
Automated Speckle Tracking in Ultrasound 

Images of Tendon Movements  

 
 

 

 

 

 

Ahmad Sufril Azlan Mohamed 

 

 

 

 

 

 

 

 

Ph.D. Thesis  2015



Automated Speckle Tracking in Ultrasound 

Images of Tendon Movements  
 

 

 

 

 

 

Ahmad Sufril Azlan Mohamed 
 

 

 

 

 

 

 

School of Computing, Science and Engineering 

University of Salford, Salford, UK 
 

 

 

 

Submitted in Partial Fulfilment of the Requirements of the 

Degree of Doctor of Philosophy, July 2015



 i 

Table of Contents 

 
Title Page 

Table of Contents  i  

List of Tables v 

List of Figures  vi 

List of Equations xiv 

List of Publications xvi 

Acknowledgments  xvii 

Abbreviations xviii 

Abstract  xix 

 

Chapter 1 - Introduction  1  

1.1 Fundamental Steps in Image Processing 1 

1.2 Image Acquisition 2 

1.2.1  Light Radiation Based Imaging 3 

1.2.2  Acoustic Based Imaging 4 

1.3 Pre-processing 4 

1.4 Segmentation 5 

1.5  Feature Selection 5 

1.6      Recognition 5 

1.7 Interpretation 6 

1.8 Knowledge Base 6 

1.9 Image Tracking in Digital Video 7 

1.10 General Applications of Object Tracking 8 

1.11 Motivation of This Work 10 

1.12 Aims and Objectives 11 

1.13 Outline of The Thesis 12 

 

Chapter 2 - Literature Review 15 

2.1 Biomedical background: Tendon Structure and Function 15 

2.1.1 Tendon Structure 16 



 ii 

2.1.2 Tendon Function 17 

2.1.3  Tendon Injury and Risk 20 

2.1.3.1 Acute Tendon Injury 21 

2.1.3.2 Chronic Tendon Injury 23 

2.2  Medical Imaging in Biomechanical Applications 24 

2.2.1 X-ray Imaging 25 

2.2.2 Bone Scintigraphy Imaging 26 

2.2.3 Computed Tomography (CT) Scan 26 

2.2.4 Magnetic Resonance Imaging (MRI) 27 

2.2.5 Ultrasound Imaging 29 

2.2.5.1 A-mode (Amplitude) 33 

2.2.5.2 B-mode (Brightness) 34 

2.2.5.3 M-mode (Motion) 35 

2.2.5.4 Doppler Based Ultrasound Imaging 36 

2.3 Ultrasound Speckle Tracking and Its Clinical Applications 39 

2.4 Motion Estimation of Speckle Tracking 41 

2.4.1 Gradient Based Optical Flow 43 

2.4.1.1 Lucas-Kanade Algorithm (LK) 46 

2.4.2 Block-Matching Algorithm (BMA) 49 

2.4.2.1 Mean Square Error (MSE) 52 

2.4.2.2 Normalised Cross-Correlation (NCC) 53 

2.6 Summary 55 

 

Chapter 3 - Materials and Methods 57 

3.1  Methodology 57 

3.2 Manual Measurement Based on Standard Method 60 

3.3  Study 1: Algorithm Validation Experiment 60 

3.3.1 Participant 61 

3.3.2  Tracking Region 61 

3.3.3 Hardware and Software Setup 62 

3.3.3.1 Patella Tendon Assessment Setup 66 

3.3.3.2 Medial Gastrocnemius Tendon Assessment Setup 68 

3.4 Study 2: Two Regions of Interest (ROI) Tracking Experiment 71 

3.4.1 Hardware and Software Setup 72 



 iii 

3.5 Study 3: In-Vivo Experiment Using Multiple Layers Tracking 77 

3.5.1 Participants 77 

3.5.2 Tracking Regions 77 

3.5.3 Hardware and Software Setup 78 

3.6 Speckle Tracking Software Design and Implementation 81 

3.6.1 Software Design and Implementation Overview 81 

3.6.2 The Graphical User Interface (GUI) 83 

3.6.3 The Speckle Tracking Algorithms 87 

3.6.3.1 MSE 87 

3.6.3.2 NCC 90 

3.6.3.3  LK 93 

3.6.3.4 NCCMSE 95 

3.6.4 Individual Error Analysis 98 

3.6.4.1 Stationary Movement Error 98 

3.6.4.2 Irregular Movement Error 99 

3.7 Summary 100 

 

Chapter 4 - Evaluation of The Four Tracking Algorithms 101 

4.1  Evaluation of The Tracking Algorithms 101 

4.2 Tracking Accuracy During Passive Tendon Movement 102 

4.3 Tracking Accuracy During Active Tendon Movement 105 

4.4 Tracking Reliability During Passive tendon Movement 112 

4.5 Tracking Reliability During Active Tendon Movement 117 

4.6 Discussion 121 

4.7  Summary 124 

  

 

Chapter 5 - Automatic Measurement using Normalised  

 Cross Correlation  125 

5.1 Region of Interest (ROI) Block Size Comparisons 125 

5.1.1 Patella Tendon 126 

5.1.2 Medial Gastrocnemius Tendon 129 

5.2 Tracking Algorithm Threshold Level Comparisons 132 

5.2.1 Patella Tendon 132 



 iv 

5.2.2 Medial Gastrocnemius Tendon 133 

5.3 Automatic Tracking using Two Regions of Interest (2-ROI) 135 

5.3.1 Patella Tendon 136 

5.3.1.1 Passive Movement 136 

5.3.1.2 Active Movement 137 

5.3.2 Medial Gastrocnemius Tendon 138 

5.3.2.1 Passive Movement 138 

5.3.2.2 Active Movement 139 

5.4 Summary 141 

 

Chapter 6 - In Vivo Experiments: Multiple Layer Automatic  

 Tracking to Determine Human Tendon Mechanical Properties 142 

6.1 In-Vivo Strain Comparison 142 

6.2 Proximal Strain Results 143 

6.3 Distal Strain Results 144 

6.4 Comparisons Between Proximal and Distal Layers 145 

6.5 Summary 148 

 

Chapter 7 - Summary and Conclusions 150 

7.1 Summary 150 

7.2 Conclusions and Recommendations for Future Works 155 

 

References 157 

Appendix A: Journal Publication I  172 

Appendix B: Journal Publication II 180 

Appendix C: Conference Abstract (SPARC 2011) 191 

Appendix D: RISE magazine column  194 

Appendix E: Conference Paper (IGNITE 2014)  195 

Appendix F: Matlab Source Code (NCC) 202 

Appendix G: Matlab Source Code (MSE) 206 

Appendix H: Matlab Source Code (NCCMSE) 210 

Appendix I: Matlab Source Code (LK) 214 

 



 v 

List of Tables 
    

Table 4.1 Mean displacement of 10 samples and difference (in millimetres) of 

each tracking algorithm against the standard manual measurement 

of passive movement at the patella tendon.  

 102 

Table 4.2 Mean displacement of 10 samples and difference (in millimetres) of 

each tracking algorithm against the standard manual measurement 

of passive movement at the medial gastrocnemius tendon.  

 104 

Table 4.3 Mean displacement of all passive movements of the tendon for each 

algorithm and the difference of each algorithm against the manual 

measurement. 

 122 

Table 4.4 Mean displacement of all active movements of the tendon for each 

algorithm and the difference of each algorithm against the manual 

measurement. 

 122 

Table 4.5 Total mean of computational cost for each algorithm on both active 

and passive tests. 

 123 

Table 4.6 Total mean of tracking errors for each algorithm.   123 

Table 6.1 Instantaneous mean strain for all layers at both proximal and distal 

regions of the patella tendon at 50% and 100% force levels. 

 146 

    

    

    

    

    

    

    

    

  

 

 

  

    



 vi 

List of Figures 
 

Figure 1.1 Fundamental steps in digital image processing (Gonzalez, 1992)  2 

Figure 1.2 Types of imaging and their application areas (Gonzalez, 2002)  3 

Figure 1.3 Example of a video motion.  7 

Figure 1.4 Examples of object tracking used in various applications: a) 

surveillance camera (from http://ben.benfold.com/research.html), 

b) traffic control management, c) cardiovascular strain estimation 

and d) tendon tracking (from http://www.ultrasoundcases.info/). 

 9 

Figure 2.1 Structure of tendon with each layer bounded together to form a 

single tendon (Kannus, 2000). 

 17 

Figure 2.2 Generalised stress-strain ( ) curve illustrating the tendon 

behaviour (Barfod, 2014). 

 18 

Figure 2.3 A schematic illustration of energy absorption in a tendon during the 

coil-recoil process (Barfod, 2014). 

 19 

Figure 2.4 Illustration of length-tension relationship of skeletal muscle 

(Pearson, 2010).  

 20 

Figure 2.5 Example of tendon rupture with arrow indicating the rupture area 

(from http://www.ultrasoundcases.info/). 

 22 

Figure 2.6  Different levels of tendinopathy illustrating (a) normal tendon, (b) 

enlarged tendon areas, and (c) Hypoechoic areas (Archambault et 

al. 1998). 

 24 

Figure 2.7 Example of an X-ray of the medial upper leg visualising (a) the 

patella (kneecap), femur and tibia, and the X-ray of the lateral 

lower leg (b) the tibia, fibula and the calcaneus (from 

http://www.ultrasoundcases.info). 

 25 

Figure 2.8 Example of bone scintigraphy imaging of the medial upper leg 

visualising (a) the patella (kneecap), femur and tibia, and the lateral 

lower leg (from http://imgkid.com/bone-scan-images.shtml) (b) the 

tibia, fibula and the calcaneus (Karasick, 1996).  

 

 

 26 

σ − ε



 vii 

Figure 2.9 CT images of the lateral upper leg visualising (a) the patella 

(kneecap) with it’s (b) axial view and (c) the tibia, fibula and 

calcaneus with its axial view (d). (Balke, et. al, 2010) 

 27 

Figure 2.10 Examples of MRI images of the lateral upper leg visualising (a) the 

patella (kneecap) with its (b) axial view (from 

http://www.garylongmuir.com/quality-reports/knee_mri/) and (c) 

the tibia, fibula and the calcaneus with its axial view (d) (from 

http://mrimusculoskeletalsection.blogspot.com/). 

 28 

Figure 2.11 An illustration of ultrasound sound waves emitted in pulses from 

the probe transducer and being reflected at ‘a’, ‘b’ and ‘c’. The 

reflected pulse gives information of the reflected signal measured in 

amplitude and the time it takes to reach the probe. The incoming 

wave at ‘a’ is the full amplitude, while the incoming wave at ‘b’ is 

the wave transmitted through ‘a’. The incoming wave at ‘c’ 

transmitted from ‘b’ [Støylen, 2010]. 

 29 

Figure 2.12 The positioning of the structure surface determines the directions of 

the scatters [Støylen, 2010] 

 30 

Figure 2.13 Examples of ultrasound images of (a) Achilles tendon, (b) patella 

tendon (c) (from http://philschatz.com/physics-book/) blood flow of 

neck arteries (d) heart structure (from 

http://emergencyultrasoundteaching.com). 

 32 

Figure 2.14 Example of an A-Mode image with y-axis represents the amplitude 

and x-axis represents the depth. The amplitude spikes of A and B 

represents the boundaries of solid objects found (from 

http://www.battlesnake.co.uk/_uni/ultra.htm).   

 33 

Figure 2.15 Example of a B-mode image with small dots at (x,y) coordinates 

representing the echo intensity with different shades of grey. 

 34 

Figure 2.16 Example of a M-mode image shows a wave-like motion where y-

axis representing the depth of the tissue and x-axis represents the 

movement over time. 

 

 

 35 



 viii 

 

 

Figure 2.17 Examples of Doppler based ultrasound imaging. (a) Colour Flow 

Doppler Imaging (CFI), (b) Pulse Wave Doppler (PWD), (c) 

Continuous Wave Doppler (CWD) and (d) Tissue Doppler imaging 

(from http://www.criticalecho.com/content/tutorial-2-modes-

ultrasound). 

 37 

Figure 2.18 Three primary planes illustrated from anatomical position of human 

body.  

 38 

Figure 2.19 B-mode image of the knee (from Knee Pro III, 3D4Medical.com) 

(I) with the patella tendon (a), and (II) the ankle (from 

http://achillestendon.com/) with tendons at gastrocnemius (b) and 

Achilles (c). 

 39 

Figure 2.20 Illustration of two frames from a video sequence of a tendon, (a) is 

the initial frame, (b) is the next frame and (c) is the graphical 

representation of a displacement with arrow showing the motion 

vector. 

 41 

Figure 2.21 Different types of motion estimation techniques.   42 

Figure 2.22 Basic concept of optical flow. Red arrows indicating the origin of 

flow vectors and black arrow indicating the velocity vector.  

 44 

Figure 2.23 Examples of Lucas-Kanade method (a) with its flow vector (b) and 

Horn-Schunck (c) and its flow global flow vector (d).  

 46 

Figure 2.24 Lucas-Kanade motion estimation illustrated with B-mode tendon 

data.  
 49 

Figure 2.25 Illustration of a BMA with a predefined search window and image 

block (Barjatya, 2003).  

 50 

Figure 2.26 Illustration of a block matching algorithm (BMA) matching from 

the image in frame k to the block within the search window in 

target frame k+1 (Purwar, et al., 2010). 

 51 

Figure 2.27 Illustration of a Mean Square Error (MSE) similarity measurement.   53 

Figure 2.28 Illustration of a Normalised Cross Correlation (NCC) similarity 

measurement.  

  

55 



 ix 

Figure 3.1  Three stages of experiment for the tracking ultrasound images.  59 

 

Figure 3.2 Example of Ultrasound imaging of patella tendon with regional 

areas within the tendon band.  

 61 

Figure 3.3 Example of Ultrasound imaging of medial gastrocnemius with the 

regional tendon areas within the tendon band.  

 62 

Figure 3.4 An example of a B-Mode ultrasound system and a 40mm prober 

transducer. 

 63 

Figure 3.5 An example of isokinetic dynamometer Kin Com type 125 AP.  63 

Figure 3.6 A typical equipment setup for the experiments.  64 

Figure 3.7 Participant positioned for the assessment of patella tendon.  64 

Figure 3.8 Participant positioned for the assessment of medial gastrocnemius 

tendon. 

 65 

Figure 3.9 a) Example of ultrasound probe positioned in the sagittal plane over 

the patella tendon with echo-absorptive placed. b) The ultrasound 

image generated showing the proximal region of inferior pole of 

patella tendon and the marker.    

 66 

Figure 3.10 A) An example of passive contraction of the tendon. The ROI node 

was shown moving from its starting position in the initial frame and 

moved to another position in all successive frames. B) An example 

of an active contraction of the tendon, which the ROI nodes at 

every percentage level of voluntary contraction (MVC). The 

displacements for both experiments were measured starting from 

the initial position (I) to the last position of (P). 

 68 

Figure 3.11 a) Example of the ultrasound probe positioned in the sagittal plane 

over the myotendinous junction of the medial head of the 

gastrocnemius muscle with echo-absorptive placed. b) The 

ultrasound image generated showing the myotendinous junction of 

 69 



 x 

the medial gastrocnemius tendon and the marker.    

	
  
Figure 3.12 (A) an example of passive contraction of the medial gastrocnemius. 

The ROI node was shown moving from its starting position in the 

initial frame and moved to another position in all successive 

frames. (B) An example of an active contraction of the medial 

gastrocnemius, which the ROI nodes change at every percentage 

level of voluntary contraction (MVC). The displacements for both 

experiments were measured starting from the initial position (I) to 

the last position of (P). 

 70 

Figure 3.13 Example electrode placement for EMG recordings from Biceps 

Femoris (Hamstring) and tibialis anterior. The illustration (right) 

shows where Biceps Femoris is located. 

 72 

Figure 3.14 Example output from the electronic signal generator to allow 

temporal alignment between the (A) torque and EMG trace, and (B) 

the ultrasound image. 

 73 

Figure 3.15 Example of 2-ROI nodes on both A: patella tendon, where ROI 

node, P1 was placed on the echo-absorbent marker and P2 on the 

regional tendon just distal to the patella, and B: medial 

gastrocnemius, where ROI node, P2 was placed on the regional 

tendon at the myotendinous junction.  

 74 

Figure 3.16 Example of 2-ROI nodes on both A: patella tendon and B: medial 

gastrocnemius, where ROI node, P1 was placed on the echo-

absorbent marker and P2 on the regional tendon area just distal to 

the patella, at 50%, and 100% MVC, both ROI nodes of P1 and P2 

moved along the tendon elongation. I1 and I2 showed the initial 

position of the ROIs. The arrows indicated the path of the ROIs has 

taken. At 100% MVC, the distance of P1 and P2 were measured 

(d1), and the initial distance of the ROI nodes (I1, I2) were 

measured (d2). The difference between d1 and d2 gave the relative 

 76 



 xi 

displacement.   

Figure 3.17 Example of patella tendon and regions being investigated.  77 

 

Figure 3.18 Comparisons between a) 40mm probe transducer and b) 100 mm 

probe transducer. Image produced by the latter probe has a higher 

depth and broader viewing range. 

 78 

Figure 3.19 Regional tracking of the patella tendon.  81 

Figure 3.20  The module structure for the speckle tracking software.  82 

Figure 3.21 The graphical user interface (GUI) for the main window of the 

tracking software. 

 84 

Figure 3.22 The graphical user interface (GUI) for the scale unit.  85 

Figure 3.23 The settings (GUI) of the tracking software.  86 

Figure 3.24 Schematic diagram of MSE.  89 

Figure 3.25 Schematic diagram of NCC.  92 

Figure 3.26 Schematic diagram of LK.  94 

Figure 3.27 Schematic diagram of NCCMSE.  97 

Figure 4.1 Total mean computational cost for both experiments (in seconds) 

between the algorithms. 

 105 

Figure 4.2 Mean displacement of 10 samples (in millimetres) of each 

algorithm against the manual measurement at every 10% intervals 

(from 10% to 100%) of the total frames on the active movement of 

patella tendon. For example, the individual displacement was 

measured from 0-10% and followed by 10-20%. 

 106 

Figure 4.3 Mean displacement of 10 samples (in millimetres) of each 

algorithm against the manual measurement at every 10% intervals 

(from 10% to 100%) of the total frames on the active movement of 

medial gastrocnemius tendon. The individual displacement was 

measured from 0-10% and followed by 10-20%. 

 109 

Figure 4.4 Total mean of computational cost for both experiments (in seconds)  112 



 xii 

between the algorithms 

Figure 4.5 Stationary movement errors of passive movement at patella tendon.  113 

Figure 4.6 Irregular movement error of passive movement at patella tendon.  114 

Figure 4.7 Stationary movement error of passive movement at medial 

gastrocnemius tendon. 

 115 

Figure 4.8 Irregular movement error of passive movement at medial 

gastrocnemius tendon. 

 116 

Figure 4.9 Stationary movement error of active movement on patella tendon.  117 

Figure 4.10 Irregular movement error of active movement at patella tendon.  118 

Figure 4.11 Stationary movement error of active movement at medial 

gastrocnemius tendon. 

 119 

Figure 4.12 Irregular movement error of active movement at medial 

gastrocnemius tendon. 

 120 

 

Figure 5.1 

Mean displacement of each ROI block size from patella tendon 

Mean displacement of ROI sizes and manual measurement of active 

movement of the patella tendon, relative to their starting position to 

the final position.  

  

126 

Figure 5.2 Mean time (in seconds) of each ROI block size of the patella 

tendon. 

 128 

Figure 5.3 Mean displacement of ROI sizes and manual measurement of active 

movement of the medial gastrocnemius tendon, relative to their 

starting position to the final position. 

 129 

Figure 5.4 Curve fitting of mean time (in seconds) of each ROI block size of 

the medial gastrocnemius tendon. 

 131 

Figure 5.5  Mean displacement (in millimetre) of threshold level at every 0.05 

intervals and the manual measurement (red bar) of active 

movement of the patella tendon.   

 132 

Figure 5.6 Mean displacement (in millimetre) of threshold level at every 0.05 

intervals and the manual measurement (red bar) of active 

movement of the medial gastrocnemius tendon.  

 134 

Figure 5.7 Comparisons graph between various sizes of ROI and manual 

tracking for passive movement at the patella.  

 136 

Figure 5.8 Comparisons graph between various sizes of ROI and manual  137 



 xiii 

tracking for active movement at the patella.  

Figure 5.9 Comparisons graph between various sizes of ROI and manual 

tracking for passive medial gastrocnemius measurement.  

 

 138 

Figure 5.10 Comparisons graph between various sizes of ROI and manual 

tracking for active medial gastrocnemius movement. 

 140 

Figure 6.1 Strain value (%) for all measured proximal regions (mean ± SEM) 

accumulated at 10-100% force.  

 143 

Figure 6.2 Strain values for all measured distal regions (mean ± SEM) 

accumulated at 10-100% force.  

 144 

Figure 6.3 Instantaneous strain values for all layers at both proximal and distal 

regions of the patellar tendon at 50% and 100% force. 

 146 

    

    

    

 

  



 xiv 

List of Equations 
 

Equation 2.1 ............................................................................................................ 41 

Equation 2.2 ............................................................................................................ 44 

Equation 2.3 ............................................................................................................ 44 

Equation 2.4 ............................................................................................................ 44 

Equation 2.5 ............................................................................................................ 44 

Equation 2.6 ............................................................................................................ 45 

Equation 2.7 ............................................................................................................ 46 

Equation 2.8 ............................................................................................................ 47 

Equation 2.9 ............................................................................................................ 47 

Equation 2.10 .......................................................................................................... 47 

Equation 2.11 .......................................................................................................... 47 

Equation 2.12 .......................................................................................................... 48 

Equation 2.13 .......................................................................................................... 51 

Equation 2.14 .......................................................................................................... 52 

Equation 2.15 .......................................................................................................... 52 

Equation 2.16 .......................................................................................................... 54 

Equation 2.17 .......................................................................................................... 54 

Equation 2.18 .......................................................................................................... 54 

Equation 2.19  ......................................................................................................... 54 

Equation 3.1 ............................................................................................................ 70 

Equation 3.2 ............................................................................................................ 71 

Equation 3.3 ............................................................................................................ 71 

Equation 3.4 ............................................................................................................ 74 

Equation 3.5 ............................................................................................................ 75 

Equation 3.6 ............................................................................................................ 75 

Equation 3.7 ............................................................................................................ 80 

Equation 3.8 ............................................................................................................ 80 

Equation 3.9  ........................................................................................................... 95 

Equation 3.10  ......................................................................................................... 95 

Equation 4.1 ............................................................................................................ 103 

Equation 4.2  ........................................................................................................... 103 



 xv 

Equation 6.1  ........................................................................................................... 145 

Equation 6.2  ........................................................................................................... 145 



 xvi 

List of Publications 
 

 

Mohamed, A.S.A, (2011) Ultrasound Image Research. RISE Magazine 
August/September 2011 Edition: p153. 
  
Mohamed, A.S.A., Pearson, S.J., and Ritchings, T. (2011) Image tracking using 
normalized cross-correlation to track and analyse mechanical tendon properties. 
SPARC 2011. 2: p10-11. 
 
Pearson, S.J., Mohamed, A.S.A., and Ritchings, T., (2012). The Use of Normalized 
Cross Correlation Analysis For Automatic Tendon Excursion Measurement in 
Dynamic Ultrasound Imaging. Journal of Applied Biomechanics. 29(2): p165-73. 
 
Pearson, S.J., Mohamed, A.S.A., and Ritchings, T., (2013). Regional Strain 
Variations in The Human Patellar Tendon. Med Sci. Exer. 46: p1343-1351. 
 
Mohamed, A.S.A., Pearson, S.J., and Ritchings, T. (2014). Automated Speckle 
Tracking in Ultrasound Images of Tendon Movements. Int. Conf. of Global Network 
for Innovative Technology. 2: p112-117. 
 
 

  



 xvii 

Acknowledgements 
 

 

I would like to convey my sincere gratitude to Professor Tim Ritchings and Dr. 

Stephen Pearson for their exceptional guidance and support throughout the 

supervision of my PhD, for providing a great source of knowledge and expertise and 

always making time to answer my questions. By continually challenging my ideas and 

thinking both supervisors have enhanced my critical awareness and understanding no 

end for that I am extremely grateful.  

 

Special thanks go to the many colleagues who have provided help and support. With 

particular reference to Ahmed Hamouda who has helped me through with good times 

and bad. Many thanks to the Malaysian Community in Manchester for providing help 

on financials and accommodations. Thanks also to all the people who participated in 

the works of this thesis, your time and commitment was greatly appreciated, this work 

could not have gone ahead without you.  

 

Special thanks to my beloved wife, Siti Suhaily Surip, with all the supports 

throughout my PhD years and patiently waiting for my returns. Your love, 

encouragement and belief in my abilities have kept me going. Finally, I would like to 

say a huge thank you to both my brother and sister-in-law as well as to my father for 

putting up with me throughout my study years! I would also like to dedicate this 

thesis to my mother who saw the beginning and had every faith that I would see the 

end.  

 

  



 xviii 

Abbreviations 
 

ABMA Adaptive block matching algorithm 

BF Biceps femoris 

BMA Block matching algorithm 

CSA Cross-sectional area 

DV Digital video 

ECM Extracellular matrix 

EMG Electromyography 

GUI Graphical user interface 

ICCs Intraclass correlation coefficients 

LK Lucas-Kanade 

MRI Magnetic resonance imaging 

MSE Mean square error 

MVC Maximum voluntary contraction 

NCC Normalised Cross Correlation 

NCCMSE Normalised Cross Correlation & Mean Square Error 

PC Personal computer 

RFD Rate of force development 

RMS Root mean square 

ROI Region of interest 

SEM Standard error of mean 

SNR Signal-to-noise ratio 

USA United States of America 

UK United Kingdom 

 

 

 

 

  



 xix 

Abstract 
 

The central aim of this thesis was to develop new tracking software employing 

various image tracking algorithms for tracking the speckled movement of the tendon 

image captured using dynamic B-mode ultrasound imaging. The algorithms were 

selected based on the literature related to the tracking of images captured using 

ultrasound imaging. Experiments were carried out to validate these tracking 

algorithms in order to enable development of the tracking software. The experiments 

conducted paralleled the objectives in designing, developing, experimenting and 

implementing the image-tracking algorithm to track movement of the human tendon 

in vivo within the speckled ultrasound images. The development of the tracking 

software focuses on solving the problems of tracking the ultrasound images as well as 

analysing the tracking movement frame-by-frame to produce useful measurements 

that can be used to describe the localised mechanical and structural properties of the 

human tendon.  

 

The algorithms tested were Normalised Cross Correlation (NCC), Mean 

Square Error (MSE), optical flow – Lucas-Kanade (LK) and combination of NCC and 

MSE (NCCMSE) selected by signal-to-noise ratio (SNR) and were tested on both 

active and passive movements of the patella tendon (knee) and the medial 

gastrocnemius tendon (ankle). The comparison of the algorithms led to the 

identification of a single algorithm giving optimal result. The results from all tested 

algorithm showed NCC to be the closest match to the standard manual measurement. 

NCC was also the fastest among the algorithms tested and contained fewer errors in 

tracking.  

 

For NCC algorithm, various sizes of the region of interest (ROI) block were 

also tested and found that 15x15 pixels ROI block size gave the optimum 

measurement, which was close to the standard manual measurement. The threshold 

levels also indicated that >0.90 to be the optimum level for optimum tracking. The 2-

ROI tracking analysis were also explored to look at the tracking performances when 

tracking at two different regional sites of the tendon simultaneously, and again the 



 xx 

NCC performed better with 15x15 ROI block size and comparable to the results 

obtained from the standard manual measurement.  

 

Lastly, multiple layers of the tendon were also explored to look at the 

excursion of the anterior, midsection and posterior layers of the tendon during ramped 

isometric contraction. This experiment uses all the settings found from previous 

experiment results, and applied to look at the mechanical properties of the human 

tendon. The experiments showed that the anterior gave the highest mean stain 

followed by the mid section and the smallest mean strain was found at the posterior 

proximal. The experiment also looked at the distal strain, with the result showing that 

the posterior gave the highest mean strain followed mid section and anterior layer 

gave the smallest mean strain. The experiment also looked at the performance of 

posterior layers and distal layers at 50 and 100% force levels.  

 

The experimental results showed that the NCC to be the optimum-­‐tracking	
  

algorithm.	
   The method described here has the potential to improve clinical 

knowledge relating to the tendon mechanical properties. The information generated 

by the tracking algorithm could help to give further insight into the aetiology of 

tendon injury, repair, response to various training interventions and the time course of 

tissue adaptation with disease. 
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Chapter 1 

Introduction 

 

Overview 
 

This chapter gives a brief introduction to the role of digital imaging techniques, 

particularly in the domain of computer vision and is supported by various applications 

that use these techniques and followed by the motivation of the work done in this 

thesis. Finally, the aims and objectives of this study are presented, and the contents of 

each chapter are outlined covering the introduction, literature review, methodology, 

experiments, findings and conclusions.  

 

 

 

1.1   Fundamental Steps in Image Processing  
 

Human beings have no difficulties recognising every geometric object in a 

simple image scene. Also, human beings can distinguish them from one another with 

little difficulty. For example, the human brain can differentiate various forms and 

sizes of objects and in addition can also assess the distances, colours and shapes with 

the help of individual senses such vision, touch and sound.  

 

These complex activities that occur within the human brain are the primary 

goal of duplicating the same ability in digital image processing so that it can be 

digitized, manipulated and processed with endless possibilities. A typical digital 

image processing system consists of five fundamental modules (Figure 1.1); it is a 

cycle of processes that modifies an analogue signal into a digital reproduction with 

the purpose that it can be enhanced, extracted and interpreted into a much more 

useable format (Gonzalez, 1992). These modules are interchangeable between each 



 
	
  

2 

other, as the computer system learns and applies rules to make every transition of the 

steps easier, and more accurate. 

  

Figure 1.1: Fundamental steps in digital image processing (Gonzalez, 1992).  

  

1.2   Image Acquisition 
 

The very first module of the digital image processing is the image acquisition 

consisting of a sensory device (such as CCD camera, ultrasound probe transducer or 

sonar resonance) that illuminates (visual) or reflects sound waves (acoustic) towards 

the scene. The analogue signals can be captured by the imaging sensor and converted 

it into its digital representation. The signals are stored as digital image or digital video 

so that it can be manipulated within the computer system (Gonzalez, 1992). Figure 

1.2 shows how an image can be captured or obtained in various ways according to its 

application.  

 

 

 

 



 
	
  

3 

 
Figure 1.2: Types of imaging and their application areas (Gonzalez, 2002). 

 

 

1.2.1   Light Radiation Based Imaging 
  

Visual type image acquisition usually uses an optical sensor to capture the 

image scene (Gonzalez, 1992). This captured scene is often the result of the energy 

produced (e.g. photon, the sound wave or radiation) at the surface of the intended 

object or scene within the image space (Efford, 2000). The energy is absorbed by the 

sensory device and converted it into a digital representation. This radiation energy can 

be captured using an optical sensor to capture the radiated light. Such applications can 

be found in nuclear medicine and X-ray tomography. However, in astronomical use, 

special telescopes are used to capture either the gamma rays or X-rays released from 

stars. X-rays are also used in industrial use and recently extended to other areas such 

as archaeology. The next imaging technique involves visible light, which occurs 

naturally in most everyday applications (Gonzalez, 2002). Light sources can include 

the near-visible parts of the electromagnetic spectrum, such as the ultraviolet and 

infrared. In all cases, the light energy is detected by appropriate sensory device and 

converted to digital form.  

 
Another image acquisition device is the antenna (Gonzalez, 2002). The 

antenna captures the propagated wave signal. Wave signals can travel through liquid 
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and solids and some wave signals are capable of penetrating obstacles such as the 

clouds and seawater, thus making them capable of travel further than the energy 

produced by the light signal. The wave signals can be either in the form of microwave 

or radio waves. Microwave is a form of electromagnetic radiation (Gonzalez, 2002). 

The wave energy is lower than the light rays but higher than radio wave. Radar 

imaging is the only example that uses the microwave technique extensively. The 

waves created from the radar can penetrate most objects. Microwave signals are 

useful for generating images of geological and marine observations.  

 

Radio wave is another form of electromagnetic radiation that uses the smallest 

amount energy. In astronomical applications, a radio telescope is used to capture the 

radio waves generated from the stars (Gonzalez, 2002). In medical imaging, radio 

waves are used in magnetic resonance imaging (MRI), where short pulses of radio 

waves passes trough the patient’s body, and the responding pulse of radio waves are 

captured by the sensory devices to produce 3-dimensional picture of a section of the 

patient (Gonzalez, 2002).   

  

 

1.2.2   Acoustic Based Imaging 
  

Another imaging technique can be found in acoustic form whereby short 

pulses of sound waves are distributed to the scenery surface and captured as they are 

reflected to the sensor. It works almost similarly to the microwaves and radio waves, 

but with the exception that it uses sound as its medium (Gonzalez, 2002). The 

intensity and speed of the reflected pulses tell the distance of the object in the scene. 

This method can be found in the areas such as medicine (ultrasound), maritime and 

geological applications. 

 

 

1.3   Pre-processing 
 

Once the image is obtained, the next stage is to improve the image using 

various techniques such as increasing or decreasing its brightness and contrast, 
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changing its sharpness or enhancing by using noise removal (Gonzalez, 1992). Since 

the image is in its digital form, the data is stored in a matrix array consisting of row 

and column indices. Manipulation of this matrix array can be done easily by using 

appropriate mathematical functions (filters) resulting in a modified image according 

to the filtering applied. 

 

 

1.4   Segmentation 
 

In the segmentation stage, the image is partitioned into multiple segments of 

parts or objects. The aim of segmentation is to segment an image until the object of 

interest in an image scene has been isolated (Gonzalez, 1992). There are several 

segmentation techniques such as Hough Transforms (Ballard, 1981), where objects 

are segmented into various geometrical shapes, Harris Corner Detector (Harris, 1988) 

where objects are segmented by its corner, and object segmented by their edges 

(Canny, 1986).  

 

 

1.5   Feature Selection 
  

Next, in the feature selection stage, the raw data generated from the process of 

segmentation will be utilized as a medium for extracting features so that useful data 

from the image scene can be quantified, classified and differentiated from each other 

(Gonzalez, 1992). The image correlation algorithm is one of the examples typically 

used to measure and extract features in a digital image (Cafforia, 1976, Ryan, 1980, 

Forstner, 1986, Shi, 1994).  

 

 

1.6   Recognition  
 

Once features are extracted, the next step of the digital imaging processing is 

the recognition (Gonzalez, 1992). The recognition is the process that assigns label to 

object based on the information provided by the feature selection (Gonzalez, 1992). A 
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method such as feature matching uses the pattern vector containing the numerical 

features that represent some feature descriptors and statistically measure a score for 

similarity prediction (Liu, 1998). Another method of recognition is the matching by 

correlation where the object pattern is correlated with the feature template to measure 

its similarity (Ryan, 1980). For example, in identifying a car, the feature descriptions 

such as edges and lines are used as the collective knowledge and with similarity 

measurement technique; the object of interest can be identified as a car. 

 

 

1.7   Interpretation 
 

The knowledge gathered from all image-processing processes are later 

interpreted to describe the object of interest its size, shape, tone, colour, pattern, 

shadow, context and functions (Gonzalez, 1992). For example, a car can be described 

as moving in a moving scene, where the shape, colour and size are being observed to 

shift from one frame to another. This process involves descriptive techniques such as 

predicate logic using mathematical notation (automata) or semantic network using 

graph representing the relationships between nodes (Gonzalez, 1992).  

 

 

1.8   Knowledge Base 
 

The information gathered from the steps of the digital imaging process is 

controlled and set by the central unit known as the knowledge base where controls 

such as limiting the searching to the interested areas and interactions between each 

module are done in this central unit (Gonzalez, 1992). In general, it is the main 

interface containing the rules for managing the functions of the modules, as well as to 

facilitate the necessary programming codes and algorithms guiding the whole 

operation of a successful digital imaging and displays the necessary results to the end 

user.  
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1.9   Image Tracking in Digital Video 
 

 These five fundamental processes are the foundation of how the image is 

acquired, processed and presented. However, over time, the technology of acquiring a 

set of moving objects has been developed, as the technology behind it gets better and 

more advanced. Furthermore, with the advance in technology, more affordable digital 

videos are readily available, and they have become part of everyday life. Unlike still 

images, video sequences provide more information describing the objects and 

scenarios changes over time. This sequence of images is updated at a set rate (Guan, 

2001). Figure 1.3 shows how an image at the initial frame 1 with a single dot moves 

to a different position with each frame. Towards the end of frame 5 the location of a 

single dot has shifted to a different position and this, when combined and arranged at 

a particular rate gives an apparent motion movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processing of an image sequence takes huge amount of processing and 

computational time. Estimating motion and tracking objects within the image 

sequence could give valuable data describing the characteristics of an object within 

the motion picture. Understanding the problem domain will help the development of 

suitable algorithms for tracking objects in the images.   

 

Figure 1.3: Example of a video motion. 

Frame	
  1	
  	
  Frame	
  2	
  	
  Frame	
  3	
  	
  Frame	
  4	
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  5
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The problem areas of a successful tracking can be divided into three 

categories:  

 

• Tracking of rigid objects 

• Tracking of articulated objects 

• Tracking of non-rigid objects 

 

All geometrical shape objects such as cube, sphere or balls that have no joints 

interconnecting between them are known as a rigid object. Articulated objects are 

rigid objects that contain multiple joints interconnecting between the rigid object such 

as person, cabinet doors and drawers, or room and garage doors. Objects that can 

deform and constantly change shape are known as non-rigid objects (e.g. clothes, 

human muscle). Objects that are active within the scene are usually differentiated by 

their edge, shape, size and colour. Measuring their translation and rotations is the 

main objective of the tracking algorithm. An example of a tracking method is by 

observing the edges of a 3D wireframe model in the image (Drummod, 2002).    

 

 

1.10   General Applications of Object Tracking 
 

The use of object tracking can be found in many areas involving object 

recognition in the areas of surveillance systems and medical applications (Foresti, 

1998). For example, in automated surveillance systems, object tracking is a vital step 

in recognising people and identifying motions and patterns in order to provide a better 

sense of security (Stauffer, 2000, Li, 2004, Benfold, 2009). Object tracking is also 

used for traffic surveillance to detect vehicles and to observe the traffic flow (Zang, 

2003, Foresti, 2005, Yu, 2006). Meanwhile, in medical application, object tracking is 

used for identifying an organ behaviour and tissue disease (e.g. breast lesions, tendon 

ruptures, cardiovascular diseases) by observing the flow of blood vessel and tissue 

behaviour (Støylen, 1993, Swillens, 2010).  

 

Furthermore, in recent studies, living human tendons were used to study 

tendon force and strain during active tendon load (Dilley, 2001, Revell, 2003,    



 
	
  

9 

Bruhn, 2005, Jan-Wiebe, 2010, Pearson, 2012) where in comparisons, isolated 

animals or cadavers were used in vitro (Benjamin, 1995, Léjard, 2007). The 

advancement of the ultrasound technology has benefited non-invasive imaging that 

enables researchers to study different parts of tissue organs for the detection of 

diseases (Garra, 1997, Hall, 2002).  

 

This method of using ultrasound analysis has increasingly been the interest of 

researchers to study and understanding tendon properties for both static and dynamic 

situations (Fukunaga, 1996, Narici, 1999, Loram, 2006, Onambele, 2007). Figure 1.4 

shows some of the examples of applications that utilized object tracking. 

 
Figure 1.4: Examples of object tracking used in various applications: a) surveillance 

camera (from http://ben.benfold.com/research.html), b) traffic control management, 

c) cardiovascular strain estimation and d) tendon tracking (from 

http://www.ultrasoundcases.info/). 

 

The real challenge of tracking ultrasound data is to make the algorithm 

intelligent enough to recognise the changes in the pattern. Since human tissue deforms 

and changes its density throughout the entire video frames, it reduces the possibility 

of tracking efficiently. The use of synthetic material as a marker is also introduced to 

a)	
   b)	
  

c)	
   d)	
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improve the tracking procedure (Lee, 2006, Lee, 2008). However, this does not reflect 

the natural behaviour of the tendon and might affect the speckle signature. Until now, 

there are no similarity measure algorithms that can accurately track the motion of the 

tissue fibre.  

 

The work presented in this thesis focuses on improving the robustness of 

existing algorithms to analyse ultrasound images of the tendinous area and accurately 

estimate the motion of the tendon tissue. The displacements of the motion are then 

calculated and compared to the standard manual measurement (Onambele, 2007) for 

validation. The study also uses the algorithms to track various depth of the tendon 

tissue simultaneously so that strain at each level of depth (layer) of the tendon can be 

calculated.  

 

 

1.11   Motivation of This Work 

 

Tracking moving objects in a sequence of digital images has attracted a great 

deal of interest and has been a fundamental problem in computer vision as it requires 

a vast amount of visual data representing the real world. Furthermore, most objects in 

the real world are also dynamic and constantly influenced by changing elements such 

as variations of lighting conditions, changes in viewpoint, occlusions, and many other 

factors that could be viewed as “noise” in computer vision. Thus, developing a robust 

tracking algorithm is a challenging task. Nevertheless, it is the goal of every computer 

vision algorithm to be able to search within the image space and produce a visual 

interpretation describing the object such as its posture, movement, and spatial 

relation. The amount of computation required to successfully match and track the 

target object would also be a problem, as the computation time would grow over time 

(Gonzalez, 1992, Gonzalez, 2002).  

 

Estimating the motion of the object in an image space normally involves 

comparing two image frames. The first frame (initial frame) contains the object of 

interest while the second frame (target frame) contains the possible movement of the 

object of interest and the difference is measured to estimate the displacement (Efford, 



 
	
  

11 

2000). Once, compared the immediate next frame is used as a reference frame. In 

each frame, every pixel motion is calculated and finally, if tracking is found to be 

tracked at wrong tracking path or wrong location in the next frame, this is then 

corrected based on the previous path and coordinate locations from the previous 

frame.  

 

 

1.12   Aims and Objectives 
 

The main objectives of this study are to develop an improved image tracking 

software for tracking the speckle in ultrasound. A detailed model of the workflow is 

also laid out to give better understanding of the algorithms and comparisons are 

conducted with existing tracking algorithms to select the best algorithm for this 

application. The tracking measurements should be generated to improve clinical 

knowledge relating to the tendon mechanical properties to help determine how and 

why these differences in strain may affect the aetiology of disease and effects of 

training rehabilitation.  

 

Therefore, the aims and objectives of this study are:   

 

• To identify the stages in the ultrasound tracking process starting from data 

acquisition of the subjects tested, to the development and evaluation of the 

software required for the study.  

 

• To implement and validate optimum tracking algorithms to track ultrasound 

images of a tendon region with the optimum size of template block and threshold 

value.  

 

• To extend the algorithm to track at different depths of the tendon to visualize and 

quantify differential strains between layers of the tendinous areas.  

 

• To generate useful information from the tracking output for clinical knowledge of 

the tendon such as understanding the level of forces and strains that relates to 

tendon rupture during loading. 



 
	
  

12 

1.13   Outline of The Thesis 
 

 To sum up, Chapter 1 introduces the rationale for the study described in this 

thesis. The role of image processing mainly image based tracking solving various 

tracking problems is briefly discussed including its fundamentals and processes 

involved. Finally, the aims and objectives of this study are presented. The chapters of 

the thesis are arranged as follows: 

 

Chapter 2 provides detailed background of biomedical properties related to 

tendon structures and functions as well as applications and experiments related to the 

ultrasound imaging and tracking in biomedical areas. The background of tracking 

imaging within the domain of ultrasound imaging is also described with details of the 

algorithms that have previously been used to track ultrasound images for medical 

purposes. This understanding of the tracking algorithms and its area of interest related 

to the mechanics of tendon are defined for the parameter identification and motion 

estimation with respect to ultrasound imaging with random speckle formation. 

 

Chapter 3 describes the experimental setup in detail to validate the 

effectiveness of the tracking algorithms using the tendon tissue data in-vivo. In these 

experiments, different tracking algorithms are compared to the standard manual 

measurement (Pearson, 2006) in the later chapter. The hardware used, and the method 

of image acquisition is explained as well as the test subjects including areas of interest 

within the tendon muscle, and what kind of output to be expected. Software design 

and implementation is also covered in this chapter showing how results are achieved 

and what kinds of algorithms are used within the software environment. Details of 

software modules are defined here related to the software development, techniques 

used for each experiment also are modelled and described here, and finally, various 

models of the algorithms selected based on the literature discussed in Chapter 2 are 

described here in detail.  

 

Chapter 4 describes the tracking algorithms: Normalised cross correlation 

(NCC), mean square error (MSE), optical flow – Lucas-Kanade (LK) and 

combination of NCC and MSE (NCCMSE) selected by peak signal-to-noise ratio 

(SNR). The validation of the algorithms leads to a single algorithm to be identified 
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and selected as the optimum algorithm. The mean displacement measurements 

generated were approximately similar to the ones measured using standard manual 

measurement and validated the tracking algorithm as capable of handling the 

randomness of the speckle pattern in any conditions (active or passive) on two 

different tendon areas (knee and ankle). Error analysis and computational time 

comparisons were also investigated to understand further the performance of each 

algorithm. Single region of interest (1-ROI) was used throughout the experiments in 

this chapter.  

 

Chapter 5 describes normalised cross correlation (NCC) algorithm with 

various settings and properties to improve the accuracy of the tracking. The analysis 

looked at each ROI block size with comparisons performed against standard manual 

measurement. Time comparisons for each ROI block were also investigated. The 

threshold levels were also tested to identify the threshold levels that improve the 

accuracy of the tracking in matching between two image regions, again comparisons 

being made were between the levels against the manual measurement. Finally, two 

regions of interest (2-ROI) analysis was investigated in which the two markers were 

placed along the elongation of the tendon areas to look at relative movement of the 

two ROI markers and compared to the manual measurement. The experiments were 

conducted on both passive and active movements from both knee and ankle tendon 

area. 

 

Chapter 6 examines and compares localized proximal strain at both the 

anterior and posterior regions of the patella tendon using 2-ROI tracking on multiple 

layers of anterior, posterior and mid section in vivo. The measurements obtained from 

the tracking were then converted into mean strain to look at the interactions between 

the layers of the tendon. The algorithm used for the tracking was normalised cross 

correlation (NCC), which was selected based on the analysis conducted in Chapter 4 

and the tracking settings were based on the analysis performed in Chapter 5. The 

experimental setup for the experiments was described in Chapter 3. This chapter also 

explores the use of the selected algorithm to track the tendon tissue at multiple 

regional layers. Comparisons for both proximal and distal areas of the tendon while 

the tendon experiences voluntary contractions at 10% interval of forces were also 

evaluated.  The outcome of this study shows how the algorithm can be implemented 
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to observe and analyse tendon and what kind of results it should generate suitable for 

understanding the working aetiology of human tendon.    

 

Chapter 7 summarizes each chapter and the results from each experiment. 

Finally, in this chapter, aims and objectives of the study are investigated again to 

identify what has been achieved and lay out what was done and presents the future 

work to improve the tracking accuracy and to understand the tendon mechanical 

properties.  
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Chapter 2 

Literature Review 
 

Overview 
 

This chapter provides a detailed background of tendon structure and function, as well 

as applications and experiments related to ultrasound imaging and tracking in 

biomedical areas. The background of tracking within the context of ultrasound 

imaging is also described with details of the tracking algorithms that have been 

developed primarily for biomedical applications.  

 

 

 

2.1   Biomedical Background: Tendon Structure and Function.  
 

Tendons connect muscle and bone in such a way that they allow muscle forces 

to be used to execute complex movements and actions such as the neck, shoulders, 

biceps, triceps, forearm elbow, hand, fingers, knee and ankle (Benjamin, et al., 1995). 

Their shape and length also depend on the area where a tendon resides, and normally 

found (Benjamin, et al., 1997). When a muscle contracts or shortens, it is the 

corresponding tendon that pulls the bone of the muscle attachment to create 

movement. Their tough and rigid characteristics provide joint stability at the 

articulation where two bones meet. This adaptable and viscoelastic affects the ability 

for it to accomplish tasks that involve high rates of force development, enabling a 

person to perform various ranges of physiological loading (Pearson, et al., 2006).  The 

elastic energy of the tendon is produced when it is stretched and then recoils, 

resembling how a rubber band’s elasticity works. This is because the kinetic and 

potential energy during locomotion was lost at one stage and stored as elastic strain 

energy and returned later in a recoil (Alexander, 2002).  
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2.1.1   Tendon Structure  
 

The tendon is made up of a tough band of fibrous connective tissue and its 

primary role is to connect muscle to bone. The gross structure can be rounded cords, 

strap-like bands of flattened ribbons, which when healthy appear to be white and have 

a fibroblastic texture. Tendons are made up of two cells: tenoblast and tenocytes 

which are arranged and held together in a network of extracellular matrix (ECM) 

(Magnusson, et al., 2003, Kjaer, 2004). ECM consists of a range of collagens 

(primarily type I), proteoglycans and water (Kannus, 2000, Magnusson, et al., 2003). 

The type I collagen lends the strength to the tendon structure, while proteoglycans 

give the tendon its viscoelastic property. The tenoblast of the tendon contains both 

actin and myosin proteins that contribute to many important cellular processes 

(Sharma, et al., 2006). Actin filaments are responsible for many types of cell 

movements, while myosin is a type of protein that comprises of molecular motor 

(ATP), which generates force and movement by transforming chemical energy to 

mechanical energy (Jones, et al., 1990). Over time, tenoblasts become elongated and 

transform into tenocytes (Hampson , et al., 2008).  

 

Tenocytes produce collagen molecules and are distributed throughout the 

tissue producing collagen fibrils and when compared to the tenoblasts contain lower 

metabolic activity (Chuen, et al., 2004). Tenocytes and tenoblasts lie between the 

collagen fibres along the axis of the tendon (Sharma, et al., 2006). The parallel fibres 

within the tendons are made up primarily of collagen (80-90% of the total dry mass), 

elastin (2%), proteoglycans (1-5%), and inorganic components (0.2%) such as copper, 

manganese, and calcium (Kjaer, 2004). The collagen part is made up of 97–98% type 

I collagen, with small quantities of other types of collagen (Kjaer, 2004). The 

collagen is the main structural protein in connective tissue and plays the main role in 

tissue development, while elastin is a protein that is elastic, allowing tissue to resume 

its shape after stretching and contracting. Figure 2.1 shows the illustration of the 

structure of the tendon (Kannus, 2000). 
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Figure 2.1: Structure of tendon with each layer bounded together to form a single 

tendon (Kannus, 2000). 

 

The parallel fibres within the tendon are made up of collagen fibres closely 

packed together into microfibrils and sub fibrils that together form the fibrils. Fibrils 

are organised and held in parallel by a group of connective tissues called the fascicles. 

The collage fibrils of the fascicles are arranged in a straight and parallel array 

interrupted by drastic changes in direction giving a wavy like structure or also known 

as “crimps”. The crimps allow the tendon to have some flexibility and low 

compressive stiffness (Diamant, et al., 1972). These groups of fascicles are held 

together by epitenon that forms the tendon appearance (Hulmes, 2002, Aslan, et al., 

2008). The epitenon consists of loose, areolar tissue and permits the tendon to slide 

freely against adjacent tissue (Schatzker, et al., 1969).  

 

 

2.1.2   Tendon Function 
  

Tendons must be able to transmit high muscle forces to the bones for 

movement, and the parallel arrangement of the fibres is an important factor for this 

function. When a load is applied to the tendons, they exhibit changes in shape or 

configuration (deformation) and develop a tensile stress, thus making it demonstrate 

both viscous and elastic characteristics (viscoelastic). The viscoelastic properties 

make the tendon perform like a spring transmitting energy across the muscle and 

bone, as well as making it capable of storing and recovering the energy at high 

efficiency. The tendon also provides flexibility to the joints and enables muscles to 
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function with less change in length, allowing them to generate greater force, which 

gives the tendon the ability to adapt to influences such as mechanical loading and 

unloading. The tensile property of tendons allows them to resist rupture under normal 

loading capacity as well as handle compressive and shear forces when the tendon 

glides over the bony areas to utilise the moment arms, enabling the tendon to increase 

torque and transmit the kinetic energy to the bone.  

  

Tendon tissue, when loaded, develops an internal resistance to loading or 

stress (σ ), measured as force per unit area, while the deformation of the tissue is 

normally measured as strain (ε ), defined as the change in length divided by the 

unloaded (rest) length (Whitting, et al., 2008a). The relationship between stress and 

strain operates according to Hooke’s law, which suggests that in the normal operating 

regime stress and strain are linearly related (Whitting, et al., 2008a).  The generalised 

stress-strain curve shown in Figure 2.2 illustrates the behaviour of the tendon 

(Pearson, 2010, Barfod, 2014). As the tendon experiences a gradually increasing 

tensile load, strains are developed due to the crimp structure of the collagen fibrils, 

but as this increases, the stress-strain curve becomes linear until the tendon starts 

failing, and microscopic tearing occurs (Pearson, 2010). If stress continued to 

increase, the tendon would ultimately rupture. 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.2: Generalised stress-strain (σ − ε ) curve illustrating the tendon behaviour 

(Barfod, 2014). 
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Figure 2.3 shows the slope of the curve represents the tendon stiffness and 

usually associated with the tendons’ efficiency in storing and releasing energy (see 

Figure 2.3) (Barfod, 2014). The energy is released as it deforms during unloading. 

The ability of the tendon to store energy is the area under the loading stress-strain 

curve (Barfod, 2014). When unloaded the elastic property of the tendon releases its 

energy as it deforms (Whitting, et al., 2008a). However, energy loss (usually as heat 

energy) may occur when unloading and its recoil curve does not follow the same path 

as its loading curve (Whitting, et al., 2008a).  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A schematic illustration of energy absorption in a tendon during the coil-

recoil process (Barfod, 2014).  

 

The ability of the tendon to store and release energy is extremely important for 

the stretch-shortening cycle; enabling movement to be carried out with higher 

efficiency than if the tendon did not stretch and then shorten (Barfod, 2014). An 

example of this could be where an athlete is sprinting or jumping, causing the tendon 

to store energy during stretch and releasing it during the shortening recoil period, thus 

giving potential increase of the power components as in jumping as or in running. The 

tendon also reduces the elastic strain energy by the muscle. 

 

The mechanical properties of tendon can also affect the length of the 

contractile component of muscle (Pearson, 2010) and is described by its length-

tension curve (see Figure 2.4) (Pearson, 2010). Here, muscle shortening occurs when 

a more compliant tendon is stretched under load, thus reduces the muscle force 
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generating capacity. However, any small increase or decrease in muscle length results 

in a large reduction in force generating capacity (Pearson, 2010).  

 

 

 

 

 

 

 

 

Figure 2.4: Illustration of length-tension relationship of skeletal muscle (Pearson, 

2010).  

 

Tendons are also adaptable to both training and disuse, where with exercise 

tendons can adapt to greater loads by becoming larger. Exercise increases the number 

and size of collagen fibrils and increases the cross-sectional area of the tendon when 

compared to a tendon without controlled training applied (Kjaer, 2004). It is also 

believed that exercises can lead to increased collagen synthesis and increased number 

of fibroblasts (Kjær, et al., 2006). Tendon disuse leads to rapid deterioration in tendon 

mechanical properties, which causes a net loss in strength and stiffness, leading to 

non-uniform of orientation of the collagen fibrils, and a reduction of collagen across 

links and extracellular water (Maganaris, C.N., et al., 2006).  

 

 

2.1.3   Tendon Injury and Risk  

 
In general, tendon injury can be described as damage caused by physical 

trauma sustained by the tendon, and the severity of injury depends to the amount of 

damage sustained (Whitting, et al., 2008b). Furthermore, in mild and moderate 

injuries, the tendon structure is partially disrupted, but although damaged, it is still 

able to accept load with a smaller magnitude than before the injury (Whitting, et al., 

2008b). Complete failure of the tendon structure leads to inability to transmit load. 

Injuries that are minor and are ignored, with repeated loading may progress to more 
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severe injuries. Improper and inadequate treatment may also contribute to a more 

severe injury. This has an obvious implication for a range of activities ranging from 

normal activities that require movement to athletic performance where high levels of 

force and rate of force development are required (Pearson, 2010).  

 

Tendon injury can result from a single insult (acute injury) or long-term abuse 

due to repeating loads (chronic injury) (Whitting, et al., 2008b). There are two factors 

leading to these injuries, referred to as either intrinsic or extrinsic (Lee, et al., 2008b, 

Pearson, 2010). Intrinsic is an injury caused by forces generated within the body such 

as tendonitis, muscle tears, ligament strains and stress fractures, while extrinsic is a 

type of injury caused by forces outside the body such as impact or contact caused by 

another person, inadequate equipment or training, or some other environmental factor 

(Sharma, et al., 2006, Seitz, et al., 2011). 

 

 

2.1.3.1   Acute Tendon Injury 
 

A complete or partial rupture of the tendon structure gives rise to an acute 

tendon injury. The injury usually occurs when a sudden force or torque applied to the 

tendon, resulting in a partial or complete tear to the tissue structure (Sharma, et al., 

2006, Pearson, 2010). However, it has also been reported that there may be an 

intrinsic factor when strenuous activity is routinely carried out as cumulative damage 

may occur leading to a catastrophic failure to the tissue (Pearson, 2010).   

 

 Study reported that tendon injuries occurred more often to males than females 

(Clayton, et al., 2008). However, it is unclear if this is due to more participation in 

sport by males, which may explain a higher risk exposure to tendon injuries. A 

comparison between male and female showed that with similar strain limits, for a 

given force, females show a higher musculoskeletal injury risk with respect to the 

lower limb (Onambele, et al., 2007). This increase in injury risk may be associated 

with differences in stiffness of lower limb between the genders (Onambele, et al., 

2007).  It is also reported that certain classes of drugs can affect the collage tissue 

directly, leading to weakened structures that may rupture under high loading 
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conditions (Sode, et al., 2007). Anabolic steroids are also shown to have an affect on 

the collagen matrix, which increased the abnormality and function of the connective 

tissue and tendon simply cannot keep pace and succumbs to injury. Recent evidence 

has indicated that certain specific gene polymorphisms may relate to tendon injuries. 

Each gene code plays specific roles to the structural component of the tendon and 

may be the cause for tendon injury rates (Mokone, et al., 2005, Mokone, et al., 2006).  

 

 There has been no agreement about the optimal method for repair and 

subsequent rehabilitation treatment of tendon ruptures (Pearson, 2010). However, 

there is increasing evidence to suggest that surgery treatment for active and able 

individuals may provide better functional capacity over non-operative options while, 

for less active individuals, non-invasive treatment may be encouraged (Pearson, 

2010).  Rehabilitation protocols may help for optimal healing after surgery, and with 

the use of ultrasound and magnetic resonance imaging (see Figure 2.5), an insight into 

the mechanical property of the injured tendon can be observed in vivo, and further 

rehabilitation can be planned and carried out. 

 

  

 

 

 

 

 

 
 

Figure 2.5: Example of tendon rupture with arrow indicating the rupture area (from 

http://www.ultrasoundcases.info/). 
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2.1.3.2   Chronic Tendon Injury 
 

 Chronic tendon injury is usually associated with overuse or degeneration of 

tendon. An overloaded tendon may become inflamed and lead to tendonitis, where the 

tendon is experiencing short-term inflammation and responds to treatments such as 

ice, reduction of activity, anti-inflammatory medications and physical treatment. If an 

injured tendon is repeatedly by overloaded, tendinopathy may develop where the 

tendon structure begins to minor rupture or tear, but becomes thickened and weakened 

with a range of chemicals released, which causes the inflammation. At this time, the 

blood supply required to provide necessary healing components is insufficient, and so 

the tendon may fail to recover from the trauma.  

 

Some tendinopathy shows a high concentration of blood supply to the tendon 

with no association to a healing response (Sharma,et al., 2005). Previous study 

suggested that overuse injuries to the patella may be caused by tensile loading which 

affected the performance of the patella tendon and the angle of the knee for maximal 

loading, indicating localised tendon strain (Almekinders, et al., 1994, Almekinders, et 

al., 2002). Classically, tendinopathy pain has been attributed to inflammation; 

however, a recent study showed (Sharma, et al., 2006) that chronically painful 

Achilles and patella tendons show no indication of inflammation and many of the 

damaged tendon that are detectable on MRI or ultrasound are not painful. The pain, 

however, may originate from the mechanical breakdown of collagens (Sharma et al., 

2006).  

 

 Medical imaging techniques such as MRI and ultrasound allow for the 

quantification of tendinopathy diagnosis, and these are typically used to determine 

tendon anomalies. Ultrasound has been used to characterise three different levels of 

tendinopathy (Archambault et al. 1998) (see Figure 2.6).  
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Figure 2.6: Different levels of tendinopathy illustrating (a) normal tendon, (b) 

enlarged tendon areas, and (c) Hypoechoic areas (Archambault et al. 1998). 

 

To summarise, the tendon plays key roles for body motion, enabling the use of 

the muscle to transmit forces. However, the tendon can be injured either by external 

forces disrupting the mechanical behaviour of the tendon or internally due to 

excessive or sudden force to the tendon structure which leads to complete tendon 

rupture. Diagnosis with the aid of medical imaging has been utilised to observe 

tendon healing and to detect inflammation or damage for further rehabilitation. 

However, understanding of the aetiology of Tendinopathy is poor and as such 

treatment and rehabilitation modalities are not well defined. 

 

 

2.2   Medical Imaging in Biomedical Applications 

 
Medical imaging is widely used to provide information for giving clinical 

diagnosis, and by using the radiography technique and examination of the human 

body anatomy provides further understanding of their characteristics, non-invasively. 

The diagnostic radiography enables the acquisition of diagnostic information by the 

radiologist. The evaluation of bone structure, blood flow, cardiology, muscle and 

tendon are among those that benefit from the use of medical imaging procedures. 

There are several modalities that are currently available, including medical X-ray 

imaging, bone scintigraphy imaging, computed tomography (CT) scan, magnetic 

resonance imaging (MRI) and ultrasound imaging. These are described briefly in the 

(a) (b) (c) 
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following sections, although since the thesis focuses on the use of ultrasound, its 

procedures are described extensively. 

 

 

2.2.1   X-ray Imaging 
 

X-ray imaging is a painless procedure that uses the ionising radiation to 

produce images of the inside of the body non-invasively, and is typically used to look 

at the bone structure. It helps diagnosis of disease and monitoring treatment. For 

example, X-rays can be used to view the bone fractures, dental decay, bone disease 

and tumours.  X-rays are also useful in viewing the catheter tube being inserted into 

blood vessel to widen blocked coronary arteries. In some cases, X-rays are used 

together with a special fluid injected through the blood stream or swallowed before an 

X-ray is taken to highlight the tiniest details of the body structure such as the arteries. 

The images produced using X-rays show the parts of the body anatomy in different 

shades of black and white due to the different tissues absorbing different amounts of 

radiation. So, with X-ray imaging it will be difficult to produce a clear image of the 

fat and soft tissue (e.g. muscle and tendon) compared to the bone, where the calcium 

in the bone absorbs X-rays the most. Figure 2.7 shows examples of X-ray images 

taken at the part of upper and lower leg. The health risk using the X-ray is very low, 

although, high doses of the radiation may risk development of cancer. 

 

 

 

 

 

 

 

 

 

Figure 2.7: Example of an X-ray of the medial upper leg visualising (a) the patella 

(kneecap), femur and tibia, and the X-ray of the lateral lower leg (b) the tibia, fibula 

and the calcaneus (from http://www.ultrasoundcases.info). 

(a) (b) 
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2.2.2   Bone Scintigraphy Imaging 
 

 Bone scintigraphy involves scanning the bone structure from the injection of a 

radioactive material known as technetium-99m (TC) methylene diphosphonate 

(MDP) into the blood vein of the arm, hand or foot. The scintillation camera produces 

a two-dimensional scintigraphy image of the bone from the emitted gamma rays (see 

Figure 2.8). The radioactive material can be seen clearly around the area where new 

bone tissue is formed (ossification) which is useful to detect lesions such as tumours, 

stress fractures, and infections. The radioactive material used in this procedure does 

pose health risk and leaves the body through kidneys and bladder in urine. When 

compared to X-rays, this method can detect bony abnormalities faster; however, it is 

unable to detect any changes of the soft tissue (Kahn, et al., 1987). 

 

 

 

 

 

 

 

 

 

Figure 2.8: Example of bone scintigraphy imaging of the medial upper leg visualising 

(a) the patella (kneecap), femur and tibia, and the lateral lower leg (from 

http://imgkid.com/bone-scan-images.shtml) (b) the tibia, fibula and the calcaneus 

(Karasick, 1996).  

 

 

2.2.3   Computer Tomography (CT) Scan 
 

Computer tomography (CT) scanners use X-rays and computer technology to 

produce tomographic images, which take the form of cross-sectional slices of the 

scanned parts of the body allowing non-invasive insight of the body. The CT scanner 

consists of an X-ray source that rotates around the patient’s body, and the bed where 

(a) (b) 
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the patient lies down is moved at a constant speed past the X-ray detector to image the 

designated part of the body. The image will then meshed together using digital 

reconstruction techniques to generate a 3D image of the scanned part of the body, CT 

scan offers better contrast resolution in soft tissue compared to the conventional X-

Ray imaging. Figure 2.9 shows examples of CT images of upper and lower leg with 

each leg viewed either in lateral or axial (sliced) position.  

 

CT scans are mainly used for screening diseases such as cancer, and detecting 

acute and chronic changes in the lung and diagnosing abdominal diseases. The 

advantages of CT scan over other 2D imaging techniques is that it produces high-

contrast images, can show different layers of the tissue and can be viewed in the axial, 

coronal or sagittal planes, which when combined can be viewed as volumetric 

representation of the body. However, the quality of the finer details of the soft tissue 

are still not as good as to the images produced using MRI and ultrasound imaging, 

which are described in the following sections. The radiation risk of a CT scan is 

higher than X-ray due to higher dosage of ionising radiation. 

 

 

 

 

 

 

 

 

Figure 2.9: CT images of the lateral upper leg visualising (a) the patella (kneecap) 

with its (b) axial view and (c) the tibia, fibula and calcaneus with its axial view (d). 

(Balke, et. al, 2010) 

 

 

2.2.4   Magnetic Resonance Imaging (MRI) 

 
 Magnetic resonance imaging (MRI) is a painless and safe medical imaging 

procedure that uses strong magnetic fields and radio waves to produce images of the 

(a) (b) 

(c) (d) 
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inside of the body with high spatial resolution with both bones, and soft tissues clearly 

visible. Unlike CT scans, MRI does not contain ionizing radiation although a standard 

MRI scanner normally consists of a fairly long tube or tunnel, which some patients 

might find claustrophobic. However, just like CT scan, MRI can produce virtual slices 

of the scanned body part in detail and can be viewed in three-dimensions (Figure 

2.10).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10:  Examples of MRI images of the lateral upper leg visualising (a) the 

patella (kneecap) with its (b) axial view (from http://www.garylongmuir.com/quality-

reports/knee_mri/) and (c) the tibia, fibula and the calcaneus with its axial view (d) 

(from http://mrimusculoskeletalsection.blogspot.com/). 

 

MRI operates by sending a short burst of radio waves to designated areas of 

the body. The human body is made up primarily of water molecules, which consist of 

hydrogen and oxygen atoms and a proton sits at the centre of each hydrogen atom. 

The radio waves transmitted by the MRI knock these proton particles out of alignment 

and gets realign when the radio waves are turned off which is then picked up by the 

MRI receivers. The realignment of the protons provides information about the 

environment of the body. The speed of the realignment of the protons depends on the 

types of tissue, producing images of various types of the tissue in the body that are 

distinguishable.  

 

MRI is widely used in many medical applications, particularly for 

investigating the brain for neurological cancers, and investigates brain activities, 

(a) (b) 

(c) (d) 
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assessment of various heart disease and functions, and assessment of joint disease and 

soft tissue tumours. MRI is also used for detecting and charactering lesions in various 

other internal organs. Compared to ultrasound imaging, MRI requires the patient to 

remain very still, thus dynamic testing and investigating of the soft tissue when put 

under stress is impossible. However, a special type of MRI (Cardiac MRI) is used to 

capture both still and moving image of the heart and blood vessels. 

 

 

2.2.5   Ultrasound Imaging 

 
Ultrasound imaging is a technique that involves propagating ultrasound pulses 

into tissue to visualise internal body structures such as tendons, muscles, joints, 

vessels and other internal organs by detecting their reflections. These ultrasound 

pulses consist of high-frequency sound waves generated from an ultrasound 

transducer (probe) and travel through body tissue. The different tissues absorb sound 

waves differently, and partial reflection of the body tissue occurs depending on the 

type of the tissue. The amount energy being reflected at different depths will have 

different amplitudes and the time of arrival of the reflected wave is proportional to the 

depth (see figure 2.11).  

 

 

 

 

 

 

	
  

 

Figure 2.11: An illustration of ultrasound sound waves emitted in pulses from the 

probe transducer and being reflected at ‘a’, ‘b’ and ‘c’. The reflected pulse gives 

information of the reflected signal measured in amplitude and the time it takes to 

reach the probe. The incoming wave at ‘a’ is the full amplitude, while the incoming 

wave at ‘b’ is the wave transmitted through ‘a’. The incoming wave at ‘c’ transmitted 

from ‘b’ [Støylen, 2010]. 

Probe	
  

a)	
   b)	
   c)	
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The reflected structures normally scatter around in more than one direction. 

Figure 2.12 show that the amount of scattering depends on the reflection coefficient 

and direction of the reflected signals. If the reflecting surface is perpendicular to the 

ultrasound beam, more regular scattering will be produced compared to the scattering 

produced from irregular position of the surface where only portion of the scattering 

will reach back to the probe resulting in very low amplitude signals (Støylen, 2010).  

 

 

 

 

 

 

 

 

 

Figure 2.12: The positioning of the structure surface determines the directions of the 

scattering [Støylen, 2010]. 

 

 For a curved surface, more energy being spread out in different directions, 

giving a lower amplitude signal oriented toward the probe beam, however if the 

curved surface is tilted towards the probe, more energy will be reflected. The reflected 

energy shows the density of the tissue when applying it to the muscle tissue (Støylen, 

2010).  

 

 Tissues with high density will cause attenuation shadows while low density 

will appear brighter. This is simply because the wave energy being scattered or 

reflected will get attenuated when passing through tissue, which is a necessary 

technique building an image with various different density. An image is also built up 

from the result of the probe firing the sound wave beam vertically and waits for the 

returning sound wave. While maintaining the previous information, the probe fires a 

new line in a sequence of B-mode lines (Støylen, 2010). The reflected waves coming 

with random phases and amplitudes and tends to produce a uniquely random 

interference pattern known as speckle noise that scales from zero to maximum 

depending whether it is destructive or constructive (Oleg et. al., 2006).  

	
  

a)	
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 The speckle patterns are seen as grayscale and the statistics of the speckle, can 

be useful to differentiate different compositions of the tissue, however, it is known 

that speckle noise tends to reduce the image contract, obscure and blur image details, 

and hence decrease the quality and reliability of the tissue image (Wagner et. al., 

1983, Sehgal, 1993). In comparison, speckle image from the ultrasound imaging does 

not produce images as good as the CT scan or MRI. The images produced using this 

technique are usually represented in greyscale and normally viewed as 2D images. 

However, recent advancement has introduced 3D ultrasound imaging using special 

types of transducer to capture the reflected echo-pulses at different angles, which are 

processed by a computer to reconstruct 3D images of volumes of the tissue.  

 

 Ultrasound equipment is less expensive and more portable in comparison to 

the other medical imaging modalities. It is also simple to use and able to produce a 

real-time moving image which is suitable for dynamic testing. The use of ultrasound 

imaging can be found in many areas of medical applications. For example, 

echocardiography is used to produce images of the heart structure, which is useful for 

diagnosing known heart diseases non-invasively (Stoylen, et al., 1999, Linguraru, et 

al., 2008). Medical ultrasound imaging is also widely used to diagnose various 

internal organs and is particularly useful for pregnant patients. Another usage of 

ultrasound can be found for diagnosing blood flow in the artery (Trahey, et al., 1988, 

Ophir, et al., 1999). The blood flow velocity is recorded by emitting a high-pitched 

sound wave from the probe, and at a specific frequency, the speed of the blood causes 

a frequency shift where the frequency is increased or decreased. The changed 

frequency of the blood flow is normally represented in colours by using colour 

Doppler technique (Gill, 1985, Pellerito, et al., 2012).  

 

Ultrasound is also widely used for assessing and diagnosing the human 

musculoskeletal system that includes the bone, muscles, cartilage, tendons, ligament, 

joints and other connective tissues. Recent advancements have used feature 

recognition and segmentation algorithms to assess the deformable structures of each 

organ of the ultrasound medical imaging, which helps the physiologist to understand 

further its functions, diagnose diseases (Yeung, et al., 1998, Dilley, et al., 2001, 

Sharma, et al., 2010). These algorithms will be discussed further in detail. For this 

study, the availability of the ultrasound equipment, dynamic testing of the human 
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anatomy, cost and ease of use are the main factors as to why the ultrasound imaging 

was selected to be the means of data acquisition in this study. Figure 2.13 shows some 

of the examples of ultrasound imaging used in medical applications.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Examples of ultrasound images of (a) Achilles tendon, (b) patella 

tendon (c) (from http://philschatz.com/physics-book/) blood flow of neck arteries (d) 

heart structure (from http://emergencyultrasoundteaching.com). 

 

Ultrasound imaging has been used in medical applications with an excellent 

safety record. Compared to X-rays and CT scans, it does not contain ionising 

radiation and the patient does not need to be injected with a radioactive element to 

emit the gamma rays used in bone scintigraphy technique. However, there are some 

slight effects when the ultrasonic sound wave enters the body that may heat the tissue 

slightly (Hayes, et al., 2004). Ultrasound scanner can operate at various operational 

modes. The mode is the state that is being operated using a method of channelling the 

sound pulses to the parts of the body such as the arterial system, heart, spinal cord, 

joint, and more. The common modes used in ultrasound applications are the A, B and 

M-mode. Each mode gives different types of results, and the chosen mode depends on 

the medical condition being investigated.  

 

 

 

 

(a) (b) 

(c) (d) 
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2.2.5.1   A-mode (Amplitude) 
 

The simplest ultrasound mode is the A-mode, which scan the object with only 

a single line of sight from the transducer, and displays the amplitude spikes of 

different heights showing the range of the reflector. The transmitted sound pulses pass 

through tissues of difference consistency and hardness producing a spike like 

amplitude. This mode is used to measure the depth of organ. Figure 2.14 shows an 

example of A-mode display, where x represents the time taken after the sound pulse 

and y represents the amplitude of the amplified and demodulated echoes measure at 

that time. The amplitude peaks A and B indicate the spatial position of the object from 

the position of the transducer front face.  

 

The amplitude spike represents the sharp boundary (e.g. bone), while a steady 

low line represents the homogenous structure (e.g. inside muscle). The real 

disadvantages of this mode of imaging are that it is hard to exactly know what the 

object generating the echo looks like, and knowing the exact direction of the object is 

impossible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: Example of an A-Mode image with y-axis represents the amplitude and 

x-axis represents the depth. The amplitude spikes of A and B represents the 

boundaries of solid objects found (from http://www.battlesnake.co.uk/_uni/ultra.htm).   
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2.2.5.2   B-mode (Brightness) 
 

B-Mode imaging is the most common form of ultrasound imaging and uses 

brightness intensity as its base instead of vertical spikes. The transducer transmits a 

series of short pulses at regular intervals and in between listens for the reflected 

echoes. The time taken for each pulse to travel and reflected in between determines 

the distance of the reflector. The ultrasound machine then calculates the captured 

echoes by computing the distance from the probe to the reflector using the speed of 

sound of the tissue and the time taken of each echoes return. The intensity of the 

echoes depends on how much of the pulses’ energy are reflected by the tissue.  

 

The intensity of the echoes is represented in the form of random speckles 

consisting of large and small dots with different shades of grey, resembling the 

variations in the texture of internal organs. The calculated distances and intensities of 

the echoes are then formed to a viewable 2D map of grey scale of ultrasound image 

on the screen. The displayed image consists of 2D x,y coordinates of where the x-axis 

representing horizontal length of the transducer and y-axis as representing the depth 

(Figure 2.15).  

 

 

 

 

 

 

 

Figure 2.15: Example of a B-mode image with small dots at (x,y) coordinates 

representing the echo intensity with different shades of grey.  

 

 

The different shades of grey represent the energy of the reflected pulses, 

giving sense the appearance of the tissue such as the skin to appear as smooth and 

bright, both fat and muscle appears to be bright or dark and tendons are typically 

bright. The bone structure can be identified as speckles of white dots while soft 
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tissues such as tendons are seen with various shades of greys speckle formations and 

fluids are seen as black. B-mode has the advantage over A-mode in that the direction 

and the shape of an object can be viewed in real-time.  

 

Each complete scan is arranged into a series of frames within a timeline. 

Usage of B-mode ultrasound imaging has intensified over time and can be found in 

many medical applications for diagnostic purposes such as the evaluation of fetus 

development and other organs. B-Mode is also fast enough to capture real-time 

motion and is used to evaluate the motion of organs. Due to its wide use and 

availability, the ultrasound equipment used for this study is the B-mode imaging. 

 

 

2.2.5.3   M-mode (Motion) 
 

M-mode ultrasound imaging is a technique of displaying one-dimensional data 

to analyse moving body parts with depth and time. The procedure is achieved by 

transmitting a single sound beam from the ultrasound probe transducer with a moving 

reflector and recording the reflected echoes. The reflected echoes are presented along 

the y-axis, which essentially represents the depth of the tissue, while the x-axis 

represents time. Figure 2.16 shows the movements of a heart valve in cardiac imaging 

(Støylen, 2010). Because of its high sampling frequency (up to 1000 pulses per 

second), M-mode is useful in assessing the rates and motion, which are also useful to 

diagnose cardiac movement, as well as fetus development.  

 

 

 

 

 

 

 

 

Figure 2.16: Example of a M-mode image shows a wave-like motion where y-axis 

representing the depth of the tissue and x-axis represents the movement over time. 
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2.2.5.4   Doppler Based Ultrasound Imaging 
 

There are other types of ultrasound technique used in medical applications 

such as the Colour Flow Doppler Imaging (CFI), Pulse Wave Doppler (PWD), 

Continuous Wave Doppler (CWD) and Tissue Doppler. In contrast to traditional 

ultrasound imaging where the sound waves reflect the tissue, the sound waves in 

Doppler imaging are reflected off moving objects, such as blood, and are usually used 

to measure its flow and speed. 

The CFI mode uses these Doppler waves and represents the reflecting echoes 

by colours superimposed on the 2D image (see Figure 2.17a). The colours are usually 

notated as red for flow coming toward the transducer probe and blue notated as flow 

moving away from the probe. CFI suffers the disadvantage of lower frame rate when 

compared to the standard ultrasound mode due to its technique of acquiring data 

sequentially one line at a time and transmitting many pulses in each scan line to 

generate these colours.  

 

The PWD mode uses the Doppler pulses to transmit and to receive its 

reflection within a preset delay. The image produced contains a cursor showing the 

sample volume placed over the 2-D image at the region of interest (see Figure 2.17b). 

PWD has the disadvantage of being unable to measure high-velocity movement 

accurately and suffers from image aliasing, where different signals wrap around the 

waveform signals as noise, making it indistinguishable from noise that may exist in 

the signals.  

 

The CWD mode in the other hand uses two parts of the transducer, one 

continuously transmitting the pulses, and the other continuously receiving the Doppler 

signals. The image produced contains an indicator placed on the image showing the 

continuity of the signals along the scan line (see Figure 2.17c). CWD gives good 

resolution of high velocities when compared to PWD, but unlike the standard 

ultrasound method, it does not give any information of the location of the signal.  

 

The final example of Doppler mode imaging is Tissue Doppler imaging. This 

mode is normally used to measure the velocities of tissue movement.  The velocity 
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rate used in this mode is lower than the one used in PWD mode, which is used to 

measure the velocity of blood flow. The image produced contains regions of interest 

placed on the image representing the sample volume and Doppler waveforms showing 

the velocities of the tissue movement (see Figure 2.17d). 

 
  

Figure 2.17: Examples of Doppler based ultrasound imaging. (a) Colour Flow 

Doppler Imaging (CFI), (b) Pulse Wave Doppler (PWD), (c) Continuous Wave 

Doppler (CWD) and (d) Tissue Doppler imaging (from 

http://www.criticalecho.com/content/tutorial-2-modes-ultrasound). 

 

 As indicated above, each of these modes is suited to specific medical 

applications. However, for tracking the tendon tissue, the B-Mode is the preferred 

option as it has the advantage of producing real-time images with a sampling rate that 

is suitable for tissue evaluation and can be carried out repeatedly. Also, the B-Mode 

to be the only mode that displays the location of the tissue with high resolution image 

which enhances the clarity of the image, and this is particularly useful for tracking 

tissue motion within an area of interest of the tissue.  Furthermore, when using B-

mode ultrasound imaging, the image can be produced in three different planes 

(sagittal, frontal or transverse) depending on the anatomical position of human body 

(see Figure 2.18). Thus, the image produced can be viewed either as lateral view 

(a) (b) 

(c) (d) 
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(frontal), anterior view (sagittal) or cross section view (transverse), which gives better 

understanding of the properties and functions of the tissues.  

 

 

 

 

 

 

 

 

 

Figure 2.18: Three primary planes illustrated from anatomical position of human 

body.  

 

Both A-mode and M-mode produce images that show only motion and its 

depth without the necessary shape of the body organs and its locations under the 

muscle area. The Doppler imaging modes however, gave extra information of flow 

movement with colours and sampling rate, but with the expense of images being 

reduced to a lower frame rate and no indication of the location of the signals.  

 

In this Chapter it has been shown that B-mode ultrasound imaging and MRI 

produce image with higher resolution than the other imaging techniques. However, 

MRI scanners are costly and incapable of real-time scanning of body organ, whereas 

B-Mode ultrasound imaging is cheaper, portable, and provides good enough image 

resolution with real-time observation. Figure 2.19 illustrates the sample images of B-

mode ultrasound imaging of lower limb at scanned over sagittal plane of the body 

showing the location of tendon at both knee and ankle.  

 

 

 

 

 

 

 

Sagittal 
(median plane) 

Transverse 
(horizontal plane) 

Frontal 
(front plane) 
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(I) (II) 

 
Figure 2.19: B-mode image of the knee (from Knee Pro III, 3D4Medical.com) (I) 

with the patella tendon (a), and (II) the ankle (from http://achillestendon.com/) with 

tendons at gastrocnemius (b) and Achilles (c)  

 

 

2.3   Ultrasound Speckle Tracking and Its Clinical Applications 

 
The B-Mode image contains unique random speckle patterns, which are 

formed by the interference patterns of the waves reflected from the tissue structure. 

These patterns are deterministic, but they are not correlated to the structures in the 

image (Anderson, et al., 2006), which greatly reduces the ability to detect features in 

the image (Bamber, et al., 1986). Tracking the speckle movement has become a 

widely used method for accessing strain in 2D ultrasound imaging (Kaluzynski, et al., 

2001, Helle-Valle, et al., 2005) and mainly found in studies related to the fluid flows 

and deformation of tissue organs. Such examples can be found in the related studies 

such as estimating the blood flow velocity (Chen, et al., 1989, Bohs, et al., 2000, 

Vray, et al., 2004), assessing the function of the heart (Suhling, et al., 2005, Vahid, et 

al., 2007, Vahid, et al., 2008), assessing the function of other tissue organs for cancer 

and tumours (Fabio, et al., 2006, Jonathan, et al., 2012), and analysis of tendon tissue 

working mechanisms for rehabilitation and injury prevention (Maganaris, C. N., et al., 

1998, Yeung, et al., 1998, Dilley, et al., 2001).  

 

 Measuring the moving objects from 2D speckle patterns was first reported by 

Robinson, et al. (1982) who were interested in determining the velocity of 

propagation of ultrasound in tissue, and used cross-correlation to detect the apparent 

(a)

(b)

(c) 
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shift within the region of interest. Later in 1987 this method was used for detection of 

blood flow (Trahey, et al., 1988). Then, the use of speckle tracking moved to track 

elasticity to assess stiffness and strain in various biological tissues to recognise 

diseases such as cancer (Fabio, et al., 2006, Jonathan, et al., 2012) and cardiovascular 

diseases (Fung, 1993, Suhling, et al., 2004, Sahba, et al., 2008, Vahid, et al., 2008).  

 

The advancement of the ultrasound machine to provide real-time strain 

imaging has enable researchers to study various parts of tissues and organs to detect 

tissue anomaly such as breast lesions (Garra, et al., 1997, Hall, et al., 2002) or 

coronary artery diseases (Biering-Sorensen, et al., 2014). Muscles and tendon tissues 

were also studied to understand its properties and functions to identify possible 

damage non-invasively (Dilley, et al., 2001, Loram, et al., 2006, Lee, S., et al., 2008a, 

Farron, et al., 2009). The deterministic property of the speckle pattern also represents 

the changes of the speckle indicating the movements and deformations of the 

underlying tissue (Meunier, 1998), which is therefore useful for the tracking 

algorithms to detect its movement. 

 

Studies of tendon tissues had been conducted a long time before ultrasound 

techniques were used in medical diagnosis. Most were carried out in vitro from 

isolated animals or a cadaver (Bennet, et al., 1986, Lieber, et al., 1991) and only 

recently on living human material (Rigby, et al., 1959, Butler, et al., 1978, Greaves, et 

al., 2008). However, there have been only a few reports on tendon mechanical 

properties under maximal physiological load and most studies referred to animal 

material testing that does not represent the ideal references to living human tissues. 

The earliest work that examined the dynamic of human muscles looked at the relation 

between the production of heat and shortening of human muscle in vivo (Hill, 1938).  

 

B-mode ultrasound imaging was able to give a clearer insight into the tendon 

properties that can be assessed and measured in vivo in real-time while the tendon 

was loaded via means of isometric muscle contraction. Since then ultrasound analysis 

has become increasingly popular to study and understand the working of tendon 

properties for both static and dynamic situations (Fukunaga, et al., 1996, Onambele, et 

al., 2007, Jan-Wiebe, et al., 2010, Kim, et al., 2011, Yoshii, et al., 2011, Pearson, et 

al., 2012).  
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2.4 Motion Estimation of Speckle Tracking. 
 

Observing the motion of tendon deformations in successive speckle images is 

not a straightforward task, images needed to be analysed on a frame-to-frame basis 

and thus require complex image processing calculations (Gonzalez, et. al., 2002). 

Conventionally, a trained eye is needed to be able to identify the actual movement of 

the localised tissue (Fukunaga, et al., 1996, Hansen, et al., 2006, Pearson, et al., 

2007). The estimation of the motion between two frames in the context of 2D 

ultrasound imaging is known as speckle tracking. In general, subtracting 8-bit 

grayscale images can produce 512 values: 

 

 I(x, y) = I1(x, y)− I2 (x, y)                                       (2.1) 

 

where I is the image difference resulting from the subtraction of I1 and I2. The 

measurement is the basic operation used for change detection where the difference 

between the two frames can be extracted to estimate motion (see Figure 2.20).  

 

 

 

 

 

 

 

 

Figure 2.20: Illustration of two frames from a video sequence of a tendon, (a) is the 

initial frame, (b) is the next frame and (c) is the graphical representation of a 

displacement with arrows showing the motion vectors. 

 

Several other improved methods have been proposed in the past for extracting 

motion between different images (Foresti, 1998, Dilley, et al., 2001, Loram, et al., 

2006, Lee, S., et al., 2008a). These include block matching algorithm (BMA) methods 

(Zhu, et al., 1997, Barjatya, 2003) and gradient-based (optical flow) (Baker, et al., 

2004, Bruhn, et al., 2005, Lee, S., et al., 2008a) methods. The BMA method finds 

(a) (b) (c) 
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similar blocks between two image frames and assumes that intensity of the block 

between two frames is constant. The similarity between two blocks is based on the 

greyscale value of the image. There are many methods of observing the similarity 

such as Mean Square Error (MSE) (Revell, et al., 2004) and Normalised Cross 

Correlation (NCC) (Hii, et al., 2006). The searching strategy consists of exhaustive 

search, which is the oldest method, and newer searching strategies such as the steps 

search (3SS) and diamond search (Zhu, et al., 1997).  

 

Another group of motion estimation methods is optical flow, which follows 

the movement of apparent objects such shapes, edges or surfaces within a virtual 

scene. Lucas-Kanade (Lucas, et al., 1981) and Horn-Schunck (Horn, et al., 1981) are 

the two most popular techniques used for the optical flow. These are similar to the 

BMA method in that both assume that the intensity is constant in consecutive frames. 

Figure 2.21 illustrates different types of motion estimation. 

 

 

 

 

 

 

 

 

Figure 2.21: Different types of motion estimation techniques.  

 

To improve the success of the motion estimation, the area to be tracked is 

defined by marking it manually and is usually referred to as the region of interest 

(ROI) and the selected area can be either bounded by rigid appearance (such as lines, 

corners, junctions) or non-rigid appearance  (changing over time) (Kumar, et al., 

2011). The ROI helps the algorithm to selectively process the desired subset of the 

image data for motion estimation (Kehtarnavaz, et al., 2006).  A typical ROI for the 

tracking of localised tissue tends to undergo non-rigid transformation. The ROI 

usually contains a speckle pattern and is thus difficult to track (Dilley, et al., 2001, 

Korstanje, et al., 2010).  

 

Motion estimation  

Block Matching Optical Flow 

NCC SSD MSE Lucas-Kanade Horn-Schunck 
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A reference landmark such as a tendon junction was used to improve the 

estimation of the tendon movement (Narici, et al., 2006, Lee, S., et al., 2008a). The 

displacement of the tissue is determined by locating the same unique pattern in 

consecutive frames (Hsu, et al., 2005). Most of the studies related to tendons use a 

single ROI marker with various range of ROI sizes to track the overall displacement 

of the tendon (Dilley, et al., 2001, Revell, J., et al., 2005, Lee, S., et al., 2008a), 

rather than looking at localised features of the tendon. The 2-ROI markers were used 

to observe the dynamic changes of the regional area of the tendon to calculate the 

localised stiffness and strain (Couppé, et al., 2008, Pearson, et al., 2012). The use of 

multiple ROIs to track multiple layers the tendon gave better comparisons between 

the layers (Pearson, et al., 2014).  

 

 

2.4.1   Gradient Based Optical Flow 
 

Optical flow is a method of following the motion of object pixels (i.e. shapes, 

surfaces, and edges) in a visual scene. It works by sampling spatially and temporally 

the light of two image frames so that a sequence of motion is generated. It is typically 

used in robotic applications to detect and to track an object. The application is 

customarily found in motion compensation and compression to track every pixel in a 

moving image so that estimating the motion between two video frames can be 

achieved.  In a tissue motion application, the optical flow is commonly used to 

compute the dense displacement field on the assumption that the image intensities 

remain constant over time. An optical flow method calculates the motion between two 

image frames, which are taken at times t and t +1  at every pixel location.  

 

Figure 2.22 illustrates the basic concept of optical flow where motion of an 

object between two frames can be observed. Here, the object of interest located at 

coordinate (x,y) at time t moves to a new coordinate of (x + u, y + v)  in Frame 2 at time 

t+1. The displacement  (u,v) is used to calculate the velocity vector of the optical 

flow.  
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Figure 2.22: Basic concept of optical flow. Red arrows indicating the origin of flow 

vectors and black arrow indicating the velocity vector.  

 

The example shown in Figure 2.22 can be expressed mathematically by 

considering a patch of a brightness pattern at location (x,y) that has the intensity of 

I(x,y) at time t. Assuming the brightness of the patch remains constant, the 

displacement of the pattern in the x-direction and the y-direction from time t can be 

derived as: 

  

 I(x, y,t) = I(x + u, y + v,t + Δt)  (2.2) 

 

By expanding Taylor series, the right-hand side of Equation 2.2 can be expressed as: 

  

 I(x, y,t) = I(x, y,t)+ ∂I
∂x
u + ∂I

∂y
v + ∂I

∂t
Δt + ε  (2.3) 

 

where ε contains second and higher order terms in x and y . By subtracting I(x,y,t) 

from both sides gave the following equation: 

 

 
 
0 ! ∂I

∂x
u + ∂I

∂y
v + ∂I

∂t
Δt   (2.4) 

where (u,v ) are the displacements or optical flow of (x,y,t) and ∂I
∂x
, ∂I
∂y
, ∂I
∂t

  

are derivatives of the image at (x,y) in the corresponding directions. Assuming the 

limit to estimate the velocity of the displacement: 

 

 
 
0 ! ∂I

∂x
u
Δt

+ ∂I
∂y

v
Δt

+ ∂I
∂t

Δt
Δt

  (2.5) 

Δt→ 0

x x x 

y y y 

Frame 1 at time t Frame 2 at time t+1 Optical Flow 
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where u
Δt
, v
Δt

are the velocities. Thus, a single linear equation in the two unknowns 

can be derived as: 

 ∇I ⋅[u,v]+ It = 0   

          or  

 ∇I ⋅[u,v]= −It       (2.6) 

where ∇I and It are the partial derivatives of the spatial gradient and temporal gradient 

with respect to x,y and t respectively.  

 It should be noted that it is not possible to determine the motion due to the 

nature of the equation as it provides only one equation for two unknowns (i.e. 

unknown flow vector) and is known as the aperture problems of the optical flow 

algorithms (Beauchemin, et al., 1995, Mesbah, 1999). To find the optical flow, 

another set of equations is needed, which involve some additional constraint. All 

optical flow methods introduce additional conditions for estimating the actual flow. 

The above simple method shows that the motion has to be sufficiently small, for the 

first-order Taylor’s series expansion to be valid. Furthermore, the motion has to be 

constant throughout the neighbourhood for the estimation to work.  

 

 The above example is the basis of differential methods used in the Lucas-

Kanade (Lucas, et al., 1981) and Horn-Schunck (Horn, et al., 1981) methods, which 

are described shortly. Both the Lucas-Kanade and Horn-Schunck methods assume 

that brightness does not change over time. The Lucas-Kanade method also assumes 

that the velocity is locally constant, and so neighbouring points belong to the same 

patch and have similar motion, while the Horn-Schunck method assumes that the flow 

field is globally smooth where neighbouring velocities are nearly identical. In 

comparison, Lucas-Kanade would produce less noise compared than the dense 

method of Horn-Schunck.  

  

 However, the global aspect of the Horn-Schunck method is computationally 

expensive compared to the local neighbouring method of Lucas-Kanade. Moreover, 

Horn-Schunck being a global method yields dense flow field and is less robust to 

noise (Bruhn et. al., 2005) thus making it less feasible to track the deformation of 
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localised area of the speckle representation of human tissue that is hard to track the 

localised areas of the tendon tissue.  Figure 2.23 illustrates the Lucas-Kanade and 

Horn-Schunck methods with illustrating the Lucas-Kanade method containing the 

feature template T from the initial frame at time t (a) and the local flow vector in time 

t+1 (b). The Horn-Schunck is shown in (c) where the motion between It and It+1 is 

shown as vectors in (d).   

 

  

 

 

 

 

 

 

 

Figure 2.23: Examples of Lucas-Kanade method (a) with its flow vector (b) and 

Horn-Schunck (c) and its flow global flow vector (d).  

 

 

2.4.1.1   Lucas-Kanade Algorithm (LK) 
 

The Lucas-Kanade algorithm was initially developed to align a template 

image to an input image locally within the image space assuming that the brightness 

is constant, and the displacement between two frames is small. Using the standard 

optical flow equation (see Equation 2.2) all pixels can be grouped together within a 

window of M x N and written in a matrix form of minimum least square to compute 

the summation over all pixels in the M x N window: 

 

    
IxIx∑ IxIy∑
IxIy∑ IyIy∑
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 The matrix in Equation 2.7 holds all pixels within a window centred at p. If p* 

is the best alignment, by using Taylor series approximation the similarity can be 

derived as: 

 

 p*= [I(W ([x, y]; p))−T (x, y)]2
x
∑    (2.8) 

 

where W ([x, y]; p)  is the set of parameterised warps (geometrical transformation), 

T (x, y)  is the template model and p is a vector of parameters. I(W ([x, y]; p)) is the 

warped image obtained by interpolating the image I at the sub-pixel location 

W ([x, y]; p) . The displacement is then obtained by subtracting I(W ([x, y]; p))  from 

T (x, y)  where the point p is assumed to be a known parameter, which gives a linear 

equation of optimal increment: 

 Δp*= I(W ([x, y]; p))+∇I ∂W
∂p

Δp −T (x, y)⎡
⎣⎢

⎤
⎦⎥

2

x
∑  (2.9) 

 

where Δp is the vector with increment parameter and ∇I is the gradient of image I 

evaluated at I(W ([x, y]; p)) . 

 

 The term ∂W
∂ p

is the Jacobian of the warp: 
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∂p

=

∂Wx
∂p1
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∂p2
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⎥
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 (2.10) 

 

Minimizing the Equation (2.9) gives a least squares problem and has a closed form 

solution linear in Δp 	
  which can be derived as follows: 

 

  Δp*= 2 ∇I ∂W
∂p

⎡
⎣⎢

⎤
⎦⎥

T

I(W ([x, y]; p))+∇I ∂W
∂p

Δp −T (x, y)⎡
⎣⎢

⎤
⎦⎥x,y

∑  (2.11) 
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where ∇I ∂W
∂ p is known as the steepest descent image (Baker, et al., 2004). Setting this 

expression to zero gives:  

 

Δp = ∇I ∂W
∂p

⎛
⎝⎜

⎞
⎠⎟

T

∇I ∂W
∂px,y

∑
⎡

⎣
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⎢

⎤

⎦
⎥
⎥

−1

[ ∇I ∂W
∂p

⎛
⎝⎜

⎞
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(I(W ([x, y]; p))
x,y
∑ −T (x, y))]

	
   (2.12)

	
   	
  

	
   	
  	
  	
  	
  	
  	
  
 

 

where H is Gauss-Newton approximation of the Hessian matrix. For this reason it can 

be seen that the above equation is the steepest descent parameter updates, and proves 

that Δp  is the steepest descent parameter.  

 

The point p is then continuously updated with parameters Δp 	
   until	
   Δp ≤ ε, 

where ε	
   is a threshold parameter. The process of the Lucas-Kanade method is 

illustrated in Figure 2.24 using a B-mode image of tendon data. Here, in Frame 1, a M 

x N size template is selected (a) and is then compared at every pixel to the warped 

image of Frame 2 (b). At every position of the pixel is updated with the steepest 

descent parameter (summation of both gradient of warp x and warp y) until match is 

found and the displacement of the search object between the two frames represents its 

motion vector (c). 

 

 There are two cases that will cause a poor match in Lucas-Kanade. The first 

case being that the point p falls outside of the tracked image and the other case when 

the image patch around the tracked point between image I and T varies too much 

(points disappear due to occlusion).  
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Figure 2.24: Lucas-Kanade motion estimation illustrated with B-mode tendon data.  
  
   

2.4.2   Block-Matching Algorithm (BMA)   
 

Block-matching algorithm (BMA) computes the local displacement between 

two images or portions of images on a pixel-by-pixel basis (Sun, et al., 2003). These 

methods have been extensively researched, and various developments based on the 

block-matching method have been developed to estimate the motion of speckle 

patterns in ultrasound images (Lin, et al., 1997, Barjatya, 2003, Hariharakrishnan, et 

al., 2005, Purwar, et al., 2010). The use of BMA was first introduced in discovering 

temporal redundancy in video sequences and video compression (Jan-Wiebe, et al., 

2010) but has been applied to medical image processing (Ourselin, et al., 2000). The 

typical BMA consists of a fixed search window of size M x N pixels and a template 

image block of size m x n pixels. The motion displacement is measured by pixels (p) 

per frame  (see Figure 2.25).  
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Figure 2.25: Illustration of a BMA with a predefined search window and image block 

(Barjatya, 2003).  

 

The typical BMA search technique divides the image frames into non-

overlapping blocks where each block from the initial frame (t) is matched into a block 

in target frame t+1 (see Figure 2.26). The search region is defined by its search 

window parameters. By using exhaustive search methods (Sun, et al., 2003) or newer 

methods such as the three-steps search (3SS) (Koga, et al., 1981) or the diamond 

search method (Zhu, et al., 1997), a new block location can be estimated. The 

exhaustive search method is a very time-consuming technique but gave more accurate 

results compared to the other newer search methods (Mohammad, et al., 2009).  

 

Both the three-steps search and diamond search methods were developed to 

simplify the search and to reduce the computational cost of the exhaustive method. 

However, at the expense of accuracy, both methods become inefficient for small 

motion estimation, irregular data flow and high control overhead compared to the 

exhaustive search method (Lin, et al., 1997). The Block-matching algorithm (BMA) is 

based on Euclidean distance measurement. By using the Sum of Squared Distance 

(SSD), which is usually used in block-based motion estimation, the search window is 

sized appropriately for the tracked object (Beauchemin, et al., 1995) between –w for 

minimum and +w for maximum. 
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Figure 2.26: Illustration of a block matching algorithm (BMA) matching from the 

image in frame k to the block within the search window in target frame k+1 (Purwar, 

et al., 2010). 

 

In general, the block-matching method searches for best matches from each 

block from the initial frame t within a search window of size  (2w + n) x (2w + n) in 

the next frame t+1 within the maximum allowed displacement w and each block is 

measured in pixels n. SSD can be derived as:  

 

	
   	
  	
  	
  	
  	
  	
  

SSD(u ,v) = It (x, y)−Tt+1(x + u, y + v)[ ]2 ,
y=0

n=1

∑
x=0

n=1

∑
−w ≤ u,v ≤ w

 (2.13)
	
  

 

where It is the initial block in frame t from the top left location of the image frame 

while T is the target block in frame t+1 within the search window of the target image 

and (w) is the maximum searched area. Neighbouring pixels give the central pixel and 

corresponding displacement vector (u,v). The block with the least distortion is known 

as the “best match”. 

 

The full search method computes SSD for all (2w+n)2 positions of the target 

block. To improve accuracy of the estimation within a number of image frames, a 

technique known as adaptive block matching algorithm (ABMA) is used (Vermaut, et 

al., 2001)  where the best match block of target frame is reassigned the initial block to 

be searched in the next frame. This procedure is repeated until the final frame. The 

basic correlation technique for similarity measurement used in the block-matching 
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search contains several problems; mainly the correlation value of (I ,T )∑ at a certain 

pixel in an image may produce a large value even though no good match exists and 

generate significant error when the window is too large.  

 

The error produced will also be overwhelmed by background information, and 

thus, an undersized window can easily drift and lose the tracking area (Eltoukhy, et 

al., 2001). Several other similarity measurement techniques have been introduced 

such as Mean Square Error (MSE) (Zhu, et al., 1997, Chan, et al., 1998, ZhāNg, et al., 

2000, Ulysses, et al., 2010) and Normalised Crossed Correlation (NCC) (Nillius, et 

al., 2002, Hii, et al., 2006, Pearson, et al., 2012) to overcome the problems found in 

block matching algorithm. 

	
  

 

2.4.2.1   Mean Square Error (MSE) 

	
  
Mean Square Error (MSE) is one of the similarity measurements that is used 

to measure the quality of the estimator (error) by squaring of the differences between 

the initial blocks and target blocks, summing them and averaging by the number of 

observations (dimension size of search window). MSE is defined as: 

 	
  
MSE(u,v) = 1

MN
[I(x, y)−T (u + x,v + y)]2

y=1

N

∑
x=1

M

∑
−w ≤ u,v ≤ w 	
   	
  

 (2.14) 

where u,v are the displacements, M x N is the size of the template and w is the search 

area for the template T shifted by (u,v) steps. The MSE produces a value for 

displacement vector for a shift to pixel (u,v) .  

 The MSE is calculated for a displacement at every pixel position within the 

search range in the target frame, and the movement that gives the minimum value of 

MSE is chosen as the motion vector: 

	
  

MSE(x, y) = argmin
x,y
[MSE(u,v)],

≈min = 0 	
  
(2.15) 
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where MSE(x,y) is the minimum difference (error) within the motion vector and with 

a perfect match indicated as zero and larger difference indicating poorer matches.  

The search similarity measurement of MSE is illustrated in figure 2.27 using 

the B-mode tendon data. The similarity measurements between T and I are shown in 

greyscale using the BMA. The position of the closest match is also indicated in the 

figure 2.27. It is known that the MSE has the disadvantage of assigning more weight 

to large errors than small ones (Hibon, et al., 1995, Twomey, et al., 1996). 

  

 

 

 

 

 

 

 

 

Figure 2.27: Illustration of a Mean Square Error (MSE) similarity measurement.  

 

 

2.4.2.2   Normalised Cross Correlation (NCC) 

 

Another widely used similarity measurement in BMA is the Normalised Cross 

Correlation (NCC), which is a simple template matching method that determines the 

location of the template block (T) inside the 2-dimensional target image (I). By using 

the BMA approach, the template was shifted pixel-by-pixel across the image, forming 

a correlation plane to indicate the location of the best match in the image. Unlike 

MSE, the intensity of the image is normalised to smaller unit length and the NCC 

value produces a small correlation coefficient between the target blocks and the initial 

block (Revell et al., 2004). 
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The correlation coefficient at the location (u,v) is defined as:        

NCC(u,v) =
[I(x, y)− I u,v ] [T (x − u, y − v)−T ]

y−1

N
∑

x=1

M
∑

y−1

N
∑

x=1

M
∑

[I(x, y)− I u,v ]2 [T (x − u, y − v)−T ]2
y−1

N
∑
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∑
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⎧

⎨
⎪

⎩
⎪

−w ≤ u,v ≤ w

   (2.16) 

where x,y are the pixel locations, M x N is the size of the template, and I is the mean 

value of I within the search area w of the template T shifted to (u,v) and can be 

derived as zero mean image: 

	
  
I u,v =

1
MN

I(x, y)
y−1

v+N

∑
x=1

u+M

∑
	
  	
  

(2.17) 

and T is the mean value of the template T, defined as:   

	
  
T u ,v =

1
MN

T (x, y)
y−1

v+N

∑
x=1

u+M

∑
	
  

(2.18) 

As the template T is shifted to n-th positions (u,v) where at every position, the 

zero mean image I  and the zero mean of the template T have to be recalculated 

simultaneously, giving NCC the disadvantage of being computationally expensive. 

Due to the zero mean, NCC values are between 0 to 1, where 0 is assumed as a poor 

match and 1 to be the best match. It can be derived as:  

	
  

NCC(x, y) = argmax
x,y
[NCC(u,v)]

≈max = 1 	
  
(2.19) 

where NCC(x,y) is the maximum differences allowable for motion vector and if a 

match is determined with the difference (error) is 1, while smaller difference value 

indicating poor matches. 

The search similarity measurement of NCC is illustrated in figure 2.28 using 

the B-mode tendon data. The similarity measurements between T and I are shown in 

greyscale with its zero mean functions. Using the block-matching algorithm, the 

MN 

MN 
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search shift pixel-by-pixel to find the closest match, which corresponds to the position 

u,v when the correlation value reaches the maximum value, which must be above a 

preset threshold. The new candidate or match is at new location of x,y with the vector 

path u,v is measured between previous and current frames. 

 

 

 

 

Figure 2.28: Illustration of a Normalised Cross Correlation (NCC) similarity 

measurement.  

 

 

2.5     Summary  

In this chapter the biomedical background related to tendon structures and 

functions has been described, as well as applications and experiments related to 

ultrasound imaging and tracking in biomedical areas. The background to tracking 

imaging within the domain of ultrasound imaging was also described, with details of 

the tracking algorithms that were predominantly used in biomedical applications. This 

understanding of the tracking algorithms and its area of interest within the mechanical 

tendon are essential for the parameter identification and motion estimation for the 

ultrasound imaging with random speckle formation, and will be used extensively in 

the following Chapters.  
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In the next chapter, the experiment setup used to validate the effectiveness of 

the tracking algorithms using the tendon muscle data in-vivo is explained. In these 

experiments, different algorithms are investigated and are compared to the standard 

manual measurements. The hardware used, and the method of image acquisition is 

explained as well as the test subjects, including areas of interest within the tendon 

muscle, as well the kind of output to be expected. Software design and 

implementation are also covered in this Chapter, showing how results are achieved 

and what kinds of algorithms are used within the software environment. Detailed 

discussions of tracking algorithms were discussed there. The algorithms tested were 

Normalised Cross Correlation (NCC), Mean Square Error (MSE), NCCMSE and 

optical flow – Lucas-Kanade (LK).  



	
   57	
  

Chapter 3 

Materials and Methods 

 

Overview 
 

In this chapter, the methodology used to validate the effectiveness of the tracking 

algorithms using the in-vivo tendon images is presented. Three studies are devised, 

and the experimental setup and planned experiments for each study are described. 

Finally, the design and implementation of the speckle tracking software that is 

required to support these studies, including the speckle tracking and pattern matching 

algorithms that have been identified in the previous Chapter, are also discussed.  

 

 

 

3.1   Methodology 
 

 In order to meet two of the project’s Objectives: determining the optimal image-

tracking algorithm for in-vivo tendon images, and then extend this algorithm and 

identifying the optimum settings such as the region of interests (ROI) block size and 

the threshold range; and generating useful information from the tracking output such 

as the displacement and the motion path of the tendon region to calculate its stress 

and strain for a better clinical understanding of the tendon mechanical properties 

during dynamic excursion under load, a series of three studies were devised and 

conducted which built on the results of the previous one. 

 

 The first study was a pilot study and involved comparing the performance of the 

main speckle tracking algorithms for ultrasound images identified in the previous 

Chapter and validating them against the standard manual measurement (Pearson et 

al., 2006, Pearson et al., 2012). The standard manual measurement process is 

described in the following Section, and the experimental setup and planned 
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experiments for the pilot study are described in Section 3.3. The best performing 

speckle-tracking algorithm was chosen and used for the two remaining studies. In the 

second study, the chosen tracking algorithm was applied to two regions of interest 

(ROI) consisting of two markers placed at both proximal and distal ends of the 

regional areas of the tendon (Farron et al., 2009) to measure its strain against the 

standard manual measurement (Pearson et al., 2012).  

 

 The experimental setup and planned experiments for this study are described in 

Section 3.4. For the final experiments, the best tracking algorithm was chosen with 

ROIs placed at multiple areas of the regions of both proximal and distal ends on each 

layer of anterior, midsection and posterior, for tendon strain measurement at each 

layer (Pearson et al., 2014). The experimental setup and planned experiments for this 

study are described in Section 3.5. The study had the approval of the local University 

Ethics Committee and was in agreement with the World Medical Association's 

declaration of Helsinki describing ethical principles for medical research involving 

human subjects.  

 

All participants were made aware of the study before any testing was carried 

out. All subjects gave their written informed consent to participate in this study. The 

testing took place in the Human Performance Laboratory at Salford University. 

Reliability estimates of the measures were determined by Intraclass correlation 

coefficients (ICCs) (two-way mixed model with absolute agreement). Each 

experiment in the studies can be considered to have three separate stages: the Input, 

Processing and Output (see Figure 3.1). The Input stage involved setting up the 

equipment in the lab to capture the ultrasound images from participants in-vivo using 

the ultrasound scanner probe. The images were digitized by the ultrasound system and 

stored as a sequence of images in uncompressed video file (DV) format at 25 frames 

per second (fps) into computer storage for further analysis. In the Processing stage, 

the speckle tracking software that has been developed read an Input video file, 

displayed it on screen, then allowed the user to select the regions to be tracked 

(Region of interest - ROI) as a marker in the initial frame, and finally let the user 

choose appropriate settings such as algorithm type and search block size through a 

graphical user interface.  
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Figure 3.1: Three stages of experiment for the tracking ultrasound images. 

 

Then the software tracked the speckle in the selected region as a single ROI 

(or both ROIs for the 2 ROI study) from one frame to another frame in the video, 

based on the selected settings, and computed the displacement of ROI marker(s) for 

each of the layers being studied. Finally, at the Output stage, the results were 

presented either in a sequence of images showing the path of the ROI marker(s) or 

saved into Excel spreadsheet format so that frame-by-frame measurements and 

displacements can be shown. This information could be used for further analysis to 

describe the characteristics of the subject, in this case the tendon, where stress and 

force could be calculated. The speckle tracking software that was developed for the 

Processing and Output stages is described in Section 3.6.   

 

It should be noted that the speckle tracking software that was developed for 

the first two studies used the equipment that was available at that time. However, for 

the final study (tendon assessment in vivo), an upgraded version of ultrasound 

machine and computer system and development environment was available. The 

upgraded hardware gave a deeper depth in image resolution, an easier method of 

capturing and storing the data, and finally, better performance during the tracking 

process, although it was necessary to upgrade the software. With the new upgraded 
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system, the evaluation of the tendon could be done with more tracking features added 

to take advantage of the higher image resolution.  

 
 
 

3.2   Manual Measurement Based on Standard Method 

 

The manual measurement used for the study was based on the standardized 

method of measuring the tendon stress, strain and stiffness of patella tendon 

elongations during ramped isometric co-contractions (simultaneous contraction of 

both the agonist and the antagonist around the joint) using both proximal and distal 

tendon excursions (Onambele et al., 2007). The sequence of images was firstly 

captured and digitized. On each still image, the distance between the patella and the 

echo-absorptive marker was manually measured using the ImageJ software 

(http://imagej.nih.gov/ij/). The ultrasound image was calibrated, and measured 

distance converted from pixels to millimetres by using the ultrasound's depth measure 

as a calibration scale. Elongation was calculated by subtracting the distance measured 

at rest (0%) maximum voluntary contraction (MVC) from the measured distance at 

every 10% force interval. Each distance was measured three times and an average 

taken prior to the calculation of elongation. Mean differences between the short and 

long duration contractions for the calculated mechanical parameters were determined 

using paired t-tests. Alpha level was set to (p<0). 

 

 

3.3   Study 1: Algorithm Validation Experiment 
 

 For the pilot study, the equipment was setup to accommodate the experiment 

concerned with implementing several tracking algorithms, their performance 

compared and validated against the standard manual measurement.  
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3.3.1   Participant 
 

 A healthy recreationally active male aged 47 years with mass 91kg and height 

1.81m participated in the study. Both left and right limb were investigated where the 

areas of interest were the localised tendentious regions of patella (knee) and 

gastrocnemius (ankle). Each tested area was captured repeatedly three times using 

similar testing method and configuration.    

  

 

3.3.2   Tracking Region 
 

The best algorithm is chosen and implemented to study the characteristics of 

the tendon muscle. Figure 3.2 shows the ultrasound imaging of the patella tendon with 

its properties visible. The region that was examined is the tendon band; the length of 

the tendon is notated as (G) and the height is notated as (E). The band is attached to 

the peninsular bone of the knee, which is the proximal side of the tendon (D). The 

band consists of three regional layers: anterior (A), midline (B) and Posterior (C). 

These are the regional layers that will be used in the assessment throughout the study. 

The echo-absorbent marker is notated as (F) and is used as a measuring point to 

measure the displacement of the tendon.  

 

 

 

 

 

 

 

 

Figure 3.2: Example of Ultrasound imaging of patella tendon with regional areas 

within the tendon band. 

 

In the case of the medial gastrocnemius, as shown in Figure 3.3, the regional 

tendon area is marked as (A), which is the region for assessment through the study.  
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The myotendinous junction (B) is the site of connection between tendon and muscle. 

The echo-absorbent marker is notated as (C), and this will be the measuring point to 

measure the displacement of the tendon. 

 

 The results from both regions (i.e. patella and gastrocnemius) should give an 

overview of the best algorithm to be used for tracking such data, and how to treat the 

results generated from the experiments to describe the characteristics of the tendon 

mechanical properties.  

 

 

 

 

 

	
  
Figure 3.3: Example of Ultrasound imaging of medial gastrocnemius with the 

regional tendon areas within the tendon band.  

 
 
3.3.3   Hardware and Software Setup 
 

The hardware used for the experiment was the Esaote Biomedics B-mode 

ultrasound system (AU5) with a 7.5 MHz, 4cm linear array probe transducer 

(http://www.esaote.com). The probe setting for the both experiments was set to 

49.3mm depth range with scanner gain was set at 51%. Images were captured using 

Quintic Biomechanics 9.03 v11 (http://www.quintic.com/) as DV format into PC via 

s-video at 25 frames per second (fps) with the size dimension 768x576 pixels for each 

image. Figure 3.4 shows a picture of the ultrasound machine and the probe transducer.  
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Figure 3.4: An example of a B-Mode ultrasound system and a 40mm probe 

transducer. 

A Kin-Com isokinetic dynamometer (type 125 AP) was also used in the 

experiments (http://kincom.com/) as shown as in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: An example of isokinetic dynamometer Kin Com type 125 AP. 

 

The typical setup for both ultrasound system and the isokinetic dynamometer 

is shown in Figure 3.6. For all experiments, the participant was required to strap 

across the chest, hip and thigh of the test limb to prevent any extraneous movement. 
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Figure 3.6: A typical equipment setup for the experiments. 

 

For the assessment of the patella tendon, using a dynamometer, the knee was 

fixed at 90° flexion. The knee joint centre was aligned to the centre rotation of the 

dynamometer lever arm, and  a lever attachment cuff was placed on the lower leg (see 

Figure 3.7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Participant positioned for the assessment of patella tendon. 

While for the assessment of the gastrocnemius, the foot was set in a neutral 

anatomical position, where the sole was at 90° to the tibia (see Figure 3.8). The ankle 

joint axis was aligned with the pivot point of the dynamometer lever arm, and the 

consequent lever arm length of the dynamometer noted. The foot was securely 

fastened to the dynamometer footplate with Velcro straps and straps were also fixed 

across the chest, hip and thigh of the test limb to prevent any extraneous movement. 
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Figure 3.8: Participant positioned for the assessment of medial gastrocnemius tendon. 

 

The computer system used to run the speckle tracking software which is 

described later, was an Apple MacBook Pro, with a specification as follows:  

 

• Intel Core i5 processor running at 2.4GHz 

• 8GB 1600 MHz DDR3 RAM 

• 256GB Solid State Drive (SSD) 

• MAC OSX 10.9.2  

 

The specification used was capable of handling more than 300 frames of the image 

sequence. A less powerful system was tested with 4GB RAM and was found to be 

only capable of processing 200 frames until it ran out of memory.  

 

Scaling the images in pixels per mm was determined from ImageJ software 

(http://imagej.nih.gov/ij/) by using the known depth of field in the ultrasound images, 

(1 mm = 9.20 pixels or 1 pixel = 0.11 mm) and utilised as a calibration factor in the 

automated tracking software to ensure equivalent pixel to mm ratios. Other software 

used during the experiment was as follows:  
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• SPSS Statistics For Mac version 22 for statistical analysis 

(http://www.ibm.com/). 

• Microsoft Excel and Microsoft Word for Mac 2011 

(http://www.microsoft.com/) for both data analysis and documentation. 

 

For the comparison analysis between the automatic and manual tracking 

methods, two sites were chosen based on those typically utilized in the literature. 

These were the patella and medial gastrocnemius tendon (Arampatzis, 2005, Pearson 

et al., 2007).  

 

 

3.3.3.1   Patella Tendon Assessment Setup 
  

For the assessment of the patella tendon, the probe was positioned in the 

sagittal plane over the proximal patella and patella tendon as shown in Figure 3.9a. 

An echo-absorptive marker was placed between the probe and the skin to act as a 

fixed reference from which manual measures of elongation could be made as shown 

in Figure 3.9b. 

 

 

 

 

 

 

Figure 3.9: a) Example of ultrasound probe positioned in the sagittal plane over the 

patella tendon with echo-absorptive placed. b) The ultrasound image generated 

showing the proximal region of inferior pole of patella tendon and the marker.    
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Two experiments were performed for this study. The first one examined the 

passive tendon excursion where no tendon deformation would be expected. The probe 

was moved along the skin surface within a 20mm range, so that the tendon appeared 

to be moving but with no muscle contraction. The starting position was defined as 

frame zero and final position as frame n-1. The same criteria or frame range was used 

for three times for all similar trials. The purpose of this study was to test the capability 

of each algorithm to track movement along the tendon.  

 

For the second experiment, the participant was instructed to perform maximal 

voluntary (MVC) isometric knee extension with gradually increasing force up to the 

maximum. Voluntary forces ramped manually over 3-4 seconds, and the probe 

captured the deformation of the tendon. This was used to test the tracking algorithm’s 

ability to track a highly loaded tendon. The elongation of the tendon was measured by 

measuring the distance between the region just distal to the inferior pole of the patella 

(proximal) and the echo-absorption marker.  

 

The same trials were performed three times. Figure 3.10 shows an example of 

a passive tendon movement (A) starting from its initial position (first frame) to 50% 

of the total frame and finally towards the final frame (100% of the total frame), as for 

active movement, (B) shows the initial position (tendon rest) gradually increasing to 

50% maximum voluntary contraction (MVC) and finally towards 100% MVC. Both 

passive and active experiments were marked with ROI-nodes within the tendon region 

with I indicating its initial position in the first frame and P indicating its current 

position in successive frames.  
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Figure 3.10: A) an example of passive movement of the tendon. The ROI node was 

shown moving from its starting position in the initial frame and moved to another 

position in all successive frames. B) An example of an active movement of the tendon, 

which the ROI nodes at every percentage level of voluntary contraction (MVC). The 

displacements for both experiments were measured starting from the initial position 

(I) to the last position of (P). 

 

 

3.3.3.2   Medial Gastrocnemius Tendon Assessment Setup 
 

For the assessment of the medial gastrocnemius, the probe was positioned in 

the sagittal plane over the myotendinous junction of the medial head of the 

gastrocnemius muscle as shown in Figure 3.11a. An echo-absorptive marker was 

placed between the probe and the skin to act as a fixed reference from which manual 

measures of elongation could be made as shown in Figure 3.11b. Similar to the patella 

tendon assessment, passive and active tendon excursions were examined. For the 

observation of the passive tendon, the probe was moved along the skin surface, with 

no contraction activity by the participant. For the active tendon assessment, the 
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participant was instructed to perform the same maximal voluntary (MVC) isometric 

plantar flexions with gradually increasing force, reaching over a 3-4s period. Both 

passive and active trials were repeated three times by the participant.  

 

Figure 3.11: a) Example of the ultrasound probe positioned in the sagittal plane over 

the myotendinous junction of the medial head of the gastrocnemius muscle with echo-

absorptive placed. b) The ultrasound image generated showing the myotendinous 

junction of the medial gastrocnemius tendon and the marker.    

 

 Figure 3.12 shows an example of a passive movement of the medial 

gastrocnemius starting from its initial positions in the first frame (A) and moved along 

to 50% of the total frame and finally towards the final frame (100% of the total 

frame). The echo-absorption marker shows the gradual movement and the tendon 

fiber shown as speckles has a non-rigid like movement. The initial position of the 

tendon during active movement assessment is seen in (B). The tendon is at rest (first 

position), and the participant gradually increase to 50% maximum voluntary 

contraction (MVC) and finally towards 100% MVC. Both passive and active 

experiments were marked with ROI-nodes within the tendon region with I indicating 

its initial position in the first frame and P indicating its current position in successive 

frames. 
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Figure 3.12: (A) an example of passive contraction of the medial gastrocnemius. The 

ROI node was shown moving from its starting position in the initial frame and moved 

to another position in all successive frames. (B) An example of an active contraction 

of the medial gastrocnemius, which the ROI nodes change at every percentage level 

of voluntary contraction (MVC). The displacements for both experiments were 

measured starting from the initial position (I) to the last position of (P). 

 

The image data collected for both patella tendon, and medial gastrocnemius 

was then analysed using the tracking software and a single region of interest (ROI) 

was selected. The displacement is measured from the initial position I in the first 

frame and the position of the ROI-node in the final frame. The tendon displacement 

was observed frame-by-frame. The distance between the initial ROI node (I) and the 

ROI node at new location (P) in the latest frame (for passive movement) or at 100% 

MVC (for active movement) was measured using the two dimensional Euclidean 

distance as follows:  

 

      (3.1) 

 

where  is the position of current ROI node in successive frames,  is the 

position of initial ROI node, and is the Euclidean distance between  I and P.  

d(P, I ) = (Px − Ix )
2 + (Py − Iy )

2

(Px ,Py ) (Ix , Iy )

d(P, I )

   Initial frame 50% of total frame 100% of total frame 

Initial Position 50% MVC 100% MVC 

A 

B 

P	
   I	
  P	
   P	
   I	
  

P	
   I	
  P	
   P	
   I	
  



	
   71	
  

3.4   Study 2: Two Regions of Interest (ROI) Tracking Experiment  

 

 The study used the same participant and equipment as the previous study but 

with the addition of recording the co-contraction torque using the electromyography 

(EMG) in the antagonist’s muscle (Hamstrings and tibialis anterior) to determine the 

level of antagonistic muscle activity (Pearson et al., 2005). The net torque is 

calculated as follows:  

                        (3.2) 

 

where  is the observed net torque, is the external torque output and  is the 

antagonistic (hamstring) co-contraction torque. Tendon forces were subsequently 

calculated by dividing all net torques by the respective moment arms as follows: 

 

                          (3.3) 

 

where  is the force in the patella tendon, is the observed net torque, and 

 is the tendon moment arm and has a value of 44.7mm (Lindahl et al., 1967, 

Nisell et al., 1986, Yamaguchi et al., 1989, Herzog et al., 1993, Baltzopoulos, 1995, 

Lu et al., 1996, Wretenberg et al., 1996, Kellis et al., 1999). All excursion records 

were then determined at ten percent intervals of maximal voluntary force (MVC) up 

to the maximum.  

 

Here only two ROI nodes were examined, whereby one region was put onto 

the echo-absorptive marker and the other on an identifiable landmark within the 

tendon (Gastrocnemius muscle-tendon junction and just distal to the inferior pole of 

the patella on the inferior aspect). A total of ten trials of active tendon movements 

were carried out for the 2-ROI experiments. For the active trials, the start was defined 

where the force was zero and end where a force plateau was reached. The results from 

the 2-ROI tracking were then compared to the standard manual measurement.  
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3.4.1   Hardware and Software Setup 
 

In this study, both knee and ankle were fixed similarly to the previous 

experiments, and again, an echo-absorptive marker was placed between the probe and 

the skin. The same procedures were used here to capture and record the images using 

the ultrasound system with similar depth into the computer system. Additionally, the 

EMG in the antagonist’s muscles was recorded and used to calculate the co-

contraction torque. 

 

A pair of self-adhesive Ag-AgCl electrodes ~15mm in diameter (type N10A, 

Medicotest, Rugmarken, Denmark), were placed in a bipolar configuration with a 

constant between-electrodes distance of ~20mm, at the proximal one-third of the 

length and in the mid-sagittal plane of the biceps femoris. The skin was prepared by 

shaving, abrading (Nuprep, SLE Ltd) and cleaned with an alcohol-based solution 

before placing the electrode in order to minimise the resistance. The reference 

electrode (Type Q-IOA) was placed on the lateral tibial condyle of the test limb. The 

EMG signal was sampled at 2000Hz, and pre-amplified (x2000) and band-pass 

filtered between 500Hz and 10Hz. (see Figure 3.13).  

 

 

 

 

 

 

 

 

 

 

 

(Hamstring) 
Biceps femoris	
  

Tibialis anterior	
  

Figure 3.13: Example electrode placement for EMG recordings from Biceps Femoris 

(Hamstring) and tibialis anterior. The illustration (right) shows where Biceps Femoris 

is located. 
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All EMG and torque signals were displayed in real time in TestPoint software 

(Capital Equipment Corporation, Massachusetts, USA) via a PC. A series of four 

maximal flexion contractions were carried out to obtain the EMG value at maximal 

flexion torque. The root mean square EMG activity corresponding to the peak torque 

period was averaged for 1s period during the plateau of peak torque using 

AcqKnowledge® software version 3.72 (http://www.biopac.com). 

 

The ultrasound output was synchronised using a DS7AH electrical stimulator 

(http://www.digitimer.com) with the torque and EMG records to allow temporal 

alignment (see Figure 3.14). Still images were then captured from the video output 

using Quintic Player version 3.09 (http://www.quintic.com). The trigger indicates the 

starting point of voluntary contraction intervals determined from the torque output 

trace using the AcqKnowledge® software (http://www.biopac.com). All excursion 

records were then determined at ten percent intervals of maximal voluntary force up 

to the maximum, and the torque output was subsequently converted to tendon force.  

 

Figure 3.14: Example output from an electronic signal generator to allow temporal 

alignment between the (A) torque and EMG trace, and (B) the ultrasound image. 

	
  
 

Trigger pulse from the electronic 
signal generator. 

A B 
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The speckle tracking software reads the stored data and two regions of interest 

(2-ROI) nodes were then selected on the tendon regions P2 and the echo-absorbent 

marker P1. Figure 3.15a shows the example of 2-ROI nodes selected for patella 

tendon and medial gastrocnemius (see Figure 3.15b). As for manual measurement, the 

ultrasound image was calibrated using the ultrasound's depth measure as a calibration 

scale, which converts the displacement measurement from pixels to millimetres, and 

manual measurement was done using ImageJ (http://imagej.nih.gov/ij/) for each 

image to measure the elongation of the tendon. 

 

 

 

 

 

 

 

 

 

 

 

Both ROIs (P1 and P2) moved along the elongation of the tendon. The 

distance is measured between the echo absorbent marker and the regional area of the 

tendon.  By using the Euclidean distance measure, the current distance between P1 

and P2 can be calculated as follows: 

 

            (3.4) 

where  is the current position of ROI node of the echo absorbent marker, 

 is the current position of ROI node of the regional area of the tendon, and 

d1(P1,P2) = (P2x − P1x )
2 + (P2y − P1y )

2

(P1x ,P1y )

(P2x ,P2y )

A	
  
P1	
  P2	
  

B	
   P1	
  
P2	
  

Figure 3.15: Example of 2-ROI nodes on both A: patella tendon, where ROI node, 

P1 was placed on the echo-absorbent marker and P2 on the regional tendon just distal 

to the patella, and B: medial gastrocnemius, where ROI node, P2 was placed on the 

regional tendon at the myotendinous junction.  
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is the Euclidean distance between P2 and P1 indicating the latest distance 

measurement of the ROIs. Also, the initial distance between the two ROIs can be 

measured as follows: 

 

          (3.5) 

 

where,  is the initial position of ROI node on the echo absorbent marker,

 is the initial position of ROI node of the regional tendon and is 

the Euclidean distance between I1 and I2 indicating the initial distance between the 

ROIs. The relative displacement is measured as follows: 

 

                (3.6) 

 

where the difference of current distance of P1 and P2 (d1) was subtracted from the 

initial distances of I1 and I2 (d2) to give relative displacement.  

 

The measurements are illustrated in Figure 3.16a for the patella tendon where 

the relative displacement includes the movement of the echo absorbent marker, 

indicating slight movement of the ultrasound probe. Since both ROIs were moving 

simultaneously, this did not affect the measurement and the arrows showed the 

movement of the ROIs at 50% and maximum voluntary contraction. For the medial 

gastrocnemius, the displacements for both ROIs were shown in Figure 3.16b. The 

placement of the ROI nodes was the same as the patella tendon experiment (i.e. from 

echo absorbent marker to regional tendon area), and the arrows show the movement 

of each ROI node. The relative displacement was measured by subtracting the last 

position of the ROIs (d1) with the initial distance of the ROIs (d2).  The 2-ROI 

tracking is useful for measuring the localised tendon region to give its stiffness and 

strain efficiently, and in the next study, the same method of measuring two ROIs 

should be used to measure the strain and stiffness at different layers of the tendon. 

d1(P1,P2)

d2(I1, I2) = (I2x − I1x )
2 + (I2y − I1y )

2

(I1x , I1y )

(I2x , I2y ) d2(I1, I2)

Disp = d1− d2
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Figure 3.16: Example of 2-ROI nodes on both A: patella tendon and B: medial 

gastrocnemius, where ROI node, P1 was placed on the echo-absorbent marker and P2 

on the regional tendon area just distal to the patella, at 50%, and 100% MVC, both 

ROI nodes of P1 and P2 moved along the tendon elongation. I1 and I2 showed the 

initial position of the ROIs. The arrows indicated the path of the ROIs has taken. At 

100% MVC, the distance of P1 and P2 were measured (d1), and the initial distance of 

the ROI nodes (I1, I2) were measured (d2). The difference between d1 and d2 gave 

the relative displacement.   
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Figure 3.18: Example of 2-ROI nodes on both A: patella tendon and B: medial gastrocnemius, where ROI node, P1 was placed on the echo-absorbent 

marker and P2 on the regional tendon area just distal to the patella, at 50% and 100% MVC, both ROI nodes of P1 and P2 moved along the tendon 

elongation. I1 and I2 showed the initial position of the ROIs. The arrows showed the path of the ROIs have taken. At 100% MVC, the distance of P1 and 

P2 were measured (d1) and the initial distance of the ROI nodes (I1, I2) were measured (d2). The difference between d1 and d2 gave the relative 

displacement.   
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3.5   Study 3: In-Vivo Experiment Using Multiple Layers Tracking 
  

 This study examined local tendon strain across the anterior, middle, posterior 

at the proximal and the distal aspect of the patella tendon during ramped isometric 

contractions. The chosen automatic tracking algorithm (i.e. NCC) was used to track 

multiple regions of interests (ROI) simultaneously arranged in layers with the same 

block sizes and positions at each tendon layers. Unlike previous experiments, this 

study compares the results of each layer and the proximal and distal aspect of the 

patella tendon to initiate a much more detailed understanding of the tendon in injury, 

repair and also in response to various training interventions. 

 

3.5.1   Participants 
 

Sixteen healthy limbs were used for data collection in this study from healthy 

male subjects with an average age of 28.0±6.3 years; height of 1.7±0.04m and body 

mass 79±5.4 kg.  

 

 

3.5.2   Tracking Regions 
 

The whole length of the patella tendon was imaged (see Figure 3.17) and the 

thickness of the tendon was measured at 8–9mm (a). The regions being examined 

were at the proximal (b) and distal ends (c). The regional layers for each tendon end 

are divided into anterior, mid and posterior (d-f). The peninsula bone is located at the 

proximal ends (g) and tibia at the distal ends (h). The line at the top of the image is 

the skin layer (i). 

 

 

 

 

 
Figure 3.17: Example of patella tendon and regions being investigated. 
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3.5.3   Hardware and Software Setup 
 

Unlike the previous study, an upgraded ultrasound system was used for this 

experiment (MyLab70, http://www.esaote.com/) with a 7.5 MHz 100mm linear array, 

B-mode ultrasound probe with a depth range of 67mm was used to image the patella 

tendon in the sagittal plane. The wider ultrasound probe was capable of capturing 

more width of the tendon compared to the earlier ultrasound probe (see Figure 3.18. 

The same setup as before was used for assessing the patella region. The images were 

then captured at 25 frames per second (fps) in DV format, with image size of 800x600 

pixels, and stored locally into the storage memory. The captured frames were then 

transferred to the computer system for the tracking process. Again, as in the earlier 

experiments, scaling in pixels per mm was determined from ImageJ software by using 

the known depth of field in the ultrasound images, (1 mm = 11 pixels in the x and y 

directions) and utilised as a calibration factor in the automated tracking system to 

ensure equivalent pixel to mm ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Comparisons between a) 40mm probe transducer and b) 100 mm probe 

transducer. Image produced by the latter probe has a higher depth and broader 

viewing range. 
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The transducer probe was fixed statically at the skin surface, similarly to the 

previous study. Also, the torque output during isometric quadriceps contraction was 

determined using an isokinetic dynamometer with the participant in a seated position. 

The same knee setup was set at 90° flexion and hip at 85°, and a lever attachment cuff 

was also placed on the lower leg at ~3cm just above the medial malleolus. The tendon 

was imaged during ramped voluntary isometric contractions (3-4 seconds). The 

maximal isometric quadriceps contraction efforts were repeated three times to ensure 

tendon preconditioning prior to the test. Participants performed ramped isometric 

contractions from 0% MVC (rest) to the maximum (100% MVC) over a 3s to 4s 

period. Three trials were repeated with 180s rest between contractions. The mean 

values of strain for the three contractions were used for subsequent analysis.   

 

The EMG of the long head of the biceps femoris (BF) muscle was evaluated in 

order to determine the level of antagonistic muscle co-contraction during the 

isometric knee extension (S. Pearson et al., 2006). The assumptions were that BF was 

representative of its constituent muscle group (Carolan et al., 1992) and that the 

biceps femoris EMG relationship with knee flexor torque was linear (Lippold, 1952). 

Three maximal isometric knee flexion contractions were carried out obtaining the 

EMG at maximal flexion torque. The root mean square EMG activity of the biceps 

femoris during knee extension was divided by the maximal flexor EMG.  Then the 

maximal flexion torque was multiplied by this value to determine co-contraction 

torque. The patella tendon force was finally determined by dividing the total torque 

by the patella lever arm as determined from the literature (Krevolin et al., 2004, 

Tsaopoulos et al., 2006).  

 

Figure 3.19 shows the regional tracking of ROIs where R1 and R2 are the 

arbitrary pixel regions in the tendon arranged into layers; anterior (a), mid (b) and 

posterior (c). The ROIs are marked on a typical tendon excursion on both proximal 

(A), and distal (B) ends showing shift in ROI's from the resting tendon, at 50% and 

100% MVC. The vertical dotted lines show the initial positions of the ROIs. The 

arrows show the movement of each ROI during the tracking experiment. 
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Figure 3.19: Regional tracking of the patella tendon. 

The resultant displacement for each layer is measured as follows:  

  

 

Δd = (xR2 − xR1)
2 + (yR2 − yR1)

2( )
fn
− (xR2 − xR1)

2 + (yR2 − yR1)
2( )

f1
         (3.7) 

 

where  is the change of length, (xR1, yR1)  is the position of first ROI, (xR2, yR2 )  is 

the position of second ROI, is the initial frame and is the subsequent frame. The 

strain is measured as follows:  

 

 ε = Δd
Δi

                 (3.8) 

 

where  is the strain measurement, is the change of length,  is the initial 

distance between R1 and R2. All the initial proximal and distal regions were aligned 

vertically to enable quantification of any differences in regional strain within a 

localised site of the tendon. 

 

  

 

 

Δd

f1 fn

ε Δd Δi

a	
  
	
  b	
  
	
  c	
  
	
  



	
   81	
  

3.6   Speckle Tracking Software Design and Implementation 

 

 As described in Section 3.1 (see Figure 3.1), the speckle tracking software 

provided a framework to support the studies described in the previous Sections. In 

general, it loaded the captured ultrasound image sequence (Input). Then, it performed 

the speckle tracking operation frame-by-frame of the image sequence, using a 

selected tracking algorithm and user-defined parameters appropriate for a particular 

study (Processing). A new tracking algorithm (NCCMSE) is introduced by combining 

both the NCC and MSE algorithms with Signal-to-Noise Ratio (SNR) as the selector, 

and tested its effectiveness against the selected tracking algorithms. Further 

discussion of the algorithm is described in Section 3.6.3.4. Finally, it displayed the 

results of the tracking operation after each frame and the measurements at the end 

(output).  

 

 

3.6.1   Software Design and Implementation Overview 
 

The speckle tracking software was developed in Matlab version 8.1 R2013a 

for Apple Macs with the Image Processing Toolbox installed 

(http://www.mathworks.com/). In order to run the Matlab editor, version 6 (at least) 

of Java runtime is required. The Image Processing toolbox provides access to built-in 

functions such as importing and exporting images, displaying and exploring images 

and many more. 

 

The user interface (GUI) of the tracking software was developed using the tool 

of GUI development environment (GUIDE). The component properties and 

behaviours were added using the Matlab scripting programming code giving GUI 

advanced functionality. All algorithms that were used and developed for the studies 

were programmed from scratch to give a better understanding of how each tracking 

algorithm worked and for more control over the algorithm. The design of the software 

was relatively straightforward as it allows the user to choose and inspect an 

ultrasound video, and manually mark the tracking region (ROI) by using the mouse 

pointer over the displayed tendon image. Also, the configuration settings can be 
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configured through the graphical user interface, before executing the selected tracking 

algorithm frame-by-frame on a chosen ultrasound video, and displaying the results 

after each frame. 

 

Since the fibrous tendon was displayed as random speckles, which sometimes 

appears as a black patch causing the tracking algorithm to fail, some extra logic was 

required to handle this situation. This involved adding two markers to regions that are 

clearly visible such as the bone structure, or the skin layer. If the position of the 

matched value moved erratically, or out of the search window, the position was then 

compared to the movement of the visible landmark (e.g. tendon junction). In the 

worst-case scenario if no matched value existed within the threshold range, the 

position from the previous frame was then used as the updated position, thus, 

indicating that there was no movement between the images. If the software finds no 

movement within five successive frames, the tracking process stops. The software 

was designed in modular format or functions as where each function performs 

individual tasks and communicates with the other functions as shown in Figure 3.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20: The module structure for the speckle tracking software. 
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The main function sits on top of the module life cycle, where all data related 

to the image being read and the configuration settings required for the tracking 

operation were gathered (i.e. images, settings, algorithm selections and variables). 

Then, from the main function these accumulated data were shared across the four 

modules containing the tracking algorithms that were to be investigated: NCC, MSE, 

NCCMSE and LK. At the end of each frame, the position of the ROIs were updated, 

and the displacements of the tracked regions recorded to the temporary computer 

memory so that the animation of the movement can be created and stored as a video. 

The positions of the ROIs and the frame-by-frame displacements are saved into a 

document, such as a spreadsheet giving the frame-by-frame displacements. These data 

are suitable to be used by other analysis software such as SPSS. A graphical user 

interface that was developed to control the operation of the speckle tracking software 

is presented in the next Section, and this is followed by implementation details for the 

four tracking algorithms. 

 

 

3.6.2   The Graphical User Interface (GUI) 
 

Figure 3.21 shows the main window of the graphical user interface (GUI) for 

the speckle tracking software. At the top of the main screen, is a menu bar containing 

the main options:  the File (A), Tools (B) and Report (C). The File options include 

opening a video file, saving and recovering the configuration settings and exiting the 

software, while the Tools options allows the user to set the calibration scale 

(ultrasound depth) and to enable the ROI selection on the screen, and the Report 

options let the user specify whether to save the results to video format or save the 

displacement results frame-by-frame into a spreadsheet, which could be used by other 

analysis software such as SPSS. The main part of the tracking system is the viewing 

panel (D), which occupies most of the main screen. The viewing panel displays the 

video ultrasound image and can be controlled frame-by-frame using the slider (E) or 

by using the buttons (F).  
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Figure 3.21: The graphical user interface (GUI) for the main window of the tracking 

software. 

 

Ensuring the image data only displays the useful information for tracking is 

critical. The image is obtained manually by placing the ultrasound transducer probe 

over the skin surface. A slight change while handling the probe leads to inconsistent 

movements of the captured image during the experiment and may result in erroneous 

speckle scattered around the image rendering the frame useless for tracking. Based on 

this uncertainty, the software includes the ability to select the portion of the image 

frame with good tendon movement by using the frame slider (E) and set the starting 

keyframe using the provided button (G) to a feasible duration and set it as end 

keyframe (H). The trim button (I) trims the selected keyframes to the desired 

duration, giving only useful frames to be analysed.   

 

The calibration of the measurement is set by the use of calibration tool from 

the Tool option (B). This enables the user to measure by moving the mouse cursor 

along the depth scale at the right side of the image (J). The calibration counts the 

number of pixels. A small window (see Figure 3.22) will appear prompting the user to 

key in the known distance which is the depth used for scanning and was set from the 
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ultrasound machine. The depth information is shown at the top left of the main image 

(K). The pixel count is shown as pixel distance and will be used to calibrate the 

measure to pixels per mm.  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.22: The graphical user interface (GUI) for the scale unit. 

 

Selecting the setting button (L) displays the settings screen as shown in Figure 

3.23, which allows the user to select and configure the tracking algorithm to be used 

in the tracking process. At the top of the setting screen, is the Tracking Algorithm 

drop-down (a) allows the user to select one of the four tracking algorithms being 

investigated in the present experiment (MSE, NCC, NCCMSE, Lucas-Kanade). The 

ROI size selection dropdown (b) controls the block size (in pixels), options available 

are 5x5, 11x11, 15x15, 21x21 and 25x25 (These options were primarily for the pilot 

study where the optimal block size was investigated). The Search Window (c) enables 

the user to set the size of the search window for the tracking process.  

 

The Layers option (d) sets the number of layers for the ROI where the 1 Layer 

consists of only a single ROI; the 2 Layers consist of two 2-ROI end points while 

multi layers consists of multiple layers (maximum up to six layers) where each layer 

can be marked with 2-ROIs. However, in the case of tracking multiple region of the 

tendon only three layers were needed and this can be done by placing 2-ROIs at each 

distal ends (proximal and distal) for each layer. Information regarding the images 
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such as the file location, the sizes, and the calibration parameters were also displayed 

on the screen as shown (e). The Scale Setting showed the present scale parameters (f) 

used by the software; the user can store these parameters as global if the same scales 

are to be used for another tracking process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: The settings (GUI) of the tracking software. 

 

A threshold slider was set to eliminate poor matches (M) (see figure 3.21) in 

the movement between frames. The threshold setting was set to the default value of 

0.9, although a higher threshold could be selected for greater accuracy. A lower 

threshold will result in a slower tracking process, while the highest threshold often 

leads to no movement being found since the image data are speckles. The value of 0.9 

was found to be a good compromise. The good value of the threshold was obtained 

from the results covered in section 5.2 of chapter 5. Finally, the Start button (N) starts 

the tracking process, and Reset button (O) resets screen for new tracking operation.  
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3.6.3   The Speckle Tracking Algorithms 
 

This section describes the implementation of the four speckle tracking 

algorithms (MSE, NCC, NCCMSE, LK) that were described in the previous Chapter.  

 

 

3.6.3.1   MSE 

 

This tracking algorithm as a block-matching algorithm uses the Mean Square 

Error (MSE) to give a measure of the difference between the blocks in the initial and 

target frames. The flow diagram for the implementation of this algorithm is shown in 

Figure 3.23. The algorithm starts with the image A assigned as a reference image from 

the initial frame K and image B assigned as the target image from frame (K+1). The 

initial block (I) was then extracted from image A with the pixel size of the block set to 

width x height (m x n). Using the BMA search method the search window was then 

set to (M x N) two times larger than the size of the initial block, similar to the 

description in Section 2.4.2 (Chapter 2). The search area starts from position 

(x=1,y=1) and the motion vector starts from (u=0,v=0).  

 

The target block (T) of width x height (m x n) size was extracted from Image B 

pixel by pixel within the search window while x < M and y < N with (x,y) and (u,v) 

values increased by 1 pixel. Next, the estimator (error) was calculated using MSE 

where the differences of the pixels in the initial block (I) and target block (T) were 

squared and averaged with the size of the template (M x N) and stored into memory 

vector. When the search window reached (x  = M, y = N), the lowest (minimum) error 

results from the memory vector were selected and compared with the Threshold, and 

if the error was less than the Threshold (error <= Threshold), the algorithm then 

checks for the final location of frame K.  

 

If frame K was not at the final location, the algorithm updates the target block 

(T) to be the initial block (I). The next frame (K+1) was also updated to be a new 

target frame where the new target block (T) was extracted. The algorithm then checks 

for the position of the centre point p of previous initial block I[(x,y);K;p] and 
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compared the difference with the current initial block I[(x,y);K+1;p] to validate the 

correct position of the tracking point.  

 

If a displacement of more than 15 pixels was observed, the next minimum 

error value from the memory vector was selected with its corresponding Target block 

T(x,y) and assigned as the new initial block (Irregular Movement – see Section 

3.6.4.2), or otherwise the algorithm proceeds with the same search process iterated 

and stopped when frame K reach to the final frame. If none of the estimator (error) 

results met the Threshold, the algorithm skips the current target frame (T) to the next 

frame (K+count) as a new target frame. The same search procedure was repeated up 

to five frames until the estimator (error) met the Threshold condition, however, if 

none of the results from the five frames reached the Threshold condition, the 

algorithm stops the search process (Stationary Movement – see Section 3.6.4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   89	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Schematic diagram of MSE. 
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3.6.3.2   NCC 

  

This tracking algorithm as a block-matching algorithm uses the Normalised 

Cross Correlation (NCC) to give a measure of the average similarity between the 

blocks in the initial and target frames. The flow diagram for the implementation of 

this algorithm is shown in Figure 3.25. The algorithm starts with two images A and B 

that were used as the data input. The Image A was then designated as the reference 

image from the initial frame (K), and image B was assigned as the target image from 

frame (K+1). Next, the initial block (I) was extracted from image A and using the 

BMA search method, the target block (T) was then extracted from image B. The size 

of both initial and target were set to width x height pixels (m x n). Meanwhile, the 

search window was set to (M x N) two times larger than the size of the initial block, 

similar to the description in Section 2.4.2 (Chapter 2) and then, the search area starts 

from the position (x=1,y=1) with motion vector starting at (u=0,v=0). 

 

The search stops when (x,y) reaches the maximum size of the search window 

(M x N) twice the size of the target block. Next, the target block (T) was extracted 

from Image B pixel by pixel within the search window while x < M and y < N with 

(x,y) and (u,v) values were increased by 1 pixel. Both zero mean image of (I) and 

shifted zero mean templates of (T) were then calculated by subtracting their mean 

features I  and T respectively. The numerator is then calculated to give mean function 

d1, and the denominator was calculated to give the standard deviation d2. Next, the 

correlation coefficient (corr) was calculated by dividing the mean function d1 by its 

standard deviation d2 and (M x N) and stored into memory vector. When the search 

reaches (x  = M, y = N), the maximum correlation results were selected from the 

memory vector and compared with the Threshold.  

 

 

 

 

 

 



	
   91	
  

If the error was within the Threshold (error >= Threshold), the algorithm then 

checks for the final position of frame K. If frame K was not at the final location, the 

algorithm updates the target block (T) as the initial block (I). Then, the algorithm 

checks for the position of the centre point p of previous initial block I[(x,y);K;p] and 

compares the difference with the current initial block I[(x,y);K+1;p] to validate the 

correct position of the tracking point. If more than 15 pixels difference were observed, 

the next minimum error value from the memory vector was selected with its 

corresponding target block T(x,y). Then it is assigned as the new initial block 

(Irregular Movement – see Section 3.6.4.2); otherwise the next frame (K+1) was 

updated to be a new target frame where the new target block (T) was extracted.  

 

 

The same search process was iterated and stopped when frame K reached the 

final frame.  If none of the correlation (corr) results met the Threshold, the algorithm 

skips the current target frame (T) to the next frame (K+count) as a new target frame. 

The same search procedure was repeated up to 5 frames until the correlation (corr) 

value met the Threshold condition (Stationary Movement – see Section 3.6.4.1), 

however, if none of the results from the 5 frames met the Threshold condition, the 

algorithm stops the search process. 
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Figure 3.25: Schematic diagram of NCC.  
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3.6.3.3   LK 

 
This tracking algorithm is an optical-flow algorithm that uses the Lucas-

Kanade method to find the motion estimation between the image and the template. 

The flow diagram for the implementation of this algorithm is shown in Figure 3.27. 

The process starts with the input image A that was warped with a set of parameterized 

warps at sub-pixel locations I(W([x,y];p)) where p is the vector parameter. Next, the 

gradient value of image A was calculated giving the variable . Image B was then 

read from the frame K+n. Then, the template block T(x,y) of size width x height 

pixels (M x N) was extracted from image B. The algorithm then proceeds with 

subtracting the warped image A from the template block T(x,y), giving the error value 

that indicated the best match found in Image A. In the next process, the steepest 

descent image  was calculated by multiplying the gradient image A ( ) with 

the Jacobian of the warp .  

 

Next, the motion vector  was estimated by performing the Gauss-Newton 

approximation over the steepest descent image. In the next process, the algorithm 

compares  with the Threshold. If  <= Threshold was found, the algorithm 

proceeds by checking that Frame K was not positioned at the end of the frames, 

otherwise the search process stops. Then, the algorithm checks for the position of the 

vector point p with p+  to validate the correct position of the tracking point. If 

more than 15 pixels difference were observed, the algorithm retains the current vector 

p (Stationary Movement – see Section 3.6.4.2) and proceeds with the next frame 

K+1+n, otherwise the program updates the motion vector  and the 

increases frame K by 1. The processes iterated until the pre-specified stopping 

criterion is met. If did not meet the Threshold condition, the algorithm will retain 

the current motion vector p. The algorithm then proceeded with the next frame 

K+count and iterated for five times until the Threshold condition was met; otherwise, 

the algorithm will stop the search process when count was more than five iterations 

(Stationary Movement – see Section 3.6.4.1).  
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Figure 3.26: Schematic diagram of LK. 
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3.6.3.4   NCCMSE  
 

Both NCC and MSE were claimed to be robust and suitable for tracking the 

ultrasound image constructed from speckle noise (Hibon et al., 1995, Twomey et al., 

1996, Revell et al., 2004, Hii et al., 2006, Pearson et al., 2012). Since both algorithms 

used similar search method of block matching algorithm (BMA), the idea of 

combining the two algorithms to improve the tracking results can be carried out. 

Previous works have been attempted at using the Signal-to-Noise Ratio (SNR) as 

algorithm selector (Cohen et al., 2002, Revell et al., 2008). For this study, both 

algorithms were alternated based on the Signal-to-Noise Ratio (SNR) to examine if by 

combining these two algorithms the tracking improved. The SNR was measured using 

the coefficient of variation, which is commonly used in image processing. The mean 

value of initial block I is divided to the standard deviation of template block T and is 

notated as:  

 

SNR = µ(I )
σ (T )

     (3.9)              

 

where  is the mean pixels of I and is the standard deviation of T over a given 

neighbourhood assuming that the pixels in T represent the noise in I.  

 

 When the standard deviation is equal to the mean of pixel, so its coefficient of 

variation is equal to 1. Therefore, when distribution of coefficient of variation is 

considered low variance (< 1) then MSE is selected. This is because when only fewer 

pixel formations exist, then more black patches formed around the speckle areas 

which tracks better using the MSE algorithm. However, if the distribution of 

coefficient of variation is considered high variance (≥1) then NCC is selected, due to 

its sensitivity towards the formation speckle patterns. The SNR value will be the 

decision factor of using MSE or NCC to improve the tracking method:   

    SNR
<1= MSE
≥1= NCC

⎧
⎨
⎩

                       (3.10) 

where the SNR implemented in the tracking system gave a range value of 0 to +inf.  

 

µ σ
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Any SNR value less than 1 means that the image has low intensity, possibility fewer 

speckles were found but with darker patches around the searching area, then the 

tracking will proceed using the MSE algorithm. If the SNR value was equal to or 

greater than 1 showing that a high intensity with heavily speckled area was found then 

the tracking will proceed using the NCC algorithm.  

  

 The flow diagram for the implementation of this algorithm is shown in Figure 

3.27. The process begins by reading both initial and target images (A and B 

respectively). Then, the initial block (I) was extracted from image A and using the 

BMA search method, the target block (T) was then extracted from image B and the 

size of both initial and target were set to width x height pixels (m x n). The search 

window was then set to width x height (M x N) two times larger than the size of the 

initial block and the search area starts from the position (x=1,y=1) with motion vector 

starts at (u=0,v=0). Both search method and initial estimation vector were then set to 

(x=1,y=1) and (k=0,l=0) respectively. Next, the target block (T) was extracted from 

Image B pixel by pixel within the search window while x < M and y < N with (x,y) 

and (u,v) values increased by 1 pixel. 

 

The algorithm proceeds with calculation of Signal-to-Noise Ratio (SNR) as 

the decision selector to choose either MSE or NCC. If SNR value was >= 1, then 

NCC will be chosen as its similarity measure; otherwise MSE will be chosen. The 

MSE similarity measurement description was described in Section 3.6.3.1 and NCC 

in Section 3.6.3.2. If the frame (K) was not at the final position, the target block (T) 

will be assigned as the new initial block (I) and next frame (K + 1) will be assigned as 

the new target frame. Finally, the algorithm will repeat the same procedure until the 

frame (K) reaches the final frame and stops.  
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Figure 3.27: Schematic diagram of NCCMSE. 
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3.6.4   Individual Error Analysis 
 

One of the biggest problems found with all speckle tracking algorithms were 

the errors that arise due to the inconsistency of speckle patterns that comes and go 

between frames. Eventually, all algorithms fail to track the correct ROI along 

successive frames when more errors occur. Two types of error were identified: 

 

• Stationary movement error 

• Irregular movement error 

 

The causes or these and the solutions adopted are discussed in the following sections. 

 

 

3.6.4.1   Stationary Movement Error  
  

The error happened when tracking showed no movement and the algorithm 

fails to find any match that met the threshold condition between the two frames. To 

solve this problem, the tracking algorithm proceeded with analysing the images from 

the next frame and marked if no movement was found and the previously successful 

matched image was used as the image reference. This procedure was repeated for the 

next five frames, and if no movement was found after five-frame duration, the 

software algorithm would terminate. If more errors were found during the tracking 

process the tracking would appear to be no movement at all as no possible matches 

were found throughout the whole image sequences. The study conducted was to 

understand better how the algorithm deals with unmatched criteria. The study also 

helped in identifying the optimum algorithm to be used in the later stage of the 

analysis and integrated into the tracking software system as the primary tracking 

algorithm. Understanding the frequency of the errors also contributed to the 

enhancement of the algorithm so that any errors in movement can be repaired by the 

use of previous best match as recovery mechanism during the tracking process.  
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3.6.4.2   Irregular Movement Error  
 

An error happened when the algorithm fails to match between the two blocks 

correctly causing the tracking to track a different region throughout the whole 

tracking process. The movement of the tracked ROI can be seen as if it is jumping 

around erratically and sometimes the movement appeared to move further than it 

should move or move in the direction opposite the tracking path. The movement was 

considered to be an error when the tracked ROI jumped 15 pixels more than the 

previous tracked movement. This anomaly triggered the software algorithm to 

recheck the path of the tracking system and reanalysed the tracking process by 

selecting the next lowest (MSE) or highest (NCC) estimation values, and the 

procedure proceeds until the best location was found.  

 

For counting the errors, every movement that exceeded 15 pixels from the 

previous tracking path was counted and averaged to get the mean value so that mean 

differences can be identified between algorithms and plotted to illustrate the 

difference. Pairwise comparisons were also used to the p value between the 

algorithms to differentiate further the interactions between the data collected for each 

algorithm.  As the previous analysis, the errors found from this section did not 

represent the total errors for the algorithm in failing to track the tendon regions of 

highly speckled ultrasound images. The analysis conducted here contributes another 

half of the two principal errors identified, which influences the ability of the tracking 

algorithm to follow the movement.  

 

Similar to the previous analysis, the idea of analysing the errors was to 

understand better how the algorithm deals with unmatched criteria. The analysis also 

helped in identifying the optimum algorithm to be used in the later stage of the 

analysis and integrated into the tracking software system as the primary tracking 

algorithm. Understanding the frequency of the errors also contributed to the 

enhancement of the algorithm so that any errors in movement can be recovered by the 

use of last best match as a recovery mechanism during the tracking process.  
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3.7   Summary 
 

In summary, this chapter is a descriptive chapter where the methodology of 

data collection and analysis of the tracking algorithms are presented. The evaluation 

of the four algorithms and planned experiments for each study are described in the 

next chapter. The design and implementation of the speckle tracking software that 

was required to support these studies area was also described including the 

description of the graphical user interface (GUI) and the three tracking algorithms 

(NCC, MSE, LK) that were identified in the previous chapter. A new method is 

introduced, which is the combination of the algorithms NCC and MSE and therefore 

named as NCCMSE algorithm. With the use of SNR as the decision selector, these 

two algorithms are alternated to improve the tracking based on the value of the SNR. 

The performance of the four selected tracking algorithms will be described in the 

following Chapter.  

 

The tracking accuracy as well as the computational cost of each algorithm was 

compared to the standard manual measurement. Finally, the reliability of the tracking 

algorithms are also discussed where two kinds of errors are being described as 

stationary movement errors and irregular movement errors. These reliability factors 

are evaluated in the next following chapter. 
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Chapter 4 

Study 1: Evaluation of The Four 

Tracking Algorithms 
 

Overview 
 

In this chapter, the results of the pilot study are presented. The main purpose of the 

study was to evaluate the four selected tracking algorithms against the standard 

manual measurement. Error analysis was also evaluated for each algorithm. The 

outcome of this study was to identify and select the best performing tracking 

algorithm for use in the two remaining studies. 

 

 

 

4.1   Evaluation of The Tracking Algorithms 
 

The main purpose of the evaluation was to evaluate the performance of the four 

selected tracking algorithms in terms of the accuracy as compared to the standard 

manual measurement and their tracking reliability. The algorithms were evaluated in a 

series of experiments that took both passive and active movements on the patella 

tendon and the medial gastrocnemius tendon. The experimental setup and procedures 

were described in Chapter 3. The tracking accuracy was quantified in terms of the 

mean error between the position derived from the standard manual measurement, and 

tracking algorithms. The results obtained for passive movements are given in Section 

4.2 and for active movement in Section 4.3.  

 

 Reliability was assessed by averaging the number of tracking errors, which 

was observed in the tracking sequence. Two sources of error were identified in the 

previous Chapter, when the tracking algorithm could not find a matching region in the 

next frame (stationary movement). The threshold value was set to  0.90 and was ≥
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chosen based on the analysis conducted in Chapter 5).  When the tracking algorithm 

finds the wrong target block (irregular movement), these errors were evaluated 

independently and, the results obtained for both the stationary and irregular errors 

during passive and active movements are given in Sections 4.4 and 4.5 respectively. 

All the results are discussed in Section 4.6 and the best performing algorithm 

identified. 

.  

 

4.2   Tracking Accuracy During Passive Tendon Movement 
   

 This experiment evaluates the performance of the four tracking algorithms 

when the tendon was relaxed at 0% maximum voluntary contraction (MVC), and the 

probe was moved over the sagittal plane of the patella tendon (knee) along the skin 

surface for a distance of approximately 2-3 cm. The areas of interest for this study 

were the tendentious areas of the patella (knee) and gastrocnemius (ankle). Two 

experiments took place as explained in Chapter 3.  

 

 The errors are calculated from the displacements of the ROI. In the first 

experiment, which involved the patella tendon, the mean displacement of the ROI 

from automatic tracking and manual measurement from ImageJ were shown in table 

4.1.  

 

 

Test 

 

Mean Displacement (mm) 

MSE NCC NCCMSE LK Manual 

Knee Passive 14.50±1.38 15.79±1.57 14.90±1.30 13.48±1.02 15.35±1.22 

Difference (mm) 0.85±1.84 -0.44±1.99 0.46±1.79 1.87±1.59 - 

 

Table 4.1: Mean displacement of 10 samples and difference (in millimetres) of each 

tracking algorithm against the standard manual measurement of passive movement at 

the patella tendon.  
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The manual measurement is based on standard measurement method and each 

algorithm mean value is compared against the value from the manual measurement to 

give the difference between mean as shown in equation 4.1:  

 

                               d =man − algo                                   (4.1) 

 

where d is the difference between two means. The standard error of the difference 

between means is shown in equation 4.2:  

 

                     σman-algo = σman
2 +σ algo

2              (4.2) 

 

where σ is the variance of the sample, n is the sample size, algo is the measurement 

using the algorithm and man is the manual measurement.  

 

The NCC tracking algorithm gave very little difference against manual 

measurement with the difference value of -0.44±1.99mm while NCCMSE gave the 

difference of 0.46±1.79mm. The MSE tracking algorithm and manual measurement 

gave a difference of 0.85±1.84mm while the Lucas-Kanade tracking algorithm gave 

the highest difference of 1.87±1.59mm. However, multiple t-tests revealed no 

significant differences (p>0.05) were found between the algorithms and the manual 

measurement. In this experiment, the NCC and NCCMSE tracking algorithms gave 

the closest values to the manual measurement compared to the MSE and LK.  

 

In the second experiment, the passive movement of the myotendinous junction 

of the gastrocnemius tendon was tracked. The same apparatus and procedures (as 

previous experiments) were used in this study. An addition of EMG was employed to 

calculate co-contraction torque. The mean total displacements are plotted against 

manual measurement as shown in table 4.2.  
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Test 

 

Mean Displacement (mm) 

MSE NCC NCCMSE LK Manual 

Gastrocnemius 

Passive 
18.76±1.56 20.26±0.80 20.68±0.93 22.42±0.94 20.90±1.31 

Difference (mm) 2.14±2.04 0.63±1.54 0.22±1.61 -1.53±1.62 - 

 

Table 4.2: Mean displacement of 10 samples and difference (in millimetres) of each 

tracking algorithm against the standard manual measurement of passive movement at 

the medial gastrocnemius tendon.  

 

Again, the manual measurement is based on standard measurement method 

and all algorithms are compared against the value from manual measurement. The 

same multiple t-tests were used for statistical analysis, and the results showed that the 

NCC and NCCMSE tracking algorithms were significantly different to both Lucas-

Kanade and MSE tracking algorithm (p<0.05). However, none of the algorithms was 

found to be significantly different (p>0.05) to the manual measurement. The 

NCCMSE mean displacement value had the smallest difference of 0.22±1.61mm, 

followed by NCC at 0.63±1.54mm. Both NCC and NCCMSE tracking algorithms 

gave < 1mm difference compared to LK with the value of -1.53±1.62mm and MSE 

tracking algorithm gave the worst difference with the value of 2.14±2.04mm. 

 
The results showed that the LK tracking algorithm struggled to track the 

speckle images, particularly when tracked at the areas of the patella tendon, which 

had no significant identifiable feature such as edges or shapes. The results improved 

when tracked over the media gastrocnemius tendon due to the ‘Y’ shape existing 

between the intersection of muscle and the tendon. However, the MSE tracking 

algorithm proved to be poor in both experiments because it was less sensitive to the 

heavily formed speckle.  Both the NCC and NCCMSE tracking algorithms however, 

gave little differences in terms of tracking at both patella and gastrocnemius tendon, 

but the NCCMSE tracking algorithm was shown to give the better tracking result.  

 

The computational costs (measured in seconds) for both experiments were 

also recorded (see Figure 4.1). The figure showed that among all algorithms, the LK 

tracking algorithm was found to give the highest computational cost with overall 
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performance of 470±30 seconds to complete the tracking process. The NCCMSE 

tracking algorithm performed better than the LK tracking algorithm, but because it 

consisted of an SNR decision selector, it required more computation operations, and 

showed a total mean time of 39±1 seconds. The NCC tracking algorithm was shown 

to have the least mean computation cost of 13±1 seconds while the MSE tracking 

algorithm gave a mean of 27±1 seconds. The passive movement experiments showed 

the NCCMSE tracking algorithm gave the best results but with the cost of 

computational time. The NCC tracking algorithm however, has only <5% different 

than the NCCMSE tracking algorithm with less computational cost. The LK tracking 

algorithms were shown to be unsuitable in this experiment.  

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.1: Total mean computational cost for both experiments (in seconds) between 

the algorithms. 

 

 

4.3   Tracking Accuracy During Active Tendon Movement 
 

The mean displacement of each tracking algorithm of the active movement of 

the patella tendon was measured at every 10% interval of total frames as shown in 

figure 4.2. For example, the individual displacement was measured from 0-10% and 
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followed by 10-20%. At 10%, MSE, NCC, NCCMSE and LK were shown to be not 

significantly different to (p>0.05) manual measurement with MSE gave lowest 

displacement value of 0.24±0.19mm when compared to manual measurement 

(0.37±0.22mm) and LK gave lower value of 0.30±0.15mm. Both NCC and NCCMSE 

gave higher displacement value of 0.45±0.11mm and 0.59±0.21mm respectively.  

 

Again, no significantly differences (p>0.05) were found of each algorithm 

against the manual measurement (1.29±0.22mm) at 20% of the frame with MSE gave 

the highest displacement value (1.61±0.73mm) and followed by NCC 

(1.48±0.39mm).  NCCMSE gave lower displacement value of 0.94±0.26mm and LK 

gave the lowest displacement value (0.70±0.30mm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Mean displacement of 10 samples (in millimetres) of each algorithm 

against the manual measurement at every 10% intervals (from 10% to 100%) of the 

total frames on the active movement of patella tendon. The individual displacement 

was measured from 0-10% and followed by 10-20%. 
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 At 30% of the frame, the algorithm MSE (2.27±0.97mm), NCC 

(2.16±0.42mm), NCCMSE (1.81±0.42mm) and LK (0.98±0.48mm) gave lower 

displacement value when compared to the manual measurement (2.29±0.41mm) but 

only LK was significantly different (p<0.05) to the manual measurement. MSE and 

NCC gave higher values at 40%, each gave the displacement value of 3.73±0.92mm 

and 2.77±0.27mm respectively against the manual measurement (2.66±0.22mm) 

while NCCMSE gave a lower value (2.60±0.38mm) and LK gave the lowest value 

(1.33±0.50mm). Again, only LK was significantly different (p<0.05) to the manual 

measurement. 

 

 MSE was shown to be significantly different (p<0.05) against manual 

measurement at 50% giving the highest displacement value of 5.34±0.85mm and 

manual measurement gave the displacement value of 3.22±0.36mm. NCC, NCCMSE 

and LK showed no significant difference (p>0.05) to the manual measurement, NCC 

gave a lower value (3.05±0.39mm) and NCCMSE gave a higher value 

(3.49±0.45mm) while LK gave the lowest value (1.70±0.49mm). MSE continued to 

give the highest value (5.78±1.00mm) at 60% of the frame and LK continued to give 

the lowest value (2.77±0.51mm) against the manual measurement (3.86±0.54mm). 

NCC gave a lower value (3.36±0.66mm) and NCCMSE gave a higher value 

(4.21±0.56mm). However, only LK was significantly different (p<0.05) to the manual 

measurement. 

 

 At 70% all algorithms showed no significant difference (p>0.05) to the 

manual measurement. MSE continued to perform worst with the highest displacement 

value of  (6.28±1.33mm) against the manual measurement (4.28±0.51mm). NCC and 

LK continued to decrease giving the values of 4.01±0.86mm and 3.58±0.66mm 

respectively while NCCMSE (4.78±0.77mm) continued to increase with the value of 

4.78±0.77mm. NCC performs better at 80% of the frame, giving the displacement 

value of 4.65±1.02mm while the manual measurement gave the value of 

4.69±0.43mm. MSE and NCCMSE continued to increase giving the value of 

6.48±1.29mm and 5.24±0.81mm respectively while LK continued to drop to 

3.99±0.80mm. However, all algorithms showed no significant difference (p>0.05) to 

the manual measurement.  
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 NCC again performed better at 90% of the frame and gave the value of 

5.02±1.30mm while the manual measurement gave the value of 5.02±0.51mm. MSE 

performed worst with the displacement value of 7.05±1.77mm. NCCMSE gave the 

value of 5.72±0.84mm and LK gave the lowest displacement value of 4.50±0.68mm. 

Again, no significant differences (p>0.05) were found from the algorithms against the 

manual measurement. The final frame at 100% showed that NCC performed the best 

(5.65±1.13mm) followed by NCCMSE (5.70±0.71mm) when compared to the manual 

measurement (5.67±0.52mm). MSE continued to perform the worst (7.37±1.72mm) 

and followed by LK (4.74±0.58mm).  

 

 The experiment has shown that MSE was an unsuitable tracking method when 

tracking on its own, but when combined with NCC, it performed better. The NCC 

tracking algorithm was found to perform the best however, slight increases were seen 

at the beginning of the frames but it improved subsequently. The NCC may struggle 

to track the movement of the speckle formation of the tendon due to the shakiness or 

quality of the image data but soon the tracking algorithm manages to track better from 

70% onwards since the image data showed steady movement of the tendon. Finally, 

the LK tracking algorithm was found to be unable to track the speckle pattern of the 

patella tendon and keeps giving a displacement value lower than the manual 

measurement through out the frames.   

 

Both MSE and LK failed to track successfully throughout the intervals. The 

NCC tracking algorithm, however, started higher at 10% and 20% and value was 

close enough to the manual measurement at 30-50%. 60-70% gave lower tracking 

result and improved at 80-100% with results close to the manual measurement. 

Similarly, NCCMSE started high at 10% and dropped at 20-30%. At 40% the value 

was close to the manual measurement and started to increase at 50-90%. At the final 

frame, the tracking value was close to the manual measurement. 

 

Meanwhile, as for the medial gastrocnemius, the mean displacement of each 

tracking algorithm of the active movement the tendon was measured at every 10% 

interval of total frames as shown in figure 4.3. At 10% all algorithms showed no 

significant difference (p>0.05) to the manual measurement, however all algorithms 

showed higher displacement values than the manual measurement (0.37±0.23mm) 
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with MSE, NCC, NCCMSE and LK giving the value of 0.50±0.23mm, 0.61±0.30mm, 

0.61±0.18mm and 0.76±0.27mm respectively. Again, no significant difference 

(p>0.05) was seen between the algorithms and the manual measurement at 20% of the 

total frames. MSE gave the displacement value of 1.35±0.49mm and the manual 

measurement gave the value of 1.31±0.41mm.  NCC gave slightly lower value 

(1.24±0.39mm) and followed by NCCMSE with the lowest value (1.05±0.28mm).  

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

Figure 4.3: Mean displacement of 10 samples (in millimetres) of each algorithm 

against the manual measurement at every 10% intervals (from 10% to 100%) of the 

total frames on the active movement of medial gastrocnemius tendon. The individual 

displacement was measured from 0-10% and followed by 10-20%. 
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different (p>0.05) to the manual measurement while only NCCMSE was shown to be 

significantly different (p<0.05) to the manual measurement. MSE gave a 

displacement value slightly higher (2.44±0.67mm) than the manual measurement 

(2.43±0.47mm). LK gave a lower value of 2.03±0.51mm, followed by NCC with a 
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value of 1.88±0.49mm, and NCCMSE gave the lowest displacement value 

(1.59±0.53mm). At 40% MSE continued to give a higher displacement value 

(4.45±1.02mm) than the manual measurement (3.25±0.36mm), while LK gave a 

slightly lower value (3.16±0.43mm), followed by NCC with a value of 2.46±0.57mm 

and NCCMSE gave the lowest value (2.42±0.41mm). Only NCCMSE was shown to 

be significantly different (p<0.05) to the manual measurement.  

 

At 50% of the frame, MSE continued to give the highest displacement value 

(5.63±1.75mm) while manual measurement gave the displacement value of 

3.53±0.45mm, followed by LK with the displacement value of 4.12±0.34mm. NCC 

performed slightly better with the displacement value of 3.38±0.65mm and NCCMSE 

still remained giving the lowest value (3.05±0.51mm). All algorithms were shown to 

be not significantly different (p>0.05) to the manual measurement. MSE again at 60% 

of the frame, performed the worst with a value of 6.28±1.60mm in comparison to the 

manual measurement (3.86±0.49mm). Followed by LK, which gave the value of 

5.10±0.57mm. NCC increases slightly with value of 4.04±0.92mm while NCCMSE 

gave the closest value to the manual measurement with 3.77±0.42mm. Again, all 

algorithms showed no significant differences (p>0.05) to the manual measurement.  

 

At 70% of the frame, the manual measurement gave the displacement value of 

4.34±0.55mm. The MSE gave the highest displacement value of 7.59±1.54mm, 

followed by LK with the value of 5.76±0.86mm. The NCC however, performed better 

giving the displacement value of 4.38±0.87mm while NCCMSE gave the lowest 

displacement value of 3.99±0.42mm. All algorithms showed no significant 

differences (p>0.05) to the manual measurement. Meanwhile at 80% of the total 

frame, the manual measurement gave the displacement value of 4.50±0.45mm. MSE 

again showed the highest difference with a displacement value of 7.42±1.55mm, 

followed by NCC and LK giving values of 5.10±0.88mm and 5.08±1.51mm 

respectively. NCCMSE again had the lowest value with 3.99±0.42mm. All algorithms 

also showed no significant difference (p>0.05) to the manual measurement.  

 

Moving further towards 90% of the total frame, the manual measurement was 

measured at 5.34±0.59mm. MSE gave the highest displacement value (7.44±1.57mm) 

followed by LK (6.78±0.81mm). NCC performed better with the displacement value 
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of 5.37±0.83mm while NCCMSE gave the lowest value (5.00±0.72mm). At the final 

frame (100% of the total frames), the manual measurement gave the value of 

5.37±0.61mm, and LK gave the highest difference with the displacement value of 

(7.66±0.84mm), followed by MSE (6.39±1.58mm). NCC and NCCMSE gave values 

of 5.52±00.47mm and 5.58±0.69mm respectively. Also, all algorithms showed no 

significant differences (p>0.05) to the manual measurement.  

 

It was evident that both MSE and LK failed to track successfully throughout 

the intervals. The NCC tracking algorithm, however, started higher at 10%, was lower 

at 20-50% and started to track close to the manual measurement from 60% onwards. 

Similarly NCCMSE started high at 10% and was lower at 20-90%. Displacement 

value was close to the manual measurement at 100%.  

 

As for the active tendon movements, the computational costs (measured in 

seconds) for both experiments were also plotted as shown in Figure 4.4. The LK 

tracking algorithm was found to be the most demanding in terms of computational 

cost for both experiments, with an overall performance of 170±30 seconds needed to 

complete the tracking process. The NCCMSE tracking algorithm performed better 

than the LK tracking algorithm, but because the algorithm consists of an SNR 

decision operation, it required more computation time (23±3 seconds) than the MSE 

(15±2 seconds) and NCC (8±1 seconds) tracking algorithms. The active movement 

experiment shows that the NCC tracking algorithm took the least computational time. 

The LK tracking algorithms were shown to be unsuitable in this experiment.  

 

 

 

 

 

 

 

 

 

 

 



 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Total mean of computational cost for both experiments (in seconds) 

between the algorithms. 

 

  

4.4   Tracking Reliability During Passive tendon Movement 

 
The results were the mean number of errors obtained from 10 tests from each 

participant. The mean number of error count for stationary movement at the patella is 

shown in Figure 4.5 where it can be seen that LK tracking algorithm gave the highest 

mean number of error counts (13.00±1.25) and followed by MSE (13.10±1.32). NCC 

and NCCMSE gave 9.40±1.07 and 9.70±0.79 mean number of error counts 

respectively. However, no significant differences were found (p>0.05) between the 

algorithms.  
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Figure 4.5:  Stationary movement errors of passive movement at patella tendon. 

 

In the case of the irregular errors, the results shown in Figure 4.6 indicate that 

the NCC tracking algorithm gave the least mean error count with the mean value of 

0.50±1.43. The MSE algorithm was shown to have the most count of errors with the 

mean value of 4.10±1.43. Meanwhile, the NCCMSE tracking algorithm gave a higher 

mean value of 1.00±0.33 compared to the NCC tracking algorithm, but lower than the 

mean value of the LK tracking algorithm (1.90±0.31).  

 

Pairwise comparisons of the error data indicated that only the NCC and LK 

tracking algorithms were found to be significantly different (p<0.05). The rest of the 

algorithms showed no significant differences (p>0.05). The results showed the MSE 

algorithm to be least suitable compared to the NCC, NCCMSE and LK algorithms. 

The NCC algorithm produced the smallest mean error followed by the NCCMSE 

algorithm. The LK algorithm showed higher error counts compared to NCC and 

NCCMSE algorithms but performed better than MSE algorithm.  
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Figure 4.6:  Irregular movement error of passive movement at patella tendon. 

 

The results showed that the NCC algorithm was found to be the optimum 

algorithm when tracking the regional area of the patella tendon with less stationary 

and irregular errors during tracking. The MSE algorithm, however, was found to be 

the least favourable. The tracking pattern was seen to be non-consistent throughout 

the image sequence since it was found to be susceptible to the tightly formed speckled 

and performs better if the tracking has a well defined structure with darker grayscale 

value.  

 

Figure 4.7 shows the stationary errors for medial gastrocnemius analysis 

indicates that there exists a decrease in the mean number of errors compared to the 

mean number of errors found in the patella tendon analysis. The reason for the 

decrease in mean errors for the medial gastrocnemius tendon tracking analysis was 

because of the nature of the tendon itself. The area being tracked on the patella tendon 

has a wider tendon band than the more defined band in the medial gastrocnemius. 

Even though the movement was uniform throughout the frame and there was no strain 

within the tendon, there were a large number of speckles coming and going, leading 

to the tracking being less reliable. 
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Figure 4.7: Stationary movement error of passive movement at medial gastrocnemius 

tendon. 

  

 Again, the LK tracking algorithm gave the most errors with a mean number of 

errors of 10.00±1.58, while NCC gave the least mean number of errors with the value 

of 6.00±1.12. Second highest is the MSE algorithm while second lowest is the 

NCCMSE with mean error counts of 8.90±1.53 and 6.10±1.13 respectively. T-test 

showed that there were significant differences between LK and NCC (p<0.05), and 

similar significant different was found between LK and NCCMSE (p<0.05). No 

significant difference was found between LK & MSE (p>0.05). However, the MSE 

tracking algorithm showed no significant difference from the NCC tracking algorithm 

(p>0.05) and the NCCMSE tracking algorithm (p>0.05).  

 

Lastly, as expected, NCC and NCCMSE tracking algorithms showed no 

significant difference (p>0.05) to each other. The reason for this may be because the 

SNR used in the tracking favoured the NCC algorithm rather than MSE algorithm. 

Both LK and MSE tracking algorithms however gave higher mean errors. In 

summary, pairwise comparisons indicated that for the patella tendon, none of the 

algorithms gave significantly different result (p>0.05) while as for the medial 

gastrocnemius tracking analysis only the results for the LK tracking algorithm were 

significantly different to the NCC and NCCMSE tracking algorithms (p<0.05). 
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 In the case of the irregular errors, the error numbers found for the medial 

gastrocnemius showed an increase for all algorithms when compared to errors found 

in passive movement of the patella tendon (see Figure 4.8). The analysis showed that 

the MSE tracking algorithm gave a large number of errors with the mean value of 

14.70±1.25 followed by the LK tracking algorithm with a mean value of 2.50±0.17. 

The NCCMSE tracking algorithm gave a slightly lower number than the LK tracking 

algorithm with a mean value of 1.20±0.73 and finally, the NCC tracking algorithm 

gave the least error count with the mean value of 0.50±0.17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Irregular movement error of passive movement at medial gastrocnemius 

tendon. 

 

The pairwise comparisons showed that no significant differences (p>0.05) 

were found between the LK and NCCMSE tracking algorithms, and between the NCC 

and NCCMSE tracking algorithms. All other algorithms were found to be 

significantly different (p<0.05) to each other. The results shown for the analysis 

indicated the MSE tracking algorithm to be the least reliable, while the NCC tracking 

algorithm gave the least mean number of error and has proven to be highly reliable. In 

conclusion, for both passive movement analysis of the patella tendon and medial 

gastrocnemius, all algorithms were found to be less prone to irregular movement error 

compared to the stationary tracking error. In both cases, the most reliable algorithms 
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were the NCC tracking algorithm, giving the best results for both stationary and 

irregular errors.  

 

 

4.5   Tracking Reliability During Active Tendon Movement 
 

The results for the patella show that MSE tracking algorithm had the highest 

count of stationary errors with the mean error count of 13.00±1.89. While NCC 

tracking algorithm had the lowest mean error of 9.40±2.37 (see Figure 4.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Stationary movement error of active movement on patella tendon. 

 

The figure showed that for this experiment, the MSE algorithm was seen to be 

unsuitable along with the LK algorithm. The NCC tracking algorithm gave the lowest 

mean number of errors (9.40±2.37), followed by the NCCMSE (9.50±2.33).  Pairwise 

comparisons of the data observed indicated that there were significant differences 

between MSE and NCC tracking algorithms (p<0.05) algorithms and large 

differences between NCCMSE and LK tracking algorithms (p<0.05). However, there 

was no significant difference (p>0.05) between the MSE and the NCCMSE and LK 

tracking algorithms. 
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No significant difference (p>0.05) was found between the NCC and NCCMSE 

algorithms. The same observation was found between NCC and LK algorithms with 

no significant differences (p>0.05) observed. The comparison of results from the 

mean error values and pairwise comparisons of the tracking data indicated that both 

MSE and LK algorithms were unsuitable for tracking the active movement of the 

patella tendon. The NCC tracking algorithm still showed the best results with the 

lowest error counts followed by the NCCMSE tracking algorithm 

 

The results for irregular movement errors during tracking are shown in Figure 

4.10. The MSE algorithm again showed the highest mean count of 5.70±1.19m, 

followed by the LK algorithm with mean count value of 3.30±1.05. Both NCC and 

NCCMSE algorithms gave small error means count values of 0.60±0.22 and 

0.70±0.21 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Irregular movement error of active movement at patella tendon. 

 

The pairwise comparisons, however, showed that there were significant 

differences (p<0.05) between the MSE and NCC algorithms, and between the MSE 

and NCCMSE algorithms. The rest of the pairings showed no significant differences 

(p>0.05) between each other. The results again showed that the MSE algorithm was 
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unsuitable, and the error counts increased with the active tracking of the patella 

tendon.  This was expected as the algorithm struggled to correctly estimate the actual 

movement of the ROI within the tendon band of the patella. The LK algorithm 

though, showed a lower error count compared to the MSE algorithm, which was seen 

to give a higher error count compared to the NCC and NCCMSE algorithms, 

indicating that tracking a regional area of the patella tendon was a failure.  

 

 NCC and NCCMSE, however, gave smaller error count compared to the MSE 

and LK algorithms, and NCC being the least error to be found, has proven to be the 

most reliable. NCCMSE, however, showed that the error count was not that far 

behind with error difference of 0.10±0.93. The tracking results for the stationary 

movement errors when tracking the medial gastrocnemius tendon are shown in Figure 

4.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Stationary movement error of active movement at medial gastrocnemius 

tendon. 

 

As for the other results, the LK tracking algorithm gave the highest error count 

with mean errors of 7.80±0.99 and was followed by MSE tracking algorithm with a 

mean error of 7.70±0.60. The NCC tracking algorithm still showed the lowest error 

count with the mean error of 4.10±0.82 and followed by NCCMSE tracking algorithm 
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with differences of only 0.10±0.93. The pairwise comparisons for this analysis 

showed that there were significant differences (p<0.05) between MSE and NCC 

tracking algorithms, and between LK and NCCMSE tracking algorithms. However, 

no significant differences (p>0.05) were found between LK and NCC tracking 

algorithm, and similarly for the LK and MSE tracking algorithms. Finally, the results 

between NCC & NCCMSE tracking algorithms showed no significant difference 

(p>0.05). 

 

The results for the irregular movement errors when tracking the medial 

gastrocnemius analysis are shown in Figure 4.12. It can be seen that the MSE tracking 

algorithm showed the mean error count of 6.70±0.60. Lucas-Kanade algorithm 

however, showed a lower error count compared to the MSE tracking algorithm with 

mean error count of 2.90±0.95. The NCC showed lowest error count with mean errors 

of 0.40±0.16 while NCCMSE gave mean error count of 0.60±0.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Irregular movement error of active movement at medial gastrocnemius 

tendon. 

 

The t-test statistical comparisons indicated that LK and MSE algorithms were 

found to be significantly different (p<0.05). Similarly, significant differences 

(p<0.05) can be found between MSE and NCC tracking algorithms, and between 

0"

1"

2"

3"

4"

5"

6"

7"

8"

MSE" NCC" NCCMSE" LK"

Er
ro
r$(
Co

un
t)
$

Algorithm$

6.70	
  ±	
  0.60	
  

0.40	
  ±	
  0.16	
   0.60	
  ±	
  0.16	
  

2.90	
  ±	
  0.95	
  



 121 

MSE and NCCMSE tracking algorithms. However, LK and NCC tracking algorithms 

were found to be not significantly different (p>0.05) to each other and also, no 

significant difference (p>0.05) was found between the LK and NCCMSE tracking 

algorithms. Lastly, NCC and NCCMSE tracking algorithms showed no significant 

difference (p>0.50).  

 

The analysis showed that MSE algorithm gave the greatest error counts for 

both the stationary and the irregular errors and was unsuitable for tracking the active 

movement of the medial gastrocnemius tendon. Again, the reason for the failure of the 

MSE algorithm to track the regional area was because MSE tracking algorithm was 

not sensitive towards densely packed speckle patterns. The LK tracking algorithm 

also gave higher errors than the NCC and NCCMSE tracking algorithms, but smaller 

than the MSE tracking algorithm. The NCCMSE tracking algorithm, on the other 

hand, showed promising results with lower mean error counts compared to the LK 

algorithm and a slight improvement compared to the results found in the patella 

tendon analysis. Finally, the NCC tracking algorithm gave the best results with the 

lowest stationary and irregular errors.  

 

 

4.6   Discussion 

 
The experiments conducted in this section firstly evaluated the performance of 

the four algorithms in terms of tracking accuracy, as compared with the standard 

manual measurement and computational cost. Table 4.3 shows the total mean of all of 

the passive tests (patella and gastrocnemius) of each of the algorithm and the manual 

measurement. The difference of each algorithm against the manual measurement 

shows the level of accuracy of the algorithm, in this case the smallest difference is the 

optimum result. The total mean displacement of passive movement experiments (in 

millimetres) for the tendon located at both patella and gastrocnemius showed that 

NCC gave the closest mean displacement when compared to the manual measurement 

(0.10±1.47 mm difference) while the MSE, gave the worst results with 16.63±1.12 

mm difference.   
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Test 

 

Mean Displacement (mm) 

MSE NCC NCCMSE LK Manual 

Mean 16.63±1.12 18.03±1.00 17.79±1.02 17.95±1.23 18.13±1.08 

Difference 1.50±1.56 0.10±1.47 0.34±1.49 0.18±1.64  

 

Table 4.3: Mean displacement of all passive movements of the tendon for each 

algorithm and the difference of each algorithm against the manual measurement. 

 

Table 4.4 showed the total mean of all of the active tests (patella and 

gastrocnemius) for each of the algorithms and the manual measurement. The 

difference of each algorithm against the manual measurement showed the level of 

accuracy of the algorithm, in this case the smallest difference is the optimum result. 

The mean displacement of active movement experiments (in millimetres) at the final 

frames of the tendon located at both patella and gastrocnemius showed that NCC 

again gave the closest mean displacement when compared to the manual measurement 

with 0.07±0.69mm difference while the MSE again gave the worst result with 

1.37±0.18 mm difference.   

 

 

Test 

 

Mean Displacement (mm) 

MSE NCC NCCMSE LK Manual 

Mean 6.88±1.12 5.58±0.58 5.64±0.47 6.20±0.67 5.52±0.38 

Difference 1.37±0.18 0.07±0.69 0.12±0.60 0.68±0.77  

 

Table 4.4: Mean displacement of all active movements of the tendon for each 

algorithm and the difference of each algorithm against the manual measurement. 

 

  

 The computational cost on both active and passive tests showed the results of 

NCC having the least time taken with a total mean time of 10±1 seconds for all tests. 
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The LK, however, gave the most time taken for the tracking to complete with total 

mean time value of 320±40 seconds for all tests (see Table 4.5). 

 

 

 

Test 

 

Mean Time (second) 

MSE NCC NCCMSE LK 

Passive  27±1 13±1 39±1 469±33 

Active  15±2 8±1 23±3 170±30 

Mean 21±2 10±1 30±3 320±40 

Table 4.5: Mean value of computational cost for each algorithm on both active and 

passive tests. 

 

 The tracking reliability of the four algorithms was investigated, and the 

average number of tracking errors calculated for both stationary and irregular 

movement errors, during both passive and active movements. The NCC tracking 

algorithm gave the best performance in each case. The overall tracking reliability of 

the four algorithms is shown in Table 4.6, where it can be seen that the NCC tracking 

algorithm gave the least total mean number of errors (3.86±1.55).   

 

 

Test 

 

Mean Error (count) 

MSE NCC NCCMSE LK 

Stationary Knee Passive  13.00±1.25 9.40±1.07 9.70±0.79 13.10±1.32 

Stationary Gastrocnemius Passive 8.90±1.35  6.00±1.12 6.10±1.13 10.00±1.58 

Stationary Knee Active  13.00±1.89 9.40±2.37 9.50±2.33 12.20±2.32 

Stationary Gastrocnemius Active 7.70±0.60 4.10±0.82 4.20±0.44 7.80±0.99 

Irregular Knee Passive 4.10±1.43 0.50±0.17 1.00±0.33 1.90±0.31 

Irregular Gastrocnemius Passive 14.70±1.25 0.50±0.17 1.20±0.73 2.50±0.17 

Irregular Knee Active 5.70±1.19 0.60±0.22 0.70±0.21 3.30±1.05 

Irregular Gastrocnemius Active 6.70±0.60 0.40±0.16 0.60±0.16 2.90±0.95 

Mean 9.23±0.59 3.86±1.55 4.13±1.51 6.71±1.83 

 
Table 4.6: Mean value of the tracking errors for each algorithm.  
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In conclusion, the best performance in terms of tracking accuracy and tracking 

reliability was obtained using the NCC tracking algorithm. This algorithm was also 

found to have the lowest computational cost for both active and passive movements.  

 

 

4.5 Summary 

 
In this chapter, the results of the pilot study were presented and discussed. The 

performance of the four selected tracking algorithms was evaluated with tracking 

accuracy being analysed by comparisons, the standard manual measurement and 

computation costs. The errors analysis measures the reliability of each algorithm 

handling tracking error such as stationary movement errors and irregular movement 

errors. The results were obtained from experiments involved with speckle tracking 

during passive and active tendon movements. In all cases, the NCC tracking 

algorithms gave the best performance and will be used and enhanced in the two 

remaining studies. In the next Chapter, this algorithm will be used to select the 

optimum ROI size and most effective threshold ranges, and again compared with the 

standard manual measurement.	
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Chapter 5 

Automatic Measurement using 

Normalised Cross Correlation 
 

Overview 
 

In this chapter, the Normalised Cross Correlation (NCC) tracking algorithm that was 

selected as the best performing tracking in the previous Chapter is explored further to 

identify the optimal ROI block size and threshold value. The results were then 

validated against the standard manual measurement. The computational cost for each 

ROI block and threshold size are also compared. Tracking experiments were 

conducted on both the patella and medial gastrocnemius tendon for active movement. 

The final study to validate the tracking algorithm utilised 2-ROI blocks to track two 

regional areas of the tendon simultaneously with both active and passive movements. 

The results from this study were compared to the standard manual measurement.  

 

 

 
5.1 Region of Interest (ROI) Block Size Comparisons 
 

 The regional area of the tendon can be tracked using different ROI block sizes 

but choosing the optimal block size for the tracking algorithm search was an 

important factor in the performance of the algorithm. Various ROI block sizes were 

tested ranging from 5x5, 11x11, 15x 15, 21x21, 25x25 and 31x31 pixel dimensions 

for the ROI block.  The size selections were based on other user’s experience with the 

block matching method (Dilley et al., 2001, Revell et al., 2005, Lee et al., 2008a), as 

was described in Chapter 2. The experimental setup and software settings were based 

on the description outlined in Section 3.1.2 and 3.1.3 of Chapter 3. 
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10 participants were tested, and all sizes of ROIs were observed on both active 

movement of patella and medial gastrocnemius tendon. No passive movements were 

observed since all ROI sizes evaluated gave similar results. Both patella and 

gastrocnemius results were combined and averaged to look at the performance of each 

algorithm against the standard manual measurement. For each experiment, the ROI 

was placed within the regional area of the tendon as described in Chapter 3. T-test 

statistical analysis was used for comparing the results.  

 

 

5.1.1  Patella Tendon 
 

Six ROI block sizes of were tested during active movement of the patella 

tendon and also, the displacement of the manual measurement was also measured. 

The displacement value for each algorithm and manual measurement measures the 

displacement relative to their starting position in the initial frame to their final 

position in the final frame. Figure 5.1 shows mean displacement of each ROI size 

from the algorithm as well as the mean displacement from the manual measurement. 

 

The manual measurement gave a mean displacement of 8.50±0.51mm. The 

5x5 pixels ROI block was significantly different (p<0.05) to the manual measurement 

with a mean value of 3.98±0.66mm, which was less than the mean displacement of 

manual measurement. Next, the 11x11 pixels ROI block was found to be not 

significantly different (p>0.05) compared to the manual measurement with the mean 

value of 8.95±0.76mm, which was higher than the mean value of manual 

measurement.  
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Figure 5.1: Mean displacement of ROI sizes and manual measurement of active 

movement of the patella tendon, relative to their starting position to the final position.  

 

No significant difference to the manual measurement (p>0.05) was found for 

the 15x15 pixels with the mean value of 8.69±0.55mm and the rest of the results were 

also found to be not significantly different (p>0.05) to the manual measurement. The 

21x21 pixels block size gave the mean value of 9.50±0.75mm, the 25x25 pixels block 

gave the mean value of 9.36±0.75mm and finally, the 31x31 pixels block size gave 

the mean value of 9.54±0.75mm. The experiments showed that the 5x5 pixel size was 

the least able to match the manual method. Meanwhile, the 15x15 pixel size gave the 

closest mean value to the manual measurement and was used for all evaluations in 

this study.   

 

In order to investigate the computational time performance, Figure 5.2 shows 

the number of pixels contained in a block (ROI) with its relative computational time 

taken for a complete tracking process with coefficient of determination of R2=0.99 

with all block sizes were found to be significantly different (p<0.05) to each other.  
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Figure 5.2: Mean time (in seconds) of each ROI block size of the patella tendon. 

 

As expected, 5x5 gave the least mean time for tracking to complete with the 

mean time value of 14±2 seconds while 31x31 block size gave the highest 

computational time than the rest of the block sizes tested with the mean time value of 

233±35 seconds to complete its tracking throughout the image sequence. 11x11, 

15x15, 21x21 and 25x25 block size each respectively gave mean time of 28±4, 44±6, 

98±13 and 137±21 seconds. 

 

 A parametric curve has been fitted to these measurements, as shown on the 

plot. This is in line with what is expected, as the dominant computation in the tracking 

process is the calculation of the NCC match. This should be proportional to the 

number of pixels in the block, and so vary linearly with the size of the block. The 

slight curve indicated that there is a small additional increase as the block size 

increases, and this is attributed to the number of tracking errors for this data and 

additional computations that had to be made.   
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5.1.2   Medial Gastrocnemius Tendon 
 

Similar experiments were conducted on the medial gastrocnemius tendon data 

with six ROI block sizes evaluated. Figure 5.3 shows the results for each of the ROI 

block size with the mean displacement from the manual measurement (dashed line) 

set as the average. The manual measurement was measured at the start of the 

experiment and gave a mean displacement of 8.19±0.46mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Mean displacement of ROI sizes and manual measurement of active 

movement of the medial gastrocnemius tendon, relative to their starting position to the 

final position. 

 

 The 5x5 block size showed significantly different (p<0.05) displacements 

compared to the manual measurement, with a mean displacement of 5.10±0.42mm, 

which is lower than the manual measurement. Also, the result for the 11x11 ROI was 

found to be significantly different (p<0.05) to the manual measurement with a mean 

displacement of 7.12±0.40mm, again lower than the manual measurement. 

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

5x5" 11x11" 15x15" 21x21" 25x25" 31x31" Manual"

Di
sp
la
ce
m
en

t,(
m
m
),

ROI,Block,Size,

5.10	
  ±	
  0.42mm	
  

7.12	
  ±	
  0.40mm	
  

8.20	
  ±	
  0.37mm	
  
8.73	
  ±	
  0.44mm	
  

8.79	
  ±	
  0.44mm	
  
9.06	
  ±	
  0.37mm	
  

8.19	
  ±	
  0.46mm	
  



	
   130	
  

Meanwhile for the 15x15 pixel ROI block there was no significant difference 

(p>0.05) to the manual measurement with a mean displacement of 8.20±0.37mm. The 

result was close to the manual measurement with only 0.01±0.59mm difference. For 

the 21x12 pixel size ROI the results was found to be significantly different (p<0.05) 

and gave a mean value of 8.73±0.44mm. 

 

The result for the 25x25 pixel block size however, was found to not be 

significantly different (p>0.05) to the manual measurement with only slight increases 

over the previous ROI size (8.79±0.44mm) while the 31x31 pixel size was found to 

be significantly different (p<0.05) to the manual measurement and gave the highest 

mean displacement (9.06±0.37mm) with both gave mean differences of 0.60±0.64mm 

and 0.86±0.59mm respectively. Theses results showed that bigger ROI blocks were 

less sensitive to speckle noise, which affected the performance of the tracking. From 

the results in figure 5.3, the 15x15 block size can be seen to give the most accurate 

result, as was the case for the patella experiment.  

 

The timing results obtained for tracking the medial gastrocnemius tendon with 

different sizes of ROI is plotted to a quadratic fit with R2 = 1 (see Figure 5.4). All 

timings of the ROIs were found to be significantly different (p<0.05) to each other. 

The line started with a curve with 5x5 and 11x11 block size with mean time of 10±0 

and 21±1 seconds respectively. The curve begins to be linear with the 15x15 block 

size with time of 37±3 seconds to complete the tracking and progresses with the 

21x21 (67±1 seconds), 25x25 (99±6 seconds) and the longest time of completion with 

block size of 31x31, which took 142±9 seconds to complete. Again, similarly to 

Figure 5.2, among the best-fit results (i.e. 15x15, 21x12, 25x25 and 31x31), the block 

size of 15x15 gave the optimum computational time.  
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The time performances for each number of pixels per blocks (ROI) are shown 

in figure 5.4 with coefficient of determination of R2= 1 and all timings of the ROIs 

were found to be significantly different (p<0.05) to each other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Curve fitting of mean time (in seconds) of each ROI block size of the 

medial gastrocnemius tendon. 

 

Again, to look at the performance of each block size, 5x5 gave fastest the 

mean time of 10±0 and 31x31 gave the longest time with 142±9 seconds to complete. 

11x11, 15x15, 21x21 and 25x25 each respectively gave the mean value of 21±1, 

37±3, 67±2 and 99±6 seconds to complete. The figure exhibits the similar trend of 

time curve as in figure 5.2 expect that the variation is more linear, and does not show 

the slight additional increase in computation as the block size increases. This is 

considered to be due to fewer tracking errors for this data set, as observed in both 

Section 4.4 (passive movement) and 4.5 (active movement).  In passive movement, 

for the NCC algorithm, the medial gastrocnemius tendon data gave a lower number of 

tracking errors compared to the errors found using the patella tendon data. Again, in 

active movement, for the NCC algorithm, medial gastrocnemius gave the least 

number of tracking errors compared to the patella tendon.  
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5.2   Tracking Algorithm Threshold Level Comparisons  
 

For each frame, the tracking algorithm gave an array of correlation values for 

the ROI, which were sorted, to get the highest correlation which then are used as the 

starting position in the following frame. If the highest value was less than the 

threshold value pre-defined within the GUI selections, the software entered the 

stationary movement error recovery process. This experiment looks at various 

threshold values in order to compare and decide the optimum value for the speckle 

tracking. The experiment again looks at both active movements of patella and the 

medial gastrocnemius tendon regional area. 

 

 

5.2.1   Patella Tendon  
The first tests conducted for the threshold analysis was to look at every 0.05 

interval ranging from 0 to 1 over the patella regions (see Figure 5.5). The 

displacement values were relative to their starting position in the initial frame to their 

final position in the final frame. The differences between intervals were minimal 

when compared to the manual measurement.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Mean displacement (in millimetre) of threshold level at every 0.05 

intervals and the manual measurement (red bar) of active movement of the patella 

tendon.  The displacement values were relative to their starting position in the initial 

frame to their final position in the final frame. 
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No significant differences (p>0.05) were found between the measured 

displacement at every interval and the manual measurement. However, the threshold 

value ranging from 0.05 to 0.80 gave the mean displacement of 8.70±0.59mm 

compared to the manual measurement of 8.50±0.59mm. Meanwhile, the threshold 

value ranging from 0.90 to 0.95 gave the displacement value of 8.51±0.51mm, 

indicating that at >0.90 there was an improvement in tracking. Finally, the maximum 

threshold value of 1.00 gave a slightly higher threshold value, with the mean 

displacement of 8.55±0.53mm, which means that an exact match will not be possible 

since the tracking was looking at the movement of randomised speckle patterns. The 

experiment showed that the threshold values of 0.90 to 0.95 gave the closest 

measurement to the manual measurement but not significantly different (p>0.05). 

 

 

5.2.2   Medial Gastrocnemius Tendon  
 

The same experiment was conducted on the regional area of the medial 

gastrocnemius tendon to look at every 0.10 intervals of the threshold value. As shown 

in Figure 5.6, similarly to the results shown from patella tendon analysis, no 

significant differences (p>0.05) were found between the measurement of the threshold 

levels and the manual measurement. However, the threshold value ranging from 0.10 

to 0.80 gave the percentage differences of 1.29±9.75% with mean displacement of 

8.30±0.36mm compared to the manual measurement with mean displacement of 

8.19±0.46mm. Threshold level 0.90 gave the smallest percentage difference of 

0.12±0.07% with the mean displacement of 8.18±0.46mm, and threshold level 0f 1.00 

gave slightly higher percentage difference of 0.15±4.36% with the average 

displacement of 8.21±0.42mm. 

 

Again, the experiment showed that the threshold value of 0.90 and 1.00 gave 

the closest measurements to the manual measurement. Further observation was 

conducted to look at the displacement value of the tracking using the threshold level 

of 0.90 to 1.00 at 0.01 intervals (see figure 5.6). The experiment indicated that the 

threshold levels, ranging from 0.90 to 0.96 gave the smallest percentage difference of 

0.12±0.07% with mean displacement of 8.18±0.46mm. The threshold levels ranging 
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from 0.97 to 0.99 gave the highest percentage differences of 0.24±3.50% with mean 

displacement of 8.17±0.35mm. A threshold level of 1.00 gave slightly lower 

percentage difference of 0.15±4.36% with mean displacement of 8.21±0.42mm. All 

threshold levels were found to be not significantly different (p>0.05) from the manual 

measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Mean displacement (in millimetre) of threshold level at every 0.05 

intervals and the manual measurement (red bar) of active movement of the medial 

gastrocnemius tendon.  

 

Both analyses showed that the threshold level of 0.90 onwards gave the closest 

mean displacement with the smallest percentage differences to the mean displacement 

using manual measurement. However, measurement depended on how the speckles 

formed within the image.  
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5.3   Automatic Tracking using Two Regions of Interest (2-ROI) 
  

Since the Normalised Cross Correlation (NCC) was chosen as the algorithm 

for the tracking software, this section explored the performance of the tracking 

algorithm when two regions of interests (2-ROI).  The 2-ROI consists of P1 (node 1) 

and P2 (node 2) placed in the first frame used as the initial nodes. The movement for 

both ROIs was then tracked until it reached the last frame. The position of the nodes 

in the last frame was then measured. The difference of the position of P1 and P2 of 

the first frame to the position of P1 and P2 of the last frame is the displacement value 

(see Figure 3.16). The 2-ROI markers were used to observe the dynamic changes of 

the regional area of the tendon to calculate the localised stiffness and strain (Couppé 

et al., 2008, Pearson et al., 2013) and the results were then compared to the standard 

manual measurement. The method and experimental setup was described in Section 

3.4 of Chapter 3. 

 

 For the comparison analysis between the automatic tracking method and the 

manual tracking method, both patella and medial gastrocnemius tendon were chosen. 

Similarly to the previous analysis in Chapter 4, each site experimented with both 

passive and active tendon activity. 2-ROI markers were selected on two regional sites 

of the tendon (as described in Section 3.4 of Chapter 3). In the compared frame, the 

coordinates of the region of interest (ROI) are offset along the horizontal image plane 

and are shifted by a pixel at a time. Here a good match should be expected if the 

algorithm can give the closest difference with the manual measurements. Manual 

measurements used the same start reference point (P1, P2) in the first frame as the 

automated method and identified where it had moved to in the last frame by 

examination of the video as mentioned in Chapter 3 (see Figure 3.16). 

 

Since the previous experiment showed that the 15x15 pixel ROI gave the 

closest match to the standard manual measurement, the same ROI size was selected to 

compare with the smallest ROI block (5x5 pixel ROI) and the largest ROI pixel block 

(31x31). The performance of 2-ROI was measured when tracking the dynamic tendon 

regions. For all repeat trials the initial position of the ROIs were the exact same 

reference point in the frame.  
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5.3.1   Patella Tendon 
 

The first experiment looked at the knee area of the patella tendon using the 2-

ROI-experiment setup described in Chapter 3, with both passive and active muscle 

movement tested. Both tests were on 10 participants and compared to the manual 

measurements. 

 

 

5.3.1.1   Passive Movement 
 

The 2-ROI passive tests for the patella tendon (knee) showed the 15x15 pixel 

ROI has the closest mean value to the manual measurement (0.35±0.06mm vs. 

0.30±0.07mm). The 5x5 pixel ROI gave the largest displacement mean value 

(1.62±0.64mm). Comparisons between manual and 15x15 ROI indicated that there 

was no significant difference (p>0.05). 5x5 pixel ROI was shown to be significantly 

different (p<0.05) to the manual measurement. The results of the 2-ROI passive tests 

were illustrated as a graph in Figure 5.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Comparisons graph between ROI size and manual tracking for passive 

movement at the patella.  
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5.3.1.1   Active Movement 
 

The next tests involved active displacement of the tendon (where the tendon 

stretches). Figure 5.8 illustrates the results of the comparisons between various sizes 

of ROIs and compared to the manual measurement for active knee movement. As 

previous tests, all ROI sizes were compared to the manual method for the knee using 

the same method as the passive movement test. There were no significant differences 

(p>0.05) between the results, being different ROIs and the manual measurements 

although it can be seen that the 31x31 pixel ROI did worse in this test in comparison 

to the other sized ROIs.  The 5x5, 15x15, and 31x31 pixels ROI giving mean values 

of 4.74±0.39mm, 4.82±0.48mm, and 4.36±0.33mm respectively as compared with the 

manual mean value of 4.80±0.45 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Comparisons graph between various sizes of ROI and manual tracking for 

active movement at the patella.  
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The percentage differences of 5x5 pixel ROI against the manual measurement 

were seen to be 0.31±0.06%, 15x15 with 0.12±0.03% and 31x31 with 2.17±0.12. For 

the active tests, the errors were expected to be larger due to the tendon being 

dynamically stretched during muscle contraction hence causing some deformation.  

 

 

5.3.2   Medial Gastrocnemius Tendon  
 

The second experiment looked at the ankle area of the medial gastrocnemius 

tendon using the 2-ROI-experiment setup described in Chapter 3, for both passive and 

active muscle movement tested. The results of both tests were compared to the 

manual measurements.  

 

 

5.3.2.1   Passive movement 
 

The tests for the ankle (medial gastrocnemius tendon junction) showed the 

15x15 pixel ROI has the closest mean value (0.44±0.09mm) to the manual method 

mean displacement (0.42±0.05mm) followed by a 31x31 pixel ROI (0.63±0.12 mm). 

Here the 5x5 pixel ROI has the largest mean displacement measurement (1.07±0.36 

mm) compared to the mean value of manual measurement (see Figure 5.9). The 

displacement value for each algorithm and manual measurement measures the 

displacement relative to their starting position in the initial frame to their final 

position in the final frame. 
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Figure 5.9: Comparisons graph between various sizes of ROI and manual tracking for 

passive medial gastrocnemius measurement. The displacement value for each 

algorithm and manual measurement measures the displacement relative to their 

starting position in the initial frame to their final position in the final frame. 

 

Comparisons between manual and automated tracking indicated that there was 

a significant difference (P<0.05) between the 5x5 pixel ROIs and the manual method. 

The 15x15 pixel ROI showed no significant differences (p>0.05) from the manual 

measurement. 
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with the previous tests, all ROI sizes were compared to the manual method for the 

ankle using the same method as the passive movement tests. There were no 

significance differences (p>0.05) found between the comparisons to the other sized 
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comparison to the other pixel ROI’s (see figure 5.10) with displacement value of 

2.74±0.57mm in comparison to the manual measurement (5.03±0.31mm). The 15x15 

gave the closest mean displacement value (5.08±0.32mm) to the manual measurement 

and 35x35 pixels gave the mean value of 4.86±0.21mm. As discussed earlier from the 

knee analysis, the active tests showed larger errors due to the tendon being 

dynamically stretched during muscle contraction hence causing some deformation.  

 

The whole experiments of 2-ROI analyses showed that 15x15 pixels ROI for 

both passive and active movement of the patella, and medial gastrocnemius tendon 

gave the best agreement with the manual measure. The difference found from the 

passive tendon movement showed that 15x15 pixel ROI gave difference of 

0.05±0.09mm (knee) and 0.02±0.66mm (ankle) from the manual measurement. The 

active tendon movement showed that the 15x15 pixel ROI gave the differences of 

0.10±0.02mm (knee) and 0.05±0.45mm (ankle) from the manual measurement. 

Furthermore no significance differences (p>0.05) were found between 15x15 pixel 

ROI and manual measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Comparisons graph between various sizes of ROI and manual tracking 

for active medial gastrocnemius movement.  
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5.4   Summary 
 

 The experiments conducted showed the effectiveness of the tracking system in 

comparison to the manual measurement. Experiments were divided into ROI block 

sizes and thresholds were observed at every level. Also, two regions of interest (2-

ROI) were compared with the manual measurement. The active test of the patella and 

gastrocnemius tendon showed that the 15x15 pixel ROI gave the best performance. 

The next experiment looked at the algorithm threshold level; the experiments showed 

that the threshold value in the range of >0.90 gave the optimum tracking results. The 

last tracking analysis conducted 2-ROI with the pixel size of 15x15 were found to be 

nearest to the manual measurement for both active and passive movements.  

 

 In the next chapter (chapter 6), actual experiments (in-vivo) are conducted 

whereby the settings of the tracking analysis were based on the algorithm validation 

results. The methods for the experiments were explained in Chapter 3. The 

experiment’s results that are useful and gave an insight to be used by the physiologist 

to understand and to describe further the mechanical properties of the tendon activity. 
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Chapter 6 

In Vivo Experiments:  

Multiple Layer Automatic Tracking to 

Determine Human Tendon 

Mechanical Properties 
 

Overview 
 

In this Chapter the results obtained when using the NCC tracking algorithm with the 

optimum parameters to characterize localized tendon strain at the anterior, midsection 

and posterior layers for both proximal and distal regions of the patella is described. 

The importance of these results in the improved understanding of the working 

aetiological of human tendon mechanical properties is then discussed.  

 

 

 

6.1   In-Vivo Strain Comparison 
 

The in-vivo experiments were concerned with observing and comparing the 

patella tendon excursion at the anterior, midsection and posterior layers for both 

proximal and distal regions of the patella tendon during ramped isometric voluntary 

contractions. For each layer, the NCC speckle tracking algorithm with the optimum 

parameters, and 2-ROIs was used to measure the tendon displacement and tendon 

strain frame-by-frame.   
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6.2   Proximal Strain Results 
 

 The proximal region is located at the proximal side of the patella and very 

close to the peninsula knee bone. The regional area was shown in Figure 3.18. The 

strain measurements that were derived from the speckle tracking for different force 

levels accumulated at every 10% interval starting from 10% of force for each of the 

three layers (anterior, mid section and posterior) are shown in Figure 6.1. The figure 

reveal that significant increased strain (p<0.01) across the total range of forces levels 

but force levels 50-60% and 90-100% showed no significant difference (p>0.05) for 

the anterior layer, indicated by (*) symbols.  Force levels of 40-60% for the mid 

section layer also showed no significant difference (p>0.05) and indicated by (^) 

symbol. The posterior layer was also found to have no significant difference (p>0.05) 

at force levels 30-60% and 70-100%, indicated by the (~) symbols. It can be seen that 

at 100% of force the anterior gave the highest mean strain of 11.86±0.53%. The mid 

section gave 10.30±0.79%, and the posterior gave the smallest mean strain of 

5.98±0.85%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Strain value (%) for all measured proximal regions (mean ± SEM) 

accumulated at 10-100% force.  
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6.3   Distal Strain Results 
 

The distal region is located at the distal side of the patella as was shown in 

Figure 3.18. In Figure 6.2, it can be seen that all the  distal layers showed a significant 

increase (p<0.01) in strain across the force levels accumulated at each 10% interval 

starting from 10%  of force with no interaction between layer and between forces. The 

mean strain of the posterior layer was seen to be significantly greater (p=0.01) than 

both the anterior layer and the mid section for the distal region of the patella tendon. It 

can be seen that at 100% of force the posterior layer gave the highest mean strain of 

11.96±0.62%, followed by the mid section (9.55±0.79%) and the anterior with the 

mean strain of 8.96±0.89%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Strain values for all measured distal regions (mean ± SEM) accumulated 

at 10-100% force.  
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6.4   Comparisons Between Proximal and Distal Layers 
  

The experiments described in the previous sections looked at the comparison 

between layers for both proximal and distal regions of the patella tendon at every 10% 

force level interval. The measurements taken were converted to a strain percentage 

and showed that the proximal anterior and distal posterior regions gave the largest 

strains. In this section, there is a comparison of overall mean strains between 50% and 

100% force. Table 6.1 shows the instantaneous strain values at 50% and 100% with 

the relative difference and corresponding mean forces (%) for all layers at both 

proximal and distal regions of the patella tendon as shown in Equation 6.1: 

 

                                         d = x100 − x50              (6.1) 

 

where d is the difference between two means and xn is the relative force level of 50% 

or 100%. The standard error of the difference between means is shown in equation 

6.2: 

 

                    σ 100−50 = σ 100
2 +σ 50

2              (6.2) 

 

The overall mean strain was greater at 100% force with a mean strain value of 

9.77±0.75% compared to a mean strain value of 5.33±0.73% at 50% force. The 

proximal strain showed a lower mean strain difference between 50 and 100% force 

with the posterior proximal giving the least difference at 2.66±024%, followed by 

anterior proximal with a difference of 4.62±0.03. The mid section gave the highest 

percentage difference of 5.61±0.21%. The distal strain results showed higher strain 

differences for each layer, as the anterior distal were seen to be 4.35±0.18% different 

between 50% and 100%. The mid section gave highest difference at 5.28±0.13%, and 

the posterior distal gave the smallest difference of 4.12±0.25%.  
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Table 6.1: Instantaneous mean strain for all layers at both proximal and distal regions 

of the patella tendon at 50% and 100% force levels. 

 

Figure 6.3 shows that all force levels and regions showed no interaction 

towards each other (p>0.05) and mean values (i.e. average of 50 & 100% force levels) 

for strain indicated that the proximal anterior strain (*) and the distal posterior strain 

(^) were greater than all other regions (p<0.05). The proximal mid section strain was 

shown to be significantly different (p=0.02) to the proximal posterior strain (~). These 

huge differences in strain between 50% and 100% force could indicate shear between 

the tendon boundary layers causing differential longitudinal movement between 

layers (shear force). In time, this relative difference in strain at different levels of 

force may be a factor in the development of cumulative tendon injury. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Instantaneous strain values for all layers at both proximal and distal 

regions of the patella tendon at 50% and 100% force. 
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The experiments showed that multi-layer tracking was able to estimate frame-

to-frame displacements using multiple-ROI where 2-ROI end points were placed at 

each layer. Previous studies have validated the use of localized tracking of tendon 

using block-matching techniques similar to that used here (Haraldsson, et al., 2005, 

Pearson, et al., 2007, Kim, et al., 2011) with a small margin of errors.  A recent study 

(Couppé, et al., 2008) reported that the tracking of tendon movement using 2-ROI end 

points can be achieved during twitch contraction, electrically stimulating the muscle. 

However, the forces in the tendon were only moderate (up to 50% of maximum), 

which is a significant difference to the approach in this study, where high forces were 

elicited and thus larger tendon deformations would be expected making tracking more 

difficult. In addition, previous work has indicated that contraction time can affect the 

amount of excursion seen in the tendon (Pearson, et al., 2007), which can be 

explained due to the viscoelastic nature of the tendon. It could then be speculated that 

the composition of the tendon at different regions may be proportionally different in 

terms of the viscous and elastic components, which would affect the time-course of 

extension under load to different degrees. 

 

The findings showed that the patella tendon for a group of healthy young 

subjects, the greatest strains (100% force) during isometric ramped contractions were 

seen in the anterior layer at the proximal end (11.86±0.55%) and posterior layer at the 

distal end (11.96±0.65 %) with significant differences (p<0.05) between proximal and 

distal tendon. The strain calculated here were within the range of those reported for 

this structure in young males (Onambele, et al., 2007, Child, et al., 2010, Hansen, et 

al., 2010) where the previous references showing a range of 6 – 10.6% strain. It can 

also be concluded from the results that the proximal mid section and posterior tendon 

strain were at 10.30±0.73% and 5.98±0.88% respectively. The distal anterior and mid 

section showed 8.96±0.91 and 9.55±0.80% tendon strain respectively, which are 

considerably larger than those reported by others (Basso, et al., 2002).  

 

The reason for such larger values may be due to differences in the level of 

load, application of load and also that here the strain was determined in the proximal 

and distal sections of the tendon compared to the mid-third utilised by the other study 

(Basso, et al., 2002). It may be that the tendon is not homogenous throughout its 

length and could be structurally different in terms of the collagen content, type and 
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extracellular matrix density. Another explanation might be related to the samples used 

in other study were taken from a cadaver, compared to the live specimen used in this 

study (Basso, et al., 2002).   

 

The method of using 2-ROI at multiple layers of the tendon has the potential 

to improve clinical knowledge relating to the tendon mechanical properties. It is clear 

that the strain throughout the tendon structure is not equal for a given external force, 

lending itself to tissue shear and hence to potential for increase injury risk in specific 

regions of the tendon. The information generated by the tracking algorithm could help 

to determine how and why these differences in strain may affect the aetiology of 

disease and effects of training rehabilitation. These studies will give further insight 

into the aetiology of tendon injury, repair, response to various training interventions 

and the time course of tissue adaptation with disease. 

 

 

6.5   Summary 
 

The experiments described in this Chapter examined and compared localised 

proximal strain at both the anterior and posterior regions of the patella tendon using 2-

ROI tracking on multiple layers of anterior, posterior and mid section in-vivo. The 

measurements obtained from the tracking were converted into mean strains, which 

were used to investigate the interactions between the layers of the tendon. The 

experimental setup for the experiments was described in Chapter 3. The algorithm 

used for the tracking was Normalized Cross Correlation (NCC), which was selected 

based on the analysis conducted in Chapter 4 and the optimal tracking settings, was 

based on the analysis carried out in Chapter 5.  

 

The experiment showed that the anterior layer at the proximal end gave the 

highest mean strain with 11.86±0.55% with mean difference between 50% and 100% 

force was seen to be at 4.62±0.76% and posterior layer at distal end gave the highest 

mean strain with 11.96±0.65% with mean difference between 50% and 100% force to 

be 4.12±1.11%. Significant differences were also seen (p<0.05) between proximal and 

distal tendon. These different patterns of strain between the tendon layers at the sites 

measured could indicate shear of the tendon structure. It is clear that the strain 
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throughout the tendon structure is not equal for a given external force, lending itself to 

tissue shear and hence to potential for increased injury risk in specific regions of the 

tendon. The huge differences in strain between 50% and 100% force could also 

indicate shear between the tendon boundaries, which over time may develop into 

cumulative tendon injury. The use of multiple layer image tracking could generate 

valuable information that can be used to describe in detail how the tendon works at 

the different layers and regions by measuring the strain during ramped isometric 

voluntary contractions to improve clinical knowledge relating to the tendon 

mechanical properties to give further insight of the cause of tendon injury.  
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Chapter 7 

Summary and Conclusions 
 
 

7.1   Summary 
 
 

In this thesis, an improvement to the ultrasound image-tracking algorithm was 

developed using various image tracking algorithms for tracking the movement of the 

tendon speckle image obtained using the B-mode ultrasonography. The algorithms 

were selected following a literature review of the tracking of images captured using 

ultrasound imaging. Experiments were carried out to examine these tracking 

algorithms and optimise them to allow the utilisation of the tracking software in 

human studies conducted here. 

 

The aim of this work was to design, develop, and implement the image-

tracking algorithm to track movement of the human tendon in vivo within the 

speckled ultrasound images. The development of the tracking software focused on 

solving the problems of tracking the ultrasound images, as well as analysing the 

tracking movement frame-by-frame to produce useful measurements that can be used 

to describe the mechanical properties of the human tendon.  

 

In Chapter 1, there was a brief introduction to the fundamentals of image 

processing and tracking as well as its usage in various applications. Towards the end 

of the Chapter, the Aims and Objectives of the study were stated, and the structure of 

the Thesis was described in detail.  

 

In Chapter 2, the biomedical background related to tendon structures and 

functions was described, as well as applications and experiments related to the 

ultrasound imaging and tracking in biomedical areas. The background to image 

tracking within the domain of ultrasound imaging was also described, with details of 

the main tracking algorithms that have been used for tracking biomedical ultrasound 
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images. This understanding of the tracking algorithms and its area of interest within 

the mechanical tendon was essential for the parameter identification and motion 

estimation for the ultrasound imaging with random speckle formations.  

  

In Chapter 3, the experiment setup was explained in detail in order to validate 

the effectiveness of the tracking algorithms using the tendon muscle data in-vivo. The 

hardware used, and the method of image acquisition is explained, as well as the test 

subjects including areas of interest within the tendon muscle, and what kind of output 

was to be expected. The software design and implementation was also covered in 

Chapter 3 showing how results are achieved and what kind of algorithms were used 

within the software environment. Details of each tracking algorithm were described 

and how each data was treated from each algorithm and techniques used for each 

experiment were also described.   

 

In Chapter 4, there were detailed discussions of tracking algorithms that were 

used in the study. These algorithms included Normalised Cross Correlation (NCC), 

Mean Square Error (MSE), optical flow – Lucas-Kanade (LK) and the combination of 

NCC and MSE (NCCMSE) selected by signal noise-to-ratio (SNR). The investigation 

of the algorithms lead to the best performing algorithm, in the sense of the 

measurements generated were approximately similar to those obtained using the 

manual experiments, being identified and selected for the subsequent experiments.  

This algorithm was the Normalised Cross Correlation (NCC) with a block matching 

search method (BMA). This tracking algorithm was shown to be capable of handling 

the randomness of the speckle pattern in any conditions (active or passive) on two 

different tendon areas (knee and ankle).  

 

Furthermore, the results obtained from all the algorithms tested showed both 

MSE and LK to be the least accurate followed by NCCMSE. The NCC showed the 

closest match to the manual measurement at 100% of the frame with the mean 

difference of 0.44±1.99mm (passive knee). However, NCCMSE performed better 

than NCC when tested on passive ankle with mean difference of 0.22±1.61mm 

against NCC of 0.63±1.54 mean differences. The active knee test showed that at 

100% of the frame, NCC gave closest match (5.65±1.13mm)  to manual measurement  

(5.67±0.52mm) and active ankle also showed that NCC gave the closest match 
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(5.52±0.47mm) to the manual measurement (5.37±0.61mm). Further analysis looked 

at the time taken for each algorithm to identify which algorithm used the most 

resources (costliest) during the tracking procedure. NCC was seen to take the least 

time to track the whole image sequences with total mean time of 13±1 seconds for 

passive movement and 8±1 seconds for active movements. Stationary errors analysis 

was also conducted to measure the number of errors that occurred during the tracking 

process for each algorithm tested. The NCC was found to give the least mean error 

count (9.40±1.07) for knee passive and ankle passive (6.00±1.12). As for the active 

knee and ankle, NCC still showed the least mean errors count with total mean error 

counts of 9.40±2.37 and 4.10±0.82 respectively. This indicated that NCC gave the 

least errors in relation to stationary movement errors. NCC again showed the least 

error counts for the irregular movements errors with error counts of 0.50±0.17 

(passive knee and passive ankle), 0.60±0.22 (active knee) and 0.40±0.16 (active 

ankle). The results established that NCC was the best choice to be incorporated into 

the tracking software.  

 

In Chapter 5, the Normalised Cross Correlation (NCC) algorithm was chosen 

as the algorithm to be developed further and incorporated into the tracking software 

for the later experiments. The analysis conducted in this Chapter looked at the ROI 

block size and threshold value for optimum tracking results. The results were then 

validated against the standard manual measurement. Similar to the analysis conducted 

in the previous Chapter, timing comparisons were also made for both ROI block size 

and threshold analysis. As for the ROI block size, 15x15 ROI block size was shown to 

be the optimum with active knee movement measurement of 8.69±0.55mm against 

manual measurement of 8.50±0.51mm. The same ROI block size was also found to be 

the optimum on ankle with displacement value of 8.20±0.37mm against manual 

measurement (8.19±0.46mm). The average time for 15x15 ROI block size was within 

≈37±3 to ≈44±6 seconds on both knee and patella active movements.  

 

Further experiments looked at the optimum threshold level, which was used to 

indicate that a match had been found. Active movements of the knee experiment 

reported that the threshold levels from 0.90 onwards gave the optimum tracking 

results with the displacement value of 8.51±0.51mm against manual measurement 

(8.50±0.51mm) while the active movements of ankle showed that the same threshold 
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level gave the same optimum tracking results with the displacement value of 

8.18±0.46mm against 8.19±0.46mm. The experiments validated the threshold level 

range of >0.90 to be the optimum threshold as it gave close approximation to the 

manual measurement.  

 

The last tracking analysis that was conducted examined the two regions of 

interest (2-ROI), where two ROI nodes were placed along the elongation of the 

tendon, giving relative movement of two ROIs during muscle contraction. The 

passive movement of the knee proved that 15x15 pixel ROIs were found to be 

optimum with displacement value of 0.35±0.06mm against the manual measurement 

(0.30±0.07mm). The passive movement should give relative movements close to zero 

displacement. However, a slight increase or decrease within the movement was 

expected since the accuracy of the tracking was dependent on the clarity of the 

speckle image. The passive movement of the ankle also indicated that 15x15 pixels 

ROI to be the optimum with mean displacement value of 0.44±0.09 against manual 

measurement (0.42±0.05mm).  

 

The active movement analysis looked at the relative movement of two ROI 

nodes during active muscle contractions. The 15x15 pixel ROI for both knee and 

ankle tendon areas was seen to give the nearest value to the manual measurements, 

with the active movement of the patella giving mean displacement of 4.82±0.48mm 

against the manual measurement (4.80±0.45mm) and ankle giving the mean 

displacement of 5.08±0.32mm against the manual measurement (5.03±0.31mm). 

Throughout the experiments, the automatic tracking was proven to be accurate 

enough to match the manual measurements. The differences were minimal and proved 

that 15x15 pixel ROI was the best for the tracking of the tendon area of the patella 

and medial gastrocnemius using either 1-ROI or 2-ROI modes. Finally, the validation 

analysis confirmed that the Normalised Cross Correlation (NCC) approach was seen 

to be the optimum choice of tracking algorithm for tracking highly speckled 

ultrasound images.  

 

In Chapter 6, the experiments aimed at examining and comparing localised 

proximal strain at both the anterior and posterior layers of the patella tendon using 2-

ROI tracking on multiple layers of anterior, posterior and mid section were described. 
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The measurements obtained from the optimum tracking were then converted into 

mean strain to look at the interactions between the layers of the tendon.  

 

The first experiment used the tracking software to look at the proximal strain 

to compare the strains between its layers. The results showed that the proximal 

anterior at 100% force level gave the highest mean strain of 11.86±0.53%, followed 

by the proximal mid section layer with the mean strain of 10.30±0.79%, and the 

smallest mean strain (5.98±0.85%) was found at the proximal posterior. The second 

experiment looked at the distal strain and as for the proximal strain analysis, several 

layers were analysed. The results showed that the distal posterior at 100% force level 

gave the highest mean strain with 11.96±0.62%, followed by the distal mid section 

with 9.55±0.79% and finally the distal anterior gave the smallest mean strain at 

8.96±0.89%. The last experiment compared each layer of proximal and distal at 50 

and 100% force levels.  

 

Overall, it was found that the mean strain value at 100% force level was 

9.77±0.75%, which was greater than the 50% mean strain value at 5.33±0.73%. The 

mean strain difference between 50 and 100% force levels in the distal regions was 

seen to be greatest at the mid section layer with a 5.28±1.04% difference, followed by 

the anterior layer with 4.35±1.17% difference, and the posterior layer gave the 

smallest difference with 4.12±1.11%. The proximal regions however gave the least 

mean strain difference at the posterior layer with 2.66±1.09%, followed by the 

anterior layer with 4.62±0.76% and highest at mid section layer with 5.61±1.19%. 

The results also indicated that the greatest mean strains during isometric ramped 

contraction were seen in the anterior layer at the proximal ends with 9.55±0.54% and 

the distal posterior mean strain value of 9.90±0.78%. 

 

All experiments indicated that regional layers differences exist in strain within 

a tendon; also, the ‘twisting’ of the bone attachment caused the differential strain seen 

here. These different patterns of strain between the tendon layers at the sites measured 

could indicate shear of the tendon structure. It was concluded that the use of multiple 

layer image tracking could generate valuable information that can be used to describe 

in detail on how tendon works at each layer and region.  
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To summarise, the aims and objectives of the study were:   

• The data acquisition consists of stages where images collected using the ultrasound 

machine and tracked using the tracking algorithms selected for this study.  

• The process of tracking the ultrasound images using the tracking software consists 

of three stages; input, process and output.  

• The optimum similarity measurement algorithms for the tracking software showed 

that Normalised Cross Correlation (NCC) with the search method of block 

matching (BMA) gave the best tracking results with the measurements observed to 

be close to the standard manual measurement.  

• The optimum search parameters were shown to be 15x15 ROI pixel size and 

threshold range of 0.90 to 0.96.  

• The automatic tracking showed that both 1-ROI and 2-ROI gave measurements 

less than 5% different against the manual measurement in terms of accuracy with 

no significant difference (p>0.05) against the manual measurement throughout the 

experiments, also the experiments were conducted at both relaxed positions 

(passive) and 100% voluntary contractions (active) in vivo. 

• A novel multilayered approach was conducted on B-mode ultrasound images on 

the patella tendon to investigate the interactions between layers (anterior, mid 

section and posterior) on both proximal and distal areas of the tendon in vivo.  

• As a result, the layers measurements were converted into strain percentages to 

obtain its differences, and results showed that there exists shear within the tendon 

towards the 100% force levels.  

 

 

 

7.2   Conclusions and Recommendations for Future Works 
 

The method described here has the potential to improve clinical knowledge 

relating to the tendon’s mechanical properties. It is clear that the strain throughout the 

tendon structure is not equal for a given external force, lending itself to tissue shear 
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and hence to potential for increased injury risk in specific areas of the tendon. The 

information generated by the tracking algorithm could help to determine how and 

why these differences in strain may affect the aetiology of disease and effects of 

training rehabilitation. These studies will give further insight into the aetiology of 

tendon injury, repair, response to various training interventions and the time course of 

tissue adaptation with disease. 

 
 The following aspects could be the subject of future works in the field of 

ultrasound image tracking on human mechanical tendon in vivo: 

 

• To implement GPU parallel processing to improve the tracking speed and 

measure multiple points at every regions and layer of the tendon.  

• Implementation of the tracking software to look at controlled subjects to 

determine how and why these differences in strain may affect the aetiology of 

disease and effects of training rehabilitation.  

• To look at tendinopathy related subject to understand the disease progression 

ranging from various ages and genders, with the help of the tracking software.  
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Abstract 
The work describes an automated method of tracking dynamic 

ultrasound images using a normalised cross correlation 

algorithm, applied to the patellar and gastrocnemius tendon. 

Displacement was examined during active and passive tendon 

excursions using B-mode ultrasonography. In the passive test 

where two regions of interest (2-ROI) were tracked, the 

automated tracking algorithm showed insignificant deviations 

from relative zero displacement for the knee (0.01 ± 0.04 mm) 

and ankle (-0.02 ± 0.04 mm), (p>0.05). Similarly, when 

tracking 1-ROI the passive tests showed no significant 

differences (p>0.05) between automatic and manual methods, 

7.50 ± 0.60 vs. 7.66 ±  0.63 mm for the patellar and 11.28 ± 

1.36 vs. 11.17 ± 1.35 mm for the gastrocnemius tests.  The 

active tests gave no significant differences (p>0.05) between 

automatic and manual methods with differences of 0.29 ± 0.04 

mm for the patellar and 0.26 ± 0.01 mm for the gastrocnemius. 

This study showed that automatic tracking of in vivo 

displacement of tendon during dynamic excursion under load is 

possible and valid when compared to the standardised method. 

This approach will save time during analysis and enable 

discrete areas of the tendon to be examined. 
 

Keywords: Normalized Cross-Correlation, Speckle Tracking, 

Tendon, Ultrasound. 

 

 

Introduction 
Detailed characterisation of the tendon allows for insight into 

the aetiology of tendon injury, repair and response to various 

training interventions. There have been a number of previous 

works that has detailed the in vivo tendon mechanical 

properties (Fukunaga et al. 1996; Kubo et al. 2000; Hansen et 

al. 2006; Onambele et al., 2007). However, these properties, 

due to the limitations of the methods have been related to the 

whole tendon and not specific to any given region. The method 

described here allows for the quantification of the mechanical 

properties of regions of interest (ROI) along the tendon length. 

Thus it may allow for the sensitive identification of changes to 

the tendon prior to injury or during rehabilitation, which cannot 

be identified using the method outlined in previous work. 
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The randomness of the speckle pattern in ultrasound ensures 

that each region of the tissue within the imaging frame has its 

own unique pixel pattern that can differentiate a region from 

other regions. The aim of any tracking algorithm is to attempt 

to identify the pixel ‘signature’ between subsequent image 

frames. Under ideal conditions the tissue would not change its 

ultrasound echo from frame to frame i.e. as during a passive 

movement where the tissue is not expected to distort. However, 

as the tissue is stretched under load, so it deforms and its 

density changes, altering the ultrasound pattern produced. 

Hence the pixel signature of a region of interest in any given 

frame may in fact change in the subsequent frames. 
 
The tendon extension seen during muscle contraction is a 

factor of the loading and loading rate and potentially can be 

large over a typical acquisition period (3-4 seconds) dependant 

on the tendon mechanical characteristics. Hence in order to get 

a ‘best match’ between subsequent frames the loading rate 

must be relatively low and/or frame acquisition high so that 

frame to frame tendon displacement is relatively small, hence 

reducing potential for mismatch. A number of approaches have 

previously been utilised in an attempt to track nerve and tendon 

displacement (Dilley et al. 2001; Lee et al. 2008; Kim et al. 

2011). Of these none have utilised maximal force efforts where 

the tendon would be expected to develop high levels of strain. 

Farron et al (2009), utilised a block matching, normalised cross 

correlation (NCC) method whereby tendon strain was 

estimated, and here at only up to 50% of maximal effort. Here 

we utilise a more efficient method of searching in conjunction 

with the (NCC) algorithm by implementing the Three Steps 

Searching (TSS) algorithm developed by Koga et al (1981). 
 
None of the previous tracking papers have related their 

measurements with the manual method used in the literature 

(e.g. Onambele et al., 2007) to estimate tendon excursion. In 

addition, none appear to have utilised high force contractions 

(where tendon stretch is relatively large) to test the ability of 

the tracking algorithm to follow a region of interest across 

successive frames. 

Therefore the aims of this present study were to examine a 

method of tracking regions of interest within the ultrasound 

images of in vivo human tendon tissue during both passive 

(probe movement) and active (highly loaded) tendon, and 

secondly to compare in vivo, the automated method with the 

established manual method to ascertain its validity. 
 
This work will enable a much more detailed picture of the 

tendon mechanical properties in injury, repair and in response 

to various training interventions. This detailed understanding 

will subsequently allow for more effective rehabilitation and 

injury prevention strategies to be put in place. 
 

 

Methods 
The test subject for the study is a healthy recreationally active 

male aged 47 years with mass 91 kg and height 1.81m.  The 

local Ethics Committee approved the investigation and the 

subject gave written informed consent to participate. The study 

conformed to the principles of the World Medical 

Association’s Declaration of Helsinki. 

 

For the comparison analysis between the automatic and manual 

tracking methods, two sites were chosen based on those 

typically utilised in the literature. These were the patellar and 

medial gastrocnemius tendon (Arampatzis et al., 2005; Hansen 

et al., 2006; Onambele et al., 2007). A 7.5 MHz 40mm linear 

array, B-mode ultrasound probe (AU5, Esaote Biomedica, 

Italy) with a depth resolution of 49.3mm was used to image the 

patellar and medial gastrocnemius tendons in the sagittal plane. 

For the patellar tendon the knee was fixed at 90° flexion, and 

the ankle was fixed in the neutral position (i.e. 90°) for imaging 

the medial gastrocnemius tendon junction. An echo-absorptive 

marker was placed between the probe and the skin to act as a 

fixed reference from which manual measures of elongation 

could be made. Ultrasound images were then taken in DV 

format via s-video output and captured into PC at 25 frames 

per second using Quintic Biomechanics (9.03 v 11) software. 

Scaling in pixels per mm was determined from ImageJ 

software by using the known depth of field in the ultrasound 
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images, (1 mm = 9.20 pixels or 1 pixel = 0.108696mm) and 

utilised as a calibration factor in the automated tracking 

programme to ensure equivalent pixel to mm ratios. 

 

In order to examine the tracking algorithm, passive tendon 

movements were employed, where no tendon deformation 

would be expected, hence the simplest task for the algorithm. 

Contraction start was defined as frame zero for the passive 

trials. End of contraction was seen when movement stopped for 

the passive trials. The same criteria or frame range was used 

for all similar trials. The purpose of the passive probe 

movement experiment (Transducer probe moved proximally 

over the skin surface within a 20mm range. - PM) was to 

examine the initial measurement of the automatic tracking 

method, compared with the manual tracking method. Here a 

good match should be expected if the algorithm is able to 

‘template match’ and hence track the speckle pattern in 

successive frames. These tests used one and 2 ROI for 

comparison purposes. For 1-ROI, theidentified region was 

determined frame to frame and the displacement also measured 

manually from its position in the first frame. For the 2ROI 

passive tests, if the algorithm tracks successfully, any 2 regions 

should show a zero net movement (relative movement). A total 

of ten trials were carried out for both 1 and 2 ROI experiments. 

ROI displacements were measured at every ten percent of the 

total frame number for each trial. 

 

Active movement (Applied ramped voluntary contractions at 

both knee and ankle with the knee flexed to an angle of 900  

and ankle in neutral, transducer probe fixed static at the skin 

surface.- AM), examined both the patellar and medial 

gastrocnemius tendons, resulting in tendon stretch (See figure 

1a and b). Voluntary forces were ramped manually over 3-4 

seconds and recorded along with the ultrasound images. Co 

contraction was accounted for by recording the emg in the 

antagonist muscles (Hamstrings and tibialis anterior), where 

net torque = external torque + co contraction torque. Tendon 

forces were calculated by dividing all net torques by the 

respective moment arms. All excursion records were then 

determined at ten percent intervals of maximal voluntary force 

up to maximum. Here only 2 ROI were examined whereby one 

region was put onto the echo absorptive marker and the other 

on identifiable landmark within the tendon (Gastrocnemius 

muscle tendon 

junction and just distal to the inferior pole of the patellar on the 

inferior aspect). Again a total of ten trials were carried out for 

the 2 ROI experiments. For the active trials start was defined 

where force was zero and end where a force plateau was 

reached. 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows the tracking node points (ROI), a) 2-ROI nodes 

patellar tendon tracking b) 2-ROI nodes medial gastrocnemius.  

Where the first frames hold the initial points and the relative 

displacement of the points in subsequent frames determines the 

tendon displacement. 

 

The tracking algorithm calculated the Normalised Correlation 

Coefficient (NCC) of the ROI and the same – sized region, 

centred on each pixel in a surrounding search window in the 

following frame (See Figure 1). The NCC was used in 

preference to other measures because it was found to be more 

sensitive to speckle tracking in ultrasound images (Revell and 

McNally, 2005). As this was a time consuming process, the 

search times were reduced by using the traditional Three Steps 

Searching (TSS) algorithm developed by Koga et al (1981). 

This algorithm was developed for motion estimation in video 

compression applications, where the movement could be in any 

direction and employed a rectangular search window of 2 x 

ROI size for the width and 1 x ROI size for the height. If the 

threshold for the NCC (0.95) was not reached or exceeded then 

the ROI was not moved in the subsequent frame. If the NCC 
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found a new region i.e. r >0.95 then the process started again 

with the new updated position for the template match in the 

next frame i.e. adaptive NCC implementation. This increases 

the ability to match where the template changes as when the 

tendon deforms with stretch. 

 

Tests used a pixel ROI area of 15x15 (2.66mm2), this gave 

optimal tracking results compared to larger and smaller areas 

for the structures examined (data not shown). For 1-ROI, the 

distance moved from the initial start point node (P1initial) to 

the successive frames was determined (P1j) and plotted against 

the manually measured displacement. For 2-ROI the position 

of P1initial and P2initial was then tracked until it reached the 

last frame. The position of the nodes relative to each other 

across the subsequent frames was measured (P1j - P2j), the 

accumulative relative displacement between nodes was plotted 

(manual vs. automatic tracked). 

 

T tests were used to determine differences from zero 

displacement for the 2 ROI passive measures, and to compare 

all other automatic tracking with manual measures. Intraclass 

correlation coefficients (ICCs) were determined to examine the 

reliability of the manual measures. Bland-Altman plots were 

determined with 95% limits to examine the level of agreement. 

Alpha level was set to p< 0.05. All data are presented as mean 

± SEM. 

  

 

Results 
Repeat tests of the manual measures for tendon excursion gave 

an ICC of 0.991. 
 
Passive movement of the probe allowed examination of either 

displacement of two ROI relative to each other or 1 ROI as the 

probe moved over the region. The 2-ROI automatic tracking 

passive test for the patellar tendon showed a mean value close 

to zero displacement (0.010 ± 0.040 mm), manual measures 

gave a mean value of - 
0.005 ± 0.040 mm, both results were not significantly different 

from zero (p=0.53; 0.75) for the automatic and manual 

measures respectively. The 2-ROI automatic test for the medial 

gastrocnemius tendon, also showed a mean value close to zero 

displacement (-0.020 ± 0.040 mm), with manual measures 

giving a mean displacement of -0.030 ± 0.060 mm. Neither the 

automatic nor the manual measure was significantly different 

to zero (p=0.14; 0.15) respectively. 

 

For determination of a simple tendon displacement trial during 

passive movement, 1 ROI was utilised. Comparisons between 

manual and automated tracking with 1 ROI for passive probe 

movement (PM) indicated that there were no significance 

differences (p = 0.06) between the tracked ROI and the manual 

method. For the patellar test, automatic tracking gave a total 

displacement of 7.50 ± 0.60 mm vs. the manual measure of 

7.66 ±1.63 mm. An excellent and significant correlation 

between methods was shown (r=0.99; p<0.05), with the Bland-

Altman plot indicating that the mean difference or bias is very 

small (0.04mm) and that within the 95% confidence limits the 

difference does not exceed 0.17mm, a very small difference 

across the range of measurements (See Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the comparisons of the 1-ROI passive tracking 

between automatic vs. manual measures of patellar tendon.  a) 
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Relationship between manual and automatic tracking, 

compared at 10% intervals of total frame count (r = 0.998; 

P<0.05).  b) Bland – Altman plot showing mean difference 

(bias) and 95% confidence limits. (lines showing mean 

difference = 0.04 mm, ± 2 SD). 

 

For the medial gastrocnemius tendon test, the automatic 

tracking gave a total displacement of 11.28 ± 1.36 mm vs. 

11.17 ± 1.35 mm for the manual measures, again no significant 

differences were seen between methods (p = 0.79). These 

initial tests confirmed that the automatic tracking method is a 

good match to the manual method for measuring 

displacements, with no significance differences between the 

two. Figure 3 indicates for this data set the relationship 

between measures was significant (r=0.99; p<0.05). The mean 

difference was negligible (0.01mm) and the 95% confidence 

intervals indicated that the maximum difference was 0.5mm. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the comparisons of the1-ROI passive tracking 

between automatic vs. manual measures of gastrocnemius 

tendon. a) Relationship between manual and automatic 

tracking, compared at 10% intervals of total frame count (r = 

0.998; P<0.05). b) Bland – Altman plot showing mean 

difference (bias) and 95% confidence limits (lines showing 

mean difference = -0.01 mm, ± 2 SD). 

 

The active trials consisted of muscle contractions, the resultant 

muscle forces which were generated resulted in tendon stretch, 

and this was tracked and measured manually to determine the 

validity of the automated method. All active testing utilised 2-

ROI. For the patellar tests, here again there were no 

significance differences (p=0.85) between the automatic and 

the manual measurements with a mean displacement value of 

4.88±0.24 mm, compared to 4.59±0.28 mm for the manual 

measures. The scatter plot shows a very good agreement 

between measures (r=0.99; p<0.05) (See figure 4). Bland-

Altman plot giving a bias of 0.005mm and indicating no 

greater difference at a 95% confidence than 0.4mm. 
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Figure 4 shows the comparisons of 2-ROI active tracking 

between automatic vs. manual measures of patellar tendon. a) 

Relationship between manual and automatic tracking, 

compared at 10% intervals of maximal voluntary force (r= 

0.994; P<0.05). b) Bland – Altman plot showing mean 

difference (bias) and 95% confidence limits (line showing 

mean difference = 0.005 mm, ± 2 SD). 

 

For the medial gastrocnemius tendon, automated tracking gave 

a mean displacement value of 16.42±0.85 mm, vs. 16.68±0.86 

mm for the manual measures. No significant differences were 

seen between measures (p = 0.95) indicating a good general 

agreement. The scatter plot indicates again an excellent 

relationship between measures (r=0.99; p<0.05) (See figure 5). 

Bias between measures was negligible (0.002mm), with the 

maximum difference of 0.81mm. 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 5 shows the comparisons of 2-ROI active tracking 

between automatic vs. manual measures of gastrocnemius 

tendon. a) Relationship between manual and automatic 

tracking, compared at 10% intervals of maximal voluntary 

force (r=0.997; P<0.05). b) Bland – Altman plot showing the 

mean difference (bias) and 95% confidence limits (line 

showing mean difference = 0.002 mm, ± 2 SD). 

 

 

Discussion 
The results from the passive tests in this study showed that the 

automated algorithm enabled effective tracking of a region of 

interest within the image window when compared to the 

manually measured results. Here the net movement of 1-ROI’s 

measured using manual and automated tracking were not 

significantly different from each other for both the patellar with 

a 2% difference in the total displacement (p=0.06) and medial 

gastrocnemius showing an approximate 1% difference 

(p=0.79). The 2-ROI passive tests showed no significant 

differences to zero for both the patellar and medial 

gastrocnemius tendon displacements (p=0.53; 0.75 and p=0.14; 

0.15) for the automatic and manual methods respectively. 
 
For the active tests the errors were expected to be larger due to 

the tendon being dynamically stretched during muscle 

contraction, causing some deformation and making automatic 

tracking more demanding. This was indeed found to be the 

case with the maximal differences (bias) determined for the 

active tests at 0.4 and 0.81mm for the patellar and medial 

gastrocnemius junction respectively. These were still 

considered relatively small differences between the methods, 

the correlations indicating excellent general agreement (Figures 

4 and 5). 
 
The tests carried out here are the first to directly compare 

automated tracking with manually measured tendon excursion 

during maximally loaded voluntary contractions. Lee et al. 

(2008) discussed comparisons of ‘lightly’ loaded in vivo 

tendon excursions using an automated tracking method and 

manual measures. But they did not make clear the manual 

approach or indeed the reliability of the manual method. This 

aside they reported absolute errors of ~ 0.5mm, similar to that 

seen here. However, our RMS percent errors were smaller than 

those reported by Lee et al. (2008) with 3.2% seen here 
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compared to 5.9% reported by Lee and co workers. Although a 

limitation of the present study may be that the measures were 

made on only one subject, differences in image quality across 

subjects may affect the agreement or the ability of the 

algorithm to track regions effectively. However carrying out 

the trials on two distinct tendons with different morphologies 

shows the robustness of this procedure. 
 

Fukunaga et al. (1996) were the first to utilise and validate in 

vivo muscle tendon movements using ultrasonography and 

manual tracking, this involved voluntary contraction of the 

dorsi- and plantar flexors whilst monitoring the associated 

ankle and muscle insertion displacements. The movement of 

the fascicle insertion point was seen to be highly correlated 

with the ankle angular displacement (r=0.93 to 0.97). Since 

then a number of authors have examined aspects of tendon 

mechanical properties using the manual method to determine 

tendon excursion during loading (Hansen et al. 2006; 

Onambélé et al. 2007; Pearson et al. 2007). The utility of 

having the ability to automatically track tendon displacement is 

seen in the limitation of the manual method which requires a 

known landmark to follow during tendon movement. It is not 

known if the tendon is homogenous with respect to its 

mechanical properties, as the current method only allow for an 

‘average’ value to be determined from the total tendon 

excursion. Use of the automatic tracking algorithm as here, 

enables examination of specific areas of the tendon to ascertain 

for example site specific strain. 

 

Our findings showed that for passive movements the tracking 

accuracy was within 1-2% of the manual values and active 

movements within 2.4-3.2% which is comparable to the 

displacement errors reported by Maganaris et al. (2000), 0.8-

2.5% in the tendon and 2.1-7% in the aponeurosis. A more 

recent study (Farron et al., 2009) reported that the speckle 

tracking method was able to estimate frame-to-frame 

displacements using 2-ROI end points by tracking the 

movement of tendon during twitch contractions. However, as 

the tracking was carried out during twitch contractions by 

electrically stimulating the muscle, the forces in the tendon 

were only moderate (up to 50% of maximum) which is a major 

difference to the approach here where high forces were elicited 

and thus larger tendon deformations would be expected making 

the tracking potentially more demanding. 

Where others have utilised an automated algorithm to examine 

tracking there have been reported errors of <10% (Dilley et el. 

2001). Here the transducer probe was moved within a 1-3 mm 

range over the surface of the forearm. Whilst, Magnusson et al. 

(2003) tracked a needle sliding 10 mm through gel with mean 

error of 2%, similar to the errors of 2% reported using cross-

correlation to track wire oscillating in water (Loram et al., 

2006). These are similar to our passive trials and give similar 

errors or differences to the manual method as we report here 

(up to 2%). 

 

In summary, this method shows for the first time the utility of 

an automated tracking programme to determine tendon 

excursion during maximally loaded in vivo contractions by 

contrast with the standardised manual measurement method. 

Hence, it has the potential to improve clinical knowledge 

relating to the tendon mechanical properties by enabling 

discrete tendon mechanical properties to be determined. 
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Running head: In Vivo regional human patellar strain 

 

Abstract 
Purpose: Characteristics of localised tendon strain in vivo are 

largely unknown. The present study examines local tendon strain 

between the deep, middle and surface structures at the proximal 

and distal aspect of the patellar tendon during ramped isometric 

contractions. 

 

Methods: Male subjects (aged 28.0 ± 6.3) were examined for 

patellar tendon excursion (anterior, midsection, posterior) during 

ramped isometric voluntary contractions using real time B-mode 

ultrasonography and dynamometry. Regional tendon excursion 

measurements were compared using an automated pixel tracking 

method. Strain was determined from the tendon delta length 

normalised to initial/resting segment length.  

 

Results: Strain increased from 10-100 % force for all regions. 

Significantly greater mean strain was seen for the anterior 

proximal region compared to the posterior and mid layer of the 

tendon (7.46±1.11% vs. 3.74±0.51% vs. 5.49±0.99%; P<0.05). 

Similarly the distal posterior region showed greater mean strain 

compared to the mid and anterior regions (7.88±0.85% vs. 

4.98±0.88% vs. 5.36±0.71%; P<0.05). Relative changes in 

strain differences from 50-100 % force for proximal were 

greatest for the anterior to midline regions (4.62±0.61%, 

5.61±0.61%) and for the distal were also greatest for the 

anterior to midline regions (4.35%±0.22%, 5.28±0.22%). The 

largest mean strain for the proximal region was at the anterior 

layer (7.46±1.11%), and at the posterior layer for the distal 

tendon (7.88±0.85 %).  

 

Conclusions: This study shows significant regional differences in 

strain during ramped isometric contractions for the patellar tendon. 

Lower proximal strains in the posterior tendon compared to the 

anterior region may be associated with the suggestion of ‘stress 

shielding’ as an aetiological factor in insertional tendinopathy. 

 

Key Words: In vivo; tendon; regional structural properties; 

ultrasound 

 

Introduction 
Tendon is described as a viscoelastic structure and has been 

shown to have characteristic strain approximating linearity 

over a range of physiological loading (29). With increased 

strain there is a risk of damage to the tendon structure, leading 

to tears and ultimately rupture. Previous in vivo work using 

non invasive ultrasound imaging has described the patellar 

tendon properties in terms of its stiffness (extension per unit 

load) and associated strain values during voluntary contractions 
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(5, 10, 28). However the previous work has limitations in that 

the methods used to determine the values shown are in relation 

to the whole tendon and as such do not represent the 

mechanical properties of discrete portions of the tendon. 

Indeed previous studies have highlighted the non uniform 

nature of the human tendon with respect to cross sectional area 

(11, 12, 15, 25). Assuming similar forces in the tendon, this 

would indicate that the stress (force per unit area) is different 

along the tendon structure. If the tissue is homogenous then the 

strain may well be region specific. However, it may be that the 

loading is not homogenous along the tissue and that the strain 

may indeed be equivalent in line with the differences in cross 

sectional area. In any case if strain is not uniform it may 

indicate shear loading which could lead to excessive micro 

trauma or tears and cumulative damage of the tendon structure. 

 

Tendon like muscle is able to alter its mechanical properties in 

response to loading. It comprises mainly of collagen fibrils and of 

which the predominant form is type I. These collagen fibrils play a 

major role in the characteristic mechanical properties of the 

tendon. It is known that collagen turnover is responsive to loading 

and will increase or decrease its turnover rates accordingly. The 

effect of increased loading and concomitant increased tendon 

collagen has been shown previously in animals (18) and also in 

humans in response to acute (26), and chronic exercise (20, 32). 

 

It is not unreasonable to assume that the tissue which is 

metabolically active could be non homogenous in terms of the 

collagen turnover rates, leading to potential regional differences in 

mechanical properties. For example recently, Couppé et al. (7)  

reported differential hypertrophy of the patellar tendon along its 

length in comparison to the contralateral (i.e. non-dominant) 

tendon in athletes who had a tendency to display a dominant limb. 

Similarly in human subjects, Carroll and co workers reported 

regional differences in tendon cross sectional area (csa) with the 

proximal patellar tendon showing greater csa compared to the mid 

and distal regions (5).  

 

It has previously been suggested that the patellar tendon is 

‘differentially’ stimulated during loading leading to ‘overuse’ 

type problems as in tendinopathy (24). This pattern is seen 

often at the proximal posterior portion of the patellar tendon. 

Of the few studies carried out examining regional patellar 

strain in cadaveric knee flexion models, one reported greater 

anterior strain; in contrast the other stated the posterior portion 

experienced greater strain (1, 3). 

 

Tendinopathies have described as being associated with 

overuse, where continued excessive loading leads to eventual 

tendon degradation via accumulated micro damage (21).  

However, ‘stress shielding’ has been suggested as an 

alternative explanation for the development of tendinopathy 

(24).  Where insertional tendinopathies are seen there is a 

tendency for the pathology to occur at the posterior or joint 

side of the tendon. Here cartilaginous metaplasia can be seen to 

occur (34), typical with compressive loading, suggestive of non 

uniform strain or loading across the tendon. These tendon 

related anomalies are seen to be implicated in increasing 

number of tendon related functional disabilities in both the 

sporting and non athletic populations and which have a 

tendency to become chronic and degenerative.   Understanding 

of the aetiology of tendinopathies is poor and as such treatment 

and rehabilitation modalities are not well defined. 

 

To date, there are limited numbers of validated techniques to 

measure discrete tissue movement in vivo without the use of 

identifiable landmarks (9). The use of block matching 

techniques to measure tissue movement has been utilised 

previously to measure tissue movement (8, 23, 27). Dilley (8) 

has also shown that an optical flow technique can be used to 

study tissue displacement. However, optical flow performs 

better with smaller frame to frame displacements compared to 

speckle tracking. The design of tracking algorithms requires 

the capability of the algorithm handle both small and large 

frame-to-frame displacements in order to maintain accuracy.  

Where monitoring of tendon displacement during voluntary 

contractions is required, there are a number of ways to reduce 

frame to frame displacement; either ensure the ramped 

contraction is slow enough to reduce frame to frame 

displacement for a given frame rate, or increase the frame 
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acquisition rate to give a smaller frame-to-frame displacement. 

The region block is needed to capture a unique speckle pattern, 

this is important as tendons have a typical striated speckle 

pattern when compared to other tissue area. The size of the 

region of interest block has to be an optimum size, a relatively 

smaller block being less susceptible to deformation but local 

artefacts with an ambiguous pattern may be seen, whilst larger 

blocks may contain a less ambiguous and unique pattern, but 

during rapid motion, the pattern in the block may deform more 

leading to lower correlation.  

 

The method described here allows for the quantification of the 

mechanical properties of the tendon at discrete regions of interest 

within the intact tendon structure. Thus it may allow for the 

sensitive identification of patterns of strain and associated changes 

within the tendon prior to injury, during rehabilitation or with 

disease, which cannot be identified using the method outlined in 

previous work. Detailed characterisation of the tendon may allow 

for further insight into the aetiology of tendon injury, repair and 

response to various training interventions.  

 

Due to the previous observations and suggestions of differential 

loading of tendon structures we hypothesise that under ramped 

maximal isometric loads the patellar tendon will show regional 

differences in strain between the deep and superficial layers and 

that the proximal and distal tendon will exhibit characteristic 

differences in strain patterns. 

Therefore the purpose of this present study was to: 

• Examine proximal and distal localised strain across the 

anterior, mid and posterior patellar tendon using 

automated speckle tracking of dynamic ultrasound images 

of in vivo human patellar tendon tissue during ramped 

isometric loading. 

The ultimate objective being for this work to contribute towards a 

much more detailed picture of the tendon in injury, repair and in 

response to various training interventions. This detailed 

understanding will allow for more effective screening, 

rehabilitation and injury prevention strategies to be put in place. 

 

Methods 

Subjects and experimental design 
Sixteen healthy limbs were used for data collection in this 

study from healthy male subjects (age 28.0 ± 6.3 years, height 

1.7 ± 0.04 m and body mass 79 ± 5.4 kg).  The local Ethics 

Committee approved the investigation and all participants gave 

written informed consent to participate. The study conformed 

to the principles of the World Medical Association’s 

Declaration of Helsinki.  

 

A 7.5 MHz 100mm linear array, B-mode ultrasound probe 

(Mylab 70, Esaote Biomedica, Italy) with a depth resolution of 

67mm was used to image the patellar tendon in the sagittal 

plane, the knee was fixed at 90° flexion. Ultrasound images 

were then taken in DV output and captured at 25 frames per 

second. Scaling in pixels per mm was determined from Image J 

software by using the known depth of field in the ultrasound 

images, (1 mm = 11 pixels) and utilised as a calibration factor 

in the automated tracking programme to ensure equivalent 

pixel to mm ratios.  

 

The tendon was imaged during ramped voluntary contractions the 

transducer probe was fixed statically at the skin surface. 

Torque output during isometric quadriceps contraction was 

determined using a dynamometer (Kin Com, type 125 AP, 

Chattanooga, USA), with the participant in a seated position. 

The knee was fixed at 90o flexion (full extension = 0o) and hip 

at 85o (supine = 0o) and a lever attachment cuff was placed on 

the lower leg at ~3cm above the medial malleolus. Three 

maximal isometric quadriceps contraction efforts were carried 

out to ensure tendon preconditioning prior to the test. 

Participants were instructed to perform ramped isometric 

contractions from rest to maximum over a 3-4s time period. 

Three trials of the knee extension test were performed with 

180s rest between contractions. Mean values of strain for the 

three contractions for each individual were used for subsequent 

analysis. The ultrasound output was synchronized (using an 

electronic square wave signal generator) with the torque 

records to allow temporal alignment. Electromyography 

determined any co contraction, which was added to the net 



183  

knee extension torque to give total torque. The EMG of the 

long head of the biceps femoris muscle (BF) was measured in 

order to ascertain the level of antagonistic muscle co-

contraction during the isometric knee extension (30). 

Assumptions were that BF is representative of its constituent 

muscle group (4) and that the BF EMG relationships with knee 

flexors torque is linear (22). Briefly, a series of three maximal 

isometric knee flexion contractions were carried out to obtain 

theEMG at maximal flexion torque. The root mean square 

EMG activity corresponding to the peak torque period was 

analysed over 50 ms epochs and averaged for a 1 s period 

during the plateau of peak torque. This has previously been 

suggested to be acceptable in terms of signal-to noise ratio 

(13). Electromyographic activity of the BF during knee 

extension was divided by the maximal flexor EMG, and the 

maximal flexor torque was then multiplied by this value to 

determine co-contraction torque. 

 

 Patellar tendon force was determined then by dividing the total 

torque by the patellar lever arm (determined from the literature - 

(19, 33)). Captured greyscale ultrasound images gave region 

attributes (dimensions, position coordinates, and greyscale pixel 

values). In the compared frame, the coordinates of the region of 

interest (ROI) were offset along the horizontal and vertical image 

plane, and shifted by a pixel at a time.  

 

Tracking algorithm 
A block matching algorithm with normalized cross-correlation 

(NCC) (Eq. 1) was used as the search schema  to determine 

similarity between subsequent frames. Multiple search blocks 

(regions of interests -ROIs) were placed manually on the 

regional layers of the tendon (proximal and distal). The ROI’s 

on the proximal and distal tendon were divided into three 

layers; anterior (layer 1), mid (layer 2) and posterior (layer 3) 

(see figure 1).  These are then utilised to determine the relative 

excursion from the initial start point and also to calculate strain 

for the specific force levels. An optimal ROI size was used 

(15x15 pixel based on pilot work) to track multiple layers of 

the tendon with the search window for each ROI fixed at 

2xROI size for the width and 1xROI for the height. Multiple 

ROIs (6) of the same size as the initial ROIs are distributed 

along the selected ROI layers to calculate the average 

displacements to help improve accuracy during frame-to-frame 

tracking. For frame to frame movements of the ROI, within 

each search window the ROI’s were displaced by 1 pixel at a 

time compared with the original ROI in the previous frame and 

evaluated using NCC. The results of which are stored in a 

matrix and best matches based on peak detection (i.e. highest 

correlation value). To reduce the chances of the decorrelation 

the correlation threshold value was set to above 0.9. If the 

threshold value was not reached or exceeded, then the ROI was 

not moved in the subsequent frame. Otherwise the tracking will 

start with the new updated position of the template ROI blocks 

in the next frame. 
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where,F1 refers to the image block of the initial frame and F2
is the image block of the subsequent frame. n and m refer to the 

number of pixels with k and l represent the coordinate of the 

image block, while i and j refer to the displacements in the 

axial and lateral directions. ρnm k ,l( ) represents the normalized 

correlation ranging from -1 to 1 and 1 being the closest match.  

 

The test comprises of two regions of interests (2-ROI) R1 and 

R2 (see figure 1), tracked from the initial frame until they reach 

the last frame. The determined measurement of the 

displacement is the difference of the distance of two nodes at 

10 % intervals of force up to 100 % MVC. For all repeat trials 

(three) the initial positions of the ROIs were the exact same 

reference point in the frame.  
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Figure 1. Regional tracking of ROIs (R1 & R2-arbitrary pixel 

regions in the tendon) by layer (1,2 and 3) on a typical tendon 

excursion on both proximal (A) and distal (B) showing shift in 

the ROI's from the resting tendon, at 50% force and 100% 

force. 

 

The measurements taken for the tests are classified into six 

parts, proximal anterior tendon excursion (PS), proximal 

midline tendon excursion (PM), proximal posterior tendon 

excursion (PP), also distal anterior tendon excursion (DS), 

distal midline tendon excursion (DM) and distal posterior 

tendon excursion (DP). The movement in each layer for each 

frame is determined by measuring the distance of x and y for 

both R1 and R2 regions from initial frame (f1) to frame (fn). 

The resultant displacement for each layer is measured by 

subtracting the distance of the frame (fn) with the initial frame 

(f1) as formulated in (2). Strain measurement is thus the change 

in length divided by the initial length of the tendon (I). All 

initial proximal and distal regions were aligned vertically to 

enable quantification of any differences in regional strain 

within a localised site of the tendon. 
 

           (2) 

 

 

Statistics 
Intraclass correlation coefficients (ICCs) were determined to 

examine the reliability/robustness of the measures by carrying 

out repeated tracking on the full data set at each 10% increment 

of force. A number of tracking correlation thresholds ranging 

from value of 0.8 to 1.0 were tested previously and for this 

experiment the value of 0.9 was found to be optimal in terms of 

tracking the pattern correctly, which is presented as speckle. 

The value of 0.8 shown to be more sensitive (less robust to 

variation) to any changes of the speckle pattern around the 

searching area and prone to track other movement, while the 

value of 1.0 shown to be less sensitive (too robust to variation) 

and restricted to exactly match the initial pattern. Between 

region comparisons (all regions being independent) for all 

strain (dependant variable) measures (at given levels of force - 

10% increments) were carried out using two way ANOVA and 

Bonferroni post hoc pairwise tests. Alpha level was set to 

P=0.05. All data are presented as mean ± standard error of the 

mean (SEM). Sample size was determined using G power 

(3.09, Franz, Faul, Universitat, Keil, Germany).  For a power (

1− β ), of 0.95, and moderate effect size (0.2), a sample size 

of 15 was calculated. 

 

 

Results 

Reliability  
Repeat tests of the measures for tendon excursion at all layers 

and forces gave an ICC of 0.9. 

 

Proximal tendon strain 
All layers showed increased strain across the forces levels from 

10-100% (P<0.01) (Figure 2).  The analysis also revealed an 

interaction of force by layer.  Subsequent one-way ANOVA 

showed no significant difference (P>0.05) at force levels 50-

60% and 90-100% for the anterior layer. No significant 

difference (P>0.05) at force levels 40-60% for the mid layer. 

The posterior layer showed no significant difference (P>0.05) 

at force levels 30-60% and 70-100%. 

 
Figure 2: Strain values for all measured proximal regions 

(mean ± SEM) at 10 - 100% MVC. Mean Strain anterior layer 

shows no significant differences (P>0.05) at the force levels 

indicated by *. Mean midline shows no significant differences 
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(P>0.05) at force levels indicated by ~. Mean posterior layer 

shows no significant differences (P>0.05) at force levels 

marked by ^. 

 

 

Distal tendon strain  
Similar to the proximal strain, it can be seen in figure 3 that all 

distal layers showed increased strain across the forces levels 

from 10-100%.  Analysis revealed significant increase in strain 

with force (P<0.01), the mean values for the posterior layer 

strain were seen to be greater than anterior strain (7.88±0.62% 

vs. 5.36±0.62%; P=0.01). Posterior strain was also greater than 

midline strain (7.88±0.62 % vs. 4.98±0.62%; P<0.01). No 

interaction between layer and force was shown.  

 
Figure 3: Mean strain significantly increased with force level 

(P<0.01). Mean anterior strain was greater than posterior strain 

(P=0.01). Mean midline strain was also greater than the mean 

posterior strain (P<0.01). 

 

Figure 4 illustrates instantaneous regional strain values at 50% 

and 100% force. Overall mean strain was greater at 100% 

compare to 50% strain (9.77±0.34%, 5.33±0.34%). No 

interaction was seen between force level and region (p>0.05). 

Pooled values for strain indicated that proximal anterior and 

distal posterior strains were greater than all regions (p<0.05). 

Proximal midline strain was also significantly different to 

proximal posterior strain (see table I).  

 
Figure 4: Instantaneous Strain values for all layers at both 

proximal and distal regions of the patellar tendon at 50% and 

100% force. Pool means strain of proximal anterior was 

significantly different to regions other than distal posterior (*; 

P<0.05). Pool means strain of distal posterior was significantly 

different to regions other than proximal anterior (^; P<0.05). 

 

Force (%) 

Strain (%) 

  Proximal Distal 

Anterior Midline Posterior Anterior Midline Posterior 

50 7.24±1.15 4.69±1.15 3.32±1.15 4.61±1.14 4.27±1.14 7.84±1.14 

100 11.86±1.76 10.30±1.76 5.98±1.76 8.96±0.92 9.55±0.92 11.96±0.92 

Difference 4.62±0.61 5.61±0.61 2.66±0.61 4.35±0.22 5.28±0.22 4.12±0.22 

Pooled Mean 

 Values 
9.55±0.36 7.50±0.56 4.65±0.52 6.79±0.57 6.91±0.52 9.90±0.54 

 

Table I. Instantaneous strain values at 50% and 100% with its 

relative difference and corresponding pooled mean values for 

all layers at both proximal and distal regions of the patellar 

tendon. These differences in strain between 50% and 100% 

could indicate shear between the tendon boundary layers. 

 

Proximal anterior and distal posterior were seen to have 

significantly greater total mean strain than all of the regions 

(7.46±1.11%, 7.88±0.88%; P<0.05). Also, the distal anterior 

region showed greater total mean strain in comparison to the 

proximal posterior region (5.49±0.99% vs. 3.74±0.51%; 

P=0.02) (See figure 5).  

!
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Figure 5. Total mean strain at all layers for both proximal and 

distal regions of the patellar tendon. Mean strain at proximal 

anterior was significantly different to regions other than distal 

posterior (*; P<0.05). Distal posterior is significantly different 

to regions other than proximal anterior (^; P<0.01). Proximal 

posterior was significantly different to distal anterior (~; 

P=0.02). 

 

 

Discussion 
The current study aimed to examine and compare localised 

proximal strain at both the anterior and posterior regions of the 

patellar tendon.  The findings show that in the patellar tendon 

for a group of healthy young subjects the greatest mean strains 

during isometric ramped contractions were seen in the anterior 

layer at the proximal end (7.46%) and posterior layer at the 

distal end (7.88%) (see figure 5).   

 

Of particular interest was the finding that for the proximal and 

distal tendon, there were significant differences between the 

layers of tendon examined. Here the strain being greatest in the 

anterior layer and least in the posterior layer for the proximal 

tendon, and greatest in the posterior layer for the distal tendon 

(see figure 4).  

 

Speckle tracking has been utilised previously to estimate tissue 

velocity and hence relative excursion. A number of studies 

have attempted to utilise commercially available speckle 

tracking programmes to determine tendon excursion compared 

to doppler methods and reported speckle tracking to be 

superior (35, 36). Others have utilised a custom developed 

speckle tracking programme to estimate tendon movement 

during both active and passive movements without any 

mention of validation against a standard measure (16). These 

studies report that speckle tracking may be useful to allow for 

estimation of tendon movement in vivo. 

 

Previous studies have validated the use of localised tracking of 

tendon using block matching techniques similar to that used 

here (14, 17, 31). Korstanje et al. (17) reported relatively small 

errors of up to 1.6% when attempting to track an in vivo 

structure. Here we also show very good repeatability of 

tracking data indicating a very good agreement with other 

reports of measurement. A recent study (9) reported that the 

speckle tracking method was able to estimate frame-to-frame 

displacements using 2-ROI end points by tracking the 

movement of tendon during twitch contractions. However, as 

the tracking was carried out during twitch contractions by 

electrically stimulating the muscle, the forces in the tendon 

were only moderate (up to 50% of maximum) which is a 

major difference to the approach here where high forces were 

elicited and thus larger tendon deformations would be 

expected making tracking more difficult. In addition, previous 

work has indicated that contraction time can affect the amount 

of excursion seen in the tendon (29), this can be explained due 

to the viscoelastic nature of the tendon. It could then be 

speculated that the composition of the tendon at different 

regions may be proportionally different in terms of the viscous 

and elastic components, which would affect the time-course of 

extension under load to different degrees. 

 

The determined mean strains reported here at MVC (~ 7.5 – 

7.9%) for the tendon were within the range of those reported 

for this structure in young males (5, 10, 28) these previous 

references showing a range of 6 – 10.6%. The anterior and 

posterior regional strains have been previously reported in 

cadaveric specimens (3), here strain values at a load of 1KN 

were 1.7 % and 3.2% for the anterior and posterior regions 

respectively. In the present study we report values of 7.46 and 
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3.74% for the proximal anterior and posterior tendon strain, 

while distal anterior and posterior show 5.36 and 7.88% tendon 

strain respectively (see figure 4), which are considerably larger 

than those reported by Basso and co workers. This may in part 

reflect differences in the level of load, application of load and 

also that we determined the strain in the proximal half of the 

tendon compared to the mid third utilised by Basso and co 

workers. It may be that the tendon is not homogenous 

throughout its length and could be structurally different in 

terms of the collagen content, type and extracellular matrix 

density. In addition to this the samples used by Basso were 

from cadavers, these may not accurately reflect the values for 

‘live’ tissues as measured here.  

 

 Others have also indicated that regional layer differences exist 

in strain within a tendon. A study utilising speckle tracking to 

estimate in vivo tendon strain, examining layer differences in 

strain of the supraspinatus tendon during isometric and isotonic 

efforts, reported that the superficial layer of the tendon showed 

greater strain relative to the deep layers (14). Also during 

passive plantar dorsi flexion of the ankle it was seen that the 

Achilles tendon showed greater relative displacement of the 

deep portion of the tendon in comparison to the superficial and 

mid portions (2). 

 

 Recently, Hansen et al. (11) showed that tendon fascicles from 

the anterior tendon were in fact stiffer and stronger with less 

mature pyridinium type cross-links relative to fascicles from 

the posterior tendon region. These data however, were from 

ACL surgery patients and it is not known to what degree these 

would be representative of the ‘normal’ population. In spite of 

this suggested greater resistance to strain of the anterior tendon, 

due to the lever arm arrangements of the patellar relative to the 

tendon, it may well be that forces are greatest at the anterior 

region due to the lever arm advantage at the patellar surface in 

comparison to the deep layers leading to increased strain for a 

given external force. 

 

 Indeed Almekinders et al. (1) showed larger forces/strains 

present in cadaveric patellar specimens on the anterior portion 

of the proximal tendon. In intact human muscle/tendon systems 

though there is the complex interplay of agonist-antagonist 

interaction, and differences in the mechanical tissue properties 

to that of cadaveric specimens. Any differences in applied 

force, if it is habitual should lead to adaptation of the structures 

under normal circumstances.  

 

In relations to the distal tendon, it has been observed 

previously (unpublished observations by authors) that the tibial 

insertion end rotates inward (posterior) in the sagittal plane 

when forces are generated in the protocol as used here.  Thus 

this ‘twisting’ of the bone attachment could partly cause the 

differential strain as seen here, both between the proximal and 

distal ends and also the layers of the distal end. These different 

patterns of strain between the tendon layers at the sites 

measured could indicate shear of the tendon structure. For 

example, we clearly show greater strain in the anterior region 

for the proximal tendon and posterior region for the distal 

tendon. In addition, the relative strain change (within layers) 

with increased loading (from 50-100 %) (see figure 5) force 

again indicated probability of shear between the tendon layers, 

as each region strain differently at given force levels, thus 

causing differential longitudinal movement between layers 

(shear force). This relative difference in strain at different 

levels of force may in fact be a factor in the development of 

cumulative tendon injury with time.  However, here we would 

also draw attention to the understanding that statistical 

significance alone does not constitute 'clinical' or physiological 

significance, and further studies will have to be carried out to 

elucidate further. In addition all the above reported measures of 

in vivo tendon properties have been carried out at a knee angle 

of 90 degrees, it would be interesting to determine local tissue 

strains at a number of different knee angles to identify if the 

ratio’s of local strains are similar to that at 90 degrees. This 

would present a useful insight into perhaps a more functional 

interpretation of the localised strains as reported here. 

 

 Tendinopathies have been reported to alter the mechanical 

properties of the tendon. Child et al. (6) reported in a group of 

runners with mid portion tendinopathy, an increased 
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compliance of the achilles tendon aponeurosis. If changes such 

as this are seen with specific degenerative states or diseases it 

can be seen that a sensitive marker for changes in localised 

tendon strain may be very useful as a predictor of 

disease/degeneration progression. Indeed with further testing 

patterns of ‘change’ or indicators of ‘risk’ may be developed to 

help early intervention or rehabilitation of damaged tendon. 

 

Conclusion 

 

 The method used here has the potential to improve clinical 

knowledge relating to the tendon mechanical properties. It is 

clear that the strain throughout the tendon structure is not equal 

for a given external force, lending itself to tissue shear and 

hence to potential for increase injury risk in specific areas of 

the tendon. Future studies using this methodology will include 

testing of other tendon landmarks, to determine and describe 

discrete tendon mechanical properties, to examine various 

changes of regional tendon stiffness and strain with gender, age 

and in specific disease states (i.e. tendinopathies, diabetes). It is 

for future studies to determine how and why these differences 

in strain may affect the aetiology of disease and effects of 

training rehabilitation. These studies will give further insight 

into the aetiology of tendon injury, repair, response to various 

training interventions and the time course of tissue adaptation 

with disease. 
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Appendix C 
Conference Abstract  

(SPARC 2011) 

Image tracking using normalized cross-correlation to track and analyse 

mechanical tendon properties. 
 

Ahmad Sufril Azlan Mohamed, Professor Tim Rithcings1 , Dr. Stephen J. Pearson 2 
1Control & Systems Engineering Research Centre, University of Salford, Greater Manchester, 

M5 4WT, United Kingdom 
2Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater 

Manchester M6 6PU, United Kingdom 

 

The use of two-dimensional ultrasound can be optimised using image-tracking 

algorithm to track and observe the characteristics of the tendon muscle. Detailed characteristics 

of the tendon allows for insight into the aetiology of the tendon injury, repair and response to 

various training interventions. Although there have been numerous studies that detailed the in 

vivo tendon mechanical properties these properties are limited to the methods which described 

the whole region of the tendon and not specific to any given regions (Hansen, et al., 2006; 

Pearson, et al., 2007). The method described here allows for the quantification of the 

mechanical properties of regions of interest along the tendon length. Thus it may allow for the 

sensitive identification of changes to the tendon prior to injury or during rehabilitation, which 

cannot be identified using the method outlined in previous work.  

 

The randomness of the speckle pattern in ultrasound ensures that each region of the 

tissue within the imaging frame has its own unique pixel pattern that can differentiate a region 

from other regions. The aim of any tracking algorithm is to attempt to identify the pixel 

‘signature’ between subsequent image frames. Under ideal conditions the tissue would not 

change its ultrasound echo from frame to frame i.e. as during a passive movement where the 

tissue is not expected to distort. However, as the tissue is stretched under load, so it deforms 

and its density changes, altering the ultrasound pattern produced. Hence the pixel signature of a 

region of interest in any given frame may in fact change in the subsequent frames.  
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Recent work employing the Lucas-Kanade method used a synthetic material (i.e. wire 

often called “phantom wire” which was moved a known distance) in an attempt to validate the 

efficiency of measuring muscle excursion automatically (Lee, et al., 2008). The same approach 

was carried out using cross-correlation (Dilley, et al., 2001; Ellis, et al., 2008) to determine 

longitudinal medial nerve movement. Here slight artifactual movements were seen at the end of 

the frame. Revell, et al. (2005), utilised a normalised cross correlation (NCC) of fast fourier 

transformed data to track speckle signatures in ultrasound tendon images as it is suggested to be 

reliable and fast algorithm to track. None of the previous tracking papers have related their 

measurements with the manual method used in the literature (e.g. Pearson, et al., 2007) to 

estimate tendon excursion. In addition, none appear to have utilised high force contractions 

(tendon stretch is relatively large) to test the ability of the tracking algorithm to follow a region 

of interest across successive frames. 

 

Therefore the aims of this present study were to: 

 

• Examine and identify tracking algorithm without the need to use synthetic materials and 

able to track in real-time.  

• Examine a method of tracking regions of interest within the ultrasound images of in vivo 

human tendon tissue during active (highly loaded) tendon movement. 

• Examine and determined optimum tracking regions within the ultrasound images for strain 

analysis using the tracking algorithm. 

• Compare the automated method with the established manual method to ascertain its 

validity. 

 

This work will enable a much more detailed picture of the tendon in injury, repair and in 

response to various training interventions. This detailed understanding will allow for more 

effective rehabilitation and injury prevention strategies to be put in place. 
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Abstract—The work describes an automated method of 
tracking dynamic ultrasound images of tendon movements 
using a Normalized Cross Correlation algorithm, applied to 
the patellar and gastrocnemius tendon. Displacement was 
examined during active and passive tendon excursions 
using B-mode ultrasonography. In the passive test, 2-ROI 
were tracked and showed insignificant deviation from 
relative zero displacement for the knee and ankle. Similarly 
when tracked using 1-ROI showed no significant 
differences. The active tests gave no significant differences 
between automatic and manual methods for both patellar 
and gastrocnemius. This study showed that automatic 
tracking of in vivo displacement of tendon during dynamic 
excursion under load is possible and valid when compared 
to the standardized method. This approach will save time 
during analysis and enable discrete areas of the tendon to 
be examined.  

Keywords—Normalised Cross Correlation, Speckle Tracking, 
Tendon, and Ultrasound.  

 
I. INTRODUCTION  

Detailed characterization of the tendon allows for insight into 
the aetiology of tendon injury, repair and response to various 
training interventions. There have been a number of previous 
works that has detailed the in vivo tendon mechanical 
properties [1, 2, 5, 6]. However, these properties, due to the 
limitations of the methods have been related to the whole 

tendon and not specific to any given region. The method 
described here allows for the quantification of the mechanical 
properties of regions of interest (ROI) along the tendon length. 
Thus it may allow for the sensitive identification of changes to 
the tendon prior to the injury or during rehabilitation, which 
cannot be identified using the method outlined in previous 
work.  

The randomness of the speckle pattern in ultrasound ensured 
that each region of the tissue within the imaging frame has its 
own unique pixel pattern that can differentiate a region from 
other regions. The aim of any tracking algorithm is to attempt 
to identify the pixel ‘signature’ between subsequent image 
frames. Under ideal conditions the tissue would not change its 
ultrasound echo from frame to frame i.e. as during a passive 
movement where the tissue is not expected to distort. However, 
as the tissue is stretched under load, so it deforms and its 
density changes, altering the ultrasound pattern produced. 
Hence the pixel signature of a region of interest in any given 
frame may in fact change in the subsequent frames.  

Fukunaga et al. [4] were the first to utilize and validate in vivo 
muscle tendon movements using ultrasonography and manual 
tracking, this involved voluntary contraction of the dorsi- and 
plantar flexors whilst monitoring the associated ankle and 
muscle insertion displacements. The movement of the fascicle 
insertion point was highly correlated with the ankle angular 
displacement (r=0.93 to 0.97). Since then a number of authors 
have examined aspects of tendon mechanical properties using 
the manual method to determine tendon excursion during 
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loading [5, 6, 14]. The utility of having the ability to 
automatically track tendon displacement is seen in the 
limitation of the manual method, which requires a known 
landmark to follow during tendon movement. It is not known if 
the tendon is homogenous with respect to its mechanical 
properties, as the current method only allow for an ‘average’ 
value to be determined from the total tendon excursion. Use of 
the automatic tracking algorithm as here, enables examination 
of specific areas of the tendon to ascertain for example site- 
specific strain.  

The tendon extension seen during muscle contraction is a 
factor of the loading and loading rate and potentially can be 
large over a typical acquisition period (3-4 seconds) dependent 
on the tendon mechanical characteristics. Hence in order to get 
an optimum match between subsequent frames, the loading rate 
must be relatively low during frame acquisition so that frame- 
to-frame tendon displacement is relatively small, hence 
reducing potential for mismatch. A number of approaches have 
previously been utilized in an attempt to track nerve and tendon 
displacement [2, 7, 10]. Of these, none have utilized maximal 
force efforts where the tendon would be expected to develop 
high levels of strain. Block matching and Normalized Cross 
Correlation (NCC) have been previously utilized [3] whereby 
tendon strain was estimated, and here at only 50% of maximal 
effort.  

This paper utilized a more efficient method of searching in 
conjunction with the NCC algorithm by implementing the full 
search algorithm. None of the previous tracking papers have 
related their measurements with the manual method used in the 
literature [6] to estimate tendon excursion. In addition, none 
appear to have utilized high for contractions (where tendon 
stretch is relatively large) to test the ability of the tracking 
algorithm to follow a region of interest across successive 
frames.  

Therefore the aims of this present study were to examine a 
method of tracking ROI within the ultrasound images of in 
vivo human tendon tissue during both passive (probe 
movement) and active (highly loaded) tendon, and secondly to 
compare in vivo, the automated method with the established 
manual method to ascertain its validity.  

This work will enable a much more detailed picture of the 
tendon mechanical properties in injury, repair and in response 
to various training interventions. This details understanding 
will subsequently allow for more effective rehabilitation and 
injury prevention strategies to be put in place.  

II. METHODS  

The test subject for the study is a healthy recreationally active 
male aged 47 years with mass 91 kg and height 1.81m. The 
local Ethics Committee approved the investigation and the 
subject gave written informed consent to participate. The study 
conformed to the principles of the World Medical 
Association’s Declaration of Helsinki.  

For the comparison analysis between the automatic and manual 

tracking methods, two sites were chosen based on those 
typically utilized in the literature. These were the patellar and 
medial gastrocnemius tendon [1, 5, 6]. A 7.5 MHz 40mm linear 
array, B-mode ultrasound probe (AU5, Esaote Biomedica, 
Italy) with a depth resolution of 49.3mm was used to image the 
patellar and medial gastrocnemius tendons in the sagittal plane. 
For the patellar tendon the knee was fixed at 90° flexion, and 
the ankle was fixed in the neutral position (i.e. 90°) for imaging 
the medial gastrocnemius tendon junction.  

An echo-absorptive marker was placed between the probe and 
the skin to act as a fixed reference from which manual 
measures of elongation could be made. Ultrasound images 
were then taken in DV format via s-video output and captured 
into PC at 25 frames per second. Scaling in pixels per mm was 
determined from ImageJ software (National Institute of Health, 
USA) by using the known depth of field in the ultrasound 
images, (1 mm = 9.20 pixels or 1 pixel = 0.108696mm) and 
utilized as a calibration factor in the automated tracking 
program to ensure equivalent pixel to mm ratios.  

In order to examine the tracking algorithm, passive tendon 
movements were employed, where no tendon deformation 
would be expected, hence the simplest task for the algorithm. 
Contraction start was defined as frame zero for the passive 
trials. End of contraction was seen when movement stopped for 
the passive trials. The same criteria or frame range was used 
for all similar trials. The purpose of the passive probe 
movement (PM) experiment (Transducer probe moved 
proximally over the skin surface within a 20mm range.) was to 
examine the initial measurement of the automatic tracking 
method, compared with the manual tracking method. Here a 
good match should be expected if the algorithm is able to 
‘template match’ and hence track the speckle pattern in 
successive frames.  

These tests used one and 2-ROI for comparison purposes. For 
1-ROI, the identified region was determined frame to frame 
and the displacement also measured manually from its position 
in the first frame. For the 2-ROI passive tests, if the algorithm 
tracks successfully, any 2 regions should show a zero net 
movement (relative movement). A total of ten trials were 
carried out for both 1 and 2-ROI experiments. ROI 
displacements were measured at every ten percent of the total 
frame number for each trial. Active movement (AM) where 
applied ramped voluntary contractions were conducted at both 
knee and ankle with the knee flexed to an angle of 90° and 
ankle in neutral, transducer probe fixed static at the skin 
surface), examined both the patellar and medial gastrocnemius 
tendons, resulting in tendon stretch (Fig. 1).  
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Fig. 1. Shows the tracking node points (ROI), a) 2-ROI nodes 
patellar tendon tracking b) 2-ROI nodes medial gastrocnemius. 
Where the first frames hold the initial points and the relative 
displacement of the points in subsequent frames determines the 
tendon displacement.  

Voluntary forces were ramped manually over 3-4 seconds and 
recorded along with the ultrasound images. Co contraction was 
accounted for by recording the EMG in the antagonist muscles 
(hamstrings and tibialis anterior), where net torque (T) is 
calculated (1):  

 
 
where, Te is the external torque and Tc is the co contraction 
torque.  

Tendon forces were calculated by dividing all net torques by 
the respective moment arms. All excursion records were then 
determined at ten percent intervals of maximal voluntary force 
up to maximum. Here only 2-ROI were examined whereby one 
region was put onto the echo absorptive marker and the other 
on identifiable landmark within the tendon (Gastrocnemius 
muscle tendon junction and just distal to the inferior pole of the 
patellar on the inferior aspect). Again a total of ten trials were 
carried out for the 2-ROI experiments. For the active trials start 
was defined where force was zero and end where a force 
plateau was reached. The tracking algorithm calculated the 
Normalized Correlation Coefficient (NCC) of the ROI and the 

same – sized region, centered on each pixel in a surrounding 
search window in the following frame (Fig. 1). The NCC was 
used in preference to other measures because it was found to be 
more sensitive to speckle tracking in ultrasound images [16]. 
This algorithm (2) was developed for motion estimation in 
video compression applications:  

 
where x,y are the pixel locations, M x N is the size of the 
template, and is the mean feature of I within the search area w 
of the template T shifted to (u,v). As the template T is shifted 
to n-th positions (u,v) where at every position, the zero mean 
image I and the zero mean of the template T have to be 
recalculated simultaneously. Due to the zero mean, NCC 
measures the similarity between -1 to 1, where -1 is assumed as 
a poor match and 1 to be the best match.  

The movement could be in any direction and employed a 
rectangular search window of 2 x ROI size for the width and 1 
x ROI size for the height. If the threshold for the NCC (0.95) 
was not reached or exceeded then the ROI was not moved in 
the subsequent frame. If the NCC found a new region i.e. r 
>0.95 then the process started again with the new updated 
position for the template match in the next frame i.e. adaptive 
NCC implementation. This increases the ability to match where 
the template changes as when the tendon deforms with stretch.  

Tests used a pixel ROI area of 15×15 (2.66mm2), this gave 
optimal tracking results compared to larger and smaller areas 
for the structures examined (data not shown). For 1-ROI, the 
distance moved from the initial start point node (P1initial) to 
the successive frames was determined (P1j) and plotted against 
the manually measured displacement. For 2-ROI the position 
of P1initial and P2initial was then tracked until it reached the 
last frame. The position of the nodes relative to each other 
across the subsequent frames was measured (3) 

 

where the accumulative relative displacement between nodes 
was plotted (manual vs. automatic tracked).  

T-tests were used to determine differences from zero 
displacement for the 2-ROI passive measures, and to compare 
all other automatic tracking with manual measures. Intraclass 
correlation coefficients (ICCs) were determined to examine the 
reliability of the manual measures. Bland-Altman plots were 
determined with 95% limits to examine the level of agreement. 
Alpha level was set to p< 0.05. All data are presented as mean 
± SEM.  
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method of tracking ROI within the ultrasound images of in 
vivo human tendon tissue during both passive (probe 
movement) and active (highly loaded) tendon, and secondly to 
compare in vivo, the automated method with the established 
manual method to ascertain its validity.  
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will subsequently allow for more effective rehabilitation and 
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The local Ethics Committee approved the investigation and the 
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conformed to the principles of the World Medical 
Association’s Declaration of Helsinki. 
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Italy) with a depth resolution of 49.3mm was used to image the 
patellar and medial gastrocnemius tendons in the sagittal plane. 
For the patellar tendon the knee was fixed at 90° flexion, and 
the ankle was fixed in the neutral position (i.e. 90°) for imaging 
the medial gastrocnemius tendon junction.  

An echo-absorptive marker was placed between the probe 
and the skin to act as a fixed reference from which manual 
measures of elongation could be made. Ultrasound images 
were then taken in DV format via s-video output and captured 
into PC at 25 frames per second. Scaling in pixels per mm was 
determined from ImageJ software (National Institute of Health, 
USA) by using the known depth of field in the ultrasound 
images, (1 mm = 9.20 pixels or 1 pixel = 0.108696mm) and 
utilized as a calibration factor in the automated tracking 
program to ensure equivalent pixel to mm ratios. 

In order to examine the tracking algorithm, passive tendon 
movements were employed, where no tendon deformation 
would be expected, hence the simplest task for the algorithm. 
Contraction start was defined as frame zero for the passive 
trials. End of contraction was seen when movement stopped for 
the passive trials. The same criteria or frame range was used 
for all similar trials. The purpose of the passive probe 
movement (PM) experiment (Transducer probe moved 
proximally over the skin surface within a 20mm range.) was to 

examine the initial measurement of the automatic tracking 
method, compared with the manual tracking method. Here a 
good match should be expected if the algorithm is able to 
‘template match’ and hence track the speckle pattern in 
successive frames.  

 These tests used one and 2-ROI for comparison purposes. 
For 1-ROI, the identified region was determined frame to 
frame and the displacement also measured manually from its 
position in the first frame. For the 2-ROI passive tests, if the 
algorithm tracks successfully, any 2 regions should show a zero 
net movement (relative movement). A total of ten trials were 
carried out for both 1 and 2-ROI experiments. ROI 
displacements were measured at every ten percent of the total 
frame number for each trial. Active movement (AM) where 
applied ramped voluntary contractions were conducted at both 
knee and ankle with the knee flexed to an angle of 90° and 
ankle in neutral, transducer probe fixed static at the skin 
surface), examined both the patellar and medial gastrocnemius 
tendons, resulting in tendon stretch (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Fig. 1. Shows the tracking node points (ROI), a) 2-ROI nodes patellar 
tendon tracking b) 2-ROI nodes medial gastrocnemius.  Where the 
first frames hold the initial points and the relative displacement of the 
points in subsequent frames determines the tendon displacement. 
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was accounted for by recording the EMG in the antagonist 
muscles (hamstrings and tibialis anterior), where net torque (T) 
is calculated (1): 

 

  Τ = Te+Tc  (1)   (1) 

 

where, Te is the external torque and Tc is the co contraction 
torque. 

 Tendon forces were calculated by dividing all net torques 
by the respective moment arms. All excursion records were 
then determined at ten percent intervals of maximal voluntary 
force up to maximum. Here only 2-ROI were examined 
whereby one region was put onto the echo absorptive marker 
and the other on identifiable landmark within the tendon 
(Gastrocnemius muscle tendon junction and just distal to the 
inferior pole of the patellar on the inferior aspect). Again a total 
of ten trials were carried out for the 2-ROI experiments. For the 
active trials start was defined where force was zero and end 
where a force plateau was reached. The tracking algorithm 
calculated the Normalized Correlation Coefficient (NCC) of 
the ROI and the same – sized region, centered on each pixel in 
a surrounding search window in the following frame (Fig. 1). 
The NCC was used in preference to other measures because it 
was found to be more sensitive to speckle tracking in 
ultrasound images [16]. This algorithm (2) was developed for 
motion estimation in video compression applications:  
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where x,y are the pixel locations, M x N is the size of the 
template, and  is the mean feature of I within the search area w 
of the template T shifted to (u,v). As the template T is shifted 
to n-th positions (u,v) where at every position, the zero mean 
image I  and the zero mean of the template T have to be 
recalculated simultaneously. Due to the zero mean, NCC 
measures the similarity between -1 to 1, where -1 is assumed as 
a poor match and 1 to be the best match. 

 The movement could be in any direction and employed a 
rectangular search window of 2 x ROI size for the width and 1 
x ROI size for the height. If the threshold for the NCC (0.95) 
was not reached or exceeded then the ROI was not moved in 
the subsequent frame. If the NCC found a new region i.e. r 
>0.95 then the process started again with the new updated 
position for the template match in the next frame i.e. adaptive 
NCC implementation. This increases the ability to match where 
the template changes as when the tendon deforms with stretch.  

 Tests used a pixel ROI area of 15×15 (2.66mm2), this gave 
optimal tracking results compared to larger and smaller areas 
for the structures examined (data not shown). For 1-ROI, the 

distance moved from the initial start point node (P1initial) to the 
successive frames was determined (P1j) and plotted against the 
manually measured displacement. For 2-ROI the position of 
P1initial and P2initial was then tracked until it reached the last 
frame. The position of the nodes relative to each other across 
the subsequent frames was measured (3) 
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where the accumulative relative displacement between nodes 
was plotted (manual vs. automatic tracked).  

 T-tests were used to determine differences from zero 
displacement for the 2-ROI passive measures, and to compare 
all other automatic tracking with manual measures. Intraclass 
correlation coefficients (ICCs) were determined to examine the 
reliability of the manual measures. Bland-Altman plots were 
determined with 95% limits to examine the level of agreement. 
Alpha level was set to p< 0.05. All data are presented as mean 
± SEM. 

III. RESULTS AND DISCUSSIONS 
Repeat tests of the manual measures for tendon excursion 

gave an ICC of 0.991. Passive movement of the probe allowed 
examination of either displacement of two ROI relative to each 
other or 1-ROI as the probe moved over the region. The 2-ROI 
automatic tracking passive test for the patellar tendon showed a 
mean value close to zero displacement (0.010 ± 0.040 mm), 
manual measures gave a mean value of -0.005 ± 0.040 mm, 
both results were not significantly different from zero (p=0.53; 
0.75) for the automatic and manual measures respectively. The 
2-ROI automatic test for the medial gastrocnemius tendon, also 
showed a mean value close to zero displacement (-0.020 ± 
0.040 mm), with manual measures giving a mean displacement 
of -0.030 ± 0.060 mm. Neither the automatic nor the manual 
measure was significantly different to zero (p=0.14; 0.15) 
respectively. 

 For determination of a simple tendon displacement trial 
during passive movement, 1-ROI was utilized. Comparisons 
between manual and automated tracking with 1-ROI for 
passive probe movement (PM) indicated that there were no 
significance differences (p = 0.06) between the tracked ROI 
and the manual method. For the patellar test, automatic 
tracking gave a total displacement of 7.50 ± 0.60 mm vs. the 
manual measure of 7.66 ±1.63mm. An excellent and significant 
correlation between methods was shown (r=0.99; p<0.05), with 
the Bland-Altman plot indicating that the mean difference or 
bias is very small (0.04mm) and that within the 95% 
confidence limits the difference does not exceed 0.17mm, a 
very small difference across the range of measurements (Fig. 
2). 
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was accounted for by recording the EMG in the antagonist 
muscles (hamstrings and tibialis anterior), where net torque (T) 
is calculated (1): 

 

  Τ = Te+Tc  (1)   (1) 

 

where, Te is the external torque and Tc is the co contraction 
torque. 

 Tendon forces were calculated by dividing all net torques 
by the respective moment arms. All excursion records were 
then determined at ten percent intervals of maximal voluntary 
force up to maximum. Here only 2-ROI were examined 
whereby one region was put onto the echo absorptive marker 
and the other on identifiable landmark within the tendon 
(Gastrocnemius muscle tendon junction and just distal to the 
inferior pole of the patellar on the inferior aspect). Again a total 
of ten trials were carried out for the 2-ROI experiments. For the 
active trials start was defined where force was zero and end 
where a force plateau was reached. The tracking algorithm 
calculated the Normalized Correlation Coefficient (NCC) of 
the ROI and the same – sized region, centered on each pixel in 
a surrounding search window in the following frame (Fig. 1). 
The NCC was used in preference to other measures because it 
was found to be more sensitive to speckle tracking in 
ultrasound images [16]. This algorithm (2) was developed for 
motion estimation in video compression applications:  
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template, and  is the mean feature of I within the search area w 
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recalculated simultaneously. Due to the zero mean, NCC 
measures the similarity between -1 to 1, where -1 is assumed as 
a poor match and 1 to be the best match. 
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NCC implementation. This increases the ability to match where 
the template changes as when the tendon deforms with stretch.  

 Tests used a pixel ROI area of 15×15 (2.66mm2), this gave 
optimal tracking results compared to larger and smaller areas 
for the structures examined (data not shown). For 1-ROI, the 
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manually measured displacement. For 2-ROI the position of 
P1initial and P2initial was then tracked until it reached the last 
frame. The position of the nodes relative to each other across 
the subsequent frames was measured (3) 
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was plotted (manual vs. automatic tracked).  

 T-tests were used to determine differences from zero 
displacement for the 2-ROI passive measures, and to compare 
all other automatic tracking with manual measures. Intraclass 
correlation coefficients (ICCs) were determined to examine the 
reliability of the manual measures. Bland-Altman plots were 
determined with 95% limits to examine the level of agreement. 
Alpha level was set to p< 0.05. All data are presented as mean 
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manual measures gave a mean value of -0.005 ± 0.040 mm, 
both results were not significantly different from zero (p=0.53; 
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2-ROI automatic test for the medial gastrocnemius tendon, also 
showed a mean value close to zero displacement (-0.020 ± 
0.040 mm), with manual measures giving a mean displacement 
of -0.030 ± 0.060 mm. Neither the automatic nor the manual 
measure was significantly different to zero (p=0.14; 0.15) 
respectively. 

 For determination of a simple tendon displacement trial 
during passive movement, 1-ROI was utilized. Comparisons 
between manual and automated tracking with 1-ROI for 
passive probe movement (PM) indicated that there were no 
significance differences (p = 0.06) between the tracked ROI 
and the manual method. For the patellar test, automatic 
tracking gave a total displacement of 7.50 ± 0.60 mm vs. the 
manual measure of 7.66 ±1.63mm. An excellent and significant 
correlation between methods was shown (r=0.99; p<0.05), with 
the Bland-Altman plot indicating that the mean difference or 
bias is very small (0.04mm) and that within the 95% 
confidence limits the difference does not exceed 0.17mm, a 
very small difference across the range of measurements (Fig. 
2). 
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was accounted for by recording the EMG in the antagonist 
muscles (hamstrings and tibialis anterior), where net torque (T) 
is calculated (1): 

 

  Τ = Te+Tc  (1)   (1) 

 

where, Te is the external torque and Tc is the co contraction 
torque. 

 Tendon forces were calculated by dividing all net torques 
by the respective moment arms. All excursion records were 
then determined at ten percent intervals of maximal voluntary 
force up to maximum. Here only 2-ROI were examined 
whereby one region was put onto the echo absorptive marker 
and the other on identifiable landmark within the tendon 
(Gastrocnemius muscle tendon junction and just distal to the 
inferior pole of the patellar on the inferior aspect). Again a total 
of ten trials were carried out for the 2-ROI experiments. For the 
active trials start was defined where force was zero and end 
where a force plateau was reached. The tracking algorithm 
calculated the Normalized Correlation Coefficient (NCC) of 
the ROI and the same – sized region, centered on each pixel in 
a surrounding search window in the following frame (Fig. 1). 
The NCC was used in preference to other measures because it 
was found to be more sensitive to speckle tracking in 
ultrasound images [16]. This algorithm (2) was developed for 
motion estimation in video compression applications:  
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optimal tracking results compared to larger and smaller areas 
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automatic tracking passive test for the patellar tendon showed a 
mean value close to zero displacement (0.010 ± 0.040 mm), 
manual measures gave a mean value of -0.005 ± 0.040 mm, 
both results were not significantly different from zero (p=0.53; 
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2-ROI automatic test for the medial gastrocnemius tendon, also 
showed a mean value close to zero displacement (-0.020 ± 
0.040 mm), with manual measures giving a mean displacement 
of -0.030 ± 0.060 mm. Neither the automatic nor the manual 
measure was significantly different to zero (p=0.14; 0.15) 
respectively. 
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very small difference across the range of measurements (Fig. 
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III. RESULTS AND DISCUSSIONS  

Repeat tests of the manual measures for tendon excursion gave 
an ICC of 0.991. Passive movement of the probe allowed 
examination of either displacement of two ROI relative to each 
other or 1-ROI as the probe moved over the region. The 2-ROI 
automatic tracking passive test for the patellar tendon showed a 
mean value close to zero displacement (0.010 ± 0.040 mm), 
manual measures gave a mean value of -0.005 ± 0.040 mm, 
both results were not significantly different from zero (p=0.53; 
0.75) for the automatic and manual measures respectively. The 
2-ROI automatic test for the medial gastrocnemius tendon, also 
showed a mean value close to zero displacement (-0.020 ± 
0.040 mm), with manual measures giving a mean displacement 
of -0.030 ± 0.060 mm. Neither the automatic nor the manual 
measure was significantly different to zero (p=0.14; 0.15) 
respectively.  

For determination of a simple tendon displacement trial during 
passive movement, 1-ROI was utilized. Comparisons between 
manual and automated tracking with 1-ROI for passive probe 
movement (PM) indicated that there were no significance 
differences (p = 0.06) between the tracked ROI and the manual 
method. For the patellar test, automatic tracking gave a total 
displacement of 7.50 ± 0.60 mm vs. the manual measure of 
7.66 ±1.63mm. An excellent and significant correlation 
between methods was shown (r=0.99; p<0.05), with the Bland-
Altman plot indicating that the mean difference or bias is very 
small (0.04mm) and that within the 95% confidence limits the 
difference does not exceed 0.17mm, a very small difference 
across the range of measurements (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Shows the comparisons of the 1-ROI passive tracking 
between automatic vs. manual measures of patellar tendon. a) 
Relationship between manual and automatic tracking, 
compared at 10% intervals of total frame count (r = 0.998; 
P<0.05). b) Bland – Altman plot showing mean difference 
(bias) and 95% confidence limits. (lines showing mean 
difference = 0.04 mm, ± 2 SD).  

For the medial gastrocnemius tendon test, the automatic 
tracking gave a total displacement of 11.28 ± 1.36 mm vs. 
11.17 ± 1.35 mm for the manual measures, again no significant 
differences were seen between methods (p = 0.79). These 
initial tests confirmed that the automatic tracking method is a 
good match to the manual method for measuring 
displacements, with no significance differences between the 
two. Fig. 3 indicates for this data set the relationship between 
measures was significant (r=0.99; p<0.05). The mean 
difference was negligible (0.01mm) and the 95% confidence 
intervals indicated that the maximum difference was 0.5mm. 
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between manual and automatic tracking, compared at 10% intervals of 
total frame count (r = 0.998; P<0.05).  b) Bland – Altman plot 
showing mean difference (bias) and 95% confidence limits. (lines 
showing mean difference = 0.04 mm, ± 2 SD). 
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Fig. 3. Shows the comparisons of the1-ROI passive tracking between 
automatic vs. manual measures of gastrocnemius tendon. a) 
Relationship between manual and automatic tracking, compared at 
10% intervals of total frame count (r = 0.998; P<0.05). b) Bland – 
Altman plot showing mean difference (bias) and 95% confidence 
limits (lines showing mean difference = -0.01 mm, ± 2 SD). 

 

 The active trials consisted of muscle contractions, the 
resultant muscle forces, which were generated, resulted in 
tendon stretch, and this was tracked and measured manually to 
determine the validity of the automated method. All active 
testing utilized 2-ROI. For the patellar tests, here again there 
were no significance differences (p=0.85) between the 
automatic and the manual measurements with a mean 
displacement value of 4.88±0.24 mm, compared to 4.59±0.28 
mm for the manual measures. The scatter plot shows a very 
good agreement between measures (r=0.99; p<0.05) (Fig. 4). 
Bland-Altman plot gave a bias of 0.005mm, indicating no 
greater difference at a 95% confidence than 0.4mm. 
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tendon. a) Relationship between manual and automatic 
tracking, compared at 10% intervals of total frame count (r = 
0.998; P<0.05). b) Bland – Altman plot showing mean 
difference (bias) and 95% confidence limits (lines showing 
mean difference = -0.01 mm, ± 2 SD).  

The active trials consisted of muscle contractions, the resultant 
muscle forces, which were generated, resulted in tendon 
stretch, and this was tracked and measured manually to 
determine the validity of the automated method. All active 
testing utilized 2-ROI. For the patellar tests, here again there 
were no significance differences (p=0.85) between the 
automatic and the manual measurements with a mean 
displacement value of 4.88±0.24 mm, compared to 4.59±0.28 
mm for the manual measures. The scatter plot shows a very 
good agreement between measures (r=0.99; p<0.05) (Fig. 4). 
Bland-Altman plot gave a bias of 0.005mm, indicating no 
greater difference at a 95% confidence than 0.4mm.  

 

 

Fig. 4. shows the comparisons of 2-ROI active tracking 
between automatic vs. manual measures of patellar tendon. a) 
Relationship between manual and automatic tracking, 
compared at 10% intervals of maximal voluntary force (r= 
0.994; P<0.05). b) Bland – Altman plot showing mean 

difference (bias) and 95% confidence limits (line showing 
mean difference = 0.005 mm, ± 2 SD).  

For the medial gastrocnemius tendon, automated tracking gave 
a mean displacement value of 16.42±0.85 mm, vs. 16.68±0.86 
mm for the manual measures. No significant differences were 
seen between measures (p = 0.95) indicating a good general 
agreement. The scatter plot indicates again an excellent 
relationship between measures (r=0.99; p<0.05) (Fig. 5). Bias 
between measures was negligible (0.002mm), with the 
maximum difference of 0.81mm.  

The results from the passive tests in this study showed that the 
automated algorithm enabled effective tracking of a region of 
interest within the image window when compared to the 
manually measured results. Here the net movement of 1-ROI’s 
measured using manual and automated tracking were not 
significantly different from each other for both the patellar with 
a 2% difference in the total displacement (p=0.06) and medial 
gastrocnemius showing an approximate 1% difference 
(p=0.79). The 2-ROI passive tests showed no significant 
differences to zero for both the patellar and medial 
gastrocnemius tendon displacements (p=0.53; 0.75 and p=0.14; 
0.15) for the automatic and manual methods respectively.  
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Fig. 5. shows the comparisons of 2--‐ROI active tracking 
between automatic vs. manual measures of gastrocnemius 
tendon. a) Relationship between manual and automatic 
tracking, compared at 10% intervals of maximal voluntary 
force (r=0.997; P<0.05). b) Bland – Altman plot showing the 
mean difference (bias) and 95% confidence limits (line 
showing mean difference = 0.002 mm, ± 2 SD). 

 

 For the active tests the errors were expected to be larger 
due to the tendon being dynamically stretched during muscle 
contraction, causing some deformation and making automatic 
tracking more demanding. This was indeed found to be the 
case with the maximal differences (bias) determined for the 
active tests at 0.4 and 0.81mm for the patellar and medial 
gastrocnemius junction respectively. These were still 
considered relatively small differences between the methods, 
the correlations indicating excellent general agreement (Fig. 4 
and 5). 

 The tests carried out here are the first to directly compare 
automated tracking with manually measured tendon excursion 
during maximally loaded voluntary contractions. Lee et al. [10] 
discussed comparisons of ‘lightly’ loaded in vivo tendon 
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force (r=0.997; P<0.05). b) Bland – Altman plot showing the 
mean difference (bias) and 95% confidence limits (line 
showing mean difference = 0.002 mm, ± 2 SD).  

For the active tests the errors were expected to be larger due to 
the tendon being dynamically stretched during muscle 
contraction, causing some deformation and making automatic 
tracking more demanding. This was indeed found to be the 
case with the maximal differences (bias) determined for the 
active tests at 0.4 and 0.81mm for the patellar and medial 
gastrocnemius junction respectively. These were still 
considered relatively small differences between the methods, 
the correlations indicating excellent general agreement (Fig. 4 
and 5).  

The tests carried out here are the first to directly compare 
automated tracking with manually measured tendon excursion 
during maximally loaded voluntary contractions. Lee et al. [10] 
discussed comparisons of ‘lightly’ loaded in vivo tendon 
excursions using an automated tracking method and manual 
measures. But they did not make clear the manual approach or 
indeed the reliability of the manual method. This aside they 
reported absolute errors of ~ 0.5mm, similar to that seen here. 
However, our RMS percent errors were smaller than those 
reported by Lee et al. [10] with 3.2% seen here compared to 
5.9% reported by Lee and co workers. Although a limitation of 
the present study may be that the measures were made on only 
one subject, differences in image quality across subjects may 
affect the agreement or the ability of the algorithm to track 
regions effectively. However carrying out the trials on two 
distinct tendons with different morphologies shows the 
robustness of this procedure.  

Our findings showed that for passive movements the tracking 
accuracy was within 1-2% of the manual values and active 
movements within 2.4-3.2% which is comparable to the 
displacement errors reported by Maganaris et al. [12], 0.8-2.5% 
in the tendon and 2.1-7% in the aponeurosis. A more recent 
study [3] reported that the speckle tracking method was able to 
estimate frame-to-frame displacements using 2-ROI end points 
by tracking the movement of tendon during twitch 
contractions. However, as the tracking was carried out during 
twitch contractions by electrically stimulating the muscle, the 
forces in the tendon were only moderate (up to 50% of 
maximum) which is a major difference to the approach here 
where high forces were elicited and thus larger tendon 
deformations would be expected making the tracking 
potentially more demanding.  

Where others have utilized an automated algorithm to examine 
tracking there have been reported errors of <10% [2]. Here the 
transducer probe was moved within a 1-3 mm range over the 
surface of the forearm. Whilst, Magnusson et al. [13] tracked a 
needle sliding 10 mm through gel with mean error of 2%, 
similar to the errors of 2% reported using cross- correlation to 
track wire oscillating in water [11]. These are similar to our 
passive trials and give similar errors or differences to the 
manual method as we report here (up to 2%).  

In summary, this method shows for the first time the utility of 

an automated tracking program to determine tendon excursion 
during maximally loaded in vivo contractions by contrast with 
the standardized manual measurement method. Hence, it has 
the potential to improve clinical knowledge relating to the 
tendon mechanical properties by enabling discrete tendon 
mechanical properties to be determined [15]. 
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Appendix F 
Matlab Source Code (Normalised Cross Correlation) 

 
function  [reg] = AlgoNCC1( hObject, eventdata,   handles, ~ ) 

delete itemp/*.* 

tic; 

global h_tracker; 

xyinit = h_tracker.xy(1,:); 

%% Start from first frame 

count = 0; 

for i=1:h_tracker.numFrames 

     

    set(h_tracker.Text_Status,'string',sprintf('Processing (%i/%i) ...',i,h_tracker.numFrames)); %drawnow; 

    set(h_tracker.Slider_frames,'value',i); 

     

    imnum = i; 

     

    if i == 1 

        h_tracker.xy(1,:) = xyinit(1,:); 

        if h_tracker.endFrame1 == 0 

            set(h_tracker.Text_Status,'string','Copying frames into memory for faster processing.'); %drawnow; 

             

            h_tracker.im = read(h_tracker.readerobj, [1 h_tracker.numFrames]); 

            clear h_tracker.readerobj; 

            h_tracker.endFrame1 = 1; 

            set(h_tracker.Text_Status,'string','Copying done. Starting tracking process.'); %drawnow; 

        end 

         

        if h_tracker.endFrame1 == 0 

            imT = im2double(read(h_tracker.readerobj,1)); 

        else 

            imT = im2double(h_tracker.im(:,:,:,1)); 

        end 

         

        %% Display to Axis 

        image(imT, 'Parent', h_tracker.axes_display); 

 

hold off; 
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        %% Assign Initial Refpatch & xy 

refpatch1(:,:)=(imT(h_tracker.xy(1,2):h_tracker.xy(1,4),h_tracker.xy(1,1):h_tracker.xy(1,3))); 

         

        rectangle('position',[h_tracker.xy(1,1) h_tracker.xy(1,2) h_tracker.xy(1,3)-h_tracker.xy(1,1) 

h_tracker.xy(1,4)-h_tracker.xy(1,2)],'edgecolor',[1 0 1]); hold on; 

         

        % Assign to main patch and temporary patch 

        refpatch = refpatch1; 

        refpatchtemp = refpatch1; 

         

        %% Record first frame for video capture 

        [reg1]=trackAlgo2(hObject, eventdata, i,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), handles); 

    else 

        cla; 

        if h_tracker.endFrame1 == 0 

            imT = im2double(read(h_tracker.readerobj,i)); 

        else 

            imT = im2double(h_tracker.im(:,:,:,i)); 

        end 

         

         

        image(imT, 'Parent', h_tracker.axes_display); 

        [reg1]=trackAlgo2(hObject, eventdata, i-1,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), handles); 

    end 

     

     

    reg = reg1; 

     

    if reg(7) > -1 

        h_tracker.xy(i,:) = [reg(1,1) reg(1,2) reg(1,3) reg(1,4) reg(1,5) reg(1,6) reg(1,7)]; 

        refpatch(:,:) = (imT(reg(1,2):reg(1,4),reg(1,1):reg(1,3))); 

        refpatchtemp(:,:) = refpatch(:,:); 

    end 

     

    moviefilenameT = fix(clock); 

     

    text('Position',[20,size(imT,1)-50,1],'FontSize',10,'Color','Yellow','String',['Frame No= ',num2str(i)]) 
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    text('Position',[20,size(imT,1)-

80,1],'FontSize',10,'Color','Yellow','String',[num2str(moviefilenameT(3)),'/',num2str(moviefilenameT(2)),'/',num2s

tr(moviefilenameT(1))]); 

    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,num2str(1),h_tracker.numFrames)); 

     

    rectangle('position',[h_tracker.xy(i,1) h_tracker.xy(i,2) h_tracker.xy(i,3)-h_tracker.xy(i,1) h_tracker.xy(i,4)-

h_tracker.xy(i,2)],'edgecolor',[1 0 1]); 

     

    line([h_tracker.xy(1,5) h_tracker.xy(i,5)],[h_tracker.xy(1,6) h_tracker.xy(i,6)],'LineWidth',4); hold on; 

     

    if i > 1 

        a1 = abs(h_tracker.xy(i,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(i,6) - h_tracker.xy(1,6)); 

    else 

        a1 = abs(h_tracker.xy(1,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(1,6) - h_tracker.xy(1,6)); 

    end 

    dispix1(i) = round(sqrt(a1^2+b1^2)); 

    distant1(i)   = dispix1(i)/h_tracker.unit3; 

 

text('Position',[20,size(imT,1)-30,1],'FontSize',10,'Color','Yellow','String',['Displacement= ',num2str(distant1(i))]) 

     

    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,imnum,h_tracker.numFrames)); 

     

    h_tracker.check = 1; 

end 

 

set(h_tracker.Btn_Results,'enable','on'); 

set(h_tracker.Btn_Measure,'enable','on'); 

 

h_tracker.distant1 =  distant1; 

allTimes = toc; 

timesinmin = allTimes; 

 

h_tracker.trackingstatus = 1; 

 

save temp/regions1_1.dat distant1 -tabs; 



205  

moviefilename=sprintf('temp/movie/%s%s%s%s%s%s.avi',num2str(moviefilenameT(6)),num2str(moviefilename

T(5)),num2str(moviefilenameT(4)),num2str(moviefilenameT(3)),num2str(moviefilenameT(2)),num2str(moviefile

nameT(1))); 

save temp/moviefilename.dat moviefilename; 

 

clear imT; 

clear imT0; 

clear axes_display; 

set(h_tracker.Text_Status,'string',sprintf('Processing...done  Time Taken is %0.2f',timesinmin)); %drawnow; 

guidata(hObject, handles); 

 

 

% generic error metric between two image patches 

function err= errfun(im1,im2,algorithm) 

 [h w]=size(im1); 

switch(algorithm) 

    case 'bmamse', 

err = sqrt(mean(mean((im1-im2).^2,2),1)); 

case 'bmancc', 

err = im1(:)'*im2(:) / (sqrt(im1(:)'*im1(:))*sqrt(im2(:)'*im2(:))); 

end 

end 
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Appendix G 
Matlab Source Code (Mean Square Error) 

 
function  [reg] = AlgoNCC1( hObject, eventdata,   handles, ~ ) 

delete itemp/*.* 

tic; 

global h_tracker; 

xyinit = h_tracker.xy(1,:); 

 

 

%% Start from first frame 

for i=1:h_tracker.numFrames 

    %cla ; 

     

    set(h_tracker.Text_Status,'string',sprintf('Processing (%i/%i) ...',i,h_tracker.numFrames)); %drawnow; 

    set(h_tracker.Slider_frames,'value',i); 

     

    imnum = i; 

     

    if i == 1 

        h_tracker.xy(1,:) = xyinit(1,:); 

        if h_tracker.endFrame1 == 0 

            set(h_tracker.Text_Status,'string','Copying frames into memory for faster processing.'); %drawnow; 

             

            h_tracker.im = read(h_tracker.readerobj, [1 h_tracker.numFrames]); 

            clear h_tracker.readerobj; 

            h_tracker.endFrame1 = 1; 

            set(h_tracker.Text_Status,'string','Copying done. Starting tracking process.'); %drawnow; 

        end 

         

        if h_tracker.endFrame1 == 0 

            imT = read(h_tracker.readerobj,1); 

        else 

            imT = h_tracker.im(:,:,:,1); 

        end 

         

        %% Display to Axis 

        image(imT, 'Parent', h_tracker.axes_display); 
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        hold off; 

         

        %% Assign Initial Refpatch & xy 

refpatch1(:,:)=double(imT(h_tracker.xy(1,2):h_tracker.xy(1,4),h_tracker.xy(1,1):h_tracker.xy(1,3))); 

        rectangle('position',[h_tracker.xy(1,1) h_tracker.xy(1,2) h_tracker.xy(1,3)-h_tracker.xy(1,1) 

h_tracker.xy(1,4)-h_tracker.xy(1,2)],'edgecolor',[1 0 1]); hold on; 

         

        % Assign to main patch and temporary patch 

        refpatch = refpatch1; 

        refpatchtemp = refpatch1; 

         

        %% Record first frame for video capture 

        [reg]=trackAlgo5(hObject, eventdata, i,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), handles); 

    else 

        cla; 

        if h_tracker.endFrame1 == 0 

            imT = read(h_tracker.readerobj,i); 

        else 

            imT = h_tracker.im(:,:,:,i); 

        end 

 

        image(imT, 'Parent', h_tracker.axes_display); 

        imT = double(imT); 

         

        [reg]=trackAlgo5(hObject, eventdata, i-1,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), handles); 

    end 

     

    if reg(7) > -1 

        h_tracker.xy(i,:) = [reg(1,1) reg(1,2) reg(1,3) reg(1,4) reg(1,5) reg(1,6) reg(1,7)]; 

        refpatch(:,:) = (imT(reg(1,2):reg(1,4),reg(1,1):reg(1,3))); 

        refpatchtemp(:,:) = refpatch(:,:); 

    end 

     

    moviefilenameT = fix(clock); 

     

    text('Position',[20,size(imT,1)-50,1],'FontSize',10,'Color','Yellow','String',['Frame No= ',num2str(1)]) 

    text('Position',[20,size(imT,1)-

80,1],'FontSize',10,'Color','Yellow','String',[num2str(moviefilenameT(3)),'/',num2str(moviefilenameT(2)),'/',num2s

tr(moviefilenameT(1))]); 
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    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,num2str(1),h_tracker.numFrames)); 

     

    rectangle('position',[h_tracker.xy(i,1) h_tracker.xy(i,2) h_tracker.xy(i,3)-h_tracker.xy(i,1) h_tracker.xy(i,4)-

h_tracker.xy(i,2)],'edgecolor',[1 0 1]); 

     

    rectangle('position',[(h_tracker.xy(i,1)+h_tracker.limL) (h_tracker.xy(i,2)+h_tracker.limU) 

((h_tracker.xy(i,3)+h_tracker.limR)-(h_tracker.xy(i,1)+h_tracker.limL)) ((h_tracker.xy(i,4)+h_tracker.limD)-

(h_tracker.xy(i,2)+h_tracker.limU))],'edgecolor',[1 1 0]); hold on; 

    line([h_tracker.xy(1,5) h_tracker.xy(i,5)],[h_tracker.xy(1,6) h_tracker.xy(i,6)],'LineWidth',4); hold on; 

     

if i > 1 

        a1 = abs(h_tracker.xy(i,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(i,6) - h_tracker.xy(1,6)); 

    else 

        a1 = abs(h_tracker.xy(1,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(1,6) - h_tracker.xy(1,6)); 

end 

    dispix1(i) = round(sqrt(a1^2+b1^2)); 

    distant1(i)   = dispix1(i)/h_tracker.unit3; 

     

    text('Position',[20,size(imT,1)-30,1],'FontSize',10,'Color','Yellow','String',['Displacement= 

',num2str(distant1(i))]) 

     

    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,imnum,h_tracker.numFrames)); 

     

    h_tracker.check = 1; 

end 

 

set(h_tracker.Btn_Results,'enable','on'); 

set(h_tracker.Btn_Measure,'enable','on'); 

 

h_tracker.distant1 =  distant1; 

 

h_tracker.trackingstatus = 1; 

 

save temp/regions1_1.dat distant1 -tabs; 



209  

moviefilename=sprintf('temp/movie/%s%s%s%s%s%s.avi',num2str(moviefilenameT(6)),num2str(moviefilename

T(5)),num2str(moviefilenameT(4)),num2str(moviefilenameT(3)),num2str(moviefilenameT(2)),num2str(moviefile

nameT(1))); 

save temp/moviefilename.dat moviefilename; 

 

clear imT; 

clear imT0; 

clear axes_display; 

 

allTimes = toc; 

timesinmin = allTimes; 

 

set(h_tracker.Text_Status,'string',sprintf('Processing...done  Time Taken is %0.2f',timesinmin)); %drawnow; 

 

guidata(hObject, handles); 

 

 

% generic error metric between two image patches 

function err= errfun(im1,im2,algorithm) 

 [h w]=size(im1); 

switch(algorithm) 

    case 'bmamse', 

err = sqrt(mean(mean((im1-im2).^2,2),1)); 

case 'bmancc', 

err = im1(:)'*im2(:) / (sqrt(im1(:)'*im1(:))*sqrt(im2(:)'*im2(:))); 

end 

end 
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Appendix H 
Matlab Source Code (NCCMSE) 

 
function  [reg] = AlgoMSENCC1( hObject, eventdata,   handles, ~ ) 

delete itemp/*.* 

tic; 

global h_tracker; 

xyinit = h_tracker.xy(1,:); 

%% Start from first frame 

count = 0; 

for i=1:h_tracker.numFrames 

    set(h_tracker.Text_Status,'string',sprintf('Processing (%i/%i) ...',i,h_tracker.numFrames)); %drawnow; 

    set(h_tracker.Slider_frames,'value',i); 

     

    imnum = i; 

     

    if i == 1 

        h_tracker.xy(1,:) = xyinit(1,:); 

        if h_tracker.endFrame1 == 0 

            set(h_tracker.Text_Status,'string','Copying frames into memory for faster processing.'); %drawnow; 

             

            h_tracker.im = read(h_tracker.readerobj, [1 h_tracker.numFrames]); 

            clear h_tracker.readerobj; 

            h_tracker.endFrame1 = 1; 

            set(h_tracker.Text_Status,'string','Copying done. Starting tracking process.'); %drawnow; 

        end 

         

        if h_tracker.endFrame1 == 0 

            imT = im2double(read(h_tracker.readerobj,1)); 

        else 

            imT = im2double(h_tracker.im(:,:,:,1)); 

        end 

         

        %% Display to Axis 

        image(imT, 'Parent', h_tracker.axes_display); 

         

        %% Set image to double 

        %         imT0 = double(imT); 
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        hold off; 

         

        %% Assign Initial Refpatch & xy 

        refpatch1(:,:)=(imT(h_tracker.xy(1,2):h_tracker.xy(1,4),h_tracker.xy(1,1):h_tracker.xy(1,3))); 

         

        rectangle('position',[h_tracker.xy(1,1) h_tracker.xy(1,2) h_tracker.xy(1,3)-h_tracker.xy(1,1) 

h_tracker.xy(1,4)-h_tracker.xy(1,2)],'edgecolor',[1 0 1]); hold on; 

         

        % Assign to main patch and temporary patch 

        refpatch = refpatch1; 

        refpatchtemp = refpatch1; 

         

        %% Record first frame for video capture 

        [reg1, reg2]=trackAlgo2MN(hObject, eventdata, i,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), 

handles); 

    else 

        cla; 

        if h_tracker.endFrame1 == 0 

            imT = im2double(read(h_tracker.readerobj,i)); 

        else 

            imT = im2double(h_tracker.im(:,:,:,i)); 

        end 

         

        image(imT, 'Parent', h_tracker.axes_display); 

        [reg1 , reg2]=trackAlgo2MN(hObject, eventdata, i-1,refpatch(:,:),imT, refpatchtemp(:,:), refpatch1(:,:), 

handles); 

    end 

     

    aa(:,:) = (imT(reg1(1,2):reg1(1,4),reg1(1,1):reg1(1,3))); 

    bb(:,:) = (imT(reg2(1,2):reg2(1,4),reg2(1,1):reg2(1,3))); 

    aa1 = mean(aa(:).^2); 

    bb1 = mean(bb(:).^2); 

    cc1 = mean(refpatch(:).^2); 

    y = awgn(refpatch,30); 

     

    y1 = mean(y(:).^2); 

    SNR = cc1/y1; 

     

    if SNR > 1 

        reg = reg1; 
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    else 

        reg = reg2; 

    end 

     

    if reg(7) > -1 

        h_tracker.xy(i,:) = [reg(1,1) reg(1,2) reg(1,3) reg(1,4) reg(1,5) reg(1,6) reg(1,7)]; 

        refpatch(:,:) = (imT(reg(1,2):reg(1,4),reg(1,1):reg(1,3))); 

        refpatchtemp(:,:) = refpatch(:,:); 

    end 

     

    moviefilenameT = fix(clock); 

     

    text('Position',[20,size(imT,1)-50,1],'FontSize',10,'Color','Yellow','String',['Frame No= ',num2str(i)]) 

    text('Position',[20,size(imT,1)-

80,1],'FontSize',10,'Color','Yellow','String',[num2str(moviefilenameT(3)),'/',num2str(moviefilenameT(2)),'/',num2s

tr(moviefilenameT(1))]); 

    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,num2str(1),h_tracker.numFrames)); 

     

    rectangle('position',[h_tracker.xy(i,1) h_tracker.xy(i,2) h_tracker.xy(i,3)-h_tracker.xy(i,1) h_tracker.xy(i,4)-

h_tracker.xy(i,2)],'edgecolor',[1 0 1]); 

     

    line([h_tracker.xy(1,5) h_tracker.xy(i,5)],[h_tracker.xy(1,6) h_tracker.xy(i,6)],'LineWidth',4); hold on; 

     

    if i > 1 

        a1 = abs(h_tracker.xy(i,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(i,6) - h_tracker.xy(1,6)); 

    else 

        a1 = abs(h_tracker.xy(1,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(1,6) - h_tracker.xy(1,6)); 

    end 

    dispix1(i) = round(sqrt(a1^2+b1^2)); 

    distant1(i)   = dispix1(i)/h_tracker.unit3; 

     

    text('Position',[20,size(imT,1)-30,1],'FontSize',10,'Color','Yellow','String',['Displacement= 

',num2str(distant1(i))]) 

     

    set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,imnum,h_tracker.numFrames)); 
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    h_tracker.check = 1; 

end 

set(h_tracker.Btn_Results,'enable','on'); 

set(h_tracker.Btn_Measure,'enable','on'); 

 

h_tracker.distant1 =  distant1; 

 

h_tracker.trackingstatus = 1; 

 

save temp/regions1_1.dat distant1 -tabs; 

moviefilename=sprintf('temp/movie/%s%s%s%s%s%s.avi',num2str(moviefilenameT(6)),num2str(moviefilename

T(5)),num2str(moviefilenameT(4)),num2str(moviefilenameT(3)),num2str(moviefilenameT(2)),num2str(moviefile

nameT(1))); 

save temp/moviefilename.dat moviefilename; 

 

clear imT; 

clear imT0; 

clear axes_display; 

 

allTimes = toc; 

timesinmin = allTimes; 

 

set(h_tracker.Text_Status,'string',sprintf('Processing...done  Time Taken is %0.2f',timesinmin)); %drawnow; 

 

guidata(hObject, handles); 

 

 

% generic error metric between two image patches 

function err= errfun(im1,im2,algorithm) 

 [h w]=size(im1); 

switch(algorithm) 

    case 'bmamse', 

err = sqrt(mean(mean((im1-im2).^2,2),1)); 

case 'bmancc', 

err = im1(:)'*im2(:) / (sqrt(im1(:)'*im1(:))*sqrt(im2(:)'*im2(:))); 

end 

end 
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Appendix I 
Matlab Source Code (Lucas Kanade) 

 
function  [regtt]=AlgoLK1( hObject, eventdata,   handles, ~ ) 

delete itemp/*.* 

tic; 

global h_tracker; 

 

set(h_tracker.Text_Status,'string',sprintf('Processing (%i/%i) ...',1,h_tracker.numFrames)); %drawnow; 

 

h_tracker.regionsErr=0; 

h_tracker.ROI_sizeT  = h_tracker.ROI_size / 2; 

h_tracker.ROI_size2T =h_tracker.ROI_size / 2; 

h_tracker.post = 0; 

 

if h_tracker.endFrame1 == 0 

    set(h_tracker.Text_Status,'string','Copying frames into memory for faster processing.'); %drawnow; 

     

    h_tracker.im = read(h_tracker.readerobj, [1 h_tracker.numFrames]); 

    clear h_tracker.readerobj; 

    h_tracker.endFrame1 = 1; 

    set(h_tracker.Text_Status,'string','Copying done. Starting tracking process.');  

end 

 

clear count; 

moviefilenameT = fix(clock); 

moviefilename=sprintf('temp/movie/%s%s%s%s%s%s.avi',num2str(moviefilenameT(6)),num2str(mov

iefilenameT(5)),num2str(moviefilenameT(4)),num2str(moviefilenameT(3)),num2str(moviefilenameT(

2)),num2str(moviefilenameT(1))); 

save temp/moviefilename.dat moviefilename; 

 

 

if h_tracker.endFrame1 == 0 

    imT0 = read(h_tracker.readerobj,1); 

else 

    imT0 = h_tracker.im(:,:,:,1); 

end 

image(imT0, 'Parent', h_tracker.axes_display); 
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imT0 = double(imT0); 

hold off; 

 

text('Position',[20,size(imT0,1)-50,1],'FontSize',10,'Color','Yellow','String',['Frame No= ',num2str(1)]) 

text('Position',[20,size(imT0,1)-

80,1],'FontSize',10,'Color','Yellow','String',[num2str(moviefilenameT(3)),'/',num2str(moviefilenameT(2

)),'/',num2str(moviefilenameT(1))]); 

set(h_tracker.Slider_frames,'value',1); 

set(h_tracker.uipanel_main,'title',sprintf('Filename: %s    Frame Number: %i    Total Frames: 

%i',h_tracker.readerobj.name,num2str(1),h_tracker.numFrames)); 

 

refpatchinit(:,:)=(imT0(h_tracker.xy(1,2):h_tracker.xy(1,4),h_tracker.xy(1,1):h_tracker.xy(1,3))); 

rectangle('position',[h_tracker.xy(1,1) h_tracker.xy(1,2) h_tracker.xy(1,3)-h_tracker.xy(1,1) 

h_tracker.xy(1,4)-h_tracker.xy(1,2)],'edgecolor',[1 0 1]); hold on; 

 

refpatch = refpatchinit; 

refpatchtemp = refpatchinit; 

im = imT0; 

 

[m, n] = size(refpatch); 

h_tracker.A = zeros(m,n); 

h_tracker.B = zeros(m,n); 

 

 

starts = 1; 

ends = h_tracker.numFrames; 

 

reg  = h_tracker.xy(1,:); 

sig = 1; 

 

if h_tracker.endFrame1 == 0 

    F1 = read(h_tracker.readerobj,1); 

else 

    F1 = h_tracker.im(:,:,:,1); 

end 

 

F = double(rgb2gray(F1)); 

[rows,cols] = size(F); 

[X,Y] = meshgrid(1:cols,1:rows); 
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G = gauss(sig); 

dG = dgauss(sig,G); 

kernelx = G'*dG; 

kernely = dG'*G; 

u = 0; u2 = 0; v = 0; v2 = 0; 

 

w       = reg(3)-reg(1); 

h       = reg(4)-reg(2); 

xmin = max(reg(1),1); xmax = min(reg(3),size(im,2)); 

ymin = max(reg(2),1); ymax = min(reg(4),size(im,1)); 

rectangle('position',[xmin ymin xmax-xmin ymax-ymin],'edgecolor',[1 0 0]); 

c= [xmax xmax xmin xmin]; r= [ymin ymax ymax ymin]; 

mask = double(roipoly(rows,cols,c,r)); inds = find(mask); 

min_x = min(X(inds)); max_x = max(X(inds)); 

min_y = min(Y(inds)); max_y = max(Y(inds)); 

 

 

imwrite(uint8(F1), 'temp/tempimfirst.jpg'); 

 

err = 0; 

for i = 1:ends 

    set(h_tracker.Text_Status,'string',sprintf('Processing (%i/%i) ...',i,ends)); 

     

    if h_tracker.endFrame1 == 0 

        IM = double(rgb2gray(read(h_tracker.readerobj,i))); 

    else 

        IM = double(rgb2gray(h_tracker.im(:,:,:,i))); 

    end 

 

    Fx = conv2(F,kernelx,'same'); 

    Fy = conv2(F,kernely,'same'); 

     

    tester = 9*10^9; 

     

    j=0; 

    while j<10 

        Gwarp = interp2(X,Y,IM,X+u,Y+v, 'cubic'); 

        inds_nan = isnan(Gwarp); 

        Gwarp(inds_nan) = 0; 

        Fx2 = sum(Fx(inds).^2); 
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        Fy2 = sum(Fy(inds).^2); 

        Fxy = sum(Fx(inds).*Fy(inds)); 

        Ft = Gwarp - F; 

        Ftx = sum(Ft(inds).*Fx(inds)); 

        Fty = sum(Ft(inds).*Fy(inds)); 

        C = [Fx2 Fxy; Fxy Fy2]; 

        D = [Ftx; Fty]; 

        uv = C\D; 

        u = u - uv(1); 

        v = v - uv(2); 

        err_old = err; 

        err = sum((Fx(inds)*u + Fy(inds)*v - Ft(inds)).^2); 

        tester_old = tester; 

        tester = abs(err_old - err); 

        if ((tester > tester_old)) || (tester < .1) 

            break; 

        end 

         

        j = j+ 1; 

    end 

     

    new_min_x = round(min_x+u); 

    new_max_x = round(max_x+u); 

    new_min_y = round(min_y+v); 

    new_max_y = round(max_y+v); 

    imshow(uint8(IM)); axis image; 

    rectangle('position',[new_min_x new_min_y new_max_x-new_min_x new_max_y-

new_min_y],'edgecolor',[1 0 0]); 

     

    if i == 1 

        h_tracker.xy(i,:) = [reg(1,1) reg(1,2) reg(1,3) reg(1,4) reg(1,5) reg(1,6) reg(1,7)]; 

    else 

        h_tracker.xy(i,:) = [new_min_x new_min_y new_max_x new_max_y new_min_x+(w/2) 

new_min_y+(h/2), 1]; 

        line([h_tracker.xy(1,5) h_tracker.xy(i,5)],[h_tracker.xy(1,6) h_tracker.xy(i,6)],'LineWidth',4); 

hold on; 

    end 

     

    set(handles.Slider_frames,'value',i); 

    imnum = round(get(handles.Slider_frames,'value')); 
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    set(handles.uipanel_main,'title',sprintf('Image Panel (%i/%i)',imnum,ends)); 

    imnumT = starts+imnum-1; 

    text('Position',[20,size(h_tracker.im,1)-50,1],'FontSize',12,'Color','Yellow','String',['Frame No= 

',num2str(imnumT)]); 

     

    if i > 1 

        a1 = abs(h_tracker.xy(i,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(i,6) - h_tracker.xy(1,6)); 

    else 

        a1 = abs(h_tracker.xy(1,5) - h_tracker.xy(1,5)); 

        b1 = abs(h_tracker.xy(1,6) - h_tracker.xy(1,6)); 

    end 

    dispix1(i) = round(sqrt(a1^2+b1^2)); 

    distant1(i)   = dispix1(i)/h_tracker.unit3; 

     

    text('Position',[20,size(im,1)-30,1],'FontSize',10,'Color','Yellow','String',['Displacement= 

',num2str(distant1(i))]) 

drawnow; 

end 

allTimes = toc; 

timesinmin = allTimes; 

set(h_tracker.Text_Status,'string',sprintf('Processing...done  Time Taken is %0.2f',timesinmin)); 

%drawnow; 

 

format short; 

save temp/regions1_1.dat distant1 -tabs; 

 

regtt = h_tracker.xy; 

guidata(hObject, handles);  
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