

2001d; Torgerson and Deplazes, 2009), it is unlikely to have a perfect sensitivity, 

especially in the case of visual inspection (as was conducted here) rather than the use 

of the sedimentation and counting technique (Deplazes et al., 1992; Hofer et al., 2000; 

Allan and Craig, 2006). Indeed, one study comparing visual inspection and intestinal 

scraping with the sedimentation technique suggested a sensitivity of 78% - largely due 

to low burdens (less than ten worms) or prepatent infections (Hofer et al., 2000). As 

dogs with low worm burdens would be expected to comprise a large proportion of the 

infected population in overdispersed infections such as echinococcosis, this could 

result in a considerable reduction in any estimate of infection prevalence based on 

visual inspection at necropsy. Although each of these individuals may have a relatively 

small impact on transmission, together they could be of importance, and so 

identification of them (at least in the case of prevalence estimation in the face of an 

intervention campaign) would be useful. From the perspective of coproantigen testing, 

this problem has been addressed by assuming a lower limit of detection of around 50 

worms (Allan and Craig, 2006). Indeed, the five infected dogs which were not correctly 

identified by the normal Gaussian method (with outliers removed) or the three 

component mixture model with the intermediate group classified as negative, all had 

worm burdens of 50 or less. When an attempt is made to capture these dogs using a 

lower cut-off, the confluence of these low OD positive dogs and higher OD negative 

dogs may result in instability in the estimation of coproantigen prevalence – with 

small changes in the cut-off leading to large changes in the estimate. As described 

above, this effect may be responsible for some of the variation in coproantigen 

prevalence estimates from the field data. Further work is required to characterise 

those animals with OD values in this ‘grey area’, with a view towards an improved 

method of test interpretation which is stable to small changes in cut-off. 
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3.4.7 Coinfections 

Finally, although E. multilocularis has been reported in Xinjiang, it is thought to exist 

at a low prevalence in the area investigated in the current study (adjacent to the 

Junggar basin), with highest endemicity found in the Altai, western Junggar, and 

Tianshan mountain ranges (Zhou et al., 2000). As such, most of the infections 

described here are expected to be E. granulosus (sensu lato). However, in some of the 

areas in the world worst affected by echinococcosis, such as the Tibetan plateau and 

Kyrgyzstan, both E. granulosus and E. multilocularis coexist (occasionally in the same 

host (Xiao et al., 2006a)). Although the coproELISA is known to detect all species of 

Echinococcus, the expected distribution of worm burdens amongst infected dogs is 

thought to differ between E. granulosus and E. multilocularis (Gemmell et al., 1986c; 

Kapel et al., 2006). However, the effect of this on coproantigen results is currently 

unknown. One possibility is that the distribution of OD values amongst ‘positive’ dogs 

will differ between those infected with E. granulosus, those infected with 

E. multilocularis (and those with mixed infections), which could cause difficulties in 

the fitting of mixture models. The development of species-specific coproantigen tests 

would be expected to resolve this problem (WHO/OIE, 2001d), but these are not yet 

available. In the meantime, methods of combining PCR results and ELISA results may 

be beneficial. This is discussed in chapters 4 and 5. 

3.5 Conclusions 

In conclusion, the current study details three different approaches to the dichotomous 

classification of coproantigen ELISA data, and addresses the major strengths and 

limitations of these. Although the Gaussian method has been used for some time with 

no apparent problems (mainly due to its easy application and requirement for only 

negative control samples for validation), there is little to recommend it over the other 

techniques assessed in the current study. ROC curve analysis offers a method of 

classification which can either maximise both sensitivity and specificity, or can allow 

selection of a cut-off point which is appropriate for the aims of the study in question, 

given that a suitable panel of positive and negative samples can be obtained (which is 
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a non-trivial issue). Alternatively, finite mixture models allow the classification of 

samples in the absence of any panel data without requiring the use of multiple tests 

(as are required for latent class analysis), and may be used to give an estimate of the 

prevalence of infection (based upon the mixture model component weights). However 

difficulties with application of mixture models may arise due to either overfitting or 

underfitting due to the skewed distribution of positive samples, and estimates of test 

sensitivity and specificity are not obtained. If multiple diagnostic tests (such as 

coproELISA, coproPCR and purge inspection) have been conducted, latent class 

analysis within a Bayesian framework likely offers a superior method of classification 

(Hartnack et al., 2013), with the additional benefit of estimates of test sensitivity and 

specificity. Mixture modelling and ROC curve analysis have been conducted together, 

in a Bayesian framework which is able to incorporate covariates of interest (Branscum 

et al., 2008). This strategy (which is introduced in chapter 4) has considerable 

potential for further development. It is hoped that further work on the application of 

mixture models to coproantigen ELISA data will address some of the issues identified, 

with a view towards the establishment of an accurate method of classification which is 

reliable and appropriate for use during surveillance in resource-poor communities. 
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Chapter 4: Development of a Bayesian mixture model to 

enhance interpretation of coproantigen ELISA data. 

 

I think that progress is not possible without deviation. And I think that it’s important 
that people be aware of some of the creative ways in which some of their fellow men 

are deviating from the norm, because in some instances they might find these 
deviations inspiring and might suggest further deviations which might cause progress, 

you never know. 

Frank Zappa (1940 - 1993) 
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4.1 Introduction 

4.1.1 Diagnosis of echinococcosis 

As described in the previous chapter, coproantigen ELISA testing (Deplazes et al., 

1992; Allan et al., 1992) is commonly used for the surveillance of canine echinococcosis 

in endemic areas and when monitoring the effect of hydatid disease control schemes 

(WHO/OIE, 2001d; Morel et al., 2013). Interpretation of coproantigen data is 

commonly based upon classification of samples as ‘positive’ or ‘negative’, based upon a 

cut-off ELISA optical density (OD) value. Whilst there is evidence of  a relationship 

between the coproantigen ELISA OD value and the worm burden (Deplazes et al., 

1992; Allan et al., 1992; Craig et al., 1995; Morishima et al., 1999a; Raoul et al., 2001; 

Reiterová et al., 2005; Buishi et al., 2005b), the corollary of this is that the test 

sensitivity is low when the worm burden of the sample is low (Allan and Craig, 2006; 

Huang et al., 2013), and therefore the sensitivity of the test will vary depending upon 

the distribution of worm burdens in the population under study. This makes the 

estimation of an ‘overall’ test performance parameter problematic, and limits the 

ability to estimate the true prevalence from test results (for example, using the 

Rogan-Gladen estimator (Rogan and Gladen, 1978)). This problem would be expected 

to be particularly pronounced during the evaluation of a control scheme, where the 

prevalence of infection (and therefore the test sensitivity and positive/negative 

predictive values) would be changing.  

This chapter investigates a possible alternative strategy for interpretation of 

coproELISA data, which avoids the need for dichotomisation (whilst retaining the 

possibility for dichotomisation if desired), and with potential benefits for both 

individual-level and population-level interpretation. This may have particular use for 

interpretation of longitudinal data collected during control campaigns. 

4.1.2 Issues with dichotomisation 

Given that the true sensitivity and specificity of a test can be estimated, the 

Rogan-Gladen approach (and associated methods) described in the previous chapter 
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can reduce some of the limitations associated with dichotomisation. However, several 

potential drawbacks remain – one of which is interpretation of an individual test 

result. Although the Rogan-Gladen adjustment may allow a reasonable estimate of the 

population prevalence to be made, it does not operate at the individual animal level, 

which could result in difficulties when reporting individual results to stakeholders or 

for risk factor studies which rely on individual-level interpretation. One method of 

accounting for this issue is through the use of positive and negative predictive values 

(𝑃𝑃𝑉 and 𝑁𝑃𝑉) (Altman and Bland, 1994b). These estimates are influenced by the test 

sensitivity (𝑆𝑒) and specificity (𝑆𝑝) as well as the prior probability of infection in the 

individual (often estimated as the true prevalence of infection in the population, 𝑝): 

𝑃𝑃𝑉 =  
(𝑆𝑒 × 𝑝)

(𝑆𝑒 × 𝑝) + ((1 − 𝑆𝑒) × (1 − 𝑝))
 

This approach clearly has use for dissemination of information back to stakeholders, 

and methods of incorporation of 𝑃𝑃𝑉 and 𝑁𝑃𝑉 into a regression model (within a 

Bayesian context) have also been described (Lewis et al., 2012). 

Another issue resulting from dichotomisation is the loss of potentially useful 

information regarding the probability of infection (Choi et al., 2006b), or even in some 

cases the level of infection. For example, for a continually measured diagnostic test 

result for which higher values indicate infection, an animal with a very high test result 

would be more likely to be infected than an animal with a test result just above the 

cut-off. However, these two animals would both just be classified as ‘positive’ under a 

dichotomous interpretation. Similarly, in situations where levels of infection are not 

homogenously distributed amongst infected individuals, as is seen with overdispersed 

macroparasitic infections (Crofton, 1971a; Anderson and May, 1978), the test result may 

offer some insight into the level of infection (for example, animals with higher parasite 

burdens may tend to have higher test results, as is seen with the coproantigen ELISA 

(Deplazes et al., 1992; Allan et al., 1992)). In these cases, dichotomisation could result 

in the loss of information with potential implications for the risk of pathogen 
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transmission (an animal with a higher parasite burden may pose a greater risk of 

transmission than one with lower burdens). 

In the case of the former of these two issues, a method of interpretation of test results 

at the individual level through the use of likelihood ratios has been suggested (Deeks 

and Altman, 2004). The ‘likelihood ratio’ of a positive test result (𝐿𝑅+) can be 

calculated as the ratio of the conditional probability of a positive test result (𝑇+) given 

the individual is infected (𝐷+) (the sensitivity, in the case of a dichotomous result) to 

the conditional probability of a positive test result given that the individual is not 

infected (𝐷−) (which is (1 − 𝑆𝑝), in the case of a dichotomous interpretation): 

𝐿𝑅+ =  
𝑝(𝑇+| 𝐷+)

𝑝(𝑇+| 𝐷−)
=  

𝑆𝑒

(1 − 𝑆𝑝)
 

Through the use of Bayes’ theorem, an estimate of the post-test odds of disease can 

then can be estimated by multiplying the 𝐿𝑅+ by the pre-test odds of disease, which 

can then be converted to a probability if desired. The ‘raw’ test result (without 

dichotomisation) can also be used to estimate a likelihood ratio, using the same 

principles as described above. Another method, termed probability diagnostic 

assignment (PDA), has been developed which incorporates test results from known 

infected and uninfected individuals in order to estimate the individual-level 

probability of infection and the population-level prevalence of infection using a 

frequentist application of Bayes’ theorem (Thurmond et al., 2002). This approach has 

been developed into a fully Bayesian framework, which is computationally easier and 

which may be less dependent on the availability of data of known status (given there is 

reasonable separation in the distribution of test results between infected and 

uninfected individuals) (Choi et al., 2006b). 

As can be seen from the equations above, these approaches require clear estimates of 

the sensitivity and specificity of the test (and in the case of predictive values, also an 

estimate of the prevalence of infection in the community). As described above, there is 

evidence that the sensitivity of the Echinococcus coproantigen ELISA test is correlated 

with the worm burden, with lower sensitivities in the case of low burdens (Allan and 
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Craig, 2006). As the burden of Echinococcus in the definitive host is commonly highly 

overdispersed (Jenkins and Morris, 1991; Torgerson and Heath, 2003; Budke et al., 

2005a), it would be expected that the majority of infected individuals would have low 

burdens, and as such would be less likely to be identified using a dichotomous 

interpretation than those with higher burdens. The overall test performance would 

therefore be expected to depend upon the distribution of worm burdens in the 

population of interest.  

Another challenge when attempting to estimate the sensitivity and specificity of any 

test for canine echinococcosis is the lack of a readily available gold standard test (i.e. a 

test with perfect sensitivity and specificity). As described in previous chapters, the 

gold standard test for canine echinococcosis is necropsy of dogs and examination of 

intestines using the sedimentation and counting technique (WHO/OIE, 2001d; 

Torgerson and Deplazes, 2009). This is rarely possible in the field situation as it is 

logistically challenging, potentially biohazardous, and requires culling of dogs. 

Alternative strategies of estimating test performance based upon application of 

Bayesian modelling strategies and latent class analysis to multiple imperfect test 

results have been described (Ziadinov et al., 2008; Hartnack et al., 2013).  

4.1.3 Finite mixture models 

Finite mixture models (FMMs) are a statistical tool for the identification and 

quantification of subpopulations within a larger population. As FMMs are described in 

the previous chapter and elsewhere (McLachlan and Peel, 2000c), only extensions of 

relevance to the current study will be detailed here. Due to difficulties interpreting the 

results of FMMs when the number of components was greater than two (see chapter 

3), the current study fixed the number of components to two – indicating ‘negative’ 

and ‘positive’ individuals. For a univariate FMM with two components, 𝑌 represents a 

vector of length 𝑛, relating to a random sample of 𝑛 individuals from a population 

(𝑌𝑗;  𝑗 = 1: 𝑛). The probability density function of 𝑦𝑗, 𝑓(𝑦𝑗), can be presented as the 

sum of two components, each of which has its own ‘mixing proportion’, 𝜋0 and 𝜋1, 
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which lie between zero and one and sum to one. Each component is distributed 

according to its own specified distribution, 𝐺𝑖: 

𝑓𝑖(𝑦𝑗)~ 𝐺𝑖; (𝑖 = 0,1) 

𝑓(𝑦𝑗) = (1 − 𝜋)𝐺0 + 𝜋𝐺1 

This basic model structure detailed above is true for both Bayesian and frequentist 

mixture models, with the Bayesian approach modelling the parameters of 𝐺0 and 𝐺1 

(i.e. mean and variance, in the case of a Gaussian mixture model), and 𝜋 as random 

variables, and allowing the incorporation of prior information for these. Due to both 

the more ‘philosophical’ advantages of Bayesian methodology over frequentist 

approaches, and its increased computational ease when dealing with complex models, 

it was decided to develop a Bayesian model in the current report.  

Finite mixture models have been used in the classification of diagnostic test results in 

a number of reports (Choi et al., 2006a; b; Erkanli et al., 2006; Branscum et al., 2008; 

Hanson et al., 2008). Although in some cases, a Gaussian model may be appropriate, 

this is commonly not the case – for example, infected individuals may represent a 

relatively heterogenous group of individuals compared to noninfected individuals 

(possibly due to variable times since infection, or due to different burdens of 

infection) (Branscum et al., 2008; Hanson et al., 2008). As such, alternative, non-

Gaussian, approaches to modelling should be considered. In particular, 

semi-parametric/nonparametric approaches such as those based on Dirichlet 

processes (Erkanli et al., 2006; Hanson et al., 2008) or Polya Trees (Branscum et al., 

2008; Hanson et al., 2008) have been developed. 

4.1.4 Polya trees 

A Polya tree is a method of modelling ‘nonparametric’ distributions in a parametric 

fashion, and is conceptually based upon repeated subdivision of the sample space and 

allocation of Beta-distributed conditional probabilities of subset membership. Polya 

trees have been covered in detail elsewhere (Ferguson, 1974; Lavine, 1992, 1994; 
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Mauldin et al., 1992; Hanson, 2006; Christensen et al., 2008), and so will be only 

covered briefly here. As described above, a Polya tree can be created by dividing the 

sample space repeatedly (each division representing one ‘stage’). Therefore, at stage 

one, the whole sample space is divided into two subsets; whereas at stage two, each of 

these two subsets is further divided into two; and so on. At each stage, the conditional 

probability of membership in the particular set given membership in the ‘parent’ set in 

the stage above is estimated (assuming that these follow a Beta distribution); ensuring 

that each of these paired conditional probabilities (belonging to each ‘parent’ set in 

the stage above) sum to unity. Polya trees can also be created by the generalisation of 

a parametric distribution, which is the approach used in the current report, basing the 

Polya tree upon a Gaussian distribution. In this case, at stage one, the sample space is 

split at the median; at stage two it is split at the quartiles; and so on. Although the 

parameters (𝜋 and 𝜎2) of the original distribution remain unchanged, the probabilities 

of subset membership are permitted to vary – allowing deviation from the Gaussian 

distribution if warranted (of course, if the probability of subset membership was fixed 

at 0.5 for each subset at each level, the original Gaussian distribution will be retained). 

A weighting parameter, 𝑐 , indicates the level of deviation from the original 

distribution, and takes a high value (e.g. >5) if there is minimal deviation from this; 

and a low value (<1) if the resultant distribution is to be largely nonparametric 

(Branscum et al., 2008). In order to ‘smooth out’ the resultant distribution at the 

boundaries of the subsets, a ‘mixture of Polya Trees’ (MPT) can be created by setting 

priors on 𝜋  and 𝜎2  and allowing some variation in the centering measures used 

(Paddock et al., 2003; Hanson, 2006). 

4.2 Materials and Methods 

Samples were collected from a total of 38 unwanted domestic dogs from northern 

Xinjiang province in the People’s Republic of China, as described in the previous 

chapters and in other recent papers (van Kesteren et al., 2015). No failures of 

replication were identified in the current study. 
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The mixture model was developed using JAGS version 3.4.0 (Plummer, 2003), from 

within the statistical package R (R Development Core Team, 2014) by using the rjags 

package (version 3-11) (Plummer, 2013). Model code is provided in the appendix (A4). 

The aim of the model was to incorporate known panel data from necropsy (and/or 

purgation) -confirmed positive and negative dogs. This part of the model is derived 

largely from a mixture model which incorporates known panel data (Choi et al., 2006a; 

b), with additional code to account for uncertainty amongst negative sample data due 

to the imperfect sensitivity of these approaches (meaning that some apparent 

necropsy/purge negative dogs could in fact be infected). This was achieved by using a 

method based on the examination of standardised residuals within the negative panel 

(Birkes and Dodge, 1993), and selection of a cut-off for exclusion based upon this Z-

level. 

The aggregated distribution of worm burdens (and therefore the right skew in OD 

values amongst positive samples) was accounted for using code developed for the 

creation of Polya trees and MPTs (Christensen et al., 2011). As described in a previous 

report (Choi et al., 2006b), the resultant model is able to both estimate the prevalence 

of infection within the population as a whole, and is able to estimate the predicted 

probability of infection for any individual based upon their OD value, based upon 

Bayes’ theorem: 

𝑝(𝐷+| 𝑂𝐷) =  
𝑝(𝑂𝐷 | 𝐷+) × 𝑝(𝐷+)

𝑝(𝑂𝐷 | 𝐷+) + 𝑝(𝑂𝐷 | 𝐷−)
 

Where 𝑝(𝑂𝐷 | 𝐷+) is the likelihood of membership in the positive component for that 

particular OD value (and 𝑝(𝑂𝐷 | 𝐷−) is the likelihood of membership in the negative 

component for that particular OD value), and 𝑝(𝐷+) is the estimated prevalence.  

A simple linear regression model of the relationship between OD value and the 

natural logarithm of the worm burden of positive samples was also incorporated into 

the model, based on code developed in a recent Bayesian textbook (Kruschke, 2011), 

where 𝑗 represents the vector of confirmed positive samples: 
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ln(𝑏𝑢𝑟𝑑𝑒𝑛𝑗) ~𝑁(𝜇𝑗, 𝜎2) 

𝑁(𝜇𝑗 , 𝜎2) = 𝛽0 + (𝛽1 × 𝑂𝐷𝑗) 

A schematic network diagram for the modelling approach is shown in figure 4.1. The 

Z-scores of the OD values for samples which were negative on necropsy were 

calculated, and those with z-scores higher than would be expected (i.e. which reduced 

the fit of the data to a Gaussian distribution) were removed from further analysis. The 

remaining samples were then used to parameterise the negative component of a 

mixture model. Field samples were then applied to the mixture model, with the 

positive component parameterised using Polya trees. This gave parameter estimates 

for the two mixture model components (mean and variance for the negative and 

positive components, along with 𝑐 in the case of the positive component), along with 

the overall estimated prevalence (i.e. the mixture model weight of the positive 

component). For each individual sample, an estimate of the probability of membership 

in each component was obtained. 

The samples found to be positive on necropsy were used to parameterise a linear 

regression model of the relationship between the OD and the log of the estimated 

worm burden. The output of this model was used to predict the log burden for each of 

the field samples. This estimate was then multiplied with the probability of 

membership in the positive component in order to create a “sample score”. 
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Figure 4.1. Conceptual modelling approach used in the current study. Although known samples 

and field samples are shown separately, in the current case, the same samples were used in 

both cases due to the limited number of samples available. 

An adaptive Markov Chain Monte Carlo procedure with Gibbs sampling was used to 

obtain estimates of the posterior distributions of all model parameters of interest. 

Noninformative priors were used and a total of 100,000 iterations were run, with the 

Markov Chain thinned to one in every ten iterations (total 10,000 iterations retained), 

following a burn-in of 50,000 iterations. As model output was obtained for each 

individual sample tested and for 100 OD values from 0.01 to 1.00, MCMC diagnostics 

(visual inspection of the Markov chain) were only conducted on the population-level 

parameters (mean and standard deviation of negative and positive distributions; the 

Polya Tree weighting parameter, 𝑐; Z-level for exclusion of outliers in negative panel; 

estimated proportion of positive samples; intersect and slope of linear regression 

model). 

In order to evaluate the model, the same dataset (taken from dogs in Xinjiang, as 

described above) was used twice: for both model ‘training’ (i.e. parameterisation of 

both the negative distribution of the mixture model and the linear regression model), 
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and validation. Therefore, the “known samples” in figure 4.1 are identical to the “field 

samples” in this case. This is a highly problematic approach, but was considered 

necessary due to the limited size of the dataset. 

4.3 Results 

The collection of the sample panel used here has been described elsewhere (van 

Kesteren et al., 2015), and so will not be described in detail here. Of the 38 dogs 

investigated, Echinococcus spp were found in 16 (42%), with a range of worms from 2 

to over 10,000, and a median of 100. As described in chapter 3, the distribution of OD 

values amongst the necropsy negative animals was not Gaussian-distributed, and three 

samples in particular were clear outliers (with OD values more than 1.5 times the 

interquartile range higher than the upper quartile of the ‘negative’ sample 

distribution). Exclusion of these three samples from analysis altogether would give a 

prevalence estimate of 16/35 = 46%; and inclusion of them as likely true positive 

samples would give a prevalence estimate of 19/38 = 50%. 

The distribution of OD values and the mixture model component estimates (based 

upon the median estimates of the posterior distribution) is shown in Figure 4.2. All 

posterior distributions of the mixture model parameters (including the value of 𝑐 for 

the positive Polya Tree distribution and the Z-level for the negative samples) from 

MCMC sampling are shown in Figure 4.3, with the mode and the 95% high density 

interval highlighted (using code for graphical output provided in Kruschke (2011)). 

Similar posterior estimates of the overall prevalence and the parameters (intercept and 

slope) of the linear regression model are shown in Figure 4.4. All suspected negative 

samples with OD values of less than 0.1 were included in the fitting of the Bayesian 

model, whereas the posterior probability of acceptance of negative panel samples with 

OD values greater than this decreased as the OD value was increased, as shown in 

table 4.1. The overall median estimated prevalence was 49.6%, with a 95% HDI of 

28.7% to 69.1%.  
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Figure 4.2. Distribution of test results and median estimates of the mixture model components 

 

Figure 4.3. Posterior estimates of mixture model parameters 
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Figure 4.4. Posterior estimates of the overall prevalence of infection from the mixture model, 

and estimates of the parameters of the linear regression model 

Table 4.1. Mean proportion of high-OD negative panel samples (OD>0.1) included in the final 

mixture model 

OD value (4 d.p.) 
Posterior probability of inclusion in the 

mixture model 

0.1039 0.9999 

0.1063 0.9996 

0.1116 0.9975 

0.1159 0.9874 

0.1656 0.2187 

0.2055 0.0522 

0.2478 0.0184 

0.2595 0.0157 

0.2782 0.0127 

The distribution of posterior probabilities of infection according to the mixture model 

for the individual samples and for all OD values between 0 and 1 is shown in Figure 

4.5. Figure 4.6 demonstrates the median posterior probabilities of positivity for all 

samples. 
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Figure 4.5. Median posterior probabilities of positivity for samples (black circles) and for all OD 

values between 0.0 and 1.0 (red line). Blue lines and red ‘whiskers’ indicate the interquartile 

range. 

 

Figure 4.6. Distribution of median posterior probabilities of infection for all samples, 

according to the mixture model. 
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The distribution of posterior scores based on the product of the posterior probability 

of positivity and the predicted log worm burden for the individual samples and for all 

OD values between 0 and 1 is shown in Figure 4.7. Figure 4.8 demonstrates the 

distribution of median posterior score estimates for all samples. 

Finally, a comparison was made between the median score estimates and the worm 

burden for all samples. Figure 4.9 shows this relationship both for the unadjusted 

burden and for the log burden. 

 

Figure 4.7. Median posterior scores for samples (black circles) and for all OD values between 

0.0 and 1.0 (red line). Blue lines and red ‘whiskers’ indicate the interquartile range. The ‘burden 

score’ is the  ouput of the Bayesian mixture model, and can be considered to broadly relate to 

the log of the expected burden. 
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Figure 4.8. Distribution of median posterior scores for all samples 

 

Figure 4.9. Relationship between worm burden and median score for both unadjusted and log-

adjusted burden estimates. For right-censored burden estimates, the lower end of the interval 

is used. Samples taken from dogs with observable worms are shown in red, and those taken 

from dogs with no worms are shown in blue. 
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4.4 Discussion 

Optimal interpretation of canine Echinococcus coproELISA test data is important for 

epidemiological investigation, as well as for surveillance and control activities 

(Hartnack et al., 2013). The most commonly used method of interpretation of 

coproantigen ELISA data currently is based upon dichotomisation using a cut-off 

point three standard deviations above the mean OD of a known negative panel 

(Deplazes et al., 1992; Allan et al., 1992). The advantage of this approach is that the 

results are easy to understand – giving a clear estimate of which individual animals are 

coproantigen ‘positive’ or ‘negative’, and an estimate of the coproantigen prevalence at 

the population level. However, as well as the limitations associated with this particular 

strategy of dichotomisation (as described in the previous chapter), any 

dichotomisation approach is likely to result in imperfect sensitivity and specificity 

(Allan and Craig, 2006; Huang et al., 2013; Hartnack et al., 2013). Additionally, by 

dichotomising results, valuable information on the probability of infection is lost 

(Choi et al., 2006b), along with possible information on the burden of infection (in the 

case of testing for echinococcosis). Information on potential burdens is known to be of 

great value considering infection status (Hofer et al., 2000; Raoul et al., 2001). Finally, 

dichotomisation is known to reduce the statistical power (i.e. the ability to detect an 

effect if it is truly present) of any further analysis conducted on the data (Altman and 

Royston, 2006).  

The current paper describes a novel method of modelling Echinococcus spp 

coproELISA OD data, and uses Bayesian finite mixture modelling in order to identify 

the constituent infected and uninfected groups. This produces output which can be 

interpreted in a continuous or a dichotomous fashion, as desired, and doesn’t require 

the use of multiple diagnostic tests (Hartnack et al., 2013) and/or samples taken from 

populations with different levels of infection (Ziadinov et al., 2008). As such, it may be 

useful for ongoing surveillance activities (where the cost of multiple testing may be 

prohibitive), although there are limits to its use in coendemic areas (see below). 

Whilst not yet fully evaluated (due to a relative lack of high quality parasitological 

data), it is hoped that the modelling approach described in the current study will offer 
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a framework for improving the interpretation of test results, whilst still offering a 

transparent approach to dichotomous interpretation if desired. 

4.4.1 Population level interpretation 

One output from the Bayesian finite mixture model is an estimate of the weights of 

the two component distributions – which in biological terms will relate to the 

prevalence of infection (and the prevalence of non-infection) in the population. These 

should not be affected by ‘overlap’ between the negative and positive distributions to 

the same degree as approaches based on cut-offs, and as such should offer a better 

approximation of the true prevalence of infection in a community. Despite the wide 

HDI of the prevalence parameter (which will result from the relatively small number 

of samples evaluated in the model) (Figure 4.4), the modal prevalence estimate of 49% 

obtained from the current model is close to the suspected ‘true’ prevalence of around 

46%. 

Another possible method of interpretation of the output at the population level is to 

account for the distribution of burdens. Population-level interpretation of OD values 

directly have been studied recently (Raoul et al., 2001), but is difficult to interpret from 

a biological perspective, and would require some form of standardisation of OD data if 

to be used to compare testing conducted in different locations or different times. The 

output of the current model could be used to approximate the distribution of burdens 

(or log burdens) in the population under study (see figure 4.8). Investigation of the 

distribution of model ‘scores’ obtained from the model could shed light on aspects of 

the host-parasite relationship (Crofton, 1971a), and is discussed further in relation to 

overdispersion below. From a practical perspective, the output of the current model 

could be a useful step towards the development of a meaningful classification system 

for interpretation of the levels of canine echinococcosis in a community, as is 

recommended by the WHO for monitoring and control of schistosomiasis (WHO 

Expert Committee, 2002; Olives et al., 2012). 
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4.4.2 Individual level interpretation 

The current model also facilitates interpretation at the individual animal level, as an 

indication of the conditional probability distribution of coproantigen positivity for any 

OD value (or for any sample included in the model) is obtained. This may be 

interpreted in a dichotomous fashion by taking the modal estimate of the median 

probability for each individual (i.e. classify as positive if the median probability is 

greater than 0.5; as negative if it is less than 0.5; and decide upon a rule for 

classification of those with a probability of exactly 0.5). Using this approach. the 

posterior probabilities of infection in the individual samples tested here showed a 

reasonably clear distinction between ‘low’ and ‘high’ probabilities (for example, as 

shown in figure 4.6 for the median estimates). This suggests that, in this particular 

case at least, individual samples could reasonably be classified in a dichotomous 

fashion, as is commonly required for risk factor studies. If these distinctions were not 

apparent, then alternative approaches for categorical interpretation (such as inclusion 

of an ‘unknown’ category) could be considered. As the true necropsy status of the 

samples included in the current model is known, the performance of the dichotomous 

assignment of sample status can be estimated. The estimated sensitivity is 14/16 = 88%, 

and the estimated specificity is 17/22 = 77% (or 17/18 = 94% if the high OD ‘outliers’ are 

removed from the negative group – see below). These results are identical to those 

derived from a frequentist Gaussian mixture model, and very similar to those resulting 

from ROC curve analysis, of the same data, as described in the previous chapter.  

Test results interpreted in a dichotomous fashion are easy to understand because they 

considerably simplify the true situation. Whilst this may simplify the communication 

of results, this approach is less useful for the investigation of patterns of macroparasite 

infection, and will generally increase the sample size needed to detect a significant 

effect when conducting analytic studies (Altman and Royston, 2006). As described 

earlier, macroparasitic infections, including echinococcosis, usually show a highly 

aggregated distribution within a population (Torgerson and Heath, 2003; Budke et al., 

2005b). As such, ‘positive’ individuals do not represent a homogenous group – with 

most individuals carrying low worm burdens, and a minority of individuals usually 
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carrying the majority of the parasite biomass (Jenkins and Morris, 1991; Hofer et al., 

2000). This has implications for interpretation at the individual level (since the 

infection risk associated with high burden hosts would be expected to be greater than 

that in low burden hosts), and at the population level (since the majority of the 

parasite biomass may be found in a minority of the host population), and has 

repercussions for control (Woolhouse et al., 1997). This also means that the total 

biomass of Echinococcus spp could be reduced (through a moderately effective control 

scheme, for example) without necessarily observing a similar change in the estimated 

prevalence, as has been seen with other overdispersed helminth and macroparasitic 

infections (Guyatt et al., 1990; Shaw and Dobson, 1995).  

One method of interpretation of infection status at the individual animal level which 

can be relatively easily conveyed to stakeholder is the probability of positivity (Choi et 

al., 2006b), which is similar in concept to the positive predictive value. This expands 

upon the idea of a dichotomous interpretation by accounting for uncertainty when 

interpreting OD values which lie in the ‘overlap’ region between negative and positive 

samples. The level of overlap may be greater in more aggregated distributions, where 

more animals have low burdens and therefore where a traditional dichotomous 

interpretation based upon a cut-off would be expected to have a lower sensitivity 

and/or specificity. However, this approach was unable to distinguish individuals with 

very high burdens from those with moderate burdens – animals with high OD values 

invariably had a 100% probability of positivity (figure 4.5)). It was for this reason that 

estimates of the probability of positivity and the expected worm burden were 

combined in order to create a ‘score’ for each individual (see figure 4.7). The score 

estimate may be a useful tool for the communication of the predicted burdens within 

individual dogs, as well as within a community as a whole as described above. 

However, further work would be required in order to investigate how best to manage, 

utilise and disseminate this information. 
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4.4.3 Overdispersion 

Whilst care should be taken when directly attempting to interpret the score estimates 

obtained from the model in relation to the predicted worm burden (due to the small 

panel of samples upon which this estimation is based), these score estimates could be 

useful for investigation of overdispersion in parasite burdens in a population, as 

alluded to earlier. As described in chapter 1, overdispersion is a major characteristic of 

macroparasites (Woolhouse et al., 1997; Perkins et al., 2003; Poulin, 2007), and is a 

known characteristic of echinococcosis (Gemmell et al., 1986c; Hofer et al., 2000; 

Budke et al., 2005b). Based on the conservative estimates of the right-censored worm 

burdens shown in figure 4.9, the three dogs with the highest scores carried an 

estimated 83% of the total parasite biomass; and the four dogs with the highest scores 

carried an estimated 97% of this. This finding agrees with the following statement 

made by Anderson and May: ‘it is not uncommon to find 80 per cent or more of the 

macroparasites contained within 20 per cent or fewer of their … hosts’ (Anderson and 

May, 1991c).  

This overdispersion is likely to have a particular effect on the transmission ecology of 

Echinococcus spp, and vice versa. As described in chapter 1, mathematical and 

statistical models are indispensable for the investigation of the processes which may 

give rise to overdispersion, the stability of host-parasite interactions, and the potential 

effect of control schemes. However, the availability of high quality data often limits 

the ability to parameterise these models. Although the current model is not a 

substitute for high-quality parasitological data, such as that obtained through 

necropsy or purgation, it does increase the amount of information which may be 

obtained from a simple ELISA test. As such, it may improve the interpretation of 

surveillance data collected routinely during control schemes. On a basic level, the 

score estimates obtained from the current model can be considered to be a form of 

standardised OD data, offering the potential for interpretation of longitudinal data 

using simple regression models. This could be useful for the identification of dogs with 

higher burdens (whether at the individual dog or household level, or in the context of 

associated covariates). Control targeted at these individuals could have a 
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disproportionate effect on the total parasite biomass in a community and therefore 

improve the effectiveness of a control scheme (Woolhouse et al., 1997). If no risk 

factors are identified, then this in itself could be accounted for in a control scheme, 

and a focus could be placed on maximising praziquantel coverage throughout a 

community. These concepts are introduced and expanded upon in chapters 5 and 6. 

The effect of control schemes on parasite dynamics is an important area of current 

research (Basáñez et al., 2012a; b), and generally necessitates the use of mathematical 

models. The output of the current model could potentially be used to parameterise a 

mathematical model of transmission, in order to investigate the effect of a control 

scheme and better target ongoing surveillance and control. This idea is explored 

further in chapter 7. 

4.4.4 Model limitations 

As mentioned earlier, the largest constraint to full interpretation of the model output 

described here is the use of the same data for both model fitting and validation. This 

was considered unavoidable, as little other parasitologically-confirmed data were 

available. As such, whilst the modelling framework described here may be reasonable, 

extra care should be taken when interpreting the results of this preliminary evaluation. 

The difficulty in obtaining good quality parasitological data is a known issue for 

echinococcosis. As the positive predictive value of purgation for identification of 

echinococcosis would be expected to be 100%, this approach could therefore be used 

to identify positive samples. However, the accurate identification of negative samples 

is very challenging, and itself would be worthy of further investigation. Whilst some 

account for this is incorporated into the model structure (using the Z-score to exclude 

potential false negatives), the presence of false negatives (which would be expected to 

overrepresent those individuals with low burdens which comprise a large proportion 

of the population, if not a large proportion of the total parasite biomass) is a 

considerable problem for full evaluation. Although the use of faecal samples from 

known nonendemic / echinococcosis-negative areas is a simple solution to this 

problem, these dogs are unlikely to be representative of negative dogs in a highly 
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endemic area. Further work investigating optimal methods of parameterising the 

current model in the face of this challenge would be beneficial. 

One central concept of the model developed here is that the distribution of 

coproELISA OD values from noninfected dogs will be broadly Gaussian distributed. 

The issues associated with the use of the (unbounded) Gaussian distribution to model 

an outcome which can only take positive values were introduced in the previous 

chapter, and remain a potential issue here. However, these issues were considered 

relatively trivial. Analysis of coproantigen data from nonendemic sites has repeatedly 

suggested that the distribution of OD values amongst true Echinococcus spp negative 

dogs follows a Gaussian distribution (author’s own observation) – hence the original 

practice of calculating a cut-off for positivity which is three standard deviations above 

the mean of a known negative panel (Deplazes et al., 1992; Allan et al., 1992). The 

necropsy negative samples used here did not follow a Gaussian distribution – with at 

least three dogs having higher than expected OD values. As described in the previous 

chapter, the data in the current study are of high quality (having been based upon 

necropsy and visual inspection of intestines by experienced individuals), but were not 

derived using the ‘gold standard’ test (the sedimentation and counting technique). As 

such, it is plausible that some infected animals (especially those with low burdens) 

may not have been detected, and as such will be classified as false negatives (Allan and 

Craig, 2006). However, a similar non-Gaussian distribution of OD values amongst 

negative samples has also been reported from a study of foxes in France (Raoul et al., 

2001). This data was based upon the sedimentation and counting technique, and 

therefore the sensitivity would be expected to be high (Raoul et al., 2001).  

One other possible explanation for the observed lack of Normality amongst negative 

samples relates to the disparity between infection and the presence of coproantigens. 

The coproantigen ELISA test detects Echinococcus coproantigens rather than the 

presence of worms per se. Coproantigens may be present for some days after removal 

of the worms themselves with a cestocidal drug (Deplazes et al., 1990; Allan et al., 

1990; Jenkins et al., 2000). As a praziquantel dosing campaign was in place in the study 

area at the time of the study (van Kesteren et al., 2015), those dogs with high OD 
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readings may have recently been treated with praziquantel (leaving them free of 

worms but still with residual coproantigens). The possibility of cross reaction with 

other cestodes such as Taenia spp was considered unlikely in the current case as 

necropsy was conducted and Taenia are large worms which would be difficult to 

overlook.  

Further work is required to evaluate the usefulness of the current Bayesian finite 

mixture model as a method of interpretation of ELISA data, in particular with regards 

to the incorporation of worm burden data. One other issue of relevance is 

coendemicity of different strains or species of Echinococcus in an area. The data used 

here was taken from an area principally endemic for E. granulosus sensu lato (which 

includes a number of different species and strains, but which all have a similar 

lifecycle). However, there are major foci of Echinococcus spp infection where both 

E. granulosus and E. multilocularis coexist (including Kyrgyzstan). Due to  differences 

in the lifecycles of these two species (in particular in terms of intermediate host 

preference, but also in terms of patterns of infection in domestic dogs (Kapel et al., 

2006) and potential immunity (Budke et al., 2005b), the distributions of parasites in 

infected dogs and the effect of an intervention campaign may differ between species. 

As the coproELISA does not allow species identification, PCR techniques are required 

to distinguish these species. Methods of incorporation of PCR data into the current 

model, possibly using latent class models (Hartnack et al., 2013) and/or Bayesian 

strategies (Praet et al., 2013) will be investigated in future work. 

4.5 Conclusions 

The current paper describes a novel approach for interpretation of canine 

coproantigen ELISA data based upon Bayesian finite mixture modelling. The model 

can be made identifiable through the incorporation of samples of known status taken 

from endemic areas. The limited sensitivity of the methods of diagnosis available can 

be incorporated into the Gaussian-distributed negative component of the mixture 

model, and the skewed distribution of positive samples can be explicitly accounted for 

by using Polya trees. The output of the model can be used for traditional dichotomous 
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interpretation of sample data (along with estimation of the sensitivity and specificity 

of the test), but it is suggested that attention is given to the possibility of 

interpretation of results on a continuous scale. Methods of interpreting this data at the 

population level and at the individual level are discussed, along with potential areas of 

further application – in particular, by incorporating the model output into statistical 

and mathematical models. Despite these promising signs, further work is required to 

evaluate this approach, using data collected from other areas, and also considering 

incorporation of PCR data in order to allow identification of species of Echinococcus 

present. 
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Chapter 5: Use of multiple correspondence analysis to 

classify dog ownership and potential risk factors for canine 

echinococcosis 

 

"Science may be described as the art of systematic over-simplification  
— the art of discerning what we may with advantage omit" 

Karl Popper (1902 – 1994) 
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5.1 Introduction 

5.1.1 Echinococcosis in Kyrgyzstan 

As described earlier, independence from the Soviet Union in 1991 led to a loss of 

regulation of animal management (including disease control) and an increase in 

poverty in Kyrgyzstan. This has resulted in a variety of ecological and epidemiological 

problems. In particular, a reduction in transhumant movement has led to overgrazing 

of pastures around human settlements, and a lack of veterinary disease control has 

resulted in an increase in the prevalence of a number of zoonotic diseases in humans 

(in particular, brucellosis and echinococcosis) (World Bank, 2005, 2010). The increase 

in the prevalence of human alveolar echinococcosis (AE) is a considerable concern due 

to the high case fatality rate if this disease is left untreated. These increases in 

prevalence have appeared to be particularly pronounced in the south of the country 

(Torgerson, 2013; Usubalieva et al., 2013), where canine infection with E. granulosus G1, 

E. canadensis G6, and E. multilocularis has recently been described (van Kesteren et 

al., 2013). In response to this, a World Bank–funded project aiming to improve pasture 

management and strengthen the agricultural services was instigated in 2010 (World 

Bank, 2010). One component of this intervention was focussed on the control of a 

number of veterinary and zoonotic pathogens, including Echinococcus spp. (World 

Bank, 2010). The cornerstone of this campaign was regular praziquantel dosing of 

dogs, although a variety of other strategies were also planned (WHO, 2011).  

5.1.2 Surveillance prior to control 

Surveillance is essential for the monitoring and evaluation of any control scheme, and 

in the case of echinococcosis is commonly based largely upon testing of canine faecal 

samples in order to estimate the coproantigen prevalence in a community (Deplazes et 

al., 1992; Allan et al., 1992), although monitoring of infection in other hosts can be very 

useful (Gemmell and Schantz, 1997; Gemmell et al., 2001). A major consideration when 

planning an intervention campaign is the estimation of the baseline prevalence of 

infection (or, more commonly, the prevalence of coproantigen positivity), and the 
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identification of risk factors associated with this (which can improve understanding of 

the transmission dynamics in the communities of interest). This can assist with the 

‘risk profiling’ of a community, and as such is of vital importance to the 

implementation and evaluation of a control scheme. Whilst a component of the World 

Bank strategy was the collection and testing of faecal samples prior to control (WHO, 

2011), the lack of identification of potential risk factors for infection could lead to 

difficulties for full evaluation of the efficacy of the control scheme. As echinococcosis 

is a disease of communities as much as it is a disease of individuals, characterisation of 

the communities of interest could useful in understanding local transmission 

ecosystems. 

Risk factor studies can be useful in the identification of relevant features of the 

transmission cycle of Echinococcus spp. in a particular study area, and are commonly 

based upon regression modelling techniques. However, these strategies, although 

useful for gaining an overall idea of risk factors for infection, can overlook some of the 

complex interactions and interdependencies between potential risk factors. The wide 

variety of different findings from these studies (many of which have been reviewed in 

a recent article (Otero-Abad and Torgerson, 2013)) further support these limitations in 

conventional risk factor studies. Therefore, rather than focussing solely on individual 

risk factors of interest, it may be beneficial to identify and characterise particular 

features of the community which may have relevance for the risk of canine infection, 

or which may be of concern to the implementation of a praziquantel dosing campaign. 

This is commonly implicitly conducted as part of the natural fieldwork process, by 

speaking with locals and gaining a general understanding of the local environment 

and livelihoods. However, describing these findings clearly and succinctly in relation 

to a large number of variables of potential interest is generally not possible, and as 

such these important findings are often either not presented in the analysis or 

mentioned only in relation to specific identified risk factors. 

The current study uses a novel technique, multiple correspondence analysis, to 

characterise patterns of dog ownership in four study villages in the Alay valley of 

southern Kyrgyzstan, prior to the implementation of a praziquantel-based dog dosing 
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scheme. An attempt was also made to identify possible risk factors for canine 

echinococcosis by investigating associations between patterns of dog ownership and 

canine coproantigen and PCR positivity. 

5.1.3 Multiple correspondence analysis 

Multiple correspondence analysis (MCA) can be considered a method of data 

exploration which aims to identify relationships between a number of categorical 

variables in a similar fashion to the way factor analysis (FA) or principal components 

analysis (PCA) deal with continuous variables. It can be viewed as either a 

generalisation of correspondence analysis (CA), or a generalisation of PCA. The latter 

approach will be used for description of MCA here, but a full review of all of these 

techniques can be found in (Husson et al., 2011). 

At a conceptual level, CA can be understood as the deconstruction of a chi-square 

analysis, followed by the use of orthogonal rotation or transformation in order to 

better represent the variance in the data. If two variables are considered, with 𝑛 and 𝑚 

categories each, an 𝑛 × 𝑚 contingency table of relationships between these categories 

can be created (as would be performed when manually conducting a chi-square test). 

From this, estimates of the ‘row masses’ can be made for each of the 𝑛 categories of 

the row variable by dividing the marginal row frequencies by the total number of 

observations. The same can be done for each of the 𝑚 categories of the column 

variable (in order to give the ‘column mass’). Under the assumption of independence 

between the two variables, the product of any row mass and any column mass will give 

the expected proportion for the particular cell at the intersection. In chi-square 

testing, this estimate is then multiplied with the total number of observations to give 

the expected cell count, and the chi-square statistic is calculated as the sum of the 

squared differences between the observed cell counts and the expected cell counts, 

weighted according to the expected counts. If this same procedure is instead 

performed on the observed and expected proportions rather than the counts, the 

‘Pearson’s mean square contingency’, or 𝜙2, is estimated (which is equal to the chi-

square statistic divided by the total number of observations). This can be considered 
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to be a measure of the overall intensity of the relationship between the two variables, 

or the ‘total inertia’ in the data. CA is based upon the identification of the contribution 

of each of the cells (i.e. particular combinations of row and column levels) to this total 

inertia. 

Correspondence analysis is based upon the singular value decomposition of the matrix 

of standardised residuals (which are the differences between the observed and 

expected values for each cell in the table, and which give an indication of the 

magnitude and direction of each cell’s deviation from independence). One way to 

approach this is to consider row and column profiles, which are a method of 

normalising the data and can be useful for identifying the contribution of the variables 

under investigation to the total inertia. The ‘row profile’ for each row can be 

considered as a vector of the (conditional) frequencies of column membership for that 

row. If each of these 𝑛  vectors could be plotted together as coordinates in 𝑚–

dimensional space, a geometric interpretation of the relationship between the 

different rows could be developed (a ‘cloud’ of 𝑛 points). The vector of column masses 

represents the ‘average’ row profile, and therefore the point of origin of the cloud. The 

points (which each represent individual rows) are each weighted according to the row 

mass, meaning that rows containing a higher proportion of the total number of 

observations contribute more. The same approach can also be conducted for the 

columns, in order to create a cloud of 𝑚 points in 𝑛-dimensional space. 

The measures of departure from the independence model used in the creation of the 

row and column profile clouds are related to the chi-square statistic. This relationship 

becomes more apparent when estimates of the distance between each point (i.e. each 

row or column) and the cloud origin are made. In the case of the row profile cloud, 

this distance can be calculated as the sum of the squared differences between each 

row profile vector entry and the corresponding entry in the vector of column masses, 

weighted by the row profile. Since the vector of column masses represents the 

‘expected’ row profile vector under an assumption of independence, this distance 

measure is known as the ‘𝜒2 distance’ (𝑑2). Multiplication of the 𝜒2 distance with the 

weight allocated to each point (the row mass) gives a measure of the inertia of the 
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point. When these individual row point inertias are summed up for all rows, the total 

inertia (𝜙2) is returned. As before, the same principle applies for the column profile 

cloud, which will give the same estimate of total inertia. The aim of MCA, as for 

related techniques such as PCA, is then to find the way to best represent the n-

dimensional cloud of points in fewer than n dimensions whilst maintaining these 

distances between points. This is achieved by specifying the origin (the coordinates of 

the average row or column profile) as the centre of gravity (the ‘barycentre’) of the 

cloud, and creating a set of orthogonal axes around this which maximise the inertia 

captured, in each successive dimension.  

MCA can be approached using a similar approach to CA, by creating the ‘Burt matrix’ 

which is a symmetric matrix representing all possible cross tabulations (i.e. 

contingency tables) for the variables under investigation, and analysing these 

separately. However, another way of conducting MCA is to apply the methodology 

described above to an indicator matrix (also known as the ‘complete disjunctive 

matrix’) of all individuals, which comprises the indicator matrices for all variables 

under investigation. Here, rows represent individuals, columns represent variable 

levels for all variables under investigation, and each cell will contain either a zero or a 

one – representing either presence or absence of the factor level for the individual in 

question. The cloud of individuals can be developed and analysed as required, and also 

a cloud of variable categories can be created. This presents the locations of the 

barycentres of individuals positive for each variable category. The barycentre of all 

categories within a particular variable will be equal to the point of origin of the axis. 

5.2 Materials and methods 

5.2.1 Samples 

In May 2012, four communities in the Alay valley of southern Kyrgyzstan were visited. 

All occupied households in Sary-Mogol, Taldu-Suu and Kara-Kabak, and a random 

selection of households (approximately 25%) in Kashka’Suu were visited. For each 

household visited, a questionnaire was administered relating to details such as general 
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demographics (age, sex, occupation of interviewee), dog ownership (number of dogs 

currently owned, management of these dogs), dog demographics (dog age, dog sex, 

dog weight), and perception of echinococcosis (recent administration of praziquantel 

to dogs, understanding of source of human echinococcosis). Not all questions were 

answered by all interviewees. Of 692 households registered, a total of 329 individuals 

reported owning dogs, and a total of 388 dogs in total were registered. A total of 318 

dog faecal samples included a subsample stored in saline buffer, and these were used 

for the remainder of the analysis. 

5.2.2 Data processing 

Sample processing was as described in chapter 2. Of the 318 samples, 23 could not be 

matched to an individual questionnaire (due to illegible or damaged sample labels), 

but were retained in the model as the village was known. Receiver-operating 

characteristic (ROC) curve analysis (Zweig and Campbell, 1993; Greiner et al., 2000) 

was used on a panel of parasitologically defined dog faecal samples taken from 

Xinjiang province in China during an evaluation of a control scheme (van Kesteren et 

al., 2015), and the Youden index approach (i.e. maximisation of both test sensitivity 

and specificity) (Youden, 1950) was used to determine the optimal cut-off point. The 

resultant cut-off point (OD 0.07635) gave an estimated test sensitivity of 96% and 

specificity of 83%, based upon the panel evaluated. 

A Bayesian mixture model (described in the previous chapter) was also used to obtain 

risk scores for each sample, calculated from the OD of the sample and using OD data 

from a number of parasitologically-confirmed positive and negative samples from 

Xinjiang, China (van Kesteren et al., 2015) in order to ensure identifiability and 

parameterise the linear regression component of the model. In order to account for 

possible differences in the distribution of OD values for positive samples between the 

four villages under investigation, each village was fit to a separate mixture model, with 

a distinct Polya tree created for each village but the same distribution of negative 

samples assumed for all four villages. Full code for the mixture model is provided in 

the appendix (A5). In order to simplify the interpretation of the model output, the 
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median estimates of the risk scores were extracted for each sample and used in the 

current study. 

The number of available samples taken from each community is shown in table 5.1. 

Prior to analysis, the number of variables with missing data was assessed. Two 

variables were commonly left unanswered: “heard of hydatid disease” (only answered 

by 38 people – all of whom answered “no”) and “dog fed by neighbours” (only 

answered by four people). These two variables were therefore removed from further 

study. All remaining variables were answered by at least 267 people. Variables were 

then inspected for the distribution of outcomes, and all variables with fewer than 10 

responses in any category were removed, as these can contribute disproportionately to 

total inertia and lead to inappropriate conclusions in MCA (Husson et al., 2011). This 

resulted in the removal of variables relating to a perceived source of human hydatid 

disease in other humans, food, cats, and other sources; a history of hydatid disease in 

the household; the burning of organs; the feeding of commercial food and scraps; and 

dog handling by strangers. As MCA requires categorical input, all continuous variables 

were categorised using biologically and demographically reasonable cutpoints 

(keeping the number of categories to a minimum wherever possible, as variables with 

more categories will tend to result in greater estimates of inertia). This process 

resulted in a total of 52 variables of interest, as shown in table 5.2.  

Table 5.1. Numbers of samples analysed from the four study villages 

Village Number of samples Proportion 

Sary-Mogol 155 0.49 

Taldu-Suu 86 0.27 

Kara’Kabak 42 0.13 

Kashka-Suu 35 0.11 

Table 5.2. Variables considered in the risk factor modelling process. “Supp.” indicates the the 
variable was included as a supplementary variable rather than an active variable in the MCA 
analysis 
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Variable type Variables Supp. 

Location Village * 

Sample Purge sample * 

Animal ownership Number of dogs owned in last 10 years (1, 2, 3, ≥4)  
 Number of dogs currently owned (1, 2, ≥3)  
 Sheep owned  
 Goats owned  
 Cattle owned  
 Horses owned  
 Yaks owned  
 Donkeys owned  

Dog demographics 

Dog age (≤1y, 1-3y,3-4y, ≥5y)  
Dog size (small, medium, large)  

Dog weight (≤10kg, 10-20kg, >20kg)  
Dog sex  

Hunting dog  
Guard dog  

Pet dog  
Sheep dog  

Dog management Dog wormed in last six months  
 Dog known to eat rodents  
 Dog fed meat  
 Dog fed offal  
 Dog chained (always, day only, never)  
 Dogs handled by adults in the household  
 Dogs handled by children in the household  
 Dogs handled by friends of the family  
 Dogs not handled  
 Dog visited Jailoo (summer pasture) previous year  
 Dog will visit Jailoo this year  

Animal slaughter Slaughter own animals  
 Slaughter other people’s animals  
 Organs from slaughtered animals thrown away  
 Organs from slaughtered animals given to dogs  
 Organs from slaughtered animals buried  

Knowledge about human 
echinococcosis 

Dogs perceived source of hydatid disease  
Livestock perceived source of hydatid disease  

Source of hydatid disease not known  

Diagnostic test results 

ELISA status (pos/neg) * 
ELISA OD value * 

Median Bayesian mixture model score * 
E. granulosus G1 PCR status(pos/neg) * 
E. canadensis G6 PCR status(pos/neg) * 
E. multilocularis PCR status(pos/neg) * 
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5.2.3 MCA model 

MCA was conducted using the package “FactoMineR” version 1.29 (Lê et al., 2008; 

Husson et al., 2015). Village, purge status and diagnostic test results were entered as 

supplementary variables into the model, and therefore did not contribute to the 

output themselves. All remaining variables were entered into the model as ‘active’ 

variables, and therefore were used in the construction of the MCA dimensions. 

MCA was initially used to visualise the pattern of missing data (which was included as 

a separate level for each variable with missing data). In order to remove these missing 

data levels from the analysis, the “estim_ncpMCA “procedure in the R package 

“missMDA” (Husson and Josse, 2014) was used to identify the optimal number of 

dimensions from which to compute the missing values. As this procedure indicated 

that zero dimensions should be used to impute missing data, the “imputeMCA” 

procedure in the same package was used to construct a new disjuntive matrix by 

replacing missing data with the proportion of positive responses for the category in 

question (Josse et al., 2012).  

MCA was run using the adapted disjunctive matrix, and the barchart of eigenvalues for 

sequential dimensions was visually inspected in order to identify a reasonable number 

of dimensions to retain for interpretation. Initial interpretation was conducted on a 

visual basis, using scatter plots of two consecutive dimensions in pairs. Firstly, a ‘cloud 

of variables’ (Husson et al., 2011) was created based upon the correlation ratioestimate 

for individual categories within that variable in relation to the dimension scores. This 

allowed identification of potential variables of importance to the dimensions. A ‘cloud 

of categories’ was then created, which represents the output of the process described 

earlier, and represents the barycentres of those individuals positive for that category 

for each of the dimensions. To aid interpretation of these graphs, only those variable 

levels which were most strongly associated with the dimension were represented by 

selecting points according to their squared cosine coefficient (𝑐𝑜𝑠2). The 𝑐𝑜𝑠2 can be 

considered to be a measure of the correlation between individual points and the 

dimension in question: the name is derived from the geometric properties of MCA 
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output. All levels of active variables with a 𝑐𝑜𝑠2 estimate of 0.1 or less were not labelled 

in the graph or interpreted in the model output. Once an idea was obtained of what 

the different dimensions represented, the relationship between dimensions and the 

supplementary variables was investigated graphically using the same approach, 

including all variable levels regardless of 𝑐𝑜𝑠2. 

Quantitative interpretation of the MCA output was achieved using the “dimdesc” 

procedure in FactoMineR, and results were only presented for active variables for 

which there was reasonable evidence of an association with the dimension in question 

(p<0.05). Output was presented for all supplementary variables due to the exploratory 

nature of this part of the study and the relatively low number of variables investigated. 

A number of estimates were obtained. For each variable, the correlation ratio was 

estimated and a one-way analysis of variance was used to identify significant 

associations. For particular variable levels, the mean coordinates on the dimension in 

question for individuals positive for the level in question were estimated and 

compared to the mean coordinates overall using a t-test. This procedure was repeated 

for both active and supplementary variables. For quantitative supplementary variables, 

the correlation coefficient between individual scores and the variable was estimated. 

5.3 Results 

As expected, the distribution of OD values from these samples showed a clear right 

skew, as shown in figure 5.1. Of the 318 samples included, 78 (25%) were classified as 

being coproantigen positive, with the distribution of positivity between villages 

detailed in table 5.3. The predicted distributions of samples from the four villages from 

the Bayesian mixture model are shown in figure 5.2, and estimates of the prevalence of 

infection for the four villages taken from the model are shown in table 5.3. The 

Bayesian mixture model scores ranged from 0.04 to 7.61, and were highly 

overdispersed, as is shown in figure 5.3. 
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Figure 5.1. Distribution of OD values for all samples tested (n=318). The red line indicates the 

cut-off for positivity. 
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Figure 5.2 Predicted distribution of mixture model components for the four villages 

 

Table 5.3. Coproantigen prevalence/prevalence estimates for the four study villages 

Village Coproantigen cutoff Mixture model (mode and HDI) 

SM 42/155 = 27% 14% (9-22%) 

TS 16/86 = 19% 9% (4-18%) 

KS 10/42 =24% 13% (5-28%) 

KK 10/35 = 29% 15% (6-31%) 
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Figure 5.3 Distribution of median score estimates from the mixture model 

As is expected for MCA analysis, the eigenvalues of the dimensions were all relatively 

low, as shown in figure 5.4. A decision was made to select the first four dimensions for 

further interpretation, as after this there was a sudden drop in eigenvalue estimates. 

The estimate of total variance explained by these four dimensions was 27% (although 

this is likely an underestimate, as is usually seen when MCA is conducted on a 

disjunctive matrix (Husson et al., 2011)). 
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Figure 5.4 Eigenvalue estimates for the dimensions created in MCA. The red line indicates the 

cut-off for dimensions to interpret 

Table 5.4. Eigenvalues and inertia ('variance') explained by the first five dimensions 

Dimension Eigenvalue 
Percentage of 

variance 
Cumulative percentage of 

variance 

1 0.10 8.77 8.77 

2 0.08 7.48 16.25 

3 0.07 6.04 22.29 

4 0.06 5.02 27.31 

Scatterplots of the individual, variable and category clouds of the first four dimensions 

are shown in figures 5.5-5.9. Estimates of dimension scores and 𝑐𝑜𝑠2 estimates (for 

variables with a 𝑐𝑜𝑠2 of greater than 0.1) are shown in tables 5.5-5.8. All p-values for 

the association between these variables and the dimension were less than 0.001, and so 

are not shown. Tables 5.9 and 5.10 show either 𝑐𝑜𝑠2 (for categorical variables) or 

correlation coefficients (for continuous variables), dimension scores and p-values for 

the supplemental variables. 
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Figure 5.5. Individual clouds for the first four dimensions 
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Figure 5.6. Variable clouds for the first four dimensions 
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Figure 5.7. Category clouds for the first four dimensions. Labels are not included for variables 

with a 𝒄𝒐𝒔𝟐 estimate of 0.1 or less (grey points) 
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Figure 5.8. Supplementary variable category clouds for the first four dimensions 
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Figure 5.9. Correlation circles for supplementary quantitative variables for the first four 

dimensions
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Table 5.5. Variable categories associated with dimension 1 

Category Dimension score 𝒄𝒐𝒔𝟐 
goats -0.25 0.50 

home slaughter -0.23 0.18 
sheep -0.23 0.48 
cattle -0.23 0.45 
horses -0.20 0.33 

jailoo last year -0.19 0.39 
jailoo this year -0.18 0.33 

donkeys -0.13 0.14 
dog fed meat -0.11 0.10 

dog not fed meat 0.11 0.10 
no donkeys 0.12 0.14 
no horses 0.18 0.33 
10y1dog 0.21 0.13 

no jailoo last year 0.22 0.39 
no jailoo this year 0.24 0.33 

no sheep 0.33 0.48 
no cattle 0.34 0.45 

no goats 0.39 0.50 
not home slaughter 0.43 0.18 

 

Table 5.6. Variable categories associated with dimension 2 

Category Dimension score 𝒄𝒐𝒔𝟐 
dog handled by adults -0.22 0.56 

not sheepdog -0.21 0.44 
dog handled by somebody -0.18 0.33 

guard dog -0.18 0.36 
pet -0.17 0.33 

not slaughter others -0.11 0.16 
slaughter others 0.14 0.16 

not guarddog 0.18 0.36 
not pet 0.22 0.33 

dog not handled by adults 0.23 0.56 
20kg+ 0.24 0.23 

dog handled by nobody 0.28 0.33 
sheepdog 0.34 0.44 
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Table 5.7. Variable categories associated with dimension 3 

Category Dimension score 𝒄𝒐𝒔𝟐 
large -0.24 0.25 

wormed -0.19 0.25 
3-5y -0.19 0.13 

20kg+ -0.17 0.10 
1 dog -0.13 0.15 

not hunting dog -0.10 0.15 
doesn't eat rodents -0.10 0.13 

dog not handled by child -0.10 0.14 
dog handled by child 0.11 0.14 

not wormed 0.13 0.25 
2 dogs  0.14 0.13 

hunting dog 0.15 0.15 
eats rodents 0.15 0.13 

<=10kg 0.24 0.37 
small 0.36 0.31 

<1y 0.37 0.33 

 

Table 5.8. Variable categories associated with dimension 4 

Category Dimension score 𝒄𝒐𝒔𝟐 
organs buried -0.21 0.36 

dog not handled by friends -0.16 0.13 
organs not fed to dogs -0.13 0.29 

<=10kg -0.11 0.12 

dog not fed meat -0.10 0.17 
dog not handled by child -0.10 0.16 

doesn't eat rodents -0.08 0.12 

dog fed meat 0.10 0.17 
dog handled by child 0.11 0.16 

organs fed to dogs 0.14 0.29 
eats rodents 0.14 0.12 

organs not buried 0.14 0.36 
dog handled by friends 0.30 0.13 
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Table 5.9. Associations between the first four MCA dimensions and the categorical supplementary variables. Variables with a t-test p-value of less 

than or equal to 0.05 are shown in blue. E.g = E. granulosus G1;  E.c = E. canadensis G6;  E.m = E. multilocularis 

Category 
Dimension 1 Dimension 2 Dimension 3 Dimension 4 

𝒄𝒐𝒔𝟐 score p 𝒄𝒐𝒔𝟐 score p 𝒄𝒐𝒔𝟐 score p 𝒄𝒐𝒔𝟐 score p 

SM 0.08 0.12 <0.01 0.01 -0.05 0.12 0.00 0.02 0.97 0.01 0.05 0.20 

TS 0.07 -0.10 <0.01 0.00 -0.05 0.38 0.01 0.05 0.13 0.01 0.07 0.04 
KS 0.00 0.01 0.61 0.04 0.13 <0.01 0.01 0.06 0.20 0.01 -0.02 0.15 
KK 0.00 -0.02 0.31 0.00 -0.04 0.80 0.04 -0.13 <0.01 0.04 -0.10 <0.01 

ELISA(-)  0.00 -0.01 0.58 0.01 0.03 0.16 0.00 0.00 0.99 0.00 0.02 0.30 
ELISA(+)  0.00 0.01 0.58 0.01 -0.03 0.16 0.00 0.00 0.99 0.00 -0.02 0.30 
E.g PCR(-) 0.00 -0.04 0.27 0.02 0.06 0.01 0.01 0.03 0.20 0.01 0.04 0.18 
E.g PCR(+) 0.01 0.08 0.04 0.00 -0.01 0.35 0.00 -0.03 0.23 0.02 -0.08 0.01 
E.c PCR(-) 0.00 0.00 0.81 0.00 0.03 0.22 0.00 0.00 0.97 0.00 0.01 0.43 
E.c PCR(+) 0.00 0.01 0.64 0.00 0.02 0.83 0.00 0.02 0.58 0.00 -0.02 0.37 
E.m PCR(-) 0.00 0.01 0.71 0.01 0.05 0.04 0.00 0.00 0.82 0.00 -0.01 0.75 
E.m PCR(+) 0.00 0.00 0.94 0.00 0.02 0.75 0.00 0.01 0.81 0.00 -0.01 0.82 

Purge(-) 0.00 -0.02 0.66 0.02 -0.10 0.01 0.03 0.09 <0.01 0.01 0.06 0.03 
Purge(+) 0.00 0.01 1.00 0.05 0.18 <0.01 0.06 -0.17 <0.01 0.03 -0.12 <0.01 

 

Table 5.10. Associations between the first five MCA dimensions and the continuous supplementary variables 

Variable 
Dimension 1 Dimension 2 Dimension 3 Dimension 5 

correlation p correlation p correlation p correlation p 

OD 0.04 0.45 -0.03 0.56 0.02 0.76 -0.14 0.02 

Score 0.07 0.21 -0.02 0.78 0.00 0.94 -0.11 0.06 
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5.4 Discussion 

This chapter describes a strategy for the investigation of types of households and dog 

owners in the Alay valley of southern Kyrgyzstan. It is intended to demonstrate the 

use of multivariate techniques in the integration of datasets containing relatively large 

numbers of variables of potential interest – such as those obtained at the start of a 

study, when little is known of the study area. As echinococcosis is a community-level 

problem, methods which can identify community-level risk factors of potential 

importance can be useful for planning and assessing control and intervention 

schemes. Whilst this is no substitute for local knowledge gained by speaking with and 

involving local people, it offers an additional strategy for the exploration and analysis 

of complex situations, and may also be useful for combination with risk factor 

investigations. Multiple correspondence analysis identified four different dimensions 

of dog types, as summarised in table 5.11.  

Table 5.11. Basic description of first five dimensions extracted from MCA 

Dimension Low values High values 

1 

Livestock ownership; visits Jailoo; 

fed meat; owners slaughters 

animals 

No livestock; only owned one dog 

in last ten years; doesn’t visit 

Jailoo; not fed meat; owner doesn’t 

slaughter animals 

2 

Guard dogs and pets; handled; 

owners don’t slaughter other 

people’s animals 

Sheepdogs; not handled; greater 

than 20kg; owners slaughter 

other’s animals 

3 

Older, larger dogs from single dog 

households; received praziquantel; 

not handled by children; not used 

for hunting; not seen eating 

rodents 

Younger, smaller dogs from two 

dog households; hasn’t  received 

praziquantel; handled by children; 

used for hunting; seen eating 

rodents 

4 

Owners bury organs rather than 

give to dog; small dogs; not 

handled; not known to eat rodents 

Owners feed dog organs; known to 

eat rodents; handled 
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5.4.1 Comparison of prevalences 

As shown in table 5.3, there were considerable differences in the estimated prevalences 

between the ROC curve analysis (using a single cut-off) and the mixture model (which 

estimated the prevalence as the modal weight of the positive component). The 

prevalence estimates using the cut-off were generally double those estimated from the 

mixture model, which likely represents limitations in the test specificity using this 

particular, low, cut-off (i.e. false positives). However, as the mixture model has not yet 

been comprehensively validated, it is also possible that the mixture model predictions 

are inaccurate. Interestingly, when the ROC curve approach was repeated classifying 

dogs with low burdens (<50 worms) as negative (see chapter 6), the estimated 

prevalences were similar to those obtained from the mixture model. This would 

suggest that the mixture model strategy here is underrepresenting the true prevalence. 

There was no clear evidence of any particular differences in prevalence between 

villages, and the distribution of the positive components of the mixture model for the 

four villages were also all very similar (figure 5.2). 

5.4.2 Interpretation of dimensions 

The first dimension represents differences in animal ownership, and distinguishes 

dogs in livestock-oriented households from those in households which do not keep 

livestock. As expected, only those dogs from households with livestock visit Jailoo (as 

the purpose of visiting Jailoo is to graze livestock) and slaughter their own animals. 

The second dimension represents differences in dog use, and distinguishes sheepdogs 

(which are generally heavier in weight) from pets and guard dogs. There does not 

appear to be a clear distinction between pets and guard dogs (van Kesteren et al., 

2013), which may indicate overlapping responsibilities (or lack thereof) for these 

animals. These dogs tend to be more commonly handled by their owners, and come 

from households which tend to not be involved in slaughtering other people's 

livestock. 
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The third dimension represents differences in dog demographics, and distinguishes 

older dogs from single dog households from younger dogs (possibly new acquisitions) 

in multi-dog households. The older dogs are not handled by children but tend to have 

recently received praziquantel, whereas younger dogs are more likely to have been 

observed eating rodents and are commonly handled by children. As these dogs were 

also less likely to have been wormed, this could indicate an increased risk of 

transmission of Echinococcus spp.  

The fourth dimension appears to be related to aspects of owner’s knowledge of 

echinococcosis, and distinguishes dogs whose owners appear to know about 

echinococcosis and act accordingly (avoids feeding offal to dogs, avoids dog contact), 

from those whose owner does not. Alternatively, this may represent differences in 

level of dog management –with low values indicating people who take little interest in 

their dog. These two possible explanations would be worthy of further investigation, 

since they would be expected to result in different risks of dog infection. If this 

dimension does represent owner’s knowledge of echinococcosis, the fact that this is 

acted upon is very promising, and suggests that education campaigns (whether formal 

or informal) are having an effect on these households. Dogs from these households 

tend to be smaller but not necessarily younger (contrasted with the smaller dogs 

identified in dimension 3), which may indicate underfeeding or breed differences. 

Dogs from households with less apparent echinococcosis knowledge were also more 

commonly reported to eat rodents than those with more knowledge. Given that there 

is probably little owner control over this behaviour, this may indicate response bias in 

the case of households with more knowledge (i.e. they may pretend to not observe 

these risky behaviours in their own dogs), or may represent differences in owner 

interaction with dogs. 

5.4.3 Investigation of associations with supplementary variables 

The next stage of analysis was the investigation of associations between the four 

identified dimensions and the supplementary variables. Although the supplementary 

variables were found to be significantly associated with dimensions in some cases, 
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their correlation with the dimensions (as measured using 𝑐𝑜𝑠2) were invariably low 

(less than 0.1). Despite this, it may still be possible to extract some potentially useful 

information from these associations, which may be worthy of further investigation.  

Sary-Mogol was clearly distinguished from Taldu-Suu on dimension 1, which 

suggested that dogs from Sary-Mogol tended to be from less livestock-oriented 

households than those in Taldu-Suu. This feature was evident from personal 

observation during household visitation. Dogs which tested positive for E. granulosus 

G1 by PCR had significantly higher scores on dimension 1, which may suggest a direct 

relationship with households which did not own their own livestock and did not visit 

Jailoo. One possibility cause of this association is dog type, which will be discussed 

below in relation to dimension 2. Another possible reason for this association is 

visitation of Jailoo. Investigation of the potential risk associated with travel to 

“summer pastures” such as this has produced varied outcomes. A study of 

E. granulosus in Narenhebuke in Xinjiang, China, suggested that dogs at summer 

pasture had a lower coproantigen prevalence than those in winter pasture (Wang et 

al., 2001). However, since these samples were collected at different times of the year, 

there is a possibility for confounding due to inherent seasonality in infection. 

Conversely, it has been suggested that summer pasture presents a focus of 

E. multilocularis transmission in Kazakhstan (Rysmukhambetova et al., 2004). If the 

risk of canine infection with E. granulosus G1 is reduced when visiting the Jailoo, then 

those dogs which remain in the villages over the summer period may have a relatively 

higher prevalence of infection than those which visit Jailoo. Since the life expectancy 

of E. granulosus can be in the order of 6-20 months (Harris et al., 1980), then it is 

plausible that worms could still remain at the time of visitation (May). A final 

possibility is that of socioeconomic status. It has been suggested that travel to Jailoo is 

not economically feasible for poorer livestock-owning families (Farrington, 2005; 

Kerven et al., 2012), and a complete lack of ownership of livestock may predominantly 

identify particularly poor families. Therefore, the identified association may also be 

representative of socioeconomic factors, which may have an impact upon canine 

infection. 
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Dimension 2 distinguished Kashka’Suu from the other villages, suggesting that dogs 

from this village were more likely to be described as sheepdogs (rather than guard/pet 

dogs). As would be expected, sheepdogs were also represented by low scores on 

dimension 1, but the location of Kashka’Suu on dimension 1 was not noticeably 

different from the barycentre of this dimension (which therefore suggests that this 

village had an ‘average’ level of livestock ownership/Jailoo visitation). Another possible 

explanation for this association with dog types is that houses in Kashka’Suu were 

generally of a higher build quality than those in other villages, which could mean that 

guard /pet dogs were not needed for protection of possessions. The variable indicating 

whether dogs were purged was also associated with this dimension, and suggested 

that purged dogs were more likely to be identified as sheepdogs. Purging was only 

conducted in two villages – Taldu-Suu and Kara-Kabak – but selection of dogs was 

mediated through the local government and private veterinarian, respectively. This 

association, especially given that these villages did not score highly on dimension 2 per 

se, possibly suggests a possible selection bias in favour of sheepdogs. This may be due 

to closer relationships between the veterinarians and sheepdog owners than owners of 

other dogs, or may indicate relative availability of people when dogs were needed.  

PCR negativity for both E. granulosus G1 and E. multilocularis were associated with 

higher scores on dimension 2, suggesting that sheepdogs were less likely to be infected 

with these species. This is unexpected, and differs from previous studies which have 

commonly identified sheepdogs or farm dogs as having a higher probability of 

coproantigen positivity or infection than non-sheepdogs (Moro et al., 1999; Shaikenov 

et al., 2003; Torgerson et al., 2003c; Buishi et al., 2005b). However, this result does 

agree with the association between dimension 1 and E. granulosus G1 PCR positivity, 

since dogs in households which do not own sheep are unlikely to be described as 

sheepdogs. One possible reason for this association is that sheepdogs are more highly 

valued than guard/pet dogs, and therefore are better fed. This would also correlate 

with the high scores on dimension 2 for larger dogs. Another possibility is that 

sheepdogs may be more commonly in work, herding sheep, and therefore may be less 

likely to roam through the village in search of food. One other possibility is the 
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complex interplay between age and dog type. Dimension 2 identified sheepdogs as 

well as larger dogs (>20kg). As mentioned above, a previous study in Kazakhstan 

found that farm dogs had much higher infection pressures for E. granulosus than 

village dogs (Torgerson et al., 2003c). However, it was suggested that this provoked 

immunity in these dogs, and resulted in a reduction in worm burdens amongst older 

individuals. In the absence of immunity (as was suggested for village dogs), the worm 

burden increased to a plateau as age increased. Although the burdens themselves still 

appeared to remain higher in farm dogs than village dogs in this case, the possibility of 

an age-related reduction in burden in the face of high infection pressure cannot be 

excluded. Further work to characterise age-related trends in prevalence and/or 

coproantigen levels amongst dogs which visit Jailoo would be worthy of further 

investigation. 

Dimension 3 differentiated dogs from Kara-Kabak from those from the other villages, 

and suggested that dogs from Kara-Kabak tended to be older dogs in single dog 

households. This suggests that the replacement rate for dogs in this community was 

lower than in the others, which may relate to previous culling campaigns. Although no 

direct questions were asked about previous culling campaigns during this visit, these 

campaigns were commonly reported in the villages of Sary-Mogol and Taldu-Suu over 

the period 2012-2013, and in Kashka’Suu in 2014. This result therefore suggests that 

widespread culling campaigns are not being implemented in Kara-Kabak (and could 

also indirectly suggest that these campaigns in the other villages ultimately only result 

in the replacement of culled dogs with new dogs). As low scores on this dimension 

were also associated with recent praziquantel dosing, this may suggest that 

praziquantel dosing is predominantly being used in Kara-Kabak rather than culling. 

The reason for this is unclear. However, one main difference between Kara-Kabak and 

the other three villages was that there was no resident government veterinarian in this 

community, although a private veterinarian remained. Culling campaigns appeared to 

be generally implemented based on governmental advice (Akjol Tagaibekov, personal 

communication), and therefore the lack of a government veterinarian in the 

community may be a possible reason for reduced culling in Kara-Kabak. The 
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association between this dimension and purged dogs is likely to result from the fact 

that many of the purge samples were collected from dogs in Kara-Kabak.  

Dimension 4 differentiated Taldu-Suu from Kara-Kabak and suggested a possible 

difference in knowledge of echinococcosis (with associated preventive action), or 

differences in attitude towards dogs, between these villages. As mentioned above, this 

may be suggestive of more effective education campaigns in Kara-Kabak than in 

Taldu-Suu. The finding that Sary-Mogol had a similar (although nonsignificant) 

positive score to Taldu-Suu and that Kashka’Suu had a similar negative score to Kara-

Kabak may be suggestive of differences in educational campaigns between those 

villages in Alay district and those in Chon-Alay. Kashka’Suu and Kara-Kabak, being 

located in Chon-Alay, are geographically close to their district centre, Daroot-Korgon 

(which lies just 50km to the east in the Alay valley), whereas the district centre of Alay 

district is Gulcha – located in the Alay mountains around 130km to the northwest of 

Taldu-Suu (and which requires traversing a mountain pass to reach). Education 

campaigns regarding zoonoses in Kyrgyzstan are largely based on communication 

between state veterinarians and livestock owners (Stammbach, 2009), and therefore 

require reciprocal trust and respect (which has been a problem since independence 

and a loss of control of livestock diseases). The relative isolation of Taldu-Suu (and 

Sary-Mogol) from their district centres could have repercussions on the 

implementation and delivery of educational campaigns (which are an important 

component of any control scheme (Craig and Larrieu, 2006)).  

However, an alternative explanation for these differences in dimension 4 may be that 

people in Kara-Kabak are less involved with looking after their dogs than those in 

Taldu-Suu. This possibility would be supported by the finding of an association 

between low values on this dimension and E. granulosus G1 PCR positivity. The 

correlation coefficient for OD value was -0.14, suggesting that lower scores on this 

dimension were associated with higher OD values. This finding, combined with the 

PCR results, may also be suggestive that the causative agent responsible for the 

coproantigen ELISA results is E. granulosus G1. One possible explanation for this 

association is that reduced owner involvement with dogs may result in underfeeding 
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and therefore increased scavenging behaviour (even though a feature of this 

dimension was a reduced feeding of offal to dogs). An effective educational campaign 

leading to these behavioural patterns would be expected to be associated with a 

reduced, rather than an increased, risk of infection as has been identified in previous 

studies (Buishi et al., 2005b; Huang et al., 2008). One other possibility worthy of 

mention is reverse causality. Although canine infection with E. granulosus is 

asymptomatic and there are no reports of large numbers of human cystic 

echinococcosis cases in the area, cystic echinococcosis in intermediate hosts would be 

expected to be identifiable during slaughter (especially amongst the older animals 

more commonly slaughtered in these areas). Therefore, it is possible higher levels of 

infection with E. granulosus in the community are in fact the driver for the apparent 

increased knowledge. However, this is likely to require some degree of education: a 

study in Morocco found that whilst ruminant cysts were very commonly identified, 

their association with infection in dogs or humans was invariably unknown (Kachani 

et al., 2003). 

5.4.4 Diagnostic test interpretation  

A major aim of the current study was to attempt to identify relationships between the 

different test results. Latent class methods are commonly used to simultaneously 

interpret the results of different diagnostic test results, and can reduce biases in 

overall prevalence estimation as well as assessing test performance (Hui and Walter, 

1980; Johnson et al., 2001; Toft et al., 2005; Ziadinov et al., 2008; Hartnack et al., 2013). 

This is particularly true for cases where the tests measure different outcomes (in this 

case, coproantigens and DNA), which in theory makes coproantigen and coproPCR 

data well-suited for latent class analysis. Although a total of four tests have been 

applied here, the three PCR tests are measuring different outcomes, and therefore 

cannot be compared with each other using normal latent class approaches. Therefore, 

effectively, three groups of two tests (the coproantigen test and each one of the PCR 

tests) were available. In this situation, the latent class model is not identifiable when 

conducted on a single population (Johnson et al., 2001), and it is preferable to have at 

least three distinct populations (Toft et al., 2005).  
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Although previous studies have stratified datasets into populations with different 

prevalences according to identified risk factors for positivity (Ziadinov et al., 2008), 

this may violate the assumption of fixed test sensitivity and specificity in all situations. 

As it is well known that a relationship between the optical density value of the 

coproantigen ELISA and the worm burden exists (Deplazes et al., 1992; Raoul et al., 

2001; Reiterová et al., 2005; Buishi et al., 2005b), this means that the test sensitivity 

would be expected to be lower in a population where the mean burden is low than 

that in a population with a high mean burden (Allan et al., 1992; Reiterová et al., 2005). 

An alternative approach is to include covariates with known relationship with the 

outcome in the model (Hartnack et al., 2013). However, no clear risk factors for 

positivity were identified in the current study (data not shown), and this approach was 

therefore not attempted. Instead, multivariable methods were in the hope that in 

cases where ELISA OD values were high due to a particular species of Echinococcus, 

dimension scores for ELISA positivity (and/or ELISA OD/score) would be similar to 

those for PCR positivity for that species. This association was only observed in the 

current study for dimension 4, where a clear association with both coproantigen 

ELISA OD and E. granulosus G1 PCR status was found, and which may suggest that the 

increased OD values were due to increased E. granulosus G1 prevalence. The lack of 

association with the dichotomised ELISA results is understandable, as dichotomisation 

is known to reduce study power (Altman and Royston, 2006), and demonstrates the 

potential benefits for interpretation of coproELISA data in a continuous rather than 

dichotomised fashion (see chapter 4). 

One alternative approach potentially worthy of possible further investigation is the 

application of MCA to the test results directly (i.e. the inclusion of test results only as 

active variables in the MCA). In the current case, this would rearrange the four test 

‘dimensions’ (one ELISA and three PCR statuses) into four dimensions ranked in order 

of inertia explained. These results could be interpreted in relation to variables of 

interest, included as supplementary variables. If a smaller number of these dimensions 

were found to be useful in representing the original data (measured according to 



158 

 

amount of inertia explained), these dimension scores could also be allocated to each 

individual (see below) and further analysis conducted. 

5.4.5 Individual cloud interpretation 

The analysis conducted here has focussed only on the interpretation of the ‘category 

cloud’, which describes relationships between the dimensions and categories of 

variables of interest. This is related to the ‘individual cloud’ of all individual dogs 

(figure 5.5), and this individual cloud itself may be worthy of further study. Although 

data exploration and identification of possible community-level associations was the 

main aim of the current study, one other use of MCA is the investigation of patterns in 

individual-level dimension scores. One approach is to allocate these scores to each 

individual dog and investigate relationships between these scores and outcomes of 

interest (in particular, the results of ELISA and PCR testing). Another approach is to 

use a clustering algorithm to identify groups of individuals within the population. Two 

commonly used clustering approaches are hierarchical clustering and partitional 

clustering, and are reviewed in (Husson et al., 2010, 2011). Although clustering 

strategies could be applied to the raw dataset, principal components methods such as 

MCA can be a useful ‘pre-processing’ tool for clustering methods, since they can be 

useful for removalof the ‘noise’ in a dataset (the initial dimensions would be expected 

to identify the signal, and the later ones will tend to identify the noise). They can also 

be useful for visualising the data following clustering and therefore assist 

interpretation. Once allocated to clusters, cluster membership for individual dogs 

could be used as a predictor variable for outcomes of interest. Agglomerative 

hierarchical clustering using Ward’s method followed by a K-means clustering for 

consolidation on the current MCA output identified a total of four clusters in the first 

four dimensions (data not shown), which is a considerable reduction from the original 

49 active variables. 
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5.4.6 Caveats 

As can be seen from the above discussion, this approach does not give exact answers, 

but rather is a method of data exploration for a relatively large dataset. It is important 

to note that the dimensions identified would be expected to differ between different 

communities and areas, and therefore this strategy has limited use if extrapolation to 

other areas is intended. However, it may be useful for hypothesis generation, or for 

categorising communities in a quantitative framework. One important consideration 

when interpreting these results is that although many of these relationships are 

specified at the household level, the analysis was conducted using dog-level data. This 

was conducted because of the intention to associate the results with those of faecal 

testing, which was conducted at the individual level. Also, only dog owners were 

included in the analysis, meaning that these results cannot be extrapolated to those 

who do not own dogs. A fuller analysis would possibly also conduct an initial MCA on 

household-level data collected from all people interviewed, in order to improve 

understanding of the study villages as a whole. This could also be useful in the 

identification of types of people who own dogs, and (if data was available from an 

ultrasound scanning campaign), of associations with human echinococcosis in a field 

setting. 

Another potential issue relates to the inertia captured by each dimension. The 

percentages of inertia explained by MCA are often much lower than in other principal 

components methods, since many more dimensions are usually required in order to 

explain all of the variance (Husson et al., 2011). Also, since analysis in this case has 

been based upon application of CA methods to an indicator matrix, a single 

categorical variable will be expressed in multiple columns of this matrix and the 

variance explained by each dimension will therefore be underestimated. A total of 78 

categories were included in the indicator matrix in the current example, and a total of 

43 dimensions were extracted. It has been shown that all dimensions with eigenvalues 

less than or equal to the reciprocal of the number of categories are simply coding 

these additional columns (Abdi and Valentin, 2007). In the current case, this relates to 

the last 12 dimensions, which contribute 8% of the total variance. Despite this, the 
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percentages of inertia captured are relatively low for each dimension in the current 

study (see table 5.4), which constrains how much information can be extracted 

regarding the complexities of dog ownership in a small number of dimensions.  

As described above, the associations between the qualitative supplementary variables 

and the dimension scores, measured by 𝑐𝑜𝑠2, are low. This suggests that, even if 

significant by t-test, these variables are not strongly related to the dimensions (and 

vice versa), which therefore limits their interpretability. This is one reason why MCA 

should be considered to be an exploratory approach, and should be combined with 

other methods. The association with quantitative variables was generally higher. 

Whilst this estimate of correlation is based upon an assumption of a linear 

relationship with the dimension score (which is unlikely to be the case), this may 

suggest that interpretation of coproantigen ELISA results in a continuous fashion 

offers benefits over dichotomised results, as mentioned above (and in chapter 4).  

5.5 Conclusions 

Multiple correspondence analysis (MCA) is a multivariate technique which can 

identify associations between categorical variables (based upon the concept of 

deviation from independence). A dataset of dog owners collected prior to a 

praziquantel-based dosing campaign in the Alay valley, Kyrgyzstan, was analysed 

using MCA, in order to better understand patterns in dog ownership in four study 

villages. A number of variables of interest were evaluated, relating to both household-

level and dog-level factors, and a total of four dimensions were extracted. These 

related to differences in livestock ownership, dog types and use, dog demographics 

and management, and knowledge of echinococcosis/dog management. Associations 

between Echinococcus faecal coproantigen and coproPCR test results and dimensions 

relating to livestock ownership, dog type and education were identified, which 

suggested possible risk factors for dog infection. Further work using clustering 

algorithms to identify and classify types of dogs would be a useful next stage of 

analysis, and could be combined with conventional regression modelling to obtain 

more quantitative estimates of risk factors of importance. However, it is advised that 
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MCA is used in combination with other approaches in order to maximise the 

information which can be obtained during surveillance. 
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Chapter 6: Temporal dynamics of canine echinococcosis in 

southern Kyrgyzstan during a praziquantel dosing scheme. 

 

“Whoever wishes to investigate medicine properly, should proceed thus: in the first 
place to consider the seasons of the year, and what effects each of them produces for 
they are not at all alike, but differ much from themselves in regard to their changes. 

Then the winds, the hot and the cold, especially such as are common to all countries, 
and then such as are peculiar to each locality.”  

Hippocrates (460 – 377 BC) 
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6.1 Introduction 

6.1.1 Echinococcosis 

As described in the previous chapters, Echinococcus granulosus (sensu lato) and 

Echinococcus multilocularis are endemic in Kyrgyzstan, with high prevalences of 

human alveolar echinococcosis (AE) reported in Osh province in the south of the 

country (Usubalieva et al., 2013). Canine infection with E. granulosus G1, E. canadensis 

G6, and E. multilocularis has also recently been detected in the Alay valley of southern 

Osh province (van Kesteren et al., 2013). In 2010, a World Bank–funded project aiming 

to improve surveillance and control of a number of zoonotic pathogens was 

implemented (World Bank, 2005). One component of this campaign focussed on the 

control of echinococcosis through educational campaigns, dog population 

management, livestock slaughter controls and dosing of dogs with praziquantel four 

times annually  by local government veterinarians and paraveterinarians (World Bank, 

2005; WHO, 2011). The World-Bank funded praziquantel dosing scheme was 

commenced in the Alay valley towards the end of 2012, and was continued for at least 

two years from this time. The current study details an investigation of temporal and 

seasonal trends in the Echinococcus coproantigen and coproPCR test prevalence 

amongst dogs over the course of this dosing scheme. 

6.1.2 Control and surveillance 

Due to the long periods required for echinococcosis control (which may be an 

indefinite process in some cases), it is important from an economic and a disease 

control perspective to conduct ongoing surveillance. Information gained from this 

process can be used to identify areas of control scheme failure and target control 

activities as required (Gemmell et al., 1986a). A number of potential ‘data streams’ are 

available for the surveillance and monitoring of Echinococcus infection, due to its 

complex lifecycle (involving two hosts) and zoonotic nature (Craig et al., 2015). These 

include passive surveillance through hospital records and abattoir inspection, and 

active surveillance through planned surveys of human and animal infection. Whilst 



164 

 

surveillance should include as many of these data streams as possible, data collection 

can be challenging in the remote communities most affected by echinococcosis, and 

therefore surveillance of infection in definitive hosts is commonly considered the best 

measure of the level of infection in a community (as well as being a measure of the 

potential risk to humans).  

Due to logistical and practical difficulties in obtaining good quality parasitological 

data (such as purge or necropsy samples) from dogs, coproantigen testing is often 

used to approximate canine infection status during surveillance activities (WHO/OIE, 

2001d; Morel et al., 2013). This has the advantage of being relatively quick and easy to 

conduct, but is unable to differentiate different species of Echinococcus. As the Alay 

valley is known to be coendemic for at least three species of Echinococcus (van 

Kesteren et al., 2013), methods of diagnosing canine echinococcosis to the species level 

would be useful. This can be achieved through coproPCR analysis, but as conducting 

PCR is a labour-intensive process, it is less suited for surveillance activities (Deplazes 

et al., 2003; Torgerson and Deplazes, 2009). The outcome of the standard PCR testing 

used in the current study is dichotomous, based upon the visual identification of a 

band of appropriate molecular weight on agarose gel following electrophoresis. As 

described in previous chapters, interpretation of coproantigen data is also generally 

conducted in a dichotomous fashion – classifying samples as coproantigen ‘negative’ 

or ‘positive’ according to where the OD value lies in relation to a defined cut-off value. 

Despite the potential limitations with a dichotomised interpretation of OD data (as 

discussed in chapter 4), a decision was made to interpret the data in this way for the 

current study, since this form of interpretation is most conducive to easy 

dissemination of the study findings. However, it is hoped that further work will build 

upon the results of this study and investigate non-dichotomous interpretation of the 

coproantigen ELISA results, as discussed in section 6.4.7. 
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6.1.3 Regression modelling 

Logistic regression is a type of generalised linear model (GLM), which aims to model a 

dichotomous outcome, 𝑦. The usual interpretation of a logistic regression model is 

that it models the probability of a ‘success’ for each individual (𝑦𝑖 = 1): 

𝑃(𝑦𝑖 = 1) = 𝑙𝑜𝑔𝑖𝑡−1(𝑋𝑖𝛽) 

Where 𝑋𝑖  is the matrix of predictor variables and 𝛽  is the matrix of regression 

coefficients. The modelling strategy used in the current paper is based upon an 

adjusted formulation of this model, which can be described as “logistic binomial 

modelling” (Gelman and Hill, 2006a). Rather than modelling a dichotomous outcome 

for individuals (i.e. a Bernoulli process), 𝑦𝑖 is assumed to represent the count of 

positive outcomes amongst 𝑛𝑖  individuals. This is assumed to follow a binomial 

distribution with 𝑛𝑖 trials and a probability of ‘success’ of 𝑝𝑖: 

𝑦𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖) 

𝑝𝑖 = 𝑙𝑜𝑔𝑖𝑡−1(𝑋𝑖𝛽) 

This model assumes that each of the 𝑛𝑖 observations are independent, and each have a 

fixed probability of occurrence, 𝑝𝑖. There is no error term (𝜀𝑖𝑗) specified in this 

formulation because the error distribution (i.e. the variance) for a binomial process is 

determined solely by 𝑝𝑖: 

𝑣𝑎𝑟(𝑦𝑖) = 𝑛𝑖𝑝𝑖(1 − 𝑝𝑖) 

Because the variance is fixed according to 𝑛𝑖 and 𝑝𝑖, when 𝑛𝑖 > 1, there is a possibility 

of overdispersion in a logistic binomial model. A common cause of overdispersion is a 

lack of independence between the 𝑛𝑖 observations within each group of study (for 

example, in the case of a highly transmissible infectious disease where either all 

animals within a group are infected or uninfected), although small group sizes have 

also been identified as a possible cause of apparent overdispersion (Wright, 1997). 

Overdispersion can be dealt with either at the model formulation stage (for example, 
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by using a quasibinomial distribution, or by including individual-level random effects 

(Elston et al., 2001; Browne et al., 2005)); or at the interpretation stage (by adjusting 

the standard error estimates) (Gelman and Hill, 2006a). More information on 

strategies of correcting for overdispersion in count data is available elsewhere 

(Lindsey, 1999). 

Generalised linear mixed models (GLMMs) extend GLMs by incorporating both fixed 

effects (as found in GLMs) and ‘random effects’ (the coefficients of which vary 

between different groups or individuals within the population). Mixed models are 

useful for the investigation of clustered data and longitudinal data, where the 

assumption of independence of observations is not considered appropriate. 

During the current study, repeated observations were made for most households. The 

observation number (‘level 1’, denoted by the subscript 𝑗) can be considered to be 

‘nested’ within individual households (‘level 2’, denoted by the subscript 𝑖). Using this 

terminology, a simple logistic binomial regression mixed model with a random 

intercept for each individual household can be described as follows: 

𝑦𝑖𝑗~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖𝑗 , 𝑝𝑖𝑗) 

𝑝𝑖𝑗 = 𝑙𝑜𝑔𝑖𝑡−1(𝑋𝑖𝑗𝛽 + 𝜐𝑖) 

𝜐𝑖~𝑁(0, 𝜎2) 

Most of the terminology is as before: 𝑦𝑖𝑗 represents the number of positive animals; 𝑛𝑖𝑗 

is the number of animals tested per household; 𝑝𝑖𝑗 is the probability of positivity; 𝑋𝑖𝑗 is 

the matrix of predictor variables [which would be expected to include a variable 

relating to time of sampling in this case]; and 𝛽 is the matrix of regression coefficients. 

The addition of the subscript 𝑗 to these variables is due to the identification of each 

variable according to both individual household (𝑖) and repeated observation (𝑗). In 

this simple case, the individual household-level random effects, 𝜐𝑖 are presumed to be 

distributed according to a Gaussian distribution – meaning that the linear predictor is 

adjusted for each individual household (regardless of which repeated observation) by a 



167 

 

particular amount (𝜐𝑖). This model can be further developed to allow individual 

subject-level variation according to other variables, and can also incorporate different 

random effect structures over time (such as autocorrelation). These will not be 

described in any more detail here. 

6.1.4 Model development and selection 

Identification of risk factors for an outcome of interest from a dataset is usually based 

upon the creation of one or more statistical models in an attempt to summarise the 

data using as few variables as is considered appropriate for the particular question 

being asked. No model will be able to perfectly represent the complex realities of the 

true situation, but some may be useful for identification of associations of relevance or 

for making predictions. When fitting a statistical model to a dataset, there is invariably 

a conflict between maximising the fit of the model to the data (which will almost 

always increase as more explanatory variables are included), and the precision with 

which parameters can be estimated (since the inclusion of ‘unnecessary’ variables in 

the model will tend to reduce this precision) (Forster, 2000; Burnham and Anderson, 

2004). This can also be viewed as the balance between underfitting a model (i.e. 

including too few variables to explain the outcome of interest, resulting in poor model 

fit and possibly biased coefficient estimates), and overfitting a model (whereby 

artefactual associations may be identified due to random associations between the 

variables and the ‘noise’ around the outcome of interest). 

A number of methods of model development are available, but one common approach 

is to add or remove variables of interest sequentially to a model framework, assessing 

their effect on the model likelihood and on the coefficients of other variables in order 

to determine whether or not they should be retained in the final model. These 

‘stepwise’ approaches are relatively commonly used in epidemiological and ecological 

studies, but are known to have considerable limitations from both a practical and 

theoretical perspective (Madigan and Raftery, 1994; Whittingham et al., 2006; Flom 

and Cassell, 2007; Gelman, 2014). One issue with stepwise approaches is that they are 

based largely on the repeated application of null hypothesis tests, which were 
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originally developed for single hypothesis testing rather than the repeated use seen in 

stepwise model selection (Flom and Cassell, 2007), and which some have argued are 

conceptually flawed (Anderson et al., 2000). Another issue with stepwise regression is 

that the vast majority of model selection is conducted on a purely empirical basis. 

Models are selected solely from the data available and it is possible (indeed, 

sometimes encouraged) to therefore create models with little a priori consideration of 

plausible mechanisms behind these associations (whilst this approach may be 

considered acceptable in a pure exploratory investigation where no prior information 

is available, this attitude is problematic from a model development perspective). 

Finally, the usual outcome from stepwise regression is a single ‘best’ model, from 

which all parameter coefficients are then estimated with no account being made of 

alternative models.  

Considering the issues associated with stepwise strategies, alternative approaches to 

model selection should be considered when deciding upon a framework for model 

development, some of which are summarised in a recent paper (Burnham and 

Anderson, 2004). One increasingly commonly used strategy for model selection is 

based upon information-theoretic approaches based upon Kullback-Leibler (K-L) 

information (Kullbank and Leibler, 1951), which describes the information lost when a 

model, 𝑀2  is used to approximate another model, 𝑀1 . For discrete probability 

distributions (such as the binomial distribution), this is estimated as: 

𝐼(𝑀1, 𝑀2) = ∑ 𝑀1(𝑟) ∙ 𝑙𝑛 (
𝑀1(𝑟)

𝑀2(𝑟)
)

𝑟∈𝑅

 

Where ‘model’ 𝑀1 is considered the (unknown) true situation, and 𝑀1(𝑟) represents 

the data vector (with length 𝑅). 𝑀2 represents the approximating model and 𝑀2(𝑟) the 

vector of model output. The K-L statistic describes the information lost when model 

𝑀2 (or whichever other models are evaluated) are used to approximate reality. This 

cannot be calculated exactly as firstly the ‘true’ situation is unknown, and secondly, 

the model parameters are only estimated from the particular dataset used.  
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Akaike’s ‘An Information Criterion’ (AIC) (Akaike, 1973) estimates the relative 

expected K-L information using the maximised log-likelihood of the model(s) in 

question (and therefore links information theoretic methods and statistical 

modelling). It is calculated as: 

𝐴𝐼𝐶 = −2ln (ℒ(𝜃|𝑑𝑎𝑡𝑎) + 2𝐾 

If 𝐾 is large relative to the total sample size, 𝑛, the following correction should be used 

to calculate 𝐴𝐼𝐶𝑐 (Hurvich and Tsai, 1989): 

𝐴𝐼𝐶𝑐 = −2ln (ℒ(𝜃|𝑑𝑎𝑡𝑎) + 2𝐾 +
2𝐾(𝐾 + 1)

𝑛 − 𝐾 − 1
 

The absolute value of AIC (or its associated forms) has no meaningful interpretation, 

and therefore model comparisons using AIC are based upon the differences in AIC 

estimates (∆) for different models. Rather than adopting a null hypothesis framework, 

whereby each model is considered according to a null hypothesis and is therefore 

either selected or discarded, Thomas Chamberlin’s concept of ‘multiple working 

hypotheses’ (Chamberlin, 1965) can be used to develop a number of a priori models 

before data is added. These can then be compared using the AIC in order to identify 

which ones are most supported by the data. Models which do not have empirical 

support by the data can be removed, but a number of models may be retained and 

examined (Burnham and Anderson, 2004). In these cases, comparison of the ∆ values 

for the ‘best’ model and other models can be useful for model assessment. ∆ ≤ 2 

suggests that the models are similarly supported by the data; whilst those ≥ 10 have 

little support compared to the best model (Burnham and Anderson, 2004). 

The ∆ estimates can be used further in order to estimate the relative likelihood of the 

model, out of all models evaluated (Akaike, 1981). As the AIC is calculated from the 

expected log likelihood of the model multiplied by -2, the relative likelihood of any 

individual model given the data can be calculated by reversing this calculation: 

ℒ(𝑀𝑖|𝑑𝑎𝑡𝑎) = exp (−
1

2
∆𝑖) 
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Whereas the AIC was calculated from the likelihood of the parameters (𝜃) over the 

whole parameter space given the data and the model (ℒ(𝜃�̂�|𝑑𝑎𝑡𝑎, 𝑀𝑖)), this estimated 

likelihood is a function over the whole model set. For ease of interpretation, the 

likelihood estimates for all models considered are often standardised so that they sum 

to 1: 

𝑤𝑖 =

exp (−
∆𝑖

2⁄ )

∑ exp (−
∆𝑖

2⁄ )𝑖

 

The estimate of this standardised likelihood for each model is known as the ‘Akaike 

weight’, 𝑤𝑖, and can be viewed in a partially Bayesian context as a measure of the 

probability that the model is the best fit to the data (based upon the K-L information), 

given the data and the set of models evaluated. True Bayesian posterior probabilities 

(𝑃(𝑀𝑖|𝑑𝑎𝑡𝑎)) can be calculated using a similar strategy, and will give identical results 

to the Akaike weights if particular prior distributions are used (Raftery, 1995; Burnham 

and Anderson, 2004). The Akaike weights were used in the current study as part of the 

model averaging process, which is described later. 

6.1.5 Assessing model fit 

Assessment of model fit can be challenging for generalised mixed effects models. A 

common method of assessing model fit for simple linear regression models based 

upon ordinary least squares is the R2 estimate, which quantifies the amount of total 

variance which is explained by the model, and is estimated as 1 minus the amount of 

‘unexplained’ variance in the model (which is itself estimated as the ratio of the 

residual variance for the model in question to that of a ‘null’, intercept-only, model). 

This same approach cannot be used in the case of generalised linear models with non-

Gaussian outcomes (such as logistic regression), since it is not possible to estimate the 

‘residual variance’, and therefore models are not fit with the aim of minimising this. 

One strategy to estimating a form of pseudo-R2 for mixed effects models is to attempt 

to directly quantify the variance explained by the model, and was developed by 
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(Nakagawa and Schielzeth, 2013). Due to the difficulties in estimating residual variance 

at the model scale, variance estimates can be made on the latent/link scale and 

partitioned according to their derivation. For a logistic regression model with random 

intercepts, the partitioning is as follows: 

𝑅𝐺𝐿𝑀𝑀(𝑚)
2 =

𝜎𝑓
2

𝜎𝑓
2 + 𝜎𝜐

2 + 𝜎𝑑
2 

𝑅𝐺𝐿𝑀𝑀(𝑐)
2 =

𝜎𝑓
2 + 𝜎𝜐

2

𝜎𝑓
2 + 𝜎𝜐

2 + 𝜎𝑑
2 

Where 𝜎𝑓
2 is the variance of the fixed effect component (which can be calculated as the 

product of the design matrix of the fixed effects with the vector of fixed effects 

estimates (𝑋𝑖𝑗𝛽)); 𝜎𝜐
2 is the variance of the random intercepts (calculated from the 

model); and 𝜎𝑑
2 is the distribution-specific variance (which, in the case of a logistic 

regression model, is 𝜋2

3⁄ ). 𝑅𝐺𝐿𝑀𝑀(𝑚)
2  is the marginal R2, which measures the 

proportion of total variance which is due to the fixed effects; and 𝑅𝐺𝐿𝑀𝑀(𝑐)
2  is the 

conditional R2, the proportion of total variance which is due to fixed and random 

effects. An extension of this strategy to allow random slopes as well as random 

intercepts has also been described (Johnson, 2014). 

Another approach to investigating model fit is to use Receiver-operator characteristic 

(ROC) curve analysis (Swets, 1988; Zweig and Campbell, 1993; Greiner et al., 2000) to 

assess the predictive ability of the model (Agresti, 2007). Logistic regression can be 

considered as a form of nonlinear modelling, whereby the binary outcome for each 

individual (𝑦𝑖) depends upon the value of a ‘latent variable’ related to the probability 

of positivity (𝜋𝑖), which takes a value of 0 or 1 depending upon the value of 𝜋𝑖 in 

relation to an unknown threshold. This is therefore based upon the same concept as 

the selection of a suitable cut-off for a diagnostic test, for which ROC curve analysis 

can be useful (as has been described previously). As well as allowing a suitable cut-off 

to be determined, ROC curve analysis provides an estimate of the overall 

discriminatory ability of the test in the form of the “area under the curve” (actually the 
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area between the curve and the line of equivalence (𝑦 = 𝑥). This relates to the 

‘concordance index’: the probability that the model output (the predicted probability 

of positivity) for a randomly selected positive individual is greater than that for a 

randomly selected negative individual (Agresti, 2007), and therefore is a useful 

measure of model fit. 

6.1.6 Study aims 

The current study is a descriptive and analytic investigation of temporal trends in 

coproantigen and PCR prevalence of canine echinococcosis in a selection of villages in 

the Alay valley over a period of 28 months during a control scheme, incorporating the 

effect of reported recent praziquantel dosing. Seasonal variations in the test 

prevalence over this time were also investigated. It is hoped that the output of this 

analysis will help to improve ongoing surveillance and control measures in the area. 

6.2 Materials and methods 

6.2.1 Data analysis 

As mentioned above, all test data were interpreted in a dichotomous fashion for the 

current study. Despite the issues associated with this (see chapter 4), it remains the 

most common method of test interpretation in these situations, and can be useful for 

the identification and communication of trends in coproantigen positivity over time. 

ROC curve analysis (as described in chapter 3) was used to identify an appropriate 

cut-off. A panel of samples taken from Xinjiang province in China during an 

evaluation of a control scheme (van Kesteren et al., 2015) was tested at the same time 

as each batch of field samples. Samples containing fewer than 50 worms were 

classified as negative due to the known analytic sensitivity of the coproantigen test 

(Allan and Craig, 2006), and a cut-off for each batch of samples was selected based on 

visual inspection of the ROC curves (figure 6.1), in order to maximise comparability 

(i.e. similar test sensitivities and specificities). As such, the cut-off used in the current 

study differs from that used in the ‘baseline’ investigation described in the previous 
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chapter. The resultant OD cut-offs and estimated test sensitivities and specificities 

(based on the panel evaluated) are shown in table 6.1. 

 

Figure 6.1. ROC curves for all sample batches, based on a panel of 'known' samples from 

Xinjiang, China. Circles indicate the cut-off selected. 

 

Table 6.1. Cut-off points and estimated sensitivities and specificities for each batch of samples. 

Date Cutoff Sensitivity Specificity 

May 2012 0.101 94% 96% 

Oct 2012 0.183 83% 96% 

Apr 2013 0.145 94% 97% 

Sep 2013 0.172 93% 97% 

Apr 2014 0.138 81% 94% 

Sep 2014 0.165 79% 93% 

All questionnaire and sample results were entered into Microsoft Access 2010 and 

matched according to the household and sample code, and questionnaire data which 
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could not be matched to faecal samples were removed from further investigation 

(n=245 individuals from 108 households).  

6.2.1 Data exploration and processing 

Temporal trends in praziquantel dosing behaviour; dog age, sex and weight; and 

Echinococcus positivity (coproantigen and PCR status), stratified by village, were 

initially investigated graphically. Further investigation of temporal patterns in 

coproantigen and PCR status was then conducted using a logistic binomial regression 

model (described below). Individual samples could generally not be matched to 

individual dogs as faeces were generally collected from the ground around the house 

rather than sampled per rectum from the dog. Therefore, all risk factor analysis was 

conducted at the household level rather than the individual dog level. Potential 

explanatory variables (see table 6.2) were identified as either household-level or dog-

level variables, and all dog-level data were categorised as described in table 6.2. The 

dataset was collapsed according to household (with indicator variables used to 

indicate the presence or absence of dog-level variables from the household). The 

variable relating to praziquantel use since the last visit was completed for the first visit 

(May 2012) by asking whether praziquantel had been administered in the previous six 

months. The total number of dogs in the household was included as a numeric 

variable, with households containing more than three dogs aggregated due to the 

rarity of this outcome. The outcome of interest was the two-column matrix describing 

the number of positive and negative dogs in each household (according to either the 

coproantigen ELISA, or each of the three PCRs used).  
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Table 6.2. Variables considered for inclusion in the current study 

Variable type Variable 

Echinococcus infection presence 

Coproantigen status 
E. granulosus (G1) PCR status 
E. canadensis (G6) PCR status 

E. multilocularis PCR status 

Temporal 
Season (Spring/Autumn) 
Month after start of study 

Spatial 
Household 

Village (SM, TS, KS, KK) 

Praziquantel dosing Received praziquantel since last visit (Y/N) 

Dog demographics 

Dog age (≤1y, >3y) 

Male dog (Y/N) 

Dog weight(≤10kg, >20kg) 

Number of dogs in household (1, 2, 3, >3) 

Dog visits Jailoo (summer pasture) (Y/N) 

6.2.2 Model development 

The outcome of interest in the current study was the household-level probability of 

coproantigen or PCR positivity, and in particular how this changed over the course of 

the study, during different seasonal sampling points, and in the face of reported 

praziquantel dosing. As household-level variation in the probability of infection due to 

factors not captured in the questionnaire was considered a reasonable assumption, 

and because the sampling strategy was a longitudinal study (with many households 

visited multiple times), a mixed effects model was created, with household included as 

a random effect.  

A decision was made in the current study to use information theoretic (IT) and model 

averaging approaches for model selection and parameter estimation. Prior to model 

development, temporal trends in overall test prevalence were inspected. The data 

structure lends itself to modelling using either a logistic regression model (which 

models the probability of positivity given 𝑦 outcomes from 𝑛 trials) or a Poisson model 

(which models the ‘rate’ of development of positivity amongst 𝑛 given 𝑦 outcomes 

over time period 𝑡) (Drolette, 1974). As the logistic regression construct appeared 



176 

 

more intuitive for the current study, this framework was chosen. Model development 

proceeded in three main stages: specification of the random effects structure; 

identification of interactions; and model averaging.  

Assessment of the random effect structure for all four models used a ‘framework 

model’, containing the major variables of interest (month, season, village, history of 

praziquantel dosing since the last visit, and an interaction between the month and 

praziquantel dosing variables as described below). Household-level random intercepts 

were incorporated into this model, and additional models were created incorporating 

random slopes with respect to month of sampling (with and without correlation 

between intercepts and slopes). These models were then recreated whilst nesting the 

household effects within villages, resulting in a total of six possible models for 

comparison. Only G-side random effects were considered (rather than R-side random 

effects such as temporal autocorrelation), since it was considered more likely that 

individual households differed due to unmeasured variables than directly due to 

previous infection status (given the relatively short expected lifespan of the adult 

worm, and the ongoing praziquantel dosing campaign in place), and due to the 

relative small datasets available (especially for PCR data). The model with the lowest 

AICc was found to be the model with random intercepts only. In the case of the 

E. multilocularis model, a model with random intercepts and slopes was found to be 

the best fit to the data, as measured by AICc, but led to problems with model 

convergence, and therefore random intercepts only were modelled for all PCR models, 

due to the much reduced sample size.  

The second stage of model selection involved characterisation of the full model and 

identification of interactions to be retained in this model (as model averaging outputs 

would not be interpretable if models with different interactions were included). For 

the ELISA data, the fixed effects incorporated in the full model (along with the month 

of sampling) were season (spring/autumn); village; the total number of dogs in the 

household (including unsampled dogs); the presence of dogs in the household which 

had received praziquantel since the previous visit; and whether any dogs in the 

household visit Jailoo. Dog demographic variables included related to the presence of 
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male dogs; dogs of less than one year of age; dogs older than three years of age; dogs 

less than 10kg in weight; and dogs greater than 20kg in weight; in the household. As 

mentioned above, an interaction between month of sampling and having received 

praziquantel was also fixed in this full model as it was considered to be of particular 

interest to the study. Consideration of other potential interactions led to the 

identification of three plausible relationships: 

- The effect of season may differ dependent upon whether the dogs visited Jailoo 

(which, for dogs which moved between village and Jailoo, was only ever visited 

in the summer months) 

- The effect of recent PZQ administration may differ by dog weight, since heavier 

dogs (>20kg) may be more likely to be underdosed with PZQ than those of 

‘average’ weight (15-20kg) 

- The apparent effect of recent PZQ administration may appear to differ 

according to the presence of younger dogs in the household due to the 

aggregated nature of the dataset. Young animals are less likely to have been 

originally registered (especially as the time of sampling increases), and may be 

less likely to have actually received praziquantel. As history of praziquantel 

administration was classified at the household level, this could result in a 

disparity between the individual dog exposure and the apparent household 

exposure. 

The full model was expanded to create models containing all possible combinations of 

these interactions, and these were compared using the AICc. A model with an 

interaction between recent praziquantel dosing and age (≤1y) had the lowest AICc, and 

was therefore selected for the final stage of analysis.  

For the PCR data, the variable indicating the number of dogs in the household caused 

problems for model convergence, and so was removed from the model as suggested by 

Grueber et al., 2011. Only the a priori interaction between month of sampling and 

recent praziquantel dosing was assessed for these models for the same reasons of 

model convergence. Visualisation of preliminary model predictions for the 
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E. granulosus G1 model suggested a poor fit, in particular due to an apparent increase 

in PCR prevalence in September 2013. Therefore, an additional variable relating to 

sampling in this month was included for this outcome only. The justification for this 

was that there may have been some unrecorded event prior to this which resulted in 

an unusual increase in E. granulosus G1 infection. This issue is discussed further in 

section 6.4.6. 

All full models were assessed prior to further analysis in order to ensure they were 

reasonable fits to the data. A broad idea of any possible overdispersion was gained by 

comparing the squared Pearson residuals to the residual degrees of freedom (using the 

“overdisp_fun” function described in (http://glmm.wikidot.com/faq, 2014)). This 

approach gave no indication of overdispersion in the data (whilst this is a flawed 

approach given the sparse structure of the data at the household level, this finding 

combined with the large number of households with only single dogs meant that 

overdispersion was considered unlikely). Due to the large number of low expected 

values, methods of assessing model fit based upon the chi-square distribution were 

considered inappropriate, and ROC curve approaches (Agresti, 2007) using the 

“pROC” package (Robin et al., 2011) were instead used. Due to the aggregated nature of 

the data, and the fact that the ROC procedure requires a binary outcome, some 

adjustments to the dataset needed to be made before ROC curve analysis could be 

undertaken. Households were first classified according to whether or not they 

contained a positive dog, meaning that the probability estimates obtained from the 

regression model also needed to be similarly adjusted to estimate the probability of at 

least one tested dog in the household being positive, 𝜋�̃�. These were estimated as 

𝜋�̃� = (1 − (1 − 𝜋𝑖)
𝑛𝑖), where 𝜋𝑖 is the original model output (the predicted probability 

of positivity for a dog in household 𝑖), and 𝑛𝑖 is the number of dogs tested within the 

household. When 𝑛𝑖 = 1,  𝜋�̃� = 𝜋𝑖. Nakagawa and Schielzeth’s R2 measure for mixed 

effects models (Nakagawa and Schielzeth, 2013) was also estimated for this model, 

using code developed by (Lefcheck and Casallas, 2014).  

A model averaging approach was used to estimate the final model parameters, in order 

to reduce some of the problems associated with selection of a single model to 
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represent a complex situation (Lukacs et al., 2010). Variables relating to the month and 

season of sampling, whether praziquantel dosing had been conducted since the 

previous visit and the interaction between this and month of sampling were all 

selected as variables of particular interest, and were therefore retained in all models. 

In the case of the ELISA model, variables associated with the additional identified 

interaction (i.e. presence of young animals in household and the interaction between 

this and praziquantel use) were also fixed in all models. Due to the possible 

confounding of the effect of the presence of young dogs by that of small dogs, this 

latter variable was also fixed in all ELISA models. In the case of the PCR models, 

models containing only one of the ‘young’ and ‘small’ variables were not included in 

the model evaluation. This resulted in the evaluation of a total of 27 = 128 E. granulosus 

G1 models, and 26 = 64 models for each of the other three outcomes. Models were 

standardised prior to analysis by dividing input variable values by twice their standard 

deviation (Gelman, 2008) using the ‘standardize’ function in the ‘arm’ package (Gay 

and Su, 2014), and different models were generated and evaluated using the “dredge” 

command in the MuMIn package (Barton, 2014). 

A brief inspection of the identified models was made, but most interpretation of 

model output was based upon a model averaging approach, using the ‘model.avg’ 

command in MuMIn. All models contributing to 95% of the total Akaike weights 

(Burnham and Anderson, 2002; Grueber et al., 2011) were selected for model averaging, 

which proceeded by taking the sum of all coefficient estimates for all selected models, 

weighted according to the Akaike weights (Buckland et al., 1997): 

�̅̂� = ∑ 𝑤𝑖𝜃𝑖

𝑖

 

Variance estimates for the coefficients were based upon the modified approach 

described in (Burnham and Anderson, 2004). In the case of models where the 

parameter did not appear, the coefficient  and variance were estimated to be zero 

(which ensures that each variable was effectively present in each model) (Lukacs et al., 

2010): 
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𝑣𝑎𝑟(�̅̂�) = ∑ 𝑤𝑖[𝑣𝑎𝑟(𝜃�̂�|𝑔𝑖) + (𝜃𝑖 − �̅̂�)
2

]

𝑖

 

Standard errors were estimated by weighting the variance estimate for each 

component model using the squared ratio of critical values for a t-distribution (with 

the appropriate degrees of freedom for the model in question) and the critical value 

for a z-distribution (i.e. 1.96 for a 95% confidence interval) (Burnham and Anderson, 

2002): 

𝑎𝑠𝑒 (𝜃�̅�
̂ ) = √∑ 𝑤𝑖

𝑖

(
𝑡𝑖

1.96
)

2

[𝑣𝑎𝑟(𝜃�̂�|𝑔𝑖) + (𝜃𝑖 − �̅̂�)
2

] 

Where 𝑡𝑖 is the critical value of a t-distribution the appropriate number of degrees of 

freedom for model 𝑖. The confidence interval was then estimated assuming a Gaussian 

distribution, as is commonly performed (confidence limits: �̅̂� ± 1.96(𝑎𝑠𝑒 (�̅̂�))). 

Due to the use of model averaging techniques rather than those based upon removal 

of variables from the model, model coefficient estimates for all variables were 

presented in the output. This can lead to some difficulties in interpretation. Following 

the advice of (Gelman and Hill, 2006b), all coefficients for variables of particular 

interest with an expected sign were interpreted, rather than excluding those which 

were not deemed ‘statistically significant’. In cases where the sign did not match with 

the expectation, possible reasons for this were postulated. In order to aid 

interpretation of the output, predictions were made of the probability of positivity 

over time, including seasonal fluctuations, the effects of praziquantel use, and any 

other variables considered significant/informative. Prediction intervals were estimated 

from the estimated variance-covariance matrix of predictions, as advised in 

(http://glmm.wikidot.com/faq, 2014). 
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6.3 Results 

6.3.1 Data description 

Following removal of unwanted observations, coproantigen data were available for a 

total of 1,404 dogs from 1,188 households. The number of dogs per household was 

distributed as shown in figure 6.2, and the number of samples tested (at the individual 

dog and at the household level) visited in the four villages over the six sampling times 

is shown in tables 6.3 and 6.4.  

 

Figure 6.2.Numbers of dogs undergoing coproantigen testing per household 

Table 6.3. Numbers of samples included in the ELISA analysis. Numbers of households from 
which samples were collected are shown in parentheses – for example, from Sary-Mogol in May 
2012, a total of 155 samples from 142 households were included in the ELISA analysis. 

Sampling 
point 

Village Total 
samples Sary-Mogol Taldu-Suu Kashka’Suu Kara-Kabak 

May 2012 155 (142) 86 (76) 42 (40) 35 (31) 318 (289) 
October 2012 63 (55) 70 (61) 56 (49) 33 (30) 222 (195) 

April 2013 69 (61) 84 (72) 59 (49) 31 (24) 243 (206) 
September 2013 64 (51) 80 (67) 59 (46) 27 (22) 230 (186) 

April 2014 83 (66) 102 (74) 45 (38) 31 (25) 261 (203) 
September 2014 42 (36) 46 (38) 24 (19) 18 (16) 130 (109) 
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Table 6.4. Numbers of samples which underwent PCR analysis. Numbers of households from 
which samples were collected are shown in parentheses 

Sampling 
point 

Village Total 
samples Sary-Mogol Taldu-Suu Kashka’Suu Kara-Kabak 

May 2012 126 (117) 74 (66) 41 (39) 33 (29) 274 (251) 
October 2012 18 (18) 16 (15) 21 (19) 11 (10) 66 (62) 

April 2013 17 (17) 34 (32) 13 (13) 8 (10) 75 (72) 
September 2013 23 (21) 21 (21) 19 (17) 8 (8) 71 (67) 

April 2014 28 (25) 34 (31) 16 (15) 9 (8) 87 (79) 
September 2014 13 (13) 11 (10) 10 (10) 7 (6) 41 (39) 

A total of 419 different households were sampled over the study period, with the visit 

frequency for each household distributed shown in figure 6.3. Over 30% of all 

households were only visited once (which will largely reflect the sampling strategy on 

the first visit), and fewer than 10% of households were visited all six times. 

Approximately 15% of all households were visited each of 2, 3, 4 or 5 times. The 

temporal trends in dog demographic characteristics (sex, age, and weight) are shown 

in figures 6.4-6.6, and those relating to praziquantel dosing are shown in figures 6.7 

and 6.8. The proportion of dogs which tested coproantigen positive using the cut-off 

described earlier over the study period is shown in figure 6.8. Details of trends in 

coproPCR positivity are shown in figure 6.9. 
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Figure 6.3. Relative frequencies of individual household visits over the study period 

 

 

Figure 6.4. Temporal trends in the proportion of male dogs over the sampling period for the 

four study villages
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Figure 6.5.Temporal trends in the age distribution and proportion of adult dogs (≥1y) over the sampling period for the four study villages 
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Figure 6.6.Temporal trends in the weight distribution and proportion of small dogs (≤10kg) over the sampling period for the four study villages 
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Figure 6.7. Temporal trends in the distribution of most recent praziquantel dosing, and in the proportion of recently dosed dogs (<2 months) over 

the sampling period for the four study villages 
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Figure 6.8. Temporal trends in the proportion of dogs which had received praziquantel at some 

point in the past, over the sampling period for the four study villages 

 

Figure 6.9. Temporal trends in coproantigen prevalence over the sampling period for the four 

study villages 
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Figure 6.10. Temporal trends in E. granulosus G1 (top), E. canadensis G6 (middle) and 

E. multilocularis (bottom) PCR prevalence over the sampling period for the four study villages 
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6.3.2 Model checking 

Model selection proceeded as described in the materials and methods. ROC curves for 

the four full models are shown in figure 6.11, and table 6.5 shows estimates of the 

concordance indices and Nakagawa and Schielzeth’s R2 estimates for the models. No 

evidence was found of any overdispersion in any of the models (the ratio of squared 

Pearson residuals to the residual degrees of freedom was less than 1.1 in all cases). 

 

Figure 6.11. ROC curves of comparison between model predictions and data. 
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Table 6.5. Concordance indices (area under the ROC curve) and Nakagawa and Schielzeth’s R
2
 

estimates for the four full models 

Model Concordance index Conditional pseudo-R2 

Coproantigen ELISA 0.66 0.08 
E. granulosus G1 PCR 0.68 0.11 
E. canadensis G6 PCR 0.72 0.15 
E. multilocularis PCR 0.70 0.17 

 

6.3.3 Models generated 

A total of 45 models for coproELISA, 62 for E. granulosus G1 PCR, 23 for E. canadensis 

G6 PCR, and 49 for E. multilocularis PCR were included in the final model averaging 

process. Tables 6.6 – 6.9 show the variables included in those models which were the 

best fit to the data (with a ∆AICc of 2 or less) for each outcome. 

Table 6.6. Best models of coproantigen positivity, as determined by those with AICc values 

within 2 of the model with the lowest value. All models contained month, season, praziquantel 

use, presence of young dogs, and interactions between praziquantel use and both month and 

presence of young dogs. 

 
Additional variables 

included 
df 

Log-Likelihood 
ratio 

AICc ∆AICc 
AIC 

weight 

1 Large dogs (≥20kg) in 
household 

10 -385.01 
790.2

5 
0 0.12 

2 none 9 -386.49 791.17 0.92 0.08 

3 

Older dogs (≥3y) in 
household 

Large dogs (≥20kg) in 
household 

11 -384.57 791.42 1.17 0.07 
4

 

Visits Jailoo 
Large dogs (≥20kg) in 

household 
11 -384.96 792.21 1.96 0.05 
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Table 6.7. Best models of E. granulosus G1 PCR positivity, as determined by those with AICc 

values within 2 of the model with the lowest value. All models contained month, season, 

praziquantel use,  and interactions between praziquantel use and month. 

 
Additional variables 

included 
df 

Log-Likelihood 
ratio 

AICc ∆AICc 
AIC 

weight 

1 Visited in September 2013  7 -169.64 353.51 0 0.12 

2 

Young dogs (≤1y) in 
household 

Small dogs (≤10kg) in 
household 

Visited in September 2013 

9 -167.99 
354.3

6 
0.85 0.08 

3 Visits Jailoo 
Visited in September 2013 

8 -169.36 
355.0

3 
1.52 0.06 

4
 

Older dogs (≥3y) in 
household 

Visited in September 2013 
8 -169.42 355.15 1.64 0.05 

5 

Male dogs in household 
Visited in September 2013 

8 -169.43 355.16 1.65 0.05 

6
 

Young dogs (≤1y) in 
household  

Older dogs (≥3y) in 
household 

Small dogs (≤10kg) in 
household 

Visited in September 2013 

10 -167.49 
355.4

5 
1.94 0.05 

7 

Large dogs (≥20kg) in 
household 

Visited in September 2013 
8 -169.6 355.51 1.99 0.04 
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Table 6.8. Best models of E. canadensis G6 PCR positivity, as determined by those with AICc 

values within 2 of the model with the lowest value. All models contained month, season, 

praziquantel use,  and interactions between praziquantel use and month. 

 
Additional variables 

included 
df 

Log-Likelihood 
ratio 

AICc ∆AICc 
AIC 

weight 

1 

Young dogs (≤1y) in 
household 

Small dogs (≤10kg) in 
household 

8 -253.56 
523.4

2 
0 0.16 

2 

Young dogs (≤1y) in 
household 

Small dogs (≤10kg) in 
household 

Large dogs (≥20kg) in 
household 

9 -252.82 
524.0

3 
0.6 0.12 

3 

Visits Jailoo 
Young dogs (≤1y) in 

household 
Small dogs (≤10kg) in 

household 

9 -253.12 
524.6

2 
1.19 0.09 

4
 

Visits Jailoo 
Young dogs (≤1y) in 

household 
Small dogs (≤10kg) in 

household 
Large dogs (≥20kg) in 

household 

10 -252.38 525.23 1.81 0.07 

5 

Young dogs (≤1y) in 
household 

Small dogs (≤10kg) in 
household 

Male dogs in household 

9 -253.43 
525.2

5 
1.82 0.07 
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Table 6.9. Best models of E. multilocularis PCR positivity, as determined by those with AICc 

values within 2 of the model with the lowest value. All models contained month, season, 

praziquantel use,  and interactions between praziquantel use and month. 

 Additional variables 
included 

df 
Log-Likelihood 

ratio 
AICc ∆AICc 

AIC 
weight 

1 Older dogs (≥3y) in household 7 -197.72 
409.6

9 
0 0.06 

2 Older dogs (≥3y) in household 
Village 

10 -194.69 
409.8

6 
0.17 0.05 

3 Village 9 -195.78 
409.9

4 
0.25 0.05 

4
 none 6 -198.92 410.02 0.34 0.05 

5 Large dogs (≥20kg) in 
household 

7 -198.1 410.43 0.75 0.04 

6
 

Older dogs (≥3y) in household 
Large dogs (≥20kg) in 

household 
8 -197.11 410.52 0.83 0.04 

7 Male dogs in household 
Village 

10 -195.11 410.68 1 0.04 

8
 

Visits Jailoo 
Older dogs (≥3y) in household 

8 -197.3 410.9 1.21 0.03 

9
 

Older dogs (≥3y) in household 
Male dogs in household/ 

village 
11 -194.17 410.9 1.22 0.03 

10
 

Older dogs (≥3y) in household 
Male dogs in household 

8 -197.3 410.92 1.23 0.03 

11 Male dogs in household 7 -198.36 410.95 1.26 0.03 
12 

Large dogs (≥20kg) in 
household 

Village 
10 -195.32 411.11 1.42 0.03 

13 

Older dogs (≥3y) in household 
Large dogs (≥20kg) in 

household 
Village 

11 -194.36 411.28 1.6 0.03 

14
 

Male dogs in household 
Large dogs (≥20kg) in 

household 
8 -197.59 411.49 1.8 0.02 

15 Visits Jailoo 7 -198.65 411.54 1.86 0.02 

16
 

Visits Jailoo 
Older dogs (≥3y) in household 

Village 
11 -194.53 411.63 1.95 0.02 
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6.3.4 Model output 

Coefficient estimates and confidence intervals for the model-averaged output are 

shown in tables 6.10-6.13. In order to assist visualisation of the relationship between 

the average household prevalence and that predicted by the model, these are shown 

for the four outcomes in figures 6.12-6.15.  

 

Table 6.10. Coefficient estimates from model averaged results of models of Echinococcus 

coproantigen positivity. The intercept is shaded in black, and other variables with a 95% 

confidence interval which excludes zero are shaded in grey 

Variable Coefficient 95% confidence interval 

Intercept -2.05 -2.38 – -1.71 

Increase of 1 unit in standardised 

month (baseline PZQ) 
-0.61 -1.05 – -0.17 

Large dogs (≥20kg) in household -0.29 -0.91 – 0.33 

Received praziquantel since last 

visit (baseline young dog / month) 
-0.24 -0.65 – 0.16 

PZQ:month (baseline young dog) -0.16 -1.03 – 0.71 

Sampled from KK (cf SM) -0.06 -0.45 – 0.33 

Sampled from TS (cf SM) -0.05 -0.34 – 0.24 

Young dogs (≤1y) in household 

(baseline PZQ) 
-0.04 -0.50 – 0.42 

Visits Jailoo -0.02 -0.29 – 0.26 

Increase in standardised dog 

number 
-0.01 -0.17 – 0.16 

Male dogs in household 0.00 -0.27 – 0.27 

Older dogs (≥3y) in household 0.06 -0.21 – 0.33 

Sampled from KS (cf SM) 0.07 -0.28 – 0.43 

Small dogs (≤10kg) in household 0.51 0.01 – 1.01 

Sampled in autumn (cf spring) 0.55 0.13 – 0.96 

PZQ:young dog (baseline month) 0.69 -0.07 – 1.44 
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Table 6.11. Coefficient estimates from model averaged results of models of E. granulosus G1 PCR 

positivity. The intercept is shaded in black, and other variables with a 95% confidence interval 

which excludes zero are shaded in grey 

Variable Coefficient 95% confidence interval 

Intercept -2.15 -2.53 – -1.76 

Increase of 1 unit in standardised 

month (baseline PZQ) 
-0.72 -1.58 – 0.15 

Sampled in Autumn (cf Spring) -0.54 -1.78 – 0.69 

PZQ:Month -0.39 -1.91 – 1.14 

Visits Jailoo -0.08 -0.53 – 0.38 

Sampled from TS (cf SM) -0.04 -0.35 – 0.28 

Small dogs (≤10kg) in household -0.03 -0.52 – 0.46 

Sampled from KK (cf SM) -0.02 -0.35 – 0.30 

Large dogs (≥20kg) in household -0.02 -0.43 – 0.39 

Sampled from KS (cf SM) 0.02 -0.24 – 0.27 

Older dogs (≥3y) in household 0.08 -0.33 – 0.48 

Male dogs in household 0.09 -0.48 – 0.66 

Young dogs (≤1y) in household 0.24 -0.49 – 0.97 

Received praziquantel since last 

visit (baseline month) 
0.35 -0.32 – 1.02 

Visited in September 2013 1.45 0.01 – 2.89 
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Table 6.12. Coefficient estimates from model averaged results of models of E. canadensis G6 

PCR positivity. The intercept is shaded in black, and other variables with a 95% confidence 

interval which excludes zero are shaded in grey 

Variable Coefficient 95% confidence interval 

Intercept -1.21 -1.48 – -0.93 

Sampled in Autumn (cf Spring) -0.86 -1.57 – -0.15 

Young dogs (≤1y) in household -0.67 -1.26 – -0.07 

PZQ:Month -0.62 -1.71 – 0.48 

Increase of 1 unit in standardised 

month (baseline PZQ) 
-0.35 -0.92 – 0.22 

Sampled from KS (cf SM) -0.09 -0.58 – 0.39 

Received praziquantel since last 

visit (baseline month) 
-0.09 -0.60 – 0.43 

Older dogs (≥3y) in household -0.01 -0.24 – 0.22 

Sampled from TS (cf SM) 0.00 -0.22 – 0.23 

Sampled from KK (cf SM) 0.02 -0.29 – 0.33 

Male dogs in household 0.04 -0.31 – 0.38 

Visits Jailoo 0.08 -0.31 – 0.48 

Large dogs (≥20kg) in household 0.14 -0.35 – 0.64 

Small dogs (≤10kg) in household 1.27 0.64 – 1.89 
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Table 6.13. Coefficient estimates from model averaged results of models of E. multilocularis 

PCR positivity. The intercept is shaded in black, and other variables with a 95% confidence 

interval which excludes zero are shaded in grey 

Variable Coefficient 95% confidence interval 

Intercept -1.97 -2.46 – -1.48 

Increase of 1 unit in standardised 

month (baseline PZQ) 
-1.15 -1.89 – -0.41 

PZQ:Month -0.52 -1.81 – 0.78 

Older dogs (≥3y) in household -0.22 -0.81 – 0.36 

Large dogs (≥20kg) in household -0.15 -0.72 – 0.43 

Male dogs in household -0.14 -0.71 – 0.42 

Sampled from KK (cf SM) -0.11 -0.77 – 0.56 

Received praziquantel since last 

visit (baseline month) 
-0.09 -0.65 – 0.48 

Young dogs (≤1y) in household -0.08 -0.51 – 0.36 

Sampled from KS (cf SM) -0.04 -0.54 – 0.47 

Small dogs (≤10kg) in household 0.04 -0.31 – 0.39 

Visits Jailoo 0.08 -0.38 – 0.54 

Sampled from TS (cf SM) 0.26 -0.45 – 0.97 

Sampled in Autumn (cf Spring) 1.33 0.62 – 2.04 
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Figure 6.12. Comparison of averaged model predictions from Echinococcus coproantigen ELISA model (shown in blue) with average household 

prevalences (shown in red) over the study period. Thinner lines indicate individual household predictions. 
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Figure 6.13. Comparison of averaged model predictions from E. granulosus G1 model (shown in blue) with average household prevalences (shown in 

red) over the study period. Thinner lines indicate individual household predictions. 
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Figure 6.14. Comparison of averaged model predictions from E. canadensis G6 model (shown in blue) with average household prevalences (shown 

in red) over the study period. Thinner lines indicate individual household predictions. 
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Figure 6.15.Comparison of averaged model predictions from E. multilocularis model (shown in blue) with average household prevalences (shown in 

red) over the study period. Thinner lines indicate individual household predictions. 
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6.3.5 Model predictions 

Graphs of predicted temporal and seasonal trends in test positivity and the effect of 

praziquantel dosing, including confidence intervals, are shown in figures 6.16-6.19. 

Temporal and seasonal trends in coproantigen test positivity and the effect of 

presence of young dogs and small dogs (amongst households receiving praziquantel) 

are shown in figure 6.20, and those for the effect of the presence of young dogs and 

small dogs on E. canadensis G6 test positivity are shown in figure 6.21. For clarity of 

visualisation, predictions were based upon the estimates for Sary-Mogol only (selected 

as it was the largest village). However, the general predicted trends would be expected 

to be the same for all villages. 
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Figure 6.16. Temporal predictions of praziquantel effect from coproantigen model for 

households in Sary-Mogol with (top) and without (bottom) young dogs (≤1y). Bars show 95% 

prediction intervals. 
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Figure 6.17. Temporal predictions of praziquantel effect from E. granulosus G1 model in Sary-

Mogol. Bars show 95% prediction intervals. 

 

Figure 6.18. Temporal predictions of praziquantel effect from E. canadensis G6 model in Sary-

Mogol. Bars show 95% prediction intervals. 
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Figure 6.19. Temporal predictions of praziquantel effect from E. multilocularis model in Sary-

Mogol. Bars show 95% prediction intervals. 
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Figure 6.20. Temporal predictions of effect of presence of young dogs and small dogs from 

coproantigen model. Praziquantel dosing status is set to the average for the communities in 

Sary-Mogol. Bars show 95% prediction intervals.

 

Figure 6.21. Temporal predictions of effect of presence of young dogs and small dogs from E. 

canadensis G6 model. Praziquantel dosing status is set to the average for the communities in 

Sary-Mogol. Bars show 95% prediction intervals. 
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6.4 Discussion 

The current study used mixed effects logistic regression modelling to identify 

temporal and seasonal trends, and the effect of reported recent praziquantel dosing, 

on the prevalence of echinococcosis test positivity, using three different tests. These 

models predicted a decreasing trend in test prevalence over time in all cases, although 

this effect was only statistically significant for the coproantigen and E. multilocularis 

PCR models. Seasonality was also apparent in most cases, although this was not 

statistically significant in the E. granulosus G1 model. Seasonal trends differed between 

tests, with lower prevalences predicted during the spring months from the 

coproantigen and E. multilocularis PCR models, and the reverse for the E. granulosus 

(s.l.) (E. granulosus G1 and E. canadensis G6) models. Although not statistically 

significant, households containing dogs which had recently received praziquantel had 

lower predicted test prevalences (with the exception of coproantigen positivity in the 

case of households with young dogs – where predictions for 2012-2013 suggested a 

slightly higher prevalence amongst dosed households, but with very similar prevalence 

estimates to those for undosed households). Interestingly, there was evidence of an 

increase in E. granulosus G1 PCR positivity in September 2013, although the reason for 

this is unclear. Finally, in the case of coproantigen and E. canadensis G6 test results, 

households containing young dogs had lower predicted test prevalences, and 

households containing small dogs had higher test prevalences. General characteristics 

of the study communities have already been described elsewhere (van Kesteren et al., 

2013), and so will not be described in any further detail here unless associated with 

possible dynamic trends. 

The current study describes one of the first full investigations of temporal trends in 

canine coproantigen and coproPCR prevalence during a praziquantel dosing scheme 

in an area coendemic for Echinococcus granulosus (sensu lato) and 

Echinococcus multilocularis. Due to the wealth of potential information which can be 

extracted from this analysis (especially since four different outcomes are evaluated), 

attention will first be focussed on those variables of primary interest – that is, 
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temporal and seasonal trends, and the effect of (reported) praziquantel dosing during 

the control scheme. Other identified associations will be discussed in less detail.  

6.4.1 Quantifying infection status 

It is first important to note the source of the outcomes of interest – ROC curve 

analysis was conducted on the coproantigen ELISA results in order to select suitable 

cut-offs, which were as comparable as possible between different visits. Since it is well 

known that an association exists between the worm burden and the OD value 

(Deplazes et al., 1992; Raoul et al., 2001; Reiterová et al., 2005; Buishi et al., 2005b), and 

that an ‘overlap’ in OD values is expected between high-OD negative samples and low-

OD positive samples (see chapter 4), the sensitivity of the coproantigen test would be 

expected to be affected by the worm burden distribution in the community of interest. 

This is a potential problem when using the coproantigen ELISA to evaluate a control 

scheme, since in the face of a decreasing prevalence, the test sensitivity would also be 

expected to decrease. In order to address this problem, a decision was made to alter 

the outcome of interest and rather than model coproantigen positivity, to model 

“high” coproantigen positivity. A burden of 50 worms has been suggested to be 

suitable threshold for coproantigen test sensitivity (Allan et al., 1992; Reiterová et al., 

2005), and therefore the ROC curve analysis used here was based upon the assumption 

that dogs with low burdens of less than 50 worms were (for the purposes of the study) 

negative. Although this will alter the distribution of ‘negative’ OD values in the panel 

used, the ROC curve approach is nonparametric and therefore will not be affected by 

this. By redefining positivity, the amount of overlap between ‘negative’ and ‘positive’ 

individuals will be reduced and the cut-off will generally be increased, which will 

hopefully make coproantigen prevalence estimates more robust in the face of a 

decreasing prevalence. 

As a result of this adjustment, the model output should not be interpreted as a true 

estimate of the prevalence of infection in the community, but rather as a broad 

estimate of the prevalence of higher burden infections. Although the unadjusted 

prevalence may give some indication of the total parasite biomass in a community, the 
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overdispersed nature of Echinococcus infection means that a nonlinear relationship 

would be expected to be found between the mean worm burden and the prevalence of 

infection (Anderson and May, 1985; Guyatt et al., 1990; Shaw and Dobson, 1995). Based 

upon this, it has been argued that the prevalence is not a useful measurement of the 

Echinococcus status of definitive hosts (Hofer et al., 2000). Therefore, although the 

current approach will tend to underestimate the true prevalence of infection, it will 

also identify risk factors for higher burdens, rather than infection per se. 

PCR testing is an expensive and laborious process, especially when being conducted 

on faecal samples, which contain PCR inhibitory substances and therefore require 

additional processing steps (Mathis et al., 1996; Abbasi et al., 2003). As such, it has 

been suggested that in the case of community-level surveillance, as was being 

conducted here, the ELISA test is used as a screening test, and the PCR as a 

confirmatory test applied to all ELISA positive samples (and a random selection of 

ELISA negative samples) (Eckert and Deplazes, 2001; Eckert, 2003; Craig et al., 2003). 

This was not conducted in the current study due to lack of any apparent relationship 

between coproELISA and coproPCR results (data not shown), and the resultant 

difficulties in interpreting the status of samples which tested positive for one test and 

negative for the other. Whilst the ‘screening and confirmation’ strategy could be 

beneficial in the identification and genotyping of species and strains of Echinococcus 

in the field, it was therefore not considered a useful strategy for the estimation of the 

prevalence of infection in a surveillance context. Instead, with the exception of the 

first sample collection (when all available samples underwent PCR), a random 

selection of 30% of all samples (regardless of ELISA status) underwent PCR analysis. 

These results were then interpreted separately from the ELISA results, and used to 

build a picture of the transmission dynamics in the communities. It should be 

emphasised here that the sensitivity and specificity of these tests in the current 

conditions are unknown – especially in the case of the E. canadensis G6 primers, 

which were developed solely for this project and have as such not been evaluated 

elsewhere (van Kesteren, 2015). Whilst estimates of sensitivity and specificity for two 

of the PCR tests used here are available (Boufana et al., 2013), the samples collected 
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from the field were often older than the samples used in this validation, and therefore 

would be more likely to contain degraded DNA which may not be detectable using the 

PCR.  

As a result of all of these issues, the current study focussed primarily on trends over 

time (and in the face of other risk factors), rather than attempting to estimate the true 

prevalence of infection at any particular point. Although prevalence estimates are 

provided in figures 6.12-6.21, these are only provided to demonstrate trends and should 

be interpreted with care. 

6.4.2 Model development 

It was decided prior to model development that a random effects structure accounting 

for individual variation between households would be appropriate for the data. Due to 

difficulties in comparing the fit of models with and without random effects, and the 

desire to develop a general framework for analysis which could be applied to other 

situations, no attempt was made to compare this model to one without random 

effects. The random effect structure was identified by comparing the AICc of models 

with different structures (random intercepts only and random intercepts and slopes, 

with and without nesting within villages). This identified a “random intercept only” 

model in all cases except for the E. multilocularis model (for which a random intercept 

model was ultimately selected anyway due to convergence problems, as described 

above). It has been argued that when specifying random effects for GLMMs, the 

maximal random effects structure for the model in question should be used, regardless 

of measures of model fit such as AICc (Grueber et al., 2011; Barr et al., 2013). This was 

not conducted for the current study, but may be an area of exploration for further 

model development for the coproantigen ELISA model (convergence issues are likely 

for the PCR models, due to the small sample size). If this approach was used, R-side 

error structures (such as temporal autocorrelation) could also be considered, rather 

than the G-side error structure in the current model. The lifespan of Echinococcus spp 

in domestic dogs is not definitively known, but estimates of E. granulosus (s.l.) life 

expectancy of 9 months, and E. multilocularis expectancy of 3-6 months have been 



211 

 

made based on data from Kyrgyzstan (Ziadinov et al., 2008). This relatively short life 

expectancy would be expected to reduce the degree of temporal autocorrelation in 

infection status between visits (even in the absence of praziquantel dosing), but may 

be worthy of further investigation in itself. Difficulties in incorporating R-side error 

structures in the current version of the ‘glmer’ package would mean that other 

packages or approaches may need to be considered if this was to be investigated 

further. 

The decision to aggregate the test results by household was based initially upon an 

inability to match individual samples to individual dogs (in the case of a household 

containing two dogs, two faecal samples from the immediate vicinity would generally 

be collected, with an attempt to match for the reported sizes of the dogs). This 

approach will have implications for the estimation of overall prevalence (as presented 

in figures 6.12-6.15), which will not represent an estimate of the prevalence of infection 

amongst individual dogs, but the average household-level estimate. In the case of 

households containing only one dog, the current binomial logistic regression model 

reduces down to the conventional Bernoulli logistic regression form. This flexibility 

makes this modelling structure appropriate for a variety of situations, including those 

where more dogs per household are found, such as on the Tibetan plateau (Wang et 

al., 2006a). Many communities affected by echinococcosis contain free roaming dogs 

(indeed, this is probably the most commonly identified risk factor for infection 

(Parada et al., 1995; Buishi et al., 2005a, 2006; Budke et al., 2005a; Guzel et al., 2008; 

Huang et al., 2008; Ziadinov et al., 2008; Antolová et al., 2009; Mastin et al., 2011)), 

meaning that identification of individual samples is likely to be a common problem 

when investigating canine echinococcosis. Additionally, since the current sampling 

strategy and intervention scheme were implemented at the household level, 

household-level risk factors were identified. This has a potential use in the context of a 

control scheme which is largely implemented at the household, rather than the 

individual dog, level. However, care should be taken when interpreting results of 

individual dog-level risk factors (such as presence of different dog types in the 
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household), due to the potential for ecological fallacy – where patterns and 

associations identified in aggregate do not relate to those at the individual level. 

An information theoretic approach was used for model selection, largely due to the 

limitations of stepwise regression approaches (Burnham and Anderson, 2002; 

Whittingham et al., 2006). The primary aim of the model selection process was to 

develop a predictive model which quantified the effect of the variables of primary 

interest (month of sampling, season of sampling, praziquantel use), whilst accounting 

for other factors of potential importance. In accordance with the information theoretic 

approach, this first relied upon the development of a number of different models 

(“multiple working hypotheses” (Chamberlin, 1965)). In the current study, “model 

dredging” was used to create these models. This is contentious, and is commonly not 

advised as it can discourage from careful consideration of potential models of interest 

(Burnham and Anderson, 2002). However, it was considered justified in the current 

case, as particular care was taken when selecting variables of potential importance to 

the model, and therefore relatively few variables were considered in the global model. 

As any combination of these variables was considered a reasonable model, a decision 

was therefore made to use model dredging to generate models (accounting for 

possible confounding between the presence of young dogs and small dogs by only 

including these two variables together). All main variables of interest were fixed in all 

models evaluated because models excluding these variables were not of particular 

interest to the current study. 

Due to the conflicting problems of selection of only a single model to represent 

complex biological processes (Lukacs et al., 2010), and the benefits of a clear model 

structure for dissemination of the output of analysis to a wider audience, model 

averaging was used to estimate coefficients for all variables whilst accounting for 

model uncertainty. Most of the analysis and interpretation is based upon the output of 

the model averaging process, but a secondary output were the results of model 

comparison based upon AICc estimates, as shown in tables 6.8-6.11 (these models had 

a ∆AICc of less than or equal to 2, which has been suggested to be a suitable threshold 

for model support by the data (Burnham and Anderson, 2002, 2004)). These models 
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may be useful for hypothesis generation but are only minimally discussed in the 

current report due to space limitations.  

6.4.3 Temporal trends  

All models were suggestive of a general decreasing trend in test prevalence over time, 

although this was only significant at the p≤0.05 level in the case of the coproantigen 

and E. multilocularis models. A conscious effort was made during the current analysis 

to not focus too much on measures of significance, since the aim was to identify 

possible trends. Since variables were standardised prior to model averaging, there is 

no clear interpretation of the coefficient for temporal trend in tables 6.10 – 6.13. This 

was not considered a problem, since interpretation of an annual or monthly decrease 

in the log odds of test positivity is similarly a difficult concept to convey. Instead, 

graphs of test prevalence predictions over time were provided (figures 6.16-6.21), 

which were considered easier to comprehend than tables of coefficient estimates.  

The trend of decreasing prevalence over time is likely to represent the effect of the 

praziquantel dosing scheme to some degree, and has been found in previous studies of 

E. multilocularis infection of foxes during control schemes (Schelling et al., 1997; 

Tackmann et al., 2001; Hegglin et al., 2003). However, it is not possible to identify the 

exact contribution of praziquantel administration per se to this trend due to a lack of 

any control communities which did not undergo dosing. As there is no residual effect 

of praziquantel, the reduction in prevalence in the face of a dosing scheme would be 

expected to operate through an initial removal of infection, followed by gradual 

reinfection over time. Previous work in Naryn province in Kyrgyzstan has suggested 

that the E. multilocularis infection pressure for free-roaming dogs is in the region of 1.1 

– 1.3 infections per year, and that for E. granulosus (s.l.) is around 0.3 infections per 

year (Ziadinov et al., 2008). Therefore, following dosing, the average time to infection 

with E. multilocularis would be expected to be in the region of one year, and that for 

E. granulosus (s.l.) would be around three years (i.e. the time course of the whole 

current study). As time progressed, the probability of any household having received 

praziquantel at some point increased (see figure 6.8), and therefore the overall 
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probability of infection would be expected to reduce. Therefore, it is plausible (and 

arguably likely) that the temporal trend is representative of an effective praziquantel 

dosing scheme. The lack of a strong association between recent dosing and probability 

of test positivity is also explainable due to the sampling strategy, and is discussed 

below.  

However, although the dosing scheme is likely to be largely responsible for the 

decreasing temporal trend, other possible causes cannot be excluded. Dog culling 

campaigns have reportedly been ongoing in the villages for some time (Akjol 

Tagaibekov, personal communication), which would be expected to preferentially 

remove older dogs from households (since younger dogs often stayed closer to the 

households). Following culling, dogs were commonly replaced with younger dogs, 

which would be included in future samplings, but the change in dog would not be 

explicitly accounted for in the model (no attempt was made to match for individual 

dogs over time – just households). If younger dogs were less likely to be infected (as 

may be the case, as discussed below), this could result in an apparent reduction over 

time, as the probability of individual dogs being removed from the population 

increased.  

Another possible cause of the decreasing trend over time is behavioural changes 

amongst dog owners. It is likely that the commencement of the study alerted local 

people to the problem of echinococcosis – and particularly, the role of dogs in the 

cycle. In June 2012, just after the initial round of sample collection, an ultrasound 

screening campaign was commenced in the area (based in Sary-Mogol and Taldu-Suu, 

but also including people from other villages if requested). It has been reported that 

these campaigns can have very positive educational benefits with regards to 

echinococcosis (Kachani et al., 2003), and this appeared to be the case in the two main 

study villages (Sary-Mogol and Taldu-Suu) when semi-structured questionnaires were 

administered to local people in October 2012 (data not shown). As well as reducing the 

risk of human infection (which was not measured in the current study), these factors 

could lead to a reduction in the feeding of offal to dogs, which would be expected to 

reduce the probability of infection with E. granulosus G1 and/or E. canadensis G6. 
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Questions relating to knowledge of canine echinococcosis were asked at the start of 

the study (May 2012) and again towards the end of the study (April 2014), and further 

work is intended to investigate the effect of owner knowledge on dosing behaviour 

and test prevalence. 

Whilst it is unlikely that the decreasing trend in prevalence over time seen here 

represents a decrease in the prevalence/intensity of intermediate host infection, a 

study based upon seasonally targeted dosing of dogs in Lithuania identified a trend of 

decreasing prevalence in both dogs and intermediate hosts (pigs) amongst 

intervention communities over a period of four years (Šarkūnas and Deplazes, 2014). 

Therefore, a reduction in infection pressure from intermediate hosts is possible, even 

over the short periods studied here. In the long term, a prolonged dosing campaign 

would be expected to reduce the levels of infection of ruminants with E. granulosus G1 

/ E. canadensis G6 (which are likely to exist solely in a domestic cycle). The effect on 

the prevalence of E. multilocularis in rodents is unknown – since the exact role of dogs 

in maintaining this cycle is unclear. If dogs were acting only as an overspill host from 

the sylvatic fox-rodent cycle, then dosing dogs would not be expected to affect the 

levels of infection of intermediate hosts. However, if they were contributing in some 

way then by controlling infection in dogs, the levels of infection in intermediate hosts 

would be expected to decrease. These longer-term effects of a dosing scheme would be 

worthy of further study themselves, and it would be useful to return to the study site 

after the control scheme has been running for a longer time in order to evaluate this 

further. The effects of dosing campaigns on parasite distributions is an area of active 

study (Basáñez et al., 2012b), and the investigation of optimal strategies for 

measurement of infection pressure in the face of a control scheme would be useful. 

6.4.4 Seasonal trends  

A significant seasonal effect was observed for all models with the exception of the 

E. granulosus G1 model. However, the direction of this seasonality differed between 

the models. In the case of the coproELISA and E. multilocularis models, a higher test 

prevalence was found in the autumn months than in the spring months. However, in 
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the case of the E. granulosus G1 and E. canadensis G6 models, an increase in the test 

prevalence in the spring months was observed in comparison to that in the autumn 

months. This is an interesting finding, and may represent differences in the lifecycles 

of the two types of Echinococcus in the study area: E. granulosus (s.l.) and 

E. multilocularis. 

Seasonality in E. multilocularis infection of foxes is well reported, and a trend of 

increased prevalence in autumn than spring has been identified in arctic foxes in 

Alaska (Fay and Rausch, 1964), juvenile red foxes in Switzerland (Brossard et al., 2007; 

Hegglin et al., 2007), and similar to that predicted from mathematical models of 

transmission in Japan (Ishikawa et al., 2003; Nishina and Ishikawa, 2008). These 

variations were suggested to result from changes in availability of intermediate hosts 

(and resultant changes in dietary preference for intermediate hosts), changes in fox 

population density, and age effects. Amongst adult red foxes in Switzerland, the 

prevalence was lower in autumn than in spring (Brossard et al., 2007), and other 

studies in Switzerland have suggested that the prevalence was higher in winter than in 

summer (Hofer et al., 2000), or spring (Stieger et al., 2002), but the months of 

sampling mean that these results are not directly comparable with the results of the 

current study. Data collected from Japan and France did not detect any seasonal 

changes in coproantigen prevalence or infection (despite the latter study finding 

evidence of increased ingestion of rodents in autumn than in spring) (Morishima et 

al., 1999b; Robardet et al., 2008). 

The only published report of seasonality in E. multilocularis infection in domestic dogs 

to date was based on studies of hunting dogs in Kazakhstan (Bondareva et al., 1975), as 

reported by Shaikenov (2004), which indicated a higher prevalence of infection in the 

spring than in the autumn – and therefore the converse trend to those observed here. 

Despite this, the finding of a higher prevalence amongst domestic dogs in the autumn 

(and likely, winter) months, as identified here, is logical due to expected seasonal 

trends in the availability of intermediate hosts to dogs. It has been suggested that the 

plasticity of host preference for suitable intermediate hosts of E. multilocularis is a key 

driving force in parasite dynamics (Hegglin et al., 2007). The plasticity of domestic dog 
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preference for these intermediate hosts would be expected to be high. This means that 

domestic dogs would be expected to switch to other sources of nutrition in periods 

where access is limited (such as during the winter months, when population densities 

of these hosts would be expected to more readily decrease and snow cover would be 

expected to further reduce access). The effect of the cold weather on the age structure 

of rodent populations could also be of relevance for the infection pressure to dogs. On 

one hand, it is possible that during the harsh winter months, older intermediate hosts, 

which are more likely to carry mature cysts, will preferentially die off. However, the 

lack of reproduction during the winter months could equally increase the proportion 

of older animals, and therefore the overall prevalence amongst intermediate hosts 

(Burlet et al., 2011).  Further work on the population dynamics of rodent intermediate 

hosts (and on their interactions with dogs) in these communities would be useful in 

order to clarify these issues further.  

Seasonality in E. granulosus (s.l.) infection of definitive hosts has received less 

attention than that for E. multilocularis, but a study in Kazakhstan suggested that the 

prevalence of farm dog infection in Zhambul oblast was higher in the autumn than the 

spring (although there was no significant difference in prevalence estimates for spring 

or summer samplings amongst farm dogs in two other areas) (Rysmukhambetova et 

al., 2004). A study in Bangladesh identified a similar trend of increased prevalence in 

autumn (Islam, 1980). However, a reinfection study in Wales identified possible 

seasonal peaks in coproantigen prevalence in the spring and autumn months a year 

after the implementation of a supervised dosing scheme, with a higher estimated 

prevalence during the spring peak (Lett, 2013).  

Reinfection studies in the eastern Tibetan plateau have identified possible seasonality 

in transmission of Echinococcus spp, but as this area is coendemic for both 

E. granulosus (s.l.) and E. multilocularis and coproantigen testing was used for 

diagnosis, it was not possible to determine the relative contribution of each species to 

these trends. One study following a single praziquantel dose in spring found an initial 

high reinfection prevalence (in late spring/early summer), followed by a lower 

prevalence, and then a slight increase the following spring (Moss et al., 2013). 
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However, the exact role of seasonality in this pattern was difficult to determine since 

only one dose of praziquantel was administered. Another study in the same area 

where praziquantel was administered after each sample collection, found a similar 

trend – with highest apparent reinfection in late spring/early summer in one county, 

and in winter in the other (Wang, 2011). It was proposed that these patterns result 

from changes in the population density of intermediate hosts of E. multilocularis and 

increased mortality of livestock in the early spring.  

6.4.5 Effect of praziquantel dosing 

As described above, praziquantel dosing would be expected to be associated with a 

reduction in the prevalence of infection, as most studies have shown 100% efficacy 

against both E. granulosus (s.l.) and E. multilocularis when administered at a dose rate 

of 5.0 mg/kg (WHO/OIE, 2001d). Lack of praziquantel dosing has also been shown to 

be an important risk factor for infection in a number of previous studies (Buishi et al., 

2005a; b; Huang et al., 2008; Acosta-Jamett et al., 2010). Whilst the coefficient 

estimates of the effect of praziquantel dosing was negative in all models (suggesting 

lower prevalences amongst households which received praziquantel), this association 

was not found to be significant in any models. The most likely causes for this 

relationship (or lack thereof) are information bias from the questionnaire, ecological 

bias resulting from the aggregation of dogs within households, and an inability to 

definitively match faecal samples to households. The first of these may have resulted 

from people reporting dosing their dog when in fact they hadn’t (because they felt 

they would be reprimanded for not dosing, or because the dog did not swallow the 

tablet despite it being offered), and vice versa (sometimes the person who answered 

the door was not the person responsible for dealing with the dog, and therefore may 

have reported no dosing when in fact the dog had been dosed by someone else). 

Ecological bias may result from the interpretation of praziquantel dosing history at the 

household level: a reported history of dosing, even if true, does not indicate that all 

dogs in a household had been dosed (see below for discussion of this issue in relation 

to the presence of young dogs in the coproantigen model). Another final possibility 

relates to difficulties experienced in ensuring that the samples were from the actual 
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registered dogs. As dogs were free to roam and defaecate throughout the village, the 

presence of dog faeces in the vicinity of a house does not necessarily indicate that 

those faeces are from that particular dog. Whilst this would not be a problem for 

variables identified at the community level (month of sampling, season of sampling), it 

would tend to reduce the magnitude of estimated model coefficients for household-

level variables towards zero. Given these issues, and given the general trend towards a 

negative coefficient for all outcomes, it could be considered likely that recent dosing 

was associated with a reduction in test prevalence at the individual dog level. 

6.4.6 Other identified risk factors 

In the case of the coproELISA model, an identified interaction between the effect of 

having young dogs (less than 1 year of age) in a household and the effect of 

praziquantel dosing on coproELISA prevalence (see figure 6.16) suggested that the 

effect of praziquantel dosing amongst households with young dogs is less than that 

amongst households which do not have young dogs. This may indicate that younger 

dogs are not being dosed with praziquantel, even if praziquantel is being offered to 

other dogs in the household, and may therefore suggest a failure of the control scheme 

to reach all owned dogs in the community. 

The presence of young dogs in a household appeared to be associated with a decrease 

in the probability of both coproantigen positivity (amongst undosed households) and 

E. canadensis G6 positivity. Interestingly, the presence of small dogs (≤10kg) in a 

household was found to be associated with an increased probability of test positivity 

for both of these tests. Due to expected collinearity between these exposures (i.e. 

households with young dogs were also more likely to report having small dogs), 

predictions for these effects were shown together in figures 6.20 and 6.21. These 

figures demonstrate that these predictions are complex: with households containing 

neither young nor small dogs, or both young and small dogs, having an ‘average’ test 

prevalence; households with young dogs but not small dogs having lower test 

prevalences; and households with small dogs but not young dogs having higher test 

prevalences. This finding was unexpected, and is difficult to interpret due to the risk of 
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ecological fallacy when making suggestions about the effect of dog-level effects at the 

household level. As such, possible reasons for this will only be briefly discussed. Age 

has been identified as a possible risk factor for infection in previous studies, with 

younger dogs having a higher probability of positivity (Sharifi and Zia-Ali, 1996; Buishi 

et al., 2005b, 2006; Inangolet et al., 2010; Acosta-Jamett et al., 2010). However, none of 

these studies have categorised age with a threshold as young as one year (this age 

threshold was selected in an attempt to represent ‘adult’ dogs, but is itself an artificial 

construct). It has also been found that the relationship between age and 

prevalence/burden of infection with Echinococcus spp is not a linear pattern – with a 

low intensity observed in very young animals and a peak intensity in animals of 1-2 

years of age, before reducing down again amongst older animals (if immunity is 

present) (Torgerson et al., 2003c). It is possible that this ‘peak’ in young animals is 

being captured here. Few dog breeds in the area had an adult weight as low as 10kg, 

and therefore most of the households with ‘non-young but small’ dogs would likely 

have younger dogs (probably in the 1-2 year age range). Another associated possible 

explanation is that of feeding – with young dogs which are well fed (and which 

therefore have a higher bodyweight) having lower levels of scavenging, and dogs just 

above the age threshold which are underfed possibly having higher levels. However, 

further work would be required to investigate these patterns further. If individual 

faecal samples could be conclusively attributed to individual dogs (for example, if 

rectal or purge samples were taken from a selection of dogs of different ages), then 

further investigation could be conducted. This would be of particular importance if 

the force of infection was to be estimated, since modelling this (in the endemic steady 

state) often relies on the availability of age-stratified prevalence data (Muench, 1959; 

Hairston, 1965; Torgerson et al., 2003c; Ziadinov et al., 2008; Lewis et al., 2014). 

The apparent increase in E. granulosus G1 PCR prevalence in September 2013 was an 

interesting finding, although the reasons for this are unclear. In recent years, the 

festival of Курман айт (Eid al-Adha), during which large numbers of animals are 

slaughtered, has taken place during the autumn months. This would be expected to be 

followed by an increased in canine infection with E. granulosus G1, due to increased 
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access to offal. However, this festival took place in October in 2013, and so could not 

explain this trend. Whilst few dogs at this visit had received praziquantel within the 

previous two months (figure 6.7), this same trend was present in the other autumn 

visits and was not exceptional to this visit. One possibility which may be worthy of 

further investigation is the effect of culling campaigns in the area since a very large 

culling campaign was implemented in Sary-Mogol and (to a lesser extent) in Taldu-

Suu in the summer and autumn of the previous year. However, this would not explain 

why only E. granulosus G1 prevalence appeared to increase at this time point. It is 

likely that the cause for this sudden increase in predicted E. granulosus G1 PCR 

prevalence will never be known, but this finding does demonstrate the importance of 

data checking and visualisation during model development.  

Another method of identifying possible variables of importance is to look at the 

different models according to their AICc (tables 6.8-6.11), and identify a range of 

different models which were reasonably supported by the data. There is insufficient 

time to describe all of these possible associations here, but this could be worthy of 

further exploration. In particular, it is notable that differences between villages were 

only apparent for E. multilocularis (table 6.9), which could be due to spatial variation 

in the presence of suitable intermediate hosts between villages (Giraudoux et al., 2002, 

2003, 2006, 2013b). Further investigation of spatial patterns of E. multilocularis would 

be of interest and relevance to the planning and implementation of control campaigns. 

6.4.7 Further development 

One difficulty faced in the current strategy was reconciling the conflicting issues of 

model selection in the absence of hypothesis testing and coefficient interpretation 

when coefficients were ‘not significant’ (itself an interpretation derived from a 

hypothesis testing framework). The construction of a Bayesian model would reduce 

this problem, as coefficient estimates (and their associated credibility intervals or 

highest density intervals) could be interpreted directly as the best estimate of the true 

(uncertain) parameter values. Adopting a Bayesian approach may also reduce some of 

the issues regarding model convergence in the case of the PCR data, allowing 
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additional interaction effects to be investigated, and could also potentially allow 

diagnostic test limitations to be explicitly accounted for in the model. The deviance 

information criterion (DIC) (Spiegelhalter et al., 2002) is a Bayesian measure of model 

fit, and behaves similarly to the AIC (Burnham and Anderson, 2004), and Bayesian 

methods of model averaging are also available (Hoeting et al., 1999).  

Another useful model development would be to interpret the coproantigen ELISA data 

on a continuous scale rather than dichotomising these results. As described in chapter 

4, dichotomisation will invariably result in a loss of test sensitivity and/or specificity, 

and will also reduce the study power (Altman and Royston, 2006). Limitations in test 

sensitivity and specificity could lead to particular challenges for test interpretation in 

the face of a changing prevalence (as would be expected in the face of an effective 

control scheme). For example, an imperfect test specificity will result in a low positive 

predictive value if the prevalence is low (such as in the late stages of an effective 

control scheme) (Torgerson and Deplazes, 2009). As described earlier, another 

particular issue of relevance to echinococcosis is the fact that the test sensitivity is 

expected to be dependent upon the worm burdens amongst those animals tested. This 

means that if the burden of infection is low (again, as would be expected in the late 

stages of an effective control scheme), the test sensitivity will also be low. This could 

result in an overly optimistic interpretation of the effect of the control scheme, and 

therefore result in the premature cessation of control activities. A continuous outcome 

could be incorporated into the current model by modelling the outcome at the 

individual dog level, but maintaining the aggregated interpretation of risk factors 

(which would therefore avoid the need to match individual samples to individual 

dogs). Gamma and Inverse Gaussian regression models could be used to model OD 

data directly. Instead, if the output of the Bayesian mixture model described in 

chapter 4 was to be used rather than the OD, the exponent of the model scores could 

be used as an estimate of the worm burden in a sample, and negative binomial 

regression could be used. Finally, keeping with the theme of regression modelling, a 

variety of other outcomes could be investigated (such as reported praziquantel 
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administration, or dog culling) over the course of the study. These outputs could have 

direct benefits for the evaluation and improvement of the control scheme.. 

Finally, an alternative, novel, approach would be the investigation of “person-centred” 

latent variable methods such as Latent Class Growth Analysis (Nagin and Land, 1993), 

Growth Mixture Modelling (Muthén and Muthén, 2000; Muthén, 2002; Jung and 

Wickrama, 2008), or classification approaches for longitudinal data (Subtil et al., 2014) 

in order to identify different household-level test prevalence trajectories over time, 

which can then be characterised in relation to overall household-level risk factors over 

the course of the study. These could also be combined with mixture modelling 

approaches in a Bayesian framework in order to avoid the need to dichotomise the test 

results, as mentioned above (Menten et al., 2012). However, the use of these 

approaches may be constrained by the sample size – especially in the case of PCR data. 

6.5 Conclusions 

A mixed effects logistic regression was developed in order to investigate and quantify 

temporal and seasonal trends in test positivity using the coproantigen ELISA and three 

coproPCR tests. Interpretation was conducted at the household level, and identified a 

general decrease in test prevalence over time (although this was not significant in the 

case of E. granulosus G1 PCR results). Seasonal effects differed between the tests, with 

the coproantigen and E. multilocularis PCR tests suggesting lower prevalences in 

spring and higher prevalences in autumn. The reverse was found for E. granulosus 

(s.l.) PCR results (although again this was not significant in the case of E. granulosus 

G1). These differences may relate to seasonal variation in dog access to intermediate 

hosts. Whilst praziquantel use was not found to be significantly associated with a 

decrease in test prevalence, this likely results from a combination of information bias 

and ecological bias. There was some evidence that households containing young dogs 

had lower test prevalences, but that those containing smaller dogs had higher test 

prevalences. This may represent a combination of age- and feeding- related effects, 

and may be worthy of further study – for example, using non-categorised age and 

weight data at the individual dog level. A number of other possible variables of 
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interest are included in the model output, but are not discussed here due to space 

constraints. These would also be worthy of further study in order to better understand 

the effectiveness of the control scheme, and to possibly make some inference on 

parasite transmission dynamics. 

These results suggest that the praziquantel dosing scheme is currently effective, and 

would suggest that it should be continued, with appropriate surveillance, over the 

coming years. As deficiencies in praziquantel administration (especially during the 

summer months) were identified, further work may be beneficial in order to better 

identify an optimal dosing strategy, accounting for Echinococcus transmission 

dynamics and logistics. As described above, a recent study in Lithuania suggested that 

annual targeted dosing during peak transmission times was effective in reducing the 

prevalence in both definitive and intermediate hosts (Šarkūnas and Deplazes, 2014), 

and an aspect of this is explored in chapter 7. It remains important to adopt an 

integrated approach to control of echinococcosis in affected areas (Torgerson, 2003b; 

Craig and Larrieu, 2006; Giraudoux et al., 2007; Brisson et al., 2011; WHO, 2011), and 

therefore ongoing control and surveillance in domestic dogs should involve local 

communities and be balanced with dog management and control strategies, 

ultrasound surveillance and education campaigns amongst people, and consideration 

should be given to methods of diagnosis of intermediate host infection if possible. This 

will require international collaboration between groups and institutions in different 

countries, whilst ensuring that all results are disseminated to relevant stakeholders 

(Ito et al., 2003b). 
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Chapter 7: A mathematical modelling framework for the 

investigation of Echinococcus granulosus and 

Echinococcus multilocularis in a coendemic area. 

 

“Those who have knowledge, don't predict. Those who predict, don't have knowledge.”  

Lao-Tzu (老子) 
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7.1 Introduction 

7.1.1 Differential equation modelling 

Ordinary differential equations (ODEs) are a method of describing the relationship 

between the rate of change of a ‘dependent’ variable and an independent variable 

(commonly, time). The solution of a differential equation will give an estimate of the 

value of the dependent variable for any value of the independent variable (that is, the 

solution is a function of the dependent variable in terms of the independent variable). 

Since the transmission of infectious agents can be considered in the form of a rate (the 

‘force of infection’), and as the dynamics of infection over a time period is often of 

particular interest, differential equations offer a useful framework for the modelling of 

infection processes (Kermack and McKendrick, 1927). A common strategy for the 

application of differential equations to infectious agents is to create a compartmental 

model, which represents the numbers of individuals in a population in different 

epidemiological states. For example, individuals may be classified as “susceptible” to 

infection, or “infected”. The rate at which individuals move between these two 

compartments is determined by the force of infection and (in the case of infections 

which are not lifelong) the rate of recovery. This framework can be expanded in order 

to model multiple different compartments (for example, other epidemiological 

statuses or demographic factors), and therefore multiple different differential 

equations, in a single system.  

Other developments from the basic model framework are stochastic models (which 

incorporate uncertainty and/or variability in the rates of transition between 

compartments), and spatial and metapopulation models (which explicitly model the 

spatial location/movement of hosts). The optimal choice of model framework will 

depend upon the system under study and the particular aims of the modelling process. 

It is important to note that no model will exactly represent the system under study, 

and it is unlikely that any individual model will be a ‘perfect’ model for all purposes. 

Instead, models can be developed to answer particular questions, and can be very 

useful (indeed, indispensable) for gaining a better understanding of otherwise 
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impenetrable transmission ecosystems; for making predictions of transmission 

dynamics over time and in the face of control schemes; and for relaying information to 

stakeholders. Mathematical models can also be useful in devising appropriate 

approaches to surveillance (Willeberg et al., 2011), and have been suggested to be a 

useful tool for both the simulation of possible control schemes, and for the 

epidemiological and economic evaluation of these as they progress (Basáñez et al., 

2012a; Boatin et al., 2012), including for Echinococcus spp (Roberts and Aubert, 1995; 

Gemmell et al., 2001; Torgerson, 2006a; Kato et al., 2010). 

7.1.2 Modelling macroparasites 

The history of the application of mathematical models to macroparasites (i.e. those 

parasites which generally do not multiply within the host) has been described in a 

number of publications (Anderson and May, 1985, 1991d; Basáñez et al., 2012a), but will 

be briefly covered here. Early work was conducted by Kostitzin in 1934 who developed 

a model with each different worm burden represented as a compartment. In the 1960s, 

Hairston developed models to estimate transmission parameters for helminth 

infections using catalytic modelling approaches (developed by Muench (1959)), and 

developed the concept of 𝑅0  for macroparasites (Hairston, 1962, 1965). Further 

mathematical modelling work was conducted by Macdonald (Macdonald, 1965), who 

developed a model of the mean worm burden (MWB) of schistosome worms in human 

hosts. Further investigation of overdispersion and host-parasite relationships was 

conducted by Crofton (Crofton, 1971b), and subsequently by May (May, 1977). These 

latter models accounted for both dynamic changes in the host population and in the 

parasite population within these hosts, and provided foundation for further work on 

the modelling of  macroparasites (Anderson and May, 1978; May and Anderson, 1978).  

More recently, spatially explicit mathematical models have been developed, which 

may better represent the considerable impact of spatial heterogeneities on parasite 

transmission (Morgan et al., 2004). 

Mathematical modelling of macroparasites, including Echinococcus spp, is 

complicated by a number of factors: 
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- The complex lifecycle, involving different host species at different stages of 

development. Whereas domestic dog management is of particular important in 

both cases of infection, E. granulosus is also affected by livestock management 

practices, and E. multilocularis by the presence of small mammal communities 

(which in turn are affected by the particular environment in question: with 

both spatial and temporal/seasonal issues to consider). Wild canids such as 

foxes and wolves may also play a role in transmission dynamics and stability, 

despite not necessarily having a large effect on the risk of human infection. 

- Difficulties in diagnosing infection in intermediate hosts (including in 

‘dead-end’ intermediate hosts such as humans), as the cysts are slow growing, 

and serological tests may not detect early infections. Although the availability 

of portable ultrasound machines has greatly improved the ability to detect 

human infection (Macpherson et al., 2003), this is predominantly only useful 

for the detection of liver cysts rather than those in other locations such as the 

lung. 

- The need to model worm burdens within individuals explicitly in most cases. 

The numbers of parasites in each infected definitive or intermediate host is 

relevant to transmission (with possible effects on egg output, risk of host 

mortality, immune response, and parasite mortality, amongst others), and 

increases in burden generally occur only through reinfection (Heesterbeek and 

Roberts, 1995), rather than during multiplication within the host (as is the case 

with viruses and bacteria). This means that the simple compartmental models 

used for many microparasitic infections (such as viruses) are no longer 

appropriate (Anderson and May, 1991c).  

- Clustering/aggregation of infection in both definitive and intermediate hosts: 

with most individuals having relatively low numbers of parasites, but some 

having very large numbers (Crofton, 1971a; Roberts et al., 1986; Anderson and 

May, 1991b; Hansen et al., 2004). This overdispersion has been described as ‘one 

of the most important features of the epidemiology of helminth parasites’ 

(Anderson and May, 1991a; Poulin, 2007), and is likely to have important 
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repercussions for parasite stability (Anderson and May, 1978; May and 

Anderson, 1978; Adler and Kretzschmar, 1992; Kretzschmar and Adler, 1993). 

- Relatively short-lived immunity, which is generally lost following loss of the 

parasites. 

Some of the more general difficulties associated with the attempted mathematical 

modelling of macroparasites have been addressed in a recent paper (Morgan et al., 

2004). Those issues which are suggested to be addressed include the biology, 

abundance and movement of host species; climatic issues; spatial and environmental 

issues; and parasite aggregation. 

7.1.3 Mathematical modelling of Echinococcus spp 

A number of approaches to modelling the dynamics of Echinococcus transmission 

have been described, many of which have been detailed in a recent review (Atkinson 

et al., 2013) and in chapter 1 of the current thesis, and therefore will not be described in 

detail again. Although most models are compartmental models, one model of 

particular interest (Takumi and van der Giessen, 2005) explicitly modelled parasite 

biomass within these compartments, rather than focussing primarily on the host 

status. This model was selected for further development in the current study primarily 

because it avoided classifying definitive (and intermediate) host infection status in a 

dichotomous fashion (which, it is argued, is not the best approach for assessing the 

level of infection with overdispersed parasites such as Echinococcus – see chapter 4 

and Hofer et al., 2000). As environmental contamination with eggs was also explicitly 

modelled, the framework was also considered to be amenable to development in order 

to investigate the potential risk of human infection, which is often overlooked when 

modelling echinococcosis (Takumi et al., 2012; Atkinson et al., 2013). Finally, this 

framework explicitly incorporates the lag period between infection and infectiousness 

in intermediate and definitive hosts. This is of particular importance in the case of 

intermediate hosts, where this lag period can be months or years, and will have an 

impact upon control strategies (since control focussed on treatment of infection in 

dogs will generally need to be maintained for long periods before infection in 
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intermediate hosts is reduced). As a particular aim of the current modelling strategy 

was to evaluate the effect of praziquantel dosing on the transmission dynamics of 

Echinococcus spp, this was considered a useful feature of the model. 

7.1.4 Model context 

The current study aimed to develop the Takumi model (which focussed on the sylvatic 

lifecycle of E. multilocularis alone) in order to incorporate domestic dogs and 

therefore E. granulosus (sensu lato) and E. multilocularis infection in this host. A 

particular focus was placed on the investigation of trends in domestic dog infection 

and egg contamination, and on seasonality of transmission in the absence of control 

and temporal trends in the presence of praziquantel dosing. Although minimal data 

were available to parameterise the current model, it is hoped that further data 

collection will improve the model parameterisation (and that the model itself may be 

useful in guiding this process).  The possibility of model parameterisation using canine 

Echinococcus coproantigen ELISA data is briefly explored, but this is largely an area 

for further exploration. As the coproELISA test is logistically easy and cheap to 

conduct and can be used on old faecal samples collected from the ground, it is 

commonly used for the evaluation of the progress of echinococcosis control schemes 

(such as that described in the previous chapter). The incorporation of data such as this 

into a mathematical model could offer considerable benefits for the evaluation of the 

control scheme, the planning of surveillance efforts, and in improving our 

understanding of the dynamics of Echinococcus transmission.  

7.2 Materials and Methods 

7.2.1 Setting of model 

A decision was made to base the mathematical model on a 1km2 area centred on a 

rural village in the Alay valley of Kyrgyzstan. The selected village was Taldu-Suu, 

which was chosen as it was one of the two primary study villages (see chapters 1 and 

2), and was considered more representative of villages in the study area than Sary-

Mogol. A map of the village, with this 1km2 spatial frame of reference, is shown in 
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figure 7.1. The residential part of the village itself represents approximately 500m2 of 

the 1km2 area, with the remainder represented by degraded pasture (used for grazing 

of livestock and horses) to the south/east and the foothills of the Alay mountains to 

the north/east. 

 

Figure 7.1. Geographical context for the mathematical model. The village of Taldu-Suu is shown 

within a 1km
2
 box. The map on the left shows the full surrounding area, and that on the right 

just the area of interest. Image taken from Google Earth (satellite image taken 20
th

 Jan, 2012 

from SPOT 5 satellite) 

7.2.2 Model structure 

Full details of the original model structure are available in Takumi and van der 

Giessen (2005), and therefore most attention will be focussed here on additions and 

changes made to this structure. The first issue was adjusting the model in order to 

model infection in domestic dogs, and to incorporate E. granulosus (s.l.) as well as 

E. multilocularis. The original E. multilocularis model structure was duplicated in 

order to incorporate domestic dogs as an alternative definitive host, and a cycle 

including ruminants as intermediate hosts and domestic dogs as definitive hosts was 

added for E. granulosus (s.l.). The domestic dog cycle of E. multilocularis was identical 

in structure to the original fox cycle, but the E. granulosus cycle was adjusted slightly 
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to remove direct predation by dogs on ruminants (which was not commonly observed 

in the communities of interest). Instead, infection of dogs with E. granulosus was 

presumed to take place through scavenging of dead animals, or through feeding of 

ruminant offal to dogs following livestock slaughter (fig 7.2). In order to account for 

the differential effects of praziquantel dosing on the transmission dynamics of 

E. granulosus and E. multilocularis in dogs (potentially due to the reservoir of the 

latter in foxes), each of these species were modelled separately within this host. The 

resultant model compartments were: 

- Dogs: 

o mean E. granulosus worm burden amongst dogs in 1km2 area 

o mean E. multilocularis worm burden amongst dogs in 1km2 area 

- Foxes: 

o mean E. multilocularis worm burden amongst foxes in 1km2 area 

- Rodents: 

o mean E. multilocularis protoscolex burden amongst rodents in 1km2 area 

- Ruminants: 

o mean E. granulosus protoscolex burden amongst ruminants in 1km2 area 

- Environment: 

o mean number of E. granulosus eggs per km2 

o mean number of E. multilocularis eggs per km2 

Any possible sylvatic cycle of E. granulosus (for example, involving wolves and wild 

ruminants) was ignored due to the lack of available data on this existence of this cycle 

in the study area. However, if evidence of this became available, the model structure 

could be easily modified. 

A crude attempt to incorporate density dependence in the mean worm and mean 

protoscolex burdens was made. Although both worm numbers and protoscolex 

numbers within the host can become very high (thousands to tens of thousands), it 

would be expected that the mean of these estimates throughout the population as a 

whole would gradually reach a plateau. In order to not overcomplicate the current 

model, a logistic growth process was attached to the variables describing the mean 
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worm and mean protoscolex burden. This was repeated for both E. granulosus and 

E. multilocularis, assuming no effect of either of these on the other.  

The model also differed from the original model in that removal of intermediate hosts 

was not assumed to be a completely random process throughout the whole 

population. Rather, the mean worm/protoscolex burden of animals being removed 

was adjusted using a scaling factor, 𝜅. In the current model, this parameter was used 

to account for the fact that intermediate hosts removed from the population are more 

likely to be older (and therefore more likely to be infected), although it could also be 

used to represent differential mortality due to infection (Poulin, 1995; Vervaeke et al., 

2006). Parameterisation was based upon crude estimates of age-related differences in 

the probability of intermediate host infection (Torgerson et al., 2009a; Burlet et al., 

2011). 

For ease of interpretation, the parameters relating to proglottid production (per worm 

per day) and mean egg burden (per proglottid) included in the original model were 

consolidated, in order to estimate the rate of egg production per worm per day 

directly. It has been suggested that most eggs are liberated from proglottids prior to 

excretion (Wachira et al., 1991), which makes this simplification reasonable. It was also 

assumed that removal of eggs from pasture due to ingestion by intermediate hosts, 

despite being included in the original model, had a minimal effect on the total egg 

contamination, and so this process was removed from the model. 
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Figure 7.2. Conceptual structure of model. Parameters are described in table 7.4. Gm: 

E. multilocularis eggs on pasture; Gc: E. granulosus eggs on pasture; Lv: E. multilocularis 

protoscolices in small rodents; Ls: E. granulosus protoscolices in ruminants; Mmf: Adult 

E. multilocularis worms in foxes; Mmd: Adult E. multilocularis worms in dogs; Mcd: Adult 

E. granulosus worms in dogs. 
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7.2.3 Differential equations 

A schematic diagram of the basic model structure is shown in figure 7.2. The 

differential equations for the model are as follows: 

Eggs: 

𝑑𝐺𝑚

𝑑𝑡
= 𝜆𝑚𝑑𝑛𝑑𝑀𝑚𝑑 + 𝜆𝑚𝑓𝑛𝑓𝑀𝑚𝑓 −  𝜇𝑔𝐺𝑚 

𝑑𝐺𝑐

𝑑𝑡
= 𝜆𝑐𝑑𝑛𝑑𝑀𝑐𝑑 − 𝜇𝑔𝐺𝑐 

 

Larvae (protoscolices): 

𝑑𝐿𝑣

𝑑𝑡
= 𝛽𝑣𝑔𝜋𝑣𝑔𝜎𝑣𝐺𝑚(𝑡−𝜏𝑣) (1 −

𝐿𝑣
𝐾𝑣

⁄ ) − 𝜇𝑣𝜅𝑣𝐿𝑣 − 𝛽𝑑𝑣𝑛𝑑𝜅𝑣𝑝𝐿𝑣 − 𝛽𝑓𝑣𝑛𝑓𝜅𝑣𝑝𝐿𝑣 

     

𝑑𝐿𝑠

𝑑𝑡
= 𝛽𝑠𝑔𝜋𝑠𝑔𝜎𝑠𝐺𝑚(𝑡−𝜏𝑠) (1 −

𝐿𝑠
𝐾𝑠

⁄ ) − (𝜇𝑠𝜅𝑠 + 𝜇𝑠�̃�𝑠)𝐿𝑠 

Adult worms: 

𝑑𝑀𝑚𝑑

𝑑𝑡
= 𝛽𝑑𝑣𝜋𝑑𝑣𝑛𝑣𝜅𝑣𝑝𝐿𝑣(𝑡−𝜏𝑚𝑑) (1 −

𝑀𝑚𝑑
𝐾𝑚𝑑

⁄ ) − 𝜇𝑑𝜅𝑑𝑀𝑚𝑑 − 𝜇𝑚𝑑𝑀𝑚𝑑 

𝑑𝑀𝑐𝑑

𝑑𝑡
= (𝛽𝑑𝑠𝜇𝑠𝜅𝑠 + 𝛽𝑑𝑠𝜇𝑠�̃�𝑠)𝜋𝑑𝑠𝑛𝑠𝐿𝑠(𝑡−𝜏𝑐𝑑) (1 −

𝑀𝑐𝑑
𝐾𝑐𝑑

⁄ ) − 𝜇𝑑𝜅𝑑𝑀𝑐𝑑 − 𝜇𝑐𝑑𝑀𝑐𝑑 

𝑑𝑀𝑚𝑓

𝑑𝑡
= 𝛽𝑓𝑣𝜋𝑓𝑣𝑛𝑣𝜅𝑣𝑝𝐿𝑣(𝑡−𝜏𝑚𝑓) (1 −

𝑀𝑚𝑓
𝐾𝑚𝑓

⁄ ) − 𝜇𝑓𝜅𝑓𝑀𝑚𝑓 − 𝜇𝑚𝑓𝑀𝑚𝑓 
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7.2.4 Parameterisation 

Model parameters are listed in table 7.4. The model was largely parameterised directly 

using published data, data collected from the Alay valley, and personal observation. 

The transmission parameters (𝛽 ) were parameterised using data from force of 

infection models in Kyrgyzstan and Switzerland, and their calculation are described 

below. 

The rate of ingestion of intermediate hosts by dogs and foxes was not known. 

However, the rate of infection of free-roaming domestic dogs in Naryn province, 

Kyrgyzstan, has been estimated at around 1.1 for E. multilocularis and 0.3 for 

E. granulosus (Ziadinov et al., 2008). This can be used to broadly estimate the 

probability of ingestion of a suitable intermediate host (𝛽𝑑𝑣). If it is assumed that 

multiple infections do not occur (due to the low infection pressure on a daily basis per 

individual animal), and that all animals in the population at the steady state are 

infected (which, although epidemiologically implausible, is the basis of the model 

structure used here), the daily rate of infection can be estimated as the product of the 

rate of ingestion, the probability of infection given ingestion, and the number of 

intermediate hosts. For E. multilocularis, this can be approximated as 𝛽𝑑𝑣𝜋𝑑𝑣𝑛𝑣, and 

for E. granulosus, this will be (𝛽𝑑𝑠𝜇𝑠 + 𝛽𝑑𝑠𝜇𝑠)𝜋𝑑𝑠𝑛𝑠. These can therefore be used to 

estimate the transmission parameters, based on the estimates mentioned before 

(Ziadinov et al., 2008): 

𝛽𝑑𝑣𝜋𝑑𝑣𝑛𝑣 = 1.1
365⁄  

𝛽𝑑𝑣 =
1.1

365⁄

𝜋𝑑𝑣𝑛𝑣
= 6.03 × 10−6 

If it is assumed that 5% of slaughtered ruminants are fed to dogs (see section 7.4.3), 

the proportion of ruminants which die of natural causes and are scavenged by dogs 

can be estimated: 
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(𝛽𝑑𝑠𝜇𝑠 + 𝛽𝑑𝑠𝜇𝑠)𝜋𝑑𝑠𝑛𝑠 = 0.3
365⁄  

𝛽𝑑𝑠𝜇𝑠 + 𝛽𝑑𝑠𝜇𝑠 =
0.3

365⁄

𝜋𝑑𝑠𝑛𝑠
 

𝛽𝑑𝑠 =

(
0.3

365⁄

𝜋𝑑𝑠𝑛𝑠
− 𝛽𝑑𝑠𝜇𝑠)

𝜇𝑠
= 0.05 

 

A study in Naryn province of Kyrgyzstan found high levels of infection of red foxes 

with E. multilocularis, with an estimated prevalence of 64% and a mean burden of 

8,669 worms (Ziadinov et al., 2010), although the force of infection was not estimated 

in this study. Another study using data from Switzerland, where the estimated 

prevalence was 66% (in periurban areas) indicated a median force of infection of 3.8 

infections/year (Lewis et al., 2014). Assuming that due to the similar prevalences, this 

is broadly representative of the Kyrgyz situation, an estimate can be made of the rate 

of intermediate host ingestion using the same strategy described above: 

𝛽𝑓𝑣𝜋𝑓𝑣𝑛𝑣 = 3.8
365⁄  

𝛽𝑓𝑣 =
3.8

365⁄

𝜋𝑓𝑣𝑛𝑣
= 5.21 × 10−6 

Estimation of the rate of egg ingestion was based upon the approach described in 

(Takumi and van der Giessen, 2005), but incorporating the average number of 

protoscolices per egg ingested. If it can be assumed that the current prevalence of 

echinococcosis in intermediate hosts is at a steady state, then it would be expected 

that the number of new protoscolices is equal to the number of lost protoscolices (in 

the case of Echinococcus, this only takes place through death). Therefore, for 

E. multilocularis: 
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𝛽𝑣𝑔𝜋𝑣𝑔𝜎𝑣𝑛𝑣 ≈ (𝛽𝑑𝑣𝑛𝑑 + 𝛽𝑓𝑣𝑛𝑓 + 𝜇𝑣) 

𝛽𝑣𝑔 ≈
(𝛽𝑑𝑣𝑛𝑑 + 𝛽𝑓𝑣𝑛𝑓 + 𝜇𝑣)

𝜋𝑣𝑔𝜎𝑣𝑛𝑣
= 1.45 × 10−8 

And for E. granulosus: 

𝛽𝑠𝑔𝜋𝑠𝑔𝜎𝑠𝑛𝑠 ≈ (𝜇𝑠 + 𝜇𝑠) 

𝛽𝑠𝑔 ≈
(𝜇𝑠 + 𝜇𝑠)

𝜋𝑠𝑔𝜎𝑠𝑛𝑠
= 1.04 × 10−6 

Seasonality in egg survival (table 7.1) was modelled based upon data obtained from 

Karakenja in Tajikistan (figure 7.3) (weatherbase.com, 2015), and using the formula in 

Ishikawa et al. (2003): 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = exp (−0.135 × |𝑡𝑒𝑚𝑝| − 43.49) 

 

 

Table 7.1. Average monthly temperatures in Karakenja, Tajikistan and associated predicted 
durations of egg survival. 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Temp (°c) -11 -9 -2.2 5.5 9.5 13.8 17.0 16.4 11.6 5.2 -1.4 -7.1 
Egg survival 

(days) 
80 105 264 169 98 55 36 39 74 176 294 136 
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Figure 7.3. Location of Karakenja in Tajikistan (yellow circle), in relation to study villages (red circles). Taldu-

Suu is the easternmost study village. 

Fox population densities were modelled assuming a litter of five cubs per breeding 

pair of foxes emerge in June and disperse in October. For domestic small ruminants, 

whilst seasonal breeding would be expected to be associated with an increase in 

population size in the spring months, this also coincided with a general movement to 

Jailoo. Therefore, the population density within the village was assumed to remain 

broadly stable throughout the year. Rodent population densities were assumed to 

halve in the early spring (as young disperse), and then increase in the summer and 

early autumn, according to a study of the northern mole vole, Ellobius talpinus 

(Evdokimov, 2013). Although domestic dogs are not seasonal breeders, many dogs left 

the village in the summer months to travel to Jailoo. Based upon personal observation 

and estimates of dog faecal densities in the spring and autumn months (van Kesteren 

et al., 2013), the population was presumed to halve during this time (table 7.2). 
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Table 7.2. Seasonal population density parameters used in the model. Variables are detailed in 
table 7.4. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rodent pop 𝑛𝑣 
𝑛𝑣

2⁄  2𝑛𝑣 𝑛𝑣 

Ruminant 

pop 
𝑛𝑠 

Fox pop 𝑛𝑓 𝑛𝑓 + (
5𝑛𝑓

2
⁄ ) 𝑛𝑓 

Dog pop 𝑛𝑑 
𝑛𝑑

2⁄  𝑛𝑑 

Relative changes in the availability of rodents and (dead) ruminants for ingestion by 

definitive hosts were modelled by halving the beta parameters indicating reliance on 

these intermediate hosts for food. Therefore, the rate of ingestion of rodents reduced 

during the winter months (when rodents would be expected to be difficult to find due 

to snow cover (Heptner and Naumov, 1992)). Mortality amongst intermediate hosts 

was also modelled seasonally, assuming that mortality and livestock slaughter 

increased during the harsh winter months. Ruminant access by dogs would therefore 

be expected to increase in these months (table 7.3). 

Table 7.3. Seasonal mortality and prey preference parameters in model 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Rodent 

mortality 
2𝜇𝑣 

𝜇𝑣
2⁄  2𝜇𝑣 

Reliance on 

rodents 

𝛽𝑓𝑣
2

⁄  𝛽𝑓𝑣 
𝛽𝑓𝑣

2
⁄  

𝛽𝑑𝑣
2⁄  𝛽𝑑𝑣 

𝛽𝑑𝑣
2⁄  

Ruminant 

mortality 
2𝜇𝑠 

𝜇𝑠
2⁄  2𝜇𝑠 

Ruminant 

slaughter 
2𝜇𝑠 

𝜇𝑠
2⁄  2𝜇𝑠 

 

Due to the exploratory nature of the current study, and the very large numbers of 

parameters (many of which are not based on firm field data), the only form of 
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sensitivity analysis conducted was on the effect of removal of seasonality from the 

seasonal parameters. This was achieved by setting the values to 𝜇𝑣 , 

𝛽𝑓𝑣, 𝛽𝑑𝑣, 𝜇𝑠, and 𝜇𝑠 (see table 7.4 for values). 
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Table 7.4. Parameters included in the model 

Parameter Description Value Reference 

𝜇𝑓 Rate of fox death 0.0022 foxes day-1 
(Takumi and van der 

Giessen, 2005) 

𝜅𝑓 
Relative mortality of 

infected foxes 
1.0  

𝜇𝑑 Rate of dog death 1/(5*365) dogs day-1 
[personal 

observation] 

𝜅𝑑 
Relative mortality of 

infected dogs 
1.0  

𝜇𝑚𝑓 
Rate of adult E.m 

death in foxes 
1/30 worms day-1 (Kapel et al., 2006) 

𝜇𝑚𝑑 
Rate of adult E.m 

death in dogs 

1/((365/3.4)-30) worms 

day-1 

(Ziadinov et al., 

2008) 

𝜇𝑐𝑑 
Rate of adult E.g 

death in dogs 

1/((365/1.3)-40) worms 

day-1 

(Ziadinov et al., 

2008) 

𝜇𝑣 Rate of rodent death 

Seasonal variable. 

Estimates based on 

0.0055 rodents day-1 

(Roberts and Aubert, 

1995) 

𝜅𝑣 
Relative mortality of 

infected rodents 
2.0 (Burlet et al., 2011) 

𝜇𝑠 
Rate of natural 

ruminant death 

Seasonal variable. 

Baseline 1/(5*365) 

ruminants day-1 

(Torgerson et al., 

2009a) 

𝜇𝑠 
Rate of ruminant 

slaughter 

Seasonal variable. 

Baseline 4/(100*365) 

ruminants day-1 

 

𝜅𝑠 

Relative natural 

mortality of infected 

ruminants 

2.0 
(Torgerson et al., 

2009a) 
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Parameter Description Value Reference 

�̃�𝑠 

Relative rate of 

slaughter of infected 

ruminants 

2.0 
(Torgerson et al., 

2009a) 

𝜇𝑔𝑚 
Rate of E.m egg death 

on pasture 

Seasonal variable. 

Estimate based upon 

formula given in 

(Ishikawa et al., 2003) 

Substantiated by 

(Veit et al., 1995) 

𝜇𝑔𝑐 
Rate of E.g egg death 

on pasture 

Seasonal variable. 

Estimate based upon 

formula given in 

(Ishikawa et al., 2003) 

Substantiated by 

(Wachira et al., 1991) 

𝜎𝑣 

Mean number of 

protoscolices in 

rodents resulting 

from infection with 

one E.m egg 

926,239/81 = 11,435 

protoscolices 
(Stieger et al., 2002)  

𝜎𝑠 

Mean number of 

protoscolices in 

ruminants resulting 

from infection with 

one E.g egg 

437 protoscolices 
(Torgerson et al., 

2009a) 

𝜋𝑓𝑣 

Proportion of rodent 

protoscolices 

expected to develop 

into adult worms after 

ingestion by foxes 

0.4 
(Takumi and van der 

Giessen, 2005) 

𝜋𝑑𝑣 

Proportion of rodent 

protoscolices 

expected to develop 

into adult worms after 

ingestion by dogs 

0.1 (Kapel et al., 2006) 
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Parameter Description Value Reference 

𝜋𝑑𝑠 

Proportion of 

ruminant 

protoscolices 

expected to develop 

into adult worms after 

ingestion by dogs 

0.05 
(Gemmell et al., 

1990) 

𝜋𝑣𝑔 

Proportion of E.m 

eggs expected to 

result in infection in 

rodents 

0.007 
(Takumi and van der 

Giessen, 2005) 

𝜋𝑠𝑔 

Proportion of E.g eggs 

expected to result in 

infection in 

ruminants 

0.003 
(Gemmell et al., 

1990) 

𝜆𝑚𝑓 

Rate of egg release 

from adult E.m in 

foxes 

0.14 proglottid day-1 x 

300 eggs proglottid-1 = 42 

eggs worm-1 day-1 

(Matsudo et al., 2003; 

Hansen et al., 2003; 

Takumi and van der 

Giessen, 2005) 

𝜆𝑚𝑑 

Rate of egg release 

from adult E.m in 

dogs 

42 eggs worm-1 day-1 

Assumed to be 

comparable to other 

estimates (see 

discussion) 

𝜆𝑐𝑑 
Rate of egg release 

from adult E.g in dogs 
42 eggs worm-1 day-1 

(Gemmell et al., 

1986c; Torgerson and 

Heath, 2003) 

𝛽𝑓𝑣 

Proportion of total 

rodents in 1km2 area 

ingested by foxes 

Seasonal variable. 

Baseline estimated as 

5.2x10-6 fox-1 day-1 

(Ziadinov et al., 2010; 

Lewis et al., 2014) 

𝛽𝑑𝑣 

Proportion of total 

rodents in 1km2 area 

ingested by dogs 

Seasonal variable. 

Baseline estimated 

6.0x10-6 fox-1 day-1  

(Ziadinov et al., 

2008) 
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Parameter Description Value Reference 

𝜅𝑣𝑝 

Relative predation 

risk of infected 

rodents 

2.0  

𝛽𝑑𝑠 

Proportion of total 

dead ruminants in 

1km2 area scavenged 

by dogs 

0.02  

𝛽𝑑𝑠 

Proportion of total 

slaughtered 

ruminants in 1km2 

area fed to dogs 

0.05 
[personal 

observation] 

𝛽𝑣𝑔 

Proportion of total E. 

m eggs in 1km2 area 

ingested by rodents 

1.45 x 10-8 rodent-1 day-1 

Used approach based 

upon (Takumi and 

van der Giessen, 

2005) 

𝛽𝑠𝑔 

Proportion of total E. 

g eggs in 1km2 area 

ingested by 

ruminants 

1.05 x 10-6 ruminant-1 day-

1 

Used approach based 

upon (Takumi and 

van der Giessen, 

2005) 

𝑛𝑓 
Mean fox population 

density 
2 fox km-2 

Based upon estimates 

in (Takumi and van 

der Giessen, 2005) 

𝑛𝑑 
Mean dog population 

density 

Seasonal variable. 

Estimates based upon 

baseline of 100 dogs km-2 

[personal 

observation / (van 

Kesteren et al., 2013)] 

𝑛𝑣 
Mean rodent 

population density 
5000 rodents km-2 

[personal 

observation] 

𝑛𝑠 
Mean ruminant 

population density 
500 ruminants km-2 

[personal 

observation] 

𝜏𝑚𝑓 
E.m prepatent period 

in foxes 
30 days (Kapel et al., 2006) 
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Parameter Description Value Reference 

𝜏𝑚𝑑 
E.m prepatent period 

in dogs 
30 days (Kapel et al., 2006) 

𝜏𝑐𝑑 
E.g prepatent period 

in dogs 
42 days 

(Gemmell et al., 

1986c) 

𝜏𝑣 

Maturation time of 

E.m protoscolices in 

rodents 

112 days 
(Matsumoto et al., 

1998) 

𝜏𝑠 

Maturation time of 

E.g protoscolices in 

ruminants 

(365*2) days 
(Gemmell et al., 

1986c) 

𝐾𝑚𝑓 

Mean E.m burden at 

‘carrying capacity’ in 

foxes 

16000 worms (Kapel et al., 2006) 

𝐾𝑚𝑑 

Mean E.m burden at 

‘carrying capacity’ in 

dogs 

2534 worms (Kapel et al., 2006) 

𝐾𝑐𝑑 

Mean E.g burden at 

‘carrying capacity’ in 

dogs 

2500 worms 
(Torgerson and 

Heath, 2003) 

𝐾𝑣 

Mean protoscolex 

burden at ‘carrying 

capacity’ in rodents 

244400 protoscolices (Stieger et al., 2002) 

𝐾𝑠 

Mean protoscolex 

burden at ‘carrying 

capacity’ in ruminants 

9774 protoscolices 
(Torgerson et al., 

2009a) 
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7.2.5 Model building 

The model was created using the “deSolve” package (Soetaert et al., 2010) in R version 

3.1.1 (R Development Core Team, 2014). Model code is shown in the appendix (A6). 

The lag period between infection and infectiousness in intermediate hosts was 

modelled using the “lagvalue” function, and seasonal variation was modelled by 

specifying trends by month (see table 7.2) and then using the “approxfun” command 

to approximate this trend in a continuous nature for incorporation into the model 

code. The model was initially seeded with a mean worm burden of 100 E. granulosus 

and 100 E. multilocularis adult worms amongst dogs, and was run with a timestep of 

one day for a total period of 100 years. 

7.2.6 Simulation of control strategies 

Dog dosing interventions were added to the system once a steady state was reached 

(10 years into the simulation), and were modelled by directly changing the value of the 

mean burden in domestic dogs at particular time points. It was assumed that 

praziquantel efficacy was 100%, and that the only factor therefore affecting the 

resultant mean burden was the praziquantel coverage (the proportion of domestic 

dogs treated), 𝜌. The resultant mean worm burden after dosing was estimated as the 

product of the original mean worm burden and the difference between unity and the 

proportion of praziquantel coverage: 

𝑀𝑊𝐵𝑡+1 = 𝑀𝑊𝐵𝑡 ∙ (1 − 𝜌) 

For the purposes of the current study, complete praziquantel coverage (𝜌 = 1) was 

assumed. Although praziquantel has no residual effect, the number of adult worms 

following administration would be expected to remain at zero until at least the 

prepatent period of the worm had passed. This lag period was considered to be of 

particular relevance to egg contamination, and was incorporated in the current model 

by fixing the MWB in dogs to zero for each day after initial dosing until the prepatent 

period of the worm had passed. Following this time, reinfection took place according 

to the status of intermediate hosts at the time of praziquantel dosing (accounting for 
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the temporal lag in development of patency) – representing the maturation of any 

protoscolices ingested immediately after dosing.  

A number of control strategies based upon praziquantel dosing of dogs were briefly 

investigated. Firstly, a variety of frequencies of dosing were simulated. These were 

daily (i.e. the complete removal of all canine infection); monthly; every two, three, and 

six months; and once yearly. Using the current parameters for prepatent period, there 

was no difference between daily and monthly dosing, and therefore the daily dosing 

effect was no longer specifically investigated here (although it would provide a useful 

baseline for investigation of stochastic models, where even monthly dosing may not 

completely prevent reinfection due to stochasticity in the prepatent period – discussed 

later). Most control schemes are based upon routine, regular dosing throughout the 

year. In the Alay valley, the planned frequency of dosing was every three months, 

although the most common reported frequency of dosing was twice annually (personal 

observation).  

Due to the inclusion of a number of seasonal parameters in the model, seasonal-based 

targeted dosing strategies were investigated, in the hope that these may offer a more 

economically and logistically viable control strategy. The timing of this dosing was 

selected using a manual stepwise process. The effect of a single praziquantel treatment 

of all dogs in the community was first investigated by simulating this dosing strategy 

in each month. The effect of each of these timed doses was evaluated by estimating 

the average mean worm burden and average egg contamination for each species of 

Echinococcus over a period of one year. The difference between each of these 

estimates and that predicted in the absence of any control is shown figure 7.4. Since 

reduction in egg output would reduce the risk of human infection, and since alveolar 

echinococcosis (caused by E. multilocularis) appears to be the predominant form of 

human echinococcosis in the Alay valley (Paul Torgerson, personal communication), a 

decision was made to prioritise reduction in E. multilocularis egg output in the current 

strategy (top left graph in figure 7.4). This suggested that a single dose in October 

maximised the reduction in E. multilocularis egg contamination. 
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Figure 7.4. Reduction in average daily egg contamination (top) or mean worm burden (bottom) 

for E. multilocularis (left) and E. granulosus (right) over a year with different months of 

administration of a single dose of praziquantel to every member of the dog population 

A planned single dosing event in October was then simulated and the process of 

selecting a second month was repeated as before. The October dosing strategy was 

used as the comparison minimising egg contamination. This approach identified 

January as the optimal second month, and the process was repeated again twice more 

– identifying August as the optimal third month, and September as the optimal fourth 

month. The dynamics of infection for these four targeted interventions (one, two, 

three, and four temporally targeted doses annually) were then directly compared with 

the dynamics in the absence of control and in the presence of regular dosing one, two, 

three and four times annually. 
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7.2.7 Interpretation of results 

The model output was investigated in three ways. Firstly, general temporal trends and 

relationships between the different life stages of E. granulosus and E. multilocularis 

were investigated by scaling the burden estimates in each host (including the 

environment, in the case of eggs) as a proportion of the maximal burden (as was 

conducted in Takumi and van der Giessen, 2005). This allowed graphs of the different 

life stages to be overlaid, and facilitated visual identification of the sequential stages of 

infection in the lifecycle. Secondly, the predicted mean burden estimates in each host 

over time were estimated directly for each species of Echinococcus, in the presence 

and absence of control. For each of these approaches, the dynamics were investigated 

for two time periods for each of the control and non-control scenarios: the period 

immediately after the initial ‘seeding’ of a single infected dog into the population (or 

the initial period after commencement of the intervention); and once the ‘steady state’ 

had been reached (10 years after initial seeding, or 10 years after commencement of the 

control scheme). Finally, the relative effect of the control scheme on model 

predictions was estimated by dividing the model outputs under control by the 

maximal burden estimate in the absence of control). 

7.3 Results 

The relative dynamics of infection for the different species are shown in figure 7.5, 

which have been standardised to the maximal mean burden/density of each 

compartment for ease of visualisation. The initial trends in absolute mean 

burden/density following initial seeding are shown in figure 7.6, and seasonal trends 

in the steady state (10 years onwards) in the absence of any control are shown in figure 

7.7. Figure 7.8 shows the effect of different frequencies of dosing on model 

components, over a period of three years, and figures 7.9-7.12 show these same effects 

following complete or selective removal of seasonal variation in the model seasonal 

parameters.  
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Figure 7.13 shows the predicted effect of a variety of control strategies on model 

compartments over the course of 100 years (from initial seeding), and figure 7.14 shows 

the predicted long-term levels of intermediate host infection (which indicates the level 

of persistence of transmission) under different seasonality assumptions. Figure 7.15 

demonstrates the effect of administering a single dose of praziquantel annually during 

each month to all dogs in a community (and the simulated estimates in the absence of 

any control), at the new steady state for a period of three years. Figures 7.16 and 7.17 

demonstrate the relative effect of targeted dosing (at the periods of greatest impact on 

E. multilocularis egg contamination) in comparison to both no dosing and untargeted 

(regular) dosing for three years at the new steady state, over a period of one year. 
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Figure 7.5. Relative dynamics of infection during the initial stages after seeding, over a course 

of 10 years. Values are expressed relative to the maximal estimate for the compartment in 

question. 
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Figure 7.6. Initial trends (first 10 years) of E. granulosus and E. multilocularis worm burden 

(top), cyst burden (middle) and egg contamination (bottom) following seeding of the model 

with a mean worm burden for E. granulosus and E. multilocularis of 100. 
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Figure 7.7. Trends in E. granulosus and E. multilocularis worm burden (top), cyst burden 

(middle) and egg contamination (bottom) 10 years after initial seeding. 
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Figure 7.8.Effect of three years of regular praziquantel dosing on the simulated mean E. granulosus (left column) and E. multilocularis (centre and 

right columns) burden/contamination 
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Figure 7.9. Effect of three years of regular praziquantel dosing on the simulated mean E. granulosus (left column) and E. multilocularis (centre and 

right columns) burden/contamination with no seasonality in any parameters 
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Figure 7.10. Effect of three years of regular praziquantel dosing on the simulated mean E. granulosus (left column) and E. multilocularis (centre and 

right columns) burden/contamination with seasonality in egg survival only 
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Figure 7.11.Effect of three years of regular praziquantel dosing on the simulated mean E. granulosus (left column) and E. multilocularis (centre and 

right columns) burden/contamination with seasonality in host population density only 
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Figure 7.12.Effect of three years of regular praziquantel dosing on the simulated mean E. granulosus (left column) and E. multilocularis (centre and 

right columns) burden/contamination with seasonality in host mortality (table 7.3) only
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Figure 7.13. Effect of different random dosing frequencies on simulated mean E. granulosus (left column) and E. multilocularis (centre and right 

columns) burden/contamination over the course of 100 years
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Figure 7.14. Effect of different seasonality assumptions on simulated mean protoscolex burden 

in ruminants and rodents, and mean adult worm burden in foxes, over the course of 100 years. 

The top row represents no seasonality; the second row represents seasonality in egg survival 

only; the third row represents seasonality in host population densities; and the bottom row 

represents seasonality in mortality-associated parameters (table 7.3).
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Figure 7.15. Effect of administering a single dose of praziquantel during specified months on the simulated mean E. granulosus (left column) and 

E. multilocularis (centre and right columns) burden/contamination over the course of three years, at the new steady state
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Figure 7.16. Effect of targeted (solid colour lines) and regular (dotted coloured lines) dosing on 

relative E. granulosus biomass over the course of one year at the new steady state. Rows 

indicate different dosing frequencies and columns indicate different parasite compartments. 

The black solid lines indicate the parasite dynamics in the absence of control 
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Figure 7.17. Effect of targeted (solid colour lines) and regular (dotted coloured lines) dosing on 

relative E. multilocularis biomass over the course of one year at the new steady state. Rows 

indicate different dosing frequencies and columns indicate different parasite compartments. 

The black solid lines indicate the parasite dynamics in the absence of control 
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7.4 Discussion 

This chapter describes (above) and qualitatively evaluates (below) a framework for a 

deterministic compartmental differential equation model of transmission of 

E. granulosus (sensu lato) and E. multilocularis in areas where these two species 

coexist and are known to infect domestic dogs. To the author’s knowledge, a full 

mathematical model of transmission in these coendemic areas has not been previously 

developed, despite these areas typically having the highest burden of human 

echinococcosis (Budke et al., 2004). As should be apparent from the model 

parameterisation approach used, the current model should be considered to be 

complementary to mathematical models which attempt to model the force of 

definitive host infection with Echinococcus spp (and which have been developed and 

applied to coendemic areas) (Torgerson et al., 2003c; Budke et al., 2005b; Ziadinov et 

al., 2008; Lewis et al., 2014).  

The large number of parameters and general lack of available field data for direct 

parameterisation places considerable constraints on the conclusions which can be 

drawn from this model as it increases the number of possible errors in 

parameterisation, and makes it more difficult to identify these when they do occur. 

However, as described by Ishikawa: “…it is unavoidable for the transmission model for 

E. multilocularis to have a somewhat complicated structure, and consequently to 

involve many ecological, as well as epidemiological, parameters because 

E. multilocularis has a complicated life cycle involving two kinds of hosts” (Ishikawa et 

al., 2003). Incorporation of a dog cycle of E. multilocularis as well as an E. granulosus 

cycle necessarily increases the required number of parameters further in the current 

model.  As a result of this, most attention in this discussion will be placed on the 

critical evaluation of the model structure and identification of areas worthy of further 

study, rather than placing too much focus on developing firm conclusions from the 

model output. With regards to parameterisation, attention will focus on major points 

of interest rather than attempting a comprehensive critique of each model parameter.  
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7.4.1 Model structure evaluation 

7.4.1.1 Aggregation 

The largest potential criticism of the general model structure relates to its inability to 

account for aggregation in parasite burdens within a community. The model 

represents changes in the total parasite biomass in a community rather than focussing 

on the prevalence of infection within the different host ‘compartments’, and assumes 

that this biomass is evenly distributed within the model compartments. As the model 

is not spatially explicit, it is implicitly assumed that egg contamination is homogenous 

throughout the study area. This is unlikely to be the case, and a number of studies 

have found that spatial heterogeneities in E. multilocularis contamination are of 

significance to transmission (Tackmann et al., 1998; Giraudoux et al., 2003; Milner-

Gulland et al., 2004; Hansen et al., 2004)  

In the case of those compartments which host the obligatory parasitic stages of 

Echinococcus (i.e. intermediate and definitive hosts), the total parasite biomass 

(protoscolices and adult worms, respectively) is estimated, and this is then divided 

amongst the available hosts. Whilst this gives an estimate of the “mean burden” per 

host, the concept of burdens within individual hosts is largely an artificial construct in 

this model, used primarily for ease of communication of the model predictions (and 

for incorporation of density dependence – see below). As alluded to earlier, if this were 

to be interpreted directly, it would assume that all individuals in the population are 

infected and all hold the same burden (that is, infection would be ‘underdispersed’ 

within the hosts (Anderson and Gordon, 1982)). However, it is well reported that the 

total parasite biomass is not divided equally between the different hosts. Instead, 

parasites are aggregated within hosts (and in the environment, as described above). 

This “overdispersion” is considered a key feature of macroparasitic infection (Crofton, 

1971a), and is thought to have a particular role in parasite regulation and stability 

(Anderson and May, 1978; May and Anderson, 1978; Adler and Kretzschmar, 1992; 

Medley, 1992; Kretzschmar and Adler, 1993; Rosà and Pugliese, 2002; Rosà et al., 2003). 
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Therefore, failure to account for it in the model could have considerable repercussions 

for the accuracy of model predictions – especially in the face of a control scheme. 

Aggregation can be incorporated in deterministic models such as the current one by 

assuming that the individual burdens are distributed according to the negative 

binomial distribution (Anderson and May, 1978; May and Anderson, 1978). Although a 

number of studies have identified the negative binomial distribution to be an excellent 

predictor of the distribution of parasite burdens in a variety of settings (Crofton, 1971a; 

Anderson and May, 1978, 1985; May and Anderson, 1978; Guyatt et al., 1990; Shaw and 

Dobson, 1995), it does not explicitly model the underlying generating process for this 

aggregation. As macroparasites generally do not multiply within the host, the 

generating process for aggregation can be broadly considered to result from 

heterogeneities in host acquisition (and/or loss) of parasites (Anderson and Gordon, 

1982; Quinnell et al., 1995). If it can be assumed that the rate of parasite acquisition, 

rather than being a fixed value for all hosts in a population, varied according to a 

Poisson distribution, then natural acquisition of parasites (which itself would be 

expected to be a Poisson process) would result in the overall distribution of parasites 

in the population being overdispersed (Anderson and Gordon, 1982). If the 

distribution of rate of acquisition followed a gamma distribution, then the resultant 

distribution of burdens would be negative binomial (Bundy and Medley, 1992; Medley 

et al., 1993). However, there remains no biological support for this theory beyond the 

empirical observation that the negative binomial is generally a good fit to burden data. 

A number of studies have attempted to further identify the exact generating processes 

underlying parasite aggregation (McCallum and Anderson, 1984; Anderson and May, 

1985; Pacala and Dobson, 1988; Quinnell et al., 1995; Grenfell et al., 1995; Shaw et al., 

1998; Galvani, 2003; Churcher et al., 2005). Heterogeneity in exposure can be 

considered to result from variation in host predisposition to infection (McCallum and 

Anderson, 1984), or from heterogeneities in exposure resulting from environmental, 

spatial and seasonal factors. Further identification of the exact mechanisms underlying 

these processes is an area of ongoing research – for example, with regards to the 

genetic basis for variation in susceptibility (Quinnell, 2003), the effect of 
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immunological processes on infection and parasite fecundity (Galvani, 2003), the 

effect of ‘clumping’ of transmissible stages in space or in time (Quinnell et al., 1995; 

Heinzmann et al., 2009, 2011b), spatial factors (Hansen et al., 2003, 2004; Calabrese et 

al., 2011), and the effect of increased susceptibility to predation in transmission 

systems based upon predator-prey relationships (Vervaeke et al., 2006). Although the 

generating process responsible for aggregation will not be discussed any further in any 

detail here, it is of particular importance when the effect of control schemes is 

modelled since it is likely to have implications on parasite stability. It has been 

suggested that heterogeneity resulting from host effects (such as variability in 

susceptibility) would result in increased parasite stability compared to that resulting 

from clustering of infection (Rosà and Pugliese, 2002). Due to the potential impact of 

aggregation (and of density dependence and infection intensity, which are closely 

associated with aggregation (Churcher et al., 2005)), incorporation of these processes 

is one of the main suggestions for future model development. This is likely to require 

the use of stochastic methods such as agent-based modelling (Hansen et al., 2003; 

Heinzmann et al., 2011b; Huang et al., 2011), and will likely also require the 

incorporation of spatial modelling techniques due to the likely role of spatial 

heterogeneities in maintaining Echinococcus transmission in the face of a control 

scheme (Hansen et al., 2003, 2004). These approaches will require higher quality data 

than that available currently. Since a major aim of the current model is the evaluation 

of possible control and surveillance strategies, high-quality longitudinal data collected 

during a control scheme would be of particular use (Churcher et al., 2006; Basáñez et 

al., 2012a; b). 

7.4.1.2 Other features 

In order to address other issues relating to the model structure, a number of key 

elements of Echinococcus models, identified in a recent review (Atkinson et al., 2013), 

will be investigated. These are: 

- Latency 

- Age structure 
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- Density dependence 

- Heterogeneities in risk of transmission  

- Seasonality 

The current model incorporates latency in the form of the lag period between 

infection and infectiousness for adult worms and protoscolices. This is particularly 

important for the modelling of control schemes focussed on the definitive host, as 

infection can persist in intermediate hosts even when infection in completely removed 

from the definitive host (Takumi and van der Giessen, 2005), and was therefore 

considered of considerable importance to the current model.  

A crude attempt was also made in the current model to incorporate the effect of 

intermediate host age on the removal of protoscolex biomass through rodent 

predation and rodent and ruminant death (with ruminant death and rodent predation 

also resulting in definitive host infection), by incorporating 𝜅 parameters. It has been 

well reported that age is a major risk factor for intermediate host infection with 

Echinococcus spp, due to the lifelong nature of infection (reviewed in Otero-Abad and 

Torgerson, 2013). Age is also a major risk factor for the risk of death, with high 

mortality commonly observed in young and old animals. As a result, an association 

between infection status and risk of mortality (albeit indirect) would be expected. In 

the case of intermediate hosts, infected animals would be expected to be 

overrepresented amongst removed animals (although removal through predation may 

not be a linear process in the case of small rodents, due to behavioural differences 

between older and younger animals. This was considered to be of particular 

importance for ruminants, since older animals would be more likely to be slaughtered 

for human consumption (and possibly more likely to die, although the effects of harsh 

winter conditions may also affect young animals). 

As well as this ‘indirect’ relationship between infection status and predation/ingestion, 

the increased predation of infected intermediate hosts may also be a natural feature of 

Echinococcus transmission. For example, a study of the degree of aggregation of 

E. granulosus cysts in moose in Canada has found that in areas of high predation 
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pressure, aggregation is lower – suggesting preferential removal of those animals with 

large numbers of cysts (Joly and Messier, 2004). A study of Ellobius rodents in 

Kyrgyzstan also suggested that infected individuals could be more easily caught 

(Afonso et al., 2015). However, direct evidence of an increased susceptibility to 

predation of Echinococcus-infected intermediate hosts is currently lacking. A fuller 

discussion of this issue, with a focus on E. multilocularis, can be found in a recent 

modelling paper (Vervaeke et al., 2006). Further work to better parameterise the 𝜅 

parameters in the current model would be advised. 

As mentioned above, density dependence is an important characteristic of 

macroparasite epidemiology, and is likely associated with aggregation as well as other 

processes (Churcher et al., 2005, 2006). Density dependence was incorporated in the 

current model by assuming a logistic growth function for adult worms and 

protoscolices within their hosts. This was largely a phenomenological construct, and 

was not based upon any particular biological understanding of echinococcosis. This 

formulation also implies that the processes responsible for density dependence 

operate equally on all individuals in the population, which is unlikely to be the case. 

Possible causes of density dependence are crowding, host immunological processes 

(Torgerson, 2006b; Zhang et al., 2008), and competition between individual parasites. 

Constraints on the mean protoscolex or adult worm burden per host may also result 

from finite host lifespan (particularly in the case of intermediate host infection), due 

to the time required for cysts and protoscolices to develop. However, a mechanistic 

construct for including density dependence may be more useful in further work. In 

particular, immunity in the definitive host could have considerable repercussions for 

the efficacy of a control program, as control may be more difficult in the presence of 

immunity. There is some evidence of age-related immunity in the case of E. granulosus 

infection of dogs (Lahmar et al., 2001; Torgerson et al., 2003c; Budke et al., 2005b; 

Moro et al., 2005; Buishi et al., 2005b), and E. multilocularis infection of foxes (Hofer et 

al., 2000; Yimam et al., 2002; Ziadinov et al., 2010), but not E. multilocularis infection 

of dogs (Budke et al., 2005b). This would be suggestive of a greater efficacy of dosing 

dogs with praziquantel on E. multilocularis than E. granulosus (Torgerson, 2006b), 
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although this may also be complicated by the presence of a sylvatic reservoir host in 

the case of the latter and not the former. As infection with E. granulosus and 

E. multilocularis was modelled separately, the constraints upon maximal infection 

intensity were modelled separately for each species. E. granulosus and E. multilocularis 

have been shown to inhabit different regions of the small intestine (Thompson and 

Eckert, 1983; Gemmell et al., 1986c; Lymbery et al., 1989; Morishima et al., 1999a; 

Umhang et al., 2011), with a clear demarcation in the case of coinfection, and it was 

therefore considered biologically reasonable to model the maximal burdens separately. 

However, there remains a possibility that interaction between the two species of 

interest here (or even between similar species of E. granulosus sensu lato) would 

impact upon transmission dynamics. Explicit investigation of coinfections in 

coendemic areas such as this would be an interesting avenue for further work, which 

could potentially inform further model development and refinement. 

Non-temporal heterogeneities in transmission risk are also closely linked to the issue 

of parasite aggregation, as mentioned above, and as such can lead to spatial and 

temporal patterns of infection/aggregation (which may or may not be predictable) 

(Hansen et al., 2004). As described above, these factors were generally not accounted 

for in the current model, which largely assumes homogenous mixing of hosts in the 

absence of any parasite aggregation. Identifying and extracting the variety of processes 

resulting in parasite aggregation will generally require the use of stochastic and spatial 

modelling approaches (Rosà et al., 2003), which, as described above, would likely 

require the collection of higher quality data. Although collection of this sort of data is 

likely to be challenging in the poorer, more marginalised communities where 

E. granulosus and E. multilocularis are coendemic in domestic dogs, it is hoped that by 

continued development and refinement of the current model framework, data 

collection may be guided and targeted to those areas most relevant to investigation of 

these processes. 
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7.4.1.3 Seasonality 

Seasonality is an important component of the current model, and was incorporated in 

a number of important parameters: egg survival on pasture, host population densities, 

𝜇 parameters and availability and access to intermediate hosts. It has been argued that 

the inclusion of seasonal variables in mathematical models of 

Echinococcus multilocularis is not necessary, since they do not affect the general 

model conclusions (Roberts and Aubert, 1995). However, as demonstrated in the 

previous chapter and by reinfection studies on the eastern Tibetan plateau (Wang, 

2011), seasonal trends in canine echinococcosis may exist, and indeed would be 

expected in the presence of varying levels of exposure to intermediate hosts. Previous 

models have incorporated seasonality in parasite and host survival/density (Ishikawa 

et al., 2003; Ishikawa, 2006; Nishina and Ishikawa, 2008), and this has been suggested 

to be an area worthy of further exploration in other studies (Budke et al., 2005b; 

Takumi and van der Giessen, 2005; Atkinson et al., 2013). The incorporation of 

seasonality in the current model had an impact on certain important model outputs – 

including the ability of foxes to maintain infection in the absence of domestic dog 

infection (which was only predicted by the model in the absence of seasonality and is 

discussed in further detail below). 

Seasonality in egg survival has been investigated in models of echinococcosis in 

Hokkaido, Japan, using a similar approach to that described here (Ishikawa et al., 

2003; Nishina and Ishikawa, 2008). Egg survival was also modelled seasonally in an 

agent-based model of E. granulosus parameterised using data from Kazakhstan 

(Heinzmann et al., 2011b). This found little effect of seasonality in egg survival on the 

transmission process, due to the ‘buffering’ effect of intermediate host infection. 

Conversely, the original Takumi model suggested a considerable effect of egg survival 

on the time required to remove 50% of the parasite biomass during a control program 

(Takumi and van der Giessen, 2005). An agent-based model of reinfection of foxes 

with E. multilocularis following control suggested that spatial heterogeneity in egg 

survival rather than variation in egg survival per se had better support from field data 

collected during and after a control scheme (Hansen et al., 2003). This spatial 
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heterogeneity in egg survival, ultimately leading to heterogeneity in fox infection, 

resulted in a suggestion of spatially targeted treatment of foxes – similar conceptually 

to the idea of temporal targeting explored in the current study. It also demonstrates 

the potential importance of considering spatial heterogeneities – which will be 

covered later.  

One potential limitation in the current strategy of modelling egg survival based upon 

mean temperature was the failure to account for heterogeneities in temperature (for 

example, maximum temperatures during the summer months could have a greater 

impact on egg survival than the average temperature). As the effect of temperature on 

egg survival is also known to vary depending on whether eggs are suspended in water 

(Veit et al., 1995; Matsumoto and Yagi, 2008; Federer et al., 2015), relative humidity or 

spatial variation in ground moisture content could also have important implications 

for egg survival, which was not accounted for in the current model. A spatio-temporal 

study of risk factors for infection of water voles (Arvicola terrestris) with 

E. multilocularis in Switzerland found that the best models included mean 

temperature and mean precipitation, suggesting that these factors are of importance 

to infection risk (although these findings could also be due to confounding by other 

seasonal factors) (Burlet et al., 2011). Similarly, a study in Germany found that infected 

foxes were more commonly found in areas of higher soil moisture content – which 

may indicate higher prevalences amongst intermediate hosts in these areas (Staubach 

et al., 2001). 

Seasonality in host population densities and mortality was largely based upon 

qualitative adjustments to ‘average’ estimates, partly because accurate data is just not 

available for some hosts, and partly because the aim of the model was not to perfectly 

predict the effect of these densities on the parasite burdens, but to identify general 

patterns and trends. The effect of an increase in host population density would be 

expected to initially reduce the mean burden through a ‘dilution’ effect. This is a 

considerable oversimplification of the situation, especially in the case of long-lived 

infections such as is seen in the intermediate host and where the true burden in any 

individual host at any one time would not be expected to be directly affected by the 
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total number of hosts. Most of the changes in population density resulted from 

changes in mortality, birth of new hosts, and movement of hosts out of the study area 

(dispersal in the case of sylvatic hosts, and seasonal movement to Jailoo in the case of 

domestic dogs). Again, the Japanese models investigated the effects of seasonality in 

host densities on the prevalence of host infection and the potential risk of human 

infection (due to egg contamination), and suggested a complex interplay between 

these factors (for example, changes in rodent population densities were considered to 

be responsible for changes in estimated intermediate host prevalence, but the 

estimated peak prevalence of fox infection did not occur at the time of the peak 

population density) (Ishikawa et al., 2003; Nishina and Ishikawa, 2008). 

Changes in host ‘preference’ for rodents (associated with availability of rodents) was 

also incorporated into the Japanese models by explicitly modelling a ‘feeding function’, 

which was incorporated the rodent population density and the depth of the snow 

(which would be expected to reduce access to rodents) (Ishikawa et al., 2003; Nishina 

and Ishikawa, 2008). A much more crude parametrisation was used in the current 

model, and was based upon a relatively subjective reduction of the rate of rodent 

ingestion during the winter months, when access to rodents would be expected to be 

reduced. The effect of changes in rodent availability and rate of ingestion by foxes has 

been identified as a potentially important factor in the dynamics of E. multilocularis 

transmission (Hegglin et al., 2007; Raoul et al., 2010), and would be worthy of a more 

comprehensive evaluation in the study area – in particular, in relation to foxes living 

adjacent to areas of human habitation (the area of focus in the current study).  

7.4.2 Model applicability to study area 

7.4.2.1 Spatial context of model 

Although not explicitly a spatial model, the spatial context of the model is of relevance 

to the interpretability of the model. For example, the transmission of E. multilocularis 

is thought to vary between rural, urban, and periurban settings (Stieger et al., 2002; 

Robardet et al., 2008), and has been found to vary between different provinces of 



275 

 

Hokkaido, Japan (Ishikawa et al., 2003; Nishina and Ishikawa, 2008). Seasonality in 

reinfection may also vary between different Tibetan communities in China (Wang, 

2011). As well as differences in the dynamics between different locations, one particular 

challenge faced when constructing a spatial model is deciding on which spatial scale 

the model should be developed. Intermediate hosts of E. multilocularis often have a 

smaller home range than definitive hosts, and a balance must therefore be reached 

between representing suitable numbers of each host type in order to capture complete 

transmission cycles, whilst not overgeneralising the transmission process (Morgan et 

al., 2004). As domestic dogs are the host of primary interest in the current study, a 

decision was therefore made to focus primarily on the village setting, but to account 

for free roaming of foxes in the vicinity (which could have a role in sustaining 

E. multilocularis transmission cycles). Whilst it is unlikely that any foxes permanently 

inhabit the 1km2 shown in figure 7.1, it is plausible that the home ranges of some foxes 

intersect this area (especially considering the potential availability of anthropogenic 

food). Despite these attempts to reduce the limitations associated with spatial 

constraints, it is likely that by setting any boundary on the area of interest, a lot of 

potentially relevant/vital processes are excluded. 

This problem feeds naturally into the concept of metapopulations (Grenfell and 

Harwood, 1997; Hanski, 1998) – in particular, parasite stability in a metapopulation 

context (Giraudoux et al., 2006). A metapopulation model of E. multilocularis in 

Kazakhstan has previously been developed (Milner-Gulland et al., 2004), which shares 

a number of conceptual characteristics with the current model (i.e. modelling at the 

parasite, rather than the host, level). Expansion of the current model formulation into 

a metapopulation model would be a potentially useful area of further study which 

could reconcile some of the issues associated with setting strict geographical 

constraints on the model. However, this would require the collection of additional 

data (in particular, the locations and movements of potential sylvatic hosts, the 

movements of dogs and livestock around the village and between village and Jailoo, 

and the locations of rodent intermediate hosts). Whilst this approach would have 

some relevance for the study of the effects of a control scheme (in particular, by 
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incorporating more explicitly the role of foxes in the E. multilocularis transmission 

cycle amongst dogs), its main use would be to elucidate the transmission ecologies of 

the two species of Echinococcus of interest. From a logistical perspective, the Alay 

valley offers great potential for this sort of investigation – being a focus of 

E. granulosus and E. multilocularis endemicity which is relatively geographically and 

‘politically’ accessible. 

7.4.2.2 Host ecology 

Although both the red fox (Vulpes vulpes) and the Corsac fox (Vupes corsac) have been 

found to be infected with E. multilocularis in neighbouring Kazakhstan (Shaikenov, 

2006), the Corsac fox is not thought to be present in the Alay valley (Murdoch, 2014), 

and so was not considered in the current model. Estimating the density of red foxes 

was a challenge, since estimates of population densities of red foxes vary widely 

(MacDonald and Reynolds, 2008), and little information is available for Kyrgyzstan. It 

is also likely that the fox home range will vary seasonally, along with the availability of 

food, which would be expected to impact upon the effective fox density in the study 

area. In particular, it has been suggested that foxes may move into areas of human 

habitation during the autumn-winter period in search of food (Heptner and Naumov, 

1992). This, along with the effects of breeding, is another potential source of seasonal 

variation in fox density within the village surroundings. The original Takumi model, 

based in the southern Netherlands, used expert opinion to estimate a population 

density of around four foxes per km2 (Takumi and van der Giessen, 2005). Due to the 

low human population densities in the Alay valley, the fox density in this area was 

considered likely to be lower than this. 

A similar challenge was faced when attempting to estimate intermediate host 

population densities. A large number of rodents are known to be susceptible to 

infection with E. multilocularis, and as such it is unrealistic to attempt to account for 

every potential host species in the model. Suggested hosts in the Alay valley are the 

cricetid rodents Microtus gregalis (narrow-headed vole), Cricetulus migratorius (grey 

dwarf hamster), Ellobius tancrei (eastern mole vole – possibly confused with the 
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northern mole vole, Ellobius talpinus, in some cases), Microtus oeconomus (root vole), 

M. obscurus (Altai vole), M. carruthers (archer vole), Altikola argentalus (silver 

mountain vole); the murid rodents Apodemus sylvaticus (wood mouse), Mus musculus 

(house mouse) and Meriones erythrourus (Libyan jird); the glirid rodent Dryromys 

nitedula (forest dormouse); and the sciurid rodent  Marmota caudata (red marmot) 

(Abdyjaparov and Kuttubaev, 2004; Giraudoux et al., 2013b; Afonso et al., 2015). Of 

these, E. multilocularis infection has been documented in Marmota caudata (11/256), 

Microtus carruthers (1/345), Apodemus sylvaticus (1/437) (Abdyjaparov and Kuttubaev, 

2004), and Ellobius tancrei (1/42) (Afonso et al., 2015) in the Alay valley. It should be 

noted that in the earlier study (Abdyjaparov and Kuttubaev, 2004), no Ellobius spp 

were caught, and these were therefore not evaluated. Whilst the highest prevalence 

was found in Marmota caudate, sciurid rodents are not known to be major hosts of 

E. multilocularis in any of the studied transmission ecosystems of E. multilocularis 

worldwide. Instead, it has been suggested that E. tancrei be considered a “flagship” 

intermediate host in the southern Kyrgyz transmission ecosystem (Giraudoux et al., 

2013b). Although this does not indicate that this species necessarily plays the largest 

role in the transmission cycle, it may be the most useful measure of the potential for 

transmission within the area (and as such could be a useful species for model 

validation). This species was therefore considered the intermediate host of main 

interest in the model. Little information is available on the population densities of 

these rodents, and as such any estimate of abundance will be very limited (Patrick 

Giraudoux, personal communication), but they were known to be present within and 

around the study villages, with increasing abundance as grassland biomass increased 

(Giraudoux et al., 2013b; Afonso et al., 2015). Another challenge with any estimate of 

population densities of these rodents is considerable interannual variation in 

population densities (as is also seen with Ellobius talpinus (Evdokimov, 2013)) and 

their tendency to undergo population ‘outbreaks’. This tendency towards population 

outbreaks has been suggested to be a common feature of many E. multilocularis 

transmission foci (Giraudoux et al., 2013b). Whilst this could play an important part in 

transmission, accounting for this in a mathematical model would be very complex; 

likely requiring the use of stochastic techniques. 
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7.4.2.3 Human culture and practices  

A number of characteristics of human behaviour are of importance in the current 

model. Transhumance is still practiced to some degree in the Alay valley, meaning 

that many dogs were moved from the village to Jailoo in the summer months. As this 

was considered to be of importance to potential levels of egg contamination in this 

particular setting, this was also included in the model. Dogs were also almost 

invariably unrestrained within the communities, but were generally assumed to 

remain within the village surroundings during this time. This was substantiated by 

GPS monitoring of dog movements within the villages (van Kesteren et al., 2013). 

However, this study also identified that some dogs travelled far from the village. 

Although this was relatively uncommon, it adds stochasticity to the process and could 

be of importance for the infection risk with E. multilocularis, and would be worthy of 

further investigation if the model was developed into a stochastic form as described 

above. 

Although some data was available regarding ruminant ownership in Taldu-Suu, there 

remained difficulties in estimating the density of ruminants in the study area due to 

daily and seasonal movements of livestock to grazing land around the village and in 

the mountains (Jailoo), and the fact that some animals (generally when livestock 

ownership was very large) were kept at Jailoo permanently. A total of 2,000 sheep and 

1,500 goats were reported to be owned by the residents of Taldu-Suu in May 2012. 

Goats have repeatedly been found to have lower prevalences of infection with 

E. granulosus G1 than sheep (Torgerson et al., 1998; Cardona and Carmena, 2013) – 

which may be suggestive of differences in rates of ingestion due to feeding patterns, or 

host specificity issues. Goats have also repeatedly been identified as a host of E. 

canadensis (previously E. granulosus G6/7) (Soriano et al., 2010; Romig et al., 2011; 

Cardona and Carmena, 2013), which is known to occur in the Alay valley (van Kesteren 

et al., 2013). Therefore, the selection of which livestock are responsible for 

transmission should take into account the possibility of two (likely overlapping) 

cycles: E. granulosus G1 between sheep and dogs, and E. canadensis G6 between goats 

and dogs. A decision was made in the current study to model these intermediate hosts 
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together, giving a total of 3,500 owned “small ruminants” throughout the village. 

Despite this high number, most animals are moved out of the village vicinity during 

the day (partly due to low quality pasture around the village resulting from previous 

overgrazing), and so cannot be considered to be either exposed continually to eggs on 

the pasture within the area of interest or a continual potential source of canine 

infection within the study area through scavenging. Additionally, most livestock 

owners travel to Jailoo during the summer months – further reducing the number of 

small ruminants within the village. For these reasons, the total number of small 

ruminants present in the 1km2 area indicated in figure 7.1 during questionnaire surveys 

in spring and autumn was broadly estimated to be no more than around 500 animals, 

on average, throughout the year. Again, slight fluctuations in this on a seasonal and a 

daily basis (as animals return from grazing each evening during the spring and 

autumn months) could be of importance to Echinococcus transmission dynamics, and 

would be worthy of further study.  

7.4.3 Force of infection  

The 𝛽 parameters in the current model describe the rate of ingestion of intermediate 

hosts by definitive hosts and the rate of ingestion of eggs by intermediate hosts, and 

therefore are central to the whole model. However, these parameters are also less 

tangible than many of the other parameters, since they relate to behavioural practices 

which are unlikely to be directly quantifiable. As a result, these parameters were 

estimated using data from studies conducted in Naryn province (with estimates for 

foxes extrapolated from a study in Switzerland). Although the Alay valley may differ 

epidemiologically from Naryn (as described above), animal ownership and 

management was similar in the two areas (with the exception of the presence of an 

abattoir system in Naryn).  

The Takumi model estimated the rate of ingestion of Arvicola spp (the 

E. multilocularis intermediate host of main interest in the Netherlands) by foxes using 

data from a study which found an average of 22g of rodent material in the stomach of 

Dutch foxes, which was then converted into a rate of rodent ingestion. From this 
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estimate, the proportion of rodents which were Arvicola spp and the predicted 

population density of these species was incorporated to give a rate estimate of 2 x 10-7 

(Takumi and van der Giessen, 2005). The estimate used in the current model is 30 

times higher than this estimate - which, if correct would suggest that Kyrgyz foxes 

have an increased reliance on rodents than Dutch foxes. Foxes are generalist, 

opportunistic feeders (Calisti et al., 1990), and therefore would be expected to adjust 

their feeding habits according to the availability of food. This may represent seasonal 

changes in rodent abundance (Ferrari and Weber, 1995), or the availability of 

anthropogenic food (Harris, 1981). This plasticity of predation behaviour has been 

considered to be of considerable importance to the transmission of E. multilocularis 

(Hegglin et al., 2007; Robardet et al., 2008; Raoul et al., 2010), and it is therefore very 

unlikely to be accurately captured in the current parameter. However, given the lower 

human population densities in the Alay valley (which would be expected to result in 

less anthropogenic food for foxes), it is perhaps plausible that an increased reliance on 

rodents is seen in this area. Studies of foxes in the former USSR have suggested that 

rodents comprise the majority of the fox diet, although this would be expected to vary 

with rodent density and fox age. Although little information was available for 

mountain ecosystems, it was suggested that in the steppe, foxes feed almost 

exclusively on small rodents (especially Microtus spp) (Heptner and Naumov, 1992). 

However, a study in Mongolia suggested that insects comprised the majority of the 

diet of red foxes, with rodent remains only comprising 20% of scat volume (Murdoch 

et al., 2010). Eating of insects in the Alay valley appeared to be common amongst dogs, 

based upon visual inspection of dog faeces in the area during the study, and therefore 

may be the case for foxes as well. Ongoing work by collaborators at Université de 

Franche-Comté will hopefully shed some light on the diet of foxes and dogs in the 

area. 

Interestingly, the estimated rate of ingestion of rodents by dogs was estimated to be 

slightly higher than that of foxes (due to the method used for estimation of this 

parameter incorporating the probability of protoscolices developing into adult worms, 

which is thought to be lower for dogs than for foxes). Without further examination of 



281 

 

dog and fox faecal samples (which, as mentioned above, is currently being 

undertaken), it is not possible to further validate this. However, it should be noted 

that other studies of experimental infection of dogs have suggested higher proportions 

of protoscolices developing into worms than that used here (Matsumoto and Yagi, 

2008), which would have repercussions for this parameter estimate. Due to the 

importance of this parameter on the transmission of E. multilocularis, sensitivity 

analysis of this parameter would be interesting, and will be conducted at a later date. 

The rate of ingestion of ruminants was more difficult to parameterise due to the 

distinction made in the model between scavenging behaviour and direct feeding of 

offal at slaughter. This distinction was considered important, due to the potential 

control available over the two different routes (it would be easier to reduce feeding of 

offal at slaughter than prevent scavenging of carcasses). In order to estimate the rate 

of scavenging, an estimate of the rate of feeding of offal to dogs needed to be made. 

This would be expected to depend upon whether or not the offal was of use to 

humans. As livers were eaten by humans in the study communities, healthy livers 

would be unlikely to be thrown to dogs during slaughter. However, infected offal 

would be expected to be more commonly offered to dogs. When asked about what 

would be done with diseased offal in May 2012, 40% (275/692) of people reported that 

they would give it to dogs. However, given that only 55% of people reported ever 

finding diseased offal, the proportion of offal fed to dogs in the communities would be 

expected to be low (although the rate of feeding lungs to dogs may be higher, since 

these appeared to be less commonly eaten by humans). In the absence of further 

information, it was assumed that around of 5% of liver/lungs were offered to dogs. 

Based upon this, the probability of a dog scavenging a ruminant carcass was also 

estimated as around 5%. This appears low for the communities in question – indeed, it 

is likely that any animal dying in the vicinity of the village would be quickly scavenged 

by dogs (personal observation). This apparent error in parameterisation appears to 

result from an incompatibility of the estimated rate of canine infection (0.3 infections 

per year) with the other associated parameters (proportion of protoscolices resulting 

in infection following ingestion etc…), which would predict a higher rate of infection. 
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This problem is likely partly due to the current model’s inability to model aggregation 

of infection within intermediate hosts, but further investigation of the levels of 

ruminant infection with E. granulosus (s.l.) in the study area would also be very useful 

to further clarify some of these issues (see below). 

In order to estimate the rate of ingestion of eggs on pasture by intermediate hosts, an 

adjustment was made to the equation used by Takumi and van der Giessen (2005) in 

order to model at the protoscolex level rather than the infection level. Although a 

central feature of macroparasitic transmission is the inability to reproduce inside the 

host, the production of protoscolices by Echinococcus in the intermediate host is an 

exception to this general rule, as a single ingested egg can produce a number of 

protoscolices. If it is assumed that the rate of protoscolex development would be equal 

to the rate of protoscolex removal at the steady state, then the number of 

protoscolices which are produced per ingested egg should be taken into consideration. 

Estimation of the number of protoscolices which develop per egg was challenging due 

to the extreme overdispersion seen in this parameter. This was therefore estimated in 

different ways for ruminants and rodents. For ruminants, it was assumed that each 

ingested egg would result in one cyst (albeit with a variable number of protoscolices). 

Therefore, the mean number of protoscolices per cyst was estimated, and the mean of 

this taken to indicate the mean number of protoscolices per ingested egg. This was not 

possible for E. multilocularis, due to the confluent, spreading nature of the cysts. 

Therefore, it was assumed that all rodents which were PCR positive for 

E. multilocularis were potentially infected, and this (rather than the presence of visible 

cysts, as used by Takumi and van der Giessen (2005)) was used as the denominator 

when estimating the mean number of protoscolices per infection. As a result of these 

adjustments, the rate of egg ingestion by rodents was an order of magnitude lower 

than that estimated in the Takumi model. The rate of egg ingestion by ruminants was 

higher than that of rodents, as would be expected due to the amount of grass ingested 

by a sheep or goat in comparison with a rodent, but may also be the cause of the 

particularly high estimated force of infection in ruminants (see below). As it is unlikely 

that the egg ingestion parameters will be able to be directly validated (because egg 



283 

 

contamination of the pasture is not likely to be directly quantifiable), identifying a 

suitable rate of ingestion would likely largely depend upon evaluation of the model 

outputs rather than attempting to directly quantify rates of egg ingestion. 

7.4.4 Model validation  

7.4.4.1 Data gaps 

Full validation of the current model would require comparison of the model 

predictions with data obtained from the field. As field data is currently limited, 

attempts at model validation here will be largely qualitative (i.e. based largely on 

identification of general patterns and trends). However, it is hoped that further data 

collection will be conducted in order to improve upon this. It should be noted that, of 

the three general model compartments evaluated (adult worms, eggs, protoscolices), 

data is only likely to be easily available for the former (although even estimation of 

worm burdens is challenging due to the lack of an appropriate gold standard test for 

routine surveillance). Due to the difficulties in extracting and identifying eggs from 

soil samples (Craig et al., 1988; Shaikenov et al., 2004) and likely spatial aggregation in 

egg contamination (Hansen et al., 2003, 2004), it is unlikely that the egg 

contamination compartment of the model will ever be able to be validated. Similarly, 

identification of rodent and ruminant infection is likely to be challenging (although 

not impossible) due to the low expected prevalences and spatial clustering of infection 

in the case of the former, and the lack of an abattoir system in these remote 

communities in the case of the latter. Despite this, some further investigation of 

infection in intermediate hosts (especially ruminants) would be very valuable for 

further work. 

Although some data is already available on E. multilocularis infection in rodents in the 

study area (see above), the level of infection of ruminants with E. granulosus (or 

E. canadensis) in the Alay valley is currently completely unknown. When asked in May 

2012 whether cysts were ever observed during home slaughter, a total of 43/95 (45%) 

of people reported that they had never observed any – suggesting that cysts are not 

commonly found in the area. This contrasts strongly with a report from an abattoir 
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survey in Naryn province, where the prevalence of cysts in young animals was around 

50%; increasing to 100% as age increased (Torgerson et al., 2009a). This may be 

suggestive of differences in endemicity between the two areas, or could result from 

information biases due to the reliance on self-reporting of cysts in the current study. 

Interestingly, all cases of human echinococcosis in the Alay valley identified to date 

through ultrasound scanning appear to be due to E. multilocularis (Paul Torgerson, 

personal communication), which would suggest a low endemicity of E. granulosus in 

this area, and would therefore corroborate the lack of reported cysts. However, both 

E. granulosus G1 and E. canadensis G6 are known to occur in the area (van Kesteren et 

al., 2013). It is possible that E. canadensis G6 is the predominant cause of cystic 

echinococcosis in the area, which may have a predilection for pulmonary rather than 

hepatic sites in both humans and goats (the most common intermediate host for this 

species) (Varcasia et al., 2007; Nikmanesh et al., 2014; Alvarez Rojas et al., 2014), and 

has also been found to be associated with brain lesions in humans (Sadjjadi et al., 

2013). This would be expected to have repercussions for detection of infection, since 

pulmonary and cerebral lesions in humans would not tend to be diagnosed during 

ultrasound scanning, and lungs (although occasionally eaten in the area) may be more 

likely to be fed directly to dogs than inspected during slaughter. A better 

understanding of the species and strains of E. granulosus (s.l.) of epidemiological 

significance in the study area would allow better parameterisation of this component 

of the model, and could have considerable repercussions for control and surveillance.  

The other main area of further investigation would be the possibility of using 

coproantigen data to parameterise the domestic dog compartments of the model – in 

particular, in the face of a control scheme (such as that described in the previous 

chapter). Coproantigen ELISA tests are relatively quick, easy and cheap to conduct, 

and as such are commonly used for surveillance. In these cases, large amounts of data 

may be obtained relatively easily. Through the use of the mixture model described in 

chapter 4, estimates of the ‘burden score’ for individual samples could be obtained. 

The exponent of these score estimates would be expected to broadly relate to the 

worm burden, and therefore could potentially be used to parameterise the model. As 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sadjjadi%20SM%5BAuthor%5D&cauthor=true&cauthor_uid=23891711
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there are a number of subtle differences between worm counts and coproELISA 

results, the model may need to be adjusted slightly in order to optimally represent 

transitions in infection status using coproantigen data. For example, it has been 

suggested that coproantigen levels are highest in the period just prior to patency and 

through to early patency, when the metabolism of the worm is highest (Kapel et al., 

2006). Therefore, the coproantigen levels would be expected to rise earlier than the 

corresponding burden, and fall in older infections (when egg output is also often 

reduced). A major constraint to application of this methodology to the current model 

is the lack of species specificity for current coproELISA tests (and the logistical 

difficulties associated with the use of PCR for surveillance). In a coendemic area such 

as the Alay valley, it is vital to be able to distinguish between E. granulosus and 

E. multilocularis if inferences on transmission pathways are to be made. Ultimately, it 

is hoped that coproELISA tests will be developed that are able to distinguish between 

E. granulosus and E. multilocularis. In the meantime, identification of methods of 

combining the results of coproantigen tests (conducted on all samples) with PCR tests 

(conducted on a selection of samples) in order to interpret broadly estimate the mean 

worm burdens for the different Echinococcus species would be useful, and would be 

worthy of further investigation. 

7.4.4.2 Potential model faults 

Two aspects of the current model were unexpected: firstly, the high predicted 

protoscolex burdens in ruminants (which reached the maximum level specified by the 

𝐾𝑠  parameter immediately after the lag period), and secondly the finding that 

complete control of E. multilocularis infection in dogs was also predicted to ultimately 

remove infection from rodents and foxes (suggesting that the foxes in the current 

model were acting solely as an overspill host from the domestic dog cycle). These are 

worthy of further scrutiny, as they do not necessarily agree with the expected 

transmission dynamics of E. granulosus and E. multilocularis. 

As described above, one possible cause of the high rate of E. granulosus infection of 

ruminants is the high rate of egg ingestion. This issue would be further accentuated by 
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the high rate of egg production from dogs. Although egg production for both 

E. multilocularis and E. granulosus has been estimated to be in the region of 42 eggs 

per day (Gemmell et al., 1986c; Matsudo et al., 2003; Hansen et al., 2003; Torgerson 

and Heath, 2003; Takumi and van der Giessen, 2005), this is highly variable. 

Experimental studies of E. multilocularis infection of dogs and foxes has suggested that 

the mean egg production per worm in each of these hosts was 114 over 77 days and 27 

over 30 days, respectively – indicating a daily egg production of around 1 per worm for 

each host (Kapel et al., 2006). Another report of experimental infection of dogs with 

E. multilocularis found very high variability in egg production, with one dog releasing 

a total of around ten million eggs over 132 days. Although the total number of adult 

worms in this case was not reported, using the data available this would be suggestive 

of an egg output of 1-2 eggs worm-1 day-1. Interestingly, in this experiment, egg 

production also appeared to come in synchronous waves: suggesting that proglottid 

release was synchronised between different individual worms (Matsumoto and Yagi, 

2008). This yet again demonstrates a form of aggregation which was not accounted for 

in the current model: in this case, temporal aggregation in egg production (which 

would be expected to result in some degree of spatial aggregation of contamination). 

As a result of these issues, estimates of ‘average’ egg production are likely to generally 

be overestimates of the true egg contamination in most locations (and an 

underestimate in a minority of locations). Adopting a stochastic (and, ideally, spatially 

explicit) modelling approach which can account for these heterogeneities, as 

suggested earlier, would help remedy this problem. 

The lack of predicted sustained transmission of E. multilocularis in foxes in the 

absence of canine infection is of particular interest, since the relative roles of dogs and 

foxes in the transmission of E. multilocularis is of potential public health importance. 

Domestic dogs are considered to be the main source of human infection with 

E. multilocularis is many areas (Craig and The Echinococcosis Working Group in 

China, 2006)), and the involvement of foxes in the canine E. multilocularis 

transmission ecosystem would be expected to impact upon the effect of control 

schemes. Interestingly, when all seasonality was removed from the model, vulpine 
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infection persisted even when the dog-rodent cycle was prevented (albeit at a lower 

level than that in the presence of canine infection) – as shown in figures 7.9 and 7.14. 

This predicted persistence in foxes remained when seasonality in host population 

densities alone was included (figures 7.11 and 7.14), but was removed when either 

seasonality in egg survival (figures 7.10 and 7.14) or mortality (figures 7.12 and 7.14) was 

included. Full interpretation of these effects is difficult without further investigation, 

but this demonstrates that the fox transmission cycle in the current model is sensitive 

to relatively small changes in parameter estimates. With the current parameterisation, 

reduced survival of eggs during the summer months appears to sufficiently reduce 

intermediate host burden to prevent effective transmission to foxes, and reduced 

access to rodents in the winter months also prevents effective transmission. This 

finding both demonstrates the potential impact of seasonality on the model 

predictions, and therefore the need to ensure that model parameterisation is as 

accurate as possible.  

As the transmission parameters for vulpine infection were generally higher than those 

for canine infection, one likely cause of this perceived instability is the low number of 

foxes in the area of interest. One way to conceptualise the relative role of different 

host species in multi-host transmission ecosystems such as this one is in relation to 

the number of susceptible individuals of each species (Holt et al., 2003) (although 

these effects become complex for parasites with indirect lifecycles, where the parasite 

may remain endemic despite low host population densities). According to this 

framework, the current model suggests that foxes and dogs are acting as ‘substitutable’ 

hosts, but that the low density of foxes precludes persistence in the absence of dogs (in 

this case, due to the reduction in the effective density of susceptible dogs due to 

praziquantel dosing), as schematically shown in figure 7.18. 
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Figure 7.18. Schematic representation of the reason for the lack of E. multilocularis persistence 

in foxes predicted from the model. The vertical dotted line represents the density of foxes, and 

the horizontal dotted line represents the density of susceptible dogs in the presence and 

absence of control. The blue line indicates the threshold for parasite persistence. Based upon 

Holt et al., 2003. 

The schematic representation shown in figure 7.18 assumes that either foxes or dogs 

can maintain infection in the absence of the other (given that the fox density is 

sufficiently increased in the absence of dog infection, in this particular case). Although 

this generally agrees with the model predictions, it may not be the case in reality. A 

true rodent-dog cycle of E. multilocularis has been postulated to be present in some 

locations in China (Craig et al., 2000; Pleydell et al., 2008; Moss et al., 2013), but has 

not yet been definitely proven. Therefore, the presence of an active dog-rodent 

transmission cycle which could persist in the absence of foxes (as would be predicted 

by the current model) is plausible, but requires further investigation. The other 

question is whether foxes would be able to maintain transmission in these settings in 

the absence of canine infection, since the current model predicts that complete 

control of canine infection (in the presence of seasonality) will also ultimately remove 

vulpine infection. Foxes associated with human habitation have been found to have 

lower levels of infection with E. multilocularis than those in rural settings (Stieger et 

al., 2002; Hegglin et al., 2007; Robardet et al., 2008; Raoul et al., 2010), which may 

suggest that vulpine transmission is less stable in these settings (likely due to reduced 
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ingestion of rodents). In this case, control in dogs would be expected to be more 

effective at reducing the infection pressure to rodents, and therefore would ultimately 

be expected to be more effective at removing infection from a community (see figure 

7.13). However, this is unlikely to be the case – and, as described above, this model 

finding more likely represents limitations in the model structure and 

parameterisation. Other complexities in transmission are also likely to be present – for 

example, a low force of infection could be counterbalanced to some degree by a 

reduction in host immunity (Yimam et al., 2002; Hansen et al., 2003) and therefore a 

higher probability of infection, which would be expected to have a stabilising effect on 

the parasite. This was not accounted for in the current model, but again would be 

worthy of further investigation. In particular, the presence of in immunity in dogs 

(with the possibility that different species of Echinococcus will provoke different levels 

of immunity (Budke et al., 2005b)) could have particular implications for the efficacy 

of control (Torgerson, 2006b). 

The development of methods of quantifying the relative roles of dogs and foxes in 

transmission of E. multilocularis would be a useful area of further study. One method 

of achieving this is to estimate the 𝑅0 (or 𝑄0 – see chapter 1) for each of the hosts. 

Reservoir hosts would be expected to have an 𝑅0 of greater than 1, whereas spillover 

hosts would be expected to have an 𝑅0 of less than 1. This general framework has been 

used to investigate the transmission ecology of Schistosoma japonicum in different 

settings in China (Rudge et al., 2013), and would be very interesting approach for 

application to E. multilocularis. However, estimation of 𝑅0 for each host species would 

be challenging in coendemic areas, since (unlike in the case of the S. japonicum model 

cited above) data on the source of intermediate host infection is currently not 

available for E. multilocularis. Approaches for estimating the relative host 

contributions in E. multilocularis transmission are therefore likely to be based upon 

measurement of definitive host infection either at equilibrium, or during control 

schemes (in a similar manner to reinfection studies). Estimation of parameters from 

these studies will generally require the fitting of data to a model framework, although 
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this to date has rarely been conducted in the face of a control scheme (Basáñez et al., 

2012a; b), and would be worthy of further study if more field data were collected. 

7.4.4.3 Temporal trends 

Two trends in particular were apparent both in the field data and in the model output: 

temporal trends over time during a control scheme, and seasonal trends for 

E. multilocularis and E. granulosus. As detailed in the previous chapter, differences in 

canine test prevalence were apparent between the spring and autumn visits. The 

coproantigen and E. multilocularis test prevalences were found to be higher in the 

autumn than the spring, and the reverse trend was true for E. granulosus and 

E. canadensis. These seasonal trends were also apparent in the output of the 

mathematical model – with peaks of definitive host infection with E. multilocularis in 

the autumn months, and peaks of infection with E. granulosus in the spring months 

(figure 7.7). These patterns are a result of the seasonal parameters included in the 

model. In the case of E. granulosus infection, the seasonal trends were associated with 

seasonality in intermediate host mortality, whereas in the case of E. multilocularis, 

trends in host population densities were also of importance (figures 7.11 and 7.12). 

Seasonality in egg survival alone appeared to have little effect on definitive host 

infection (figure 7.10). A mathematical model of fox infection with E. multilocularis in 

Zurich suggested that the force of infection for foxes was greatest during the winter 

months (Lewis et al., 2014), which does not completely agree with the current results. 

This difference may be partly due to the current model assuming low access to rodents 

during the winter months due to heavy snowfall, which may not be the case in and 

around Zurich. However, the current model also predicts a reduction in the prevalence 

of rodent infection during the winter months, which was partly a result of a predicted 

increase in rodent mortality during the winter months (which, due to the 𝜅 

parameters, would disproportionally reduce the total protoscolex biomass). It has 

been suggested that the proportion of infected rodents may actually increase during 

the winter months due to a lack of breeding (Burlet et al., 2011). This possible effect 

was not incorporated in the current model due to the assumption of a balanced birth 

and death rate. More work is needed to better understand the dynamics of 
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intermediate host infection (and dog/fox access to these hosts) during the winter 

months. 

As expected, most of the seasonality in egg contamination was associated with 

seasonality in egg survival (figure 7.10), with peaks in egg contamination in November 

and March corresponding to peaks in egg survival at these times, and lowest egg 

contamination during the hot months of July and August (see table 7.1). Seasonality in 

rodent infection appeared to also be associated with seasonality in egg survival 

(although the actual seasonal patterns observed as a result of this would depend upon 

the length of the prepatent period). Rodent mortality also impacted upon rodent 

infection, with lower mean burdens during the winter months (figures 7.10 and 7.12). 

As described above, the opposite trend may in fact be present during the winter 

months, due to a lack of ‘dilution’ of the mean protoscolex burden by young rodents. 

Very little seasonality in ruminant infection was observed, likely due to the high 

estimated infection pressure in the current model (described above). 

As described in the previous chapter, the Echinococcus coproELISA prevalence and 

PCR prevalence for E. canadensis and E. multilocularis (and, to a lesser extent, 

E. granulosus) in the Alay valley appears to have been reduced during a praziquantel 

dosing scheme. Although the current model does not estimate the prevalence of 

infection (which is itself a problematic measure for overdispersed parasites such as 

Echinococcus (Hofer et al., 2000)), the general trend of a decrease in the level of 

infection was also observed when praziquantel dosing was simulated in the current 

model. The initial trend reflected a simple removal of worm biomass from dogs. 

However, as time progressed, this was reinforced by reductions in the level of 

intermediate host infection and therefore the force of infection to dogs (and foxes, in 

the case of E. multilocularis).  

7.4.5 Simulation of dosing strategies 

The dosing strategies simulated in the current model assume that dosing coverage in 

the dog population was 100%. This is very unlikely to ever be achieved, but was 
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included in order to identify general trends and patterns. Further work to investigate 

the effect of different dosing coverages on the reduction in level of infection would be 

interesting, and could have practical advantages in terms of planning control 

campaigns (especially when unowned dogs are present in a community). It is also 

assumed that dosing with praziquantel immediately removes all eggs (and all adult 

worms) for the duration of the prepatent period, which meant that the model 

predicted that dosing dogs every month with praziquantel ultimately removed all 

infection from the study area. As well as the issues associated with the potential 

reservoir of E. multilocularis in foxes discussed above, this prediction does not account 

for natural stochasticity in prepatent period and onset of egg production. If egg 

production commenced before the next praziquantel dose, as has been observed 

following experimental infection of dogs with E. multilocularis (Matsumoto and Yagi, 

2008) (where egg production was recorded as early as 26 days after infection), the 

transmission cycle could theoretically be maintained even in the presence of monthly 

dosing. Another potential issue is the fact that praziquantel does not inactivate eggs, 

and therefore it would be expected that following dosing of a dog, a large amount of 

egg contamination would take place (as dead worms containing eggs are expelled). 

This was not considered a particular problem for the current model, which focussed 

more with the long-term effects of dosing on the transmission dynamics, but could 

potentially be of epidemiological importance in the early stages of a control scheme. 

The model predicted that administration of a single dose of praziquantel per year had 

no effect on the levels of infection of foxes or ruminants, but did reduce the mean egg 

contamination (especially for E. granulosus – see figure 7.4) and the rodent burden 

(figure 7.15). The greatest effect on reducing E. multilocularis egg contamination was 

observed when dosing was implemented in October, at the point where definitive host 

burdens were reducing but egg survival was increasing. Dosing during the summer 

months was less effective at reducing egg contamination, likely due to the reduced 

survival of eggs during this time even in the absence of control. This is a potentially 

useful finding, and incidentally has particular relevance to the study site due to the 

tendency of dog owners to travel to summer pasture during these months (meaning 
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that dosing frequency tended to decrease during these months, as detailed in the 

previous chapter). The results of the model suggest that targeting of control strategies 

during the autumn and early winter months could have the greatest impact upon egg 

contamination. The relative availability of dog owners during this time would also 

suggest that this strategy is logistically feasible. The general strategy of focussing 

control efforts just before and during the winter months has been suggested by the 

authors of a study of risk factors for water vole infection with E. multilocularis (Burlet 

et al., 2011). This study suggested that living during periods of cold conditions was 

associated with a higher risk of infection with E. multilocularis, and therefore was 

suggestive of higher egg survival during these times. 

Evaluation of the benefits of targeted dosing in comparison to random/regular dosing 

was complicated by the potential for random dosing to be implemented at optimal 

times by chance alone. For example, figure 7.4 suggests that the optimal timing of an 

annual dose of praziquantel to reduce E. granulosus would be January – yet, this 

month was also selected as the first month for the random dosing strategy. Therefore, 

a comparison of random dosing to targeted dosing would suggest no benefit of the 

latter even if there in fact was a benefit (this may explain some of the apparent lack of 

targeted dosing effect in comparison to random dosing in figures 7.16 and 7.17). To 

avoid this problem, the average effect of random dosing starting in each month could 

be used as the baseline effect of random dosing. This was not performed in the current 

analysis because of the difficulties in visualising the model output. The results of the 

current analysis suggest that targeted dosing has a relatively small impact on reducing 

the E. multilocularis biomass in a community, in comparison to regular dosing (figures 

7.16 and 7.17). However, identification of optimal strategies of praziquantel dosing 

remains an area worthy of further exploration, as it could improve the cost 

effectiveness and therefore the sustainability of a control scheme. 

7.4.6 Further work 

Many specific avenues for further work have already been described or mentioned in 

the discussion, and will not be covered again here. It is clear that further work is 
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needed to better parameterise the current model, although it is unclear at the current 

stage how many of these issues result from flawed parameterisation, and how many 

from the effects of the limitations inherent in the representation of a stochastic system 

in a deterministic model (in particular, in relation to parasite aggregation, although 

some semi-deterministic models have incorporated overdispersion (Anderson and 

May, 1978; May and Anderson, 1978)). Sensitivity analysis of those parameters which 

are most questionable (especially the 𝛽 parameters indicating the force of infection) 

would be useful for gaining a better understanding of some of these limitations, and 

their impacts upon model predictions. Despite the issues with setting a strict spatial 

focus of a complex system, continued surveillance in Taldu-Suu (and ideally the other 

three villages studied during the current project) would be useful for further 

characterisation of the effect of the ongoing praziquantel dosing scheme, and may 

provide useful data for future model parameterisation. As discussed above, further 

fieldwork in the area to identify the prevalence and intensity of ruminant infection 

with E. granulosus (and E. canadensis) would also be advised, especially in the light of 

low observed prevalences of cystic echinococcosis in people. 

Given that suitable data for parameterisation become available, the ultimate aim will 

be to develop the current model into a more detailed model (such as an agent-based 

model or a metapopulation model). However, a ‘bridging’ model could also be 

developed from the current model framework by subdividing the host compartments 

according to risk factors for higher burdens (such as age or access to intermediate 

hosts), or in a spatial context (such as areas of pasture with higher moisture content 

and greater persistence of eggs) and modelling the parasite biomass within these, 

according to their relative frequencies in the population (Gurarie and King, 2005; 

Yakob et al., 2014). These strategies could allow some of the heterogeneity in the 

system to be captured, and could also have potential benefits for modelling the effect 

of risk-based surveillance or control schemes targeting high risk/high burden 

individuals or areas. An further expansion of this idea would be to adapt the mean 

worm burden formulation used here (Macdonald, 1965) into a stratified worm burden 

(SWB) model (Gurarie et al., 2010; Gurarie and King, 2014). The difficulty faced with 
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adopting the latter approach in the case of echinococcosis is the extreme degree of 

aggregation – where the parasite burden amongst infected hosts can range from 

individual worms up to tens of thousands, whereas for Schistosoma spp, the maximum 

burden considered was 150 (Gurarie et al., 2010).   

Another useful extension of the current model would be to combine it with an explicit 

economic model in order to evaluate the economic viability of different dosing and 

surveillance strategies, as is described in (Kato et al., 2010). As well as improving the 

economic viability (and therefore the sustainability) of an echinococcosis control 

scheme, the output of such a model could aid the dissemination of information to risk 

managers and funding sources. Further investigation of other control approaches, 

such as evaluation of the effect of culling of definite hosts (Takumi et al., 2008) or 

vaccination of sheep (Torgerson, 2006a) would be useful additions to the model, and 

could also be evaluated in an economic framework. Finally, as the current model 

explicitly models egg contamination of pasture, it could be expanded in order to 

explicitly model the potential risk of human infection through contact with eggs, as 

has been attempted in the Netherlands (Takumi et al., 2012). Despite the relatively 

large number of models of E. granulosus and E. multilocularis, this has been rarely 

attempted (Atkinson et al., 2013). A recent study has suggested that areas with high 

prevalences of human infection did not necessarily also have high levels of egg 

contamination in dog faeces (Chaâbane-Banaoues et al., 2015), suggesting that other 

factors beyond levels of egg contamination are important in the acquisition of human 

infection, and that additional factors should be considered when modelling human 

infection. 

Finally, as repeatedly mentioned above, the ultimate aim would be to develop the 

model into a stochastic, agent-based model, and/or a metapopulation model. These 

approaches would allow the explicit modelling of overdispersion, or spatial 

connectivity between the different model compartments. However, this is likely to 

require the collection of higher quality data than that currently available, and the 

development of this sort of model should therefore not be considered a primary aim 

until this data is forthcoming. The more basic models described above could be of 
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particular use in guiding data collection in preparation for the development of more 

complex models. 

7.5 Conclusions 

A deterministic mathematical model of transmission of E. granulosus (s.l.) and 

E. multilocularis in a coendemic area in the Alay valley, Kyrgyzstan, was developed and 

parameterised using a combination of published data from experimental studies, 

output of previous mathematical models, and general knowledge of the area. The 

model explicitly accounted for the lag period between exposure and patent/fertile 

infection in intermediate and definitive hosts, along with seasonal fluctuations in host 

population densities and mortality rates, and egg survival on pasture. Although the 

parameterisation is likely to be imperfect, and the model was not validated with field 

data, general trends observed in the course of a praziquantel dosing scheme in the 

study area were also apparent in the model output. The model was used to investigate 

the potential effects on E. granulosus (s.l.) and E. multilocularis biomass of targeted 

dosing of dogs with praziquantel instead of regular dosing. This suggested that when 

dosing is infrequent, then dosing during periods of higher egg production and higher 

egg survival resulted in a greater reduction in contamination of pasture with 

E. multilocularis eggs. However, this effect was reduced as the frequency of dosing 

increased. As the current model does not account for aggregation of parasites within 

hosts or in a spatial context, it is hoped that further developments to the model will 

ultimately incorporate this vital feature of parasite ecology and therefore better 

represent the transmission dynamics of these parasites in endemic areas and during 

control schemes. 
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Chapter 8: Canine echinococcosis in Kyrgyzstan:   

detection, diagnosis, and dynamics. 
 

“Multa novit canis, verum echinus unum magnum” 

“The dog knows many things, but the hedgehog knows one big thing” 

(modified from Desiderius Erasmus Roterodamus (1466-1536); 
itself from Archilochus (680-645 BC)) 
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8.1 Introduction 

Zoonotic cestodes of the genus Echinococcus are distributed throughout the world, 

and in many areas are an important public health issue (Jenkins et al., 2005). In 

particular, the number of cases of human echinococcosis is increasing in Central Asia 

(Torgerson, 2013), and the levels (and possibly the geographical distribution) of 

E. multilocularis infection amongst wild hosts in central Europe is increasing (Romig 

et al., 2006). These changes are the result of a range of ecological and sociological 

effects, and management of them will generally benefit from a multidisciplinary 

approach (Giraudoux et al., 2008). Despite this global distribution of Echinococcus 

spp, the burden of human disease (especially that resulting from E. multilocularis 

infection, which is commonly fatal in the absence of treatment) is aggregated within 

certain communities. Therefore, although the prevalence of alveolar echinococcosis is 

relatively low on a global scale, the burden of disease is high, and worthy of special 

attention in endemic areas (Torgerson et al., 2010). The current thesis focusses on an 

area thought to be highly endemic for echinococcosis, and uses a variety of strategies 

to investigate infection in the definitive host of particular importance in relation to 

human infection – domestic dogs. Whilst most attention is focussed on surveillance 

strategies, it is hoped that further work with ecologists, epidemiologists, economists 

and sociologists may lead to improvements in our understanding of Echinococcus 

transmission in highly endemic areas, and to the development of sustainable control 

strategies. 

The approach taken during the current thesis can be viewed from a variety of 

perspectives – the practical applications of statistical and mathematical methods in a 

surveillance context; the investigation of parasite ecology at a variety of levels; and 

from a more theoretical perspective regarding the pursuit of knowledge and the 

application of this within a transdisciplinary/interdisciplinary framework. At risk of 

appearing self-indulgent, each of these will be briefly described below, before the 

general conclusions arising from the current thesis are described. Finally, some 

possible areas worthy of further work will be described. 
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8.2 Practical framework of thesis: explaining the thesis motivation 

Human echinococcosis is an increasing public health problem in Kyrgyzstan, 

especially in the south of the country. The reasons for this are associated with a range 

of cultural and socioeconomic factors which are difficult to address (although some 

efforts towards this aim are currently in place). As the most effective method of 

controlling human infection in an endemic area is to control infection in the definitive 

host (domestic dogs and foxes), a control scheme for echinococcosis based upon 

praziquantel treatment of dogs was recently instigated in Kyrgyzstan (WHO, 2011). 

Despite the availability of suitable tests for diagnosis of canine infection and effective 

drugs to remove canine infection, echinococcosis control is challenging due to the 

long duration of intervention required – which in many cases may be indefinite. As 

such, careful consideration of the control and surveillance strategy to be employed is 

essential to the sustainability, and the ultimate impact, of a control scheme. Despite 

this, in many highly endemic areas, this aspect of control is frequently overlooked in 

favour of generic rules and recommendations. 

The current study has focussed on the identification of strategies which could be 

applied to echinococcosis surveillance and which may improve the effectiveness and 

sustainability of a control scheme. Aspects addressed have been methods of 

interpretation of diagnostic tests (chapters 3 and 4); approaches for classification of 

dog ownership patterns in communities and identification of risk factors for infection 

(chapters 5 and 6). The thesis work concludes with chapter 7, which describes a 

modelling framework which offers the potential for evaluating seasonality and the 

impact of control strategies in areas coendemic for Echinococcus granulosus (sensu 

lato) and Echinococcus multilocularis. In order to evaluate many of these strategies, 

faecal samples were collected and tested from four villages in the Alay valley of 

southern Kyrgyzstan over a period of 28 months during a control scheme based upon 

supervised dosing of dogs with praziquantel. Whilst useful results regarding patterns 

of dog ownership and seasonal and temporal trends have been obtained from this 

study, it is hoped that further work will further develop these ideas in order to 
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improve surveillance and control in the remote, resource-poor settings most 

commonly affected by echinococcosis. 

8.3 Conceptual framework of thesis: explaining the thesis title 

Just as the dynamics of echinococcosis operates on a variety of spatial and temporal 

scales (Giraudoux et al., 2002, 2008), the current work has approached the 

investigation of echinococcosis on a variety of scales: from the individual parasite to 

the community of parasites in an area. These have been categorised into three groups 

(admittedly selected originally for their alliterative characteristics, but which have 

grown to represent some of the challenges facing Echinococcus control): 

Detection. This relates to the identification of the presence of Echinococcus at the 

individual dog level, and was predominantly featured in chapter 4, where Bayesian 

mixture modelling was used to attribute a score to individual dogs based upon 

coproantigen ELISA data. Some of the limitations inherent in the mathematical model 

described in chapter 7 relate back to this issue, due to the effect of overdispersion on 

transmission dynamics (meaning that relatively few individuals would be expected to 

carry most of the parasite biomass). As such, detection of those individuals with the 

highest parasite burdens may be of use for targeted surveillance and control. 

Diagnosis. This was selected to relate to the identification of echinococcosis at the 

population level. This was a central concept throughout the thesis – with aspects in 

each chapter. Chapters 3 and 4 identified methods of interpreting the results of 

coproantigen testing at the population level. Chapter 5 identified a novel approach for 

community-level data exploration prior to the implementation of a control scheme, in 

order to identify potentially important associations with Echinococcus test output. 

Chapter 6 described a temporal evaluation of an echinococcosis control scheme, with 

a novel approach to interpretation of data by aggregating at the household level rather 

than at the individual dog level. And finally, chapter 7 developed a framework for the 

mathematical modelling of echinococcosis in coendemic areas, by modelling parasite 

transmission using average measures for the community in question. 
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Dynamics. This was predominantly dealt with in chapters 6 and 7, which focussed on 

the identification and interpretation of seasonality in echinococcosis, the 

identification of temporal dynamics in the face of a control scheme, and potential 

methods of maximising the effect of praziquantel dosing strategies. 

These three scales of investigation (individual dog, population, and temporal trends) 

are closely interrelated. As described above, the aggregated nature of infection within 

individual hosts would be expected to increase the effect of individual-level variation 

in parasite burden on the transmission process at the population level, leading to 

temporal and seasonal trends in infection, and so on. As such, any investigation of 

echinococcosis should concentrate on the whole system rather than any individual 

scale of interpretation. 

One aspect of echinococcosis which was not explicitly covered in the current thesis 

was the spatial distribution of Echinococcus spp. E. multilocularis has been found to 

exist on a range of spatial scales beyond those defined by individual hosts: from the 

“patch” scale, to the “local” scale, the “regional” scale, and beyond (Tackmann et al., 

1998; Danson et al., 2003; Giraudoux et al., 2003; Shaikenov, 2006). The fact that 

transmission processes are clearly operating on a variety of different scales suggests 

that a “systems approach” to the investigation of echinococcosis would be beneficial 

(Giraudoux et al., 2008), integrating analysis across these scales rather than focussing 

on only one scale in isolation. In particular, adopting a complex systems approach 

(Gisiger, 2001; Horwitz and Wilcox, 2005; Diez Roux, 2011) may allow a better 

understanding of Echinococcus transmission dynamics to be gained, with implications 

for our understanding of the transmission ecology of these parasites, as well as 

practical approaches for control and surveillance. 
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8.4 Philosophical framework of thesis: explaining the thesis subtitle 

It is maybe unconventional to address the philosophical underpinnings of a PhD thesis 

directly within the thesis, but since this had a considerable impact on the direction the 

thesis took, it is worthy of mention here. The subtitle of this thesis, “multa novit canis, 

verum echinus unum magnum” is derived from the phrase “multa novit vulpes, verum 

echinus unum magnum” attributed to the ancient Greek poet Archilochus in Erasmus’ 

‘Adagia’. This phrase translates as “the fox knows many things, but the hedgehog 

knows one big thing”. Despite the fortuitous coincidence that the etymological origin 

of Echinococcus is based upon the same Ancient Greek root as the Latin word for 

hedgehog (bioetymology.blogspot.co.uk, 2012), this phrase was selected because of its 

relation to the philosophy underlying the current thesis. The quote describes two 

main approaches for understanding the world, and was described further by Isaiah 

Berlin as such: “…there exists a great chasm between those, on one side, who relate 

everything to a single central vision, one system less or more coherent or articulate, in 

terms of which they understand, think and feel … and, on the other side, those who 

pursue many ends, often unrelated and even contradictory, connected, if at all, only in 

some de facto way, for some psychological or physiological cause, related by no moral 

or aesthetic principle” (Berlin, 1953). Whilst this is largely an artificial construct (as 

with most dichotomous classifications – see chapter 4), it does address two conflicting 

concepts of research. Namely, whether to follow the path of the hedgehog into 

perfecting skills within a single, clearly demarcated discipline, or to adopt the strategy 

of the fox, and attempt a variety of novel approaches to the problem in question. As 

described above, echinococcosis is a complex problem, and one which will (in most 

cases) require a multidisciplinary approach for effective control and management – 

and indeed, this will require effective collaboration between “foxes” and “hedgehogs”. 

However, a decision was made during the current thesis to explore the application of a 

range of novel methodologies to the problem of Echinococcus surveillance (and, to a 

lesser degree, ecology and control). As a result, many of the conclusions made in the 

current thesis are intended to be merely stepping stones towards further work and 

development – as discussed in the respective chapters. 
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8.5 Description of study output 

The practical (i.e. surveillance and control), conceptual (i.e. parasite ecology) and 

philosophical (i.e. transdisciplinary) frameworks described above led to the use of a 

variety of different analytic and investigative strategies in the current study. Some of 

these were contradictory – for example, despite arguing against dichotomisation of 

coproELISA data in chapter 4, coproantigen ELISA data was dichotomised in chapter 

6; and despite discussing the importance of overdispersion in chapter 1, this was 

ignored in the mathematical model in chapter 7. However, all of these strategies help 

to build up a picture of the general aim of the thesis – to develop strategies for 

echinococcosis surveillance in remote areas where high-quality data may be difficult 

to obtain. These concepts will now be briefly detailed independently, before being 

summarised in aggregate. 

8.5.1 Diagnostic test interpretation 

An important component of the thesis was the interpretation of diagnostic tests – in 

particular, the Echinococcus coproantigen test (Deplazes et al., 1992; Allan et al., 1992). 

Since these were first developed in the early 1990s, the general approach to 

interpretation has been to specify a single cut-off, and interpret the OD value of 

samples in relation to this. The selection of this cut-off has generally been based upon 

a panel of known negative samples taken from a non-endemic area. This stratrgy was 

found to perform poorly in chapter 3, which also investigated alternative methods of 

determining a cut-off, including those based upon ROC curve analysis and mixture 

modelling. ROC curve strategies offered a number of advantages for tailoring a cut-off 

to the requirements of the analysis, but required suitable panels of known status; these 

were not required for the mixture modelling approach, but this made distributional 

assumptions which may not be appropriate. Chapter 3 also detailed the effect of 

variations in test performance (estimated sensitivity and specificity) on the estimated 

prevalence and the predicted true prevalence for a number of samples collected in 

Xinjiang province, China, and made some suggestions for accounting for this in 

interpretation. 
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Based upon the findings in chapter 3, chapter 4 developed a novel alternative strategy 

for the interpretation of coproantigen data by placing the mixture modelling strategy 

into a Bayesian context, and by incorporating logistic regression analysis. One 

important output from this strategy is the suggestion that a full panel of samples of 

“known” status (ideally endemic field samples classified using a gold standard 

diagnostic test) should be tested alongside the samples under investigation. This panel 

could have particular use for aiding the interpretation of ELISA data using a variety of 

methods, as well as offering the potential for sample standardisation (which is 

currently not routinely performed during the coproantigen ELISA test, and which may 

have particular implications for analysis of longitudinal data). The mixture model 

itself allowed the estimation of the probability that any particular sample is positive, 

but also allowed interpretation at the population-level (both in terms of the 

prevalence of infection and the distribution of positive samples). The prevalence 

estimate obtained from this model would be expected to have a higher sensitivity and 

specificity than prevalence estimates obtained from dichotomisation of individual 

samples, but further work is required to validate this suggestion. In particular, when 

the mixture model was applied to data collected from the Alay valley in Kyrgyzstan, 

the estimated prevalence was much lower than that based upon a single cut-off 

(chapter 5). Finally, by combining the individual estimates of probability of infection 

with the predicted log worm burden from a logistic regression model, an estimate of 

the log burden could be obtained, which may be useful for identifying and quantifying 

patterns of infection both at the individual and population level in the communities, 

both prior to and during a control scheme. 

8.5.2 Classification of dog ownership in the Alay valley 

Chapter 5 investigated the application of a multivariate technique, multiple 

correspondence analysis, to dog owners’ responses to a number of questions prior to 

the implementation of a control scheme. It was hoped that this strategy could identify 

patterns of dog ownership in these communities, and may allow some form of 

community-level risk profiling prior to the instigation of control. Using this approach, 

a general picture of dog ownership in the study villages was able to be constructed, 
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which described patterns in livestock ownership, dog type, dog demographics and 

owner knowledge/behaviour.  These dog ownership patterns appeared to differ 

between the four different villages, which could have implications for Echinococcus 

transmission ecosystems or control strategies in these communities (although no 

evidence of this was found in the data). Also, some associations between patterns of 

dog ownership and the results of diagnostic testing of faecal samples were obtained. 

Dogs from households which did not own livestock or visit Jailoo, and those from 

households which appeared to have a better understanding of echinococcosis, 

appeared to have a higher probability of E. granulosus PCR positivity. Identification of 

the relative role of dog ownership patterns and village-specific differences could be an 

area of further work. Also, use of hierarchical clustering methods to group individual 

dogs with respect to the identified patterns would allow more formal investigation of 

risk factors for infection and therefore this approach could offer benefits for quickly 

classifying households and villages with regards to potential risk factors of importance 

prior to the implementation of a control scheme. It is hoped that techniques such as 

these will be used in combination and in parallel with traditional regression 

techniques, such as that described in a recent analysis accepted for publication in the 

Journal of Helminthology (section A7 of the appendix), in order to maximise the 

information obtained during surveillance activities. 

8.5.3 Longitudinal evaluation of a control scheme in the Alay valley 

In chapter 6, information theoretic and model averaging approaches were used to 

develop a predictive model of seasonal and temporal trends in coproantigen and 

coproPCR positivity over the course of 28 months, in the face of a praziquantel dosing 

scheme. Due to the inability to reconcile differences between the ELISA and the PCR 

tests, separate models were created for each of these tests. However, further work to 

incorporate these different outcomes in a single modelling framework would be 

strongly advised, and would offer considerable benefits to surveillance in coendemic 

areas. In order to investigate risk factors for infection in situations where linking 

individual faecal samples to individual dogs is not possible (which would be expected 

to be a common occurrence in areas with aggressive dogs, or dogs which are free to 
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roam), analysis was conducted at the household level. Since many control strategies 

for echinococcosis are focussed at this level (in the current case, the local veterinarian 

was instructed to travel from household to household to dose dogs), it is hoped that 

information loss through aggregation will be minimal. However, care should be taken 

when attempting to interpret dog-level risk factors (including reported history of 

praziquantel dosing) based upon household-level predictions. Also, this approach 

reduces the ability to identify age-related patterns of infection, which are generally 

required for identification of the force of infection and evaluation of possible 

immunity. Therefore, when collecting samples prior to an intervention scheme in 

particular, it may be beneficial to focus more on attributing samples to individual 

dogs. Despite these caveats, the interpretation of results at the household level may 

allow the identification of household-level factors associated with test positivity, and 

therefore may be useful for identification of control scheme failures, or areas worthy of 

additional attention. 

This modelling strategy identified a general reduction in test prevalence over time, 

with seasonal increases in test prevalence. However, the only significant factors for 

E. granulosus PCR positivity was an increase in test prevalence during the September 

2013 visit. The cause of this is unknown, and may be worthy of further investigation. 

Coproantigen ELISA and E. multilocularis PCR prevalence were found to be higher in 

the autumn months than the spring months, whereas the reverse was true for 

E. canadensis (and, qualitatively, E. granulosus) PCR prevalence. This may indicate 

different patterns in access to infected intermediate hosts. Also, there appeared to be 

an effect of the presence of small dogs and young dogs in the household on the 

probability of coproantigen ELISA and E. canadensis test positivity, which may be 

indicative of some dogs not being dosed, or may represent age-related immunological 

effects. Further development of this strategy will focus on interpretation of 

coproantigen results in a continuous fashion (either by modelling the OD value 

directly, or by using the output of the mixture model described in chapter 4). 
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8.5.4 Development of a novel mathematical model of Echinococcus 

transmission 

Chapter 7 detailed a novel mathematical model of transmission of E. granulosus 

(sensu lato) and E. multilocularis in areas where both are coendemic and both infect 

domestic dogs. Previous mathematical modelling strategies applied to coendemic 

areas have generally focussed on estimating transmission parameters rather than 

explicitly modelling transmission in the whole system (Budke et al., 2005b; Ziadinov et 

al., 2008). The current model aimed to represent the complete transmission system, 

and due to the complexities associated with this focussed on a relatively small area 

(based around one of the study villages). As the parasite biomass was modelled rather 

than host infection, egg contamination of pasture was able to be explicitly modelled, 

which offers the potential for model adjustment in order to explicitly model human 

infection. Although model parameterisation was very limited, the model may have 

some potential for the broad evaluation of the impact of control schemes and 

seasonality on transmission, and in particular may be useful for the identification of 

data gaps worthy of further attention. Simulation of the effect of dosing dogs with 

praziquantel at set points during the year on egg contamination of pasture suggested 

that dosing during the autumn and early winter months was most effective at reducing 

contamination. Comparison of the results of this with those of regular dosing 

suggested a relatively small benefit of targeted dosing, but as targeted dosing over the 

winter months may be more logistically feasible in these communities, may be an area 

worthy of further exploration. It is hoped that further model development will allow 

the evaluation of cost-effective dosing campaigns, which may be more sustainable in 

the long-term. 

One major constraint to the model was the lack of incorporation of overdispersion in 

parasite burdens within individual hosts or in the environment. As these features 

would be expected to have implications for the stability and transmission ecology of 

Echinococcus spp, it is hoped that as more data become available, the model will be 

expanded in order to account for heterogeneities in transmission in a spatiotemporal 

context. Although deterministic models have been developed which incorporate 
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overdispersion using the negative binomial distribution (Anderson and May, 1978), 

this may be problematic for the evaluation of the effect of control schemes, which 

would disrupt the distribution of parasites within a community. Stratification of 

model compartments in order to capture different transmission patterns within the 

mean worm burden framework (Gurarie and King, 2005) may be useful, but the 

ultimate aim would be the development of the model framework into an agent-based 

modelling structure, and/or a metapopulation model. A major question in need of 

answering is the relative roles of domestic and dogs and foxes in the transmission 

cycle of E. multilocularis. In the absence of molecular tests which are able to 

differentiate between strains of E. multilocularis cycling between the different hosts, 

investigation of rates of (ideally, canine and vulpine) reinfection in the face of a 

control scheme may offer the best chance of further clarifying these transmission 

pathways and dynamics. 

8.6 Areas of further study 

As described above, the overarching theme throughout this thesis has been the 

investigation of approaches for surveillance of canine echinococcosis with a view 

towards improving the sustainability and effectiveness of control strategies, as 

effective control of domestic dog infection is likely to have the greatest impact on the 

risk of human infection. Although a variety of concepts and approaches are identified 

and evaluated in relation to each of the current study areas described above, further 

work is needed in order to fully realise these methods. Many specific areas for further 

study are described in the individual chapters themselves and in the brief summaries 

above. However, a number of areas of further study which incorporate aspects of all of 

these study areas can also be identified by looking at the system as a whole. 

The three conceptual themes in the study (individual level interpretation, population 

level interpretation, and temporal trends) can be related back to the improvement of 

echinococcosis surveillance and control in the following way: 
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Detection (individual level interpretation): identification of high burden dogs (for 

example, using the mixture model described in chapter 4, or by using ROC curve 

analysis as described in chapter 6). 

Diagnosis (population-level interpretation): methods of describing and “risk 

profiling” dog ownership patterns in a community (as described in chapter 5) and 

summarising the OD distribution amongst positive individuals (chapter 4). 

Dynamics (temporal trends): the identification of the seasonal effects and the 

evaluation of praziquantel dosing strategies at the individual and population level (as 

identified in chapters 6 and 7). 

The main constraint to further development of this work is the limited availability of 

high quality data – in particular, for validation of the mixture model and the 

mathematical model. Since the gold standard test for canine echinococcosis is based 

upon necropsy, collection of gold standard test data from domestic dogs is rarely 

possible. However, by coordinating with local fox hunters (Ziadinov et al., 2010), and 

those responsible for dog culling in communities undergoing culling campaigns, some 

data may be obtainable. It is important that this is done with the full knowledge of the 

communities involved, since dog culling in particular is a contentious issue (Johansen 

and Penrith, 2009; Atema and Hiby, 2015). Alternatively, arecoline purgation has a 

high specificity (in the hands of trained operatives), and could be used in these 

communities. For further work, this would be particularly useful if conducted prior to 

the implementation of a control scheme, when the parasitological system is at a 

‘steady state’ – although investigation of trends in infection in the face of a control 

scheme would also be of interest (Basáñez et al., 2012a; b). However, this strategy is 

unlikely to be feasible for ongoing surveillance. 

Another aspect of diagnostic testing which requires further attention is the 

incorporation of PCR testing with coproantigen ELISA results in a surveillance 

context. Until species-specific coproantigen tests are available (WHO/OIE, 2001d), 

coproPCR is required for diagnosis of canine echinococcosis to the species level. 



310 

 

However, as PCR is generally considered inappropriate for surveillance (Deplazes et 

al., 2003; Torgerson and Deplazes, 2009), it is commonly used as a confirmatory test in 

surveillance settings (Eckert and Deplazes, 2001). This approach was not adopted in 

the current study, due to the apparent independence of ELISA and PCR test results, 

and instead a random selection of samples underwent PCR testing regardless of PCR 

status. Although this caused difficulties in the current study, the apparent 

independence of the two tests offers potential for the development of a method of 

incorporating both ELISA and PCR tests, for example based upon latent class methods 

(Hartnack et al., 2013). Alternatively, the development of molecular methods of 

identification to the species or strain level which can be applied in a surveillance 

context would be worthy of further exploration. For example, loop-mediated 

isothermal amplification (LAMP), which has already been developed for E  granulosus 

(s.s.) (Salant et al., 2012; Ni et al., 2014a) and E. multilocularis (Ni et al., 2014b); or 

recombinase DNA polymerase amplification (RPA) (Piepenburg et al., 2006). As these 

approaches do not require expensive equipment such as thermocyclers, they may also 

be more appropriate than PCR in resource-poor communities in developing countries. 

Based upon the themes identified above, one particular area worthy of further study is 

the identification of high burden individuals/households, in order to concentrate 

surveillance and control campaigns upon these. Due to the potentially high 

Echinococcus burdens which can be reached in definitive hosts (measured in 

thousands), Echinococcus burdens have been found to approximate a power law 

distribution (Jenkins and Morris, 1991; Hofer et al., 2000; Stieger et al., 2002). As a 

result of this aggregation (as is seen for many diseases), the majority of transmission 

would be expected to occur through a minority of the individuals (Anderson and May, 

1991c; Woolhouse et al., 1997; Perkins et al., 2003). Whilst aggregation in a natural 

setting is thought to stabilise transmission dynamics overall (Anderson and May, 1978) 

(although this may be dependent upon the exact generating process for the 

aggregation (Rosà and Pugliese, 2002)), it has been argued that control schemes may 

be more effective when the outcome of interest follows a power law distribution 

(Woolhouse et al., 1997; Gladwell, 2006), due to the effect of the few high impact 
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individuals on driving the process. By focussing control on these most influential 

individuals (in the case of echinococcosis, those few dogs containing the majority of 

the parasite biomass), a considerable effect on the levels of the outcome could be 

achieved (Woolhouse et al., 1997). Identification of high burden individuals could be 

achieved through the mixture modelling framework described in chapter 4, and could 

also be incorporated into a longitudinal model such as that described in chapter 6. 

Particular attention could be focussed on identifying risk factors for high burdens 

(including at the household level), since this may offer a method of specifically 

targeting these individuals. Conversely, if these dogs cannot be identified based upon 

their exposure history, control efforts may be better focussed on methods of 

maximising overall praziquantel coverage in a community and minimising the risk of 

any individual being missed. In the same way that controlling infection in the few 

dogs harbouring the majority of the parasite biomass in the community would be 

expected to be rapidly reduce the levels of infection, if these individuals were missed, 

the control scheme would be expected to not be effective.  

Ultimately, it is hoped that mathematical modelling approaches will become 

increasingly useful in the planning and monitoring of control schemes and 

surveillance strategies for echinococcosis. As described earlier, parameterisation of 

complex models such as this require the collection of higher quality data than that 

available currently from the current field site, and it is hoped that data collection in 

the Alay valley will be continued to some degree as the current control scheme 

progresses. Incorporation of data collected during helminth control schemes into a 

mathematical modelling framework can offer valuable insights into transmission 

dynamics, and can allow control strategies to be tailored accordingly (Churcher et al., 

2006; Basáñez et al., 2012b). However, very little is currently known about the 

dynamics of echinococcosis in the face of praziquantel dosing, since longitudinal data 

is rarely collected during echinococcosis control – instead, data is commonly collected 

prior to a control scheme, and then after a number of years have passed. Although 

imperfect, the interpretation of coproantigen ELISA-based longitudinal data (such as 

that described in chapter 6) in a semiquantiative manner through use of the mixture 
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modelling strategy described in chapter 4, in a mathematical modelling framework 

such as that described in chapter 7, could offer great benefits to our understanding of 

echinococcosis control. 

As a final note, following on from the discussion above, the concept of power laws and 

fractal relationships could also be investigated in relation to the ecology and 

epidemiology of echinococcosis itself, by adopting a complex systems approach to 

modelling. As described in chapter 1, the concept of ‘criticality’ shares a number of 

characteristics with the distribution and transmission patterns of Echinococcus spp. As 

described earlier, the form of criticality can have considerable implications on the 

optimal control scheme (Pascual and Guichard, 2005), but another important issue is 

that, the timing of events in these systems is inherently unpredictable, even if the 

distribution of their relative frequency and magnitudes can be predicted and 

quantified. A good example is that of earthquakes, which have been found to follow a 

power-law distribution (the Gutenberg–Richter law: basically, small earthquakes are 

relatively common whereas large ones increasingly rare), but which can still generally 

not be predicted in advance (Bak et al., 1994)). Work to further identify and clarify 

these would be interesting and could lead to both an improvement in control 

strategies and a better appreciation of the unpredictability inherent in these systems 

(especially in combination with the population explosions of intermediate hosts of 

E. multilocularis, which are known to occur in many endemic areas (Giraudoux et al., 

2013b)). Accounting for this natural stochasticity may allow a better understanding of 

the transmission dynamics of Echinococcus spp in endemic areas. 
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Appendix 
 

“Science is not finished until it's communicated” 

Sir Mark Walport (1953 – ) 
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A1. The Reproduction Ratio 

The basic reproduction ratio, 𝑅0, in microparasite epidemiology (e.g. viruses and 

bacteria) is usually used to describe the average number of secondary cases resulting 

from each infection in a totally susceptible population (Anderson and May, 1982). 

Although the concept of 𝑅0 has been in use in epidemiology since the early 20th 

century (Kermack and McKendrick, 1927; Heesterbeek and Dietz, 1996), it was not 

formally named (as ‘Z0’) until the 1950s (MacDonald, 1957), and it was not popularised 

until the 1980s (Anderson and May, 1979; May and Anderson, 1979; Heesterbeek and 

Dietz, 1996). Following entry of a pathogen into an immunologically naive (i.e. 

susceptible) population, two possible ‘steady states’ can be considered. If 𝑅0 is less 

than 1, the ‘extinction steady state’ would be expected, where the asymptotic 

prevalence of infection and the infection pressure are both zero. However, if 𝑅0 is 

greater than 1, a nonzero proportion of susceptible animals will remain at the steady 

state (known as the ‘asymptotic proportion’). In this steady state, the presence of 

immunity prevents further increases in infection prevalence regardless of the true 

value of 𝑅0. In order to understand this, a related parameter, 𝑅, has been devised 

which describes the average number of secondary cases resulting from each infection 

in the presence of immunity. Since it can be assumed that sustained transmission will 

only take place when 𝑅 is greater than 1, 𝑅 has potential use as a ‘threshold quantity’ 

when considering the likely effect of vaccination schemes on pathogen transmission 

(which will aim to reduce 𝑅 to less than 1 by stimulating immunity in a population). 

Despite this, 𝑅0 (and 𝑅) is not a pancea: pathogens with an 𝑅0 of less than 1 can spread 

in a population, and those with an 𝑅 greater than 1 can become extinct (Roberts, 2007; 

Li et al., 2011). 

Three general methods of estimation of 𝑅0 have been described. At the basic level, as 

described here, most of these rely on the assumption of a homogenously mixing 

population with no births or deaths (although methods are available to incorporate 

more complex structures, such as heterogeneous mixing). The first approach is based 

upon parameterisation of a model of transmission processes. For example, 𝑅0 can be 

estimated as the product of the number of contacts an infectious individual has per 
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unit of time, the conditional probability of transmission given this contact, and the 

duration of infectiousness in an infected individual (𝐷). However, as these parameters 

are often not directly known, alternative approaches to the estimation of  𝑅0 have 

been developed. 

An alternative approach is to estimate 𝑅0 using data on the prevalence of infection in 

an endemic population in a ‘steady state’ of transmission (where the proportion of 

susceptible animals is no longer changing over time). In this situation of an 

unchanging prevalence over time, 𝑅 will be equal to 1, and as 𝑅 is directly related to 

𝑅0, 𝑅0 can be estimated. 𝑅 can be calculated as the product of the proportion of 

susceptible individuals in a population and 𝑅0, and therefore this equation can be 

reformulated to allow 𝑅0  to be estimated from the proportion of susceptible 

individuals in the population (𝑆): 

𝑅0 =
1

𝑆
 

The final method for estimation of 𝑅0 is based upon the rate of increase in number of 

infected individuals (Λ) following introduction of a pathogen into a completely naive 

population. This approach assumes that the measurements are taken during the 

‘exponential phase’ of transmission, meaning that the population must be large 

enough for there to be effectively unlimited susceptible individuals over the period of 

measurement (Dohoo and Medley, 2009). As the rate of increase in Λ can be estimated 

as the product of the rate of loss of infectiousness and (𝑅0 − 1), this equation can be 

reconstructed to give (𝑅0 − 1) as the product of Λ and the duration of infectiousness, 

D (= 1
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦⁄ ): 

𝑅0 = ΛD + 1 

A similar approach to this was been used for the estimation of the 𝑅0 for Severe Acute 

Respiratory Syndrome (SARS), where no endemic steady state was reached and 

insufficient parameter data were available to use the alternate methods (Lipsitch et al., 

2009). 
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These approaches for estimating of 𝑅0 have been used for cestodes (Roberts et al., 

1987), although there are some caveats to interpretation as described below. If 𝑅0 is 

greater than 1, it can be estimated as the reciprocal of the proportion of susceptible 

animals at the steady state (the ‘asymptotic proportion’). The asymptotic infection 

pressure, ℎ, can then be estimated as: 

ℎ =  𝑔(ℎ)(𝑅0 − 1) 

Where 𝑔(ℎ) is a function which denotes the proportional reduction in the asymptotic 

infection pressure due to development of immunity resulting from re-exposure. This 

can be reformulated into the following equation: 

𝑅0 = 1 +  
𝑚𝑒𝑎𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦

𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦
 

And if it can be assumed that infection pressure is sufficiently high so as to result in 

lifelong immunity following exposure (i.e. immunity resulting from repeated exposure, 

in the case of cestodes), this formula can be reformulated as (Roberts et al., 1987): 

𝑅0 =
𝑚𝑒𝑎𝑛 𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦

𝑚𝑒𝑎𝑛 𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦
 

This equation is very similar to the estimation of 𝑅0 as the inverse of the susceptible 

proportion at the steady state as described above, since in a population with equal 

numbers of animals of different ages, the ratio 

( 𝑚𝑒𝑎𝑛 𝑎𝑔𝑒 𝑜𝑓 𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑚𝑒𝑎𝑛 𝑙𝑖𝑓𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑛𝑐𝑦⁄ ) represents the susceptible 

proportion. Therefore, inverting this gives the inverse of the susceptible proportion. 

Note, however, that it is unlikely that the population will have even representation of 

all ages (since older sheep may be more likely to be removed through slaughter). In 

the case of these ‘negative exponential’ populations (where most individuals are 

young), the formula can be adjusted by adding 1 to the estimate, as was used in a study 

of arboviruses (Dietz, 1974). 
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Using these equations on worm burden data collected from infected sheep, and 

assuming that a lack of increasing burden with age was suggestive of immunity, 𝑅0 

was estimated as between 3.0 and 3.5 for Taenia.hydatigena (with a higher estimate for 

female sheep than male sheep, due to their longer life expectancy), and between 1.0 

and 1.5 for E. granulosus (Roberts et al., 1987) – although as the timing of infection 

(especially with T. hydatigena) in these cases was left-censored, and so the true values 

of 𝑅0 may in fact be higher. The impact of this difference between estimated 𝑅0 for T. 

hydatigena and E. granulosus was that a dog dosing campaign was more effective 

against E. granulosus than against T. hydatigena (in fact, there was evidence of an 

increase in levels of T. hydatigena infection in older sheep in the face of the dosing 

campaign, due to the effects on acquired immunity, which could have repercussions 

for canine infection with this cestode) (Gemmell et al., 1986b; Roberts et al., 1987).  

An estimate of 𝑅0 has also been suggested for E. multilocularis, which accounts for 

both definitive and intermediate hosts simultaneously (Roberts and Aubert, 1995). 

Fuller details of the model structure and parameterisation are given in chapter 1, but 

the structure will be repeated here for clarity: 

 

In order for the number of worms in the second generation to be greater than that in 

the current generation, the product of the sequential processes leading to 

transmission (excluding the size of the compartments) must be greater than the 

product of the processes resulting in loss of worms from the cycle: 

Prepatent foxes Infectious foxes Susceptible foxes 

Prepatent voles Susceptible voles Infectious voles 

λf 

λ
v
 

δf δf δf 

δv δ
v
 δ

v
 

Fox density (Nf ) 

1/η 1/τf 

1/τ
v
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λ𝑓 .
1

𝜏𝑓
. 𝑁𝑓 . 𝜆𝑣.

1

𝜏𝑣
 >  (𝛿𝑓 +

1

𝜏𝑓
) . (𝛿𝑓 +

1

𝜂
) . (𝛿𝑣 +

1

𝜏𝑣
) . 𝛿𝑣 

This results in the following formula for 𝑅0, which has been restructured by Ishikawa 

to give the equation on the right (Ishikawa, 2006): 

𝑅0 =
λ𝑓λ𝑣𝑁𝑓

𝜏𝑓𝜏𝑣(𝛿𝑓 +  1 𝜏𝑓
⁄ )(𝛿𝑓 +  1 𝜂⁄ )(𝛿𝑣 +  1 𝜏𝑣

⁄ )𝛿𝑣

=  
λ𝑓λ𝑣𝑁𝑓

𝛿𝑣(1 + 𝛿𝑣𝜏𝑣)(1 + 𝛿𝑓𝜏𝑓)(1 + 𝛿𝑓𝜂)
𝜂 

This can be shown to be based on the same concept introduced in the first equation 

(i.e. the inverse of the susceptible proportion of animals) once parameterised (Roberts 

and Aubert, 1995): 

𝑅0 =
2

(1 − 𝑃𝑓𝑜𝑥)(2 − 3𝑃𝑣𝑜𝑙𝑒)
 ≈  

1

(1 − 𝑃𝑓𝑜𝑥)
=

1

𝑆𝑓𝑜𝑥
 

Where 𝑃𝑓𝑜𝑥  and 𝑃𝑣𝑜𝑙𝑒  represent the prevalence of infection in foxes and voles, 

respectively (the latter of which can be assumed to be approaching zero, hence its 

removal from the equation), and 𝑆𝑓𝑜𝑥 is the proportion of susceptible foxes. 

The estimate of 𝑅0 proposed by Ishikawa is similar to the Roberts equation above, but 

includes additional parameters in the estimation of the transmission to foxes and the 

rate of egg production: 

𝑠𝑓𝑓λ𝑣𝑁𝑓

𝛿𝑣(1 + 𝛿𝑣𝜏𝑣)(1 + 𝛿𝑓𝜏𝑓)(1 + 𝛿𝑓𝜂ℎ)
(𝜌𝜂ℎ +

𝜂𝑙

1 + 𝛿𝑓𝜂𝑙
) 

Where 𝑠𝑓 indicates the probability of an ingested cyst developing to a mature worm in 

a fox, 𝑓 is the average number of voles ingested per fox per day, 𝜂𝑙 is the duration of 

low egg production, 𝜂ℎ  is the duration of high egg production and 𝜌  is the 

multiplicative factor for high egg production (cf low). 

As mentioned above, the approaches described here assume homogenous mixing of a 

population, with no differences in the rate of transmission between different groups 

within the population. This is rarely the case, and in situations where transmission 
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(and therefore 𝑅0) differs between groups within a population, the interpretation of an 

‘average’ value can be challenging. In order to tackle this problem, the conceptual 

mathematical foundations of 𝑅0 were clarified, leading to the definition of 𝑅0 as the 

‘dominant eigenvalue of a positive linear operator’ relating the number of infected 

hosts in one generation to that in the next generation (Diekmann et al., 1990). This 

relationship can be used to estimate 𝑅0 in heterogeneously mixing populations where 

the infection pressure may differ between different groups of individuals. 

As alluded to earlier, the techniques described above have been derived from those 

used for the investigation of the 𝑅0 for microparasites such as bacteria and viruses. 

Applying the concept of 𝑅0 to macroparasitic infections is more complicated, due to 

the need to account for parasite numbers (rather than just classifying individuals as 

‘infected’), and due to the fact that increases in the parasite burden generally result 

from reinfection from the environment or intermediate hosts, which can exhibit 

considerable variability (Heesterbeek and Roberts, 1995) (rather than through 

multiplication within the host, as is generally the case with microparasite infections). 

Anderson and May defined 𝑅0 for macroparasites as ‘the average number of offspring 

… produced throughout the reproductive life span of a mature parasite that 

themselves survive to reproductive maturity in the absence of density-dependent 

constraints on population growth’ (Anderson and May, 1991b).  

Anderson and May attempted to incorporate an indirect parasite lifecycle into an 

estimate of 𝑅0 by estimating ‘transmission factors’, 𝑇, which describe the transmission 

from definitive hosts to intermediate hosts (𝑇1), and from intermediate hosts to 

definitive hosts (𝑇2). If these are known, the overall 𝑅0 can then be calculated as some 

form of the product of these factors (𝑇1𝑇2 ) (Anderson and May, 1991a; c). By 

accounting for both hosts in the estimation of 𝑅0, interesting characteristics of the 

epidemiology of the pathogen can be identified and investigated. For example, it has 

been shown that the 𝑅0 of directly transmitted pathogens is positively associated with 

the population density of (susceptible) hosts (Anderson and May, 1991c). However, a 

‘reservoir’ of infection in intermediate hosts  can result in a macroparasite remaining 

stable even if the density of definitive hosts is low (Anderson and May, 1991c). This 
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basic methodology was also used to estimate a threshold quantity, titled 𝑄 or 𝑄0, for 

nematode infections with a free-living stage, assuming no heterogeneity in host or 

parasite populations (Roberts and Grenfell, 1991; Heesterbeek and Roberts, 1995). This 

quantity describes the  number of parasites (or female parasites, in the case of 

dioecious species) reaching reproductive maturity which are produced by an 

individual adult parasite over its whole reproductive life span in the absence of 

density-dependent constraints (Heesterbeek and Roberts, 1995). 

One other consideration which arises from the indirect lifecycle is that the 𝑅0 would 

be expected to be affected by the wide variety of factors which impact upon the 

different hosts, the parasites and the rates of contact between these. This variability 

(‘periodicity’) in intermediate host (or environmental) conditions, which are required 

for completion of the cycle, can make the estimation of an ‘average’ number of 

offspring difficult, and therefore has repercussions for the calculation and 

interpretation of any single value of 𝑅0. Instead of estimating an 𝑅0 value for a ‘typical’ 

individual, a ‘time-averaged’ value may be more appropriate (Roberts and Grenfell, 

1992; Mollison et al., 1994). As for the situation with heterogenous mixing of 

populations, a clear mathematical definition of an 𝑅0-like parameter would be useful 

(Diekmann et al., 1990; Heesterbeek and Roberts, 1995). A number of alternative 

measures with a similar ‘threshold’ characteristic, such as 𝑄0, λ𝑑(𝐸), and 𝑃, have been 

defined (Heesterbeek and Roberts, 1995). which have a mathematical foundation and 

allow for investigation of thresholds in the same way as 𝑅0 (Roberts and Grenfell, 1991; 

Heesterbeek and Roberts, 1995; Roberts and Heesterbeek, 1995). Although 𝑄0 has 

direct biological relevance (being based upon the product of the transmission factors 

describing transitions between parasite stages), it lacks a clear mathematical 

foundation. In order to remedy this, it has been described as the dominant eigenvalue 

of a matrix (𝐾) of transmission functions, raised to the power 𝑘, where 𝑘 is the 

number of stages in the model. As well as retaining the threshold properties of 𝑅0, this 

approach allows the incorporation of different stages of parasite, different types of 

hosts and/or different parasites (e.g. competition between similar species), as 

required, in the model (Heesterbeek and Roberts, 1995; Roberts and Heesterbeek, 
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1995). Whilst both the ‘traditional’ 𝑅0 (relating to the number of secondary infections 

per primary infection) and 𝑄0 (relating to the number of individual parasites resulting 

from infection a single parasite) interpretations share a “threshold” quality relating to 

the ability of infection spread in a community (with a value of 1 being the threshold 

between eventual persistence and decay), the magnitude of their estimates would be 

expected to differ.  
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A2. Healthcare and pastoralism in Kyrgyzstan 

A2.1 Public health in Kyrgyzstan 

Under Soviet control, public health in Kyrgyzstan was prioritised and was served 

through a well-developed infrastructure of sanitary-epidemiological (‘san-epid’) 

stations, which were mainly focused on the surveillance and control of infectious 

diseases through vaccination campaigns and health education (Glass, 1976). Despite 

this, education for medical professionals in public health under the Soviet regime was 

limited (Ibraimova et al., 2011). This system was effective at reducing or eliminating a 

large number of infectious diseases by the 1980s, including cholera, plague, polio, 

pertussis, typhoid, measles, rabies, anthrax and tuberculosis (Meimanaliev et al., 

2005). Following independence, the healthcare system was restructured, although a 

centralised structure was retained (Gotsadze et al., 2010), resulting in the formation of 

the Republican Centre for Immunoprophylaxis in 1994 (which, along with assistance 

from international donors, has ensured high immunisation levels have been achieved), 

the Department of State Sanitary-Epidemiological Surveillance (DSSES) in 1997 (which 

is responsible for surveillance of infectious diseases and sanitary inspection), and the 

public health unit in the Ministry of Health in 2006 (which is responsible for public 

health policy) (Meimanaliev et al., 2005; Ibraimova et al., 2011). However, the public 

health service has been relatively slow to improve, compared to other components of 

the health sector (see below), and has experienced problems with poorly equipped 

laboratories, limited training of workers and inefficient flow of data. Public health 

services are currently in the process of reform, led primarily by the State Sanitary 

Epidemiological Surveillance (SSES) service (using both top-down [state-organised] 

and bottom-up [district-level] approaches), although the Republican Health 

Promotion Centre (which was created in 2001) is also involved (Ibraimova et al., 2011). 

Laws are currently in place to ensure that sanitary inspection of food and water is 

conducted appropriately, and procedures for epidemiological surveillance are 

currently being developed (Ibraimova et al., 2011). In villages throughout the country, 

health committees are in the process of being established (following on from a recent 

pilot programme, organised by the Kyrgyz-Swiss Health Reform Project), which aim to 
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provide community-based health promotion (Ibraimova et al., 2011). A recent study 

has suggested that control of soil-transmitted helminths in Kyrgyzstan should be 

‘feasible’, partly due to strong health and education systems (although political and 

financial obstacles may be present) (Brooker et al., 2015). 

A2.2 The Kyrgyz healthcare system 

Under the Soviet regime, healthcare was provided solely by the state, and was free at 

the point of use. However, much of the human medical provision was hospital-based, 

with little attention given to primary healthcare or disease prevention (Belli, 2001) 

(which in urban areas was generally provided by polyclinics, and in rural areas was 

provided by health workers) (Rechel et al., 2013). Additionally, as with much of the 

Soviet regime, more attention was given to inputs (such as staffing) and infrastructure 

than to outputs (such as quality of care), and the healthcare system as a whole was 

relatively fragmented between different departments and regions (Sargaldakova et al., 

2000; Rechel et al., 2013). Following independence there was a rapid fall in government 

revenue (due to a loss of subsidies from Moscow, along with general economic 

collapse), with a considerable impact on the healthcare system, which foundered 

(partly due to the considerable infrastructure present, which depleted the available 

healthcare budget) (Jakab and Manjieva, 2008). Although Kyrgyz citizens were 

nominally entitled to free healthcare, this was not economically viable, and so a 

system based on informal, unrecorded, ‘out-of-pocket’ payments developed (Belli, 

2001; Jakab and Manjieva, 2008), with additional funding from taxation at the national, 

regional, city or municipal level. This system resulted in lower use of the medical 

services by poorer people, and particularly impacted upon rural areas, who were 

generally excluded from access to the more highly funded services at the central or 

regional level and who had more difficulty affording the additional payments (Abel-

Smith and Falkingham, 1996; Jakab and Manjieva, 2008). In an attempt to solve this 

problem, healthcare reforms were commenced in 1997. These first focussed on 

improving efficiency, by allowing the private sector to provide healthcare, and through 

mandatory health insurance from payroll, pension and land taxation. These 

contributions were pooled and used to develop contracts with providers such as 
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hospitals. Following this, fragmentation within the provision of healthcare was 

addressed through the pooling of funds within regions, and in doing so allowed 

monitoring of outputs, and adjustment according to these. Attempts were also made 

to improve the efficiency of the healthcare system by developing primary healthcare 

provision (Jakab and Manjieva, 2008) and therefore discourage the overuse of 

hospitals for trivial complaints.  It is hoped that these latter changes will improve the 

equity of the healthcare system. A recent study of use of alternative and 

complementary medicine (ACM) amongst countries of the former Soviet Union has 

suggested that ACM practitioners are significantly more commonly consulted in 

Kyrgyzstan than in other countries (Stickley et al., 2013), possibly as a result in the 

costs of traditional healthcare. 

A2.3 Livestock management in Kyrgyzstan 

As alluded to earlier, there have been considerable changes in pastoralism and 

livestock management in Kyrgyzstan over the last 150 years. Historically, Kyrgyzstan 

was a country of seminomadic pastoralists who herded sheep on horseback (although 

yak herding was also practiced at higher altitudes): moving between the mountains in 

the summer and the lowlands and foothills in the winter, when climatic conditions 

made it unsuitable to remain at high altitudes (Schillborn-van Veen, 1995). The arrival 

of Russian settlers in the late 19th century resulted in a loss of lowland pastures from 

the Kyrgyz, and initiated the process of settlement amongst local people (Farrington, 

2005). This process was accelerated under Soviet control, due to the attitude that the 

practices of nomadism and pastoralism were archaic, and the belief that the Kyrgyz 

pastoral lifestyle was in fact solely a ‘transitional’ stage between nomadism and settled 

agriculture (Kerven et al., 1996). As a result, forced collectivisation was undertaken in 

the early 20th century, with management of land and grazing by local Soviet councils 

and the development of sovkhozes (state- owned farms) and kolkhozes (collective 

farms) (although some private ownership of a few animals was still permitted 

(Fitzherbert, 2000)). A number of strategies, including pasture irrigation and 

fertilisation, and structured movement of livestock, were employed to reduce 

overgrazing (Dörre and Borchardt, 2012). This was also combined with a move away 
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from traditional breeds of sheep towards ‘improved’ breeds, bred for wool production. 

However, these new breeds were less suited to the harsh climates and required both 

supplementation with fodder, hay or grain, and provision of winter shelter. 

Transhumance continued, although the new breeds of sheep were less able to move 

the large distances required, and so had to be moved by truck or train, and many 

animals did not survive the winter due to shearing in order to meet wool production 

targets (Farrington, 2005). Combined with this process of collectivisation was the 

construction of permanent settlements around the country, in the locations of the 

winter camps. Following World War II, production targets were rapidly raised and 

farm sizes were increased. By the 1960s, the numbers of animals exceeded the stocking 

capacity of the grassland (much of which had been lost in order to produce the fodder 

needed for the herds), leading to pasture degradation (Fitzherbert, 2000; Farrington, 

2005). Despite this, this trend continued until the years just prior to independence. 

Following independence in 1991, the agricultural sector of Kyrgyzstan was gradually 

privatised and animals and other assets were allocated amongst the collective 

members (with an increased reliance on natural resources due to economic 

uncertainty and loss of jobs), with pasture land kept in state control but leased to local 

councils (Schillborn-van Veen, 1995; Lerman and Sedik, 2009; Dörre and Borchardt, 

2012).  However, at the same time, state-operated services (such as veterinary services) 

were abruptly removed, as were the guaranteed markets for products which were 

offered under Soviet control. As many of the livestock owners had little experience of 

farming without state support, most animals were either sold or slaughtered for meat 

(with the exception of horses, which increased in numbers and were used as draft 

animals due to the lack of agricultural machinery), although the exact numbers of 

animals in this period is unknown (Kerven et al., 1996). Those livestock farms 

remaining either remained in a form of collective ownership (with greatly reduced 

numbers), or as individually owned farms used for a mixture of subsistence and 

commercial management (Lerman and Sedik, 2009). Due to a decline in wool prices, 

there was a movement towards the use of meat breeds (Schillborn-van Veen, 1995; 

Farrington, 2005; Kerven, 2006). It has been reported that the smaller farms in the 
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south of the country have increased in size faster than those in the north over the last 

15 years (Kerven, 2006). Currently, livestock in Kyrgyzstan comprise around 10% of 

GDP (World Bank, 2005). 

Dogs have played a part in the Kyrgyz lifestyle for centuries, and a local breed of 

sighthound, the Taigan, is mentioned multiple times in the Kyrgyz epic ‘Manas’. These 

dogs were used for coursing and game hunting, and as a deterrent to wolves (with an 

experienced Taigan being reportedly able to kill a wolf). However, dog control 

campaigns, the increasing availability of guns for hunting and cross breeding with 

introduced breeds of dog has had a considerable impact upon the numbers of 

purebred Taigans in the country, and they are currently rarely found (Dubinina, 2005). 

Despite this, dogs retain an important role in the rural Kyrgyz communities, from a 

cultural and a practical perspective: being commonly used for guarding livestock and 

possessions (van Kesteren et al., 2013). 
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A3. Questionnaire forms used throughout the study 

A3.1 Household questionnaire, May 2012 
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A3.2 Dog questionnaire, May 2012 
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A3.3 Healthcare/economic questionnaire, May 2012 
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A3.4 Questionnaire, September 2012 and April 2013 

 

 

A3.5 Questionnaire, September 2013 
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A3.6 Questionnaire, April 2014 

 

 

A3.7 Questionnaire, September 2014 
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A4. R code for Bayesian mixture model (using Xinjiang data) 
 

require(rjags)   

require(coda) 

source("plotPost.R") 

 

modelstring = " 

data{ 

for(i in 1:N.neg) { 

  zerosneg[i] <- 0}       

for(i in 1:N.field) { 

  zeros[i] <- 0 

  ones.fieldpos[i] <- 1} 

} 

 

model{ 

 

##########'Known' negative samples (excluding outliers according to 

z distribution) 

for(i in 1:N.neg) { 

 zerosneg[i] ~ dpois(negpanel[i])    

 negpanel[i] <- -retain[i]*log(neglike[i])+C  

 neglike[i] <- sqrt(tau.neg/(2*3.14159))* 

              exp(-(tau.neg/2)*pow((y.neg[i]-mu.neg),2))  

   y.neg[i] ~ dnorm(mu.negdata,tau.negdata) #training data (neg)

 stres[i]<-(y.neg[i]-mu.negdata)/sigma.negdata #stand. res. 

 outlier[i]<-step(stres[i]-zlevel) #identifying outliers 

 retain[i]<-(1-outlier[i]) #selecting which obs to retain 

} 

 

##########Linear regression of log burden on OD 

for( i in 1 : N.pos ) { 

    zlogburden[i] ~ dnorm( muod[i] , tauod ) 

    muod[i] <- zbetaod0 + zbetaod1 * zod[i] 

} 

 

betaod1<-zbetaod1*logburdensd  / odsd  

betaod0<-zbetaod0*logburdensd+logburdenm-

zbetaod1*logburdensd*odm/odsd 

 

##########Combining field distributions (using ‘zeros trick’ to 

model combined distribution) 

for(i in 1:N.field) { 

z[i] ~ dbern(p)   

zeros[i] ~ dpois(phi[i]) 

phi[i] <- -z[i]*log(like.fieldpos[i])-(1-

z[i])*log(like.fieldneg[i])+C 

 

##########Distribution of field positives (Polya tree) 

z.fieldpos[i] <- (y.field[i]-mu.fieldpos)/sigma.fieldpos 

ind.fieldpos[i] <- trunc(sets.pos*phi(z.fieldpos[i])+1) 

like.fieldpos[i] <- coi*exp(-0.5*z.fieldpos[i]*z.fieldpos[i])* 

          polprop.fieldpos[ind.fieldpos[i]]/sigma.fieldpos 
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cpoinv.fieldpos[i] <- 1/(like.fieldpos[i]*sets.pos) 

l.fieldpos[i] <- like.fieldpos[i]*sets.pos 

ones.fieldpos[i]~dbern(like.fieldpos[i]) 

 

##########Distribtion of field negatives (Gaussian) 

like.fieldneg[i]<- sqrt(tau.neg/(2*3.14159))* 

                  exp(-(tau.neg/2)*pow((y.field[i]-mu.neg),2)) 

 

##########Estimating probability of positivity, burden and score 

probsamppos[i] <-  

p*l.fieldpos[i]/(p*l.fieldpos[i]+(1-p)*like.fieldneg[i])  

burdensamp[i]<-(y.field[i]*betaod1)+betaod0 

scoresamp[i]<-probsamppos[i]*burdensamp[i] 

 

}   

 

#####Fitting Polya tree to field data 

x.fieldpos[1,1] <- 0.5; x.fieldpos[1,2] <- 0.5 

 

for(k in 1:j.int[Jt]){ 

m.fieldpos[1,k] <- log(x.fieldpos[1,1]) 

m.fieldpos[1,j.int[Jt]+k] <- log(x.fieldpos[1,2]) 

} 

 

for(i in 2:Jt){ 

par.lev.fieldpos[i] <- c.fieldpos*i*i 

for(j in 1:j.int[i]){ 

x.fieldpos[i,2*j-1]~dbeta(par.lev.fieldpos[i],par.lev.fieldpos[i]);  

x.fieldpos[i,2*j] <- 1-x.fieldpos[i,2*j-1] 

for(k in 1:j.int[Jt-i+1]){ 

m.fieldpos[i,(2*j-2)*j.int[Jt-i+1]+k] <- log(x.fieldpos[i,2*j-1]) 

m.fieldpos[i,(2*j-1)*j.int[Jt-i+1]+k] <- log(x.fieldpos[i,2*j]) 

} 

} 

} 

 

for(i in 1:sets.pos){ 

polprop.fieldpos[i] <- exp(sum(m.fieldpos[1:Jt,i])) 

} 

 

##########Estimating distributions over grid of OD values 

for(i in 1:100){ 

grid[i]<-i*0.01 

 

z.fieldf[i] <- (grid[i]-mu.fieldpos)/sigma.fieldpos 

ind.fieldf[i] <- trunc(sets.pos*phi(z.fieldf[i])+1) 

f.fieldpos[i]<- sets.pos*coi*exp(-0.5*z.fieldf[i]*z.fieldf[i]) 

              *polprop.fieldpos[ind.fieldf[i]]/sigma.fieldpos 

 

f.neg[i] <- sqrt(tau.neg/(2*3.14159))*exp(-(tau.neg/2) 

              *pow((grid[i]-mu.neg),2)) 

 

cdffieldpos[i]<-sum(f.fieldpos[1:i]) 

cdfneg[i]<-sum(f.neg[1:i]) 
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probpos[i] <- p*f.fieldpos[i]/(p*f.fieldpos[i]+(1-p)*f.neg[i])  

burden[i]<-(grid[i]*betaod1)+betaod0 

score[i]<-probpos[i]*burden[i] 

 

se[i]<-1-(cdffieldpos[i]/totalpos) 

sp[i]<-cdfneg[i]/totalneg 

fpr[i]<-1-sp[i] 

} 

 

totalpos<-sum(f.fieldpos[1:100]) 

totalneg<-sum(f.neg[1:100]) 

 

 

#####Priors 

#positives 

mu.fieldpos~dunif(0,1) 

sigma.fieldpos~dunif(0,1) 

c.fieldpos~dgamma(5,1) 

 

#negatives 

mu.neg~dunif(0,1) 

sigma.neg~dunif(0,1) 

mu.negdata~dunif(0,1) 

sigma.negdata~dunif(0,1) 

zlevel~dunif(0,4) 

sigma2.negdata<-pow(sigma.negdata,2) 

tau.negdata<-1/sigma2.negdata 

sigma2.neg<-pow(sigma.neg,2) 

tau.neg<-1/sigma2.neg 

 

#combination 

p~dunif(0,1) 

coi <- 0.3989422804 

C<-10000 

 

#linear regression 

zbetaod0 ~ dnorm( 0 , 1.0E-12 ) 

zbetaod1 ~ dnorm( 0 , 1.0E-12 ) 

tauod ~ dgamma( 0.001 , 0.001 ) 

sigmaod<-1/sqrt(tauod) 

 

} 

" 

writeLines(modelstring,con="model.txt") 

 

#####Data 

#main data 

y.pos=c(0.0877,0.2524,0.31955,0.7928,0.6646,0.171,0.11685,0.23965,0.

57075,0.46145,0.17555,0.39625,0.1546,0.462,0.68,0.37345) 

y.neg=c(0.05285,0.0846,0.27815,0.10385,0.05675,0.05475,0.1116,0.2055

,0.0728,0.25945,0.11585,0.08645,0.06905,0.0394,0.0753,0.2478,0.05385

,0.16555,0.04705,0.05725,0.10625,0.0475) 

 



339 

 

y.field=c(0.05285,0.0846,0.27815,0.10385,0.05675,0.05475,0.1116,0.20

55,0.0728,0.25945,0.11585,0.08645,0.06905,0.0394,0.0753,0.2478,0.053

85,0.16555,0.04705,0.05725,0.10625,0.0475,0.0877,0.2524,0.31955,0.79

28,0.6646,0.171,0.11685,0.23965,0.57075,0.46145,0.17555,0.39625,0.15

46,0.462,0.68,0.37345) 

 

logburden=c(1.098612289,3.912023005,NA,9.210340372,9.210340372,3.912

023005,0.693147181,4.605170186,8.517193191,4.605170186,2.995732274,5

.703782475,2.302585093,6.214608098,9.210340372,4.605170186) 

 

#polya tree parameters 

Jt=2 

sets.pos=2^Jt 

j.int=c(1,2) 

 

#data processing 

N.pos=length(y.pos) 

N.neg=length(y.neg) 

N.field=length(y.field) 

odm = mean( y.pos ) ; odsd = sd( y.pos ) 

logburdenm = mean( logburden , na.rm=TRUE) ; logburdensd = sd( 

logburden , na.rm=TRUE) 

zod = ( y.pos - odm ) / odsd 

zlogburden = ( logburden - logburdenm ) / logburdensd 

   

#####Load data 

datalist = list(N.pos=N.pos, N.neg=N.neg, N.field=N.field, 

                y.neg=y.neg, y.field=y.field, 

                sets.pos=sets.pos, Jt=Jt, j.int=j.int, 

                zod=zod, zlogburden=zlogburden, 

                odm=odm, odsd=odsd, 

logburdensd=logburdensd, logburdenm=logburdenm) 

 

#####Inits 

initslist = list( 

   mu.fieldpos=mean(y.pos), 

sigma.fieldpos=sqrt(var(y.pos)) , 

mu.neg=mean(datalist$y.neg) , 

sigma.neg=sqrt(var(datalist$y.neg)) , 

c.fieldpos=1 , p=1, zlevel=2.5 

) 

   

#####Model set-up 

parameters=c("mu.fieldpos", "sigma.fieldpos", "c.fieldpos",  

             "mu.neg", "sigma.neg", "zlevel", 

  "mu.negdata", "sigma.negdata",  

             "p", "f.neg", "f.fieldpos", "probpos", 

             "se", "sp", "fpr", 

             "z", "phi", 

             "l.fieldpos", "neglike", "like.fieldneg", 

             "outlier", "retain", "probsamppos", 

  "betaod0", "betaod1", "zbetaod0", "zbetaod1", 

  "muod", "sigmaod", 

             "burdensamp", "scoresamp", "burden", "score") 
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adapt = 1000  

burnin = 5000  

chains = 1 

numsaved=10000  

thin=10 

niter = ceiling( ( numsaved * thin ) / chains ) 

 

#####Running the model 

jagsmodel = jags.model( "model.txt" , data=datalist , 

inits=initslist , n.chains=chains , n.adapt=adapt) 

 

# Burn-in: 

cat( "Burning in the MCMC chain...\n" ) 

update( jagsmodel , n.iter=burnin ) 

 

# The saved MCMC chain: 

cat( "Sampling final MCMC chain...\n" ) 

codaSamples = coda.samples( jagsmodel , variable.names=parameters ,  

                            n.iter=niter , thin=thin ) 

 

#####Extracting all MCMC results 

mcmcChain = as.matrix( codaSamples ) 

 

# Extract individual parameters: 

 

mufieldposSample = mcmcChain[,"mu.fieldpos"] 

sigmafieldposSample = mcmcChain[,"sigma.fieldpos"] 

cfieldposSample = mcmcChain[,"c.fieldpos"] 

 

munegSample = mcmcChain[,"mu.neg"] 

sigmanegSample = mcmcChain[,"sigma.neg"] 

zlevelSample = mcmcChain[,"zlevel"] 

 

pSample = mcmcChain[,"p"] 

 

od0Sample = mcmcChain[,"betaod0"] 

od1Sample = mcmcChain[,"betaod1"] 

zsigmaodSample = mcmcChain[,"sigmaod"] 

 

# Extract grid samples 

gridnumbers<-seq(1,100,1) 

 

f.fieldposs<-paste(rep("f.fieldpos[",100),gridnumbers,"]", sep="") 

ffieldposSample = mcmcChain[,f.fieldposs] 

 

f.negs<-paste(rep("f.neg[",100),gridnumbers,"]", sep="") 

fnegSample = mcmcChain[,f.negs] 

 

ses<-paste(rep("se[",100),gridnumbers,"]", sep="") 

seSample = mcmcChain[,ses] 

sps<-paste(rep("sp[",100),gridnumbers,"]", sep="") 

spSample = mcmcChain[,sps] 

fprs<-paste(rep("fpr[",100),gridnumbers,"]", sep="") 

fprSample = mcmcChain[,fprs] 
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probposs<-paste(rep("probpos[",100),gridnumbers,"]", sep="") 

probposSample = mcmcChain[,probposs] 

burdengrids<-paste(rep("burden[",100),gridnumbers,"]", sep="") 

burdengrid = mcmcChain[,burdengrids] 

scoregrids<-paste(rep("score[",100),gridnumbers,"]", sep="") 

scoregrid = mcmcChain[,scoregrids] 

 

# Extract neg panel samples 

numbernegs<-seq(1,N.neg,1) 

 

retained<-paste(rep("retain[",N.neg),numbernegs,"]", sep="") 

retainedSample = mcmcChain[,retained] 

outliers<-paste(rep("outlier[",N.neg),numbernegs,"]", sep="") 

outlierSample = mcmcChain[,outliers] 

 

# Extract pos samples (burden) 

numberposs<-seq(1,N.pos,1) 

 

muods<-paste(rep("muod[",N.pos),numberposs,"]",sep="") 

muodSample = mcmcChain[,muods] 

 

#Individual sample assessment 

numberfield<-seq(1,N.field,1) 

probsampleposs<-paste(rep("probsamppos[",N.field),numberfield,"]", 

sep="") 

probsamplepos = mcmcChain[,probsampleposs] 

burdensamples<-paste(rep("burdensamp[",N.field),numberfield,"]", 

sep="") 

burdensample = mcmcChain[,burdensamples] 

scoresamples<-paste(rep("scoresamp[",N.field),numberfield,"]", 

sep="") 

scoresample = mcmcChain[,scoresamples] 
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A5. R code for Bayesian mixture model (May 2012 Kyrgyzstan data) 

Note: code basically the same as described in A2, but model positive (Polya tree) 

component separately for each village. 

require(rjags)   

require(ggplot2) 

 

memory.limit(size=4000) 

 

modelstring = " 

data{ 

for(i in 1:N.neg) { 

  zerosneg[i] <- 0}       

for(i in 1:N.fieldxsm) { 

  zerosxsm[i] <- 0 

  ones.fieldposxsm[i] <- 1} 

for(i in 1:N.fieldxts) { 

  zerosxts[i] <- 0 

  ones.fieldposxts[i] <- 1} 

for(i in 1:N.fieldxks) { 

  zerosxks[i] <- 0 

  ones.fieldposxks[i] <- 1} 

for(i in 1:N.fieldxkk) { 

  zerosxkk[i] <- 0 

  ones.fieldposxkk[i] <- 1} 

} 

 

model{ 

 

##########'Known' negative samples, regardless of village of 

original (excluding outliers according to z distribution) 

 

for(i in 1:N.neg) { 

 zerosneg[i] ~ dpois(negpanel[i])    

 negpanel[i] <- -retain[i]*log(neglike[i])+C  

 neglike[i] <- sqrt(tau.neg/(2*3.14159))* 

              exp(-(tau.neg/2)*pow((y.neg[i]-mu.neg),2))  

   y.neg[i] ~ dnorm(mu.negdata,tau.negdata) #training data (neg)

 stres[i]<-(y.neg[i]-mu.negdata)/sigma.negdata #stand. res. 

 outlier[i]<-step(stres[i]-zlevel) #identifying outliers 

 retain[i]<-(1-outlier[i]) #selecting which obs to retain 

} 

 

##########Linear regression of log burden on OD 

for( i in 1 : N.pos ) { 

    zlogburden[i] ~ dnorm( muod[i] , tauod ) 

    muod[i] <- zbetaod0 + zbetaod1 * zod[i] 

} 

 

betaod1<-zbetaod1*logburdensd / odsd  

betaod0<-zbetaod0*logburdensd+logburdenm-

zbetaod1*logburdensd*odm/odsd 



343 

 

 

####################Combining model parameters for each village 

 

####################SM 

##########Combining field distributions using zeros trick 

for(i in 1:N.fieldxsm) { 

zxsm[i] ~ dbern(pxsm)   

zerosxsm[i] ~ dpois(phixsm[i]) 

phixsm[i] <- -zxsm[i]*log(like.fieldposxsm[i])- 

(1-zxsm[i])*log(like.fieldnegxsm[i])+C 

 

##########Distribution of field positives (Polya trees) 

 

z.fieldposxsm[i] <- (y.fieldxsm[i]-mu.fieldposxsm)/sigma.fieldposxsm 

ind.fieldposxsm[i] <- trunc(sets.pos*phi(z.fieldposxsm[i])+1) 

like.fieldposxsm[i]  

<- coi*exp(-0.5*z.fieldposxsm[i]*z.fieldposxsm[i])* 

polprop.fieldposxsm[ind.fieldposxsm[i]]/sigma.fieldposxsm 

cpoinv.fieldposxsm[i] <- 1/(like.fieldposxsm[i]*sets.pos) 

l.fieldposxsm[i]<-like.fieldposxsm[i]*sets.pos 

ones.fieldposxsm[i]~dbern(like.fieldposxsm[i]) 

 

##########Distribution of field negatives (Gaussian) 

like.fieldnegxsm[i]<- sqrt(tau.neg/(2*3.14159))* 

                  exp(-(tau.neg/2)*pow((y.fieldxsm[i]-mu.neg),2)) 

 

##########estimating prob of positivity, burden and score 

burdensampxsm[i]<-(y.fieldxsm[i]*betaod1)+betaod0 

probsampposxsm[i] <- 

pxsm*l.fieldposxsm[i]/(pxsm*l.fieldposxsm[i]+(1-

pxsm)*like.fieldnegxsm[i])  

scoresampxsm[i]<-probsampposxsm[i]*burdensampxsm[i] 

}   

 

#####Further field Polya tree code 

x.fieldposxsm[1,1] <- 0.5; x.fieldposxsm[1,2] <- 0.5 

for(k in 1:j.int[Jt]){ 

m.fieldposxsm[1,k] <- log(x.fieldposxsm[1,1]) 

m.fieldposxsm[1,j.int[Jt]+k] <- log(x.fieldposxsm[1,2]) 

} 

 

for(i in 2:Jt){ 

par.lev.fieldposxsm[i] <- c.fieldposxsm*i*i 

for(j in 1:j.int[i]){ 

x.fieldposxsm[i,2*j-

1]~dbeta(par.lev.fieldposxsm[i],par.lev.fieldposxsm[i]);  

x.fieldposxsm[i,2*j] <- 1-x.fieldposxsm[i,2*j-1] 

for(k in 1:j.int[Jt-i+1]){ 

m.fieldposxsm[i,(2*j-2)*j.int[Jt-i+1]+k] <- log(x.fieldposxsm[i,2*j-

1]) 

m.fieldposxsm[i,(2*j-1)*j.int[Jt-i+1]+k]<-log(x.fieldposxsm[i,2*j]) 

} 

} 

} 
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for(i in 1:sets.pos){ 

polprop.fieldposxsm[i] <- exp(sum(m.fieldposxsm[1:Jt,i])) 

} 

 

####################TS 

##########Combining field distributions using zeros trick 

for(i in 1:N.fieldxts) { 

zxts[i] ~ dbern(pxts)    

zerosxts[i] ~ dpois(phixts[i]) 

phixts[i] <- -zxts[i]*log(like.fieldposxts[i])- 

(1-zxts[i])*log(like.fieldnegxts[i])+C 

 

##########Distribution of field positives (Polya trees) 

 

z.fieldposxts[i] <- (y.fieldxts[i]-mu.fieldposxts)/sigma.fieldposxts 

ind.fieldposxts[i] <- trunc(sets.pos*phi(z.fieldposxts[i])+1) 

like.fieldposxts[i]  

<- coi*exp(-0.5*z.fieldposxts[i]*z.fieldposxts[i])* 

polprop.fieldposxts[ind.fieldposxts[i]]/sigma.fieldposxts 

cpoinv.fieldposxts[i] <- 1/(like.fieldposxts[i]*sets.pos) 

l.fieldposxts[i]<-like.fieldposxts[i]*sets.pos 

ones.fieldposxts[i]~dbern(like.fieldposxts[i]) 

 

##########Distribution of field negatives (Gaussian) 

like.fieldnegxts[i]<- sqrt(tau.neg/(2*3.14159))* 

exp(-(tau.neg/2)*pow((y.fieldxts[i]-mu.neg),2)) 

 

##########estimating prob of positivity, burden and score 

#####Need to decide whether to use l.fieldpos or like.fieldpos. 

#####Using l.fieldpos here as suspect is best 

burdensampxts[i]<-(y.fieldxts[i]*betaod1)+betaod0 

probsampposxts[i] <- 

pxts*l.fieldposxts[i]/(pxts*l.fieldposxts[i]+(1-

pxts)*like.fieldnegxts[i])  

scoresampxts[i]<-probsampposxts[i]*burdensampxts[i] 

}   

 

#####Further field Polya tree code 

x.fieldposxts[1,1] <- 0.5; x.fieldposxts[1,2] <- 0.5 

for(k in 1:j.int[Jt]){ 

m.fieldposxts[1,k] <- log(x.fieldposxts[1,1]) 

m.fieldposxts[1,j.int[Jt]+k] <- log(x.fieldposxts[1,2]) 

} 

 

for(i in 2:Jt){ 

par.lev.fieldposxts[i] <- c.fieldposxts*i*i 

for(j in 1:j.int[i]){ 

x.fieldposxts[i,2*j-

1]~dbeta(par.lev.fieldposxts[i],par.lev.fieldposxts[i]);  

x.fieldposxts[i,2*j] <- 1-x.fieldposxts[i,2*j-1] 

for(k in 1:j.int[Jt-i+1]){ 

m.fieldposxts[i,(2*j-2)*j.int[Jt-i+1]+k] <- log(x.fieldposxts[i,2*j-

1]) 
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m.fieldposxts[i,(2*j-1)*j.int[Jt-i+1]+k] <- 

log(x.fieldposxts[i,2*j]) 

} 

} 

} 

 

for(i in 1:sets.pos){ 

polprop.fieldposxts[i] <- exp(sum(m.fieldposxts[1:Jt,i])) 

} 

 

 

####################KS 

##########Combining field distributions using zeros trick 

for(i in 1:N.fieldxks) { 

zxks[i] ~ dbern(pxks)    

zerosxks[i] ~ dpois(phixks[i]) 

phixks[i] <- -zxks[i]*log(like.fieldposxks[i])- 

(1-zxks[i])*log(like.fieldnegxks[i])+C 

 

##########Distribution of field positives (Polya trees) 

 

z.fieldposxks[i] <- (y.fieldxks[i]-mu.fieldposxks)/sigma.fieldposxks 

ind.fieldposxks[i] <- trunc(sets.pos*phi(z.fieldposxks[i])+1) 

like.fieldposxks[i]  

<- coi*exp(-0.5*z.fieldposxks[i]*z.fieldposxks[i])* 

polprop.fieldposxks[ind.fieldposxks[i]]/sigma.fieldposxks 

cpoinv.fieldposxks[i] <- 1/(like.fieldposxks[i]*sets.pos) 

l.fieldposxks[i]<-like.fieldposxks[i]*sets.pos 

ones.fieldposxks[i]~dbern(like.fieldposxks[i]) 

 

##########Distribution of field negatives (Gaussian) 

like.fieldnegxks[i]<- sqrt(tau.neg/(2*3.14159))* 

exp(-(tau.neg/2)*pow((y.fieldxks[i]-mu.neg),2)) 

 

##########estimating prob of positivity, burden and score 

burdensampxks[i]<-(y.fieldxks[i]*betaod1)+betaod0 

probsampposxks[i] <- 

pxks*l.fieldposxks[i]/(pxks*l.fieldposxks[i]+(1-

pxks)*like.fieldnegxks[i])  

scoresampxks[i]<-probsampposxks[i]*burdensampxks[i] 

}   

 

#####Further field Polya tree code 

x.fieldposxks[1,1] <- 0.5; x.fieldposxks[1,2] <- 0.5 

for(k in 1:j.int[Jt]){ 

m.fieldposxks[1,k] <- log(x.fieldposxks[1,1]) 

m.fieldposxks[1,j.int[Jt]+k] <- log(x.fieldposxks[1,2]) 

} 

 

for(i in 2:Jt){ 

par.lev.fieldposxks[i] <- c.fieldposxks*i*i 

for(j in 1:j.int[i]){ 

x.fieldposxks[i,2*j-

1]~dbeta(par.lev.fieldposxks[i],par.lev.fieldposxks[i]);  
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x.fieldposxks[i,2*j] <- 1-x.fieldposxks[i,2*j-1] 

for(k in 1:j.int[Jt-i+1]){ 

m.fieldposxks[i,(2*j-2)*j.int[Jt-i+1]+k] <- log(x.fieldposxks[i,2*j-

1]) 

m.fieldposxks[i,(2*j-1)*j.int[Jt-i+1]+k] <- 

log(x.fieldposxks[i,2*j]) 

} 

} 

} 

 

for(i in 1:sets.pos){ 

polprop.fieldposxks[i] <- exp(sum(m.fieldposxks[1:Jt,i])) 

} 

 

 

####################KK 

##########Combining field distributions using zeros trick 

for(i in 1:N.fieldxkk) { 

zxkk[i] ~ dbern(pxkk)    

zerosxkk[i] ~ dpois(phixkk[i]) 

phixkk[i] <- -zxkk[i]*log(like.fieldposxkk[i])- 

(1-zxkk[i])*log(like.fieldnegxkk[i])+C 

 

##########Distribution of field positives (Polya trees) 

 

z.fieldposxkk[i] <- (y.fieldxkk[i]-mu.fieldposxkk)/sigma.fieldposxkk 

ind.fieldposxkk[i] <- trunc(sets.pos*phi(z.fieldposxkk[i])+1) 

like.fieldposxkk[i]  

<- coi*exp(-0.5*z.fieldposxkk[i]*z.fieldposxkk[i])* 

polprop.fieldposxkk[ind.fieldposxkk[i]]/sigma.fieldposxkk 

cpoinv.fieldposxkk[i] <- 1/(like.fieldposxkk[i]*sets.pos) 

l.fieldposxkk[i]<-like.fieldposxkk[i]*sets.pos 

ones.fieldposxkk[i]~dbern(like.fieldposxkk[i]) 

 

##########Distribution of field negatives (Gaussian) 

like.fieldnegxkk[i]<- sqrt(tau.neg/(2*3.14159))* 

exp(-(tau.neg/2)*pow((y.fieldxkk[i]-mu.neg),2)) 

 

##########estimating prob of positivity, burden and score 

#####Need to decide whether to use l.fieldpos or like.fieldpos. 

#####Using l.fieldpos here as suspect is best 

burdensampxkk[i]<-(y.fieldxkk[i]*betaod1)+betaod0 

probsampposxkk[i] <- 

pxkk*l.fieldposxkk[i]/(pxkk*l.fieldposxkk[i]+(1-

pxkk)*like.fieldnegxkk[i])  

scoresampxkk[i]<-probsampposxkk[i]*burdensampxkk[i] 

}   

 

#####Further field Polya tree code 

x.fieldposxkk[1,1] <- 0.5; x.fieldposxkk[1,2] <- 0.5 

for(k in 1:j.int[Jt]){ 

m.fieldposxkk[1,k] <- log(x.fieldposxkk[1,1]) 

m.fieldposxkk[1,j.int[Jt]+k] <- log(x.fieldposxkk[1,2]) 

} 
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for(i in 2:Jt){ 

par.lev.fieldposxkk[i] <- c.fieldposxkk*i*i 

for(j in 1:j.int[i]){ 

x.fieldposxkk[i,2*j-

1]~dbeta(par.lev.fieldposxkk[i],par.lev.fieldposxkk[i]);  

x.fieldposxkk[i,2*j] <- 1-x.fieldposxkk[i,2*j-1] 

for(k in 1:j.int[Jt-i+1]){ 

m.fieldposxkk[i,(2*j-2)*j.int[Jt-i+1]+k] <- log(x.fieldposxkk[i,2*j-

1]) 

m.fieldposxkk[i,(2*j-1)*j.int[Jt-i+1]+k] <- 

log(x.fieldposxkk[i,2*j]) 

} 

} 

} 

 

for(i in 1:sets.pos){ 

polprop.fieldposxkk[i] <- exp(sum(m.fieldposxkk[1:Jt,i])) 

} 

 

 

##########Estimating distributions over grid of OD values 

for(i in 1:totalgrid){ 

grid[i]<-i*0.01 

f.neg[i] <- sqrt(tau.neg/(2*3.14159))*exp(-(tau.neg/2) 

              *pow((grid[i]-mu.neg),2)) 

cdfneg[i]<-sum(f.neg[1:i]) 

sp[i]<-cdfneg[i]/totalneg 

fpr[i]<-1-sp[i] 

 

burdenest[i]<-(grid[i]*betaod1)+betaod0 

 

z.fieldfxsm[i] <- (grid[i]-mu.fieldposxsm)/sigma.fieldposxsm 

ind.fieldfxsm[i] <- trunc(sets.pos*phi(z.fieldfxsm[i])+1) 

f.fieldposxsm[i]<- 

sets.pos*coi*exp(-0.5*z.fieldfxsm[i]*z.fieldfxsm[i]) 

*polprop.fieldposxsm[ind.fieldfxsm[i]]/sigma.fieldposxsm 

cdffieldposxsm[i]<-sum(f.fieldposxsm[1:i]) 

 

probposxsm[i] <- pxsm*f.fieldposxsm[i]/(pxsm*f.fieldposxsm[i]+(1-

pxsm)*f.neg[i])  

scorexsm[i]<-probposxsm[i]*burdenest[i] 

 

sexsm[i]<-1-(cdffieldposxsm[i]/totalposxsm) 

 

z.fieldfxts[i] <- (grid[i]-mu.fieldposxts)/sigma.fieldposxts 

ind.fieldfxts[i] <- trunc(sets.pos*phi(z.fieldfxts[i])+1) 

f.fieldposxts[i]<- 

sets.pos*coi*exp(-0.5*z.fieldfxts[i]*z.fieldfxts[i])              

*polprop.fieldposxts[ind.fieldfxts[i]]/sigma.fieldposxts 

cdffieldposxts[i]<-sum(f.fieldposxts[1:i]) 

 

probposxts[i] <- pxts*f.fieldposxts[i]/(pxts*f.fieldposxts[i]+(1-

pxts)*f.neg[i])  



348 

 

scorexts[i]<-probposxts[i]*burdenest[i] 

 

sexts[i]<-1-(cdffieldposxts[i]/totalposxts) 

 

z.fieldfxks[i] <- (grid[i]-mu.fieldposxks)/sigma.fieldposxks 

ind.fieldfxks[i] <- trunc(sets.pos*phi(z.fieldfxks[i])+1) 

f.fieldposxks[i]<- 

sets.pos*coi*exp(-0.5*z.fieldfxks[i]*z.fieldfxks[i]) 

*polprop.fieldposxks[ind.fieldfxks[i]]/sigma.fieldposxks 

cdffieldposxks[i]<-sum(f.fieldposxks[1:i]) 

 

probposxks[i] <- pxks*f.fieldposxks[i]/(pxks*f.fieldposxks[i]+(1-

pxks)*f.neg[i])  

scorexks[i]<-probposxks[i]*burdenest[i] 

 

sexks[i]<-1-(cdffieldposxks[i]/totalposxks) 

 

z.fieldfxkk[i] <- (grid[i]-mu.fieldposxkk)/sigma.fieldposxkk 

ind.fieldfxkk[i] <- trunc(sets.pos*phi(z.fieldfxkk[i])+1) 

f.fieldposxkk[i]<- 

sets.pos*coi*exp(-0.5*z.fieldfxkk[i]*z.fieldfxkk[i]) 

*polprop.fieldposxkk[ind.fieldfxkk[i]]/sigma.fieldposxkk 

cdffieldposxkk[i]<-sum(f.fieldposxkk[1:i]) 

 

probposxkk[i] <- pxkk*f.fieldposxkk[i]/(pxkk*f.fieldposxkk[i]+(1-

pxkk)*f.neg[i])  

scorexkk[i]<-probposxkk[i]*burdenest[i] 

 

sexkk[i]<-1-(cdffieldposxkk[i]/totalposxkk) 

 

} 

 

totalneg<-sum(f.neg[1:totalgrid]) 

 

totalposxsm<-sum(f.fieldposxsm[1:totalgrid]) 

totalposxts<-sum(f.fieldposxts[1:totalgrid]) 

totalposxks<-sum(f.fieldposxks[1:totalgrid]) 

totalposxkk<-sum(f.fieldposxkk[1:totalgrid]) 

 

 

########################################Priors 

#positives 

mu.fieldposxsm~dunif(minpos,maxpos) 

sigma.fieldposxsm~dunif(0.001,1) 

c.fieldposxsm~dgamma(5,1) 

mu.fieldposxts~dunif(minpos,maxpos) 

sigma.fieldposxts~dunif(0.001,1) 

c.fieldposxts~dgamma(5,1) 

mu.fieldposxks~dunif(minpos,maxpos) 

sigma.fieldposxks~dunif(0.001,1) 

c.fieldposxks~dgamma(5,1) 

mu.fieldposxkk~dunif(minpos,maxpos) 

sigma.fieldposxkk~dunif(0.001,1) 

c.fieldposxkk~dgamma(5,1) 
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#negatives 

mu.neg~dunif(minneg,maxneg) 

sigma.neg~dunif(0.001,1) 

mu.negdata~dunif(minneg,maxneg) 

sigma.negdata~dunif(0.001,1) 

zlevel~dunif(0,4) 

sigma2.negdata<-pow(sigma.negdata,2) 

tau.negdata<-1/sigma2.negdata 

sigma2.neg<-pow(sigma.neg,2) 

tau.neg<-1/sigma2.neg 

 

#combination 

pxsm~dunif(0,1) 

pxts~dunif(0,1) 

pxks~dunif(0,1) 

pxkk~dunif(0,1) 

coi <- 0.3989422804 

C<-10000 

 

#linear regression 

zbetaod0 ~ dnorm( 0 , 1.0E-12 ) 

zbetaod1 ~ dnorm( 0 , 1.0E-12 ) 

tauod ~ dgamma( 0.001 , 0.001 ) 

sigmaod<-1/sqrt(tauod) 

 

} 

" 

writeLines(modelstring,con="model.txt") 

 

#####Fitting to May 2012 Data 

maydata<-read.csv("may2012database.csv") 

 

str(maydata) 

maydata$village<-as.factor(maydata$village) 

 

maypaneldata<-subset(maydata,panel==1) 

maypaneldata<-subset(maypaneldata,repfailureinccont!=1) 

 

mayfielddata<-subset(maydata,use==1) 

may.pos<-maypaneldata$od[which(maypaneldata$knownstatus==1 & 

is.na(maypaneldata$od)==FALSE)] 

may.neg<-maypaneldata$od[which(maypaneldata$knownstatus==0 & 

is.na(maypaneldata$od)==FALSE)] 

may.field<-mayfielddata$od 

maysm<-mayfielddata$od[mayfielddata$village=="SM"] 

mayts<-mayfielddata$od[mayfielddata$village=="TS"] 

mayks<-mayfielddata$od[mayfielddata$village=="KS"] 

maykk<-mayfielddata$od[mayfielddata$village=="KK"] 

may.burden<-maypaneldata$burden[which(maypaneldata$knownstatus==1 & 

is.na(maypaneldata$od)==FALSE)] 

may.logburden<-log(may.burden) 

 

##########Running code 
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fileNameRoot="may" 

 

#polya tree 

Jt=2 

sets.pos=2^Jt 

j.int=c(1,2) 

 

#selecting parameters to use for model 

y.pos=may.pos 

y.neg=may.neg 

y.fieldxsm<-maysm 

y.fieldxts<-mayts 

y.fieldxks<-mayks 

y.fieldxkk<-maykk 

burden=may.burden 

logburden=may.logburden 

 

minimum<-min(y.fieldxsm, y.fieldxts, y.fieldxks, y.fieldxkk, y.pos, 

y.neg) 

maximum<-max(y.fieldxsm, y.fieldxts, y.fieldxks, y.fieldxkk, y.pos, 

y.neg) 

maxfield<-max(y.fieldxsm, y.fieldxts, y.fieldxks, y.fieldxkk) 

minfield<-min(y.fieldxsm, y.fieldxts, y.fieldxks, y.fieldxkk) 

totalgrid=max(60,maximum,maxfield) 

 

#data processing 

N.pos=length(y.pos) 

N.neg=length(y.neg) 

N.fieldxsm=length(y.fieldxsm) 

N.fieldxts=length(y.fieldxts) 

N.fieldxks=length(y.fieldxks) 

N.fieldxkk=length(y.fieldxkk) 

odm = mean( y.pos ,na.rm=TRUE) ; odsd = sd( y.pos ,na.rm=TRUE) 

zod = ( y.pos - odm ) / odsd 

logburdenm = mean( logburden , na.rm=TRUE) ; logburdensd = sd( 

logburden , na.rm=TRUE) 

zlogburden = ( logburden - logburdenm ) / logburdensd 

minneg=min(y.neg) 

maxneg=max(y.neg) 

minpos=min(y.pos) 

maxpos=max(y.pos) 

 

#####Load data 

datalist = list( N.pos=N.pos, N.neg=N.neg, y.neg=y.neg,  

                 N.fieldxsm=N.fieldxsm, N.fieldxts=N.fieldxts, 

N.fieldxks=N.fieldxks, N.fieldxkk=N.fieldxkk, 

                 y.fieldxsm=y.fieldxsm, y.fieldxts=y.fieldxts, 

y.fieldxks=y.fieldxks, y.fieldxkk=y.fieldxkk, 

                 sets.pos=sets.pos, Jt=Jt, j.int=j.int, 

                 odm=odm, odsd=odsd, zod=zod, 

                 zlogburden=zlogburden, logburdensd=logburdensd, 

logburdenm=logburdenm, 

                 minneg=minneg, maxneg=maxneg, minpos=minpos, 

maxpos=maxpos, totalgrid=totalgrid) 
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#####Inits 

initslist = list( 

  mu.fieldposxsm=mean(y.pos, na.rm=TRUE), mu.fieldposxts=mean(y.pos, 

na.rm=TRUE),  

  mu.fieldposxks=mean(y.pos, na.rm=TRUE), mu.fieldposxkk=mean(y.pos, 

na.rm=TRUE),  

  sigma.fieldposxsm=sqrt(var(y.pos, na.rm=TRUE)), 

sigma.fieldposxts=sqrt(var(y.pos, na.rm=TRUE)), 

  sigma.fieldposxks=sqrt(var(y.pos, na.rm=TRUE)), 

sigma.fieldposxkk=sqrt(var(y.pos, na.rm=TRUE)), 

  mu.neg=mean(datalist$y.neg, na.rm=TRUE) , 

sigma.neg=sqrt(var(datalist$y.neg, na.rm=TRUE)) , 

  c.fieldposxsm=1, c.fieldposxts=1, c.fieldposxks=1, 

c.fieldposxkk=1,  

  pxsm=1, pxts=1, pxks=1, pxkk=1, zlevel=2.5 

  ) 

   

#####Model set-up 

adapt = 1000  

burnin = 2000  

chains = 1  

numsaved=5000  

thin=1 

niter = ceiling( ( numsaved * thin ) / chains ) 

 

parameters=c("mu.fieldposxsm","sigma.fieldposxsm","c.fieldposxsm", 

  "mu.fieldposxts","sigma.fieldposxts","c.fieldposxts", 

  "mu.fieldposxks","sigma.fieldposxks","c.fieldposxks", 

  "mu.fieldposxkk","sigma.fieldposxkk","c.fieldposxkk", 

             "mu.neg", "sigma.neg", "zlevel", 

  "mu.negdata", "sigma.negdata",  

             "pxsm", "pxts", "pxks", "pxkk",  

             "f.neg", 

             "f.fieldposxsm", "f.fieldposxts", 

  "f.fieldposxks", "f.fieldposxkk",  

             "probposxsm", "probposxts", "probposxks", "probposxkk", 

             "sexsm", "sexts", "sexks", "sexkk", 

             "sp",  

             "fpr",  

             "zxsm", "zxts", "zxks", "zxkk",  

             "phixsm", "phixts", "phixks", "phixkk", 

             "l.fieldposxsm", "l.fieldposxts", 

  "l.fieldposxks", "l.fieldposxkk",  

             "neglike", "outlier", "retain", 

             "like.fieldnegxsm", "like.fieldnegxts", 

  "like.fieldnegxks", "like.fieldnegxkk",  

             "probsampposxsm", "probsampposxts", 

  "probsampposxks", "probsampposxkk",  

             "betaod0", "betaod1", "zbetaod0", "zbetaod1", 

  "muod", "sigmaod", 

             "burdensampxsm", "burdensampxts", 

  "burdensampxks", "burdensampxkk",  

             "scoresampxsm", "scoresampxts", 



352 

 

  "scoresampxks", "scoresampxkk", 

             "burdenest",  

             "scorexsm", "scorexts", "scorexks", "scorexkk") 

 

 

#############################################Running the model 

jagsmodel = jags.model( "model.txt" , data=datalist , 

inits=initslist , n.chains=chains , n.adapt=adapt) 

 

# Burn-in: 

cat( "Burning in the MCMC chain...\n" ) 

update( jagsmodel , n.iter=burnin ) 

 

# The saved MCMC chain: 

cat( "Sampling final MCMC chain...\n" ) 

codaSamples = coda.samples( jagsmodel , variable.names=parameters , 

n.iter=niter , thin=thin ) 

 

#####Extracting all MCMC results 

mcmcChain = as.matrix( codaSamples ) 

write.csv(mcmcChain, file=paste(fileNameRoot,"mcmc.csv")) 

 

# Extract individual parameters: 

 

mufieldposxsmSample = mcmcChain[,"mu.fieldposxsm"] 

sigmafieldposxsmSample = mcmcChain[,"sigma.fieldposxsm"] 

cfieldposxsmSample = mcmcChain[,"c.fieldposxsm"] 

mufieldposxtsSample = mcmcChain[,"mu.fieldposxts"] 

sigmafieldposxtsSample = mcmcChain[,"sigma.fieldposxts"] 

cfieldposxtsSample = mcmcChain[,"c.fieldposxts"] 

mufieldposxksSample = mcmcChain[,"mu.fieldposxks"] 

sigmafieldposxksSample = mcmcChain[,"sigma.fieldposxks"] 

cfieldposxksSample = mcmcChain[,"c.fieldposxks"] 

mufieldposxkkSample = mcmcChain[,"mu.fieldposxkk"] 

sigmafieldposxkkSample = mcmcChain[,"sigma.fieldposxkk"] 

cfieldposxkkSample = mcmcChain[,"c.fieldposxkk"] 

 

munegSample = mcmcChain[,"mu.neg"] 

sigmanegSample = mcmcChain[,"sigma.neg"] 

zlevelSample = mcmcChain[,"zlevel"] 

 

pxsmSample = mcmcChain[,"pxsm"] 

pxtsSample = mcmcChain[,"pxts"] 

pxksSample = mcmcChain[,"pxks"] 

pxkkSample = mcmcChain[,"pxkk"] 

 

od0Sample = mcmcChain[,"betaod0"] 

od1Sample = mcmcChain[,"betaod1"] 

zsigmaodSample = mcmcChain[,"sigmaod"] 

 

# Extract grid samples 

gridnumbers<-seq(1,totalgrid,1) 
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f.fieldpossxsm<-

paste(rep("f.fieldposxsm[",totalgrid),gridnumbers,"]", sep="") 

ffieldposxsmSample = mcmcChain[,f.fieldpossxsm] 

f.fieldpossxts<-

paste(rep("f.fieldposxts[",totalgrid),gridnumbers,"]", sep="") 

ffieldposxtsSample = mcmcChain[,f.fieldpossxts] 

f.fieldpossxks<-

paste(rep("f.fieldposxks[",totalgrid),gridnumbers,"]", sep="") 

ffieldposxksSample = mcmcChain[,f.fieldpossxks] 

f.fieldpossxkk<-

paste(rep("f.fieldposxkk[",totalgrid),gridnumbers,"]", sep="") 

ffieldposxkkSample = mcmcChain[,f.fieldpossxkk] 

 

f.negs<-paste(rep("f.neg[",totalgrid),gridnumbers,"]", sep="") 

fnegSample = mcmcChain[,f.negs] 

 

sexsms<-paste(rep("sexsm[",totalgrid),gridnumbers,"]", sep="") 

sexsmSample = mcmcChain[,sexsms] 

sextss<-paste(rep("sexts[",totalgrid),gridnumbers,"]", sep="") 

sextsSample = mcmcChain[,sextss] 

sexkss<-paste(rep("sexks[",totalgrid),gridnumbers,"]", sep="") 

sexksSample = mcmcChain[,sexkss] 

sexkks<-paste(rep("sexkk[",totalgrid),gridnumbers,"]", sep="") 

sexkkSample = mcmcChain[,sexkks] 

sps<-paste(rep("sp[",totalgrid),gridnumbers,"]", sep="") 

spSample = mcmcChain[,sps] 

fprs<-paste(rep("fpr[",totalgrid),gridnumbers,"]", sep="") 

fprSample = mcmcChain[,fprs] 

 

probposxsms<-paste(rep("probposxsm[",totalgrid),gridnumbers,"]", 

sep="") 

probposxsmSample = mcmcChain[,probposxsms] 

probposxtss<-paste(rep("probposxts[",totalgrid),gridnumbers,"]", 

sep="") 

probposxtsSample = mcmcChain[,probposxtss] 

probposxkss<-paste(rep("probposxks[",totalgrid),gridnumbers,"]", 

sep="") 

probposxksSample = mcmcChain[,probposxkss] 

probposxkks<-paste(rep("probposxkk[",totalgrid),gridnumbers,"]", 

sep="") 

probposxkkSample = mcmcChain[,probposxkks] 

 

burdengrids<-paste(rep("burdenest[",totalgrid),gridnumbers,"]", 

sep="") 

burdengrid = mcmcChain[,burdengrids] 

 

scoregridxsms<-paste(rep("scorexsm[",totalgrid),gridnumbers,"]", 

sep="") 

scoregridxsm = mcmcChain[,scoregridxsms] 

scoregridxtss<-paste(rep("scorexts[",totalgrid),gridnumbers,"]", 

sep="") 

scoregridxts = mcmcChain[,scoregridxtss] 

scoregridxkss<-paste(rep("scorexks[",totalgrid),gridnumbers,"]", 

sep="") 
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scoregridxks = mcmcChain[,scoregridxkss] 

scoregridxkks<-paste(rep("scorexkk[",totalgrid),gridnumbers,"]", 

sep="") 

scoregridxkk = mcmcChain[,scoregridxkks] 

 

# Extract neg panel samples 

numbernegs<-seq(1,N.neg,1) 

 

retained<-paste(rep("retain[",N.neg),numbernegs,"]", sep="") 

retainedSample = mcmcChain[,retained] 

outliers<-paste(rep("outlier[",N.neg),numbernegs,"]", sep="") 

outlierSample = mcmcChain[,outliers] 

 

# Extract pos samples (burden) 

numberposs<-seq(1,N.pos,1) 

 

muods<-paste(rep("muod[",N.pos),numberposs,"]",sep="") 

muodSample = mcmcChain[,muods] 

 

# Extract field data samples 

numberfieldxsm<-seq(1,N.fieldxsm,1) 

numberfieldxts<-seq(1,N.fieldxts,1) 

numberfieldxks<-seq(1,N.fieldxks,1) 

numberfieldxkk<-seq(1,N.fieldxkk,1) 

 

probsampleposxsms<-

paste(rep("probsampposxsm[",N.fieldxsm),numberfieldxsm,"]", sep="") 

probsampleposxsm = mcmcChain[,probsampleposxsms] 

probsampleposxtss<-

paste(rep("probsampposxts[",N.fieldxts),numberfieldxts,"]", sep="") 

probsampleposxts = mcmcChain[,probsampleposxtss] 

probsampleposxkss<-

paste(rep("probsampposxks[",N.fieldxks),numberfieldxks,"]", sep="") 

probsampleposxks = mcmcChain[,probsampleposxkss] 

probsampleposxkks<-

paste(rep("probsampposxkk[",N.fieldxkk),numberfieldxkk,"]", sep="") 

probsampleposxkk = mcmcChain[,probsampleposxkks] 

 

burdensamplexsms<-

paste(rep("burdensampxsm[",N.fieldxsm),numberfieldxsm,"]", sep="") 

burdensamplexsm = mcmcChain[,burdensamplexsms] 

burdensamplextss<-

paste(rep("burdensampxts[",N.fieldxts),numberfieldxts,"]", sep="") 

burdensamplexts = mcmcChain[,burdensamplextss] 

burdensamplexkss<-

paste(rep("burdensampxks[",N.fieldxks),numberfieldxks,"]", sep="") 

burdensamplexks = mcmcChain[,burdensamplexkss] 

burdensamplexkks<-

paste(rep("burdensampxkk[",N.fieldxkk),numberfieldxkk,"]", sep="") 

burdensamplexkk = mcmcChain[,burdensamplexkks] 

 

scoresamplexsms<-

paste(rep("scoresampxsm[",N.fieldxsm),numberfieldxsm,"]", sep="") 

scoresamplexsm = mcmcChain[,scoresamplexsms] 
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scoresamplextss<-

paste(rep("scoresampxts[",N.fieldxts),numberfieldxts,"]", sep="") 

scoresamplexts = mcmcChain[,scoresamplextss] 

scoresamplexkss<-

paste(rep("scoresampxks[",N.fieldxks),numberfieldxks,"]", sep="") 

scoresamplexks = mcmcChain[,scoresamplexkss] 

scoresamplexkks<-

paste(rep("scoresampxkk[",N.fieldxkk),numberfieldxkk,"]", sep="") 

scoresamplexkk = mcmcChain[,scoresamplexkks] 
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A6. R code for mathematical model 
 

library(deSolve) 

 

#####Parameters 

nd = 100              # peak dog population density (per km^2) 

nf = 2               # peak fox population density (per km^2) 

nv = 5000            # peak rodent population density (per km^2) 

ns = 500              # average ruminant population density (per 

km^2) 

muf = 0.0022          # rate of fox death (foxes per day) 

mud = 1/(5*365)       # rate of dog death (dogs per day) 

mumf = 1/30           # rate of natural Em death in foxes (worms per 

day) 

mumd = 1/((365/3.4)-30) # rate of natural Em death in dogs (worms/d) 

mucd = 1/((365/1.3)-40) # rate of natural Eg death in dogs (worms/d) 

muv = 0.0055          # baseline rate of rodent death (rodents/d) 

mus = 1/(5*365) # baseline rate of ruminant natural death (per day) 

mu_s = 5/(100*365) # baseline rate of ruminant slaughter (per day) 

sigmav = (926239/81) # average number of Em protoscolices (per egg) 

sigmas = 

mean(c(21/2.6,99/3.1,711/2.5,1726/4.61,6899/7.1,9774/10.28))         

# average number of Eg protoscolices (per egg) 

pidv = 0.1            # probability of dog infection from rodent 

pifv = 0.4            # probability of fox infection from rodent 

pids = 0.05           # probability of dog infection from ruminant 

pivg = 0.007          # probability of rodent infection from eggs 

pisg = 0.003          # probability of ruminant infection from eggs 

lambdamf = 42 # rate of egg release from foxes (per worm per day) 

lambdamd = 42 # rate of Em egg release from dogs (per worm per day) 

lambdacd = 42 # rate of Eg egg release from dogs (per worm per day) 

taumd = 30            # Em maturation time in dogs (days)  

taucd = 42            # Eg maturation time in dogs (days) 

taumf = 30            # Em maturation time in foxes (days) 

tauv = 112            # Em maturation time in rodents (days) 

taus = 365*2          # Eg maturation time in ruminants (days) 

Kcd =  2500           # MWB carrying capacity in dogs (worms) 

Kmd =  2534           # MWB carrying capacity in dogs (worms) 

Kmf =  16000          # MWB carrying capacity in foxes (worms) 

Kv =  244400          # MPB carrying capacity in rodents  

Ks =  9774            # MPB carrying capacity in ruminants  

kappad = 1            # relative mortality in infected dogs 

kappaf = 1            # relative mortality in infected foxes 

kappav = 2            # relative mortality in infected rodents 

kappavp = 2           # relative predation of infected rodents 

kappas = 2  # relative natural mortality in infected ruminants 

kappa_s = 2 # relative slaughter of infected ruminants 

 

#beta parameters 

betadv = ((1.1/365)/(pidv*nv))  # max rate of rodent hunting by dogs 

(prop of total rodents (in 1 km^2 area) per dog per day) 

betafv = ((3.8/365)/(pifv*nv)) # max rate of rodent hunting by foxes 

(prop of total rodents (in 1 km^2 area) per dog per day) 
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beta_ds = 0.05 # proportion of slaughtered ruminants fed to dogs 

(per dog per day) 

betads = (((0.3/365)/(pids*ns))-(beta_ds*mu_s))/(mus)  # proportion 

of dead ruminants scavenged by dogs (dead ruminants per dog per day) 

betavg = (betadv*nd+betafv*nf+muv)/(pivg*nv*sigmav) # rate of 

ingestion of eggs by rodents (per rodent per day) 

betasg<-(mus+mu_s)/(pisg*ns*sigmas) # rate of ingestion of eggs by 

ruminants (per ruminant per day) 

 

#####Creating vector of parameters 

parms <- c(mud = mud, muf = muf, 

           mumd = mumd, mucd = mucd, mumf = mumf, 

           muv = muv, mus = mus, mu_s = mu_s, 

mugm = mugm, mugc = mugc, 

           sigmav = sigmav, sigmas = sigmas, 

           pidv = pidv, pifv = pifv, 

           pids = pids, 

           pivg = pivg, pisg = pisg, 

           lambdamf = lambdamf, lambdamd = lambdamd, 

           lambdacd = lambdacd,  

           betadv = betadv, betafv = betafv,  

           betads = betads, beta_ds = beta_ds, 

           betavg = betavg, betasg = betasg, 

           nf = nf, nd = nd, 

           nv = nv, ns = ns, 

           taumd = taumd, taucd = taucd, taumf = taumf, 

           tauv = tauv, taus = taus, 

           Kmd = Kmd, Kmf = Kmf, Kv = Kv, Ks = Ks, 

           kappad = kappad, kappaf = kappaf,  

           kappav = kappav, kappavp = kappavp, 

           kappas = kappas, kappa_s = kappa_s) 

 

 

#####Creating vector of timesteps 

years<-100 

times  <- seq(0, 365*years, by=1) 

 

#####Start values - starting with 100 worms in dogs 

y <- xstart <- c(Gm = 0, Gc = 0, Lv = 0, Ls=0, Mmd = 100, Mcd = 100, 

Mmf = 0) 

 

#####Modelling seasonal effects 

 

fulldates1<-seq(0,max(times),365/12) 

maxdates<-length(fulldates1) 

fulldates<-fulldates1[-maxdates] 

 

fulldates1<-round(fulldates1,0) 

fulldates<-round(fulldates,0) 

 

#1) Temperature effect on eggs 

temps<-as.numeric(c(-11,-9,-2.2,5.5,9.5,13.8,17,16.4,11.6,5.2,-1.4,-

7.1)) 
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emsurvival<-exp(-0.135*(abs(temps)-43.49)) 

egsurvival<-exp(-0.135*(abs(temps)-43.49)) 

 

emeggsurvapprox <- 

as.data.frame(list(times=fulldates,import=rep(emsurvival,years))) 

egeggsurvapprox <- 

as.data.frame(list(times=fulldates,import=rep(egsurvival,years))) 

 

emeggsurv <- approxfun(emeggsurvapprox, rule = 2) 

egeggsurv <- approxfun(egeggsurvapprox, rule = 2) 

 

#2) Dog density 

doghigh<-nd 

doglow<-nd/2 

 

dogdynamics<-c(rep(doghigh,4),rep(doglow,5),rep(doghigh,3)) 

dogapprox <- 

as.data.frame(list(times=fulldates,import=rep(dogdynamics,years))) 

dogdens <- approxfun(dogapprox, rule = 2) 

 

#3) Fox density 

numpups<-5 

foxnopup<-nf 

foxpup<-foxnopup+((foxnopup/2)*numpups) 

 

foxdynamics<-c(rep(foxnopup,5),rep(foxpup,4),rep(foxnopup,3)) 

foxapprox <- 

as.data.frame(list(times=fulldates,import=rep(foxdynamics,years))) 

foxdens <- approxfun(foxapprox, rule = 2) 

 

#4) Rodent density 

volehigh<-nv*2 

volemed<-nv 

volelow<-nv/2 

 

voledynamics<-

c(rep(volemed,3),rep(volelow,3),rep(volehigh,3),rep(volemed,3)) 

voleapprox <- 

as.data.frame(list(times=fulldates,import=rep(voledynamics,years))) 

voledens <- approxfun(voleapprox, rule = 2) 

 

#5) Ruminant density (no seasonality included here) 

sheephigh<-ns+(ns/2) 

sheepmed<-ns 

sheeplow<-ns/2 

 

sheepdynamics<-

c(rep(sheepmed,1),rep(sheepmed,3),rep(sheepmed,3),rep(sheepmed,3),re

p(sheepmed,2)) 

sheepapprox <- 

as.data.frame(list(times=fulldates,import=rep(sheepdynamics,years))) 

sheepdens <- approxfun(sheepapprox, rule = 2) 

 

#6) Rodent mortality 
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voledeathhigh<-muv*2 

voledeathmed<-muv 

voledeathlow<-muv/2 

 

voledeathdynamics<-

c(rep(voledeathhigh,3),rep(voledeathmed,8),rep(voledeathhigh,1)) 

voledeathapprox <- 

as.data.frame(list(times=fulldates,import=rep(voledeathdynamics,year

s))) 

voledeath <- approxfun(voledeathapprox, rule = 2) 

 

#7) Ruminant mortality 

rumdeathlow<-mus/2 

rumdeathhigh<-mus*2 

 

rumdeathdynamics<-

c(rep(rumdeathhigh,3),rep(rumdeathlow,8),rep(rumdeathhigh,1)) 

rumdeathapprox <- 

as.data.frame(list(times=fulldates,import=rep(rumdeathdynamics,years

))) 

rumdeath <- approxfun(rumdeathapprox, rule = 2) 

 

#8) Ruminant slaughter 

rumslaughtlow<-mu_s/2 

rumslaughthigh<-mu_s*2 

 

rumslaughtdynamics<-

c(rep(rumslaughthigh,2),rep(rumslaughtlow,6),rep(rumslaughthigh,4)) 

rumslaughtapprox <- 

as.data.frame(list(times=fulldates,import=rep(rumslaughtdynamics,yea

rs))) 

rumslaught <- approxfun(rumslaughtapprox, rule = 2) 

 

#9) Fox and dog reliance on rodents 

betafvhigh<-betafv 

betafvlow<-betafv/2 

 

foxingestvole<-

c(rep(betafvlow,3),rep(betafvhigh,6),rep(betafvlow,3)) 

foxingestvoleapprox <- 

as.data.frame(list(times=fulldates,import=rep(foxingestvole,years))) 

betafvdynamic <- approxfun(foxingestvoleapprox, rule = 2) 

 

betadvhigh<-betadv 

betadvlow<-betadv/2 

 

dogingestvole<-

c(rep(betadvlow,3),rep(betadvhigh,6),rep(betadvlow,3)) 

dogingestvoleapprox <- 

as.data.frame(list(times=fulldates,import=rep(dogingestvole,years))) 

betadvdynamic <- approxfun(dogingestvoleapprox, rule = 2) 
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#####Final model code 

alaymodel <- function(t, x, parms) { 

  with(as.list(c(parms, x)), {     

     

    emeggsurvival<-emeggsurv(t) 

    egeggsurvival<-egeggsurv(t) 

    volepop<-voledens(t) 

    sheeppop<-sheepdens(t) 

    foxpop<-foxdens(t) 

    dogpop<-dogdens(t) 

    volemort<-voledeath(t) 

    rummort<-rumdeath(t) 

    rumkill<-rumslaught(t) 

    betafvtemp<-betafvdynamic(t) 

    betadvtemp<-betadvdynamic(t) 

     

    Gm=x[1]; Gc=x[2]; 

    Lv=x[3]; Ls=x[4]; 

    Mmd=x[5]; Mcd=x[6]; Mmf=x[7]; 

     

    #####temporal lags 

    if (t<=tauv) 

      lagGm<-y[1] 

    else                            # (Em eggs) 

      lagGm<-lagvalue(t-tauv, 1) # lag for maturation in rodents 

     

    if (t<=taus) 

      lagGc<-y[2]  

    else                            # (Eg eggs) 

      lagGc<-lagvalue(t-taus, 2) # lag for maturation in ruminants 

     

    if(t<=taumd) 

      lagLvd<-y[3] 

    else                            # (Em protoscolices) 

      lagLvd<-lagvalue(t-taumd, 3) # lag for Em maturation in dogs 

     

    if(t<=taucd) 

      lagLs<-y[4] 

    else                            # (Eg protoscolices) 

      lagLs<-lagvalue(t-taucd, 4) # lag for Eg maturation in dogs 

     

    if(t<=taumf) 

      lagLvf<-y[3] 

    else                            # (Em protoscolices) 

      lagLvf<-lagvalue(t-taumf, 3) # lag for Em maturation in foxes 

     

    #####model compartments 

 

    #eggs per km2 

    dGm <- lambdamd*dogpop*Mmd 

+ lambdamf*foxpop*Mmf 

- (1/emeggsurvival)*Gm 

    dGc <- lambdacd*dogpop*Mcd - (1/egeggsurvival)*Gc 
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    # protoscolices per rodent 

    dLv <- betavg*pivg*sigmav*lagGm*(1-(Lv/Kv)) 

- volemort*kappav*Lv 

- betadvtemp*dogpop*kappavp*Lv 

- betafvtemp*foxpop*kappavp*Lv 

     

    # protoscolices per ruminant 

    dLs <- betasg*pisg*sigmas*lagGc*(1-(Ls/Ks)) 

- (rummort*kappas+rumkill*kappa_s)*Ls 

     

    # adult worms per dog 

    dMmd <- betadvtemp*pidv*volepop*kappavp*lagLvd*(1-(Mmd/Kmd)) 

- mud*kappad*Mmd - mumd*Mmd  

    dMcd <- 

(betads*rummort*kappas+beta_ds*rumkill*kappa_s)*pids*sheeppop*lagLs*

(1-(Mcd/Kcd)) - mud*kappad*Mcd - mucd*Mcd  

     

    # worms per fox 

    dMmf <- betafvtemp*pifv*volepop*kappavp*lagLvf*(1-(Mmf/Kmf)) 

- muf*kappaf*Mmf - mumf*Mmf  

     

     

    #####output 

 

    res <- c(dGm, dGc, dLv, dLs, dMmd, dMcd, dMmf) 

    list(res) 

  }) 

} 

 

####################Running no intervention model 

out <-  dede(y=xstart, times=times, func=alaymodel, parms=parms) 

 

####################Looking into effect of regular dosing 

startdose=10 

steadystate<-startdose*365 

 

#creating functions to account for effective suppression of adult 

worms following dosing due to PPP 

dosingfunction_eg<-function(dosetimes){ 

  times_eg<-NA 

  for (i in 1:length(dosetimes)){ 

    times_egx<-seq(dosetimes[i],dosetimes[i]+taucd,1) 

    times_eg<-c(times_eg,times_egx) 

  } 

  times_eg<-times_eg[times_eg<=max(times)] 

  times_eg<-times_eg[-1] 

  print(times_eg) 

} 

 

dosingfunction_em<-function(dosetimes){ 

  times_em<-NA 

  for (i in 1:length(dosetimes)){ 

    times_emx<-seq(dosetimes[i],dosetimes[i]+taumd,1) 

    times_em<-c(times_em,times_emx) 
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  } 

  times_em<-times_em[times_em<=max(times)] 

  times_em<-times_em[-1] 

  print(times_em) 

} 

 

##### timing of dosing with PZQ 

times1m <- round(seq(steadystate,max(times),(365/12)),0) #q1m 

times2m <- round(seq(steadystate,max(times),((365/12)*2)),0) #q2m 

times3m <- round(seq(steadystate,max(times),((365/12)*3)),0) #q3m 

times4m <- round(seq(steadystate,max(times),((365/12)*4)),0) #q4m 

times6m = round(seq(steadystate,max(times),((365/12)*6)),0) #q6m 

times12m = round(seq(steadystate,max(times),365),0) #q12m 

 

times1m_eg<-dosingfunction_eg(times1m) 

times1m_em<-dosingfunction_em(times1m) 

pzqdoses1meg<-length(times1m_eg) 

pzqdoses1mem<-length(times1m_em) 

 

times2m_eg<-dosingfunction_eg(times2m) 

times2m_em<-dosingfunction_em(times2m) 

pzqdoses2meg<-length(times2m_eg) 

pzqdoses2mem<-length(times2m_em) 

 

times3m_eg<-dosingfunction_eg(times3m) 

times3m_em<-dosingfunction_em(times3m) 

pzqdoses3meg<-length(times3m_eg) 

pzqdoses3mem<-length(times3m_em) 

 

times4m_eg<-dosingfunction_eg(times4m) 

times4m_em<-dosingfunction_em(times4m) 

pzqdoses4meg<-length(times4m_eg) 

pzqdoses4mem<-length(times4m_em) 

 

times6m_eg<-dosingfunction_eg(times6m) 

times6m_em<-dosingfunction_em(times6m) 

pzqdoses6meg<-length(times6m_eg) 

pzqdoses6mem<-length(times6m_em) 

 

times12m_eg<-dosingfunction_eg(times12m) 

times12m_em<-dosingfunction_em(times12m) 

pzqdoses12meg<-length(times12m_eg) 

pzqdoses12mem<-length(times12m_em) 

 

 

#####Creating dataframes of dosing events 

alpha = 1 # PZQ coverage 

 

events1m <- data.frame( 

  var = c(rep("Mmd", pzqdoses1mem), rep("Mcd", pzqdoses1meg)),  

  time = c(times1m_em, times1m_eg), 

  value = c(rep((1-alpha),pzqdoses1mem+pzqdoses1meg)), 

  method = rep("mult", pzqdoses1mem+pzqdoses1meg)) 

events1m<-events1m[!duplicated(events1m), ] 
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events2m <- data.frame( 

  var = c(rep("Mmd", pzqdoses2mem), rep("Mcd", pzqdoses2meg)),  

  time = c(times2m_em, times2m_eg), 

  value = c(rep((1-alpha),pzqdoses2mem+pzqdoses2meg)), 

  method = rep("mult", pzqdoses2mem+pzqdoses2meg)) 

events2m<-events2m[!duplicated(events2m), ] 

 

events3m <- data.frame( 

  var = c(rep("Mmd", pzqdoses3mem), rep("Mcd", pzqdoses3meg)),  

  time = c(times3m_em, times3m_eg), 

  value = c(rep((1-alpha),pzqdoses3mem+pzqdoses3meg)), 

  method = rep("mult", pzqdoses3mem+pzqdoses3meg)) 

events3m<-events3m[!duplicated(events3m), ] 

 

events4m <- data.frame( 

  var = c(rep("Mmd", pzqdoses4mem), rep("Mcd", pzqdoses4meg)),  

  time = c(times4m_em, times4m_eg), 

  value = c(rep((1-alpha),pzqdoses4mem+pzqdoses4meg)), 

  method = rep("mult", pzqdoses4mem+pzqdoses4meg)) 

events4m<-events4m[!duplicated(events4m), ] 

 

events6m <- data.frame( 

  var = c(rep("Mmd", pzqdoses6mem), rep("Mcd", pzqdoses6meg)),  

  time = c(times6m_em, times6m_eg), 

  value = c(rep((1-alpha),pzqdoses6mem+pzqdoses6meg)), 

  method = rep("mult", pzqdoses6mem+pzqdoses6meg)) 

events6m<-events6m[!duplicated(events6m), ] 

 

events12m <- data.frame( 

  var = c(rep("Mmd", pzqdoses12mem), rep("Mcd", pzqdoses12meg)),  

  time = c(times12m_em, times12m_eg), 

  value = c(rep((1-alpha),pzqdoses12mem+pzqdoses12meg)), 

  method = rep("mult", pzqdoses12mem+pzqdoses12meg)) 

events12m<-events12m[!duplicated(events12m), ] 

 

##### Solving 

out1m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events1m)) 

out2m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events2m)) 

out3m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events3m)) 

out4m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events4m)) 

out6m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events6m)) 

out12m <-  dede(y=xstart, times=times, func=alaymodel, parms=parms, 

events=list(data=events12m)) 

 

 

 

####################Investigation of seasonal targeting of dosing 
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#Timing of monthly dosing 

jandosepoints_seq<-fulldates1[seq(1,length(fulldates1),12)] 

jandosepoints<-steadystate+jandosepoints_seq 

jandosepoints<-jandosepoints[jandosepoints<=max(times)] 

jandosepoints<-jandosepoints[-length(jandosepoints)] 

febdosepoints_seq<-fulldates1[seq(2,length(fulldates1),12)] 

febdosepoints<-steadystate+febdosepoints_seq 

febdosepoints<-febdosepoints[febdosepoints<=max(times)] 

mardosepoints_seq<-fulldates1[seq(3,length(fulldates1),12)] 

mardosepoints<-steadystate+mardosepoints_seq 

mardosepoints<-mardosepoints[mardosepoints<=max(times)] 

aprdosepoints_seq<-fulldates1[seq(4,length(fulldates1),12)] 

aprdosepoints<-steadystate+aprdosepoints_seq 

aprdosepoints<-aprdosepoints[aprdosepoints<=max(times)] 

maydosepoints_seq<-fulldates1[seq(5,length(fulldates1),12)] 

maydosepoints<-steadystate+maydosepoints_seq 

maydosepoints<-maydosepoints[maydosepoints<=max(times)] 

jundosepoints_seq<-fulldates1[seq(6,length(fulldates1),12)] 

jundosepoints<-steadystate+jundosepoints_seq 

jundosepoints<-jundosepoints[jundosepoints<=max(times)] 

juldosepoints_seq<-fulldates1[seq(7,length(fulldates1),12)] 

juldosepoints<-steadystate+juldosepoints_seq 

juldosepoints<-juldosepoints[juldosepoints<=max(times)] 

augdosepoints_seq<-fulldates1[seq(8,length(fulldates1),12)] 

augdosepoints<-steadystate+augdosepoints_seq 

augdosepoints<-augdosepoints[augdosepoints<=max(times)] 

sepdosepoints_seq<-fulldates1[seq(9,length(fulldates1),12)] 

sepdosepoints<-steadystate+sepdosepoints_seq 

sepdosepoints<-sepdosepoints[sepdosepoints<=max(times)] 

octdosepoints_seq<-fulldates1[seq(10,length(fulldates1),12)] 

octdosepoints<-steadystate+octdosepoints_seq 

octdosepoints<-octdosepoints[octdosepoints<=max(times)] 

novdosepoints_seq<-fulldates1[seq(11,length(fulldates1),12)] 

novdosepoints<-steadystate+novdosepoints_seq 

novdosepoints<-novdosepoints[novdosepoints<=max(times)] 

decdosepoints_seq<-fulldates1[seq(12,length(fulldates1),12)] 

decdosepoints<-steadystate+decdosepoints_seq 

decdosepoints<-decdosepoints[decdosepoints<=max(times)] 

 

#Creating dosing functions 

jandose_eg<-dosingfunction_eg(jandosepoints) 

jandose_em<-dosingfunction_em(jandosepoints) 

febdose_eg<-dosingfunction_eg(febdosepoints) 

febdose_em<-dosingfunction_em(febdosepoints) 

mardose_eg<-dosingfunction_eg(mardosepoints) 

mardose_em<-dosingfunction_em(mardosepoints) 

aprdose_eg<-dosingfunction_eg(aprdosepoints) 

aprdose_em<-dosingfunction_em(aprdosepoints) 

maydose_eg<-dosingfunction_eg(maydosepoints) 

maydose_em<-dosingfunction_em(maydosepoints) 

jundose_eg<-dosingfunction_eg(jundosepoints) 

jundose_em<-dosingfunction_em(jundosepoints) 

juldose_eg<-dosingfunction_eg(juldosepoints) 

juldose_em<-dosingfunction_em(juldosepoints) 
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augdose_eg<-dosingfunction_eg(augdosepoints) 

augdose_em<-dosingfunction_em(augdosepoints) 

sepdose_eg<-dosingfunction_eg(sepdosepoints) 

sepdose_em<-dosingfunction_em(sepdosepoints) 

octdose_eg<-dosingfunction_eg(octdosepoints) 

octdose_em<-dosingfunction_em(octdosepoints) 

novdose_eg<-dosingfunction_eg(novdosepoints) 

novdose_em<-dosingfunction_em(novdosepoints) 

decdose_eg<-dosingfunction_eg(decdosepoints) 

decdose_em<-dosingfunction_em(decdosepoints) 

 

 

monthdose_eg<-length(jandose_eg) 

monthdose_em<-length(jandose_em) 

monthdosedec_eg<-length(decdose_eg) # dec length shorter for Eg due 

to PPP of 42 days. 12 days removed from end to keep within time 

limits 

monthdosedec_em<-length(decdose_em) #keep this in case change PPP 

for Em in future simulations 

 

#Creating event dataframes 

janevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(jandose_em, jandose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

febevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(febdose_em, febdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

marevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(mardose_em, mardose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

aprevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(aprdose_em, aprdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

mayevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(maydose_em, maydose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

junevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(jundose_em, jundose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

julevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(juldose_em, juldose_eg), 
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  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

augevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(augdose_em, augdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

sepevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(sepdose_em, sepdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

octevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(octdose_em, octdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

novevents <- data.frame( 

  var = c(rep("Mmd", monthdose_em), rep("Mcd", monthdose_eg)),  

  time = c(novdose_em, novdose_eg), 

  value = rep((1-alpha),monthdose_em+monthdose_eg), 

  method = rep("mult", monthdose_em+monthdose_eg)) 

decevents <- data.frame( 

  var = c(rep("Mmd", monthdosedec_em), rep("Mcd", monthdosedec_eg)),  

  time = c(decdose_em, decdose_eg), 

  value = rep((1-alpha),monthdosedec_em+monthdosedec_eg), 

  method = rep("mult", monthdosedec_em+monthdosedec_eg)) 

 

 

#Solving for each dosing point (once yearly dosing) 

outjandose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=janevents)) 

outfebdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=febevents)) 

outmardose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=marevents)) 

outaprdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=aprevents)) 

outmaydose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=mayevents)) 

outjundose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=junevents)) 

outjuldose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=julevents)) 

outaugdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=augevents)) 

outsepdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=sepevents)) 

outoctdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=octevents)) 

outnovdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=novevents)) 

outdecdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=decevents)) 
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#####Investigating the mean worm burden and egg density over one 

year for different monthly dosing points 

startpoint<-steadystate*2 

endpoint<-steadystate*2+365 

 

#Model with no dosing 

out_year<-as.data.frame(out) 

out_year<-subset(out_year,time>startpoint & time<endpoint) 

out_emeggs<-sum(out_year$Gm)/length(out_year$Gm) 

out_egeggs<-sum(out_year$Gc)/length(out_year$Gc) 

out_emdogs<-sum(out_year$Mmd)/length(out_year$Mmd) 

out_egdogs<-sum(out_year$Mcd)/length(out_year$Mcd) 

 

#Models with once annual dosing 

outjandose_year<-as.data.frame(outjandose) 

outjandose_year<-subset(outjandose_year,time>startpoint & 

time<endpoint) 

jandose_emeggs<-sum(outjandose_year$Gm)/length(outjandose_year$Gm) 

jandose_egeggs<-sum(outjandose_year$Gc)/length(outjandose_year$Gc) 

jandose_emdogs<-sum(outjandose_year$Mmd)/length(outjandose_year$Mmd) 

jandose_egdogs<-sum(outjandose_year$Mcd)/length(outjandose_year$Mcd) 

 

outfebdose_year<-as.data.frame(outfebdose) 

outfebdose_year<-subset(outfebdose_year,time>startpoint & 

time<endpoint) 

febdose_emeggs<-sum(outfebdose_year$Gm)/length(outfebdose_year$Gm) 

febdose_egeggs<-sum(outfebdose_year$Gc)/length(outfebdose_year$Gc) 

febdose_emdogs<-sum(outfebdose_year$Mmd)/length(outfebdose_year$Mmd) 

febdose_egdogs<-sum(outfebdose_year$Mcd)/length(outfebdose_year$Mcd) 

 

outmardose_year<-as.data.frame(outmardose) 

outmardose_year<-subset(outmardose_year,time>startpoint & 

time<endpoint) 

mardose_emeggs<-sum(outmardose_year$Gm)/length(outmardose_year$Gm) 

mardose_egeggs<-sum(outmardose_year$Gc)/length(outmardose_year$Gc) 

mardose_emdogs<-sum(outmardose_year$Mmd)/length(outmardose_year$Mmd) 

mardose_egdogs<-sum(outmardose_year$Mcd)/length(outmardose_year$Mcd) 

 

outaprdose_year<-as.data.frame(outaprdose) 

outaprdose_year<-subset(outaprdose_year,time>startpoint & 

time<endpoint) 

aprdose_emeggs<-sum(outaprdose_year$Gm)/length(outaprdose_year$Gm) 

aprdose_egeggs<-sum(outaprdose_year$Gc)/length(outaprdose_year$Gc) 

aprdose_emdogs<-sum(outaprdose_year$Mmd)/length(outaprdose_year$Mmd) 

aprdose_egdogs<-sum(outaprdose_year$Mcd)/length(outaprdose_year$Mcd) 

 

outmaydose_year<-as.data.frame(outmaydose) 

outmaydose_year<-subset(outmaydose_year,time>startpoint & 

time<endpoint) 

maydose_emeggs<-sum(outmaydose_year$Gm)/length(outmaydose_year$Gm) 

maydose_egeggs<-sum(outmaydose_year$Gc)/length(outmaydose_year$Gc) 

maydose_emdogs<-sum(outmaydose_year$Mmd)/length(outmaydose_year$Mmd) 
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maydose_egdogs<-sum(outmaydose_year$Mcd)/length(outmaydose_year$Mcd) 

 

outjundose_year<-as.data.frame(outjundose) 

outjundose_year<-subset(outjundose_year,time>startpoint & 

time<endpoint) 

jundose_emeggs<-sum(outjundose_year$Gm)/length(outjundose_year$Gm) 

jundose_egeggs<-sum(outjundose_year$Gc)/length(outjundose_year$Gc) 

jundose_emdogs<-sum(outjundose_year$Mmd)/length(outjundose_year$Mmd) 

jundose_egdogs<-sum(outjundose_year$Mcd)/length(outjundose_year$Mcd) 

 

outjuldose_year<-as.data.frame(outjuldose) 

outjuldose_year<-subset(outjuldose_year,time>startpoint & 

time<endpoint) 

juldose_emeggs<-sum(outjuldose_year$Gm)/length(outjuldose_year$Gm) 

juldose_egeggs<-sum(outjuldose_year$Gc)/length(outjuldose_year$Gc) 

juldose_emdogs<-sum(outjuldose_year$Mmd)/length(outjuldose_year$Mmd) 

juldose_egdogs<-sum(outjuldose_year$Mcd)/length(outjuldose_year$Mcd) 

 

outaugdose_year<-as.data.frame(outaugdose) 

outaugdose_year<-subset(outaugdose_year,time>startpoint & 

time<endpoint) 

augdose_emeggs<-sum(outaugdose_year$Gm)/length(outaugdose_year$Gm) 

augdose_egeggs<-sum(outaugdose_year$Gc)/length(outaugdose_year$Gc) 

augdose_emdogs<-sum(outaugdose_year$Mmd)/length(outaugdose_year$Mmd) 

augdose_egdogs<-sum(outaugdose_year$Mcd)/length(outaugdose_year$Mcd) 

 

outsepdose_year<-as.data.frame(outsepdose) 

outsepdose_year<-subset(outsepdose_year,time>startpoint & 

time<endpoint) 

sepdose_emeggs<-sum(outsepdose_year$Gm)/length(outsepdose_year$Gm) 

sepdose_egeggs<-sum(outsepdose_year$Gc)/length(outsepdose_year$Gc) 

sepdose_emdogs<-sum(outsepdose_year$Mmd)/length(outsepdose_year$Mmd) 

sepdose_egdogs<-sum(outsepdose_year$Mcd)/length(outsepdose_year$Mcd) 

 

outoctdose_year<-as.data.frame(outoctdose) 

outoctdose_year<-subset(outoctdose_year,time>startpoint & 

time<endpoint) 

octdose_emeggs<-sum(outoctdose_year$Gm)/length(outoctdose_year$Gm) 

octdose_egeggs<-sum(outoctdose_year$Gc)/length(outoctdose_year$Gc) 

octdose_emdogs<-sum(outoctdose_year$Mmd)/length(outoctdose_year$Mmd) 

octdose_egdogs<-sum(outoctdose_year$Mcd)/length(outoctdose_year$Mcd) 

 

outnovdose_year<-as.data.frame(outnovdose) 

outnovdose_year<-subset(outnovdose_year,time>startpoint & 

time<endpoint) 

novdose_emeggs<-sum(outnovdose_year$Gm)/length(outnovdose_year$Gm) 

novdose_egeggs<-sum(outnovdose_year$Gc)/length(outnovdose_year$Gc) 

novdose_emdogs<-sum(outnovdose_year$Mmd)/length(outnovdose_year$Mmd) 

novdose_egdogs<-sum(outnovdose_year$Mcd)/length(outnovdose_year$Mcd) 

 

outdecdose_year<-as.data.frame(outdecdose) 

outdecdose_year<-subset(outdecdose_year,time>startpoint & 

time<endpoint) 

decdose_emeggs<-sum(outdecdose_year$Gm)/length(outdecdose_year$Gm) 
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decdose_egeggs<-sum(outdecdose_year$Gc)/length(outdecdose_year$Gc) 

decdose_emdogs<-sum(outdecdose_year$Mmd)/length(outdecdose_year$Mmd) 

decdose_egdogs<-sum(outdecdose_year$Mcd)/length(outdecdose_year$Mcd) 

 

#Creating matrices 

emeggs<-

data.frame(jandose_emeggs,febdose_emeggs,mardose_emeggs,aprdose_emeg

gs,maydose_emeggs,jundose_emeggs,juldose_emeggs,augdose_emeggs,sepdo

se_emeggs,octdose_emeggs,novdose_emeggs,decdose_emeggs) 

emeggs<-as.matrix(emeggs) 

colnames(emeggs)<-

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov",

"dec") 

egeggs<-

data.frame(jandose_egeggs,febdose_egeggs,mardose_egeggs,aprdose_egeg

gs,maydose_egeggs,jundose_egeggs,juldose_egeggs,augdose_egeggs,sepdo

se_egeggs,octdose_egeggs,novdose_egeggs,decdose_egeggs) 

egeggs<-as.matrix(egeggs) 

colnames(egeggs)<-

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov",

"dec") 

emdogs<-

data.frame(jandose_emdogs,febdose_emdogs,mardose_emdogs,aprdose_emdo

gs,maydose_emdogs,jundose_emdogs,juldose_emdogs,augdose_emdogs,sepdo

se_emdogs,octdose_emdogs,novdose_emdogs,decdose_emdogs) 

emdogs<-as.matrix(emdogs) 

colnames(emdogs)<-

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov",

"dec") 

egdogs<-

data.frame(jandose_egdogs,febdose_egdogs,mardose_egdogs,aprdose_egdo

gs,maydose_egdogs,jundose_egdogs,juldose_egdogs,augdose_egdogs,sepdo

se_egdogs,octdose_egdogs,novdose_egdogs,decdose_egdogs) 

egdogs<-as.matrix(egdogs) 

colnames(egdogs)<-

c("jan","feb","mar","apr","may","jun","jul","aug","sep","oct","nov",

"dec") 

 

#Matrix subtraction 

rel_emeggs<-out_emeggs-emeggs 

rel_egeggs<-out_egeggs-egeggs 

rel_emdogs<-out_emdogs-emdogs 

rel_egdogs<-out_egdogs-egdogs 

 

#Best first month is October 

 

#The same approach is now run again, including a second month of dosing, and then 
again two more times – up to four doses per year. The code is not included here due to 
space constraints. 
#This investigation found that October, January, September and November dosing was 
the best method of minimising E.m egg contamination 
 

####################Running targeted intervention 
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onedosedates_eg<-octdose_eg 

onedosedates_em<-octdose_em 

twodosedates_eg<-c(jandose_eg,octdose_eg) 

twodosedates_eg<-sort(twodosedates_eg) 

twodosedates_em<-c(jandose_em,octdose_em) 

twodosedates_em<-sort(twodosedates_em) 

threedosedates_eg<-c(jandose_eg,sepdose_eg,octdose_eg) 

threedosedates_eg<-sort(threedosedates_eg) 

threedosedates_em<-c(jandose_em,sepdose_em,octdose_em) 

threedosedates_em<-sort(threedosedates_em) 

fourdosedates_eg<-c(jandose_eg,sepdose_eg,octdose_eg,novdose_eg) 

fourdosedates_eg<-sort(fourdosedates_eg) 

fourdosedates_em<-c(jandose_em,sepdose_em,octdose_em,novdose_em) 

fourdosedates_em<-sort(fourdosedates_em) 

 

 

onedoselength_eg<-length(onedosedates_eg) 

onedoselength_em<-length(onedosedates_em) 

onedoseevents <- data.frame( 

  var = c(rep("Mmd", onedoselength_em), rep("Mcd", 

onedoselength_eg)),  

  time = c(onedosedates_em, onedosedates_eg), 

  value = rep((1-alpha),onedoselength_em+onedoselength_eg), 

  method = rep("mult", onedoselength_em+onedoselength_eg)) 

 

twodoselength_eg<-length(twodosedates_eg) 

twodoselength_em<-length(twodosedates_em) 

twodoseevents <- data.frame( 

  var = c(rep("Mmd", twodoselength_em), rep("Mcd", 

twodoselength_eg)),  

  time = c(twodosedates_em, twodosedates_eg), 

  value = rep((1-alpha),twodoselength_em+twodoselength_eg), 

  method = rep("mult", twodoselength_em+twodoselength_eg)) 

 

threedoselength_eg<-length(threedosedates_eg) 

threedoselength_em<-length(threedosedates_em) 

threedoseevents <- data.frame( 

  var = c(rep("Mmd", threedoselength_em), rep("Mcd", 

threedoselength_eg)),  

  time = c(threedosedates_em, threedosedates_eg), 

  value = rep((1-alpha),threedoselength_em+threedoselength_eg), 

  method = rep("mult", threedoselength_em+threedoselength_eg)) 

 

fourdoselength_eg<-length(fourdosedates_eg) 

fourdoselength_em<-length(fourdosedates_em) 

fourdoseevents <- data.frame( 

  var = c(rep("Mmd", fourdoselength_em), rep("Mcd", 

fourdoselength_eg)),  

  time = c(fourdosedates_em, fourdosedates_eg), 

  value = rep((1-alpha),fourdoselength_em+fourdoselength_eg), 

  method = rep("mult", fourdoselength_em+fourdoselength_eg)) 
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#####Running targeted dosing strategies 

out_onedose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=onedoseevents)) 

out_twodose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=twodoseevents)) 

out_threedose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=threedoseevents)) 

out_fourdose <-  dede(y=xstart, times=times, func=alaymodel, 

parms=parms, events=list(data=fourdoseevents)) 
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