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Abstract

This thesis investigates methods for assessing reliability equivalence factors for several

common systems that comprise independent components or subsystems. We consider

improving the reliability of the systems by (a) a reduction method and (b) several

duplication methods: (i) hot duplication; (ii) cold duplication with perfect switching;

(iii) cold duplication with imperfect switching. Two measures for comparing system

improvements are considered in this study, survival reliability equivalence factors and

mean reliability equivalence factors.

We apply our study to: (1) some simple systems including parallel-series and

series-parallel systems, with flexible lifetime distributions including generalized quadratic

failure rate and exponentiated Weibull lifetime distributions; (2) networks and com-

plex systems with multiple types of components. We choose the exponentiated

Weibull and generalized quadratic failure rate distributions because they are flexi-

ble and enable comparisons with other reliability equivalence studies.

We use the concept of survival signature to derive the reliability equivalence factors

for any coherent system with any structure and with different lifetime distributions.

In order to implement this approach, we use the ReliabilityTheory R package to

derive survival reliability equivalence factors and mean reliability equivalence factors

for networks and complex systems with multiple types of components.

Numerical examples for simple and complex systems are presented, to illustrate

how to apply the theoretical results and demonstrate the relative benefits of vari-

ous system improvements. We explain and discuss the results obtained by presenting

summary tables and figures, before presenting conclusions and recommendations that

xvii



xviii

arise from this study. In particular, we deduce that considerable advances in relia-

bility equivalence testing are made possible by specifying and analysing the survival

signature, especially for the increasingly common context and practice of modelling

networks and complex systems.
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GLFRD Generalized linear failure rate distribution
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R(x) Survival function (reliability function)

h(x) Failure rate (hazard function)
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Chapter 1

Introduction

System design involves a blend of efficient design techniques with optimal perfor-

mance. In the reliability research domain, systems design can be improved by du-

plication (redundancy) methods. The duplication methods are plagued by space

limitation and higher development costs. On the other hand, the reduction methods

involve reducing the system components’ failure rates which makes it more appealing.

For example, the battery life of the smart phone is a serious problem facing users so

many people carry an extra power source. In the meantime manufacturing companies

are working hard to produce new types of batteries with expected lifetimes which are

at least double that of the current battery.

This thesis investigates equivalence between the reduction and duplication meth-

ods, using carefully selected reliability equivalence factors. We study reliability equiv-

alence factors for simple systems with flexible lifetime distributions including gener-

alized quadratic failure rate and exponentiated Weibull lifetime distributions. We

choose the exponentiated Weibull and generalized quadratic failure rate distributions

because of their flexibility and because they generalize most of the studies in this

1
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field. In addition we introduce a new methodology to study the reliability equiva-

lence factors for networks and complex systems with multiple types of components

using the survival signature. This chapter gives an introduction to the fundamental

concepts involved in our study including:

• generalized quadratic failure rate distribution;

• exponentiated Weibull distribution;

• reliability equivalence factors;

• signature and survival signature;

• ReliabilityTheory R package.

1.1 Flexible lifetime distributions

In the first part of our research we apply our study on systems with flexible lifetime

distributions including generalized quadratic failure rate and exponentiated Weibull

lifetime distributions. We apply our study at the beginning on a system of com-

ponents with generalized quadratic failure rate distribution because this generalizes

seven well known lifetime distributions and so generalizes several existing published

studies on reliability equivalence factors. The Weibull distribution is a very popular

lifetime distribution, unfortunately it is not a special case of the generalized quadratic

failure rate distribution. Consequently, we also determine reliability equivalence fac-

tors for a system with exponentiated Weibull lifetime distributions, which include the

Weibull distribution as a special case. Both generalized quadratic failure rate and

exponentiated Weibull lifetime distributions are flexible and they have nice statistical



3

properties as a result of generalizing many useful lifetime distributions. We present

the key properties of those distributions by means of the following three points:

• derivation and definition of probability distributions;

• formulation of hazard functions and probability density functions;

• fitting the distributions to data.

1.1.1 Generalized quadratic failure rate distribution

This is a recently proposed lifetime distribution studied by Alghamdi (2008) and pub-

lished by Sarhan and Alghamdi (2009) and Sarhan (2009a). The generalized quadratic

failure rate distribution generalizes many useful lifetime distributions, including the

generalized linear failure rate distribution, generalized exponential distribution, gen-

eralized Rayleigh distribution and quadratic failure rate distribution.

Researchers in statistics and life testing are interested in looking for suitable dis-

tributions with nice properties that enable them to describe the lifetimes of many

industrial devices. Among those distributions are distributions with constant failure

rate, distributions with increasing failure rate, distributions with decreasing failure

rate, distributions with bath-tub shaped failure rate and distributions with upside

down bath-tub failure rate. The generalized quadratic failure rate distribution has all

of the aforementioned properties. This distribution can be used to describe the life-

time of an item (component) for which the failure rate may be constant, increasing,

decreasing, the bath-tub shape or upside-down bath-tub shape.

We notate the generalized quadratic failure rate distribution by GQFRD(α, β, γ, θ)
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and we say that the random variable T has a generalized quadratic failure rate dis-

tribution if its failure (cumulative distribution) function takes the form

F (t) =
(

1− e−αt−β
2
t2− γ

3
t3
)θ

, t ≥ 0 (1.1.1)

where α > 0, γ > 0, θ > 0 and β ≥ −2
√
αγ. This restriction on the parameter

space is made to ensure that a hazard function with the following form is positive, as

identified by Bain (1974) for the simpler, quadratic failure rate distribution:

α + βt+ γt2 ≥ 0, t ≥ 0.

If T ∼ GQFRD(α, β, γ, θ), then the reliability (survival) function of T is given by

R(t) = 1− F (t) = 1−
[

1− e−(αt+
β
2
x2+ γ

3
t3)
]θ

, t ≥ 0. (1.1.2)

where α > 0, γ > 0, θ > 0 and β ≥ −2
√
αγ. If T has a cumulative distribution

function given by (1.1.1), the corresponding probability density function is given by

f(t) = F ′(t) = θ(α + βt+ γt
2)
[

1− e−(αt+
β
2
t2+ γ

3
t3)
]θ−1

e−(αt+
β
2
t2+ γ

3
t3), t ≥ 0,

(1.1.3)

where α > 0, γ > 0, θ > 0 and β ≥ −2
√
αγ.

Figure 1.1 illustrates the probability density function of GQFRD(α, β, γ, θ) for

different parameter values. From this figure, it is apparent that the density can be

decreasing or unimodal.

The failure rate (hazard) function of GQFRD(α, β, γ, θ) takes the form

h(t) =
f(t)

R(t)
=

θ(α + βt+ γt
2)
[

1− e−(αt+
β
2
t2+ γ

3
t3)
]θ−1

e−(αt+
β
2
t2+ γ

3
t3)

1−
[

1− e−(αt+
β
2
t2+ γ

3
t3)
]θ

, t ≥ 0.

(1.1.4)
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Figure 1.1: Probability density function of the GQFRD(α, β, γ, θ).
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Figure 1.2: Failure rate (hazard function) of the GQFRD(α, β, γ, θ).
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Figure 1.2 presents the failure rate (hazard) function of GQFRD(α, β, γ, θ) for

different parameter values. From this figure, one can see that the hazard function

can be increasing, decreasing, linear, constant, bath-tub shaped or upside-down bath-

tub shaped. Further, one can easily verify from Identity (1.1.4) that:

• if θ = 1, the hazard function is either increasing (if β > 0) or constant (if β = 0

and α > 0 );

• if θ > 1, the hazard function is either increasing (if β > 0) or upside-down

bath-tub shaped (if β < 0); and

• if θ < 1, then the hazard function is either decreasing (if β = 0) or bath-tub

shaped (if β 6= 0)

1.1.2 Exponentiated Weibull distribution

Mudholkar and Srivastava (1993) modified the standard two-parameter Weibull dis-

tribution through the introduction of an additional parameter. This distribution has

been studied deeply in Mudholkar and Hutson (1996), Jiang and Murthy (1999) and

Nassar and Eissa (2003). The exponentiated Weibull distribution hazard function

resembles the hazard function of the generalized quadratic failure rate distribution

and may be constant, increasing, decreasing, bath-tub shape or upside-down bath-tub

shape.

We notate the exponentiated Weibull distribution by EWD(α, β, θ) and we say

that the random variable T has an exponentiated Weibull distribution if its failure

(cumulative distribution) function takes the form

F (t) =
(

1− e−αtβ
)θ

, α, β, θ > 0, t ≥ 0. (1.1.5)
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If T ∼ EWD(α, β, θ), then the reliability (survival) function of T is given by

R(t) = 1−
(

1− e−αtβ
)θ

, α, β, θ > 0, t ≥ 0. (1.1.6)

If T has a cumulative distribution function given by (1.1.5), the corresponding prob-

ability density function is given by

f(t) = αβθtβ−1e−αtβ(1− e−αtβ)θ−1, α, β, θ > 0, t ≥ 0. (1.1.7)

Figure 1.3 illustrates the probability density function of EWD(α, β, θ) for different

parameter values. From this figure, it is apparent that this density can also be

decreasing or unimodal.

The failure rate (hazard) function of EWD(α, β, θ) takes the form

h(t) =
αβθtβ−1e−αtβ(1− e−αtβ)θ−1

1−
(

1− e−αtβ
)θ

, α, β, θ > 0, t ≥ 0. (1.1.8)

Figure 1.4 presents the failure rate (hazard) function of EWD(α, β, θ) for different

parameter values and can be increasing, decreasing, linear, constant, bath-tub shaped

or upside-down bath-tub shaped. The shape of the hazard function does not depend

on α but it depends on β and θ as follows:

• if β ≤ 1 and βθ ≤ 1, then the hazard function is decreasing;

• if β ≥ 1 and βθ ≥ 1, then the hazard function is increasing;

• if β < 1 and βθ > 1, then the hazard function takes upside-down bathtub shape;

• if β > 1 and βθ < 1, then the hazard function takes the bathtub shape.
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1.1.3 Derivation and definition of probability distributions

We now explain (1) how the GQFRD(α, β, γ, θ) generalizes the following distribu-

tions: exponential, generalized exponential, linear failure rate, generalized linear fail-

ure rate, quadratic failure rate, Rayleigh and generalized Rayleigh, and (2) how the

EWD(α, β, θ) generalizes the exponential, generalized exponential, Rayleigh, gener-

alized Rayleigh and Weibull distribution.

Firstly, by using the failure function (1.1.1), the following are seen to be special

cases of the generalized quadratic failure rate distribution:

1. The generalized linear failure rate distribution GLFRD(α, β, θ), see Sarhan et al.

(2008b), by setting γ = 0.

F (t) =
(

1− e−αt−β
2
t2
)θ

, α, β, θ > 0, t ≥ 0. (1.1.9)

2. The quadratic failure rate distribution QFRD(α, β, γ), see Bain (1974), by set-

ting θ = 1.

F (t) = 1− e−αt−β
2
t2− γ

3
t3 , α, γ > 0, β ≥ −2

√
αγ, t ≥ 0. (1.1.10)

3. The linear failure rate distribution LFRD(α, β), see Lee (2003), by setting θ =

1, γ = 0.

F (t) = 1− e−αt−β
2
t2 , α, β > 0, t ≥ 0. (1.1.11)

4. The generalized Rayleigh distribution GRD(β, θ), see Surles and Padgett (1998),

by setting α = 0, γ = 0.

F (t) =
(

1− e−
β
2
t2
)θ

, β, θ > 0, t ≥ 0. (1.1.12)
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5. The Rayleigh distribution RD(β), see Krishnamoorth (2006), by setting α =

0, γ = 0, and θ = 1.

F (t) = 1− e−
β
2
t2 , β > 0, t ≥ 0. (1.1.13)

6. The generalized exponential distribution GED(α, θ), see Gupta and Kundu

(1999), by setting β = 0,γ = 0.

F (t) =
(

1− e−αt
)θ

, α, θ > 0, t ≥ 0. (1.1.14)

7. The exponential distribution ED(α), see Krishnamoorth (2006), by setting β =

0, γ = 0, and θ = 1.

F (t) = 1− e−αt, α > 0, t ≥ 0. (1.1.15)

Secondly, by using the failure function (1.1.5), the following are special cases of

the exponentiated Weibull distribution:

1. The generalized Rayleigh distribution GRD(α, θ), by setting β = 2.

F (t) =
(

1− e−αt2
)θ

, α, θ > 0, t ≥ 0. (1.1.16)

2. The Rayleigh distribution RD(α), by setting θ = 1.

F (t) = 1− e−αt2 , α > 0, t ≥ 0. (1.1.17)

3. The generalized exponential distribution GED(α, θ), by setting β = 1.

F (t) =
(

1− e−αt
)θ

, α, θ > 0, t ≥ 0. (1.1.18)
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4. The exponential distribution ED(α), by setting β = 1 and θ = 1.

F (t) = 1− e−αt, α > 0, t ≥ 0. (1.1.19)

5. The Weibull distribution WD(α, β), see Weibull (1951), by setting θ = 1.

F (t) = 1− e−αtβ , α, β > 0, t ≥ 0. (1.1.20)

1.1.4 Formulation of hazard functions and probability den-

sity functions

The shape of the failure rate of a distribution plays an important role in deciding

whether this distribution can be used to fit a given data set. It is known that some

lifetime distributions may have a constant failure rate, corresponding to the expo-

nential distribution, and some distributions may have increasing failure rates, such

as the Weibull distribution when the shape parameter exceeds 1 and the increasing

linear failure rate distribution. Some others may have decreasing failure rates, such

as the Weibull distribution when the shape parameter does not exceed 1 and the

decreasing linear failure rate distribution. Yet other distributions may have all of

these types of failure rates over different periods of time, such as those distributions

having failure rate of the bath-tub curve shape. There are other distributions that

have upside-down bath-tub shape failure rate. All these shapes are of practical value,

so a family of distributions that includes these forms would be a useful modelling

tool. The generalized quadratic failure rate distribution and exponentiated Weibull

distribution have all of the aforementioned curve shapes. The curve of the failure

rate function of those distributions may be constant, increasing, decreasing, bath-tub

shape or upside-down bath-tub shape, as we can see in Figures 1.2 and 1.4. This
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property suggests that the generalized quadratic failure rate distribution and expo-

nentiated Weibull distribution are flexible models that could be used to fit real data

in many different fields of application.

1.1.5 Fitting the distributions to data

Two recent publications demonstrate applications of the generalized quadratic failure

rate distribution to three sets of real data to examine how the GQFRD(α, β, γ, θ)

works in practice: Alghamdi (2008); Sarhan and Alghamdi (2009). Two different

data sets were used, simple data taken from Aarset (1987) and censored data taken

from McCool (1974). They found that, based on the likelihood ratio test statistic

and Kolmogorov-Smirnov test, the generalized quadratic failure rate distribution fits

different real data sets better than do other very well known and commonly used dis-

tributions, including generalized exponential, generalized Rayleigh, generalized linear

failure rate, generalized Weibull and quadratic failure rate distributions.

Mudholkar and Srivastava (1993) applied the exponentiated Weibull distribution

to the data of Aarset (1987). Mudholkar et al. (1995) used the exponentiated Weibull

distribution to analyse bus failure data. Furthermore, the exponentiated Weibull

distribution was used to analyse flood data by Mudholkar and Hutson (1996).

1.2 Reliability equivalence factors

There are two main methods for improving system reliability. The first is a duplication

method and the second is a reduction method. In a duplication method, system

reliability can be improved by adding extra components in parallel to some of the

system components. In a reduction method, system reliability can be improved by
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reducing the failure rate for all or some components in the system, see Figures 1.5.

To illustrate reduction and duplication methods for system improvement, consider

the possible arrangements for reinforcing the layout of aeroplane wheels. Improving

the aeroplane wheels according to duplication methods means extra wheels are added

in parallel to the main wheels in the case of hot duplication, see Figure 1.6. Cold

duplication assumes that extra wheels are added as standby, so that the pilot switches

to these extra wheels when the main wheels fail to do the required job. Reduction

assumes that reducing the failure rate by replacing standard wheels with better wheels

can improve aeroplane wheel system reliability. A simple definition of the reliability

equivalence factors can be introduced as the factors by which the failure rates of some

system components should be reduced to reach a reliability similar to that of a system

improved using a duplication method.

R̊ade introduced the concept of reliability equivalence factors in 1993 and applied

it to a simple system with two independent and identically distributed components

connected in parallel and in series R̊ade (1993a,b). He assumed an exponential lifetime

distribution for each component. Sarhan performed many extensions based on this

concept: Sarhan (2000, 2002, 2004, 2005); Sarhan and Mustafa (2006); Sarhan et al.

(2008a). He suggested two methods to derive the reliability equivalence factors, which

are the survival reliability equivalence factors and mean reliability equivalence factors.

He applied these approaches to a large system of components including parallel-

series and series-parallel with exponential lifetime distribution with identical and

non-identical parameters.

Xia and Zhang (2007) applied this concept for a parallel system with indepen-

dent and identically distributed components assuming a gamma distribution for the
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Figure 1.5: Reduction and duplication methods for improving systems.

Figure 1.6: Illustrative example of reduction and duplication methods for improving
systems.
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lifetimes. El-Damcese (2009) assumed a series-parallel system with independent and

identical components but with the Weibull distribution. Abdelkader et al. (2013)

applied this concept on a system using the exponentiated exponential distribution

and recently Migdadi and Al-Batah (2014) assumed a system with Burr type X dis-

tribution.

1.3 Signature

Samaniego (2007) introduced the concept of signature and provided a very good

overview of this novel method for describing a system, while Coolen and Coolen-

Maturi (2012) proposed several extensions relating to signature. Aslett (2012) devel-

oped a computer module based on the statistical programming language R to calcu-

late the system signature, which is especially useful in systems with large numbers of

components.

In order to present a definition of signature, there are some concepts that should

be defined first, including system structure function, coherent system, minimal paths,

minimal cuts and the reliability of a coherent system.

1.3.1 System structure function

For a system with m components, let xi be the state of the ith component for i =

1, 2, ..., m where xi = 1 if it is working and xi = 0 if it is not working. The vector

x = (x1, x2, ..., xm) ∈ (0, 1)m is called the state vector. The system structure function

φ(x) can be written as

φ(x) =







1 if the system is working

0 if the system is not working
(1.3.1)
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and the most common examples to illustrate the system structure function are series

and parallel systems. The series system works only if every component is working, in

which case the structure function of a series system can be written as

φ(x) = min(x1, x2, ..., xm) =

m
∏

i=1

xi. (1.3.2)

Conversely, the parallel system works as long as at least one component is working,

in which case the structure function for a parallel system can be written as

φ(x) = max(x1, x2, ..., xm) = 1−
m
∏

i=1

(1− xi). (1.3.3)

1.3.2 Coherent system

A system is coherent if and only if every component is relevant and the structure

function representing the system is monotone, Samaniego (2007).

The first condition refers to a system of order m components with a state vector

(x1, ..., xi−1, a, xi+1..., xm) where a ∈ {0, 1}. The ith component is said to be irrelevant

if:

φ(x1, ..., xi−1, 1, xi+1..., xm) = φ(x1, ..., xi−1, 0, xi+1..., xm)

for all possible state vectors. If a component is not irrelevant, then it is defined to be

a relevant component.

The second condition is the monotone structure function. The structure function

φ(.) of an order m system is said to be monotone if

x ≤ y ⇒ φ(x) ≤ φ(y)

where x, y ∈ {0, 1}m and the inequality on the left is taken element-wise. In particular,

this means that any improvement for any component cannot make the system worse.
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1.3.3 Minimal paths and minimal cut sets

For a coherent system, a set of components P is said to be a path set if the system

works whenever all the components in the set P work. If no proper subset of P is a

path set, then P is said to be a minimal path set. The algebraic union of all minimal

path sets is the set of all the system’s components.

However, a set of components C is said to be a cut set if the system fails whenever

all the components in the set C fail. If no proper subset of C is a cut set, then C is

said to be a minimal cut set. The algebraic union of all minimal cut sets is the set of

all the system’s components.

1.3.4 System signature definition

Consider a coherent system with m independent and identically distributed com-

ponents. Let Ts > 0 be the random failure time of the system and Ti:m the ith

order statistic of the m random component failure times for i = 1, 2, ..., m, where

T1:m ≤ T2:m ≤ ... ≤ Tm:m. The signature of the system is the m-dimensional proba-

bility vector S = (s1, s2, ..., sm) with elements

si = P (Ts = Ti:m) (1.3.4)

so the signature is the probability that the system failure occurs at the moment of the

ith component failure: Samaniego (2007); Coolen and Coolen-Maturi (2012). Since

Ts resides in the set {T1:m, T2:m, ..., Tm:m} with probability one, it follows that si ≥ 0

for all i and
∑m

i=1 si = 1.

Computing the signature is dependent on the number of components in the system

and the system structure. For example, a series system fails when the first component

fails, so the signature vector for a series system can be written as S = (1, 0, ..., 0), while
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2 3

1

Figure 1.7: System with 3 independent and identically distributed components.

a parallel system fails whenever all the system components fail, so the signature vector

for a parallel system can be written as S = (0, 0, ..., 1). For other system signatures, let

us consider an example of a system with three independent and identically distributed

components as pictured in Figure 1.7. The failure times of these three components

can be ordered in 3! = 6 arrangements.

Table 1.1: Ordered component failure times for a system with 3 i.i.d. components.

ordered component failure times order statistic equal to system failure time Ts

T1 < T2 < T3 T2:3

T1 < T3 < T2 T2:3

T2 < T1 < T3 T2:3

T2 < T3 < T1 T3:3

T3 < T1 < T2 T2:3

T3 < T2 < T1 T3:3

For this system, we can note that there are only two minimal cut sets, {1, 2} and

{1, 3}. The smallest minimal cut set has two members, which means that the sys-

tem will not fail when the first component fails for all system components. The

system will fail when the second component fails if the ordered component fail-

ure time takes any one of the minimal cut sets {1, 2} and {1, 3} (note we do not

have any minimal cut set as a subset of those sets). Then the system signature is
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Figure 1.8: System with 5 independent and identically distributed components.

S = (0
6
, 4
6
, 2
6
)=(0, 0.66, 0.33). For another example, let us consider a system with

five independent and identically distributed components as pictured in Figure 1.8.

The failure times of this system’s components can be ordered in 5!=120 ways, and it

has only two minimal cut sets, {1, 2} and {3, 4, 5}. The system signature vector is

S = ( 0
120

, 12
120

, 36
120

, 72
120

, 0
120

)= (0, 0.1, 0.3, 0.6, 0).

1.3.5 Signature and system reliability

Samaniego (2007) introduced a very useful theorem to compute the reliability function

for any coherent system with m independent and identically distributed components

with a continuous lifetime distribution.

Theorem 1.3.1. (Samaniego, 2007) Let T1, T1, ..., Tm be the i.i.d. component life-
times of an order m component coherent system with signature S. Let Ts be the
system lifetime. Then

P (Ts > t) =
m
∑

i=1

si

i−1
∑

j=0

(

m

j

)

[F (t)]j [R(t)]m−j (1.3.5)
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where F (t) and R(t) are the failure function and reliability function of system com-
ponents.

This theorem can also be written:

P (Ts > t) =
m
∑

i=1

si

m
∑

j=m−i+1

(

m

j

)

[F (t)]m−j [R(t)]j ; (1.3.6)

see Coolen and Coolen-Maturi (2012) and Aslett et al. (2014).

1.4 Survival signature

Coolen and Coolen-Maturi (2012) recently introduced a new and useful method in this

field, which they refer to as survival signature. Survival signature can be defined as the

probability that a system functions given that a specified number of its components

function.

For a coherent system with m independent and identically distributed components

with a continuous lifetime distribution, let Φ(l) for l = 0, 1, ..., m be the probability

that the system functions given that precisely l of its components function. The

system will not function when all system components fail, which means Φ(0) = 0

and the system should function when all system components function, which means

Φ(m) = 1. There are
(

m

l

)

state vectors x in which precisely l components function (l

components with state xi = 1), so
∑m

i=1 xi = l; we will denote the set of these vectors

by Xl. The system survival signature Φ(l) can be written as

Φ(l) =

(

m

l

)−1
∑

x∈Xl

φ(x) (1.4.1)

where φ(x) is the system structure function for each state vector in the set Xl. The

survival signature can be derived from the signature thus:

Φ(l) =
m
∑

i=m−l+1

si (1.4.2)
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Let Ct ∈ {0, 1, 2, ..., m} be the number of components in the system that function

at time t > 0. If the components of the system have a continuous lifetime distribution

with failure function F (t) and reliability function R(t) then, for l ∈ {0, 1, 2, ..., m},

P (Ct = l) =

(

m

l

)

[F (t)]m−l[R(t)]l. (1.4.3)

By applying Equations (1.4.1) and (1.4.3) in Theorem (1.3.1), the system reliability

can then be written:

P (Ts > t) =
m
∑

l=0

Φ(l)

(

m

l

)

[F (t)]m−l[R(t)]l (1.4.4)

We are going to use Relation (1.4.4) to compute the reliability functions and

mean times to failure for different systems, which are improved according to different

methods, in order to compare the efficiencies of these methods.

It is easy to compute the survival signature for a system with a small number

of independent and identically distributed components. For example, the survival

signature for the system in Figure 1.7 is shown in Table 1.2.

Table 1.2: Survival signature for the system in Figure 1.7.

m = 3
l 0 1 2 3

Φ(l) 0 1
3

1 1

To interpret Table 1.2, the probability that the system functions if none of its

components function is zero, and the system definitely functions if all of its com-

ponents function. The probability that the system functions if precisely one of its

components functions is 1
3
because

(

m

l

)

=
(

3
1

)

= 3, which means 3 state vectors have

precisely one component functioning. These state vectors are (1, 0, 0), (0, 1, 0) and
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(0, 0, 1). The structure function of the first state vector is φ(x) = 1; however, the

structure function for the other two is φ(x) = 0. By using the definition of survival

signature in Equation (1.4.1), we determine the value 1
3
for the probability that the

system functions if exactly one component functions. Using a similar method, we

find that the probability that the system functions if precisely two of its components

function is 1.

Using the same techniques, the survival signature for the system given in Figure 1.8

is shown in Table 1.3.

Table 1.3: Survival signature for the system in Figure 1.8.

m = 5
l 0 1 2 3 4 5

Φ(l) 0 0 6
10

9
10

1 1

Note that the survival signatures presented in Tables 1.2 and 1.3 are easily derived

from the signature, as displayed in Equation (1.4.2).

1.4.1 Survival signature for systems with multiple types of

component

Coolen and Coolen-Maturi (2012) also studied the survival signature for a system with

multiple types of components. Studying systems with multiple types of component

is more relevant to real applications. These authors consider a coherent system with

m independent components classified into n ≥ 2 types of components where type i

has mi identical components for i = 1, 2, .., n. Let Φ(l1, l2, ..., ln), for li = 0, 1, ..., mi,

be the probability that a system functions given that precisely li of its components

of type i function, for i = 1, 2, .., n. There are
(

mi

li

)

state vectors xi where precisely

li components of type i function (li of the mi components have state xi
j = 1 and the
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2 3

1

Figure 1.9: System with two types of component where the first type has 2 components
and the second type has 1.

other mi − li have state xi
j = 0), so

∑mi

j=1 x
i
j = li. Let Xl1,...,ln be the set of all state

vectors for the whole system for which
∑mi

j=1 x
i
j = li, i = 1, 2, ..., n. Then the survival

signature of such a system is

Φ(l1, l2, ..., ln) =

[

n
∏

i=1

(

mi

li

)−1
]

×
∑

x∈Xl1,...,ln

φ(x) (1.4.5)

To illustrate the concept of the survival signature for a system with multiple types

of components, we adapt Figures 1.7 and 1.8 in order to construct systems with more

than one type of component. First consider a system with two types of component

(n = 2), as pictured in Figure 1.9. The first type has two components, m1 = 2,

and the second has only one component, m2 = 1. The whole number of system

components is
∑n

i=1mi = 3.

Tables 1.4 and 1.5 present the technique to derive the survival signature for the

system in Figure 1.9. Firstly, we derive all the state factors for the whole system.

Secondly, we find the value of the system structure function for each state factor.
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Table 1.4: Component state and system state for the system in Figure 1.9.

Component state
Number Type 1 Type 2 System state

x1 x2 x1 φ(x)
1 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 1 1 1
5 1 0 0 1
6 1 0 1 1
7 1 1 0 1
8 1 1 1 1

Table 1.5: Survival signature for the system in Figure 1.9.

l1 l2
(

m1

l1

) (

m2

l2

)

Analogous state vector in Table 1.4
∑

φ(x) Φ(l1, l2)

0 0 1 1 1 0 0
0 1 1 1 2 0 0
1 0 2 1 3,5 1 1

2

1 1 2 1 4,6 2 1
2 0 1 1 7 1 1
2 1 1 1 8 1 1

Thirdly, we compute all possible combinations of the numbers of components that

function for each type. Finally, we apply the aforementioned results in Relation

(1.4.5) to derive the survival signature for this system.

We now provide a second example further to illustrate this methodology. Consider

a system with two types of component, where the first has two components and the

second has three components, as shown in Figure 1.10. Using the same technique

which we used in the first example, the survival signature for the system in Figure

1.10 is shown in Table 1.6.
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3

4

5

1

2

Figure 1.10: System with two types of component where the first type has 2 compo-
nents and the second type has 3.

Table 1.6: Survival signature for the system in Figure 1.10.

l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)
0 0 0 1 2 5

6

0 1 0 1 3 1
0 2 2

3
2 0 1

0 3 1 2 1 1
1 0 0 2 2 1
1 1 1

2
2 3 1

1.4.2 Reliability function for systems with multiple types of

component using survival signature

Theorem 1.3.1 and Relation (1.4.1) can be used to derive the reliability function for

a system with multiple types of components, as the following

P (Ts > t) =

m1
∑

l1=0

...

mn
∑

ln=0

[

Φ(l1, ..., ln)

n
∏

i=1

{(

mi

li

)

[1− Ri(t)]
mi−li[Ri(t)]

li

}

]

. (1.4.6)
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Using this relation to derive reliability equivalence factors is very useful for several

reasons. The first reason is that it matches real applications well and we can avoid

assuming systems with identically distributed components and specific structures as

do most studies in the reliability equivalence factors field. The second reason is that

there are computer packages that can be used to compute the signature and survival

signature for systems. Such a computer package helps to compute two of the reliability

equivalence factors measures, which are the survival reliability equivalence factors and

the mean reliability equivalence factors. Thirdly, we present a new technique to find

the reliability equivalence factors.

1.5 ReliabilityTheory: R package

ReliabilityTheory is a software R package presented by Aslett (2012). This package

includes very useful functions to compute signature (computeSystemSignature) and

survival signature (computeSystemSurvivalSignature) for coherent systems. These

functions are helpful especially for complex systems. The graph.formula function is

used for representation of the system or network whose signature or survival signature

is to be computed.

1.5.1 Package input

We can use the ReliabilityTheory R package if we have a coherent system with m

independent components classified into n ≥ 2 types. We load the ReliabilityTheory

R package at the beginning and we give each component in the system a separate

number then we follow these steps. Firstly, we define the system structure whereby

each end of the system is denoted by “s” and “t” and the double dashes −− indicate
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a series connection while the colon : indicates a parallel connection. Secondly, we

specify the prevalent types of system component. Thirdly, we compute the survival

signature using computeSystemSurvivalSignature. To illustrate these steps the

survival signatures for the systems in Figures 1.9 and 1.10 are calculated as follows:

• Computing the survival signature of the system in Figure 1.9. ⋆

library(ReliabilityTheory)

?computeSystemSurvivalSignature

# First, define system structure

g <- graph.formula(s--1--t,s--2--3--t)

# Second, specify types where components 1 and 2 represent the

# first type and component 3 represents the second type.

V(g)$compType <- NA

V(g)$compType[match(c("1","2"), V(g)$name)] <- "T1"

V(g)$compType[match(c("3"), V(g)$name)] <- "T2"

# Third, compute the survival signature

computeSystemSurvivalSignature(g,frac=TRUE)

• Computing the survival signature of the system in Figure 1.10. ⋆⋆

library(ReliabilityTheory)

# First, define system structure

g2 <- graph.formula(s--2:1--3--t,s--2:1--4--t,s--2:1--5--t,

1:2--3:4:5)

# Second, specify types where components 2 and 5 represent the

# first type and components 1, 3 and 4 represent the second type.

V(g2)$compType <- NA

V(g2)$compType[match(c("2","5"), V(g2)$name)] <- "T1"

V(g2)$compType[match(c("1","3","4"), V(g2)$name)] <- "T2"

# Third, compute the survival signature

computeSystemSurvivalSignature(g2,frac=TRUE)

We cannot use the function computeSystemSurvivalSignature for a system with

a single type of component (n = 1), so we turn to the function computeSystemSignature
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to compute the signature. Then using Equation (1.4.2) we can compute the survival

signature. For example:

• Computing the signature of the system in Figure 1.7. �

library(ReliabilityTheory)

g <- graph.formula(s--1--t,s--2--3--t)

computeSystemSignature(g,frac=TRUE)

• Computing the signature of the system in Figure 1.8. ��

library(ReliabilityTheory)

g2 <- graph.formula(s--2:1--3--t,s--2:1--4--t,s--2:1--5--t,

1:2--3:4:5)

computeSystemSignature(g2,frac=TRUE)

1.5.2 Package output

The output of the computeSystemSurvivalSignature function is a table with n +

1 columns. The first n columns contain the numbers of each type of component

which are functional and the last column contains the probabilities that the system

functions. The output of that functions presented in the Input section take the

following forms:

• The survival signature of the system in Figure 1.9. ⋆

T1 T2 Probability

1 0 0 0

2 0 1 0

3 1 0 1/2

4 1 1 1

5 2 0 1

6 2 1 1

• The survival signature of the system in Figure 1.10. ⋆⋆
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T1 T2 Probability

1 0 0 0

2 0 1 0

3 0 2 2/3

4 0 3 1

5 1 0 0

6 1 1 1/2

7 1 2 5/6

8 1 3 1

9 2 0 1

10 2 1 1

11 2 2 1

12 2 3 1

The output of the computeSystemSignature function is a vector which is the

system signature. The output of the function presented in the Input section for

systems with single types is:

• The signature of the system in Figure 1.7. �

s = ( 0/1, 2/3, 1/3 )

• The signature for the system in Figure 1.8. ��

s = ( 0/1, 1/10, 3/10, 3/5, 0/1 )

1.6 Outline of thesis

The motivation of this thesis is to present a generalization to apply the concept of

the reliability equivalence factors on real application systems better than before. This

thesis is divided into six chapters classified into three parts. The first part includes

applying reliability equivalence on a system of components with generalized quadratic

failure rate and exponentiated Weibull distributions. The second part introduces a
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new methodology to derive reliability equivalence using the concept of survival signa-

ture. The last part presents some illustrative real application examples, a discussion

and a conclusion. The main chapters of this thesis (2, 3 and 5) are presented in a

format suitable for submission for publication in a peer reviewed journal which in-

evitably lead to some duplication for some sections. In addition to this chapter the

remainder of the thesis is organized as follows:

In Chapter 2 we apply the reliability equivalence factors on a parallel-series sys-

tem of components with generalized quadratic failure rate distribution. Part of this

chapter was presented to the Mathematical Methods in Reliability Joint Research

Group at the University of Salford on 22 March 2013. We recently submitted a paper

based on the content of this chapter to a well regarded journal and it is still under

review.

In Chapter 3 we derive the reliability equivalence factors for a series-parallel system

of components with exponentiated Weibull lifetimes. This chapter was presented

as a proceedings paper at the 8th IMA international conference on modelling in

industrial maintenance and reliability (MIMAR) at University of Oxford from 10-12

July 2014, see Alghamdi and Percy (2014). An extended version containing much

of the material in this chapter was subsequently published in the IMA Journal of

Management Mathematics, Alghamdi and Percy (2015).

Chapter 4 presents the various steps for using survival signature to derive the

reliability equivalence factors. In this chapter we use survival signature to compute

reliability equivalence factors for simple systems including series-parallel and parallel-

series systems.

In Chapter 5 survival signature is used to derive the reliability equivalence factors
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for complex systems and networks. To our knowledge, this is the first attempt to use

survival signature to compute the reliability equivalence factors for different systems

and for systems with multiple types of components. We are preparing to submit this

chapter to an established peer reviewed journal.

In Chapter 6 we present real application examples for our study and we give

conclusions for our thesis. Finally, we present some further research challenges which

can be considered for future work.
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Part I

Reliability equivalence for systems

with flexible lifetime distributions
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Chapter 2

Reliability equivalence factors for a

parallel-series system assuming a

generalized quadratic failure rate

distribution

The aim of this study is to apply reliability equivalence techniques to a parallel-series

system comprising several parallel subsystems connected in series. The lifetimes of

all system components are assumed to be independent and identically distributed,

according to a generalized quadratic failure rate distribution. Four different methods

are used to improve any such system: (a) reduction; (b) hot duplication; (c) cold

duplication with perfect switch; (d) cold duplication with imperfect switch. Two

measures for comparing system improvements are considered in this study, survival

reliability equivalence factors and mean reliability equivalence factors. Numerical

examples are presented for a specific parallel-series formulation, to illustrate how to

apply the theoretical results and demonstrate the relative benefits of various system

improvements.

35
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2.1 Introduction

The concept of reliability equivalence factors was introduced by R̊ade (1993a,b). He

applied this concept to simple systems that consist of one component or two compo-

nents connected in series or parallel. Later, Sarhan (2000, 2005) and Sarhan et al.

(2008a) applied this concept to more general systems. Most of the designs consid-

ered have components with exponential lifetime distributions although some studies

applied this concept to other lifetime distributions, such as the Weibull distribution,

El-Damcese (2009), gamma distribution, Xia and Zhang (2007), exponentiated expo-

nential distribution, Abdelkader et al. (2013) and recently Burr type X distribution,

Migdadi and Al-Batah (2014).

There are two main methods for improving a system’s design. The first method

is reduction, which involves improving the reliability of the system by reducing the

failure rate by a factor ρ for some of the system components, where ρ ∈ (0, 1). This

can be achieved by replacing standard components with more expensive, higher qual-

ity components. The second method for improving a system’s design is redundancy

duplication, which involves adding extra components in parallel to existing system

components. There are three ways to add extra components to the system: hot dupli-

cation; cold duplication with perfect switch; cold duplication with imperfect switch.

Sometimes, and for many different reasons such as high cost and space limitation, it

is impossible to improve the reliability of the system by the redundancy duplication

method. Reliability equivalence factors refer to the factors by which the failure rates

(hazard functions) of some of the system’s components must be reduced in order to

reach equality of the system reliability with that of a better system.

In this study, we consider a parallel-series system in a broader context by assuming
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Figure 2.1: Parallel-series system.

that all the system’s components are independent and follow the generalized quadratic

failure rate distribution proposed by Sarhan and Alghamdi (2009) with identical

parameters. First, we compute the reliability function (RF) and the mean time to

failure (MTTF) of the original system. Second, we compute the RFs and MTTFs of

the systems following improvement according to reduction, hot duplication and cold

duplication (perfect and imperfect) methods. Third, we equate the RF and MTTF

of the system improved according to the reduction method with the RF and MTTF

of the system improved according to each of the duplication methods to determine

the reliability equivalence factors. Finally, we illustrate the results obtained with an

application example by presenting summary tables and figures.

2.2 Parallel-series system

The system we consider here is shown in Figure 2.1 and consists of n subsystems

connected in series, where subsystem i consists of mi components that are connected

in parallel for i = 1, 2, ..., n. Such a system is usually referred to as a parallel-series
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system Sarhan et al. (2008a), though some authors refer to it as a series-parallel

system.

We assume that the lifetimes of all the system’s components are independent and

follow the generalized quadratic failure rate distribution with identical parameters,

GQFRD(α, β, γ, θ) in the notation of Sarhan and Alghamdi (2009). As explained by

those authors, this distribution offers much flexibility in the form of hazard function

and includes several familiar models as special cases, including generalized exponen-

tial, Rayleigh and linear failure rate distributions. Let rij(t) be the reliability function

of component j (j = 1, 2, ..., mi) in subsystem i (i = 1, 2, ..., n) and let Ri(t) be the

reliability function of subsystem i. The above assumption implies that rij(t) = r(t)

where

r(t) = 1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ

(2.2.1)

for t ≥ 0, as the lifetimes of components are unaffected by failures of other compo-

nents. The reliability function of subsystem i then takes the form

Ri(t) = 1−
mi
∏

j=1

{1− rij(t)}

= 1− {1− r(t)}mi

= 1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}miθ

(2.2.2)

for t ≥ 0, so the reliability function of the parallel-series system is

R(t) =

n
∏

i=1

Ri(t)

=
n
∏

i=1

[

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}miθ

]

(2.2.3)
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for t ≥ 0, and the mean time to failure of the parallel-series system is given by

MTTF =

∞
∫

0

R(t)dt

=

∞
∫

0

(

n
∏

i=1

[

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}miθ

]

)

dt. (2.2.4)

2.3 Designs of improved systems

The two main approaches for improving a system are reduction methods and standby

redundancy (duplication) methods. The latter comprise two variations, hot dupli-

cation and cold duplication. Furthermore, cold duplication can be performed with

perfect switch or imperfect switch. In this section, we derive the reliability function

and the mean time to failure for parallel-series systems improved according to the

methods identified above.

2.3.1 Reduction method

As mentioned in the introduction, the reliability of a system can be improved by scal-

ing the hazard function for some of the system’s components by a factor ρ ∈ (0, 1).

For the generalized quadratic failure rate distribution GQFRD(α, β, γ, θ), reducing

one or more of the parameters α, β and γ can reduce the failure rate. Here, we con-

sider reducing all three parameters α, β and γ of a set A of the system’s components

by a factor ρ ∈ (0, 1), in order to reduce the failure rate for the whole system. This

is a logical procedure for the GQFRD, as the corresponding hazard function varies

with time only through linear combinations of these parameters, as evident from the

reliability function in Equation (2.2.1).
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Define ai (i = 1, 2, ..., n) to be the number of components in subsystem i whose

failure rate is reduced, so ai ∈ {0, 1, . . . , mi} and the cardinality of the set of improved

components is |A| =
n
∑

i=1

ai.

By comparison with Equation (2.2.2), we see that the reliability function R
(A)
i (t) of

subsystem i is then given by

R
(A)
i (t) = 1−

{

1− e−ρ(αt+β
2
t2+ γ

3
t3)
}aiθ

{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ai)θ

(2.3.1)

for t ≥ 0 from Equation (2.2.1), since the components are connected in parallel. Then

the reliability function of the system takes the form

R(A)(t) =
n
∏

i=1

R
(A)
i (t)

=

n
∏

i=1

[

1−
{

1− e−ρ(αt+β
2
t2+ γ

3
t3)
}aiθ

{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ai)θ

]

(2.3.2)

for t ≥ 0, since the subsystems are connected in series. We can then compute the

mean time to failure of this parallel-series system as

MTTF (A) =

∞
∫

0

R(A)(t)dt

=

∞
∫

0

(

n
∏

i=1

[

1−
{

1− e−ρ(αt+β
2
t2+ γ

3
t3)
}aiθ

{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ai)θ

]

)

dt.

(2.3.3)

2.3.2 Duplication methods

Now we obtain the corresponding reliability measures of the system when it is im-

proved by duplication. We derive the reliability function and the mean time to failure

of the parallel-series system improved according to the hot duplication method and

the cold duplication methods with perfect and imperfect switches.
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2.3.2.1 Hot duplication

This means that some of the system components are duplicated in parallel by similar

components. We assume that in the hot duplication method each component of

the set B is augmented by introducing a new but identical component in the same

subsystem.

Let bi (i = 1, 2, ..., n) be the number of components in subsystem i whose reliability

is improved according to the hot duplication method, so bi ∈ {0, 1, . . . , mi} and

|B| =
n
∑

i=1

bi. By comparison with Equation (2.2.2), we see that the reliability function

R
(B)
i (t) of subsystem i is given by

R
(B)
i (t) = 1−

bi+mi
∏

i=1

{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ

= 1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(bi+mi)θ

(2.3.4)

for t ≥ 0 from Equation (2.2.1), since the components are connected in parallel. Then

the reliability function of the system takes the form

R(B)(t) =

n
∏

i=1

R
(B)
i (t)

=
n
∏

i=1

[

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(bi+mi)θ

]

(2.3.5)

for t ≥ 0, since the subsystems are connected in series. We can then compute the

mean time to failure of this parallel-series system as

MTTF (B) =

∞
∫

0

R(B)(t)dt

=

∞
∫

0

(

n
∏

i=1

[

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(bi+mi)θ

]

)

dt. (2.3.6)
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2.3.2.2 Cold duplication with perfect switch

This approach to improving system reliability means that a similar component is

connected with an original component in such a way that it is activated immediately

upon failure of the original component. For this aspect of our analysis, the cold du-

plication method assumes that each component of a set C is improved by introducing

a new but identical component with a perfect switch.

Let ci (i = 1, 2, ..., n) be the number of components in subsystem i, whose relia-

bility is improved according to the cold duplication method with perfect switch, so

ci ∈ {0, 1, . . . , mi} and |C| =
n
∑

i=1

ci.

Let s1(t) be the reliability function of each component whose reliability is im-

proved according to cold duplication with perfect switch. Regarding a definition of

cold duplication with perfect switch, we can describe this improvement as a renewal

process with only one renewal. Using the convolution technique, the reliability func-

tion of each component whose reliability is improved according to cold duplication

with perfect switch can be derived as:

s1(t) = 1−
t
∫

0

−dr(x)

dx
[1− r(t− x)]dx (2.3.7)

where r() is the reliability function for the generalized quadratic failure rate lifetime

distribution presented in Equation (2.2.1).

To prove Equation (2.3.7), assume a standby duplication mode as present in Figure

2.2 where:
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A Original component

B Standby component

S Switch

T1 Failure time of the original component

T2 Failure time of the standby component

T Failure time of the whole system

N(t) Number of failures (renewal process) in the interval (0, t].

According to the definition of the cold duplication method with perfect switch in

this study, we obtained the following:

• A,B are independent and identically distributed with a generalized quadratic

failure rate distribution;

• S is 100% reliable (perfect switch);

• Component B does not fail when in the standby position. It can only fail given

that the original component A has already failed;

• We can describe this system as a renewal process with only one renewal, Gamiz

et al. (2011). After the original component A fails the standby component B

takes over for the remainder of the mission and therefore the system does not

fail. If the standby component B fails the system also fails;

• Such a process is called a renewal process or perfect maintenance, which means

that after a failure, the system behaviour is exactly as good as new.

• The switch immediately transfers load to the standby component B when the

original component A fails, which means the repair time is negligible.
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A

B

S

Figure 2.2: Standby duplication modes.

• The system fails when A and B fail which means T = T1 + T2. Thus, the

whole system reliability can be derived using the number of failures or number

of renewals N(t), Ross (2006).

P (T ≤ t) = P (N(t) ≥ 2)

⇔ P (T > t) = P (N(t) < 2)

Thus, the reliability function of each component whose reliability is improved ac-

cording to cold duplication with perfect switch is a convolution of two generalized

quadratic failure rate distributions as presented in Equation (2.3.7). �

By comparison of Equation (2.3.7) with Equation (2.2.2), we see that the reliability

function R
(C)
i (t) of subsystem i is given by

R
(C)
i (t) = 1− {1− s

1
(t)}ci

{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ci)θ

(2.3.8)

for t ≥ 0 from Equation (2.2.1), since the components are connected in parallel. Then
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the reliability function of the system takes the form

R(C)(t) =

n
∏

i=1

R
(C)
i (t)

=
n
∏

i=1

[

1− {1− s1(t)}ci
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ci)θ

]

(2.3.9)

for t ≥ 0, and s1(t) as defined in Equation (2.3.7), since the subsystems are connected

in series. We can then compute the mean time to failure of this parallel-series system

as

MTTF (C) =

∞
∫

0

R(C)(t)dt

=

∞
∫

0

(

n
∏

i=1

[

1− {1− s1(t)}ci
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−ci)θ

]

)

dt. (2.3.10)

2.3.2.3 Cold duplication with imperfect switch

This approach to improving system reliability means that a similar component is

connected with an original component by a cold standby via a random switch having

a constant failure rate. For this aspect of our analysis, the cold duplication method

assumes that each component of a set D is improved by introducing a new but

identical component with an imperfect switch.

Let di (i = 1, 2, ..., n) be the number of components in subsystem i, whose re-

liability is improved according to cold duplication with imperfect switch, so di ∈

{0, 1, . . . , mi} and |D| =
n
∑

i=1

di.

Let s2(t) be the reliability function of each component whose reliability is improved

according to cold duplication with imperfect switch. Following the same technique

that we used for cold duplication with perfect switch but with the extra condition
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that the switch is not 100% reliable, Billinton and Allan (1992), we have

s2(t) = 1−
t
∫

0

−dr(x)

dx
[1− r(t− x)s3(x)]dx (2.3.11)

where r() was defined previously for cold duplication with perfect switch, and s3() is

the reliability function for the imperfect switch. The imperfect switch is chosen to

have a constant failure rate λ, which means it has an exponential lifetime distribution

with parameter λ

s3(t) = e−λt. (2.3.12)

To prove Equation (2.3.11), as we did in the cold perfect switch case, the only

difference is that the reliability of the switch will affect the reliability of the standby

component B. An imperfect switch makes with the standby component a series sys-

tem with two components (component B and imperfect switch). The imperfect switch

is chosen to have a constant failure rate prior to use, which means the reliability of the

switch corresponds to an exponential distribution. This is the most common form of

imperfect switch investigated in the literature relating to reliability equivalence and

is appropriate for many practical purposes.

The reliability function R
(D)
i (t) of subsystem i is given by

R
(D)
i (t) = 1− {1− s2(t)}di

{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−di)θ

(2.3.13)

for t ≥ 0 from Equation (2.2.1), since the components are connected in parallel. Then

the reliability function of the system takes the form
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R(D)(t) =

n
∏

i=1

R
(D)
i (t)

=

n
∏

i=1

[

1− {1− s2(t)}di
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−di)θ

]

(2.3.14)

for t ≥ 0, and s2(t) as defined in Equation (2.3.11), since the subsystems are connected

in series. We can then compute the mean time to failure of this parallel-series system

as

MTTF (D) =

∞
∫

0

R(D)(t)dt

=

∞
∫

0

(

n
∏

i=1

[

1− {1− s2(t)}di
{

1− e−(αt+β
2
t2+ γ

3
t3)
}(mi−di)θ

]

)

dt. (2.3.15)

2.4 Reliability equivalence factors

According to El-Damcese (2009), a reliability equivalence factor is a factor by which

a characteristic of components of a system design has to be multiplied in order to

reach equality of a characteristic of this design and a different design regarded as a

standard.

We compute two measures of reliability equivalence. The first involves survival

reliability equivalence factors (SREFs) and these are determined from the reliability or

survival function. The second involves mean reliability equivalence factors (MREFs)

and these are determined from the mean time to failure.

2.4.1 Survival reliability equivalence factors

The idea of SREFs is to assess what degrees of intervention are required to establish

equivalence between the reliability functions of a system whose reliability is improved
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according to one of the duplication methods and a system whose reliability is improved

according to the reduction method.

That is, to derive the SREFs, we have to solve the following set of equations

R(A)(t) = R(H)(t) = ω, H = B,C,D (2.4.1)

for the appropriate reduction factor ρ and time fractile t corresponding to a specified

reliability requirement ω. The system of equations in (2.4.1) has no closed form

solutions and can be solved using a mathematical package such as Matlab.

2.4.2 Mean reliability equivalence factors

The idea of MREFs is to assess what degrees of intervention are required to establish

equivalence between the mean times to failure of a system whose reliability is improved

according to one of the duplication methods and a system whose reliability is improved

according to the reduction method.

That is, to derive the MREFs, we have to solve the following set of equations

MTTF (A) = MTTF (H), H = B,C,D (2.4.2)

for the appropriate reduction factor ρ. The system of equations in (2.4.2) also has

no closed form solutions and can be solved using a mathematical package such as

Matlab.

2.5 Numerical results and analysis

2.5.1 Example 1

Suppose that we have a parallel-series system consisting of two subsystems connected

in series. The first subsystem has two components connected in parallel and the
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Figure 2.3: Hazard function of the GQFRD(α, β, γ, θ) for different parameter values.

second subsystem has three components connected in parallel. This means that

n = 2, m1 = 2, m2 = 3 and the total number of components is m = 5. All of

the system’s components are assumed to be independent and identically distributed,

with lifetimes that behave according to a generalized quadratic failure rate distribu-

tion with parameters α = 0.029, β = −1.597× 10−3, γ = 2.608× 10−5 and θ = 0.786.

The values of these parameters derive from real data as described in Aarset (1987)

and Sarhan and Alghamdi (2009). The hazard function for each component in the

system takes bath-tub shape, see Figure 2.3a. We define:

1. A
(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i+j, to represent a reduction method that

requires us to reduce the failure rate of i components from the first subsystem

and j from the second subsystem.

2. B
(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent hot duplication

methods when i components are added to the first subsystem and j to the

second subsystem.
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3. C
(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent cold duplication

methods with perfect switch when i components are added to the first subsystem

and j components are added to the second subsystem.

4. D
(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i+ j, to represent cold duplication meth-

ods with imperfect switch when i components are added to the first subsystem

and j components are added to the second subsystem.

Table 2.1: Hot survival reliability equivalence factors.

ω B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

0.1 0.6680 0.5083 0.4109 0.5514 0.3799 0.2846 0.2224 0.3799 0.2549 0.1824 0.1341

A
(0,1)
1 0.5 0.4590 0.2541 0.1526 0.1961 0.0178 - - 0.0178 - - -

0.9 0.1995 0.0458 0.0107 - - - - - - - -
0.1 0.8022 0.6803 0.5953 0.7151 0.5663 0.4703 0.4011 0.5663 0.4380 0.3529 0.2901

A
(0,2)
2 0.5 0.6621 0.4764 0.3581 0.4120 0.1115 - - 0.1115 - - -

0.9 0.4379 0.2056 0.0946 - - - - - - - -
0.1 0.8587 0.7618 0.6895 0.7903 0.6639 0.5756 0.5086 0.6639 0.5447 0.4601 0.3946

A
(0,3)
3 0.5 0.7545 0.5985 0.4882 0.5397 0.2130 0.0259 0.0160 0.2130 0.0183 - -

0.9 0.5732 0.3430 0.0298 0.0846 0.0527 0.0337 0.0237 0.0527 0.0040 - -
0.1 0.7704 0.6403 0.5544 0.6767 0.5259 0.4346 0.3720 0.5259 0.4051 0.3301 0.2777

A
(1,0)
1 0.5 0.6866 0.5325 0.4431 0.4828 0.2933 0.1962 0.1380 0.2933 0.1483 0.0751 0.0330

0.9 0.7320 0.6503 0.6239 0.2516 0.0903 0.0355 0.0142 0.0903 - - -
0.1 0.8538 0.7685 0.7116 0.7925 0.6927 0.6322 0.5908 0.6927 0.6127 0.5633 0.5291

A
(1,1)
2 0.5 0.7870 0.6802 0.6178 0.6456 0.5120 0.4424 0.4000 0.5120 0.4076 0.3525 0.3185

0.9 0.7890 0.7251 0.7044 0.4146 0.2863 0.2389 0.2180 0.2863 0.1830 0.1442 0.1256
0.1 0.8897 0.8210 0.7732 0.8406 0.7571 0.7040 0.6666 0.7571 0.6865 0.6412 0.6090

A
(1,2)
3 0.5 0.8335 0.7449 0.6912 0.7152 0.5965 0.5312 0.4901 0.5965 0.4976 0.4428 0.4079

0.9 0.8219 0.7663 0.7481 0.4816 0.3539 0.3045 0.2821 0.3539 0.2438 0.2000 0.1783
0.1 0.9107 0.8522 0.8103 0.8692 0.7958 0.7474 0.7126 0.7958 0.7312 0.6884 0.6575

A
(1,3)
4 0.5 0.8621 0.7847 0.7363 0.7582 0.6483 0.5854 0.5448 0.6483 0.5522 0.4971 0.4612

0.9 0.8443 0.7939 0.7773 0.5216 0.3905 0.3381 0.3141 0.3905 0.2726 0.2244 0.2002
0.1 0.8702 0.7815 0.7158 0.8076 0.6927 0.6135 0.5544 0.6927 0.5862 0.5124 0.4570

A
(2,0)
2 0.5 0.8231 0.7170 0.6473 0.6791 0.5120 0.4060 0.3315 0.5120 0.3455 0.2341 0.1482

0.9 0.8544 0.8044 0.7876 0.4911 0.2863 0.1756 0.1092 0.2863 - - -
0.1 0.9029 0.8392 0.7936 0.8576 0.7779 0.7255 0.6879 0.7779 0.7079 0.6619 0.6288

A
(2,1)
3 0.5 0.8618 0.7832 0.7337 0.7561 0.6427 0.5771 0.5345 0.6427 0.5423 0.4843 0.4465

0.9 0.8739 0.8319 0.8179 0.5896 0.4603 0.4052 0.3792 0.4603 0.3329 0.2769 0.2479
0.1 0.9209 0.8686 0.8307 0.8838 0.8175 0.7733 0.7411 0.8175 0.7583 0.7187 0.6897

A
(2,2)
4 0.5 0.8845 0.8186 0.7768 0.7957 0.6996 0.6433 0.6064 0.6996 0.6132 0.5622 0.5284

0.9 0.8876 0.8503 0.8378 0.6368 0.5234 0.4749 0.4518 0.5234 0.4106 0.3598 0.3331
0.1 0.9329 0.8875 0.8543 0.9008 0.8427 0.8032 0.7741 0.8427 0.7897 0.7536 0.7268

A
(2,3)
5 0.5 0.9000 0.8420 0.8049 0.8217 0.7355 0.6840 0.6499 0.7355 0.6561 0.6085 0.5765

0.9 0.8979 0.8638 0.8525 0.6669 0.5603 0.5141 0.4920 0.5603 0.4521 0.4026 0.3761
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Table 2.2: Cold survival reliability equivalence factors with perfect switch.

ω C
(0,1)
1 C

(0,2)
2 C

(0,3)
3 C

(1,0)
1 C

(1,1)
2 C

(1,2)
3 C

(1,3)
4 C

(2,0)
2 C

(2,1)
3 C

(2,2)
4 C

(2,3)
5

0.1 0.2577 0.1064 0.0503 0.1105 - - - 0.0005 - - -

A
(0,1)
1 0.5 0.2776 0.0966 0.0361 0.0084 - - - - - - -

0.9 0.1391 0.0236 0.0042 - - - - - - - -
0.1 0.4411 0.2508 0.1588 0.2567 - - - 0.0136 - - -

A
(0,2)
2 0.5 0.5006 0.2777 0.1625 0.0754 - - - - - - -

0.9 0.3638 0.1466 0.0627 - - - - - - - -
0.1 0.5477 0.3521 0.2472 0.3587 - - - 0.0428 - - -

A
(0,3)
3 0.5 0.6198 0.4071 0.2776 0.1615 - - - 0.0064 - - -

0.9 0.5054 0.2726 0.1557 0.0784 - - - - - - -
0.1 0.4079 0.2465 0.1795 0.2511 - - - 0.1056 - - -

A
(1,0)
1 0.5 0.5516 0.3877 0.3185 0.2783 - - - 0.1014 - - -

0.9 0.7031 0.6346 0.6174 0.2077 0.0544 0.0017 - 0.0707 - - -
0.1 0.6145 0.5089 0.4658 0.5119 0.1832 0.1180 0.0983 0.4186 0.1180 0.0851 0.0743

A
(1,1)
2 0.5 0.6935 0.5788 0.5300 0.5014 0.2751 0.1924 0.1559 0.3726 0.1748 0.1062 0.0773

0.9 0.7664 0.7127 0.6993 0.3802 0.2558 0.2027 0.1793 0.2699 0.1405 0.0898 0.0686
0.1 0.6881 0.5896 0.5474 0.5925 0.2336 0.1512 0.1260 0.4998 0.1512 0.1091 0.0952

A
(1,2)
3 0.5 0.7562 0.6569 0.6129 0.5867 0.3620 0.2691 0.2252 0.4630 0.2482 0.1612 0.1209

0.9 0.8023 0.7555 0.7436 0.4482 0.3223 0.2656 0.2397 0.3370 0.1957 0.1348 0.1075
0.1 0.7327 0.6386 0.5968 0.6414 0.2629 0.1704 0.1419 0.5487 0.1703 0.1229 0.1073

A
(1,3)
4 0.5 0.7947 0.7049 0.6638 0.6390 0.4131 0.3125 0.2634 0.5176 0.2892 0.1903 0.1433

0.9 0.8267 0.7841 0.7732 0.4879 0.3571 0.2962 0.2680 0.3726 0.2196 0.1515 0.1208
0.1 0.5888 0.4220 0.3419 0.4273 - - - 0.2422 - - -

A
(2,0)
2 0.5 0.7310 0.6004 0.5368 0.4969 - - - 0.2777 - - -

0.9 0.8371 0.7944 0.7833 0.4440 0.2194 0.0376 - 0.2517 - - -
0.1 0.7096 0.6087 0.5645 0.6117 0.2343 0.1512 0.1260 0.5141 0.1512 0.1091 0.0952

A
(2,1)
3 0.5 0.7934 0.7013 0.6588 0.6329 0.3958 0.2907 0.2404 0.5059 0.2667 0.1677 0.1234

0.9 0.8593 0.8236 0.8144 0.5574 0.4254 0.3595 0.3278 0.4417 0.2713 0.1871 0.1474
0.1 0.7598 0.6719 0.6322 0.6746 0.2911 0.1892 0.1577 0.5857 0.1892 0.1366 0.1192

A
(2,2)
4 0.5 0.8271 0.7494 0.7134 0.6913 0.4822 0.3814 0.3295 0.5813 0.3571 0.2474 0.1908

0.9 0.8746 0.8429 0.8347 0.6086 0.4927 0.4343 0.4059 0.5071 0.3547 0.2751 0.2350
0.1 0.7910 0.7102 0.6728 0.7127 0.3237 0.2110 0.1759 0.6283 0.2110 0.1523 0.1329

A
(2,3)
5 0.5 0.8496 0.7804 0.7479 0.7279 0.5321 0.4323 0.3789 0.6265 0.4074 0.2912 0.2278

0.9 0.8860 0.8571 0.8496 0.6405 0.5311 0.4751 0.4476 0.5448 0.3975 0.3179 0.2768

For this scenario, in Tables 2.1, 2.2 and 2.3 the SREFs for hot and cold (perfect and

imperfect) duplication are calculated using Matlab according to the above formulae

where ω is chosen to be 0.1, 0.5, 0.9 and the imperfect switch has a constant failure

rate λ = 0.01. For more discussions based on the results presented in the Tables 2.1,

2.2 and 2.3, it may be observed that:

• Reducing the failure rate of one component in the second subsystem (which we
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denote as A
(0,1)
1 ) by setting ρ = 0.6680 improves the reliability of the system

like adding one component to the second subsystem (which we denote as B
(0,1)
1 )

according to a hot duplication method where the reliability function of the

system is chosen to be ω = 0.1, see Table 2.1.

• Reducing the failure rate of each component belonging to the set A
(2,3)
5 of the

system components by setting ρ = 0.8496 improves the reliability of the system

like adding a set C
(0,1)
1 of components to the system according to a cold dupli-

cation method with perfect switch where the reliability function of the system

is chosen to be ω = 0.5, see Table 2.2.

• Reducing the failure rate of each component belonging to the set A
(2,3)
5 of the

system components by setting factor ρ = 0.3661 improves the reliability of the

system like adding a set D
(2,3)
5 of components to the system according to a cold

duplication method with perfect switch where the reliability function of the

system is chosen to be ω = 0.9, see Table 2.3.

• Missing values of the SREFs mean that it is not possible to reduce the failure

rate for the set A of components in order to improve the system reliability to

be equivalent with the system reliability that can be obtained by improving the

sets B,C,D of components according to duplication methods.

• In the same manner, one can interpret the other results presented in Tables 2.1,

2.2 and 2.3.

Tables 2.4, 2.5 and 2.6 present the MREFs for hot and cold (perfect and imperfect)

duplication. Based on the results presented in those tables, we see that:
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• The modified system that can be obtained by improving the set H
(0,1)
1 , where

H = B,C,D of the system components, according to hot and cold (perfect and

imperfect) duplication has the same mean time to failure of that system which

can be obtained be reducing the failure rate of each component belonging to

the set A
(0,1)
1 by factors ρ = 0.465, 0.257, 0.367 respectively.

• Empty cells of MREFs mean that it is not possible to reduce the failure rate

of the set A components in order to improve the mean time to failure of the

system to be equivalent with the mean time to failure of the system that can

be obtained by improving the sets B,C,D of components according to the

duplication methods.

• In the same manner, one can interpret the other results presented in Tables 2.4,

2.5 and 2.6.

Table 2.7 presents the mean time to failure of the modified systems assuming hot

and cold duplication methods, the latter with perfect and imperfect switch, assuming

two constant failure rates λ = 0.01 and λ = 0.05. The mean time to failure of the

original system is 53.063. From this table, one can conclude that

• If the failure rate of the imperfect switch is λ = 0.01, then

MTTF < MTTF (B) < MTTF (D) < MTTF (C)

• If the failure rate of the imperfect switch is λ = 0.05, then

MTTF < MTTF (D) < MTTF (B) < MTTF (C)

• This implies that the improvement due to hot duplication is better than using

cold duplication with low reliability switch.
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Figure 2.4 explains the improvement strategies to calculate the SREFs. Figure 2.5

presents reliability functions of the original and some modified systems. From this

figure, one may observe that, for this scenario:

• Improving the reliability of all components according to cold duplication with

perfect switch gives the best system.

• For the same number of components

R(t) < R(B)(t) < R(D)(t) < R(C)(t)

where λ = 0.01.

Figures 2.6 and 2.7 present the behaviour of MTTF against the appropriate re-

duction factor ρ. It seems from these two figures that:

• MTTFs are non-decreasing with decreasing ρ for all possible sets A.

• Reducing the failure rate of one or two components from the first subsystem

gives a better system than that obtained by reducing the failure rate of one

or two components in the second subsystem, see Figure 2.6. This means that

improving a component from the subsystem with the smaller number of compo-

nents is better than improving a component from the subsystem with the larger

number of components.

• Reducing the failure rates of all components in the system gives the best system,

see Figure 2.7.

• It is not possible to reduce the failure rate of the sets A
(0,1)
1 or A

(0,2)
2 of the

system components to reach the mean time to failure which we can achieve by
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improving the sets B
(1,1)
2 or C

(1,2)
3 of the system components according to hot

duplication and cold duplication with perfect switch respectively, see Figure 2.6.

• Improving a number of components selected from two subsystems, with equal

numbers if they are even, gives a better system than that obtained by improving

the number of components selected from the same subsystem or selected from

the two subsystems with unequal numbers, see Figure 2.7.

2.5.2 Example 2

In order to generalise these results and conclusions for broader applicability, we now

consider a contrasting analysis for the same system that we presented in Example 1

but with different parameter values. All of the system’s components are assumed to

be independent and identically distributed, with a generalized quadratic failure rate

lifetime distribution with parameters α = 8, β = −3, γ = 0.3 and θ = 3. By using

these parameter values the hazard function for each component in the system takes

upside down bath-tub shape, see Figure 2.3b.

For this scenario, the hot survival reliability equivalence factors for this system

with these parameter values are calculated according to the above formulae where ω is

chosen to be 0.1, 0.5, 0.9 and presented in Table 2.8. The hot mean equivalence factors

for this system are presented in Table 2.9. We used version 2012a of Matlab software

to derive both hot survival reliability equivalence factors and hot mean equivalence

factors. All results presented in Tables 2.8 and 2.9 can be discussed in the same

manner as for Tables 2.1 and 2.4 respectively. As expected, the numbers differ between

the corresponding tables, although the patterns are similar for the bath-tub shape and

upside down bath-tub shape hazard functions. Cold survival reliability equivalence
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factors and cold mean equivalence factors with perfect and imperfect switch can be

derived in the same manner as for Example 1.

2.6 Conclusions

In this study, the system reliability function and system mean time to failure are used

to study the reliability equivalence factors for a parallel-series system. All the system

components are assumed to be independent and identically distributed, according to

a generalized quadratic failure rate distribution. We discuss four different methods

to improve such a system.

We derive analytical results for both survival and mean reliability equivalence fac-

tors of this system. Some numerical results are presented for a representative system

in order to illustrate how one can apply the theoretical results obtained and to com-

pare the various approaches in this context. Accordingly, detailed recommendations

are discussed for improving the system considered in this study.

Several extensions of this study are identified, including analysis of other impor-

tant parallel-series configurations, equivalent systems with non-identical components

and simpler systems with dependent components. The methods described in this

study adapt readily to deal with these other scenarios.
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Table 2.3: Cold survival reliability equivalence factors with imperfect switch (λ =
0.01).

ω D
(0,1)
1 D

(0,2)
2 D

(0,3)
3 D

(1,0)
1 D

(1,1)
2 D

(1,2)
3 D

(1,3)
4 D

(2,0)
2 D

(2,1)
3 D

(2,2)
4 D

(2,3)
5

0.1 0.4344 0.2477 0.1560 0.2806 - - - 0.1064 - - -

A
(0,1)
1 0.5 0.4021 0.1943 0.1006 0.1213 - - - - - - -

0.9 0.1673 0.0329 0.0069 - - - - - - - -
0.1 0.6166 0.4299 0.3192 0.4661 - - - 0.2508 - - -

A
(0,2)
2 0.5 0.6154 0.4099 0.2840 0.3151 - - - - - - -

0.9 0.4002 0.1737 0.0791 - - - - - - - -
0.1 0.7080 0.5369 0.4254 0.5716 0.0009 - - 0.3521 - - -

A
(0,3)
3 0.5 0.7170 0.5377 0.4136 0.4455 0.0229 - - 0.0268 - - -

0.9 0.5391 0.3090 0.1806 0.0830 - - - - - - -
0.1 0.5755 0.3978 0.3017 0.4308 0.0900 - - 0.2465 - - -

A
(1,0)
1 0.5 0.6465 0.4812 0.3918 0.4129 0.1729 0.0614 0.0078 0.2107 0.0212 - -

0.9 0.7170 0.6415 0.6202 0.2395 0.0973 0.0442 0.0205 0.0945 - - -
0.1 0.7257 0.6079 0.5447 0.6296 0.4086 0.3086 0.2531 0.5089 0.3002 0.2060 0.1589

A
(1,1)
2 0.5 0.7593 0.6445 0.5818 0.5965 0.4255 0.3418 0.2947 0.4529 0.3080 0.2370 0.1970

0.9 0.7773 0.7181 0.7015 0.4051 0.2920 0.2468 0.2245 0.2897 0.1856 0.1409 0.1190
0.1 0.7852 0.6821 0.6238 0.7017 0.4895 0.3819 0.3182 0.5896 0.3725 0.2617 0.2032

A
(1,2)
3 0.5 0.8109 0.7143 0.6594 0.6725 0.5150 0.4319 0.3830 0.5413 0.3969 0.3202 0.2745

0.9 0.8117 0.7602 0.7456 0.4724 0.3598 0.3129 0.2891 0.3575 0.2467 0.1961 0.1704
0.1 0.8209 0.7271 0.6718 0.7453 0.5381 0.4253 0.3564 0.6386 0.4152 0.2941 0.2289

A
(1,3)
4 0.5 0.8426 0.7573 0.7073 0.7193 0.5695 0.4860 0.4352 0.5952 0.4498 0.3684 0.3185

0.9 0.8352 0.7884 0.7750 0.5124 0.3967 0.3470 0.3216 0.3942 0.2757 0.2201 0.1914
0.1 0.7326 0.5793 0.4827 0.6100 0.2188 - - 0.4220 - - -

A
(2,0)
2 0.5 0.7970 0.6779 0.6040 0.6221 0.3774 0.2091 0.0683 0.4232 0.1165 - -

0.9 0.8455 0.7988 0.7851 0.4785 0.2977 0.1969 0.1322 0.2932 - - -
0.1 0.8051 0.7036 0.6441 0.7232 0.5031 0.3886 0.3216 0.6087 0.3787 0.2630 0.2035

A
(2,1)
3 0.5 0.8422 0.7552 0.7037 0.7161 0.5604 0.4726 0.4191 0.5873 0.4345 0.3489 0.2969

0.9 0.8663 0.8273 0.8159 0.5809 0.4666 0.4147 0.3874 0.4641 0.3365 0.2718 0.2371
0.1 0.8403 0.7546 0.7031 0.7714 0.5754 0.4628 0.3914 0.6719 0.4524 0.3250 0.2539

A
(2,2)
4 0.5 0.8680 0.7950 0.7515 0.7620 0.6289 0.5518 0.5036 0.6522 0.5176 0.4382 0.3876

0.9 0.8808 0.8461 0.8361 0.6292 0.5290 0.4833 0.4591 0.5268 0.4138 0.3551 0.3230
0.1 0.8628 0.7863 0.7392 0.8014 0.6183 0.5059 0.4317 0.7102 0.4953 0.3607 0.2828

A
(2,3)
5 0.5 0.8855 0.8211 0.7823 0.7917 0.6707 0.5987 0.5527 0.6922 0.5662 0.4890 0.4385

0.9 0.8918 0.8601 0.8509 0.6598 0.5656 0.5221 0.4990 0.5635 0.4552 0.3979 0.3661
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Table 2.4: Hot mean equivalence factors.

B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

A
(0,1)
1 0.465 0.280 0.193 0.104 - - - - - - -

A
(0,2)
2 0.660 0.493 0.396 0.276 - - - - - - -

A
(0,3)
3 0.752 0.609 0.519 0.397 - - - - - - -

A
(1,0)
1 0.709 0.580 0.510 0.430 0.245 0.162 0.117 0.245 0.096 0.033 0.005

A
(1,1)
2 0.797 0.705 0.656 0.599 0.467 0.407 0.375 0.467 0.359 0.310 0.284

A
(1,2)
3 0.839 0.762 0.719 0.669 0.547 0.488 0.455 0.547 0.440 0.389 0.360

A
(1,3)
4 0.865 0.798 0.759 0.713 0.596 0.537 0.504 0.596 0.488 0.435 0.404

A
(2,0)
2 0.837 0.750 0.699 0.635 0.461 0.363 0.302 0.462 0.270 0.150 0.056

A
(2,1)
3 0.870 0.803 0.765 0.719 0.602 0.543 0.508 0.602 0.492 0.437 0.405

A
(2,2)
4 0.890 0.833 0.801 0.761 0.660 0.607 0.577 0.660 0.562 0.512 0.482

A
(2,3)
5 0.903 0.854 0.824 0.789 0.696 0.647 0.618 0.696 0.604 0.556 0.527

Table 2.5: Cold mean equivalence factors with perfect switch.

C
(0,1)
1 C

(0,2)
2 C

(0,3)
3 C

(1,0)
1 C

(1,1)
2 C

(1,2)
3 C

(1,3)
4 C

(2,0)
2 C

(2,1)
3 C

(2,2)
4 C

(2,3)
5

A
(0,1)
1 0.257 0.092 0.037 - - - - - - - -

A
(0,2)
2 0.469 0.258 0.153 - - - - - - - -

A
(0,3)
3 0.587 0.377 0.256 - - - - - - - -

A
(1,0)
1 0.562 0.419 0.360 0.253 - - - 0.087 - - -

A
(1,1)
2 0.693 0.591 0.549 0.473 0.227 0.160 0.132 0.353 0.143 0.093 0.073

A
(1,2)
3 0.752 0.662 0.624 0.552 0.297 0.217 0.183 0.433 0.196 0.132 0.106

A
(1,3)
4 0.789 0.706 0.670 0.601 0.336 0.248 0.209 0.481 0.224 0.152 0.122

A
(2,0)
2 0.738 0.626 0.574 0.469 - - - 0.255 - - -

A
(2,1)
3 0.794 0.713 0.677 0.607 0.333 0.241 0.201 0.485 0.217 0.143 0.113

A
(2,2)
4 0.826 0.756 0.725 0.665 0.413 0.319 0.275 0.556 0.292 0.205 0.167

A
(2,3)
5 0.847 0.784 0.756 0.701 0.459 0.362 0.315 0.598 0.333 0.239 0.196
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Table 2.6: Cold mean equivalence factors with imperfect switch (λ = 0.01).

D
(0,1)
1 D

(0,2)
2 D

(0,3)
3 D

(1,0)
1 D

(1,1)
2 D

(1,2)
3 D

(1,3)
4 D

(2,0)
2 D

(2,1)
3 D

(2,2)
4 D

(2,3)
5

A
(0,1)
1 0.376 0.184 0.101 0.037 - - - - - - -

A
(0,2)
2 0.585 0.385 0.271 0.153 - - - - - - -

A
(0,3)
3 0.689 0.509 0.392 0.256 - - - - - - -

A
(1,0)
1 0.650 0.502 0.427 0.359 0.105 0.011 - 0.169 - - -

A
(1,1)
2 0.755 0.651 0.597 0.549 0.366 0.290 0.250 0.413 0.255 0.192 0.160

A
(1,2)
3 0.805 0.715 0.668 0.624 0.447 0.367 0.323 0.494 0.328 0.256 0.217

A
(1,3)
4 0.835 0.755 0.712 0.670 0.495 0.411 0.364 0.543 0.370 0.291 0.248

A
(2,0)
2 0.799 0.693 0.633 0.574 0.284 0.080 - 0.372 - - -

A
(2,1)
3 0.840 0.762 0.718 0.677 0.499 0.412 0.363 0.548 0.369 0.286 0.241

A
(2,2)
4 0.865 0.798 0.761 0.725 0.569 0.489 0.442 0.613 0.448 0.366 0.319

A
(2,3)
5 0.882 0.822 0.788 0.756 0.611 0.533 0.487 0.652 0.493 0.411 0.362

Table 2.7: Mean times to failure of the modified systems.

{01, 12} {01, 22} {01, 32} {11, 02} {11, 12} {11, 22} {11, 32} {21, 02} {21, 12} {21, 22} {21, 32}
hot 56.068 57.744 58.764 60.045 63.672 65.746 67.038 63.672 67.697 70.042 71.530
cold perfect 58.005 60.250 61.312 63.516 75.421 82.003 85.862 68.017 84.259 93.639 99.362
cold imperfect
(λ = 0.01)

56.816 58.887 60.102 61.316 67.425 71.216 73.728 65.572 73.401 78.488 82.000

cold imperfect
(λ = 0.05)

55.098 56.473 57.453 57.925 60.235 61.815 62.956 61.004 63.52 65.261 66.532
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Table 2.8: Hot survival reliability equivalence factors for system in Example 2.

ω B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

0.1 0.7847 0.6709 0.5962 0.7025 0.5713 0.4901 0.4322 0.5713 0.4631 0.3917 0.3384

A
(0,1)
1 0.5 0.6839 0.5254 0.4248 0.4708 0.1955 - - 0.1955 - - -

0.9 0.5390 0.3298 0.2114 - - - - - - - -
0.1 0.8735 0.8498 0.8103 0.8148 0.7093 0.6367 0.5817 0.7093 0.6215 0.5417 0.4870

A
(0,2)
2 0.5 0.8121 0.8523 0.6061 0.6466 0.3709 - - 0.3709 - - -

0.9 0.7182 0.5434 0.5139 - - - - - - - -
0.1 0.9101 0.8454 0.8327 0.8647 0.7772 0.7131 0.6626 0.7772 0.6901 0.6248 0.5721

A
(0,3)
3 0.5 0.8659 0.7710 0.6980 0.7328 0.4795 0.0021 - 0.4795 - - -

0.9 0.7969 0.6538 0.5449 - - - - - - - -
0.1 0.8527 0.7635 0.7016 0.7890 0.6804 0.6100 0.5589 0.6804 0.5862 0.5232 0.4764

A
(1,0)
1 0.5 0.8266 0.7292 0.6673 0.6954 0.5499 0.4592 0.3949 0.5499 0.4071 0.3087 0.2273

0.9 0.8786 0.8369 0.8228 0.5732 0.3921 0.2848 0.2121 0.3921 0.2345 0.2187 0.1876
0.1 0.9069 0.8498 0.8103 0.8661 0.7970 0.7530 0.7219 0.7970 0.7385 0.7007 0.6737

A
(1,1)
2 0.5 0.8843 0.8207 0.7812 0.7990 0.7095 0.6581 0.6246 0.7095 0.6307 0.5849 0.5547

0.9 0.9059 0.8746 0.8641 0.6930 0.5938 0.5505 0.5297 0.5938 0.4920 0.4448 0.4194
0.1 0.9299 0.8844 0.8517 0.8976 0.8405 0.8027 0.7752 0.8405 0.7899 0.7561 0.7314

A
(1,2)
3 0.5 0.9103 0.8586 0.8257 0.8406 0.7642 0.7187 0.6884 0.7642 0.6940 0.6517 0.6232

0.9 0.9212 0.8945 0.8856 0.7353 0.6447 0.6042 0.5845 0.6447 0.5485 0.5026 0.4776
0.1 0.9434 0.9048 0.8763 0.9161 0.8663 0.8323 0.8070 0.8663 0.8206 0.7892 0.7658

A
(1,3)
4 0.5 0.9260 0.8815 0.8524 0.8657 0.7966 0.7540 0.7252 0.7966 0.7305 0.6896 0.6616

0.9 0.9315 0.9077 0.8996 0.7592 0.6702 0.6295 0.6095 0.6702 0.5727 0.5253 0.4993
0.1 0.9175 0.8584 0.8132 0.8760 0.7970 0.7400 0.6959 0.7970 0.7197 0.6637 0.6199

A
(2,0)
2 0.5 0.9045 0.8424 0.7993 0.8192 0.7095 0.6321 0.5728 0.7095 0.5843 0.4868 0.3983

0.9 0.9361 0.9126 0.9045 0.7411 0.5938 0.4910 0.4123 0.5938 0.0081 0.0013 0.0011
0.1 0.9384 0.8963 0.8653 0.9087 0.8544 0.8174 0.7900 0.8544 0.8047 0.7707 0.7455

A
(2,1)
3 0.5 0.9259 0.8807 0.8509 0.8645 0.7931 0.7486 0.7183 0.7931 0.7239 0.6808 0.6512

0.9 0.9449 0.9254 0.9188 0.7981 0.7159 0.6766 0.6569 0.7159 0.6198 0.5704 0.5425
0.1 0.9499 0.9155 0.8898 0.9256 0.8808 0.8498 0.8266 0.8808 0.8391 0.8101 0.7885

A
(2,2)
4 0.5 0.9382 0.9007 0.8759 0.8872 0.8279 0.7907 0.7652 0.8279 0.7700 0.7335 0.7081

0.9 0.9511 0.9339 0.9280 0.8239 0.7547 0.7219 0.7056 0.7547 0.6748 0.6341 0.6110
0.1 0.9575 0.9278 0.9054 0.9366 0.8974 0.8699 0.8491 0.8974 0.8603 0.8341 0.8143

A
(2,3)
5 0.5 0.9466 0.9138 0.8920 0.9020 0.8493 0.8159 0.7928 0.8493 0.7971 0.7637 0.7403

0.9 0.9557 0.9401 0.9348 0.8399 0.7763 0.7461 0.7309 0.7763 0.7024 0.6642 0.6425
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Table 2.9: Hot mean equivalence factors for system in Example 2.

B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

A
(0,1)
1 0.732 0.604 0.526 0.542 0.363 0.247 0.206 0.363 0.153 - -

A
(0,2)
2 0.840 0.744 0.678 0.692 0.523 0.397 0.284 0.523 0.283 - -

A
(0,3)
3 0.885 0.809 0.753 0.765 0.611 0.486 0.349 0.611 0.366 - -

A
(1,0)
1 0.846 0.761 0.705 0.717 0.587 0.510 0.391 0.587 0.460 0.378 0.319

A
(1,1)
2 0.897 0.841 0.805 0.812 0.731 0.685 0.326 0.731 0.657 0.615 0.587

A
(1,2)
3 0.920 0.874 0.845 0.851 0.781 0.740 0.520 0.781 0.715 0.592 0.649

A
(1,3)
4 0.934 0.895 0.869 0.874 0.811 0.773 0.537 0.811 0.748 0.725 0.685

A
(2,0)
2 0.915 0.860 0.822 0.830 0.732 0.666 0.472 0.732 0.620 0.541 0.480

A
(2,1)
3 0.933 0.893 0.867 0.872 0.807 0.767 0.533 0.807 0.742 0.702 0.675

A
(2,2)
4 0.944 0.911 0.889 0.893 0.839 0.805 0.554 0.839 0.784 0.749 0.726

A
(2,3)
5 0.952 0.923 0.903 0.907 0.858 0.828 0.567 0.858 0.808 0.777 0.755
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Chapter 3

Reliability equivalence factors for a

series-parallel system of

components with exponentiated

Weibull lifetimes

We now study reliability equivalence factors for a system of independent and identi-

cally distributed components with exponentiated Weibull lifetimes. The system we

consider has n subsystems connected in parallel and subsystem i has mi components

connected in series, i = 1, .., n. We chose this series-parallel system structure to com-

plement our parallel-series analysis in Chapter 2. As before, we consider improving

the reliability of this system by (a) a reduction method and (b) several duplication

methods: (i) hot duplication; (ii) cold duplication with perfect switching; (iii) cold

duplication with imperfect switching. We again compute two types of reliability equiv-

alence factors, survival equivalence factors and mean equivalence factors. Although

our methods adapt to allow for general lifetime models, we use the exponentiated

Weibull distribution because it is flexible and enables comparisons with other reli-

ability equivalence studies. The example we present demonstrates the potential for

applying these methods to address specific questions that arise when attempting to

65
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improve the reliability of simple systems or simple configurations of possibly complex

sub-systems in many diverse applications.

3.1 Introduction

Series-parallel and parallel-series system configurations are the building blocks for

more complicated systems, and an understanding of the analytical processes and

optimal strategies involved for these systems enables and informs arbitrary general-

isation to complex situations. However, only one of these is needed to illustrate the

methodology and we choose the series-parallel system here.

In this study, we also assume that all the system’s components are independent

and follow the exponentiated Weibull distribution of Mudholkar and Srivastava (1993)

with identical parameters. We choose this distribution because it complement the

GQFRD and includes all common shapes of hazard function and because its haz-

ard and reliability are elementary functions. In particular, it includes the monotone

hazard function of the Weibull distribution but also permits bathtub and inverted

bathtub hazard functions. Special cases of the exponentiated Weibull distribution

include the Weibull, exponentiated exponential and Burr type X distributions men-

tioned above.

Firstly, we compute the reliability function and the mean time to failure (MTTF)

of the original system. Secondly, we compute the reliability functions and MTTFs

of the systems following improvement according to reduction, hot duplication and

cold duplication (perfect and imperfect) methods. Thirdly, we equate the reliability

function and the MTTF of the system improved according to the reduction method

with the reliability function and the MTTF of the system improved according to each



67

1 2 m
1

1 2 m
2

1 2 m
n

Figure 3.1: Series-parallel system.

of the duplication methods to determine the reliability equivalence factors.

Finally, we illustrate the results obtained with an application example by pre-

senting summary tables and figures. This study expands considerably upon some

preliminary ideas that Alghamdi and Percy (2014) presented, by investigating both

survival and mean reliability equivalence factors for a series-parallel system, and both

hot and cold duplication methods.

3.2 Series-parallel system

The system we consider here is shown in Figure 3.1 and consists of n subsystems

connected in parallel, where subsystem i consists ofmi components that are connected

in series for i = 1, 2, ..., n. Such a system is usually referred to as a series-parallel

system, El-Damcese (2009).

We assume that the lifetimes of all the system’s components are independent and
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follow the exponentiated Weibull distribution with identical parameters, see Mud-

holkar and Srivastava (1993) and Lai (2014). The exponentiated Weibull distribu-

tion generalizes well known lifetime distributions including exponential, Rayleigh and

Weibull, and has the desirable properties of flexibility and tractability noted earlier.

It provides a useful complement to the GQFRD family which does not include the

Weibull distribution.

Under this assumption, the reliability function for each component j (j = 1, 2, ..., mi)

in subsystem i (i = 1, 2, ..., n) is given by

r(t) = 1−
(

1− e−αtβ
)θ

(3.2.1)

for t ≥ 0, as the lifetimes of components are unaffected by failures of other compo-

nents. The reliability function of subsystem i then takes the form

Ri(t) =

mi
∏

j=1

rij(t)

=

mi
∏

j=1

{

1−
(

1− e−αtβ
)θ
}

=

{

1−
(

1− e−αtβ
)θ
}mi

(3.2.2)

for t ≥ 0, so the reliability function of the series-parallel system is

R(t) = 1−
n
∏

i=1

{1−Ri(t)}

= 1−
n
∏

i=1

[

1−
{

1−
(

1− e−αtβ
)θ
}mi

]

(3.2.3)
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for t ≥ 0, and the mean time to failure of the series-parallel system is given by

MTTF =

∞
∫

0

R(t)dt

=

∞
∫

0

(

1−
n
∏

i=1

[

1−
{

1−
(

1− e−αtβ
)θ
}mi

]

)

dt. (3.2.4)

3.3 Designs of improved systems

As explained in Chapter 2, the two main approaches for improving a system are

reduction methods and standby redundancy (duplication) methods. In this section,

we derive the reliability function and the mean time to failure, primarily for the

series-parallel system, when improved according to the methods identified above.

3.3.1 Reduction method

For the exponentiated Weibull distribution, reducing only the scale parameter α re-

duces the failure rate. Here, we consider reducing α for a set A of the system’s

components by a factor ρ ∈ (0, 1), in order to reduce the failure rate (hazard func-

tion) for the whole system. This is a logical procedure for the exponentiated Weibull

distribution.

Define ai (i = 1, 2, ..., n) to be the number of components in subsystem i whose

failure rate is reduced, so ai ∈ {0, 1, . . . , mi} and the cardinality of the set of improved

components is |A| =
n
∑

i=1

ai. By comparison with Equation (3.2.2), we see that the
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reliability function R
(A)
i (t) of subsystem i is then given by

R
(A)
i (t) =

ai
∏

j=1

{

1−
(

1− e−ραtβ
)θ
}mi−ai
∏

j=1

{

1−
(

1− e−αtβ
)θ
}

=

{

1−
(

1− e−ραtβ
)θ
}ai

{

1−
(

1− e−αtβ
)θ
}mi−ai

(3.3.1)

for t ≥ 0 from Equation (3.2.1) and by comparison with Equation (3.2.3), since the

components are connected in series. Then the reliability function of the system takes

the form

R(A)(t) = 1−
n
∏

i=1

{

1− R
(A)
i (t)

}

= 1−
n
∏

i=1

[

1−
{

1−
(

1− e−ραtβ
)θ
}ai

{

1−
(

1− e−αtβ
)θ
}mi−ai

]

(3.3.2)

since the subsystems are connected in parallel. We can then compute the mean time

to failure of this series-parallel system as

MTTF (A) =

∞
∫

0

R(A)(t)dt

=

∞
∫

0

(

1−
n
∏

i=1

[

1−
{

1−
(

1− e−ραtβ
)θ
}ai

{

1−
(

1− e−αtβ
)θ
}mi−ai

])

dt.

(3.3.3)

3.3.2 Duplication methods

We derive the reliability function and the mean time to failure for the series-parallel

system, when improved according to the hot duplication method and the cold dupli-

cation methods with perfect and imperfect switches.
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3.3.2.1 Hot duplication method

This means that some of the system components are duplicated in parallel by similar

components. We assume that in the hot duplication method each component of

the set B is augmented by introducing a new but identical component in the same

subsystem.

Let bi (i = 1, 2, ..., n) be the number of components in subsystem i whose reliability

is improved according to the hot duplication method, so bi ∈ {0, 1, . . . , mi} and

|B| =
n
∑

i=1

bi. The reliability function R
(B)
i (t) of subsystem i is given by

R
(B)
i (t) =

bi
∏

j=1

{

1−
(

1− e−αtβ
)2θ
}mi−bi
∏

j=1

{

1−
(

1− e−αtβ
)θ
}

=

{

1−
(

1− e−αtβ
)2θ
}bi
{

1−
(

1− e−αtβ
)θ
}mi−bi

(3.3.4)

for t ≥ 0 from Equation (3.2.1), since the components are connected in series. Then

the reliability function of the whole system takes the form

R(B)(t) = 1−
n
∏

i=1

[

1−
{

1−
(

1− e−αtβ
)2θ
}bi
{

1−
(

1− e−αtβ
)θ
}mi−bi

]

(3.3.5)

for t ≥ 0, and the mean time to failure of this series-parallel can then computed as

MTTF (B) =

∞
∫

0

R(B)(t)dt

=

∞
∫

0

(

1−
n
∏

i=1

[

1−
{

1−
(

1− e−αtβ
)2θ
}bi
{

1−
(

1− e−αtβ
)θ
}mi−bi

])

dt.

(3.3.6)

3.3.2.2 Cold duplication method with perfect switch

This approach to improving system reliability means that a similar component is

connected with an original component in such a way that it is activated immediately
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upon failure of the original component. For this aspect of our analysis, the cold dupli-

cation method assumes that each component of a set C is improved by introducing a

new but identical component with a perfect switch. The switch immediately transfers

load to the standby component when the original component fails, which means the

switch operation time is negligible.

Let ci (i = 1, 2, ..., n) be the number of components in subsystem i, whose relia-

bility is improved according to the cold duplication method with perfect switch, so

ci ∈ {0, 1, . . . , mi} and |C| =
n
∑

i=1

ci. Let s1(t) be the reliability function of each compo-

nent whose reliability is improved according to cold duplication with perfect switch.

Regarding a definition of cold duplication with perfect switch, we can describe this

improvement as a renewal process with only one renewal, Gamiz et al. (2011). Using

the convolution technique, the reliability function of each component whose reliability

is improved according to cold duplication with perfect switch can be derived as:

s1(t) = 1−
t
∫

0

−dr(x)

dx
[1− r(t− x)]dx (3.3.7)

where r() is the reliability function for the exponentiated Weibull lifetime distribution

presented in Equation (3.2.1). By comparison with Equation (3.2.2), we see that the

reliability function R
(C)
i (t) of subsystem i is given by

R
(C)
i (t) =

ci
∏

j=1

s1(t)

mi−ci
∏

j=1

{

1−
(

1− e−αtβ
)θ
}

= {s1(t)}ci
{

1−
(

1− e−αtβ
)θ
}mi−ci

(3.3.8)

for t ≥ 0, from Equation (3.2.1), since the components are connected in series. Then
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the reliability function of the system takes the form

R(C)(t) = 1−
n
∏

i=1

{

1− R
(C)
i (t)

}

= 1−
n
∏

i=1

[

1− {s1(t)}ci
{

1−
(

1− e−αtβ
)θ
}mi−ci

]

(3.3.9)

for t ≥ 0, and s1(t) as defined in Equation (3.3.7), since the subsystems are connected

in parallel. We can then compute the mean time to failure of this series-parallel system

as

MTTF (C) =

∞
∫

0

R(C)(t)dt

=

∞
∫

0

(

1−
n
∏

i=1

[

1− {s
1
(t)}ci

{

1−
(

1− e−αtβ
)θ
}mi−ci

])

dt. (3.3.10)

3.3.2.3 Cold duplication method with imperfect switch

This approach to improving system reliability means that a similar component is

connected with an original component by a cold standby via a random switch having

a constant failure rate. For this aspect of our analysis, the cold duplication method

assumes that each component of a set D is improved by introducing a new but

identical component with an imperfect switch.

Let di (i = 1, 2, ..., n) be the number of components in subsystem i, whose re-

liability is improved according to cold duplication with imperfect switch, so di ∈

{0, 1, . . . , mi} and |D| =
n
∑

i=1

di. Let s2(t) be the reliability function of each component

whose reliability is improved according to cold duplication with imperfect switch.

Following the same technique that we used for cold duplication with perfect switch

but with the extra condition that the switch is not 100% reliable, Billinton and Allan
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(1992), we have

s2(t) = 1−
t
∫

0

−dr(x)

dx
[1− r(t− x)s3(x)]dx (3.3.11)

where r() was defined in Equation (3.2.1), and s3() is the reliability function for the

imperfect switch. The imperfect switch is chosen to have a constant failure rate λ,

which means that it has an exponential lifetime distribution with parameter λ and so

s3(t) = e−λt. (3.3.12)

The reliability function R
(D)
i (t) of subsystem i is given by

R
(D)
i (t) = {s2(t)}di

{

1−
(

1− e−αtβ
)θ
}mi−di

(3.3.13)

for t ≥ 0, from Equation (3.2.1), since the components are connected in series. Then

the reliability function of this series-parallel system takes the form

R(D)(t) = 1−
n
∏

i=1

[

1− {s2(t)}di
{

1−
(

1− e−αtβ
)θ
}mi−di

]

(3.3.14)

for t ≥ 0 and s
2
(t) as defined in Equation (3.3.11), since the subsystems are connected

in parallel. We can then compute the mean time to failure of this series-parallel system

as

MTTF (D) =

∞
∫

0

R(D)(t)dt

=

∞
∫

0

(

1−
n
∏

i=1

[

1− {s2(t)}di
{

1−
(

1− e−αtβ
)θ
}mi−di

])

dt. (3.3.15)

3.4 Numerical analysis

Suppose that we have a series-parallel system consisting of two subsystems connected

in parallel as shown in Figure 3.2. It is easy to imagine systems that display this
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1 2

1 2 3

Figure 3.2: Series-parallel system consisting of two subsystems connected in parallel.

structure. For example, one of the authors travels to work by train on one of two

routes, which comprise two and three stages respectively, each of which is vulnerable

to random failures. The first subsystem that we consider here has two components

connected in series and the second subsystem has three components connected in

series. This means that n = 2, m1 = 2, m2 = 3 and the total number of components

is m = 5. All of the system’s components are assumed to be independent and iden-

tically distributed, with lifetimes that behave according to an exponentiated Weibull

distribution with parameters α = 1, β = 2 and θ = 3. All A
(i,j)
k , B

(i,j)
k , C

(i,j)
k , and

D
(i,j)
k were defined in Chapter 2.

For this scenario, in Tables 3.1, 3.2 and 3.3 the SREFs for hot and cold (perfect and

imperfect) duplication are calculated using Matlab according to the above formulae

where ω is chosen to be 0.1, 0.5, 0.9 and the imperfect switch has a constant failure

rate λ = 0.05. For more discussions based on the results presented in Tables 3.1, 3.2

and 3.3, it may be observed that:
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Table 3.1: Hot survival reliability equivalence factors.

ω B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

0.1 0.7238 0.4111 - - - - - - - - -

A
(0,1)
1 0.5 0.6009 - - - - - - - - - -

0.9 0.4519 - - - - - - - - - -
0.1 0.8657 0.7330 0.6047 0.6482 0.6108 0.5591 0.4930 0.4250 0.4134 0.3944 0.3648

A
(0,2)
2 0.5 0.8173 0.6203 0.4006 0.6483 0.5501 0.4239 0.2429 0.2666 0.1961 - -

0.9 0.7803 0.4800 - 0.6188 0.4345 - - - - - -
0.1 0.9111 0.8251 0.7445 0.7714 0.7482 0.7167 0.6774 0.6384 0.6320 0.6216 0.6057

A
(0,3)
3 0.5 0.8807 0.7603 0.6444 0.7767 0.7206 0.6554 0.5836 0.5910 0.5712 0.5444 0.5096

0.9 0.8597 0.6998 0.5234 0.7675 0.6807 0.5790 0.4623 0.5035 0.4720 0.4312 0.3783
0.1 0.9182 0.8163 0.6981 0.7403 0.7042 0.6517 0.5804 0.5022 0.4884 0.4654 0.4290

A
(1,0)
1 0.5 0.8111 0.5830 0.2579 0.6173 0.4929 0.3029 - - - - -

0.9 0.7162 - - 0.4671 - - - - - - -
0.1 0.9336 0.8459 0.7381 0.7773 0.7438 0.6943 0.6255 0.5487 0.5350 0.5122 0.4760

A
(1,1)
2 0.5 0.8677 0.6963 0.4697 0.7226 0.6279 0.4953 0.2879 0.3159 0.2322 - -

0.9 0.8204 0.5318 - 0.6713 0.4839 - - - - - -
0.1 0.9451 0.8730 0.7848 0.8167 0.7894 0.7491 0.6937 0.6327 0.6219 0.6041 0.5762

A
(1,2)
3 0.5 0.9013 0.7773 0.6259 0.7959 0.7295 0.6419 0.5283 0.5410 0.5062 0.4552 0.3808

0.9 0.8732 0.6922 0.3914 0.7749 0.6667 0.5078 0.1574 0.3384 0.2208 - -
0.1 0.9537 0.8945 0.8248 0.8497 0.8284 0.7976 0.7565 0.7129 0.7055 0.6932 0.6744

A
(1,3)
4 0.5 0.9222 0.8286 0.7224 0.8423 0.7940 0.7331 0.6600 0.6679 0.6467 0.6173 0.5780

0.9 0.9030 0.7753 0.6084 0.8318 0.7587 0.6643 0.5433 0.5876 0.5539 0.5086 0.4473
0.1 0.9594 0.9095 0.8532 0.8731 0.8560 0.8315 0.7991 0.7647 0.7588 0.7491 0.7341

A
(2,0)
2 0.5 0.9085 0.8090 0.7070 0.8230 0.7747 0.7169 0.6511 0.6580 0.6395 0.6141 0.5807

0.9 0.8697 0.7185 0.5488 0.7828 0.7003 0.6026 0.4894 0.5295 0.4988 0.4590 0.4071
0.1 0.9634 0.9167 0.8617 0.8813 0.8645 0.8401 0.8073 0.7722 0.7661 0.7562 0.7407

A
(2,1)
3 0.5 0.9235 0.8332 0.7333 0.8463 0.8004 0.7433 0.6757 0.6829 0.6635 0.6366 0.6009

0.9 0.8954 0.7612 0.5929 0.8201 0.7441 0.6483 0.5297 0.5726 0.5399 0.4966 0.4390
0.1 0.9669 0.9239 0.8720 0.8907 0.8747 0.8512 0.8193 0.7846 0.7785 0.7685 0.7530

A
(2,2)
4 0.5 0.9352 0.8563 0.7649 0.8679 0.8268 0.7742 0.7099 0.7169 0.6980 0.6715 0.6355

0.9 0.9144 0.8008 0.6489 0.8513 0.7859 0.7004 0.5879 0.6296 0.5979 0.5548 0.4952
0.1 0.9700 0.9308 0.8831 0.9004 0.8856 0.8640 0.8344 0.8020 0.7963 0.7869 0.7723

A
(2,3)
5 0.5 0.9443 0.8762 0.7968 0.8863 0.8507 0.8050 0.7486 0.7548 0.7381 0.7147 0.6826

0.9 0.9283 0.8336 0.7071 0.8756 0.8211 0.7500 0.6559 0.6909 0.6644 0.6280 0.5771

• Reducing the failure rate of one component in the second subsystem (which we

denote as A
(0,1)
1 ) by setting ρ = 0.7238 improves the reliability of the system to

the same extent as augmenting the second subsystem by adding one component

(which we denote as B
(0,1)
1 ) according to a hot duplication method where the

reliability function of the system is chosen to be ω = 0.1, see Table 3.1.

• Reducing the failure rate of each component belonging to the set A
(2,3)
5 of the
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Table 3.2: Cold survival reliability equivalence factors with perfect switch.

ω C
(0,1)
1 C

(0,2)
2 C

(0,3)
3 C

(1,0)
1 C

(1,1)
2 C

(1,2)
3 C

(1,3)
4 C

(2,0)
2 C

(2,1)
3 C

(2,2)
4 C

(2,3)
5

0.1 0.1409 - - - - - - - - - -

A
(0,1)
1 0.5 0.1208 - - - - - - - - - -

0.9 0.0774 - - - - - - - - - -
0.1 0.6631 0.1749 - 0.1809 0.1370 - - - - - -

A
(0,2)
2 0.5 0.6984 0.1207 - 0.3541 0.1095 - - - - - -

0.9 0.7302 0.0917 - 0.5010 0.0917 - - - - - -
0.1 0.7808 0.5209 0.2476 0.5230 0.5097 0.4413 0.2470 0.2087 0.2087 0.2085 0.2000

A
(0,3)
3 0.5 0.8067 0.5580 0.2036 0.6240 0.5568 0.4380 0.2011 0.1779 0.1779 0.1771 0.1550

0.9 0.8298 0.6054 0.1534 0.7092 0.6054 0.4576 0.1468 0.1388 0.1379 0.1334 0.1015
0.1 0.7543 0.1654 - 0.1756 0.0853 - - - - - -

A
(1,0)
1 0.5 0.6771 - - 0.1194 - - - - - - -

0.9 0.6450 - - 0.0622 - - - - - - -
0.1 0.7901 0.2274 - 0.2355 0.1766 - - - - - -

A
(1,1)
2 0.5 0.7680 0.1421 - 0.4174 0.1288 - - - - - -

0.9 0.7756 0.1000 - 0.5535 0.1000 - - - - - -
0.1 0.8272 0.4051 - 0.4097 0.3792 0.1904 - - - - -

A
(1,2)
3 0.5 0.8285 0.4817 - 0.5948 0.4794 0.1396 - - - - -

0.9 0.8428 0.5539 - 0.7043 0.5539 0.1000 - - - - -
0.1 0.8579 0.5689 0.2485 0.5715 0.5546 0.4679 0.2479 0.2089 0.2089 0.2088 0.2001

A
(1,3)
4 0.5 0.8666 0.6324 0.2076 0.7019 0.6310 0.4928 0.2049 0.1797 0.1797 0.1789 0.1558

0.9 0.8806 0.6898 0.1654 0.7834 0.6898 0.5380 0.1573 0.1475 0.1464 0.1410 0.1040
0.1 0.8797 0.6473 0.3151 0.6495 0.6351 0.5567 0.3144 0.2656 0.2656 0.2654 0.2545

A
(2,0)
2 0.5 0.8482 0.6271 0.2483 0.6884 0.6259 0.5097 0.2453 0.2170 0.2170 0.2161 0.1892

0.9 0.8416 0.6281 0.1783 0.7275 0.6281 0.4848 0.1711 0.1622 0.1612 0.1562 0.1196
0.1 0.8879 0.6511 0.3151 0.6533 0.6384 0.5581 0.3144 0.2656 0.2656 0.2654 0.2545

A
(2,1)
3 0.5 0.8696 0.6504 0.2485 0.7143 0.6492 0.5239 0.2454 0.2171 0.2171 0.2161 0.1893

0.9 0.8716 0.6739 0.1808 0.7696 0.6739 0.5247 0.1731 0.1637 0.1626 0.1573 0.1198
0.1 0.8969 0.6614 0.3154 0.6638 0.6483 0.5647 0.3146 0.2656 0.2656 0.2655 0.2545

A
(2,2)
4 0.5 0.8885 0.6851 0.2517 0.7469 0.6839 0.5553 0.2484 0.2186 0.2186 0.2176 0.1899

0.9 0.8946 0.7237 0.1939 0.8080 0.7237 0.5829 0.1845 0.1732 0.1720 0.1657 0.1225
0.1 0.9060 0.6850 0.3344 0.6872 0.6723 0.5904 0.3337 0.2819 0.2819 0.2817 0.2701

A
(2,3)
5 0.5 0.9040 0.7267 0.3033 0.7811 0.7257 0.6099 0.2995 0.2651 0.2651 0.2639 0.2311

0.9 0.9117 0.7694 0.2843 0.8396 0.7694 0.6518 0.2731 0.2591 0.2575 0.2495 0.1914

system components by setting ρ = 0.9040 improves the reliability of the system

like adding a set C
(0,1)
1 of components to the system according to a cold dupli-

cation method with perfect switch where the reliability function of the system

is chosen to be ω = 0.5, see Table 3.2.

• Reducing the failure rate of each component belonging to the set A
(2,3)
5 of the

system components by setting factor ρ = 0.2177 improves the reliability of the
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system like adding a set D
(2,3)
5 of components to the system according to a cold

duplication method with perfect switch where the reliability function of the

system is chosen to be ω = 0.9, see Table 3.3.

• Missing values of the SREFs mean that it is not possible to reduce the failure

rate for the set A of components in order to improve the system reliability to

be equivalent with the system reliability that can be obtained by improving the

sets B,C,D of component according to duplication methods.

• In the same manner, one can interpret the other results presented in Tables 3.1,

3.2 and 3.3.

Tables 3.4, 3.5 and 3.6 present the MREFs for hot and cold (perfect and imperfect)

duplication. Based on the results presented in those tables, we see that:

• The modified system that can be obtained by improving the set H
(0,1)
1 , where

H = B,C,D of the system components, according to hot and cold (perfect and

imperfect) duplication has the same mean time to failure of that system which

can be obtained be reducing the failure rate of each component belonging to

the set A
(0,1)
1 by factors ρ = 0.614, 0.134, 0.226 respectively.

• Empty cells of MREFs mean that it is not possible to reduce the failure rate

of the set A components in order to improve the mean time to failure of the

system to be equivalent with the mean time to failure of the system that can

be obtained by improving the sets B,C,D of components according to the

duplication methods.

• In the same manner, one can interpret the other results presented in Tables 3.4,

3.5 and 3.6.
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Table 3.7 presents the mean time to failure of the modified systems assuming hot

and cold duplication methods, the latter with perfect and imperfect switch, assuming

a constant failure rate λ = 0.05. The mean time to failure of the original system is

1.172. From this table, one can conclude that

MTTF < MTTF (B) < MTTF (D) < MTTF (C).

Figure 3.3 explains the improvement strategies to calculate the SREFs. Figure 3.4

presents reliability functions of the original and some modified systems. From these

figures, one may observe that, for this scenario:

• Improving the reliability of all components according to cold duplication with

perfect switch gives the best system.

• For the same number of components

R(t) < R(B)(t) < R(D)(t) < R(C)(t)

where λ = 0.05.

Figures 3.5 and 3.6 present the behaviour of MTTF against the appropriate re-

duction factor ρ. It seems from these two figures that the following conditions hold:

• MTTFs are non-decreasing with decreasing ρ for all possible sets A.

• Reducing the failure rate of one or two components from the first subsystem

gives a better system than that obtained by reducing the failure rate of one

or two components in the second subsystem, see Figure 3.5. This means that

improving a component from the subsystem with the smaller number of compo-

nents is better than improving a component from the subsystem with the larger

number of components.
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• Reducing the failure rates of all components in the system gives the best system,

see Figure 3.6.

• It is not possible to reduce the failure rate of the sets A
(1,1)
2 or A

(0,2)
2 of the

system components to reach the mean time to failure which we can achieve by

improving the sets B
(2,3)
5 or C

(1,2)
3 of the system components according to hot

duplication and cold duplication with perfect switch respectively, see Figure 3.5.

• Reducing the failure rate of three components in the second subsystem (which

we denote as A
(0,3)
3 ) by setting ρ = 0.236 improves the MTTF of the system like

adding three components to the second subsystem (which we denote as D
(0,3)
3 )

according to the cold duplication method with imperfect switch, see Figure 3.6

and compare with Table 3.6.

• Reducing the failure rate of one component in the first subsystem and two

components in the second subsystem (which we denote as A
(1,2)
3 ) by setting

ρ = 0.390 improves the MTTF of the system like adding two components in

the first subsystem and three components in the second subsystem (which we

denote as B
(2,3)
5 ) according to the hot duplication method, see Figure 3.6 and

compare with Table 3.4.

• Improving a number of components selected from two subsystems, with equal

numbers if they are even, gives a better system than that obtained by improving

the number of components selected from the same subsystem or selected from

the two subsystems with unequal numbers, see Figure 3.6.

This example clearly generates interesting conclusions for this particular system
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and distributional assumptions. More importantly though, it demonstrates the po-

tential for applying these methods to other system structures. It also illustrates how

to address specific questions that arise when attempting to improve the reliability

of simple systems or simple configurations of possibly complex sub-systems in many

diverse applications.

3.5 Conclusions

In this study, we evaluate both the system reliability function and the system mean

time to failure in order to study the reliability equivalence factors for series-parallel

systems. These system structures arise often in business and industry and the method-

ology adapts readily for other forms including parallel-series systems and more com-

plex networks. All the system components are assumed to be independent and iden-

tically distributed, according to an exponentiated Weibull distribution, on account of

its flexibility and tractability for practical purposes. We discuss four different meth-

ods to improve such a system: reduction, hot duplication and cold duplication with

perfect or imperfect switch.

We derive analytical results for both survival and mean reliability equivalence fac-

tors of these systems. Some numerical results are then presented for a representative

system in order to illustrate how one can apply the theoretical results obtained and

to compare the various approaches in this context. Accordingly, detailed recommen-

dations are discussed for improving the system considered in this study. Although it

would be inappropriate to extrapolate these results to other system structures from

only this case study, we make some interesting observations which suggest patterns

that might arise more generally.
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We have also identified several extensions of this study that might be worthy of

future exploration, including comparisons with parallel-series formats and analysis of

other important system structures, equivalent systems with non-identical components

and simpler systems with dependent components. The methods described in this

study adapt readily to deal with all these other scenarios.

The GQFRD of Chapter 2 and EWD of Chapter 3 are broad families that cover

most common lifetime distributions for practical application. We advocate that,

unless a specific distributional form is known, both families should be considered in

any given setting. The final choice is then determined using standard goodness of fit

measures such as the Bayes information criterion.

Chapter 2 and 3 also differ in the system structure considered. Together, they

cover many common forms encountered in practice, and lead nicely to our new devel-

opments in Chapter 4.
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Figure 3.3: Use of survival reliability equivalence factors to recommend system im-
provement strategies.
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Table 3.3: Cold survival reliability equivalence factors with imperfect switch (λ =
0.05).

ω D
(0,1)
1 D

(0,2)
2 D

(0,3)
3 D

(1,0)
1 D

(1,1)
2 D

(1,2)
3 D

(1,3)
4 D

(2,0)
2 D

(2,1)
3 D

(2,2)
4 D

(2,3)
5

0.1 0.2157 - - - - - - - - - -

A
(0,1)
1 0.5 0.2401 - - - - - - - - - -

0.9 0.2494 - - - - - - - - - -
0.1 0.6755 0.2153 - 0.2060 0.1666 - - - - - -

A
(0,2)
2 0.5 0.7113 0.2246 - 0.3866 0.1876 - - - - - -

0.9 0.7425 0.2460 - 0.5255 0.2218 - - - - - -
0.1 0.7886 0.5356 0.2578 0.5320 0.5182 0.4506 0.2570 0.2153 0.2153 0.2153 0.2059

A
(0,3)
3 0.5 0.8146 0.5784 0.2241 0.6381 0.5693 0.4530 0.2192 0.1910 0.1910 0.1895 0.1637

0.9 0.8370 0.6233 0.2206 0.7205 0.6187 0.4761 0.1945 0.1893 0.1834 0.1679 0.1158
0.1 0.7657 0.2287 - 0.2149 0.1508 - - - - - -

A
(1,0)
1 0.5 0.6920 - - 0.2269 - - - - - - -

0.9 0.6628 - - 0.2439 - - - - - - -
0.1 0.8006 0.2816 - 0.2692 0.2162 - - - - - -

A
(1,1)
2 0.5 0.7793 0.2661 - 0.4541 0.2221 - - - - - -

0.9 0.7867 0.2772 - 0.5786 0.2502 - - - - - -
0.1 0.8358 0.4375 - 0.4297 0.3990 0.2217 - - - - -

A
(1,2)
3 0.5 0.8367 0.5191 - 0.6164 0.5027 0.2159 - - - - -

0.9 0.8503 0.5827 - 0.7187 0.5756 0.2410 - - - - -
0.1 0.8647 0.5875 0.2590 0.5829 0.5655 0.4797 0.2582 0.2156 0.2156 0.2156 0.2061

A
(1,3)
4 0.5 0.8727 0.6545 0.2306 0.7161 0.6447 0.5110 0.2250 0.1938 0.1938 0.1923 0.1648

0.9 0.8861 0.7066 0.2508 0.7930 0.7023 0.5584 0.2173 0.2106 0.2032 0.1836 0.1202
0.1 0.8852 0.6631 0.3281 0.6593 0.6444 0.5678 0.3271 0.2740 0.2740 0.2740 0.2621

A
(2,0)
2 0.5 0.8547 0.6462 0.2730 0.7013 0.6377 0.5248 0.2671 0.2330 0.2330 0.2313 0.1998

0.9 0.8484 0.6452 0.2494 0.7383 0.6409 0.5029 0.2223 0.2168 0.2107 0.1942 0.1361
0.1 0.8932 0.6673 0.3281 0.6634 0.6481 0.5694 0.3271 0.2740 0.2740 0.2740 0.2621

A
(2,1)
3 0.5 0.8755 0.6706 0.2734 0.7275 0.6616 0.5403 0.2674 0.2331 0.2331 0.2313 0.1998

0.9 0.8774 0.6908 0.2596 0.7796 0.6865 0.5442 0.2291 0.2229 0.2161 0.1979 0.1366
0.1 0.9019 0.6782 0.3285 0.6741 0.6583 0.5765 0.3274 0.2741 0.2741 0.2741 0.2621

A
(2,2)
4 0.5 0.8937 0.7049 0.2784 0.7594 0.6961 0.5728 0.2720 0.2353 0.2353 0.2335 0.2007

0.9 0.8994 0.7389 0.2902 0.8167 0.7350 0.6022 0.2529 0.2454 0.2370 0.2147 0.1414
0.1 0.9106 0.7011 0.3482 0.6972 0.6820 0.6021 0.3471 0.2908 0.2908 0.2908 0.2781

A
(2,3)
5 0.5 0.9085 0.7442 0.3334 0.7920 0.7365 0.6259 0.3262 0.2845 0.2845 0.2824 0.2440

0.9 0.9158 0.7820 0.3892 0.8467 0.7788 0.6679 0.3507 0.3426 0.3335 0.3086 0.2177
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Table 3.4: Hot mean equivalence factors.

B
(0,1)
1 B

(0,2)
2 B

(0,3)
3 B

(1,0)
1 B

(1,1)
2 B

(1,2)
3 B

(1,3)
4 B

(2,0)
2 B

(2,1)
3 B

(2,2)
4 B

(2,3)
5

A
(0,1)
1 0.614 - - - - - - - - - -

A
(0,2)
2 0.825 0.634 0.421 0.643 0.555 0.441 0.286 0.289 0.241 0.150 -

A
(0,3)
3 0.885 0.768 0.651 0.773 0.722 0.661 0.590 0.591 0.573 0.548 0.515

A
(1,0)
1 0.843 0.647 0.387 0.657 0.556 0.415 0.115 0.117 0.066 - -

A
(1,1)
2 0.883 0.728 0.513 0.736 0.653 0.536 0.357 0.360 0.301 0.188 -

A
(1,2)
3 0.910 0.793 0.640 0.799 0.738 0.655 0.540 0.542 0.510 0.462 0.390

A
(1,3)
4 0.928 0.838 0.728 0.843 0.797 0.739 0.664 0.665 0.645 0.618 0.58

A
(2,0)
2 0.923 0.834 0.733 0.838 0.796 0.742 0.676 0.677 0.660 0.635 0.602

A
(2,1)
3 0.934 0.852 0.753 0.856 0.815 0.763 0.696 0.697 0.679 0.654 0.619

A
(2,2)
4 0.943 0.870 0.779 0.873 0.836 0.788 0.723 0.724 0.707 0.682 0.647

A
(2,3)
5 0.950 0.886 0.805 0.889 0.856 0.813 0.756 0.757 0.742 0.719 0.687

Table 3.5: Cold mean equivalence factors with perfect switch.

C
(0,1)
1 C

(0,2)
2 C

(0,3)
3 C

(1,0)
1 C

(1,1)
2 C

(1,2)
3 C

(1,3)
4 C

(2,0)
2 C

(2,1)
3 C

(2,2)
4 C

(2,3)
5

A
(0,1)
1 0.134 - - - - - - - - - -

A
(0,2)
2 0.692 0.162 - 0.288 0.129 - - - - - -

A
(0,3)
3 0.802 0.549 0.208 0.590 0.543 0.442 0.205 0.181 0.180 0.179 0.157

A
(1,0)
1 0.710 - - 0.163 - - - - - - -

A
(1,1)
2 0.780 0.202 - 0.359 0.162 - - - - - -

A
(1,2)
3 0.832 0.464 - 0.541 0.450 0.167 - - - - -

A
(1,3)
4 0.867 0.619 0.214 0.665 0.611 0.490 0.211 0.184 0.184 0.182 0.159

A
(2,0)
2 0.862 0.636 0.256 0.676 0.630 0.525 0.252 0.222 0.222 0.220 0.193

A
(2,1)
3 0.878 0.655 0.257 0.696 0.648 0.538 0.253 0.223 0.223 0.221 0.193

A
(2,2)
4 0.894 0.683 0.263 0.724 0.676 0.564 0.259 0.227 0.227 0.225 0.196

A
(2,3)
5 0.907 0.720 0.310 0.757 0.714 0.611 0.306 0.270 0.270 0.267 0.234
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Table 3.6: Cold mean equivalence factors with imperfect switch (λ = 0.05).

D
(0,1)
1 D

(0,2)
2 D

(0,3)
3 D

(1,0)
1 D

(1,1)
2 D

(1,2)
3 D

(1,3)
4 D

(2,0)
2 D

(2,1)
3 D

(2,2)
4 D

(2,3)
5

A
(0,1)
1 0.226 - - - - - - - - - -

A
(0,2)
2 0.704 0.223 - 0.316 0.179 - - - - - -

A
(0,3)
3 0.810 0.567 0.236 0.602 0.554 0.456 0.229 0.199 0.198 0.195 0.167

A
(1,0)
1 0.723 - - 0.224 - - - - - - -

A
(1,1)
2 0.790 0.280 - 0.393 0.224 - - - - - -

A
(1,2)
3 0.840 0.498 - 0.562 0.473 0.223 - - - - -

A
(1,3)
4 0.873 0.639 0.244 0.677 0.624 0.507 0.236 0.204 0.203 0.200 0.170

A
(2,0)
2 0.867 0.654 0.288 0.688 0.641 0.539 0.280 0.245 0.244 0.240 0.205

A
(2,1)
3 0.884 0.673 0.291 0.708 0.660 0.553 0.282 0.246 0.245 0.241 0.206

A
(2,2)
4 0.898 0.701 0.299 0.735 0.688 0.580 0.290 0.251 0.250 0.246 0.209

A
(2,3)
5 0.911 0.736 0.349 0.767 0.724 0.626 0.339 0.297 0.296 0.291 0.250

Table 3.7: Mean times to failure of the modified systems.

{01, 12} {01, 22} {01, 32} {11, 02} {11, 12} {11, 22} {11, 32} {21, 02} {21, 12} {21, 22} {21, 32}
hot 1.202 1.244 1.305 1.242 1.266 1.299 1.347 1.346 1.360 1.381 1.413
cold perfect 1.230 1.381 2.104 1.347 1.387 1.499 2.120 2.255 2.257 2.266 2.420
cold imperfect 1.228 1.366 1.984 1.338 1.377 1.481 2.013 2.150 2.155 2.173 2.343
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Part II

Deriving reliability equivalence

factors using survival signature

89





Chapter 4

Using survival signature to derive

the reliability equivalence factors

for simple systems

Most studies concerning reliability equivalence factors assume systems with indepen-

dent and identically distributed components with specific structures. The question

is, can we derive the reliability equivalence factors without assuming a system with

identically distributed components or specific structure? The answer is yes. Using

the recent concept of survival signature we can derive the reliability equivalence fac-

tors for any system with any structure with any lifetime distributions as long as the

reduction improvement of the component that we need to improve is known.

Samaniego (2007) provided a very good overview about the concept of signature

including the theory of system signatures and explained how to calculate the sig-

nature for systems with small numbers of components. Coolen and Coolen-Maturi

(2012) developed extensions to signature, resulting the new idea of survival signature.

Aslett (2012) developed computer packages in R to calculate the system signature and

survival signature, which are very useful especially in systems with large numbers of

components. Recently Aslett, Coolen and Wilson presented a very good study that
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applies the survival signature to a complex system in Aslett et al. (2014).

In this part of our research, we present a new technique to derive the reliability

equivalence factors for any system using the concept of survival signature. To our

knowledge, this is the first attempt to use survival signature to compute the reliabil-

ity equivalence factors for different systems. The whole information that we need to

derive the reliability equivalence factors using survival signature is the system struc-

ture and the lifetime distribution of each component in the system. For this reason,

using survival signature to derive the reliability equivalence factors is suitable and ap-

propriate for real applications and might offer substantial benefits. To illustrate the

idea, deriving the reliability equivalence factors using survival signature is analogous

to an adjustable spanner for all of the previous studies but the reliability equivalence

factors are analogous to a normal spanner. An adjustable spanner operates on a wide

range of bolt sizes, whereas a normal spanner should be used only on a specific bolt

size.

One first advantage of using survival signature to derive the reliability equivalence

factors is in its flexibility; it provides a general methodology that can be used with

different system structures. The survival signature can be used to derive reliabil-

ity equivalence factors for systems with multiple types of components and different

system structures, which matches real applications more than all previous studies in

this field. The second reason is that there is a dedicated computer package which

facilitates deriving survival signatures for any complex systems as we shall see in the

next chapter.
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4.1 How survival signature can generate reliability

equivalence factors

To derive the reliability equivalence factors using the survival signature the following

conditions must be met:

1. The system must be coherent with independent components.

2. The structure of the system is known.

3. The lifetime distribution of each component in the system is known.

4. The reduction improvement of the component which we need to improve is also

known.

For any system that satisfies the above four conditions, the survival signature can

be used to derive reliability equivalence factors as the following steps:

1. We give each component in the system a serial number, which helps us to

derive the survival signature specially for complex systems and systems with

large numbers of components.

2. We specify the components that we want to improve.

3. We replace the reliability function for the components that we need to improve

with the reliability function for the same components after they are improved.

4. We classify improved system components into different types where each type

has one component or several components with identical lifetime distributions.
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5. We derive the survival signature for the improved system using Equation (1.4.5)

where the improved system has at least two types of components. For complex

systems and systems with large numbers of components we use the Reliabil-

ityTheory R package to derive survival signature as we shall see in Chapter

5.

6. We derive the reliability function for the improved system using Equation (1.4.6)

for all possible improvements.

7. For the SREFs, we determine the equivalence between the reliability function

of that system improved according to the reduction method and the reliability

function of that system improved according to any of the duplication methods

where the reliability function of the system is chosen to be a fixed value ω.

8. For the MREFs, we determine the equivalence between the mean time to failure

of a system improved according to the reduction method and the mean time to

failure of the same system improved according to any of duplication methods.

To illustrate how the survival signature can be used and how it is useful to derive

the reliability equivalence factors, we present the following:

1. We recalculate the reliability equivalence factors using survival signature for

systems that we studied previously in Chapters 2 and 3 to compare the results

and methods.

2. We derive the reliability equivalence factors using survival signature for a com-

plex system and a network to demonstrate the usefulness of survival signature

and the ReliabilityTheory R package in deriving the corresponding reliability

equivalence factors.



95

4.2 Reliability equivalence factors for a parallel-

series system with GQFRD using survival sig-

nature

We use the concept of survival signature to recalculate the reliability equivalence

factors for the parallel-series system that we studied in Chapter 2. We derive the reli-

ability functions and the mean times to failure for this system using survival signature

and we use them to calculate both survival reliability equivalence factors and mean

reliability equivalence factors for this system. By doing so, we hope to replicate our

earlier results and hence confirm the validity of survival signature reliability equiv-

alence in this context. This would then provide a degree of confidence for applying

this method in others situations.

In this section we consider the same system which has been studied as an example

of a parallel-series system in Chapter 2. All the systems’ components are assumed

to be independent and follow the generalized quadratic failure rate distribution with

identical parameters. First, we compute the survival signature and use it to derive

the reliability function and the mean time to failure (MTTF) of the original system.

Second, we compute the survival signature to derive the reliability functions and

MTTFs of the systems following improvement according to reduction, hot duplication

and cold duplication (perfect and imperfect) methods. Third, we match current work

with analogies in the previous study. Fourth, we equate the reliability function and the

MTTF of the system improved according to the reduction method with the reliability

function and the MTTF of the system improved according to each of the duplication

methods to determine the reliability equivalence factors. Finally, we compare results

and methods for using survival signature to derive reliability equivalence factors with
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results in the previous chapters.

4.2.1 Properties of the original system in Figure 1.8

The system we consider here is shown in Figure 1.8 and consists of five independent

and identically distributed components which follow the generalized quadratic failure

rate distribution with identical parameters α = 0.029, β = −1.597×10−3, γ = 2.608×

10−5 and θ = 0.786. It is the same system that was investigated in Chapter 2. In fact

this system meets all the conditions necessary for using survival signature to derive

reliability equivalence factors. It is a coherent system with independent components

and the lifetime and reduction improvement are known for all system components.

This system consists of two subsystems connected in series, where the first consists

of two components connected in parallel and the second consists of three components

connected in parallel.

The global structure of the system is more important than that of the individual

subsystems in computing the reliability of systems using survival signature. Thus we

give components in the first subsystem the serial numbers 1 and 2 and components in

the second subsystem the numbers 3, 4 and 5 as shown in Figure 1.8. The reliability

function of each component in the system is presented in Chapter 2 in Equation

(2.2.1). We summarize the properties of this system in the following points:

• System with five independent and identically distributed components, m = 5;

• All the system components follow the generalized quadratic failure rate distri-

bution with identical parameters,

• System with 32 state vectors;
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• System with only one type of components;

• System with two minimal cut sets which are {1, 2} and {3, 4, 5};

• The failure time of this system’s components can be ordered in 5! = 120 ways.

As described in Section 1.3.4, the system signature vector is S = ( 0
120

, 12
120

, 36
120

, 72
120

, 0
120

)

= (0, 0.1, 0.3, 0.6, 0). The survival signature of this system can be derived directly

from system signature using Relation (1.4.2) as we presented in Table 1.3.

The reliability function of this system is calculated using Equation (1.4.4) as

R(t) =
5
∑

l=0

Φ(l)

(

5

l

)[

{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ
]5−l [

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ
]l

(4.2.1)

where survival signature Φ(l) is presented in Table 1.3. The mean time to failure of

this system is given by

MTTF =

∞
∫

0

R(t)dt

=

∞
∫

0

{

5
∑

l=0

Φ(l)

(

5

l

)[

{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ
]5−l [

1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}θ
]l
}

dt.

(4.2.2)

4.2.2 Properties of the improved systems corresponding to

Figure 1.8

Improving one component or more of the system according to any improvement

method gives a system with two types of independent components, except in the case

of improving all system components. The first type comprises original components

that are not improved and their number is m1. The second type comprises compo-

nents that are improved according to any improvement method and their number is
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m2 where the total number of system components is m = m1 + m2 = 5. The main

properties of the original system will be retained, such as the number of state vectors,

sets of minimal cut and system’s component failure time order. We can summarize

the properties of the improved system in the following points:

• The reliability function of any component improved according to the reduction

method can be written as

RA(t) = 1−
{

1− e−ρ(αt+β
2
t2+ γ

3
t3)
}θ

. (4.2.3)

• The reliability function of any component improved according to the hot dupli-

cation method can be written as

RB(t) = 1−
{

1− e−(αt+β
2
t2+ γ

3
t3)
}2θ

. (4.2.4)

• The reliability function of any component improved according to the cold du-

plication method with perfect switch takes the form

RC(t) = 1−
t
∫

0

−dR(x)

dx
[1− R(t− x)]dx (4.2.5)

where R(t) is the reliability of original component which is the reliability of the

generalized quadratic failure rate distribution.

• The reliability function of any component improved according to the cold du-

plication method with imperfect switch takes the form

RD(t) = 1−
t
∫

0

−dR(x)

dx
[1− R(t− x)S(x)]dx (4.2.6)

where S(t) is the reliability function for the imperfect switch, which is chosen

to have a constant failure rate λ = 0.01.
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• The survival signature of the improved system is derived using Relation (1.4.5)

and presented in Tables 4.1 and 4.2.

• The survival signature is not affected by the improvement type for all system

components.

• The reliability function of any improved system can be calculated by using

Relation (1.4.4) as

R(H)(t) =

m1
∑

l1=0

m2
∑

l2=0

Φ(l1, l2)

{(

m1

l1

)

[1− R(t)]m1−l1 [R(t)]l1

×
(

m2

l2

)

[1− RH(t)]
m2−l2 [RH(t)]

l2

}

(4.2.7)

where Φ(l1, l2) is the survival signature of the improved system, R(t) is the

reliability function of the original components and RH(t) is the reliability func-

tion of the improved components. Φ(l1, l2) is presented in Tables 4.1 and 4.2.

R(t) is the reliability function of GQFRD. RH(t) is the reliability function of

the improved components for all H = A,B,C,D, where A is the reduction

improvement, B is the hot duplication improvement, C is the cold duplication

improvement with perfect switch, and D is the cold duplication improvement

with imperfect switch.

• The mean time to failure for any improvement system can be written as

MTTF (H) =

∞
∫

0

R(H)(t)dt. (4.2.8)

To explain Tables 4.1 and 4.2, we explain the first row of Table 4.1 then the other

rows are similar. Improving component number 3 according to any improvement

methods, reduction, hot duplication, cold duplication with perfect switch, and cold
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duplication with imperfect switch, gives rise to a system with two types of compo-

nents. The first type comprises non-improved components and its number is m1 = 4,

while the second type comprises improved components and its number is m2 = 1, so

l1 = 0, 1, .., 4 and l2 = 0, 1. The improved system topology is presented in the first

cell of the first row of Table 4.1 and the survival signature for the improved system is

presented in the second cell of the same row. When we compare improving compo-

nent number 3 with our previous study in Chapter 2 we find that its effect is similar

to improving one component from the second subsystem and no component from the

first subsystem, which can be written as presented in the third cell of Table 4.1 as

H
(0,1)
1 , H = A,B,C,D. Here, A is the reduction method, B is the hot duplication

method, C is the cold duplication method with perfect switch, and D is the cold

duplication method with imperfect switch.

In Tables 4.3, 4.5 and 4.7 the hot and cold (perfect and imperfect) SREFs are

calculated using the definition of the survival equivalence factors where ω is chosen

to be 0.1, 0.5, 0.9 and the imperfect switch has a constant failure rate λ = 0.01. From

those tables we observe that:

• Reducing the failure rate of component number 1 by setting ρ = 0.6767 im-

proves the reliability of the system. This is equivalent to improving the same

component according to a hot duplication method where the reliability function

of the system is chosen to be ω = 0.1, see Table 4.3.

• Reducing the failure rate of component number 3 by setting ρ = 0.2776 im-

proves the reliability of the system. This is equivalent to improving the same

component according to a cold duplication method with perfect switch where

the reliability function of the system is chosen to be ω = 0.5, see Table 4.5.
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• Reducing the failure rate of component numbers 1, 2 by setting ρ = 0.2932 im-

proves the reliability of the system. This is equivalent to improving components

1, 2 according to a cold duplication method with imperfect switch where the

reliability function of the system is chosen to be ω = 0.9, see Table 4.7.

• Reducing the failure rate of each component belonging to the system by setting

ρ = 0.2278 improves the reliability of the system. This also is equivalent to

improving all system components according to a cold duplication method with

perfect switch where the reliability function of the system is chosen to be ω =

0.5, see Table 4.5.

• Improving either component number 1 or 2 according to the same improvement

method gives the same result and is true for either components 3, 4 and 5, see

Table 4.3.

• In the same manner, one can interpret the other results presented in those

tables.

Tables 4.4, 4.6 and 4.8 present the hot and cold (perfect and imperfect) MREFs and

the MTTFs for improved systems. Based on the results presented in those tables, we

see that:

• Improving component number 1 according to the hot duplication increases the

system mean time to failure to be 60.045 and the same system mean time

to failure can be obtained by reducing the failure rate of same component by

setting ρ = 0.430, see Table 4.4. Note that the mean time to failure of the

original system is 53.063.
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• Improving component 3 according to cold duplication with perfect switch in-

creases the system mean time to failure to be 58.005 and the same mean time to

failure can be obtained by reducing the failure rate of component 3 by setting

ρ = 0.257, see Table 4.6.

• Improving each component belonging to the system according to a cold duplica-

tion with perfect switch increases the system mean time to failure to be 99.362

which is the best possible improvement and the same mean time to failure

can be obtained by reducing the failure rate of each component in the setting

ρ = 0.196, see Table 4.6.

• In the same manner, one can interpret the other results presented in those

tables.

4.3 Reliability equivalence factors for a series-parallel

system with EWD using survival signature

As we demonstrated in the first part of this chapter, we use the concept of survival

signature to recalculate the reliability equivalence factors for the series-parallel system

that we studied in Chapter 3. We derive the reliability functions and the mean

times to failure for this system using survival signature. We calculate both survival

reliability equivalence factors and mean reliability equivalence factors for all possible

improvements.
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1 2

3 4 5

Figure 4.1: Series-parallel system consisting of five identically distributed compo-
nents.

4.3.1 Properties of the original system in Figure 4.1

The system we consider here is shown in Figure 4.1 and consists of five independent

and identically distributed components which follow the exponentiated Weibull life-

time distribution with identical parameters α = 1, β = 2 and θ = 3. This is the same

system that we studied in Chapter 3. This system meets all the conditions to use

the survival signature to derive reliability equivalence factors. It is a coherent system

with independent components and the lifetime distribution and reduction improve-

ment are known for all system components. This system consists of two subsystems

connected in parallel, where the first consists of two components connected in series

and the second consists of three components connected in series. We give compo-

nents in the first subsystem the serial numbers 1 and 2 and components in the second

subsystem the numbers 3, 4 and 5 as shown in Figure 4.1. The reliability function
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of each component in the system is presented earlier in Equation (3.2.1). This sys-

tem has six minimal cut sets which are {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4} and {2, 5}.

The system signature vector is S = ( 0
120

, 72
120

, 36
120

, 12
120

, 0
120

) = (0, 0.6, 0.3, 0.1, 0). The

survival signature of this system can be derived directly from system signature using

Relation (1.4.2) and resembles the survival signature when all system components are

improved, see the last row of Table 4.10

The reliability function of this system can be calculated by using Equation (1.4.4)

as

R(t) =
5
∑

l=0

Φ(l)

(

5

l

)[

(

1− e−αtβ
)θ
]5−l [

1−
(

1− e−αtβ
)θ
]l

. (4.3.1)

where Φ(l) is presented in the last row of Table 4.10. The mean time to failure of

this system is given by

MTTF =

∞
∫

0

R(t)dt

=

∞
∫

0

{

5
∑

l=0

Φ(l)

(

5

l

)[

(

1− e−αtβ
)θ
]5−l [

1−
(

1− e−αtβ
)θ
]l
}

dt.

(4.3.2)

4.3.2 Properties of the improved systems corresponding to

Figure 4.1

The similarities between the improving steps for this system and the improving steps

for the parallel-series in section 4.2.2 are substantial. The differences which we have

in this system are the structure of the system and the lifetime distribution of sys-

tem components. We can summarize the properties of the improved system in the

following points:
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• The reliability function of any component improved according to the reduction

method can be written as

RA(t) = 1−
(

1− e−ραtβ
)θ

(4.3.3)

where ρ is the reduction factor.

• The reliability function of any component improved according to the hot dupli-

cation method can be written as

RB(t) = 1−
(

1− e−αtβ
)2θ

(4.3.4)

• The reliability function of any component improved according to the cold dupli-

cation method with perfect or imperfect switch is the same as Equations (4.2.5)

and (4.2.6), where the reliability function for the imperfect switch is chosen to

have a constant failure rate λ = 0.05.

• The survival signature of the improved system is derived using Relation (1.4.5)

and is presented in Tables 4.9 and 4.10.

• The survival signature is not affected by the improvement type for all system

components.

• The reliability function and the mean time to failure of any improved system

can be calculated using Equations (4.2.7) and (4.2.8).

Tables 4.11, 4.13 and 4.15 present the hot and cold (perfect and imperfect) SREFs

for some system component improvements for the system in Figure 4.1. In the same

manner, one can interpret the results presented in Tables 4.3, 4.5 and 4.7.
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Tables 4.12, 4.14 and 4.16 present the hot and cold (perfect and imperfect) MREFs

for component improvement for the system in Figure 4.1 and the MTTFs for the

improved system. In the same manner, one can interpret the results presented in

Tables 4.4, 4.6 and 4.8.

4.4 Comparing SREFs and MREFs derived using

survival signature and analytical methods

Subsequent to comparison of the survival reliability equivalence factors (SREFs)

and mean reliability equivalence factors (MREFs) for both parallel-series and series-

parallel systems, which are derived using survival signature with the results in Chap-

ters 2 and 3, it is found that both methods give the same results. This important

finding confirms the apparent validity of survival signature in reliability equivalence

testing.

For the parallel-series system, when we compare SREFs, MREFs and MTTFs for

the improved system which is derived using survival signature with SREFs, MREFs

and MTTFs which were studied in Chapter 2, we find that:

• The hot SREFs for improving component number 1 of the system in Figure 1.8

are equal to the hot SREFs for improving one component in the first subsystem

only (which we denote in Chapter 2 as A
(1,0)
1 ), where the SREFs in the first row

of Table 4.3 are equal to the hot SREFs in the intersection of A
(1,0)
1 row with

B
(1,0)
1 column in Table 2.1.

• The hot SREFs for improving component number 3 of the system in Figure 1.8

is equal the hot SREFs for improving one component in the second subsystem

only (which we denote in Chapter 2 as A
(0,1)
1 ), where the SREFs in the third
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row of Table 4.3 are equal to the SREFs in the intersection of A
(0,1)
1 row with

B
(0,1)
1 column in Table 2.1.

• The cold SREFs with perfect switch for improving component number 3 of

the system in Figure 1.8 are equal to the cold SREFs with perfect switch for

improving one component in the second subsystem only (which we denote in

Chapter 2 as A
(0,1)
1 ), where the SREFs in the second row of Table 4.5 are equal

to the SREFs in the intersection of A
(0,1)
1 row with C

(0,1)
1 column in Table 2.2.

• The cold SREFs with imperfect switch for improving all system components of

the system in Figure 1.8 are equal to the cold SREFs with imperfect switch for

improving two components in the first subsystem and three components in the

second subsystem (which we denote in Chapter 2 as A
(2,3)
5 ), where the SREFs

in the last row of Table 4.7 are equal to the SREFs in the intersection of A
(2,3)
5

row with D
(2,3)
5 column in Table 2.3.

• The hot MREF and MTTF for improving components number 1 and 3 of the

system in Figure 1.8 are equal to the hot MREF and MTTF respectively, for

improving one component in the first subsystem and one component in the

second subsystem (which we denote in Chapter 2 as A
(1,1)
2 ), where the the

MREF in the seventh row of Table 4.4 is equal to the MREF in the intersection

of A
(1,1)
2 row with B

(1,1)
2 column in Table 2.4 and the MTTF in the seventh row

of Table 4.4 is equal to the MTTF in Table 2.7 (which we denote in Chapter 2

as {11, 12}).

• In the same manner, one can compare SREFs, MREFs and MTTFs of modified

systems in this chapter with the analogous results in Chapter 2.
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For the series-parallel system, we compare SREFs, MREFs and MTTFs which

we derive using the survival signature with SREFs, MREFs and MTTFs which we

studied in Chapter 3 and we find that:

• The hot SREFs for improving component number 1 of the system in Figure 4.1

are equal to the hot SREFs for improving one component in the first subsystem

only (which we denote in Chapter 3 as A
(1,0)
1 ), where the SREFs in the first row

of Table 4.11 are equal to the SREFs in the intersection of A
(1,0)
1 row with B

(1,0)
1

column in Table 3.1.

• The cold SREFs with perfect switch for improving component number 3 of

the system in Figure 4.1 are equal to the cold SREFs with perfect switch for

improving one component in the second subsystem only (which we denote in

Chapter 3 as A
(0,1)
1 ), where the SREFs in the second row of Table 4.13 are equal

to the SREFs in the intersection of A
(0,1)
1 row with C

(0,1)
1 column in Table 3.2.

• The cold SREFs with imperfect switch for improving all system components of

the system in Figure 4.1 are equal to the cold SREFs with imperfect switch for

improving two components in the first subsystem and three components in the

second subsystem (which we denote in Chapter 3 as A
(2,3)
5 ), where the SREFs

in the last row of Table 4.15 are equal to the SREFs in the intersection of A
(2,3)
5

row with D
(2,3)
5 column in Table 3.3.

• The cold MREF with perfect switch and the MTTF for improving components

number 1, 2 and 3 of the system in Figure 4.1 are equal to the cold MREF

with perfect switch and the MTTF for improving two components in the first

subsystem and one component in the second subsystem respectively (which we
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denote in Chapter 3 as A
(2,1)
3 ), where the MREF in the sixth row of Table 4.14

is equal to the MREF in the intersection of A
(2,1)
3 row with C

(2,1)
3 column in

Table 3.5 and the MTTF in the sixth row of Table 4.14 is equal to the MTTF

in Table 3.7 (which we denote in Chapter 3 as {21, 12}).

• In the same manner, one can compare SREFs, MREFs and MTTFs of modified

systems in this chapter with the analogous results in Chapter 3.

4.5 Conclusions

This chapter introduces a new technique for deriving the reliability equivalence fac-

tors for any system using the concept of survival signature. We present the conditions

and steps for using the survival signature to derive the survival reliability equivalence

factors (SREFs) and mean reliability equivalence factors (MREFs). The various steps

for using survival signature to derive the reliability equivalence are elaborated. To

clarify the impact of the newly proposed method, this chapter concludes with a com-

parison of the SREF and MREF results obtained by applying the new method on

the parallel-series and series-parallel systems with the method previously studied. As

hoped, the results are in perfect agreement, so leading support to the use survival

signature for reliability equivalence factors.
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Table 4.1: System topology and survival signature for different improvements to the
system in Figure 1.8, when the number of improved components (gray) is |H| ≤ 2.

System topology Survival signature
Analogous system
in the previous study

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 1 5/6
0 1 0 3 0 1
1 0 0 3 1 1
1 1 1/2 4 0 1
2 0 2/3 4 1 1

H
(0,1)
1 , H = A,B,C,D

A Reduction
B Hot duplication
C Cold With perfect switch
D Cold With imperfect switch

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 1 1
0 1 0 3 0 3/4
1 0 0 3 1 1
1 1 3/4 4 0 1
2 0 1/2 4 1 1

H
(1,0)
1 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 2/3
0 1 0 2 1 1
0 2 0 2 2 1
1 0 0 3 0 1
1 1 2/3 3 1 1
1 2 2/3 3 2 1

H
(0,2)
2 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 0
0 1 0 2 1 1
0 2 0 2 2 1
1 0 0 3 0 0
1 1 1 3 1 1
1 2 1 3 2 1

H
(2,0)
2 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 2/3
0 1 0 2 1 5/6
0 2 1 2 1 1
1 0 0 3 0 1
1 1 1/2 3 1 1
1 2 1 3 2 1

H
(1,1)
2 , H = A,B, C,D
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Table 4.2: System topology and survival signature for different improvements to the
system in Figure 1.8, when the number of improved components (gray) is |H| > 2.

System topology Survival signature
Analogous system
in the previous study

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 5/6
0 1 0 1 3 1
0 2 2/3 2 0 1
0 3 1 2 1 1
1 0 0 2 2 1
1 1 1/2 2 3 1

H
(1,2)
3 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 1
0 1 0 1 3 1
0 2 0 2 0 1
0 3 0 2 1 1
1 0 0 2 2 1
1 1 1 2 3 1

H
(0,3)
3 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 1
0 1 0 1 3 1
0 2 2/3 2 0 0
0 3 1 2 1 2/3
1 0 0 2 2 1
1 1 2/3 2 3 1

H
(2,1)
3 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 0 0
0 1 0 1 1 3/4
0 2 1/2 1 2 1
0 3 3/4 1 3 1
0 4 1 1 4 1

H
(1,3)
4 , H = A,B, C,D

3

4

5

1

2

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 0 0
0 1 0 1 1 1/2
0 2 2/3 1 2 5/6
0 3 1 1 3 1
0 4 1 1 4 1

H
(2,2)
4 , H = A,B, C,D

3

4

5

1

2

l Φ(l)
0 0
1 0
2 6/10
3 9/10
4 1
5 1

H
(2,3)
5 , H = A,B, C,D



112

Table 4.3: Hot SREF for system in
Figure 1.8 derived using survival sig-
nature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.6767 0.4828 0.2516
2 0.6767 0.4828 0.2516
3 0.6681 0.4590 0.1993
4 0.6681 0.4590 0.1993
5 0.6681 0.4590 0.1993
1,2 0.6927 0.5120 0.2863
1,3 0.6927 0.5120 0.2863
3,4 0.6803 0.4764 0.2056
1,2,3 0.7979 0.5423 0.3329
1,3,4 0.7040 0.5312 0.3045
1,2,3,4 0.7187 0.5622 0.3598
1,2,3,4,5 0.7268 0.5765 0.3761

Table 4.4: Hot MREF and MTTF

for modified system in Figure 1.8 de-
rived using survival signature

Component MREF MTTF
1 0.430 60.045
2 0.430 60.045
3 0.465 56.068
4 0.465 56.068
5 0.465 56.068
1,2 0.462 63.672
1,3 0.467 63.672
3,4 0.493 57.744
1,2,3 0.492 67.697
1,3,4 0.488 65.746
1,2,3,4 0.512 70.042
1,2,3,4,5 0.527 71.530

Table 4.5: Cold SREF with perfect
switch for system in Figure 1.8 derived
using survival signature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.2511 0.2783 0.2077
3 0.2577 0.2776 0.1391
1,2 0.2422 0.2777 0.2517
1,3 0.1832 0.2751 0.2558
3,4 0.2508 0.2777 0.1466
1,2,3 0.1512 0.2667 0.2713
1,3,4 0.1512 0.2691 0.2656
3,4,5 0.2472 0.2776 0.1557
1,2,3,4 0.1366 0.2474 0.2751
1,3,4,5 0.1419 0.2634 0.2680
1,2,3,4,5 0.1329 0.2278 0.2768

Table 4.6: Cold MREF with perfect
switch and MTTF for modified sys-
tem in Figure 1.8 derived using sur-
vival signature

Component MREF MTTF
1 0.253 63.516
3 0.257 58.005
1,2 0.255 68.017
1,3 0.227 75.421
3,4 0.258 60.250
1,2,3 0.217 84.259
1,3,4 0.217 82.003
3,4,5 0.256 61.312
1,2,3,4 0.205 93.639
1,3,4,5 0.209 85.862
1,2,3,4,5 0.196 99.362

Table 4.7: Cold SREF with imperfect
switch for system in Figure 1.8 derived
using survival signature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.4308 0.4129 0.2395
3 0.4344 0.4021 0.1673
1,2 0.4220 0.4232 0.2932
1,3 0.4086 0.4255 0.2920
3,4 0.4299 0.4099 0.1737
1,2,3 0.3787 0.4345 0.3365
1,3,4 0.3819 0.4319 0.3129
3,4,5 0.4254 0.4136 0.1806
1,2,3,4 0.3250 0.4382 0.3551
1,3,4,5 0.3564 0.4352 0.3216
1,2,3,4,5 0.2828 0.4385 0.3661

Table 4.8: Cold MREF with imper-
fect switch and MTTF for modified
system in Figure 1.8 derived using sur-
vival signature

Component MREF MTTF
1 0.359 61.316
3 0.376 58.816
1,2 0.372 65.572
1,3 0.366 67.425
3,4 0.385 58.887
1,2,3 0.369 73.401
1,3,4 0.367 71.216
3,4,5 0.392 60.102
1,2,3,4 0.366 78.488
1,3,4,5 0.364 73.728
1,2,3,4,5 0.362 82.000
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Table 4.9: System topology and survival signature for different improvements to the
system in Figure 4.1, when the number of improved components (gray) is |H| ≤ 2.

System topology Survival signature
Analogous system
in the previous study

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 1 2/6
0 1 0 3 0 1/2
1 0 0 3 1 1
1 1 0 4 0 1
2 0 1/6 4 1 1

H
(0,1)
1 , H = A,B,C,D

A Reduction
B Hot duplication
C Cold With perfect switch
D Cold With imperfect switch

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 1 3/6
0 1 0 3 0 1/4
1 0 0 3 1 1
1 1 1/4 4 0 1
2 0 0 4 1 1

H
(1,0)
1 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 1/3
0 1 0 2 1 1/3
0 2 0 2 2 1
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1/3 3 2 1

H
(0,2)
2 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 0
0 1 0 2 1 0
0 2 1 2 2 1
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1 3 2 1

H
(2,0)
2 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 2 0 0
0 1 0 2 1 3/6
0 2 0 2 1 1
1 0 0 3 0 0
1 1 1/6 3 1 1
1 2 1/3 3 2 1

H
(1,1)
2 , H = A,B, C,D
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Table 4.10: System topology and survival signature for different improvements to the
system in Figure 4.1, when the number of improved components (gray) is |H| > 2.

System topology Survival signature
Analogous system
in the previous study

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 3/6
0 1 0 1 3 1
0 2 0 2 0 0
0 3 0 2 1 1/3
1 0 0 2 2 1
1 1 1/6 2 3 1

H
(1,2)
3 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 1/3
0 1 0 1 3 1
0 2 1/3 2 0 0
0 3 1 2 1 1/3
1 0 0 2 2 1
1 1 0 2 3 1

H
(0,3)
3 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 2 1
0 1 0 1 3 1
0 2 2/3 2 0 0
0 3 1 2 1 2/3
1 0 0 2 2 1
1 1 2/3 2 3 1

H
(2,1)
3 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 0 0
0 1 0 1 1 1/4
0 2 0 1 2 3/6
0 3 1/4 1 3 1
0 4 1 1 4 1

H
(1,3)
4 , H = A,B, C,D

1 2

3 4 5

l1 l2 Φ(l1, l2) l1 l1 Φ(l1, l2)
0 0 0 1 0 0
0 1 0 1 1 0
0 2 1/6 1 2 2/6
0 3 1/2 1 3 1
0 4 1 1 4 1

H
(2,2)
4 , H = A,B, C,D

1 2

3 4 5

l Φ(l)
0 0
1 0
2 1/10
3 4/10
4 1
5 1

H
(2,3)
5 , H = A,B, C,D
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Table 4.11: Hot SREF for system in
Figure 4.1 derived using survival sig-
nature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.7403 0.6173 0.4671
3 0.7238 0.6009 0.4519
1,2 0.7647 0.6580 0.5295
1,3 0.7438 0.6279 0.4839
3,4 0.7330 0.6203 0.4800
1,2,3 0.7661 0.6635 0.5399
1,3,4 0.7491 0.6419 0.5078
3,4,5 0.7445 0.6444 0.5234
1,2,3,4 0.7685 0.6715 0.5548
1,3,4,5 0.7556 0.6600 0.5433
1,2,3,4,5 0.7723 0.6826 0.5771

Table 4.12: Hot MREF and MTTF

for modified system in Figure 4.1 de-
rived using survival signature

Component MREF MTTF
1 0.657 1.242
3 0.614 1.202
1,2 0.677 1.346
1,3 0.653 1.266
3,4 0.634 1.244
1,2,3 0.679 1.360
1,3,4 0.655 1.299
3,4,5 0.651 1.305
1,2,3,4 0.682 1.381
1,3,4,5 0.664 1.347

1,2,3, 4,5 0.687 1.413

Table 4.13: Cold SREF with perfect
switch for system in Figure 4.1 derived
using survival signature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.1756 0.1194 0.0622
3 0.1409 0.1208 0.0774
1,2 0.2656 0.2170 0.1622
1,3 0.1766 0.1288 0.1000
3,4 0.1749 0.1207 0.0917
1,2,3 0.2656 0.2171 0.1626
1,3,4 0.1904 0.1396 0.1000
3,4,5 0.2476 0.2036 0.1534
1,2,3,4 0.2655 0.2176 0.1657
1,3,4,5 0.2479 0.2049 0.1573
1,2,3,4,5 0.2701 0.2311 0.1914

Table 4.14: Cold MREF with perfect
switch and MTTF for modified sys-
tem in Figure 4.1 derived using sur-
vival signature

Component MREF MTTF
1 0.163 1.347
3 0.134 1.230
1,2 0.222 2.255
1,3 0.162 1.387
3,4 0.162 1.381
1,2,3 0.223 2.257
1,3,4 0.167 1.499
3,4,5 0.208 2.104
1,2,3,4 0.225 2.266
1,3,4,5 0.211 2.120
1,2,3,4,5 0.234 2.420

Table 4.15: Cold SREF with imper-
fect switch for system in Figure 4.1 de-
rived using survival signature.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.2149 0.2269 0.2439
3 0.2157 0.2401 0.2494
1,2 0.2740 0.2330 0.2168
1,3 0.2162 0.2221 0.2502
3,4 0.2153 0.2246 0.2460
1,2,3 0.2740 0.2331 0.2161
1,3,4 0.2217 0.2159 0.2410
3,4,5 0.2578 0.2241 0.2206
1,2,3,4 0.2741 0.2335 0.2147
1,3,4,5 0.2582 0.2250 0.2173
1,2,3,4,5 0.2781 0.2440 0.2177

Table 4.16: Cold MREF with imper-
fect switch and MTTF for modified
system in Figure 4.1 derived using sur-
vival signature

Component MREF MTTF
1 0.224 1.338
3 0.226 1.228
1,2 0.245 2.150
1,3 0.224 1.377
3,4 0.223 1.366
1,2,3 0.245 2.155
1,3,4 0.223 1.481
3,4,5 0.236 1.984
1,2,3,4 0.246 2.173
1,3,4,5 0.236 2.013
1,2,3,4,5 0.250 2.343
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Chapter 5

Reliability equivalence factors for

complex systems and networks

using the survival signature

In this study, we present a new methodology to derive the reliability equivalence fac-

tors for any coherent system with any structure and with any lifetime distributions.

We use the concept of survival signature and the ReliabilityTheory R package to

derive reliability equivalence factors for complex systems with independent compo-

nents. Using the ReliabilityTheory package, we derive reliability functions and the

mean times to failure for systems improved according to (a) reduction method; (b)

duplication methods: (i) hot duplication; (ii) cold duplication with perfect switch;

(iii) cold duplication with imperfect switch. For consistency with our preceding anal-

yses, two measures for comparing system improvements are considered in this study,

survival reliability equivalence factors and mean reliability equivalence factors. Nu-

merical examples for complex systems and networks are presented, to explain the new

reliability equivalence factors technique and to illustrate how to apply the theoretical

results and demonstrate the relative benefits of various system improvements.
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5.1 Introduction

Improving a system’s design can be preformed using a redundancy duplication method,

which involves adding extra components in parallel to existing system components.

As discussed earlier, there are three ways to add extra components to the system:

hot duplication; cold duplication with perfect switch; cold duplication with imperfect

switch. Sometimes, and for many different reasons such as high cost and space lim-

itation, it is impossible to improve the reliability of the system by the redundancy

duplication method. For example a satellite system’s design has expensive units and

limited space. These constraints can be overcome using a reduction method, which

involves improving the reliability of the system by reducing the failure rate by a factor

ρ for some of the system components, where ρ ∈ (0, 1).

In this study, we extend our previous analyses of simple systems by considering

a complex system and a network with different structures and with multiple types

of components. First, we compute the reliability function (RF) and the mean time

to failure (MTTF) of the original system using the ReliabilityTheory R package

of Aslett (2012). Second, using the same package we compute the RFs and MTTFs

of the systems following improvement according to reduction, hot duplication and

cold duplication (perfect and imperfect) methods. Third, we separately equate the

RF and MTTF of the system improved according to the reduction method with

the RF and MTTF respectively of the system improved according to each of the

duplication methods, in order to determine the corresponding reliability equivalence

factors. Finally, we illustrate the results obtained with an application example by

presenting summary tables and figures.
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5.2 Survival signature

As mentioned earlier, Coolen and Coolen-Maturi (2012) introduced the concept of

survival signature. They studied survival signature for a system with identical com-

ponents and systems with multiple types of components. They defined the survival

signature as the probability that a system functions given that a specified number of

its components function.

For any coherent system with m independent and identically distributed compo-

nents with continuous lifetime distribution. let Φ(l) for l = 0, 1, ..., m be the prob-

ability that the system functions given that precisely l of its components function.

The system will not function when all system components fail, which means Φ(0) = 0

and the system should function when all system components function, which means

Φ(m) = 1. There are
(

m

l

)

state vectors x in which precisely l components function (l

components with state xi = 1), so
∑m

i=1 xi = l; we will denote the set of these vectors

by Xl. The system survival signature Φ(l) can be written as:

Φ(l) =

(

m

l

)−1
∑

x∈Xl

φ(x) (5.2.1)

For a system with multiple types of component these authors considered a coherent

system with m independent components classified into n types of components where

type i has mi identical components for i = 1, 2, .., n. Let Φ(l1, l2, ..., ln), for li =

0, 1, ..., mi, be the probability that a system functions given that precisely li of its

components of type i function, for i = 1, 2, .., n. There are
(

mi

li

)

state vectors xi where

precisely li components of type i function (li of its mi components have the state

xi
j = 1), so

∑mi

j=1 x
i
j = li. Let Xl1,...,ln be the set of all state vectors for the whole

system for which
∑mi

j=1 x
i
j = li, i = 1, 2, ..., n. Then the survival signature of such a
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system is

Φ(l1, l2, ..., ln) =

[

n
∏

i=1

(

mi

li

)−1
]

×
∑

x∈Xl1,...,ln

φ(x) (5.2.2)

5.3 Original system

Consider any coherent system with m independent components classified into n dif-

ferent types where type i consists of mi identical components for i = 1, 2, .., n. The

total number of system components is
∑n

i=1mi = m. The survival signature of the

system Φ(l1, l2, ..., ln), for li = 0, 1, ..., mi, is defined as the probability that a system

functions given that precisely li of its components of type i function at time t. If

the lifetime distribution of component j (j = 1, 2, ..., mi) of type i (i = 1, 2, ..., n) are

known and has the reliability function Ri(t) then according to Coolen and Coolen-

Maturi (2012) and Aslett et al. (2014) the reliability function for this system can be

written as

R(t) =

m1
∑

l1=0

...

mn
∑

ln=0

[

Φ(l1, ..., ln)

n
∏

i=1

{(

mi

li

)

[1− Ri(t)]
mi−li[Ri(t)]

li

}

]

.

(5.3.1)

We can then compute the mean time to failure of this system as

MTTF =

∞
∫

0

R(t)dt

=

∞
∫

0

{

m1
∑

l1=0

...

mn
∑

ln=0

[

Φ(l1, ..., ln)

n
∏

i=1

{(

mi

li

)

[1− Ri(t)]
mi−li [Ri(t)]

li

}

]}

dt.

(5.3.2)
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5.4 Designs of improved systems

The two main approaches for improving a system are reduction and standby redun-

dancy (duplication). The latter comprises two variations, hot duplication and cold

duplication. Furthermore, cold duplication can be performed with perfect switch or

imperfect switch. In this section, we derive the reliability function and the mean time

to failure for a complex system and a network improved according to the methods

identified above.

5.4.1 Reduction method

As mentioned in the introduction, the reliability of a system can be improved by scal-

ing the hazard function for some of the system’s components by a factor ρ ∈ (0, 1).

In order to improve the original system by improving one or more of its components

according to the reduction method, we need to know the reduction improvement

strategies for this type of component. The reduction improvement strategies for most

common lifetime distributions have been discussed in depth within previous stud-

ies in this field. Reduction improvement strategies for components with exponen-

tial lifetime distributions were presented in many papers including R̊ade (1993a,b);

Sarhan (2000, 2002, 2004, 2005, 2009b); Sarhan and Mustafa (2006); Sarhan et al.

(2008a). Reduction improvement strategies were also presented for components with

non-constant failure rate lifetime distributions, including the gamma distribution in

Xia and Zhang (2007), Wiebull distribution in El-Damcese (2009), exponentiated ex-

ponential distribution in Abdelkader et al. (2013), exponentiated Weibull distribution

in Alghamdi and Percy (2014, 2015), and Burr type X distribution in Migdadi and

Al-Batah (2014). The remarkable point here is that all aforementioned papers and
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all previous studies in this field assume a system with specific structure and most

of them assume a system with identically distributed components. By adopting a

generic framework, we overcome both of these constraints in this study.

5.4.1.1 System component improvement

For any coherent system with m independent components divided into n differ-

ent types, we can derive the reliability equivalence factors for component j (j =

1, 2, ..., mi) of type i (i = 1, 2, ..., n) if the reduction improvement strategy for this

component is specified and known. Define RA
i (t) as the reliability function of com-

ponent j when it improves according to this reduction method. By improving ki

components, for ki ∈ {1, .., mi − 1} according to the reduction method, the number

of system component types of the improved system becomes n + 1. The improved

system has all the properties of the original system except that the number of system

types is now n+1 instead of n, and the number of components of type i is now mi−ki

instead of mi. The new type of improved system has ki components with reliability

function RA
i (t).

The reliability function and the mean time to failure of the system improved

according to the reduction method can then be derived by applying the properties of

the improved system given by Equations (5.3.1) and (5.3.2) respectively.

5.4.1.2 System type improvement

When we improve all components of type i according to the reduction method, the

improved system has all the properties of the original system except that we replace

the reliability function Ri(t) of type i with RA
i (t). In the case of improving more

than one type of system component or improving components from different types,
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we repeat those steps for each improvement.

The reliability function and the mean time to failure of the system improved

according to the reduction method can then be derived by applying the properties of

the improved system given by Equations (5.3.1) and (5.3.2) respectively.

5.4.2 Duplication methods

Now we obtain the corresponding reliability measures of the system when it is im-

proved by duplication. We derive the reliability function and the mean time to failure

of a complex system or network improved according to the hot duplication method

and the cold duplication methods with perfect and imperfect switches.

5.4.2.1 Hot duplication

This means that some of the system components are duplicated in parallel by similar

components. We assume that in the hot duplication method each component is

augmented by introducing a new but identical component.

For system component improvement, we again consider any coherent system with

m independent components divided into n different types. If the lifetime distribution

of component j (j = 1, 2, ..., mi) of type i (i = 1, 2, ..., n) is known and has the

reliability function Ri(t) then the reliability function of the component improved

according to hot duplication takes the form

RB
i (t) = 1− [1− Ri(t)]

2. (5.4.1)

By improving ki components, for ki ∈ {1, .., mi − 1} according to the hot duplication

method, the number of component types in the improved system becomes n+1. The

improved system has all the properties of the original system except that the number
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of system types is now n + 1 instead of n, and the number of components of type i

is now mi − ki instead of mi. The new type of improved system has ki components

with reliability function RB
i (t).

For system type improvement, we consider what would happen if we were to

improve all components of type i according to the hot duplication method. The

improved system has all the properties of the original system except that we replace

the reliability function Ri(t) of type i with RB
i (t). In the case of improving more

than one type of system component or improving components from different types,

we repeat those steps for each improvement.

The reliability function and the mean time to failure of the system improved ac-

cording to the hot duplication method can then be derived by applying the properties

of the improved system given by Equations (5.3.1) and (5.3.2) respectively.

5.4.2.2 Cold duplication with perfect switch

This approach to improving system reliability means that a similar component is

connected with an original component in such a way that it is activated immediately

upon failure of the original component.

For system component improvement, again consider any coherent system with m

independent components divided into n different types. If the lifetime distribution of

component j (j = 1, 2, ..., mi) of type i (i = 1, 2, ..., n) is known and has the reliability

function Ri(t) then regarding a definition of cold duplication with perfect switch, we

can describe this improvement as a renewal process with only one renewal, Alghamdi

and Percy (2014). Using the convolution technique, the reliability function of the

component whose reliability is improved according to cold duplication with perfect
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switch can be derived as

RC
i (t) = 1−

t
∫

0

−dRi(x)

dx
[1− Ri(t− x)]dx. (5.4.2)

By improving ki components, for ki ∈ {1, .., mi − 1} according to cold duplication

with perfect switch, the number of types of component in the improved system again

becomes n + 1. The improved system has all the properties of the original system

except that the number of component types is now n+1 instead of n, and the number

of components of type i is nowmi−ki instead ofmi. The new type of improved system

has ki components with the reliability function RC
i (t).

For system type improvement, we consider what would happen if we were to

improve all components of type i according to the cold duplication method with

perfect switch. The improved system has all the properties of the original system

except that we replace the reliability function Ri(t) of type i with RC
i (t). In the case

of improving more than one type of system component or improving components from

different types, we repeat those steps for each improvement.

The reliability function and the mean time to failure of the system improved

according to the cold duplication method with perfect switch by improving some of

its components or some system types can be derived by applying the properties of

the improved system given by Equations (5.3.1) and (5.3.2) respectively.

5.4.2.3 Cold duplication with imperfect switch

This approach to improving system reliability means that a similar component is

connected with an original component by a cold standby via a random switch having

a constant failure rate. For this aspect of our analysis, the cold duplication method
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assumes that each component is improved by introducing a new but identical com-

ponent with an imperfect switch.

For system component improvement, again consider any coherent system with m

independent components divided into n different types. If the lifetime distribution of

component j (j = 1, 2, ..., mi) of type i (i = 1, 2, ..., n) is known and has the reliability

function Ri(t) then following the same technique that we used for cold duplication

with perfect switch but with the extra condition that the switch is not 100% reliable

Billinton and Allan (1992), the reliability function of the component whose reliability

is improved according to cold duplication with imperfect switch can be derived as

RD
i (t) = 1−

t
∫

0

−dRi(x)

dx
[1−Ri(t− x)s(x)]dx (5.4.3)

where s(x) is the reliability function for the imperfect switch. The imperfect switch

is chosen to have a constant failure rate ν, which means that it has an exponential

lifetime distribution with parameter ν and reliability function

s(t) = e−νt. (5.4.4)

By improving ki components, for ki ∈ {1, .., mi−1} according to the cold duplica-

tion method with imperfect switch, the number of component types in the improved

system becomes n + 1. The improved system has all the properties of the original

system except that the number of component types is now n + 1 instead of n, and

the number of components of type i is now mi − ki instead of mi. The new type of

component in the improved system has ki components with reliability function RD
i (t).

For system type improvement, consider what happens if we improve all compo-

nents of type i according to the cold duplication method with imperfect switch. The

improved system has all the properties of the original system except that we replace
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the reliability function Ri(t) of type i with RD
i (t). In the case of improving more

than one type of system component or improving components from different types,

we repeat those steps for each improvement.

The reliability function and the mean time to failure of the system improved

according to the cold duplication method with imperfect switch by improving some

of its components or some of its types can be derived by applying the properties of

the improved system given by Equations (5.3.1) and (5.3.2) respectively.

5.5 Reliability equivalence factors

We compute two measures of reliability equivalence as in previous chapters. The first

involves survival reliability equivalence factors (SREFs) and these are determined

from the reliability function. The second involves mean reliability equivalence factors

(MREFs) and these are determined from the mean time to failure.

5.5.1 Survival reliability equivalence factors

To derive the SREFs, we have to solve the following set of equations

Rr(t) = Rd(t) = ω (5.5.1)

where Rr(t) is the reliability function of the system improved according to the reduc-

tion method and Rd(t) is the reliability function of the system improved according to

one of the duplication methods.

5.5.2 Mean reliability equivalence factors

To derive the MREFs, we have to solve the following set of equations

MTTFr = MTTFd (5.5.2)
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where MTTFr is the mean time to failure of the system improved according to the

reduction method and MTTFd is the mean time to failure of the system improved

according to one of the duplication methods.

5.6 Numerical results and analysis

To illustrate how to apply the preceding theory, suppose that we have a coherent

system with 11 independent components divided into 4 types where the links between

system components are 100% reliable. The system that we consider here is shown

in Figure 5.1, as this particular system structure and system survival signature were

presented and discussed by Aslett et al. (2014). The properties of this system that

we analyse now are presented in Table 5.1.
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T1
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Figure 5.1: System with 11 components divided into 4 different types. Component
type is inside the circle while component number is above to the left.

For this scenario, the SREFs for the system components for hot and cold (perfect

and imperfect) duplication are calculated using the ReliabilityTheory R package
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Figure 5.2: Reliability function of the original and some modified systems for the
system in Figure 5.1.
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Figure 5.3: The behaviour of MTTF against ρ, for the components of the system in
Figure 5.1
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Table 5.1: Properties of the complex system in Figure 5.1.

Types of system components System component lifetimes Reduction improvement strategy

T1 = {1, 6, 11} T1 ∼ Exponential(λ = 0.55) R
(A)
1 (t) = e−ρλt, see Sarhan (2000, 2002)

T2 = {2, 3, 9} T2 ∼ Weibull(α = 0.274, β = 2.2) R
(A)
2 (t) = e−ραtβ , see El-Damcese (2009)

T3 = {4, 5, 10} T3 ∼ Exponentiated Weibull
(α = 0.111, β = 2, θ = 1.2)

R
(A)
3 (t) = 1− (1− e−ραtβ)θ, see Alghamdi and Percy (2014, 2015)

T4 = {7, 8} T4 ∼ Gamma(n = 3.2, λ = 1.111) R
(A)
4 (t)=

∫∞

t

(ρλ)ntn−1

Γn
e−ρλtdt, see Xia and Zhang (2007)
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Figure 5.4: The behaviour of MTTF against ρ, for the component types for the system
in Figure 5.1

according to the above formulae; see Appendices C.1 and C.2. The results are pre-

sented in Tables 5.2, 5.6 and 5.10 where ω is chosen to be 0.1, 0.5, 0.9 and the imperfect

switch has a constant failure rate ν = 0.05. The same measures for the SREFs for

component types are presented in Tables 5.4, 5.8 and 5.12. For more discussions

based on the results presented in the those tables, it may be observed that:

• Reducing the failure rate of component number 1 by setting ρ = 0.6858 im-

proves the reliability of the system like adding an extra component in parallel

to component 1 according to a hot duplication method where the reliability

function of the system is chosen to be ω = 0.1, see Table 5.2.

• Reducing the failure rate of component 7 by setting ρ = 0.3327 improves the

reliability of the system like adding an extra component in parallel to compo-

nent 7 according to a cold duplication method with perfect switch where the

reliability function of the system is chosen to be ω = 0.5, see Table 5.6.
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Table 5.2: Hot SREF for components
of the system in Figure 5.1.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.6858 0.5690 0.4419
2 0.8504 0.6289 0.3439
3 0.8504 0.6289 0.3439
4 0.6003 0.3552 0.1615
5 0.6003 0.3552 0.1615
6 0.6858 0.5680 0.4333
7 0.7675 0.6458 0.4936
8 0.7655 0.6414 0.4989
9 0.8455 0.6407 0.3634
10 0.6041 0.3656 0.1690
11 0.6855 0.5691 0.4394

Table 5.3: Hot MREF and MTTF

for components of the system in Fig-
ure 5.1.

Component MREF MTTF
1 0.5726 2.4088
2 0.5427 2.3482
3 0.5427 2.3482
4 0.5431 2.3483
5 0.5431 2.3483
6 0.5942 2.3920
7 0.6985 2.6179
8 0.6956 2.5993
9 0.6176 2.3856
10 0.4459 2.3877
11 0.5748 2.4045

Table 5.4: Hot SREF for component
types of the system in Figure 5.1.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.6941 0.5863 0.4659
T2 0.8456 0.6453 0.3795
T3 0.6086 0.3679 0.1693
T4 0.7907 0.6848 0.5571

Table 5.5: Hot MREF and MTTF

for component types of the system in
Figure 5.1.

Type MREF MTTF
T1 0.5982 2.5502
T2 0.6076 2.4054
T3 0.4762 2.4009
T4 0.7182 2.9942

• Reducing the failure rate of the component 11 by setting factor ρ = 0.2803

improves the reliability of the system like adding an extra component to com-

ponent 11 according to a cold duplication method with imperfect switch where

the reliability function of the system is chosen to be ω = 0.9, see Table 5.10.

• Reducing the failure rate of each component belonging to the first type of system

component T1 by setting ρ = 0.3830 improves the reliability of the system like

adding extra component in parallel to each component in type T1 according to

a cold duplication method with perfect switch where the reliability function of

the system is chosen to be ω = 0.5, see Table 5.8.

• Reducing the failure rate of each component belonging to the the fourth type

of system component T4 by setting ρ = 0.3891 improves the reliability of the
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Table 5.6: Cold SREF with perfect
switch for components of the system
in Figure 5.1.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.4521 0.3556 0.2637
2 0.3924 0.2693 0.1061
3 0.3924 0.2693 0.1061
4 0.1429 0.0685 0.0271
5 0.1429 0.0685 0.0271
6 0.4521 0.3544 0.2550
7 0.4361 0.3327 0.2261
8 0.4339 0.3261 0.2295
9 0.4021 0.2998 0.1193
10 0.1468 0.0723 0.0287
11 0.4516 0.3558 0.2612

Table 5.7: Cold MREF with perfect
switch and MTTF for components of
the system in Figure 5.1.

Component MREF MTTF
1 0.3664 2.4600
2 0.2646 2.3569
3 0.2646 2.3569
4 0.1543 2.3605
5 0.1543 2.3605
6 0.3817 2.4349
7 0.3939 2.9376
8 0.3951 2.8895
9 0.4744 2.4140
10 0.1182 2.4251
11 0.3670 2.4531

Table 5.8: Cold SREF with perfect
switch for component types of the sys-
tem in Figure 5.1.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.4709 0.3830 0.2928
T2 0.6147 0.3164 0.1325
T3 0.1501 0.0730 0.0288
T4 0.5128 0.4260 0.3276

Table 5.9: Cold MREF with per-
fect switch and MTTF for component
types of the system in Figure 5.1.

Type MREF MTTF
T1 0.3966 2.7653
T2 0.2414 2.5660
T3 0.1270 2.4491
T4 0.4508 4.5310

system like adding an extra component in parallel to each component in type

T4 according to a cold duplication method with imperfect switch where the

reliability function of the system is chosen to be ω = 0.9, see Table 5.12.

• In the same manner, one can interpret the other results presented in those

tables.

Tables 5.3, 5.7 and 5.11 present the MREFs and MTTFs for the system components,

for hot and cold (perfect and imperfect) duplication. The MREFs for component

types are presented in Tables 5.5, 5.9 and 5.13. Based on the results presented in

those tables, we see that:

• Improving component number 1 according to hot duplication increases the sys-

tem mean time to failure to be 2.4088 and the same system mean time to failure
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Table 5.10: Cold SREF with imper-
fect switch for components of the sys-
tem in Figure 5.1.

Component ω = 0.1 ω = 0.5 ω = 0.9
1 0.4810 0.3800 0.2828
2 0.4361 0.3455 0.1671
3 0.4361 0.3455 0.1671
4 0.2085 0.1390 0.0866
5 0.2085 0.1390 0.0866
6 0.4810 0.3787 0.2740
7 0.4845 0.4071 0.3427
8 0.4826 0.4131 0.3446
9 0.4415 0.3732 0.1805
10 0.2115 0.1428 0.0889
11 0.4805 0.3801 0.2803

Table 5.11: Cold MREF with im-
perfect switch and MTTF for compo-
nents of the system in Figure 5.1.

Component MREF MTTF
1 0.3904 2.4532
2 0.3364 2.3543
3 0.3364 2.3543
4 0.2124 2.3583
5 0.2124 2.3583
6 0.4067 2.4291
7 0.4507 2.8800
8 0.4514 2.8369
9 0.5896 2.3905
10 0.1795 2.4177
11 0.3912 2.4467

Table 5.12: Cold SREF with imper-
fect switch for component types of the
system in Figure 5.1.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.4987 0.4066 0.3118
T2 0.7301 0.3874 0.1930
T3 0.2142 0.1435 0.0890
T4 0.5430 0.4658 0.3891

Table 5.13: Cold MREF with imper-
fect switch and MTTF for component
types of the system in Figure 5.1.

Type MREF MTTF
T1 0.4207 2.7330
T2 0.2811 2.5374
T3 0.1880 2.4407
T4 0.4919 4.1762

can be obtained by reducing the failure rate of the same component by setting

ρ = 0.5726, see Table 5.3. Note that the mean time to failure of the original

system is 2.3395.

• Improving component 8 according to cold duplication with perfect switch in-

creases the system mean time to failure to be 2.8895 and the same mean time to

failure can be obtained by reducing the failure rate of component 8 by setting

ρ = 0.3951, see Table 5.7.

• Improving each component belonging to the first type T1 according to hot dupli-

cation increases the system mean time to failure to be 2.5502 and the same mean

time to failure can be obtained by reducing the failure rate of each component

in type T1 by setting ρ = 0.5982, see Table 5.5.
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• Improving the reliability of component 7 gives the best possible component

improvement, see Tables 5.3, 5.7 and 5.11.

• Improving the reliability of component 8 gives the second best possible compo-

nent improvement, see Tables 5.3, 5.7 and 5.11.

• Improving either component 2 or component 3 gives the same result as for

component 4 or component 5, see Tables 5.3, 5.7 and 5.11.

• Improving the reliability of each component belonging to the fourth type T4

gives the best possible type of improvement, see Tables 5.5, 5.9 and 5.13.

• Improving the reliability of each component belonging to the first type T1 gives

the second best possible type of improvement, see Tables 5.5, 5.9 and 5.13.

• In a similar manner, one can interpret the other results presented in those tables.

Figure 5.2 presents reliability functions of the original and some modified systems.

From this figure, one may observe that, for this scenario:

• Component 7 is the best component to be improved by either hot or cold du-

plication, see Figure 5.2a.

• Component 8 is the second best component that can be improved by either hot

or cold duplication, then component number 1, see Figure 5.2a and compare

with Tables 5.3, 5.7 and 5.9.

• The best type of component that can be improved is type T4, then type T1 by

either hot or cold duplication methods, see Figure 5.2b.
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Figures 5.3 and 5.4 present the behaviour of MTTF against the appropriate re-

duction factor ρ for system components and system types. It seems from these two

figures that:

• MTTFs are non-decreasing with decreasing ρ for all possible reduction improve-

ment.

• Reducing the failure rate of component 7 gives the best possible reduction com-

ponent improvement, see Figure 5.3b.

• Reducing the failure rate of component 8 gives the second best possible reduc-

tion component improvement, see Figure 5.3b.

• Reducing the failure rate of component 1 gives the third best possible reduction

component improvement for all ρ ≥ 0.2, see Figure 5.3a.

• Reducing the failure rate of any component 2 or component 3 gives the same

improvement and same is true for component 4 or component 5, see Figures 5.3a

and compare with Tables 5.3, 5.7 and 5.11.

• Reducing the failure rate of type T4 gives the best possible reduction type of

improvement. It gives a huge improvement for the mean time to failure of the

system, see Figure 5.4b.

• Reducing the failure rate of type T1 gives the second best possible reduction

type improvement, see Figure 5.4a.

• Reducing the failure rate of type T2 gives the third best possible reduction type

improvement, see Figure 5.4a.
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• Reducing the failure rate of type T3 gives the worst reduction type improvement,

see Figure 5.4a.

5.7 Reliability equivalence factors for networks

In all our previous studies we consider systems with unreliable components and reli-

able links. In this approach we consider a coherent system with unreliable components

and unreliable links. These types of structure are generally known as networks. Study-

ing the reliability of networks is very important nowadays because they have many

applications in different fields related to digital communication. In this approach we

provide a new technique to derive reliability equivalence factors for networks using

the survival signature. This technique allows us to see how improving links between

system components affects the reliability of the system. Using the same steps that

we used to derive the reliability equivalence factors for a complex system, we can

derive the reliability equivalence factors for networks. We treat links between compo-

nents as independent components with individual lifetime distributions. To illustrate

how to derive the reliability equivalence factors for networks we present a simple yet

representative example.

The network system we consider here is shown in Figure 5.5 and consists of 4

components and 7 links. The system structure and system survival signature were

presented by Aslett et al. (2014). We assume that all system links are independent

and identically distributed with an exponential lifetime distribution, and we put them

in one set T1 = {L1, L2, L3, L4, L5, L6, L7}. Also we assume that components 1 and 4

are independent and identically distributed with a Weibull lifetime distribution and

we put them in the second set T2 = {1, 4}. We put component 2 in the third set
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Figure 5.5: Network of 4 components and 7 links.

T3 = {2} and finally we put component 3 in the fourth set T4 = {3}. All these

properties of the network system are presented in Table 5.14.

For this scenario, in Tables 5.15, 5.17 and 5.19 the SREFs for hot and cold (perfect

and imperfect) duplication are calculated using the ReliabilityTheory R package

according to the above formulae where ω is chosen to be 0.1, 0.5, 0.9 and the imperfect

switch has a constant failure rate ν = 0.05. For more discussions based on the results

presented in the Tables 5.15, 5.17 and 5.19, it may be observed that:

• Reducing the failure rate of each link in the system (set T1) by setting ρ = 0.5172

improves the reliability of the system like adding an extra link in parallel to each

link according to the hot duplication method where the reliability function of

the system is chosen to be ω = 0.1, see Table 5.15.

• Reducing the failure rate of each component belonging to the set T2 of the

system components by setting ρ = 0.0381 improves the reliability of the system

like adding an extra component in parallel to each component of the same set
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Table 5.14: Properties of network system in Figure 5.5.

Network system sets Sets lifetime Reduction improvement strategy

T1 = {L1, L2, L3, L4, L5, L6, L7} T1 ∼ Exponential(λ = 0.55) R
(A)
1 (t) = e−ρλt, see Sarhan (2000, 2002)

T2 = {1, 4} T2 ∼ Weibull(α = 0.274, β = 2.2) R
(A)
2 (t) = e−ραtβ , see El-Damcese (2009)

T3 = {2} T3 ∼ Exponentiated Weibull
(α = 0.111, β = 2, θ = 1.2)

R
(A)
3 (t) = 1− (1− e−ραtβ )θ, see Alghamdi and Percy (2014)

T4 = {3} T4 ∼ Gamma(n = 3.2, λ = 1.111) R
(A)
4 (t)=

∫∞

t

(ρλ)ntn−1

Γn
e−ρλtdt, see Xia and Zhang (2007)
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Table 5.15: Hot SREF for sets of the
network system in Figure 5.5.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.5172 0.3842 0.2047
T2 0.4450 0.1403 0.0063
T3 0.1880 0.0507 0.3232
T4 0.4878 0.2994 0.0961

Table 5.16: Hot MREF with perfect
switch and MTTF for sets of the net-
work system in Figure 5.5.

Type MREF MTTF
T1 0.3988 1.1491
T2 0.3500 0.8546
T3 0.2015 0.7639
T4 0.4960 0.7647

Table 5.17: Cold SREF with perfect
switch for sets of the network system
in Figure 5.5.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.3334 0.2394 0.1229
T2 0.1733 0.0381 0.0152
T3 0.0323 0.0079 0.0037
T4 0.2179 0.1222 0.0530

Table 5.18: Cold MREF with perfect
switch and MTTF for sets of the net-
work system in Figure 5.5.

Type MREF MTTF
T1 0.2484 1.2893
T2 0.1544 0.8989
T3 0.0380 0.7650
T4 0.2375 0.7662

according to a cold duplication method with perfect switch where the reliability

function of the system is chosen to be ω = 0.5, see Table 5.17.

• Reducing the failure rate of the component in set T3 of the system components

by setting factor ρ = 0.0144 improves the reliability of the system like adding

an extra component to the component in set T3 according to a cold duplication

method with imperfect switch where the reliability function of the system is

chosen to be ω = 0.9, see Table 5.19.

• In the same manner, one can interpret the other results presented in Tables 5.15,

5.17 and 5.19.

Tables 5.16, 5.18 and 5.20 present the MREFs for hot and cold (perfect and imperfect)

duplication. Based on the results presented in those tables, we see that:
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Table 5.19: Cold SREF with imper-
fect switch for sets of the network sys-
tem in Figure 5.5.

Type ω = 0.1 ω = 0.5 ω = 0.9
T1 0.3545 0.2554 0.1315
T2 0.2350 0.0814 0.0126
T3 0.0942 0.0482 0.0144
T4 0.3390 0.2848 0.0530

Table 5.20: Cold MREF with imper-
fect switch and MTTF for sets of the
network system in Figure 5.5.

Type MREF MTTF
T1 0.2651 1.2729
T2 0.2075 0.8856
T3 0.0966 0.7647
T4 0.3447 0.7656

• Improving each link of the network system according to hot duplication increases

the system mean time to failure to be 1.1491 and the same system mean time

to failure can be obtained by reducing the failure rate of each link by setting

ρ = 0.3988. Note that the mean time to failure of the original network is 0.7575.

• Improving each component in set T2 according to a cold duplication with perfect

switch increases the system mean time to failure to be 0.8989 and the same mean

time to failure can be obtained by reducing the failure rate of each component

in the same set by setting ρ = 0.1544.

• Improving the reliability of the set of the links of the network gives the best

possible set improvement.

• In the same manner, one can interpret the other results presented in Tables 5.16,

5.18 and 5.20.

Figure 5.6 presents reliability functions of the original and some modified systems.

From this figure, one may observe that, for this scenario:

• Improving the reliability of the set of system links according to any duplication

method gives the best choice (solid and dotted blue curves).
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• Improving set T2 of network components (components 1 and 4) according to any

duplication method gives the second best choice (solid and dotted red curves).

Figures 5.7 presents the behaviour of MTTF against the appropriate reduction factor

ρ. It seems from these two figures that:

• MTTFs are non-decreasing with decreasing ρ for all possible reduction improve-

ment.

• Reducing the failure rate of the set of system links T1 gives the best possible

reduction improvement, then reducing the failure rate of the set T2 (components

1 and 4) gives the second best possible reduction improvement, see Figures 5.7a.

• Reducing the failure rate of the set T4 (component 3) gives the third best pos-

sible reduction improvement, then reducing the failure rate of the set T3 (com-

ponent 2) gives the worst possible reduction improvement, see Figures 5.7b.
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Figure 5.6: Reliability function of the original and some modified network systems.
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Figure 5.7: The behaviour of MTTF against ρ, for the illustrative network system

5.8 Conclusions

Chapter 5 is the most important chapter of this thesis, as it presents the main new

contribution arising from this research project. Although earlier chapters present

novel developments relating to reliability equivalence analysis, the original use of

survival signature presented in Chapters 4 and 5 has the potential both to generalize

and to standardize the method for application to complex systems and networks.

In addition to the study of its theoretical properties, this technique might prove to

be of value for improving system reliability in a cost-effective manner and for many

different application areas that include engineering, government, communications,

management, manufacturing, servicing, commerce and health care. In this chapter,

we consider specific examples to demonstrate the broad applicability of this approach

and to illustrate the type of inference and range of benefits that it might offer in

practical scenarios.
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Chapter 6

Conclusions and future work

6.1 Conclusions and discussion

We investigate the reliability equivalence factors for some simple systems including

parallel-series and series-parallel systems with generalized quadratic failure rate and

exponentiated Weibull lifetime distributions in the first part of this thesis. The reduc-

tion improvement method and duplication improvement methods including hot, cold

with perfect switch and cold with imperfect switch are considered for all improved

systems. Generalized quadratic failure rate and exponentiated Weibull distributions

are chosen because they are flexible and enable informative comparisons with other

reliability equivalence studies. For comparing system improvements we use two mea-

sures which are survival reliability equivalence factors (SREF) and mean reliability

equivalence factors (MREF).

In the second part of this thesis, we present a new method for deriving reliability

equivalence factors using the concept of survival signature. We then apply survival

signature to derive the reliability equivalence factors for networks and complex sys-

tems with multiple types of components. We use the ReliabilityTheory R package

147
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to derive survival reliability equivalence factors and mean reliability equivalence fac-

tors for simple and complex systems.

This thesis generalizes several previous studies about the reliability equivalence

factors as presented in Tables 6.1 and 6.2. The usefulness of analysing survival signa-

ture to derive the reliability equivalence factors is prominent in these tables. All the

previous studies that are mentioned in these tables are special cases of the reliability

equivalence factors for complex systems and networks using the survival signature

which is presented in Chapter 5.

Finally, the theoretical research that we present in this thesis has a wide range

of real-life applications. We can envisage real applications for reliability equivalence

factors in industry, business, science, public health care, etc. We now present some

hypothetical and real application examples to illustrate how to apply the theoretical

results on real applications as follows:

• New drug approval process

According to Guarino and Guarino (2009) the process for a new drug approval

takes on average 12 years and over US $ 350 million to get a new drug from

the laboratory onto the pharmacy shelf. Ensuring drugs are safe and effective

requires several phases of clinical trial to be approved in series where each phase

has several steps that should also be approved. The first step for the new drug

approval process is the drug discovery which takes between 2 and 10 years. The

second step comprises preclinical research and development which include initial

synthesis of substance, laboratory studies and animal testing and this phase

takes between 3 and 6 years. The third step is asking for approval where the

pharmaceutical industry takes the investigational new drug application (IND)
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to the food and drug administration in the United States (FDA). If the FDA

decides that it is reasonably safe for the company to move forward with testing

the drug in humans this will be the third step and it is called clinical trials.

Clinical trials include three phases. Phase 1 studies the drug’s side effects and

involves between 20 and 80 people. If Phase 1 is safe, Phase 2 next studies

whether the drug works in people who have a certain disease and typically

involves about 300 people. If Phase 2 demonstrates sufficient effectiveness,

then Phase 3 aims to measure these effects more generally and typically involves

about 3000 people. If the drug passes all previous steps then the FDA approves

the product for marketing. The final step is manufacturing and and so the drug

appears on the market. For our purposes, the new drug approval process can

be described as a parallel-series system where each improvement step involves

several phases. We can envisage that the new drug approval process can be

improved using:

1. Duplication methods.

– Increase numbers of members in each phase of the clinical trials (hot

duplication). This improves the robustness of model estimation and

power for predictive inference.

– Add extra members as standby to the members of the phases of the

clinical trials (cold duplication). This avoids common problems that

arise from patients dropping out of clinical trials for various reasons.

– Increase numbers of animals in the animal testing stages.

2. Reduction method.
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– Using different types of experimental animal such as mouse, rat, pig,

rabbit, dog, and horse in the animal testing stages could improve

the new drug approval process and reduce the risk associated with

new drugs failing to gain approval. For example testing eyes drugs

on a rabbet is better than using anther animal such as mouse, see

Guarino and Guarino (2009).

– Using samples from different countries and different authenticities

could be better than using samples with similar members. This would

then require meta-analysis to combine the results of dissimilar trials.

We envisage that if real data are available the concept of reliability equivalence

factors can be used for the new drug approval process. For example, using

samples from different places can improve the new drug approval process as

much as duplicating a sample which is chosen from a single area. Also using

a type of experimental animal can improve the new drug approval process like

using a double of another type of experimental animal.

• Vehicle inspection centres

Samah (2010) studied the vehicle inspection stations in Malaysia. The inspec-

tion stations have several lanes in parallel where some lanes are reserved for

light vehicles and some lanes are reserved for heavy vehicles in addition to some

lanes that are treated as universal. Each lane has several test machines includ-

ing smokemeter machine, side slip testers machine, brake testers and headlight

testers. Improving any unit of these machines can make the corresponding lane

of vehicle inspection centres more reliable and improve the whole station. Vehi-

cle inspection centres consist of several parallel lanes where each lane consists of
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several testing machines so the whole system can be described as a series-parallel

system. We envisage that the vehicle inspection centres can be improved by:

1. Duplication methods.

– Increase numbers of some test machines in all or some lanes of the

vehicle inspection centres (hot duplication).

– Use mobile machines which can be moved easily to be used instead of

a broken machine and keeping the corresponding lane of the station

in serviceable working order (cold duplication).

– Increase the number of universal lanes.

2. Reduction method.

– Using different types of smokemeter machine, side slip testers ma-

chine, brake testers and headlight testers which are better and more

reliable can improve the vehicle inspection centres.

We envisage that if real data are available the concept of reliability equivalence

factors can be used for improving the vehicle inspection centres. For exam-

ple, by modifying some units such as the smokemeter machine or the side slip

testers machine the reliability of the lane can be improved like using a mobile

smokemeter machine in standby state or like adding an extra side slip testers

machine.

• Police and ambulance response times

Police in the UK use a wide range of four-wheel vehicles including hatchbacks,
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trucks and 4x4 cars. Other vehicles used by police include motorcycles, heli-

copters and boats. Ambulances also can be based on many types of vehicle

including vans, cars, motorcycles and bicycles. For improving response times

police and ambulance forces sometimes use small sizes of vehicles which can

reach target destinations faster than four-wheel vehicles. We envisage that po-

lice and ambulance response times can be improved by:

1. Duplication methods.

– Increasing numbers of police cars and ambulances can improve police

and ambulance response times.

2. Reduction method.

– Using different types of vehicle like motorcycles can improve police

and ambulance response times.

– Using horses on some occasions and in some places can improve police

response times.

We envisage that if real data are available the concept of reliability equivalence

factors can be used for improving police and ambulance response times. Instead

of increasing the numbers of police and ambulance cars to improve average

response times an option is to use motorcycles. The size of a motorcycle allows

it arrive at accident scenes more quickly when incidents such as traffic collisions

slow down access by four-wheeled vehicles. Using a motorcycle allows medics to

reach patients quickly and start to give life-saving treatment while an ambulance

is still on the way. In big cities like London and New York police and ambulance

services also use helicopters to improve their performance.
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• New car manufacturing process

We can describe the new cars manufacturing process as a series-parallel system.

There are several production lanes working in parallel where each production

lane has several units working in series. Improving any unit can improve the

global process of the factory. Indeed, we consider that most factories nowadays,

including electronic factories, pharmaceutical factories, food factories and re-

cycling factories, can be described as series-parallel systems. We envisage that

the new car manufacturing process can be improved by:

1. Duplication methods.

– Increase numbers of machines in the production lanes such as paint-

ing machine and pressing machine (hot duplication).

– Preparing flexible and removable machines which can be moved be-

tween production lanes (cold duplication).

2. Reduction method.

– Using a modified pressing machine which gives double the power of

the current pressing machine.

– Using a modified painting machine which reduces the painting time

to half that of the current painting machine.

We envisage that if real data are available the concept of reliability equiva-

lence factors can be used for improving the new car manufacturing process.

For example, using a modified pressing machine system can result in a system
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improvement that is like adding an extra pressing machine to the current press-

ing machine. Also using a new or modified painting machine can improve the

time of painting to be like the time of using two painting machines of the same

specification as the current painting machine.

6.2 Future work

There are several possible extensions for our current research. In this section, we

present some further research challenges which can be considered for future work

including:

• Availability equivalence factors

All systems that are studied in this thesis are assumed to be with non-repairable

components, so for this type of system one of two methods which are reduc-

tion and duplication can be used to improve system reliability. The other type

of systems are systems with repairable components. For a system with re-

pairable components, the system can be improved according to the methods

mentioned previously, and can also be improved by increasing the maintenance

of its components which accordingly increases the repair rates, see Hu et al.

(2012). Availability is defined as the probability that the system is functioning

when it is requested for use which means the probability that a system is func-

tioning at a given time. According to this definition of availability, there is a

clear relationship between availability and reliability.

Repairable systems can improved by: (1) improving the times between fail-

ures which means modifying system components reliability using reduction and



155

Table 6.1: Previous studies as special cases of our current study (1).

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

Previous studies

Current study Reliability equivalence factors
for a parallel-series system assuming
a generalized quadratic failure rate
distribution

Reliability equivalence factors
for a series-parallel system of
components with exponentiated
Weibull lifetimes

Reliability equivalence factors
for complex systems and networks
using the survival signature

Reliability equivalence,
R̊ade (1993a)

X X X

Reliability survival equivalence,
R̊ade (1993b)

X X X

Reliability equivalence of independent
and non-identical components series
systems, Sarhan (2000)

X

Reliability equivalence with a
basic series/parallel system,
Sarhan (2002)

X X

Reliability equivalence factors
of a bridge network system,
Sarhan (2004)

X

Reliability equivalence
factors of a parallel system,
Sarhan (2005)

X X X

Reliability equivalences of a series
system consists of n independent
and non-identical components,
Sarhan and Mustafa (2006)

X

Equivalence factors of a parallel-series
system, Sarhan et al. (2008a)

X X

Reliability equivalence factors of a
general series-parallel system,
Sarhan (2009b)

X X
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Table 6.2: Previous studies as special cases of our current study (2).

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

Previous studies

Current study Reliability equivalence factors
for a parallel-series system assuming
a generalized quadratic failure rate
distribution

Reliability equivalence factors
for a series-parallel system of
components with exponentiated
Weibull lifetimes

Reliability equivalence factors
for complex systems and networks
using the survival signature

Reliability equivalence factors in
Gamma distribution,
Xia and Zhang (2007)

X

Reliability equivalence Factors of a
series-parallel system in Weibull
distribution,
El-Damcese (2009)

X X

Reliability equivalence factors in
exponentiated exponential
distribution,
Abdelkader et al. (2013)

X X X

Testing reliability equivalence factors
of a series-parallel systems in Burr
type X distribution,
Migdadi and Al-Batah (2014)

X
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duplication methods, or (2) improving the repair time by modifying the mainte-

nance using an increase method. Reduction and duplication methods are defined

previously in this thesis and the increase method means that the component

can be improved by increasing its repair rate by a factor τ where τ > 1.

Availability equivalence factors of a repairable series-parallel system were pub-

lished by Hu et al. (2012) and the authors in this paper assumed a simple re-

pairable series-parallel system with constant failure rate and repair rate. Sarhan

and Mustafa (2013) studied the availability equivalence factors of a repairable

parallel-series system and they also assumed that the life and repair times of

the system components are exponentially distributed.

For possible further research one can derive the availability equivalence factors

for simple repairable systems with components with non-constant failure rates

and non-constant repair rates. The concept of availability equivalence factors

can be applied on repairable systems under the assumption that the system

components’ life and repair times are gamma, Weibull or exponentiated Weibull

lifetime distributions. The availability equivalence factors might be derived for

repairable systems with multiple types of components and multiple types of

repair times.

• Cold duplication with imperfect switch and imperfect stor-

age environment

In this thesis we consider that the switch in the method involving cold duplica-

tion with imperfect switch is not 100% reliable which means that the switch can

fail to transfer the load to the standby components. We assume that the switch
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immediately transfers load to the standby component when the original com-

ponent fails, which means the switch operation time is negligible. We assume

the standby component does not fail when in the standby position. It can only

fail given that the original component has already failed. Under the assump-

tion that the standby component can fail during storage time a new structure

for the cold duplication with imperfect switch methods can be studied. For

this scenario, there are three possible characteristics for system failure, see Pan

(1997).

1. When the main component fails and the switch successfully switches to

the standby component which is in a good standby state. In this case, the

system fails when the standby component fails.

2. When the main component fails and the switch successfully switches to

the standby component but the standby component fails in its standby

state. In this case, the system fails when the main component fails.

3. When the main component fails and the switch fails switching to the

standby component which is in a good standby state. In this case the

system fails when main component fails.

Under this assumption one can derive the reliability equivalence factors for

simple systems, complex systems and networks using the survival signature.

• Reliability equivalence factors for systems with dependent

components

All systems that are studied in this thesis are assumed to be with independent
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components. All previous studies in this field (reliability equivalence factors)

also assumed systems with independent components. For systems with depen-

dent components when the load is shared by several components the reliability

function of such types of system can be derived using special methods. The

challenge for deriving reliability equivalence factors for systems with dependent

components is that the survival signature cannot be used in this case.

The author hopes to investigate extensions of the theory in this thesis to tackle

this problem in the near future, possibly by applying the theory of copulae and

vines as described by Bedford and Cooke (2002).
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Appendix A

Appendix for Chapter 2

We used Matlab software to derive the hot survival reliability equivalence factors in

Table 2.1. We define a function (Hot) to solve the set of equations in (2.4.1), then

we use this function to derive the hot SREF as follows:

%We defined function Hot first

function F=Hot(z,a,b,c,d,m1,m2,r1,r2,a1,a2,alpha)

t=z(1);

q=z(2);

F(1)=(1-(((1-exp(-q*(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^r1).*...

(((1-exp(-(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^(m1-r1))).*...

(1-(((1-exp(-q*(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^r2).*...

(((1-exp(-(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^(m2-r2)))-alpha;

F(2)=(1-((1-exp(-(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^(m1+a1)).*...

(1-((1-exp(-(a*t+(b/2)*t.^2+(c/3)*t.^3))).^d).^(m2+a2))-alpha;

%%%%%%%%%

clear all;

a=0.029;%alpha

b=-1.597*10^-3;%beta

c=2.608*10^-5;%gamma

d=0.786;%theta

m1=2;%number of components in the subsystem one.

m2=3;%number of components in the subsystem two.

q=0.1;% reduction factor.

mu=.2;% Imperfect switch failure rate.

r1=0; %Components improved according to reduction method (First system).

r2=1; %Components improved according to reduction method (second system).
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a1=2; %Components improved according to hot duplication method (First system).

a2=3; %Components improved according to hot duplication method (second system).

r1=0;

A1=[];

A2=[];

r2=-1;

for z=1:4;

r2=r2+1;

a1=-1;

for s=1:3;

a1=a1+1;

a2=-1;

for k=1:4;

a2=a2+1;

alpha=-0.3;

for i=1:3;

alpha=alpha+.4;

a0=[50 5];

%options = optimset(’Display’,’off’);

options=optimset(’Display’,’off’,’MAXITER’,10000,’MaxFunevals’,20000);

[solution,fval,ExitFlag]=fsolve(@Hot,a0,options,a,b,c,d,m1,m2,r1,r2,a1,a2,alpha);

t(i)=solution(1);

q(i)=solution(2);

if ExitFlag==1;

t(i)=real(solution(1));

q(i)=real(solution(2));

else

t(i)=0;

q(i)=0;

end

end

tt(:,(s-1)*4+k)=t’;

qq(:,(s-1)*4+k)=q’;

end

end

A1=[A1;tt];

A2=[A2;qq];

end

A2(A2<=0)=0;

X=A2;
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X(1:3,:) = [];

X(:,1)=[];

U=[0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9]’;

X=[U X];

Q1=X

Y=A1;

Y(1:3,:) = [];

Y(:,1)=[];

T1=Y;

r1=1;

B1=[];

B2=[];

r2=-1;

for z=1:4;

r2=r2+1;

a1=-1;

for s=1:3;

a1=a1+1;

a2=-1;

for k=1:4;

a2=a2+1;

alpha=-0.3;

for i=1:3;

alpha=alpha+.4;

a0=[50 5];

%options = optimset(’Display’,’off’);

options=optimset(’Display’,’off’,’MAXITER’,10000,’MaxFunevals’,20000);

[solution,fval,ExitFlag]=fsolve(@Hot,a0,options,a,b,c,d,m1,m2,

r1,r2,a1,a2,alpha);

solution;

ExitFlag;

t(i)=solution(1);

q(i)=solution(2);

if ExitFlag==1;

t(i)=real(solution(1));

q(i)=real(solution(2));

else

t(i)=0;

q(i)=0;

end
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end

tt(:,(s-1)*4+k)=t’;

qq(:,(s-1)*4+k)=q’;

end

end

B1=[B1;tt];

B2=[B2;qq];

end

B2(B2<=0)=0;

X1=B2;

X1(:,1)=[];

U1=[0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9]’;

X1=[U1 X1];

Q2=X1;

Y2=B1;

Y2(:,1)=[];

T2=Y2;

r1=2;

C1=[];

C2=[];

r2=-1;

for z=1:4;

r2=r2+1;

a1=-1;

for s=1:3;

a1=a1+1;

a2=-1;

for k=1:4;

a2=a2+1;

alpha=-0.3;

for i=1:3;

alpha=alpha+.4;

a0=[.5 .5];

%options = optimset(’Display’,’off’);

options=optimset(’Display’,’off’,’MAXITER’,10000,’MaxFunevals’,20000);

[solution,fval,ExitFlag]=fsolve(@Hot,a0,options,a,b,c,d,m1,m2,r1,r2,a1,a2,alpha);

t(i)=solution(1);

q(i)=solution(2);

if ExitFlag==1;

t(i)=real(solution(1));
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q(i)=real(solution(2));

else

t(i)=0;

q(i)=0;

end

end

tt(:,(s-1)*4+k)=t’;

qq(:,(s-1)*4+k)=q’;

end

end

C1=[C1;tt];

C2=[C2;qq];

end

C2(C2<=0)=0;

X2=C2;

X2(:,1)=[];

U2=[0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9]’;

X2=[U2 X2];

Q3=X2;

Y3=C1;

Y3(:,1)=[];

T3=Y3;

T=[T1;T2;T3]

Q=[Q1;Q2;Q3]

size(Q);

All results in Chapter 2 and 3 are derived using Matlab software and checked using

Mathcad software.
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Appendix B

Appendix for Chapter 4

We used R software to derive the SREF and MREF and MTTF in Chapter 4. We

used computeSystemSurvivalSignature function in ReliabilityTheory R package

to derive the hot SREF in Table 4.3. We present an example and others much the

same. For example, in Table 4.3 when all system components are improved except

component number 5 A
(2,2)
4 we compute the factors as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature #########

gD <- graph.formula(s -- 1:2--3--t,s -- 1:2--4--t,

s -- 1:2--5--t,1:2--3:4:5)

V(gD)$compType <- NA

V(gD)$compType[match(c("1","2","3","4"), V(gD)$name)] <- "T1"

V(gD)$compType[match(c("5"), V(gD)$name)] <- "T2"

plot(gD)

computeSystemSurvivalSignature(gD)

sigD <- computeSystemSurvivalSignature(gD)

########### Hot duplication ##########

sysSurvSD <- function(t, a, b, c, d) {

res <- 0

for(l1 in 0:4) {

for(l2 in 0:1) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(4,l1) * (((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^2)^(4-l1)

* (1-(((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^2))^l1*
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choose(1,l2) * ((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(1-l2)

* (1-((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l2

}

}

res

}

sysSurvD <- Vectorize(sysSurvSD, vectorize.args=c("t"))

t <- seq(0, 120, length.out=100)

plot(t, sysSurvD(t, 0.029,-1.597*10^-3,2.608*10^-5,0.786), type="l",

xlab="t", ylab="R(t)")

######## Reduction method ############

sysSurvR <- function(t, rho, a,b,c,d) {

res <- 0

for(l1 in 0:4) {

for(l2 in 0:1) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(4,l1) * ((1-exp(-rho*(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(4-l1)

* (1-((1-exp(-rho*(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l1 *

choose(1,l2) * ((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(1-l2)

* (1-((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l2

}

}

res

}

# Equivalence match at p for given Tx parameters

# p=0.1

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.1

a <- 0.029

b <- (-1.597*10^-3)

c <- 2.608*10^-5

d <- 0.786

abs(sysSurvD(par[1], a,b,c,d)-p)+abs(sysSurvR(par[1], par[2], a,b,c,d)-p)

}

res <- optim(c(82,.5), objF)

A1 <- res$par[2]

B1 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 0.029,-1.597*10^-3,2.608*10^-5,0.786),

type="l", lty=2,xlab="t", ylab="R(t)")
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# p=0.5

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.5

a <- 0.029

b <- (-1.597*10^-3)

c <- 2.608*10^-5

d <- 0.786

abs(sysSurvD(par[1], a,b,c,d)-p)+abs(sysSurvR(par[1], par[2], a,b,c,d)-p)

}

res <- optim(c(62,.5), objF)

A2 <- res$par[2]

B2 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 0.029,-1.597*10^-3,2.608*10^-5,0.786),

type="l", lty=3, xlab="t", ylab="R(t)")

# p=0.9

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.9

a <- 0.029

b <- (-1.597*10^-3)

c <- 2.608*10^-5

d <- 0.786

abs(sysSurvD(par[1], a,b,c,d)-p)+abs(sysSurvR(par[1], par[2], a,b,c,d)-p)

}

res <- optim(c(11,.2), objF)

A3 <- res$par[2]

B3 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 0.029,-1.597*10^-3,2.608*10^-5,0.786),

type="l", lty=4,xlab="t", ylab="R(t)")

c(B1,B2,B3)

# Hot SREF when all system components improved except component number 5.

c(A1,A2,A3)

The MREF in Table 4.4 when all system components are improved except com-

ponent number 5 A
(2,2)
4 can be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature
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############# Survival signature #############

gD <- graph.formula(s -- 1:2--3--t,s -- 1:2--4--t,

s -- 1:2--5--t,1:2--3:4:5)

V(gD)$compType <- NA

V(gD)$compType[match(c("1","2","3","4"), V(gD)$name)]<-"T1"

V(gD)$compType[match(c("5"), V(gD)$name)] <- "T2"

plot(gD)

computeSystemSurvivalSignature(gD)

sigD <- computeSystemSurvivalSignature(gD)

############# Hot Duplication #################

sysSurvSD <- function(t, a, b, c, d) {

res <- 0

for(l1 in 0:4) {

for(l2 in 0:1) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(4,l1) * (((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^2)^(4-l1)

* (1-(((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^2))^l1 *

choose(1,l2) * ((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(1-l2)

* (1-((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l2

}

}

res

}

integrand <- function(t) {sysSurvSD(t, 0.029,-1.597*10^-3,

2.608*10^-5,0.786)}

MTTFD <- integrate(integrand, lower = 0, upper = Inf)$value

MTTFD

############# Hot Duplication ##################

sysSurvR <- function(t, rho, a,b,c,d) {

res <- 0

for(l1 in 0:4) {

for(l2 in 0:1) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(4,l1) * ((1-exp(-rho*(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(4-l1)

* (1-((1-exp(-rho*(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l1 *

choose(1,l2) * ((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d)^(1-l2)

* (1-((1-exp(-(a*t+(b/2)*t^2+(c/3)*t^3)))^d))^l2

}

}
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res

}

F2 <- function(rho){

f2 <- function(t){

sysSurvR(t, rho, 0.029,-1.597*10^-3,2.608*10^-5,0.786)

}

return(f2)

}

MTTFr <- function (rho) {

integrate(F2(rho), lower=0, upper=Inf)$value

}

MTTFrd <- function(par) { # par[1] == rho,

abs(MTTFr(par[1])-MTTFD)

}

rHo <- optim(0.43, MTTFrd, method = c( "Brent"),

lower = 0, upper = 200)$par

rHo

# Mean time to failure for improved system.

MTTFD

# Hot MREF when all system component improved except component 5.

MTTFr(rHo)

The SREF in Table 4.11 when component number 1 and 2 are improved A
(2,0)
2 can

be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature ##################

# Duplication method system and survival function

gD <- graph.formula(s -- 3--4--5--t,s -- 1--2--t,1:3,2:4)

V(gD)$compType <- NA

V(gD)$compType[match(c("3","5","4"), V(gD)$name)] <- "T1"

V(gD)$compType[match(c("1","2"), V(gD)$name)] <- "T2"

plot(gD)

computeSystemSurvivalSignature(gD)

sigD <- computeSystemSurvivalSignature(gD)

sigD

############# Hot Duplication ##################

sysSurvSD <- function(t, a, b, c) {

res <- 0
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for(l1 in 0:3) {

for(l2 in 0:2) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(3,l1) * ((1-exp(-a*t^b))^c)^(3-l1)

* (1-((1-exp(-a*t^b))^c))^l1 *

choose(2,l2) * ((1-exp(-a*t^b))^(2*c))^(2-l2)

* (1-((1-exp(-a*t^b))^(2*c)))^l2

}

}

res

}

sysSurvD <- Vectorize(sysSurvSD, vectorize.args=c("t"))

t <- seq(0, 3, length.out=100)

plot(t, sysSurvD(t, 1,2,3), type="l",xlab="t", ylab="R(t)")

################# Reduction method #############

sysSurvR <- function(t, rho, a,b,c) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:2) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(3,l1) * ((1-exp(-a*t^b))^c)^(3-l1) *

(1-((1-exp(-a*t^b))^c))^l1 *

choose(2,l2) * ((1-exp(-rho*a*t^b))^c)^(2-l2)

* (1-((1-exp(-rho*a*t^b))^c))^l2

}

}

res

}

# Equivalence match at p for given Tx parameters

# p=0.1

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.1

a <- 1

b <- 2

c <- 3

abs(sysSurvD(par[1], a,b,c)-p)+abs(sysSurvR(par[1],

par[2], a,b,c)-p)

}

res <- optim(c(1,.5), objF)

A1 <- res$par[2]
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B1 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 1,2,3), type="l",

lty=2,xlab="t",

ylab="R(t)")

# p=0.5

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.5

a <- 1

b <- 2

c <- 3

abs(sysSurvD(par[1], a,b,c)-p)+abs(sysSurvR(par[1],

par[2], a,b,c)-p)

}

res <- optim(c(1,.5), objF)

A2 <- res$par[2]

B2 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 1,2,3), type="l",

lty=3, xlab="t", ylab="R(t)")

# p=0.9

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.9

a <- 1

b <- 2

c <- 3

abs(sysSurvD(par[1], a,b,c)-p)+abs(sysSurvR(par[1],

par[2], a,b,c)-p)

}

res <- optim(c(1,.2), objF)

A3 <- res$par[2]

B3 <- res$par[1]

print(res[2])

points(t, sysSurvR(t, res$par[2], 1,2,3), type="l", lty=4,xlab="t",

ylab="R(t)")

c(B1,B2,B3)

# Hot SREF when only components number 1 and 2 are improved.

c(A1,A2,A3)
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The MREF in Table 4.12 when component number 3 and 4 are improved A
(0,2)
2

can be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature ###############

# Duplication method system and survival function

gD <- graph.formula(s -- 1--2--t,s -- 3--4--5--t,1:3,2:4)

V(gD)$compType <- NA

V(gD)$compType[match(c("1","2","4"), V(gD)$name)] <- "T1"

V(gD)$compType[match(c("3","5"), V(gD)$name)] <- "T2"

plot(gD)

computeSystemSurvivalSignature(gD)

sigD <- computeSystemSurvivalSignature(gD)

sigD

############# Hot Duplication #############

sysSurvSD <- function(t, a, b, c) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:2) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(3,l1) * ((1-exp(-a*t^b))^c)^(3-l1)

* (1-((1-exp(-a*t^b))^c))^l1 *

choose(2,l2) * ((1-exp(-a*t^b))^(2*c))^(2-l2)

* (1-((1-exp(-a*t^b))^(2*c)))^l2

}

}

res

}

integrand <- function(t) {sysSurvSD(t, 1,2,3)}

MTTFD <- integrate(integrand, lower = 0, upper = Inf)$value

MTTFD

####################### Reduction method ##################

sysSurvSR <- function(t, rho, a,b,c) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:2) {

res <- res+with(sigD, sigD[T1==l1 & T2==l2 ,"Probability"]) *

choose(3,l1) * ((1-exp(-a*t^b))^c)^(3-l1) *

(1-((1-exp(-a*t^b))^c))^l1 *
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choose(2,l2) * ((1-exp(-rho*a*t^b))^c)^(2-l2)

* (1-((1-exp(-rho*a*t^b))^c))^l2

}

}

res

}

F2 <- function(rho){

f2 <- function(t){

sysSurvSR(t, rho, 1,2,3)

}

return(f2)

}

MTTFr <- function (rho) {

integrate(F2(rho), lower=0, upper=Inf)$value

}

MTTFrd <- function(par) { # par[1] == rho,

abs(MTTFr(par[1])-MTTFD)

}

rHo <- optim(0.5, MTTFrd, method = c( "Brent"),lower = 0,

upper = 200)$par

rHo

# The mean time to improved when components 3 and 4 are improved.

MTTFD

# Hot MREF when components 3 and 4 are improved.

MTTFr(rHo)
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Appendix C

Appendix for Chapter 5

We use computeSystemSurvivalSignature function in ReliabilityTheory R pack-

age to derive SREF MREF and MTTF for complex systems and networks in Chapter

5. The hot SREF in Table 5.2 for the best component that can be improved (com-

ponent 7) can be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature #########

g <- graph.formula(s -- 1 -- 2:4:5, 2 -- 3 -- t, 4:5 -- 6 -- t,

s -- 7 -- 8 -- t, s -- 9 -- 10 -- 11 -- t, 7 -- 10 -- 8)

V(g)$compType <- NA

V(g)$compType[match(c("1","6","11"), V(g)$name)]<-"T1"

V(g)$compType[match(c("2","3","9"), V(g)$name)]<-"T2"

V(g)$compType[match(c("4","5","10"), V(g)$name)]<-"T3"

V(g)$compType[match(c("7"), V(g)$name)] <- "T4"

V(g)$compType[match(c("8"), V(g)$name)] <- "T5"

#plot(g)

sig <- computeSystemSurvivalSignature(g)

#sig

##########Hot duplication ################

sysSurvSD <- function(t, T1r, T2sc, T2sh,a,b,c, T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {
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for(l4 in 0:1) {

for(l5 in 0:1) {

res <- res+with(sig, sig[T1==l1 & T2==l2 & T3==l3 & T4==l4 &

T5==l5,"Probability"]) *

choose(3,l1) * pexp(t, rate=T1r)^(3-l1) * pexp(t, rate=T1r,

lower.tail=FALSE)^l1 *

choose(3,l2) * pweibull(t, scale=T2sc, shape=T2sh)^(3-l2) *

pweibull(t, scale=T2sc, shape=T2sh, lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3) *

(1-((1-exp(-a*t^b))^c))^l3 *

choose(1,l4) * ((pgamma(t, shape=T4sh, scale=T4sc))^2)^(1-l4)

* (1-(pgamma(t, shape=T4sh, scale=T4sc))^2)^l4*

choose(1,l5) * pgamma(t, shape=T4sh, scale=T4sc)^(1-l5) *

pgamma(t, shape=T4sh, scale=T4sc, lower.tail=FALSE)^l5

}

}

}

}

}

res

}

sysSurvD <- Vectorize(sysSurvSD, vectorize.args=c("t"))

t <- seq(0, 5, length.out=100)

#points(t, sysSurvD(t, 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9),

type="l", lty=2 ,xlab="t", ylab="R(t)")

plot(t, sysSurvD(t, 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9),

type="l",xlab="t", ylab="R(t)")

###Reduction component 7###################

sysSurvSR <- function(t,rho, T1r, T2sc, T2sh,a,b,c,

T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {

for(l4 in 0:1) {

for(l5 in 0:1) {

res <- res+with(sig, sig[T1==l1 & T2==l2 & T3==l3 & T4==l4 & T5==l5,

"Probability"]) *

choose(3,l1) * pexp(t, rate=T1r)^(3-l1) * pexp(t, rate=T1r,

lower.tail=FALSE)^l1 *
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choose(3,l2) * pweibull(t, scale=T2sc, shape=T2sh)^(3-l2) *

pweibull(t, scale=T2sc, shape=T2sh, lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3) *

(1-((1-exp(-a*t^b))^c))^l3 *

choose(1,l4) * pgamma(t, shape=T4sh, scale=(1/rho)*T4sc)^(1-l4) *

pgamma(t, shape=T4sh, scale=(1/rho)*T4sc, lower.tail=FALSE)^l4*

choose(1,l5) * pgamma(t, shape=T4sh, scale=T4sc)^(1-l5) *

pgamma(t, shape=T4sh, scale=T4sc, lower.tail=FALSE)^l5

}

}

}

}

}

res

}

sysSurvR <- Vectorize(sysSurvSR, vectorize.args=c("t"))

# Equivalence match at p for given Tx parameters

objF <- function(par) { # par[1] == t, par[2] == rho

p <- 0.9

T1r <- 0.55

T2sc <- 1.8

T2sh <- 2.2

a <- 0.111

b <- 2

c <- 1.2

T4sh <- 3.2

T4sc <- 0.9

abs(sysSurvD(par[1], T1r, T2sc, T2sh,a,b,c, T4sh, T4sc)-p)+

abs(sysSurvR(par[1], par[2], T1r, T2sc, T2sh, a,b,c,T4sh,

T4sc)-p)

}

res <- optim(c(.7, 0.3), objF)

A11 <- res$par[2]

B11 <- res$par[1]

A11

B11

print(res[2])

points(t, sysSurvR(t, res$par[2], 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9),

type="l", lty=2)
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The hot MREF in Table 5.3 for the best component that can be improved (component

7) can be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature #########

g <- graph.formula(s -- 1 -- 2:4:5, 2 -- 3 -- t, 4:5 -- 6 -- t,

s -- 7 -- 8 -- t, s -- 9 -- 10 -- 11 -- t, 7 -- 10 -- 8)

V(g)$compType <- NA

V(g)$compType[match(c("1","6","11"), V(g)$name)] <- "T1"

V(g)$compType[match(c("2","3","9"), V(g)$name)] <- "T2"

V(g)$compType[match(c("4","5","10"), V(g)$name)] <- "T3"

V(g)$compType[match(c("7"), V(g)$name)] <- "T4"

V(g)$compType[match(c("8"), V(g)$name)] <- "T5"

#plot(g)

sig <- computeSystemSurvivalSignature(g)

#sig

###Hot duplication component 7

sysSurvSD <- function(t, T1r, T2sc, T2sh,a,b,c, T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {

for(l4 in 0:1) {

for(l5 in 0:1) {

res <- res+with(sig, sig[T1==l1 & T2==l2 &

T3==l3 & T4==l4 &

T5==l5,"Probability"]) *

choose(3,l1) * pexp(t, rate=T1r)^(3-l1)

* pexp(t, rate=T1r,

lower.tail=FALSE)^l1 *

choose(3,l2) * pweibull(t, scale=T2sc,

shape=T2sh)^(3-l2) *

pweibull(t, scale=T2sc, shape=T2sh,

lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3) *

(1-((1-exp(-a*t^b))^c))^l3 *

choose(1,l4) * ((pgamma(t, shape=T4sh,

scale=T4sc))^2)^(1-l4)

* (1-(pgamma(t, shape=T4sh, scale=T4sc))^2)^l4*
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choose(1,l5) * pgamma(t, shape=T4sh,

scale=T4sc)^(1-l5)

* pgamma(t, shape=T4sh, scale=T4sc,

lower.tail=FALSE)^l5

}

}

}

}

}

res

}

integrand<-function(t){sysSurvSD(t, 0.55, 1.8, 2.2,

0.111,2,1.2,3.2, 0.9)}

MTTFD <- integrate(integrand, lower = 0,

upper = Inf)$value

MTTFD

###Reduction component 1

sysSurvSR <- function(t,rho, T1r, T2sc, T2sh,a,b,c,

T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {

for(l4 in 0:1) {

for(l5 in 0:1) {

res <- res+with(sig, sig[T1==l1 & T2==l2 & T3==l3

& T4==l4 &

T5==l5,"Probability"]) *

choose(3,l1) * pexp(t, rate=T1r)^(3-l1) * pexp(t, rate=T1r,

lower.tail=FALSE)^l1 *

choose(3,l2) * pweibull(t, scale=T2sc, shape=T2sh)^(3-l2) *

pweibull(t, scale=T2sc, shape=T2sh, lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3) *

(1-((1-exp(-a*t^b))^c))^l3 *

choose(1,l4) * pgamma(t, shape=T4sh,

scale=(1/rho)*T4sc)^(1-l4) *

pgamma(t, shape=T4sh, scale=(1/rho)*T4sc,

lower.tail=FALSE)^l4*

choose(1,l5) * pgamma(t, shape=T4sh, scale=T4sc)^(1-l5) *

pgamma(t, shape=T4sh, scale=T4sc, lower.tail=FALSE)^l5
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}

}

}

}

}

res

}

F2 <- function(rho){

f2 <- function(t){

sysSurvSR(t, rho, 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9)

}

return(f2)

}

MTTFr <- function (rho) {

integrate(F2(rho), lower=0, upper=Inf)$value

}

MTTFrd <- function(par) { # par[1] == rho,

abs(MTTFr(par[1])-MTTFD)

}

rHo <- optim(0.5, MTTFrd, method = c( "Brent"),lower = 0,

upper = 200)$par

rHo

MTTFD

MTTFr(rHo)

#par(new=TRUE)

plot(Vectorize(MTTFr),ylim=c(2.32, 3.2),

xlab=expression(rho), ylab="MTTF",

col = "black",cex.lab=1.5, cex.axis=1.5, cex.main=1.5,

cex.sub=1.5)

text(0.52,3.0,expression(7),cex=1.5)

arrows(0.5,3,0.4,2.932, length=0.1)

The hot SREF in Table 5.4 for the best type that can be improved (component T4)

can be computed as follows:

library(ReliabilityTheory)

?computeSystemSurvivalSignature

############# Survival signature #########
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g <- graph.formula(s -- 1 -- 2:4:5, 2 -- 3 -- t, 4:5 -- 6 -- t,

s -- 7 -- 8 -- t, s -- 9 -- 10 -- 11 -- t, 7 -- 10 -- 8)

V(g)$compType <- NA

V(g)$compType[match(c("1","6","11"), V(g)$name)] <- "T1"

V(g)$compType[match(c("2","3","9"), V(g)$name)] <- "T2"

V(g)$compType[match(c("4","5","10"), V(g)$name)] <- "T3"

V(g)$compType[match(c("7","8"), V(g)$name)] <- "T4"

#plot(g)

sig <- computeSystemSurvivalSignature(g)

#sig

###Hot duplication type 4

sysSurvSD <- function(t, T1r, T2sc, T2sh, a, b, c,

T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {

for(l4 in 0:2) {

res <- res+with(sig, sig[T1==l1 & T2==l2

& T3==l3 &

T4==l4,"Probability"]) *

choose(3,l1) * ((pexp(t, rate=T1r))^1)^

(3-l1) *

(1-(pexp(t, rate=T1r))^1)^l1 *

choose(3,l2) * pweibull(t, scale=T2sc,

shape=T2sh)^(3-l2)

* pweibull(t, scale=T2sc, shape=T2sh,

lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3)

* (1-((1-exp(-a*t^b))^c))^l3 *

choose(2,l4) * ((pgamma(t, shape=T4sh,

scale=T4sc))^2)^(2-l4)

* (1-(pgamma(t, shape=T4sh,

scale=T4sc))^2)^l4

}

}

}

}

res

}
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sysSurvD <- Vectorize(sysSurvSD, vectorize.args=c("t"))

t <- seq(0, 5, length.out=100)

#points(t, sysSurvD(t, 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9),

type="l", lty=2 ,xlab="t", ylab="R(t)")

plot(t, sysSurvD(t, 0.55, 1.8, 2.2, 0.111,2,1.2,3.2, 0.9),

type="l",xlab="t", ylab="R(t)")

###Reduction Type 4

sysSurvSR <- function(t,rho, T1r, T2sc, T2sh,a,b,c, T4sh, T4sc) {

res <- 0

for(l1 in 0:3) {

for(l2 in 0:3) {

for(l3 in 0:3) {

for(l4 in 0:2) {

res <- res+with(sig, sig[T1==l1 & T2==l2 & T3==l3 &

T4==l4,"Probability"]) *

choose(3,l1) * pexp(t, rate=T1r)^(3-l1) *

pexp(t, rate=T1r, lower.tail=FALSE)^l1 *

choose(3,l2) * pweibull(t, scale=T2sc, shape=T2sh)^(3-l2) *

pweibull(t, scale=T2sc, shape=T2sh, lower.tail=FALSE)^l2 *

choose(3,l3) * ((1-exp(-a*t^b))^c)^(3-l3)

* (1-((1-exp(-a*t^b))^c))^l3 *

choose(2,l4) * pgamma(t, shape=T4sh, scale=(1/rho)*T4sc)^(2-l4)

* pgamma(t, shape=T4sh, scale=(1/rho)*T4sc, lower.tail=FALSE)^l4

}

}

}

}

res

}

sysSurvR <- Vectorize(sysSurvSR,

vectorize.args=c("t"))

# Equivalence match at p for given Tx parameters

objF <- function(par) { # par[1] == t,

par[2] == rho

p <- 0.9

T1r <- 0.55

T2sc <- 1.8



185

T2sh <- 2.2

a <- 0.111

b <- 2

c <- 1.2

T4sh <- 3.2

T4sc <- 0.9

abs(sysSurvD(par[1], T1r, T2sc, T2sh,a,b,c, T4sh,

T4sc)-p)+abs(sysSurvR(par[1], par[2], T1r, T2sc,

T2sh,a,b,c,T4sh, T4sc)-p)

}

res <- optim(c(.7, 0.3), objF)

A11 <- res$par[2]

B11 <- res$par[1]

A11

B11

print(res[2])

points(t, sysSurvR(t, res$par[2], 0.55, 1.8, 2.2,

0.111,2,1.2,3.2, 0.9), type="l", lty=2)
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Table C.1: The survival signature of improved system when component 1 of the
system in Figure 5.1 is improved. The components of improved system are classified
into 5 types which are T1 = {1}, T2 = {2, 3, 9}, T3 = {4, 5, 10}, T4 = {6, 11} and
T5 = {7, 8}.

l1 l2 l3 l4 l5 Φ(.) l1 l2 l3 l4 l5 Φ(.) l1 l2 l3 l4 l5 Φ(.)
0 0 0 0 0 0 0 1 1 1 0 1/18 0 2 2 2 0 4/9
0 0 0 0 1 0 0 1 1 1 1 5/36 0 2 2 2 1 5/9
0 0 0 0 2 1 0 1 1 1 2 1 0 2 2 2 2 1
0 0 0 1 0 0 0 1 1 2 0 1/9 0 2 3 0 0 0
0 0 0 1 1 0 0 1 1 2 1 2/9 0 2 3 0 1 1/3
0 0 0 1 2 1 0 1 1 2 2 1 0 2 3 0 2 1
0 0 0 2 0 0 0 1 2 0 0 0 0 2 3 1 0 1/3
0 0 0 2 1 0 0 1 2 0 1 1/9 0 2 3 1 1 7/12
0 0 0 2 2 1 0 1 2 0 2 1 0 2 3 1 2 1
0 0 1 0 0 0 0 1 2 1 0 1/9 0 2 3 2 0 2/3
0 0 1 0 1 0 0 1 2 1 1 5/18 0 2 3 2 1 5/6
0 0 1 0 2 1 0 1 2 1 2 1 0 2 3 2 2 1
0 0 1 1 0 0 0 1 2 2 0 2/9 0 3 0 0 0 0
0 0 1 1 1 1/12 0 1 2 2 1 4/9 0 3 0 0 1 0
0 0 1 1 2 1 0 1 2 2 2 1 0 3 0 0 2 1
0 0 1 2 0 0 0 1 3 0 0 0 0 3 0 1 0 0
0 0 1 2 1 1/6 0 1 3 0 1 1/6 0 3 0 1 1 0
0 0 1 2 2 1 0 1 3 0 2 1 0 3 0 1 2 1
0 0 2 0 0 0 0 1 3 1 0 1/6 0 3 0 2 0 0
0 0 2 0 1 0 0 1 3 1 1 5/12 0 3 0 2 1 0
0 0 2 0 2 1 0 1 3 1 2 1 0 3 0 2 2 1
0 0 2 1 0 0 0 1 3 2 0 1/3 0 3 1 0 0 0
0 0 2 1 1 1/6 0 1 3 2 1 2/3 0 3 1 0 1 1/6
0 0 2 1 2 1 0 1 3 2 2 1 0 3 1 0 2 1
0 0 2 2 0 0 0 2 0 0 0 0 0 3 1 1 0 1/6
0 0 2 2 1 1/3 0 2 0 0 1 0 0 3 1 1 1 1/4
0 0 2 2 2 1 0 2 0 0 2 1 0 3 1 1 2 1
0 0 3 0 0 0 0 2 0 1 0 0 0 3 1 2 0 1/3
0 0 3 0 1 0 0 2 0 1 1 0 0 3 1 2 1 1/3
0 0 3 0 2 1 0 2 0 1 2 1 0 3 1 2 2 1
0 0 3 1 0 0 0 2 0 2 0 0 0 3 2 0 0 0
0 0 3 1 1 1/4 0 2 0 2 1 0 0 3 2 0 1 1/3
0 0 3 1 2 1 0 2 0 2 2 1 0 3 2 0 2 1
0 0 3 2 0 0 0 2 1 0 0 0 0 3 2 1 0 1/3
0 0 3 2 1 1/2 0 2 1 0 1 1/9 0 3 2 1 1 1/2
0 0 3 2 2 1 0 2 1 0 2 1 0 3 2 1 2 1
0 1 0 0 0 0 0 2 1 1 0 1/9 0 3 2 2 0 2/3
0 1 0 0 1 0 0 2 1 1 1 7/36 0 3 2 2 1 2/3
0 1 0 0 2 1 0 2 1 1 2 1 0 3 2 2 2 1
0 1 0 1 0 0 0 2 1 2 0 2/9 0 3 3 0 0 0
0 1 0 1 1 0 0 2 1 2 1 5/18 0 3 3 0 1 1/2
0 1 0 1 2 1 0 2 1 2 2 1 0 3 3 0 2 1
0 1 0 2 0 0 0 2 2 0 0 0 0 3 3 1 0 1/2
0 1 0 2 1 0 0 2 2 0 1 2/9 0 3 3 1 1 3/4
0 1 0 2 2 1 0 2 2 0 2 1 0 3 3 1 2 1
0 1 1 0 0 0 0 2 2 1 0 2/9 0 3 3 2 0 1
0 1 1 0 1 1/18 0 2 2 1 1 7/18 0 3 3 2 1 1
0 1 1 0 2 1 0 2 2 1 2 1 0 3 3 2 2 1
1 0 0 0 0 0 1 1 1 1 0 7/18 1 2 2 2 0 1
1 0 0 0 1 0 1 1 1 1 1 17/36 1 2 2 2 1 1
1 0 0 0 2 1 1 1 1 1 2 1 1 2 2 2 2 1
1 0 0 1 0 0 1 1 1 2 0 7/9 1 2 3 0 0 1/3
1 0 0 1 1 0 1 1 1 2 1 8/9 1 2 3 0 1 2/3
1 0 0 1 2 1 1 1 1 2 2 1 1 2 3 0 2 1
1 0 0 2 0 0 1 1 2 0 0 0 1 2 3 1 0 1
1 0 0 2 1 0 1 1 2 0 1 1/9 1 2 3 1 1 1
1 0 0 2 2 1 1 1 2 0 2 1 1 2 3 1 2 1
1 0 1 0 0 0 1 1 2 1 0 11/18 1 2 3 2 0 1
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Table C.2: Continued from previous page.

l1 l2 l3 l4 l5 Φ(.) l1 l2 l3 l4 l5 Φ(.) l1 l2 l3 l4 l5 Φ(.)
1 0 1 0 1 0 1 1 2 1 1 13/18 1 2 3 2 1 1
1 0 1 0 2 1 1 1 2 1 2 1 1 2 3 2 2 1
1 0 1 1 0 1/3 1 1 2 2 0 1 1 3 0 0 0 1
1 0 1 1 1 5/12 1 1 2 2 1 1 1 3 0 0 1 1
1 0 1 1 2 1 1 1 2 2 2 1 1 3 0 0 2 1
1 0 1 2 0 2/3 1 1 3 0 0 0 1 3 0 1 0 1
1 0 1 2 1 5/6 1 1 3 0 1 1/6 1 3 0 1 1 1
1 0 1 2 2 1 1 1 3 0 2 1 1 3 0 1 2 1
1 0 2 0 0 0 1 1 3 1 0 2/3 1 3 0 2 0 1
1 0 2 0 1 0 1 1 3 1 1 5/6 1 3 0 2 1 1
1 0 2 0 2 1 1 1 3 1 2 1 1 3 0 2 2 1
1 0 2 1 0 1/2 1 1 3 2 0 1 1 3 1 0 0 1
1 0 2 1 1 2/3 1 1 3 2 1 1 1 3 1 0 1 1
1 0 2 1 2 1 1 1 3 2 2 1 1 3 1 0 2 1
1 0 2 2 0 1 1 2 0 0 0 1/3 1 3 1 1 0 1
1 0 2 2 1 1 1 2 0 0 1 1/3 1 3 1 1 1 1
1 0 2 2 2 1 1 2 0 0 2 1 1 3 1 1 2 1
1 0 3 0 0 0 1 2 0 1 0 1/3 1 3 1 2 0 1
1 0 3 0 1 0 1 2 0 1 1 1/3 1 3 1 2 1 1
1 0 3 0 2 1 1 2 0 1 2 1 1 3 1 2 2 1
1 0 3 1 0 1/2 1 2 0 2 0 1/3 1 3 2 0 0 1
1 0 3 1 1 3/4 1 2 0 2 1 1/3 1 3 2 0 1 1
1 0 3 1 2 1 1 2 0 2 2 1 1 3 2 0 2 1
1 0 3 2 0 1 1 2 1 0 0 1/3 1 3 2 1 0 1
1 0 3 2 1 1 1 2 1 0 1 4/9 1 3 2 1 1 1
1 0 3 2 2 1 1 2 1 0 2 1 1 3 2 1 2 1
1 1 0 0 0 0 1 2 1 1 0 2/3 1 3 2 2 0 1
1 1 0 0 1 0 1 2 1 1 1 13/18 1 3 2 2 1 1
1 1 0 0 2 1 1 2 1 1 2 1 1 3 2 2 2 1
1 1 0 1 0 0 1 2 1 2 0 1 1 3 3 0 0 1
1 1 0 1 1 0 1 2 1 2 1 1 1 3 3 0 1 1
1 1 0 1 2 1 1 2 1 2 2 1 1 3 3 0 2 1
1 1 0 2 0 0 1 2 2 0 0 1/3 1 3 3 1 0 1
1 1 0 2 1 0 1 2 2 0 1 5/9 1 3 3 1 1 1
1 1 0 2 2 1 1 2 2 0 2 1 1 3 3 1 2 1
1 1 1 0 0 0 1 2 2 1 0 8/9 1 3 3 2 0 1
1 1 1 0 1 1/18 1 2 2 1 1 8/9 1 3 3 2 1 1
1 1 1 0 2 1 1 2 2 1 2 1 1 3 3 2 2 1
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