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Radiation damage cascades in diamond are studied by molecular dynamics simulations employing
the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies
up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide
robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and
provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case
of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent
and only isolated point defects are generated. Quantitative analysis shows that the instantaneous max-
imum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has
a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA
energy, with only 50% of displacements resulting in defects, superior to graphite where the same
quantity is nearly 75%. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922457]

I. INTRODUCTION

Diamond is an important radiation-hard material with a
wide range of applications, including radiation detectors for
particle accelerators1,2 and nuclear detection,3,4 medical
dosimeters,5–8 X-ray mirrors,9 and windows in high-power
optics.10 The advantages of diamond over alternative semi-
conductors, in particular, silicon, stem from its unique physi-
cal and electronic properties,11,12 including high thermal
conductivity, radiation resistance, biologically compatible
atomic number, large band gap, and high charge carrier mo-
bility. These properties permit fabrication of diamond detec-
tors with high sensitivity and low noise and capable of
operating in extreme environments, such as reactors and
space as well as within the human body or as a tissue equiva-
lent; see Ref. 13 for a comprehensive overview of applica-
tions and properties.

Radiation damage in diamond has been studied for
many years using ion implantation and to a lesser extent,
computer simulation. One of the fundamental questions is
the process by which defects are created and the vacancy
concentration threshold above which diamond amorphizes
and/or forms graphitic-like domains. Experimental studies of
annealing in ion-implanted diamond14–17 show that broken
diamond bonds will revert back to either the sp3 diamond or
the sp2 graphitic hybridization, and that there exists a critical
dose, and hence vacancy density, Nc, above which the dia-
mond cannot be reformed. Molecular Dynamics (MD) simu-
lations using the Tersoff potential18 also concluded that the
annealing process was dependant on Nc [Ref. 19]. Related
studies using the binary-collision SRIM package20 similarly
used vacancy densities as a starting point for a model of
annealing behaviour.21 In the absence of annealing, amorph-
ization in diamond has been shown to be driven by a similar
critical threshold,22 with experiments and MD simulation
demonstrating that the diamond lattice remains largely intact

down to densities as low as 2.9 g/cc, at which point !15% of
the lattice sites are vacant. Applying a uniaxial strain in the
simulations yielded the same threshold, demonstrating that
strain is a fundamental quantity that controls amorphization.

Despite the success of computer simulation in interpret-
ing radiation response experiments in diamond, remarkably
few MD simulations have been performed on the radiation
damage cascade itself. The only examples we are aware of
are those of Smith23 who modelled energetic bombardment
in graphite and diamond in the 100–1000 eV energy range,
and Saada et al.19 who considered displacements arising
from a 416 eV primary knock-on atom (PKA). Smith con-
centrated on surface ejection processes motivated by sputter-
ing, while Saada et al. considered annealing-induced
graphitisation facilitated by defects created by the PKA.
While related MD studies have examined the threshold dis-
placement energy24–26 and response to swift heavy ions,27,28

there is virtually no MD literature concerning cascade
kinetics in diamond and the associated generation and
annealing of defects. The importance of understanding cas-
cade dynamics in diamond was highlighted by Prins and
Derry21 who discussed the relative importance of displace-
ment spikes versus point defect generation. While displace-
ment spikes are common in many metals and oxides, they
are undesirable in diamond as they can be connected with re-
sidual pockets of amorphous damage which persist once the
thermal spike has cooled.

In this work, we present a comprehensive MD simula-
tion of radiation damage cascades in diamond. A large num-
ber of simulations are performed, spanning a wide number of
uniformly distributed directions and energies as high as
2.5 keV. This dense data set enables statistically significant
analysis of important cascade quantities, such as lifetime,
spatial extent, atomic displacement, and defect recombina-
tion efficiency. We find that radiation damage cascades in di-
amond are strikingly different to those in most metals and
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oxides, exhibiting very short cascade lifetimes and a
fractal-like trajectory structure associated with generation
of isolated point defects. While there are some quantitative
differences, there are many qualitative similarities with cas-
cades in graphite,29 a result which we found rather unex-
pected given the large differences in density, structure, and
bonding.

Our manuscript is structured as follows. In Sec. II, we
outline our systematic approach for modelling cascades and
the subsequent defect analysis. Section III begins with some
representative visualisations of individual cascade events,
followed by a statistical treatment of kinetics and defect gen-
eration, concluding with a comparison between diamond and
graphite. Section IV discusses the results in the context of
previous calculations of related Group IV elements and iden-
tifies future directions for studying radiation phenomena in
diamond.

II. METHODOLOGY

The calculations are performed using the environmental
dependent interaction potential (EDIP) for carbon,30,31 in
combination with the Ziegler-Biersack-Littmark (ZBL)
potential32 to describe close approaches. The carbon EDIP
methodology accurately models the behaviour of disordered
and amorphous carbons,33 making it well suited for describ-
ing an irradiation event. The potential is based on the earlier
EDIP for silicon,34 which contains pair and triple interac-
tions and a spherical coordination term. The carbon variant
includes aspherical coordination terms to capture dihedral
rotation and long-range p-p repulsion and includes a variable
short-range cut-off that ensures the sp3 and sp2 hybridiza-
tions reduce to the Stillinger-Weber form for integer coordi-
nation. At very small separation, the ZBL potential applies
between all pairs of atoms, while for computational practi-
cality, the three-body term in EDIP always remains active,
but is comparably much smaller than the pair interaction.
Due to the environment-dependence, conventional spline
functions are not suitable to switch between the ZBL and
EDIP pair terms, and hence Fermi-type scaling functions are
used instead to smoothly interpolate and avoid points of
inflexion.29

Lattices were equilibrated at 300 K and periodic bound-
ary conditions were employed. Cubic supercells were always
employed, with the largest cell containing 110 592 atoms
and having a side length of 107.2 Å. To confine each colli-
sion cascade within the cubic supercell, the location and ini-
tial direction of the PKA were selected such that the cascade
would evolve towards the centre of the cell. A thermal layer
was employed on the edge of the supercell to dissipate any
excess kinetic energy. The equations of motion were inte-
grated using the Verlet method in combination with a vari-
able timestep algorithm developed for non-equilibrium
systems.35 The metric jjFmaxjjDt was used to compute the
timestep, which varied from 0.0005 fs during the highest
energy encounters to around 0.2 fs once equilibrium was
reached. Atomic motions were covered for 1 ps, which while
small compared to other materials, was more than sufficient
to capture all of the important dynamics in the cascade.

To acquire a sufficiently large data set for statistical sam-
pling, a large number of cascade trajectories were sampled.
PKA energies of 100, 250, 500, 750, 1000, 1500, 2000, and
2500 eV were used to initiate the radiation cascade and the ini-
tial direction of the PKA was selected from a set of points uni-
formly distributed on a unit sphere, formally known as the
Thomson problem.36 This directional sampling technique, first
used by Robinson et al.37 to calculate threshold displacement
energies in rutile TiO2, provides an elegant solution to the
problem of selecting a set of initial velocities that are uncorre-
lated with the crystalline axes and representative of an arbi-
trary cascade. Here, we use a 25-point Thomson solution
generated by our software package NanoCap38 and shown in
Fig. 1. The reduced Coulomb energy of this structure is
243.8127602, identical to that determined by Wales and
Ulker39 using a global minima search algorithm. Their data,
which are available on the Cambridge Cluster Database web-
site,40 list the point group symmetry of the 25-point solution
as Cs, and hence the only symmetry operation is a mirror
plane. It was particularly important to avoid high symmetry
solutions, such as those with tetrahedral symmetry, as these
sets of Thomson points would correlate with the lattice and
significantly reduce the extent of independent sampling.

The cascade trajectories were studied using a variety of
statistical techniques to quantify the response of diamond to
irradiation, providing insight into energy transfer and the
number of energetic atoms as a function of time. Further sta-
tistical analysis was employed to quantify the number of
defects, cascade duration, and cascade length as a function
of PKA energy. As in the recent work on graphite,29 defects
and displacements were determined using a vacancy radius
vr of 0.9 Å. All quantitative data were averaged across the 25
different directions, and all time-varying data were histo-
grammed prior to the calculation of the mean and standard
deviation. Data involving the ballistic phase only were ana-
lysed using a fixed bin width. Data which spanned the entire
simulation, such as defect evolution, required two distinct
bin widths, one to capture the ballistic phase and a much
larger value for the annealing phase.

FIG. 1. Solution to the Thomson Problem for N¼ 25 in which point charges
(shown in red) are uniformly distributed on the unit sphere. In this work, the
initial direction of the PKA corresponds to one of these 25 points.
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III. RESULTS

The results of the simulations are presented in four parts.
Firstly, we show two individual cascades in diamond to pro-
vide a visual representation of a cascade. To the best of our
knowledge, these are the first such calculations for diamond.
In the second section, we quantify time evolution statistics
by averaging over all 25 directions and determine the aver-
age cascade lifetime by analysing both the maximum kinetic
energy and the number of atoms with energy exceeding fixed
thresholds. The third section quantities defects and displace-
ments as a function of time and PKA energy, while the final
section quantifies the cascade size as a function of energy
and compares the diamond results with those of graphite.

A. Individual cascades

Figure 2 shows an example of a cascade in diamond pro-
duced by a 2 keV PKA. Interstitials and vacancies are repre-
sented by blue circles and red squares, respectively, and the
black lines show the trajectory of the defect atoms, providing
a sense of the evolution and spatial extent of the cascade. All
other atoms which remain on their lattice site are not shown.
Panel (a) shows the cascade 1.8 fs after the initial creation of
the PKA, at which point the PKA has moved a small distance

and a vacancy has been left behind. Panel (b) shows the sys-
tem after 8.3 fs, where the PKA has undergone a collision
with another carbon atom, splitting the ballistic phase into
two sub-cascades. Panels (c) and (d) show the system at 9.5
and 10.0 fs, respectively, and depict the development of the
respective sub-cascades. These two frames reveal the lower
sub-cascade to be more energetic with more branching evi-
dent with each successive atomic interaction. By 12.6 fs
[panel (e)], the point of maximum damage is reached with a
total of 20 defects. Beyond this time, the atoms do not have
sufficient energy to create further defects and recombination
becomes the dominant process. Recombination is extremely
rapid, and after 16 fs [not shown], the number of defects has
decreased from 20 to just 12. Panel (f) shows the final state
of the system 1 ps after the creation of the PKA, where just
10 point defects remain. While the specifics vary according
to the impact parameter, this sequence and general branching
structure is typical. Intriguingly, the branching trajectories
seen here are not dissimilar to those recently calculated by
ourselves in graphite [see Fig. 2 in Ref. 29] The main visual
contrast is that the distance between branching points is
smaller in diamond compared to graphite, a difference likely
due to the higher density of diamond. We will return to these
similarities and differences in Sec. III D where we quantify
several cascade quantities for both systems.

A second example of a 2 keV cascade using a different
initial PKA direction is shown in Fig. 3. In this simulation,
the cascade nature does not contain the branching structures
seen in Fig. 2, and instead involves a channelling-like pro-
cess. Due to the absence of heavy collisions, the PKA travels
a substantial distance, creating defects with close proximity
to the central track. The upper panel of Fig. 3 shows the time
of maximum defects (total of 19) which occurred 18.2 fs af-
ter the PKA was initiated. At this instant, the channelling-
like behavior of the PKA has not concluded, and the cascade
continues to develop afterwards. The lower panel of Fig. 3
shows the final structure once the PKA has reached the

FIG. 2. Time evolution of a typical cascade in diamond for a 2 keV PKA.
Interstitials are denoted with blue circles and vacancies shown as red
squares. Atoms that remain on their lattice sites are not shown. Panel (a)
depicts the initial stages of the PKA event and the final frame in panel (f)
indicates the stable defects that remain once recombination has occurred.

FIG. 3. A two-frame snapshot for a 2 keV cascade where channelling-like
behavior occurs. The PKA originated at the top left of the upper frame,
where the red vacancy reveals the initial site of the PKA. The upper frame
corresponds to the time where the maximum number of defects was reached,
while the bottom frame shows the final number of defects once the simula-
tion has concluded.
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end-of-range and recombination has concluded. Comparing
the two panels shows that the number of defects to have
recombined is almost 50%, and as we will quantify later by
averaging over many different directions, this value is typi-
cal. Comparing Fig. 3 with Fig. 2, we also see that the time
of maximum defects is approximately 50% larger for the
channeling case (18.2 vs 12.6 fs), indicating the intuitive
result that channeling-type events spread over a longer time-
frame, even though the number of final defects is similar.

B. Cascade kinetics

Having outlined some qualitative features of radiation
cascades in diamond, we now turn to a more quantitative
treatment. From this point onwards in the manuscript, we
will discuss only statistically meaningful quantities extracted
from the data for 25 different directions at each PKA energy.
To gauge a sense of the strength and duration of the interac-
tions involved in the cascade, the maximum kinetic of any
atom in the system, KEmax, was computed as a function of
time. At each instant in time, the average value of KEmax and
its standard deviation was computed over all 25 trajectories.
Figure 4 shows an example of this analysis for a 1 keV PKA,
and also includes two specific trajectories (red and blue
lines) corresponding to individual directions. These two
directions were selected as they represent two extreme sce-
narios in the 25-trajectory data set. The blue line shows data
from a localised cascade in which a heavy collision occurs as
shown by the sudden drop in KEmax to 270 eV at t¼ 4.5 fs.
This cascade is similar in nature to the branching calculation
seen in Fig. 2. The red line shows data for a channeling-like
event which is similar to that shown in Fig. 3. The signature
of the channelling process in Fig. 4 is the region of small
negative slope in which a fast moving atom (not necessarily
the PKA) is able to move comparatively large distances
without undergoing a collision.

The mean and standard deviation of KEmax are shown in
Fig. 4 as a solid black line and error bars, respectively. Even
though the standard deviation is large, reflecting the stochas-
tic nature of the collision process, the average value is rather
smooth and exhibits a near monotonic reduction over time.

One surprising observation in this data is the rapid dissipa-
tion of kinetic energy as the cascade evolves. Only 40 fs is
required for KEmax to reduce to 10% of the initial PKA
energy, and after 60 fs, the average value of KEmax is negligi-
ble and the ballistic phase is complete. In contrast, most
other materials, prototypically metals and oxides, have much
longer ballistic phases, with typical durations being a sub-
stantial fraction of a picosecond and higher. It is reasonable
to presume that these short lifetimes result from the dense
network of strong bonds in diamond which give it a very
high thermal conductivity (>2000 W m#1 K#1) and in a cas-
cade context enable highly efficient energy transfer away
from the PKA.

The averaged instantaneous maximum kinetic energy
KEmax was computed for all eight PKA energies and is
shown as a function of time for three selected energies (500,
750 and 1000 eV) in Fig. 5. Also shown in the figure are
black lines denoting exponential fits to the data. Each func-
tion has the form

KEmax ¼ KEPKA exp½#t=t0%; (1)

where the maximum kinetic energy at any point in time t can
be described by the initial kinetic energy of the PKA and a
time constant, t0, which quantifies the rate at which energy is
dissipated. Accordingly, the averaged data for a given energy
can be described by a single parameter, namely, the time
constant. The goodness of fit and the simplicity of the func-
tional form provide an elegant way to characterise energy
transfer in the cascade and may well be useful in radiation
damage studies on other materials.

Data for the other five energies were also accurately
described by this functional form, and via the fitting proce-
dure, a value of t0 was extracted for each PKA energy. The
values of t0 are shown as red circles in Fig. 6 where they are
plotted as a function of energy. Also shown in the figure is a
power-law function as previously used to analyze cascades
in graphite. The power-law has the form aEx, and yields an
exponent x for 0.36 when fitted to the time constant values.
Although there is some scatter at the higher energies, the fit
at low energies is excellent. We suspect that this scatter
reflects sampling noise, since at the higher energies some of
the cascades (1 at 1 keV, 2 at 1.5 keV, 4 at 2 keV and 1 at

FIG. 4. Maximum kinetic energy as function of time for cascades with an
initial PKA energy of 1 keV. Blue and red lines present data for two specific
cascades as described in the text. The solid black line and error bars denote
the mean and standard deviation, respectively, averaged over 25 uniformly
distributed initial directions.

FIG. 5. Average maximum kinetic energy as a function of time over 25
PKA directions for initial PKA energies of 500, 750, and 1000 eV. The black
lines are exponential functions fitted to each data set.
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2.5 keV) contacted the cell boundary and were removed
from analysis; for all other energies, all 25 directions
remained fully contained. Removing these cascades tends to
reduce the time constant, since the trajectories which are
omitted have large spatial extents and lose energy more
slowly (see Figs. 3 and 5). Significantly, the value of the
exponent is much smaller than the value of 2

3 corresponding
to cooling of a thermal spike; see Ref. 41 for a derivation
based on the heat-diffusion equation. The absence of a
thermal spike (or equivalently, cascade evolution via point-
defect creation), is again likely to be related to the high ther-
mal conductivity of diamond since the local temperature
never rises high enough to create a molten cascade core. We
will return to this property in Sec. III D where we compare
the cascade lifetime in diamond with graphite using a
slightly different metric.

To quantify the rapid time-evolution of the radiation
cascades, the number of atoms exceeding pre-defined thresh-
old values of 1 and 10 eV was counted and averaged across
all directions. The higher threshold provides a measure of
fast moving atoms associated with defect production and
atoms moving between lattice sites, whereas the lower
threshold conveys a sense of heat dissipation to the surround-
ing atoms in the lattice. These categories can be considered a
measure of “fast atoms” and “warm atoms,” respectively.
Data for the 1 keV set of directions are shown in Fig. 7, with
fast atoms shown in red (lower curve) and warm atoms in
blue. As before, error bars denote one standard deviation.
The short duration of fast atoms mirrors the rapid exponen-
tial decay seen in Fig. 5, and the number of these atoms is
rather small, reaching a maximum value of six. In contrast,
the number of warm atoms becomes relatively large, around
100, before gradually reducing to zero around 0.25 ps. A
high degree of statistical variability is apparent towards the
end of the ballistic phase when the number of warm atoms is
at its maximum (the 1r confidence level extends from
around 75 to 130), but from around 0.05 ps onwards, the
standard deviation is much smaller, and the dominant pro-
cess is thermal diffusion in which the residual kinetic energy
is conducted away into the surrounding matrix.

In the earlier graphite study, we extracted a useful quan-
tity tmax from individual trajectories by searching for the

time at which the number of fast atoms was maximal; this
time quantifies growth of the cascade during the ballistic
phase. One drawback of the previous approach was that it
suffered from large statistical noise as the number of fast
atoms was small and assumes an integer value for single tra-
jectories. With the present data, however, it is possible to
define tmax much more precisely, since the number of fast
atoms is now comparatively smooth and can take fractional
values. An example of this analysis is shown in Fig. 8 where
data are shown for three different PKA energies. Also shown
in the figure are parabolically-shaped dotted lines determined
by fitting functions of the form

Nfast ¼ Nmax # aðt# tmaxÞ2; (2)

where a, tmax, and Nmax are fitting parameters. Using this
approach, tmax can be easily extracted as a function of PKA
and interpreted to understand the behaviour of the ballistic
phase of the cascade. We will return to this discussion in
Sec. III D when we compare behavior in diamond with that
in graphite.

C. Defect analysis

Structural analysis of the instantaneous positions of the
atoms provides a complementary view to the metrics based

FIG. 6. Time constant, t0, as a function of PKA energy determined by fitting
Eq. (1) to maximum kinetic energy data, such as shown in Fig. 5. The solid
line shows a power-law fit as described in the text.

FIG. 7. Number of atoms with kinetic energies greater than 1 and 10 eV as a
function of time for a PKA energy of 1 keV. Data averaged across 25 direc-
tions with error bars indicating one standard deviation.

FIG. 8. Average number of fast atoms (KE> 10 eV) for PKA energies of
500 eV (green), 1 keV (blue), and 1.5 keV (red). The black dashed lines
show the parabolic fit via Eq. (2) used to determine the time tmax.
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on kinetic energy. Two of the most important quantities are
the number of defects, defined as atoms more than vr¼ 0.9 Å
from a lattice site, and the number of displacements, defined
as atoms which have moved more than vr from their original
position. During a cascade, atoms can migrate from one lat-
tice site to another, and hence the number of defects is a
lower bound to the number of displacements. Figure 9 shows
the time evolution of displacements and defects for cascades
with an initial PKA energy of 2 keV. Once again, data are
averaged across many directions (here 21, since four cas-
cades interacted with the walls), and error bars denote one
standard deviation. Note that the finer spacing between the
data points at small times reflects the smaller bin width
required to average across the variable integration time step
and accurately capture the ballistic phase of the cascade.
Early in the cascade, the average number of defects and dis-
placements are equal, but by the time the maximum number
of defects is attained at 0.05 ps, the number of displacements
is already significantly larger, by !15%. Beyond this point,
the number of displacements is close to constant, except for
a small reduction in displacements in which mobile atoms
return to their original lattice. Due to recombination of vacan-
cies and interstitials, the number of defects reduces substan-
tially as the cascade evolves, eventually falling to just under
half the maximum value. Although the averages are well-
defined and smooth functions in time, the magnitude of the
standard deviation is substantial. Without the averaging proce-
dure employed here, it would be impossible to extract quanti-
tatively useful information such as seen in Fig. 9.

The analysis shown in Fig. 9 was performed for all of
the PKA energies and the number of displacements and
defects at the conclusion of the cascade was determined.
These data are plotted in Fig. 10, where it is apparent that
the number of displacements and defects each exhibit a
strong linear dependence on the PKA energy; the black lines
are fits to the data, while the error bars are one standard devi-
ation. The linear trend is extremely strong, with the lines
passing through all of the data points; indeed, if the standard
error in the mean is plotted, the error bars become so small
as to be barely distinguishable from the data point itself.
These two data sets are reminiscent of the historical

Kinchin-Pease42 (KP) and Norgett-Robinson-Thomson43

(NRT) models in which the threshold displacement energy
(Ed) is the key quantity relating the PKA energy to the num-
ber of displacements and defects, respectively. Assuming a
KP functional form

Ndisplacements ¼
E

2Ed
(3)

yields a value of Ed of 41 eV, while the NRT functional form

Ndefects ¼ 0:8
E

2Ed
(4)

yields a rather larger value of 69 eV. While neither of these
values should be considered definitive (since explicit trajec-
tories have not been used to calculated defect formation
probabilities as in Ref. 37), they are consistent with experi-
mental and computational values in the literature24–26,44–47

which span a broad range extending from 30 to 80 eV.

D. Comparison to graphite

To place the present results in a broader context, it is in-
structive to compare some of the properties of the diamond
cascades with related simulations recently performed by our-
selves on graphite.29 We first consider the cascade length
and PKA range as shown in Fig. 11. The size of the cascade
is defined as the largest distance between any two defects in
the cascade, while the PKA range is determined by calculat-
ing the difference between the initial and final positions of
the PKA. Each data point in Fig. 11 represents an average
across 25 directions and the error bars indicate the standard
deviation. The PKA range and the cascade length are each
well-described by straight-line fits passing through the origin,
represented by the black lines. For the PKA range, the gradi-
ent of the linear fit for diamond is 18 Å/keV, approximately
40% smaller than the corresponding value of 30 Å/keV for
graphite.48 Similar behaviour occurs for the cascade length,
where the gradient for diamond is 25 Å/keV, around one-third
smaller than the graphite value of 38 Å/keV.

FIG. 9. Number of displacements (red; upper curve) and defects (blue; lower
curve) as a function of time for a PKA energy of 2 keV. Data are averaged
across 21 trajectories using two distinct bin widths. Error bars denote one
standard deviation.

FIG. 10. Number of displacements (red) and defects (blue) as a function of
PKA energy. Errors bars indicate one standard deviation and black lines are
linear fits passing through the origin. Defects are determined using a va-
cancy radius of 0.9 Å.
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As noted earlier, the quantity tmax provides a useful mea-
sure of the timescale of the ballistic phase. Figure 12 com-
pares a power-law fit extracted from our previous graphite
study with corresponding data for diamond extracted using
Eq. (2) and illustrated in Fig. 8. The data for diamond are
also well-described by a power-law expression, and the
exponents x are very similar, 0.41 for diamond versus 0.37
for graphite. Since the values of x are so close, the ratio
between the diamond and graphite values does not vary
much with PKA energy. Examination of the two data sets
shows that tmax in diamond is approximately 45% shorter

than in graphite, consistent with the more compact cascade
dimensions seen in Fig. 11.

While we do not have a complete explanation for the
power-law behaviour, one plausible hypothesis is that it arises
from the branching nature of the cascades. Applications as
diverse as internet connectivity,49 ecology,50 and metallic
glasses51 show that fractal behaviour is associated with power-
law relationships. It therefore seems reasonable to propose that
the power-law behaviour evident in the cascade timescale data
is associated with the fractal-like behaviour of the cascade tra-
jectories themselves. Given this potential mathematical con-
nection, the behaviour seen for graphite and diamond is
worthy of further investigation, particularly in other similar
materials to test if there is some underlying universality.

Figure 13 plots the ratio of defects to displacements as a
function of PKA energy for diamond and graphite. In the
original NRT article,43 this ratio is referred to as the
“displacement efficiency,” but we prefer the label “residual
defect factor,” since this emphasises that a small ratio
implies few residual defects, and vice-versa. According to
the NRT model, this factor is independent of PKA energy,
material and temperature, and has the value 0.8, correspond-
ing to 20% recombination. Figure 13 shows that the first of
these assumptions (no PKA energy dependence) holds true
for diamond and graphite, but the second assumption is
clearly incorrect. Across a wide energy range, we find the re-
sidual defect factor is 0.74 for graphite, not dissimilar to the
NRT value, and just 0.50 for diamond. This implies around
one-quarter of the displaced atoms in graphite recover to find
new lattice sites, while recombination in diamond is much
more significant, with half of the displaced atoms finding
new lattice sites. The strong propensity in diamond for
recrystallization is further magnified by a comparatively low
rate for generating atomic displacements in the first place.
As seen earlier, using the Kinchin-Pease model (Eq. (3)) as a
simple metric to quantify, the displacement efficiency yields
a value of Ed of 41 eV for diamond, considerably higher
than the equivalent value for graphite which is around 25 eV
(see Fig. 9 in Ref. 29). Accordingly, around 40% fewer dis-
placements are generated in diamond relative to graphite
for a given PKA energy, and together with the higher

FIG. 11. (a) The PKA range and (b) cascade length as a function of PKA
energy. The error bars denote one standard deviation. The linear fit for dia-
mond (black) is compared to another linear fit for graphite (blue) from previ-
ous MD simulation studies.29

FIG. 12. Time of maximum number of fast atoms, tmax, as a function of
PKA energy. The black line is a power-law fit to the diamond data, shown as
red circles. The blue line shows the power-law relationship for the same
quantity from our recent graphite studies.29

FIG. 13. The residual defect factor, defined as the ratio of defects to dis-
placements, as a function of PKA energy. Data for graphite and diamond are
shown as blue squares and red circles, respectively. The graphite data set is
taken from our previous MD simulations29 as discussed in the text.
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recombination efficiency, diamond overall yields 60% fewer
defects than graphite.

IV. DISCUSSION AND CONCLUSION

The predominant insight to emerge from this study is that
radiation cascades in diamond are distinctive as compared to
many other materials, in the sense that the properties of the
radiation damage process fall at the far end of the spectrum.
While there are clear quantitative differences between damage
in diamond and graphite, in many ways these two principal
carbon allotropes exhibit similar radiation response and can
be grouped in a relatively small class of materials in which
the cascade response involves point defects and isolated sub-
cascades. The most important factors common to diamond
and graphite cascades are the branching structures of the tra-
jectories, isolated point defect production, an extremely short
ballistic phase and the absence of melting as per a thermal
spike. All four of these attributes are fundamentally con-
nected, arising from efficient transfer of kinetic energy away
from the collision site. As a result, the binary collision approx-
imation (BCA) is a useful starting point for studies at higher
energies, a result we previously discussed at some length in
our study of graphite cascades.29 While the BCA is commonly
(and correctly) assumed in discussion of graphite, in particular
nuclear graphite, we are not aware of a similar understanding
in the literature for diamond. This finding is an important the-
oretical result for a diamond, where atomistic knowledge of
radiation effects is surprisingly modest, with the vast majority
of studies concerned with either fabrication or characterisation
in the laboratory or high-energy simulation, such as with
GEANT4.52 As for why diamond and graphite exhibit this
BCA-type behavior, a full explanation is still lacking, but mo-
lecular dynamics is the ideal tool to elucidate the specific
characteristics responsible by exploring other carbon phases,
such as nanotubes, glassy carbon, and amorphous carbon.

Comparison of the present diamond results with earlier
cascade studies53–55 in silicon and germanium is instructive, as
the latter two materials have the same diamond crystal structure
but weaker covalent bonds. In both silicon and germanium, the
cascade evolves in a manner similar to many materials, produc-
ing an extended volume of disorder that results in an amor-
phous pocket when the cascade cools. This observation that
isolated point defect production is not common in silicon and
germanium shows that it is strong carbon-carbon bonds in dia-
mond which are responsible for the BCA-like behaviour, rather
than the crystal structure itself. Note that this cascade evolution
in diamond is fundamentally different to radiation resistant
oxides, such as spinels and pyrochlores where the origin of
similar behaviour derives from structural factors, such as cation
anti-sites and structural vacancies.

Despite the many conceptual similarities between dia-
mond and graphite, the quantitative details are quite differ-
ent. As we have discussed separately,29 compared to most
materials, graphite can be considered rather unusual due its
very fast cascade lifetime, fractal-like trajectory structure,
and absence of a thermal spike. Furthermore, graphite resists
radiation damage extremely well, which is why it was the
original nuclear material, being employed as a moderator,

reflector, and structural material. Against this backdrop, dia-
mond is even more radiation resistant than graphite, exhibit-
ing ballistic phases which are 45% faster (Fig. 12), cascade
dimensions that are !35% smaller (Fig. 11), and defect pro-
duction which is 60% lower due to more efficient recombina-
tion (Fig. 13) and a higher Kinchin-Pease threshold
displacement energy (Fig. 10). All of these differences com-
bine to the high radiation hardness of diamond and contrib-
ute to the widespread interest in exploiting diamond as a
detector, dosimeter, and other radiation-hard situations.

Looking beyond the particular case of diamond, one of
the technical achievements in this work is the use of direc-
tional sampling and averaging to extract robust statistical
trends. The averaging of the maximum kinetic energy as a
function of time is a case in point: even though an individual
cascade is highly specific to the direction of the PKA
(Fig. 4), averaging over a sufficient number of trajectories
reveals a strong exponential trend (Fig. 5). This trend could
not have been anticipated by inspection of individual
cascades due to the large fluctuations associated with heavy
collisions. It would be intriguing to learn whether other mate-
rials important in a radiation damage context also exhibit this
exponential energy dissipation process. If that proved to be
the case, this averaging approach would provide a simple met-
ric to compare different materials systems. A similar logic
applies to the other averaged quantities presented above. The
number of fast and warm atoms provides insight into the cas-
cade that is intuitive to interpret, as is the time when the num-
ber of fast atoms is highest. Although not presented here, the
time at which the number of defects is maximal is another
useful quantity that can be easily extracted since the averaged
data are so smooth (Fig. 9). Many other useful quantities can
undoubtedly be defined, and providing this quantitation in a
comprehensive way across multiple materials systems would
be invaluable for understanding radiation damage in solids in
general, and diamond in particular.

In summary, we have performed a comprehensive molec-
ular dynamics study of radiation damage cascades in diamond.
Similar to graphite, cascades in diamond generate isolated
point defects and a branched trajectory structure created by dis-
tinct heavy collisions. Statistical averaging over a uniformly
distributed set of initial directions was applied to quantify a va-
riety of diamond cascade characteristics, including energy dis-
sipation (decays exponentially with time), cascade lifetime
(power-law dependence on PKA energy), spatial extent (linear
dependence on PKA energy), and defect formation/recombina-
tion (also linearly dependent on energy). Quantitative compari-
sons with cascades in graphite show that diamond is an even
more extreme material, with briefer cascades and fewer
defects. This high degree of radiation hardness is one of the
key reasons diamond is such an attractive material for dosime-
try and detectors, and motivates further computational studies
to pinpoint the threshold displacement energy and develop a
complete atomistic picture of radiation damage in diamond.
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