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ABSTRACT 

The oral cavity supports a complex and finely balanced consortia of microbial species, 

many of which co-operate within highly structured biofilm communities. Given the 

importance of this microbiome in oral disease, considerable scientific effort has been 

put into surveying its diversity, determining the nature of interactions between its 

members, and exploring its determinants. This dissertation addressed each of these 

areas; the three principal objectives were (1) to assess microbial diversity in the mouth 

using culture-based methods, (2) to use next-generation sequencing technologies to 

explore person-to-person and temporal variation in oral microbiome composition, and 

(3) to use an in vitro model system to analyse variation in the biofilm forming capacity 

of members of the oral microbiome. 

 

Objective 1: Samples of the microbiome were collected from one individual and plated 

onto a range of different axenic media, incubated under a range of different 

conditions. The diversity of isolates obtained was assessed on the basis of classical 

phenotypic characteristics and by using partial 16S rDNA sequence comparison. Twelve 

species were identified, all of which were well-recognised members of the oral 

microbiota. 

 

Objective 2: Next-generation sequencing was performed on 16S rDNA fragments 

amplified from plaque samples were collected from the oral cavity of three healthy 

adult human volunteers each month for a period of eight months. A wide diversity of 

OTUs was detected in all samples that could be delineated into 13 phyla and 48 

families. 60 OTUs could be identified at the species level. As expected, general linear 

models revealed statistically significant variation among the OTUs present in different 

individuals and within individuals over time. 

 

Objective 3: Fourteen different oral streptococci strains were screened for biofilm 

formation using the established microtitre plate biofilm assay.  The results of this study 

were inconsistent but it appeared that most strains best formed biofilms after about 

four days of incubation, and by day seven, bacteria had died. Optimisation of this 

technique is required. 

The results of this dissertation add to current knowledge about the diversity and 

dynamics of the human oral microbiome. This study has also obtained a set of low-

passage isolates of various members of the human microbiome and has begun to 

optimise an in vitro biofilm assay. Together, these will provide a useful resource for 

future exploration of the contribution of individual bacterial species to human oral 

biofilm infrastructure. 
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ANATOMY AND PHYSIOLOGY OT THE HUMAN MOUTH 

Within the oral cavity comprises of hard surfaces such as the teeth and the soft 

surfaces of the oral mucosa, which include the tongue, cheek plate and tonsils (Zaura 

et al, 2009, Dewhirst et al, 2010). The oral mucosa dominates the surface of the 

mouth, representing about 80% of a total surface area of approximately 200 cm2 

(Wilson, 2005). The cheeks compose the lateral sides of the human mouth and at the 

entrance to the oral cavity they end in fleshy folds called the lips (labia) which are 

covered on the outside by skin (Figure 1). The hard and soft palates make up the roof 

of the mouth and are composed of bone and muscle respectively (Wilson, 2005). The 

hard palate splits the oral cavity from the nasal cavity, whereas the soft palate 

separates the oropharynx and nasopharynx. A muscular process known as the uvula 

hangs from the soft palate (Figure 1.1) (Wilson, 2005). 

 

Figure 1.1: Depiction of the major anatomical structures of the oral cavity (Wilson, 

2005). 

 

The oral cavity floor is formed by the tongue which is a muscular structure. The 

movements of the tongue drive mastication and the formation of the bolus, and propel 

the bolus to the back of the mouth for swallowing (Wilson, 2005). The dorsal surface 
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and sides of the tongue are covered with papillae, which include foliate, filliform, 

fungiform and circumvallale papilla, and the lingual and plataine tonsils. 

Teeth are mineralised structures which erupt into the oral cavity from sockets within 

alveolar bone (Figure 1.2). The gingivae (gums) cover the upper regions of alveolar 

bone and surround the teeth to create a seal that prevents microbial invasion into the 

underlining tissues (Wilson, 2005). The gingiva forms a collar around the teeth known 

as the gingival sulcus (Figure 1.2) which, when healthy, extends no more than 2mm 

(Lamont et al., 2006). 

 

Figure 1.2: Cross-sectional diagram of a tooth, depicting the gingivae (G), the gingival 

sulcus (S), the cement-enamel junction (CEJ), the alveolar bone (B), and the three 

tissues of the tooth, namely the enamel (E), cementum (C), dentine (D), pulp (P), 

Plaque (Pl) is also depicted (from Lamont et al., 2006).  

 

The gingivae are covered by a stratified, squamous, keratinised epithelium which 

merges with the non-keratinised “sulcular” epithelium in the gingival crevice. Gingival 

crevicular fluid (GCF) is a serum-like exudate from the gingival crevice that continually 

enters the oral cavity (Wilson, 2005). 

 

The tooth itself consists of four tissues; enamel, dentine, cementum and pulp, (Figure 

3). The crown of the tooth composed of enamel, which is the most richly mineralized 

tissue in the body, containing 96% inorganic material (Lamont et al., 2006). The 

mineral composition consists mainly of hydroxyapatite and fluorapatite (Wilson, 2005). 

C 
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The major organic constituents of enamel are members of two families of proteins: 

amelogenins (90%) and enamelins (10%) (Wilson, 2005). Below the enamel layer is 

dentine (Figure 1.2). Dentine also has a high mineral content (70% minerals, primarily 

in the form of hydroxyapatite, 30% water and organic matrix) and makes up the bulk of 

the tooth. Dentine is supported by matrix proteins such as collagen, osteopontin, and 

acidic glycoprotein-75 (Wilson, 2005). Cementum is a very similar component, 

composed of hydroxyapatite (60%), organic material (23%) and water (17%), the main 

function which is to provide attachment points between the tooth and the periodontal 

ligament (Wilson, 2005). Below the dentine layer is pulp (Figure 1.2). Pulp is a soft 

tissue and is not mineralised, instead being made up of collagen fibrils and different 

type of proteins and proteoglycans. The pulp also contains nerve fibres and blood 

vessels which provide sensory innervation, nutrition, and a means of metabolite 

disposal to the tooth (Lamont et al., 2006). These vessels and nerves are connected to 

the rest of the circulatory, lymphatic, and nervous systems via the root canal that runs 

from the pulp cavity through each root of the tooth. Each tooth may have one or more 

roots (Wilson, 2005), which are the lower extremities of the tooth, attached to the 

underlying alveolar bone. 

 

Fluid flow in the oral cavity 

In addition to the hard and soft surfaces described above, the oral cavity has a fluid 

phase resulting from the production of saliva. Saliva is a dilute, aqueous fluid with a 

number of functions, including lubrication, digestion, temperature regulation, and host 

defence (Wilson, 2005). Saliva is produced by numerous glands sited around the 

mouth, referred to as major (parotid, submandibular, and sublingual) and minor 

(labial, lingual, buccal and palatal) salivary glands (Samaranayake, 2012). The average 

individual produces around 1 litre of saliva per day (Humphrey and Williamson, 2001; 

Wilson, 2005). Saliva is dilute fluid consisting of electrolytes (including sodium, 

potassium, calcium, magnesium, bicarbonate and phosphate), immunoglobulins, 

proteins, enzymes, mucins, urea and ammonia. Bicarbonates, phosphates and urea act 

as buffers in saliva helping to regulate the pH.  Immunoglobulins, mucins and enzymes 

have a different functions ranging from defence to facilitating nutrition (Humphrey and 
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Williamson, 2001; Wilson, 2005). Calcium, phosphates and the proteins found in saliva 

contribute to tooth demineralisation and remineralisation processes. Saliva also 

buffers the oral cavity against the effect of organic acids (Garg, 2010; Hiremath, 2007). 

Saliva coats the enamel surface of teeth to form a pellicle (Huang et al., 2011). A 

second fluid present in the oral cavity is GCF, as introduced above. GCF is a nutrient 

rich fluid containing host cells, proteins, carbohydrates and various ions with a number 

of immunological components (Lamster and Ahlo, 2007). 

 

BACTERIAL DIVERSITY OF THE HUMAN ORAL MICROBIOME 

It is now well recognised that the oral cavity supports one of the richest and most 

diverse of all the microbial communities that thrive on the human body, second only to 

the lower gastrointestinal tract (Peterson et al., 2009). One of the important 

determinants of this diversity is the unusual tissue types that exist in the mouth; teeth 

are the only example within the body of a hard tissue being naturally exposed to the 

external environment. Furthermore, teeth are not shed or turned over in the manner 

of soft tissues/epithelia. Therefore, the oral microbiota has evolved mechanisms to 

exploit environments that are not experienced by other microbiota (Avila et al., 2009). 

The architecture of teeth and their juxtaposition with other teeth and supporting soft 

tissues provide various niches which are exploited by the microbiome. An overgrowth 

of microbiome constituents yields dental plaque, which is commonly associated with 

oral diseases such as caries and periodontal diseases (Figure 1.3). 

 

Figure 1.3: Diagram of tooth surface, plaque distributions and associated 

nomenclature (reproduced from Samanayake, 2012). 
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The oral microbiota comprises of bacteria, fungi, archaea and viruses. Most research to 

date has focused on the bacterial component of the microbiota (Kolenbrander, 2000; 

Marsh, 2005; Siqueira and Rocas, 2009), although exploration of other components 

including viruses and fungi have been reported (Ghannoum et al., 2010; Wylie et al., 

2014). 

 

Cultured-based exploration of the oral microbiome 

Members of the human oral microbiome were among the first bacteria ever to be 

observed. In 1683, Antonie van Leeuwenhoek used his microscope to observe a large 

number of what he named “animalcules” in scrapings taken from his teeth. However it 

was not until over 200 years later, following the seminal work of Koch, Pasteur and 

their contemporaries that these animalcules were identified as microorganisms and 

the first isolates of cultivatable members of the oral microbiome were studied in the 

laboratory.  

 

One of Koch’s contemporaries, Willoughby Miller, is lauded as being the father of oral 

microbiology.  Miller divided his time between practicing dentistry and working in 

Koch’s laboratory studying the “germs” that were responsible for tooth decay. In his 

1890 book titled “Microorganisms of the Human Mouth” (1890), Miller proposed his 

“chemoparasitic” theory which suggested that, in individuals who frequently 

consumed fermentable carbohydrates, oral microorganisms would convert these 

carbohydrates into acid, leading to the demineralization of teeth (tooth decay). A 

decade later, the second key element of the modern concept of the aetiology of dental 

caries was provided by Black and Williams who published the first descriptions of 

“gelatinous microbic plaques”, now commonly known as “dental plaque”, (Black, 1898; 

Williams, 1898). The first isolation of a member of the oral microbiota was achieved by 

Clarke in 1924. The organism he isolated was a Gram positive coccus that he named as 

Streptococcus mutans. Clarke explored the fermentative properties of S. mutans 

showing it to behave as Miller had predicted in 1890. 
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Progress in understanding the aetiology of dental caries was slow, but by 1960 the 

infectious and transmissible nature of dental caries had been demonstrated using 

animal models (Keyes, 1960). Furthermore, using similar models, the role of S. mutans, 

by now recognised as a member of the “conventional” microflora in healthy 

individuals, in inducing caries was also demonstrated (Fitzgerald and Keyes, 1960). 

Concurrent with these important studies on dental caries were studies on 

periodontitis, the second most common oral disease worldwide. Bacteria were 

implicated in periodontal disease with the observation that administration of penicillin 

inhibited periodontitis in laboratory animals (Mitchell and Johnson, 1956), and the 

infectious nature of periodontitis was demonstrated by its transmissibility in animal 

models (Keyes and Jordan, 1964). Other studies identified several oral isolates, 

including Actinomyces species that were suspected as being involved in the aetiology 

of peridontitis (Howell et al., 1965). 

 

Following these discoveries, oral microbiologists have tried to isolate specific 

microorganisms that could be the causative agents and responsible for these disease in 

order to address Koch’s postulates for dental caries and peridontitis. Improved 

cultivation techniques, in particular the introduction of anaerobic conditions, resulted 

in the isolation of an increasing number of new bacterial taxa from the human mouth. 

By 2000, more than 300 different oral bacteria species had been isolated in pure 

culture (Kolenbrander, 2000), including organisms taken from healthy and diseased 

sites. Characterisation of these isolates confirmed the abundance of diverse taxa in the 

mouth, including clinically relevant Streptococcus, Actinobacillus, Actinomyces, 

Porphyromonas and Treponema species (Kolenbrander, 2000). Although the limitations 

of culture-based exploration of the oral microbiota would become apparent with the 

publication of the results of culture-independent molecular-based biodiversity 

quantifications, the availability of isolates of many members of the oral microbiota has 

been key not only to their own characterisation but also to exploration of the biology 

of oral microbial communities and their role in dental disease. For example, availability 

of these isolates has permitted whole genome sequence determination and 

comparison (Table 1.1). 
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Species name Microbiological 

characteristics  

Pathogen? Isolates for which genomic 

data are available 

Reference 

Streptococcus mitis +* FA† commensal NCTC12261, IS1381, IS861, 

ISSpn2, ISSsu4, iSSmi1, iSSmi2, 

iSSmi3, iSSmi4, issmi5, ISS66 

(Denapaite et al., 2010) 

Streptococcus salivarius + FA commensal JIM8777, Ps4 Delorme et al., 2011 ; 

Matrin et al., 2012) 

Streptococcus 

oligofermentas 

+ FA commensal   

Streptococcus mutans + AN dental caries UA159NG8, JH1005, BM77, 

GB14, CT11 

(Lamont et al., 2006) 

Veillonella  parvula -  AN endodontic 

infection 

ATCC10790T, ATCC17745, 

RBV162, RBV167 

(Arif et al., 2008) 

Veillonella atypica -  AN commensal ATCC17744 (Marchandin, 2005) 

Aggregatibacter 

actinomycetemcomitans 

+ AN periodontitis 

 

HK165, D75, CCUG12396, 

CCUG23125, CCUG26442 

(Lamont et al., 2006; 

Christensen & Bisgaard, 2004) 

Fusobacter nucleatum + AN periodontitis ATCC25586 (Lamont et al., 2006) 

Porphyromonas gingivalis -  AN peridontitis W83c, 33277c, TDCGOC, W50 

p, W83 p 

(Nation et al., 2008) 

Prevotella dentalis -  AN commensal DSM688 (Dowens  et al., 2006) 

Treponema denticola -  AN peridontitis SK36, JF36, 0169, JFP76, JFP56 (Turner et al., 2009) 

* + gram positive, - gram negative 

† FA facultative anaerobe, AN anaerobe 

 

Table 1.1: Abundant and/or clinically-important species of the oral microbiome for 

which whole genome sequence data are available (as of March 2015). 

 

Culture-independent exploration of the oral microbiome 

The frequent observation of discrepancy between direct microscopic counts and 

numbers of culturable bacteria from clinical and environmental samples is just one of 

several indications that culture-based exploration of the diversity of microorganisms is 

inherently restrictive (Amann et al., 1995). In addition, as there is a wide mixture of 

aerobic and anaerobic microbes in the oral cavity, for a culture-based approach to be 

as inclusive as possible, a huge variety of different media, incubated under different 

atmospheric conditions would be required. This would be extremely expensive (Paster 

et al., 2006). The advent of culture-independent molecular approaches to biodiversity 

assessment, introduced about 20 years ago and subsequently becoming increasingly 
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powerful, has addressed these shortfalls and has resulted in an entirely new 

perspective on the extent of microbial diversity within the oral cavity.  

Comparison of 16S rRNA-encoding gene sequences 

The small subunit rRNA molecule is essential for the translation of mRNA into 

polypeptide chain and thus is ubiquitous among bacteria and beyond. The gene 

encoding this molecule, 16S rDNA, has been extensively studied as is described as a 

mosaic molecule, comprising of regions of conservation interspersed with regions of 

variability (Tran et al., 1996). This characteristic has been exploited to permit the 

alignment and comparative analysis of sequence data as a basis of phylogenetic 

inferences between bacterial taxa and even across domains (Woese et al., 1990). 

Databases of 16S rDNA sequences are well-established and extensive (e.g. Chun et al., 

2007) allowing the relative taxonomic/phylogenetic position of newly characterised 

organisms to be determined with great accuracy.  

 

Early applications of 16S rDNA analysis to explore the diversity of the oral microbiota 

involved the random amplification of partial 16S rDNA fragments by means of PCRs 

containing conserved eubacterial primers, then cloning of amplification products 

followed by analysis of individual clones either by sequencing or cheaper alternatives 

such as restriction fragment length polymorphism analysis (RFLP). This approach was 

first described in 1996 (Dymock et al., 1996) in a study exploring the microbiota 

associated with dentoalveolar abscesses. Clones representative of five predominant 

groups of uncultured organisms were sequenced. Three were closely related to 

previously recognised oral taxa (Porphyromonas gingivalis, Prevotella oris and 

Peptostreptococcus micros), but two did not correspond to known, previously 

sequenced organisms; one was related to Zoogloea ramigera, a species of aerobic 

waterborne organisms, while the other was distantly related to the genus Prevotella. 

Subsequent studies used a similar approach to assess the diversity of bacteria in other 

oral niches including the subgingival plaque of healthy subjects and subjects with 

periodontal diseases (Paster et al., 2001), the dental plaque in children with rampant 

caries (Becker et al., 2002) or noma (Paster et al., 2002), the saliva of healthy people 

(Sakamoto et al., 2000), the subgingival plaque of a subject with gingivitis (Kroes et al., 
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1999) and the tongue dorsa (Kazor et al., 2003). Taken together, these and a large 

number of more recent 16S rDNA cloning-based studies detected well over 500 

species/ phylotypes, about half of which were novel. However, the revelation of so 

much diversity created its own problems; it has now been recognised that as the 100s 

of taxa detected in the mouth but known only as 16S rRNA phylotypes cannot be 

formally named (naming requires growth and full phenotypic characterization), an 

alternative taxonomic scheme is required if the plethora of 16S rDNA data are to be 

managed in a logical manner, allowing investigators and the literature to refer to 

provisionally named taxa rather than clone sequences. Thus, in 2010 the Human Oral 

Microbiome Database (HOMD) was established to develop a provisional taxonomic 

scheme for the unnamed human oral bacterial isolates and phylotypes and to analyze 

the (at the time) 36,043 16S rDNA oral clone sequences available to determine the 

number of clones observed for each human oral taxon and to identify additional taxa 

not included in the initial setup of the HOMD. 

 

After its establishment, HOMD included 619 taxa in 13 phyla, as follows: 

Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi, Euryarchaeota, Firmicutes, 

Fusobacteria, Proteobacteria, Spirochaetes, SR1, Synergistetes, Tenericutes, and TM7. 

Analysis of the 36,043 16S rDNA gene clones isolated from studies of the oral 

microbiota identified 1,179 taxa, of which 24% were named, 8% were cultivated but 

unnamed, and 68% were uncultivated phylotypes. As a result of this analysis, 434 

novel, non-singleton taxa were added to the HOMD. The number of taxa needed to 

account for 90%, 95%, or 99% of the clones examined was 259, 413, and 875, 

respectively (Dewhirst et al., 2010). HOMD therefore became the first curated 

description of a human-associated microbiome and provided tools for use in 

understanding the role of the microbiome in health and disease. It remains a key 

resource today, but has now expanded far beyond being merely a 16S rDNA archive 

(see below).  

 

Next-generation sequencing techniques 
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The 16S rDNA cloning approach described above revolutionised our understanding of 

the diversity of the oral microbiota. However, its reliance on Sanger sequencing of 

individual clones made it extremely labour-intensive and expensive. Typically, in 2005, 

Sanger sequencing of a single clone cost about £10, hence even well-funded studies 

were limited to surveying no more than a few 1000 clones. Furthermore, the 

bioinformatic tools for manipulation of genomic data at even this modest scale of 

magnitude were in their infancy, so the process was extremely labour intensive. The 

advent of next-generation sequencing (NGS) technologies, in which millions of 

sequencing reactions occur simultaneously in a hugely parallel process, and associated 

rapid bioinformatic developments overcame the “clumsiness” of cloning and Sanger 

sequencing as a means of isolating and characterising individual PCR amplicons, 

thereby opening the door to the exploration of microbiome diversity on a scale that 

was previously unimaginable. The first NGS machine to be widely adopted was the 

Roche/454 FLX (Margulies et al., 2005), which supported a technology referred to as 

sequencing by synthesis, or pyrosequencing (Pozhitkov et al., 2011; Liu et al., 2012). 

The first reported application of pyrosequencing to the exploration of the oral 

microbiota appeared in 2008 (Keijser et al., 2008). The study collected saliva and 

supragingival plaque from 71 and 98 healthy adults, respectively then amplicons from 

the V6 hypervariable region of the small-subunit ribosomal RNA gene were generated 

by PCR, pooled into saliva and plaque pools, and pyrosequenced. A total of 197,600 

sequences were generated that fell into about 29,000 unique sequences, representing 

22 taxonomic phyla. Grouping the sequences into operational taxonomic units (OTUs) 

(defined as clusters of 16S small subunit (SSU) rRNA genes that are used as 

approximations of microbial taxa; these are universally adopted in culture-

independent, sequence-based ecological characterization of microbial communities) 

yielded 3621 and 6888 species-level phylotypes in saliva and plaque, respectively. 

These observations gave a radically new insight into the diversity of human oral 

microflora, indicating that it was considerably higher than previously reported (Keijser 

et al., 2008). Numerous other studies followed, as reviewed by Chen and Jiang (2014). 

 

Concurrent with 454/Roche’s pyrosequencing platform were other parallel sequencing 

technologies, from among which that developed by Solexa/Illumina would emerge 
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most strongly (Bentley, 2006; Korbel et al., 2007). Illumina sequencing exploits 

reversible dye-terminators that enable the identification of single bases as they are 

introduced into DNA strands. Although, initially at least, read length of Illumina was 

much shorter than that obtained by pyrosequencing, the number of reads generated 

by Illumina is far greater than 454 (>100x). The first Illumina-based exploration of 16S 

rDNA amplicons derived from oral microbiota appeared in 2009 (Lazarevic et al., 2009), 

trumpeting a much greater depth of coverage than previous 454-based oral microbiota 

studies. The study amplified samples from the oral cavity of three healthy individuals 

using 16S rDNA primers covering an approximately 82-base segment of the V5 loop, 

identifying 135 genera or higher taxonomic ranks from the resulting 1,373,824 

sequences. While the overall findings of the study were largely comparable to previous 

454-based studies, the authors emphasized their approach allowed them to identify 

several taxa and to assess that at least 30,000 additional reads would be required to 

identify only one additional phylotype. As with pyrosequencing, Illumina sequencing 

has now been repeatedly applied to exploration of the human oral microbiome 

(reviewed by Chen and Jiang, 2014).  

 

Today, it is generally accepted that the microbiome of apparently healthy individuals 

can contain members of up to fourteen bacterial phyla, including Firmicutes, 

Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes, Fusobacteria, 

Euryarchaeota, Chlamydia, Chloroflexi, SR1, Synergistetes, Tenericutes, Cyanobacteria, 

OD2, and TM7 (Bik et al., 2010; Griffen et al., 2011). Among these phyla, the vast 

majority (>80% of the taxa) of oral bacteria belong to Firmicutes, Bacteroidetes, 

Proteobacteria, Actinobacteria, Spirochaetes, and Fusobacteria (Ling et al., 2010). At 

genus level, over 200 genera have been found in the oral microbiota, among which 

Streptococcus, Prevotella, Neisseria, Haemophilus, Porphyromonas, Gemella, Rothia, 

Granulicatella, Fusobacterium, Actinomyces and Veillonella are the most common. At 

species level, it had been estimated that the number of species-level phylotypes lies 

between 500 and 10000 (Keijser et al., 2008; Lazarevic et al., 2009). Studies focusing 

on specific niches within the mouth have suggested each supported 266 species-level 

phylotypes on average (Zaura et al., 2009).  
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The power of NGS has opened the possibility of conducting large population-based 

studies of human microbiome, providing insight into the diversity and community 

structure of the human microbiome in relation to health and disease. Studying 

diversity in this manner has allowed the formulation of the concept of a core 

microbiome, defined as a microbiome shared with most of individuals and comprised 

of the predominant species in healthy conditions of oral cavity (Zarco et al., 2012). At 

present, this core microbiome is thought to comprise of five phyla including 

Proteobacteria, Firmicutes, Actinobacteria, Fusobacteria, and Bacteroidetes, and at 

least nine genera including Actinomyces, Capnocytophaga, Corynebacterium, Derxia, 

Leptotrichia, Neisseria, Prevotella, Streptococcaceae, Streptococcus and Veillonella 

(Chen and Jiang, 2014). 

 

Microarrays and HOMIM 

Although NGS is now the approach of choice for assessing the diversity of the human 

oral microbiome, 16S rDNA-based microarrays, and in particular the Human Oral 

Microbe Identification Microarray (HOMIM) (Chen et al., 2010), have been important 

resources for the exploration of the oral microbiome over the last decade or more. The 

HOMIM platform includes probes for about 300 of the most prevalent oral bacterial 

species and thus represents a means of identifying microbial profiles directly from oral 

samples that is relatively rapid and cost effective. The platform has been extensively 

validated and widely used over the past 6 years, primarily in the context of large 

population-based studies of the oral microbiome (see for a review of these studies 

http://homings.forsyth.org/references.html). The performance of HOMIM in 

comparison to pyrosequencing has been studied and resulted in the conclusion that 

microbiome community profiles assessed by the two approaches were highly 

correlated at the phylum level and, when comparing the more commonly detected 

taxa, also at the genus level. However, the study also suggested that pyrosequencing 

may provide a broader spectrum of taxa identification, a distinct sequence-read 

record, and greater detection sensitivity (Ahn et al., 2011). Studies using HOMIM 

continue to appear today (e.g. Lin et al., 2015; Moutsopoulos et al., 2015), 

demonstrating the ongoing utility of this microarray.  

http://homings.forsyth.org/references.html


 

14 
 

 

Metagenomics analysis of the oral microbiota 

Metagenomic techniques (also called community genomics) used to explore the 

ecology of the oral microbiome, have revealed new species and their associations with 

health and disease (Filoche et al., 2010). However, it is important to note that even 

though these culture independent approaches are powerful and produce a wealth of 

information, they are not without limits (Zoetendal et al., 2004; Sakamoto et al., 2005; 

Steward and Rappe, 2007). Many new species have been encountered in metagenomic 

studies of dental plaque (Kumar et al., 2003; Aas et al., 2008; Preza et al., 2009) using 

16S ribosomal DNA sequencing. 

A 16S rDNA metagenomic approach involves the parallel sequencing of many millions 

of products generated by a single PCR. The principal advantage of this approach is that 

as it quantifies biodiversity in a culture-independent manner, it is free of the inherent 

bias that culture introduces, and it does not require labour-intensive cloning and 

individual analysis of clones. However, one of the limits of this technique is that cannot 

accommodate very long sequencing reads, so it cannot produce full-length 16S rDNA 

sequences that facilitate sesnsitive taxonomic studies. Furthermore a metagenomics 

approach is very expensive. The first reported metagenomics analysis of the oral 

microbiome was published by Keijser et al. (2008). The collection of saliva and plaque 

from healthy adults showed that diversity was one order of magnitude higher than has 

been previously described, and the authors said that there are at least 19,000 species 

of level phylotypes that participate to the diversity of oral microbiome (Keijser et al., 

2008).  Anther approach called shotgun sequencing or metagenome sequencing refers 

to sequencing DNA fragments extracted from microbial populations. Because this 

technique captures the complete genomes of all the organisms in the population, 

mosaicism and biases have little effect (Bik et al., 2012). The comprehensive 

information obtained by this method enables accurate phylogenetic inferences of 

close and distant relatives. However, the main substantial advantage is the information 

it provides about the genes present in the bacterial population, without assembling 

the individual bacterial genomes. Functional gene groupings can be more informative 

and stable than a record of bacterial species. However,  a high error rate in 
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constructing the continuous set of overlapping sequences is one of disadvantages of 

this technique and it is computationally intensive as well (Zarco et al., 2012). 

 

DETERMINANTS OF THE HUMAN ORAL MICROBIOME 

The oral microbiome lives in a defined habitat composed of physical and chemical 

elements. This composition of the microbiome is influenced by changes to its habitat 

and thus its composition fluctuates in response to variation in the physical and 

chemical characteristics of the mouth. However this relationship is not unidirectional, 

as the metabolism of the microbial community can change the physical and chemical 

properties of the surrounding environment (Pflughoeft and Versalovic, 2012). The 

regulatory forces affecting the oral ecosystem can be classified into four major 

categories: physiochemical, host-related, bacteria-related (microbial related factors), 

and external factors (environmental factors) (Marcotte and Lavoie, 1998). 

 

Physiochemical factors 

The physicochemical factors represent the specific environmental parameters which 

result from the combined action of host, microbial and external factors. In vivo and in 

vitro, the growth of microorganisms is controlled by considerable fluctuations in these 

oral environmental parameters such as temperature, pH, availability of water, 

availability of nutrients, and oxidation-reduction potential (Badger et al., 2011). 

 

Temperature 

In the mouth of a normal person the temperature may vary substantially. For example, 

during a standardised drinking regimen of hot coffee (72.5oC) followed by refrigerated 

orange juice, the intra-oral temperature rose to 68.0oC then dropped to 15.4oC 

(Lamont et al., 2006). Localized inflammatory processes may also affect the oral tissue 

temperature (Lamont et al., 2006). The temperature of the healthy gingival sulci has 

been recorded to range from 33.7oC to 36.6oC (slight variation from tooth to tooth) 

(Lamont et al., 2006). In general, subgingival temperatures can reach 39°C (Wilson, 

2005), but the temperatures within a diseased periodontal pocket may have dramatic 

variation (et al., 2006). 
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pH 

The pH conditions within the mouth vary considerable depending on the niche tested 

and on its health status. The pH of the mouth is influenced by the slight acidity of saliva 

(pH 6.7) (Samaranayake, 2012), but the pH of the oral microbiota in a healthy mouth 

has been estimated to be slightly alkaline (pH 7.2) and some niches, such as the 

gingival crevice are even more alkali (pH 7.5-8.0) (Wilson, 2005). However, in a 

diseased mouth, possessing severe caries, the pH may be as low as pH 5.5 as a result of 

acid production by pathogenic bacteria (Ling et al., 2010). These conditions promote 

the overgrowth of acidophilic bacteria such as lactobacilli that, in turn, increase the 

rate of fermentation (Samaranayake, 2012).  

 

Oxidation-reduction potential 

The oxidation-reduction potential of the environment (Eh) varies in different locations 

of the oral cavity. For example, redox potential falls during plaque development from 

an initial Eh of over +200mV (highly oxidized) to -141mV (highly reduced) after 7 days 

(Samaranayake, 2012). This reduction is probably due to rapid oxygen consumption by 

respiring bacteria. Regions with the lowest oxygen concentrations such as the tongue 

(the mucosal crypts of the tongue support anaerobic microbiota, which are the main 

cause of halitosis) (Scully and Greenman, 2008) and the gingival crevice, are regions 

where obligate anaerobes are particularly abundant. Failure to practice oral hygiene 

has a dramatic effect on the oxygen content of plaque accumulating on different 

surfaces; this is presumably because of oxygen consumption by the constituent 

bacteria (Wilson, 2005). 

 

Nutrients 

Members of the oral microbiome obtain nutrients from two broad sources, either 

remnants of the host’s diet, such as starch or peptides, or components of the host 

itself, such as salivary constituents (Kuramitsu et al., 2007). The major organic 

constituents of saliva are proteins and glycoproteins such as amylase, mucin, 

immunoglobulins (mainly IgA), lysozyme, lactoferrin and sialoperoxidase. Furthermore, 

the gingival crevice is bathed with GCF, which provides an additional source of 
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nutrients such as albumins and glycoproteins (Cimasoni, 1983). The difference in the 

endogenous nutrients of the GCF is one of the critical factors for the dental microbial 

variations compared to other oral sites (Cimasoni, 1983).  

 

Host innate immunity 

Host immunity is an important determinant in both the establishment and 

development of the oral microbiome. The natural innate immunological defence of the 

supragingival environment is controlled mainly by the constant salivary flow, enhanced 

by muscular actions which wash bacteria from both hard and soft oral surfaces 

(Tenovuo et al., 1987). Other nonspecific defence elements involve mucins, salivary 

glycoproteins, lactoferrin, lysozyme and peroxidise, that all play an important role in 

inhibiting microbial adhesion and growth (Samaranayake, 2012). Mucins are high-

molecular-weight glycoproteins which are secreted by submandibular, sublingual, and 

minor salivary glands. There are two types of mucins in the saliva: MG1 and MG2. MG1 

is of high molecular weight and is included mainly in hard and soft tissue coatings to 

protect teeth from acid demineralization affect. MG2 has a low molecular mass and 

has been shown to acts as a barrier to streptococcal aggregation and adherence 

(Tenovuo et al., 1987). Lysozyme is a small cationic protein of saliva which can 

hydrolyse glycosidic linkages in some bacterial cell walls (Mandel, 1987). IgG, IgM and 

IgA antibodies have been identified in GCF (Samaranayake, 2012). These antibodies 

may affect the oral microbiome by interfering with bacterial adherence (Smith et al., 

1994) as well as there more established role in opsonization (Samaranayake, 2012). 

 

Hormones 

The major hormonal fluctuations in humans occur during puberty and pregnancy. 

These chronological changes are associated with high plasma levels of steroid 

derivatives in the main body fluids, including GCF and saliva (Evans et al., 1984, 

Lachelin and McGarrigle, 1984). A higher prevalence of gingivitis in pregnant women 

was first noted almost 60 years ago (Loe, 1965), and subsequently numerous studies 

have explored changes in the oral microbiome and oral disease associated with 

puberty or pregnancy. During their transition to adolescence, children exhibit major 
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physiological and hormonal changes which directly affect the nature of the oral 

microbiome (Mombelli et al., 1989). In this study, the microbiome composition was 

assessed by microscopic analysis and culturing techniques. Actinomyces odontolyticus 

showed an increase of a significant time trend among the Gram-positive bacteria and 

demonstrated a direct relationship with puberty indices in both boys and girls such as 

testicle growth in boys and Tanner score for breast development in girls. Amongst 

Gram negative species, members of Capnocytophaga and Bacteroidetes were 

predominant. The shift to Gram-negative anaerobic bacteria (including Bacteroides) 

was found to be significant during the period of the mixed dentition (Wojcicki et al., 

1987). For example; P.gingivalis has been isolated from the plaque of 80% of children 

during and after puberty (Watson et al., 1991). V. atypica, P. denticola and P. 

melaninogenica were among the species that contributed most to changes in 

subgingival microbial composition during puberty (Gusberti et al., 1990).This 

maturation of the oral microbiome during puberty was confirmed by high through-put 

sequencing (Gezani et al., 2009; Lazarevic et al., 2009; Ling et al., 2010; Crielaard et al., 

2011).  

 

In the study of Cirelaard et al. (2011), plaque samples from eleven adolescent subjects 

(ages 11 to 18 years) were analysed using PCR amplification of the 16S rDNA and high 

throughput 454 pyrosequencing. Results showed that this age group had an increase in 

the amount of species from the Bacteroidetes (mainly Prevotella, Veillonellaceae and 

Spirochaetes). Within recent years, further clinical follow-up studies have been 

performed, aiming to evaluate shifts in the microbiological status during pregnancy, to 

find any involvement of specific pathogens with pregnancy gingivitis, and to assess any 

correlations between the oral microbiota and elevated hormone levels during 

pregnancy. A few examples are given as follows: Yokoyama and co-workers (2005) 

showed in their in vitro studies that estradiol is able to increase the growth of C. 

rectus, which is another potential periodontal pathogen. In their cross-sectional study, 

a positive correlation was found between the salivary estradiol concentrations and 

levels of C. rectus, P. gingivalis, and F. nucleatum in pregnant women (Yokoyama et al., 

2008). Additionally, the salivary C. rectus levels positively correlated with the 

percentages of sites with a 4 mm pocket depth without any attachment loss. According 
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to a pilot study, when the third molars were present, the efficacy of scaling and root 

planning during pregnancy proved to be limited to reduce the amount of periodontal 

pathogens measured from the mesiobuccal sites of first molars (Moss et al., 2008). 

Especially, increased counts of T. forsythia and P. nigrescens were significantly 

associated with the presence of third molars. Thus, third molars in pregnant subjects 

are suggested to act as a reservoir for periodontal pathogens by serving as suitable 

niches for their growth. 

 

However, there are discrepancies in the current literature about the correlation 

between increased hormone levels and subgingival microbiota during pregnancy. In a 

follow-up study, no significant changes in the proportions of subgingival P. intermedia 

were found between pregnant and non-pregnant subjects (Jonsson et al., 1988). In 

addition, no correlation was found between the microbiological or clinical parameters 

and hormonal status. In contrast, in a recent study by Carrillo-de-Albornoz et al. 

(2010), pregnant women without periodontitis, harbouring P. gingivalis or, P. 

intermedia, in subgingival biofilms, presented a significantly increased gingival 

inflammation tendency during mid-pregnancy and the presence of P. intermedia and P. 

gingivalis positively correlated with the salivary female sex hormone levels. Studies 

have shown that, P. intermedia were observed in higher levels compared to P. 

gingivalis. The inconsistent results in the literature regarding the oral bacteria 

associated with the onset of periodontal diseases during pregnancy can be explained 

by the different methodology used in each study (Gürsoy et al., 2008; Machado et al., 

2012). In addition, during pregnancy, some periodontal pathogens, such as T. forsythia, 

P. gingivalis, A. actinomycetemcomitans, and T. denticola, are also important because 

of the relationship between certain subgingival species and preterm birth (Hasegawa 

et al., 2003; Madianos et al., 2001). Higher levels of Campylobacter rectus and 

Prevotella nigrescens have also been reported among these women (Yokoyama et al., 

2008; Gürsoyet al., 2009). Higher levels of C. rectus and P. nigrescens have also been 

reported among these women (Yokoyama et al., 2008; Gürsoy et al., 2009). More 

studies are needed to describe the etiologic factors thatmight show this relationship 

more clearly (Adriaenset al., 2009). Gingival alterations associated with the biofilm 

formation during pregnancy are often observed, and this may increase the severity of 
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gingivitis. In addition, variations in the oral microbiota and cellular metabolism have 

been observed, as well as an increase in estrogen levels, such as progesterone, 

affecting the vascular permeability, producing oedema, and increasing the gingival 

alteration (Markou et al., 2009). Results show the presence of A. 

actinomycetemcomitans among pregnant women at second and third trimester, which 

might be important (Borgo et al., 2014). 

 

Host Genetics 

The effect of ethnicity on the oral microbiome was recently assessed by an analysis of 

the oral microbiome in children from China and United States using polymerase chain 

reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Interestingly, it was 

found that a species of the genus Granulicatella were more abundant in the plaque 

samples of children from the United States with a high percent of caries (Kanasi et al., 

2010) and less abundant in a similar population from China (Ling et al., 2010). The 

composition of the subgingival microbiome in twins was surveyed by Moore et al. 

(1993). This study included a group of 10 monozygotic and 10 dizygotic twins, who 

were followed longitudinally and sampled during a three year period (aged 11 to 14 

years). Subgingival microbiome components in monozygotic twins (11 to 14 years of 

age) found to be more similar than in dizygotic twins (Moore et al., 1993). In a further 

study, Corby et al. (2007) tested 204 pairs of twins (80 monozygotic and 124 dizygotic) 

aged from 24 to 36 months. Using the reverse capture checkerboard hybridization 

assay and genetic technique, the 10 most abundant species among caries-free twins 

was determined to be moderate to highly heritable; the species found were, in 

descending order: S. parasanguinis, Abiotrophia defectiva, Gemella haemolysans, 

S.mitis/oralis,S. sanguinis, S. cristatus, Streptococcus sp. clone CH016, Eubacterium sp. 

clone DO016, Gemella morbillorum and S. salivarius. It is known that tooth and root 

morphologies differ according to ethnic affiliation, as do innate immune responses to 

infectious agents, for instance, Toll-like receptor-4, mannose binding lectin and heat-

shock proteins (Miller and Cappuccio,2007) and thus it is possible that ethnicity plays 

an important role in bacterial selection by defining the environment for bacterial 

colonization. The concept that the host genotype influences what will survive and 

thrive is particularly useful in assessing susceptibility and in developing targeted 
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therapies to fight against polymicrobial infections. For instance, pathogens belonging 

to the genera Filifactor, Staphylococcus, Mycoplasma, and Treponema were found to 

be in significantly higher levels in Chinese and Latinos, and it is possible that their 

presence in health may contribute to the raised disease susceptibility that has been 

observed in these cohorts (Albandar, 2002). Although it remains unproven that genetic 

factors are determinants in the ecological shift that leads to oral disease, they could 

participate in the development of oral disease in an indirect manner. Firstly, an 

individual may have a specific genetic makeup that encodes for a permanent immune 

system disorder that may then affect the microbiome. For instance, a person with 

Crohn’s disease, an autoimmune disease of the gastrointestinal tract, has a lower 

abundance of Bacteroidetes in the intestines (Badger et al., 2011). A similar situation in 

the oral cavity could result in a decrease of biodiversity and could lead to disease. In 

addition, because an individual’s genotype contributes to the makeup of its unique 

microbiome (Turnbaugh et al., 2007), one’s genetic makeup could directly either 

prevent the existence of certain beneficial bacteria in the body or produce a bodily 

environment in which certain pathogenic species can  increase. For instance, 20% of 

individuals are long-term carriers of Staphylococcus aureus. These individuals are more 

prone to staph infections, especially if the bacteria are not controlled. Also, certain 

people may lack genes that encode for specific protective proteins and antibodies in 

saliva and, thus, be more prone to plaque accumulation or cavities. 

 

Host age 

Different studies have suggested that the oral cavity is susceptible to colonization by 

various bacterial species at different times over the course of the human life span. For 

instance, early studies reported that anaerobic bacteria such as Porphyromonas 

gingivalis do not colonize in the mouths of children in appreciable numbers (Richard et 

al., 2006). These organisms begin to colonize in the oral cavity around the time of 

adolescence. This group of bacteria that includes the mutans group streptococci, need 

teeth or other nonshedding surfaces (for example, a denture) in order to colonize the 

mouth. Due to this reason these bacteria are seen only transiently in the mouth of 

children before tooth eruption. In older people the activity of the host defences can 
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become less and this why the isolation of staphylococci and enterobacteria from the 

oral cavities of the older person increases (Marsh et al., 1992). 

 

Immune system disorders 

The presence of an immune system disorder can lead to an ecological shift in the 

microbiome. It is known that, the immune system regulates interactions between the 

microbiome and the host, a compromised immune system usually disrupts mutual or 

commensal relationships (Badger et al., 2011). Even though microbial relationships 

during diseased states are parasitic, some pathogens can also facilitate the growth of 

other pathogen species. In tooth decay, S. mutans is responsible, in part, for creating 

the lactic acid rich environment in which Veillonella species thrive (Kanasiet al., 2010). 

In biofilm research, Veillonella species have also been found to increase the growth of 

S. mutans (Klutymanset al., 1997). Furthermore, immune systems that are 

compromised could inhibit the proper flow of saliva or decrease the number of 

nutrients present in saliva, allowing dental plaque to build up of dental plaque. For 

example, Sjo¨ gren’s syndrome is an autoimmune deficiency that attacks the exocrine 

glands and inhibits the flow of any saliva through the oral cavity, leading to ‘dry mouth’ 

and more dental complications (Taubert et al., 2007). In fact, there is also an altered 

oral microflora in people with HIV but it is known that acute infection is the leading 

cause of morbidity and mortality in immunosuppressed patients with HIV infection 

(Zarco et al., 2012). 

 

Results from studies on the subgingival microbiota in HIV-infected patients are quite 

diverse. There are some studies showing the similarity between the microbiota in HIV- 

positive and HIV-negative patients with periodontitis (Teanpaisan et al., 2001; Tsang 

and Samaranayake, 2001). While some other studies show a higher prevalence of 

putative periodontal pathogens such as A.actinomycetemcomitans, F. nucleatum, P. 

phyromonasgingivalis, P. intermedia, T. forsythia and T. denticola in HIV-positive 

patients, in comparison to HIV-negative patients (Cross and Smith, 1995; Scully et al., 

1999; Alpagot et al., 2004). In contrast there are studies that present the exact 

opposite, for instance the studies claim that putative pathogens are less prevalent in 

HIV-positive patients. (Paster et al., 2002; Patel et al., 2003; Botero et al., 2007; 
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Goncalves  de Souza et al., 2007). As shown in most of the studies (Goncalves de Souza 

et al., 2004, 2007, 2009; Aas et al., 2007), bacteria that are not usually linked with 

periodontal disease, such as Enterococcus faecalis, Acinetobacter baumanii, 

Pseudomonas aeruginosa and Campylobacter pylori, which were frequently detected 

in HIV-infected patients. In addition the recognition of different microbial profiles in 

the subgingival area of these patients may be significant. More complex microbial 

profiles were described in diseased sites than in the healthy periodontium in HIV-

infected patients (Paster et al., 2002), whereas certain combinations of microbes were 

detected exclusively in HIV-infected individuals. These specific complexes’ may lead to  

chronic periodontitis in this group of patients (Patel et al., 2003) since it is known that 

changes in the humoral and cellular immunity can affect the establishment and growth 

of pathogens and the resultant combination of microbes in the subgingival pockets of 

HIV- infected patients(Mataftsi et al., 2011). 

 

Cancers 

Most patients who have oral cancer do not practice good hygiene (Meurman, 2010).In 

general, several studies conducted around the world have shown that poor oral health 

and tooth loss raise the risk of gastric, pancreatic and other cancers. Inflammation is 

usually the first symptom of compromised oral health and it gets worse as health 

declines. It has been suggested that up to 20% of human tumours contain pathogenic 

agents which derived from inflammatory infections. Proper oral hygiene will maintain 

control of such inflammatory agents (Meurman, 2010). Conversely, cancer can lead to 

poor oral health. Carcinogens can introduce toxic agents into the salivary fluid which 

then can damage DNA, cause mutations, and damage the integrity of oral cavity 

(Meurman, 2010). 

 

Diabetes 

Diabetes and periodontal disease have a strong bidirectional relationship (Pihlstromet 

al, 2005; Kuo et al, 2008; Williams et al., 2008). In one direction, the bacteria involved 

in periodontal disease jeopardize the body’s control of glycaemic levels (Kuo et al, 

2008) .P. gingivalis, a guide agent in periodontal disease, produces a 

lipopolysaccharide (LPS) which is toxic to certain cytokine proteins that regulate insulin 
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activity under normal conditions. Other bacterial infections can also inhibit the ability 

of skeletal muscles to take up insulin-mediated glucose. This can produce whole body 

insulin resistance (Kuo et al, 2008). Fortunately, periodontal treatments can benefit 

patients with diabetes by decrease pathogen secretions of LPS and improving the 

body’s glycaemic control (Pihlstrom et al., 2005). Poorly controlled diabetes raises the 

risk of periodontal disease activation and severity, and the rate of periodontal bone 

loss (Pihlstrom et al., 2005; Preshaw, 2009; Filoche et al., 2010). Diabetes can also lead 

to other oral complications such as burning mouth syndrome, fungal infections, dental 

caries, and salivary functional disorders (Kuo et al., 2008). 

 

Cardiovascular disease 

Peridontal pathogens signal excessive amounts of antigens, endotoxins, cytokines, and 

C-reactive proteins that also contribute to cardiovascular complications such as lipid 

deposition, smooth muscle proliferation, and platelet aggregation (Kuo et al, 2008). 

Pathogens such as P. gingivalis and S.sanguis have abilities to increase platelet 

aggregation and accumulate as arterial plaque (Williams et al., 2008). A. 

actinomycetemcomitans in the periodontal pockets has also been detected in the 

atherosclerotic plaque (Bahekar et al., 2007). The organism accesses the circulatory 

system through oral tissue and makes its way to the arteries where it secretes LPS and 

inflammatory-response mediators, leading to ather othrombogenesis.  As with 

diabetes, periodontal treatments may also alleviate cardiovascular diseases (Tonetti et 

al., 2007; Kuo et al., 2008). The exact pathway from cardiovascular disease to 

periodontal disease has yet to be established. 

 

Lifestyle choices 

Inadequate oral hygiene practices combined with other factors mentioned above such 

as aging processes, genetic factors and immune changes in the host affect ehe oral 

environment and encourage a disease-associated state (Marsh et al., 2003). Poor oral 

hygiene is largely responsible for the accumulation of bacteria within biofilms. Failure 

to detach accumulating plaque will lead to overgrowth of bacteria that may become 

pathogenic, reduce biodiversity of the oral cavity, and ultimately cause diseases such 

as dental caries or periodontal disease (Zaura et al., 2009). Anaerobic microflora in the 
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crypts of the tongue can also grow out of proportion and develop halitosis, or 

consistent bad breath (Zaura et al., 2009). Proper oral hygiene practice is crucial 

because it is the only voluntary way to prevent oral disease. Moreover the microbial 

environment can easily be affected by good oral hygiene practices (iatrogenic factors ), 

such as dental scaling which can radically alter the composition of the periodontal 

pocket flora of disease sites which will alter  the balance in favour of colonization of 

such sites by flora which are associated with health (Samaranayake, 2012). 

 

Modern lifestyles involve the use of medicines (including antibiotics), Oral or systemic 

antibiotics may reach the oral cavity via saliva and GCF and alter the microbiome 

balance and have a negative effect on oral flora, for example broad-spectrum  

antibiotics such as tetracycline can wipe out most of the endogenous flora and assist  

the emergence of yeast species (Samaranayake, 2012). Diet is another external factor 

which has an affect on oral microorganisms. For example fermentable carbohydrates 

are the main class of compounds which alter the oral ecology; they act as a major 

source of nutrient and encourage the growth of acidogenic flora. The production of 

extracellar polyscharides promotes adherence of organisms to surfaces, whereas the 

intracellar polysacharides serve as food resources (Samaranayake, 2012). Other 

factors, for instance gum chewing, amalgam fillings, socio-economic-status in 

particularly in case of dental caries, by access to fluoridated water that might affect 

the oral microbiota (Mignogna and Fedele, 2006). 

 

It is well known that the two most important risk factors for oral cancer are tobacco 

and alcohol (Johnson, 2001). Certain pathogenic strains of oral microorganisms are 

inclined to increase carcinogenic acetaldehyde concentrations in saliva when 

metabolizing ethanol and tobacco smoke (Meurman, 2010; Yang et al., 2011). 

However, not all who drink alcohol or smoke are subject to oral cancer. But those 

individuals are at higher risk. Also, each microbiome differs in the rate at which it 

metabolizes the ethanol and tobacco compounds (Meurman, 2010). Other extra-oral 

factors such as wearing dentures (Marsh et al., 1992) and the use of oral 

contraceptives (Zachariasen, 1993) may affect the oral microbiome. 

 



 

26 
 

Microbial factors 

In the oral environment, microorganisms interact with each other both in promoting 

and suppressing neighbouring microbial species. This is accomplished through a 

combination of physical, metabolic and chemical interactions between different 

microbial species.  

 

Antagonistic mechanisms include (1) competition for receptors that mediate adhesion 

to oral surfaces. Prior occupation of the colonizing site can prevent attachment of 

competing species (Samaranayake, 2012). (2) The production of antimicrobial toxins, 

for example; bacteriocins which kill cells of the same or other bacterial species. 

Bacteriocin production plays an important role in the establishment of many 

streptococcal species in oral communities. S. mutans produce the bacteriocins mutacin 

I and mutacin IV, whilst Streptococcus gordonii and S. sanguinis produce streptocins 

and sanguicin respectively (Kreth et al., 2005). (3) The production of metabolic end 

products can inhibit the growth of competitors. For example, short chain carboxylic 

acids, such as lactic acid, can lower the pH of gingival crevicular fluid, and also act as 

noxious, antagonistic agent. Another example is the production hydrogen peroxide 

(H2O2) by many oral streptococcal species that inhibits the growth of the cariogenic 

species S. mutans (Kreth et al., 2005). 

 

By contrast, co-operative inter-species relationships include (1) physical interactions 

(co-aggregation) between different members of oral microbial communities that have 

been well documented and are largely governed by surface expressed adhesins (Nobbs 

et al., 2011). Over 1000 pair-wise co-aggregation interactions have been demonstrated 

between and among different strains of oral bacteria (Kolenbrander et al., 2006). (2) 

Metabolic end-products are also responsible for several co-operative interactions, 

being of use to other bacteria for nutritional purposes. For example, the growth of 

Veillonella species is enhanced in the presence of lactate produced by oral streptococci 

(Samaranayake, 2012). (3) Chemical communication, via the quorum sensing signal 

auto-inducer-2, can influence physical interactions between different species. For 
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example, quorum sensing signals have been shown to affect co-operation between S. 

gordonii and P. gingivalis (McNab et al., 2003). 

 

Oral microbial communities exist in complex polymicrobial biofilms, the composition of 

which is driven by these antagonistic and co-operative inter-species interactions. A 

closer look at the mechanisms behind these interactions is needed to understand how 

oral biofilms develop and evolve in the transition from oral health to disease. 

 

ORAL BIOFILMS 

A biofilm is a complex structure that can be found almost everywhere associated with 

water. In the natural environment, biofilms are commonly found as slimy layers that 

grow in on the surface of rocks in shallow waters or coating the inside of water pipes 

(Samaranayake, 2012). The oral cavity, in which saliva constantly flows over hard, 

enamel surfaces, represents an ideal environment for biofilm development. Biofilms 

are usually defined as surface-associated microbial communities, surrounded by an 

extracellular polymeric substance (EPS) matrix (Flemming and Wingender, 2010). 

Biofilm formation is a feature of wide-ranging bacterial species and this mode of 

growth is very important for survival within microbial communities. These complex 

structures can comprise multiple microbial species and have been associated with 

many important biological processes, such as nutrient re-cycling and inhibition of 

pathogen colonisation. By contrast; many bacterial pathogens typically  form biofilms 

during chronic infections, such as osteomyelitis (Brady et al., 2008), rhinosinusitis 

(Perloff and Palmer, 2004), urinary tract infections (Connell et al., 1997), Crohn’s 

disease (Badger et al., 2011) and infections associated with foreign bodies inserted 

into the human body, such as artificial joints or catheters (Trampuz and Zimmerli, 

2008). In all these situations, the existence of biofilms is thought to underlie the ability 

of the constituent bacteria to resist host immune responses and antibiotic treatment 

(Hall-Stoodley and Stoodley, 2009). 
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Overview of biofilm structure 

A biofilm community consists of bacterial microcolonies, in which bacteria are 

surrounded by an extracellular matrix with fluid channels that enable distribution of 

nutrients and removal of waste (Nield-Gehrig, 2005). When the bacteria attach to a 

surface and to each other, they cluster together to form sessile, mushroom-shaped 

microcolonies which are attached to the surface at a narrow base (Figure1. 4). 

Polymicrobial biofilms often support the survival of many different species with diverse 

optimal growth conditions. For example; oxygen concentrations can vary in different 

areas of the biofilm enabling the survival of strict anaerobes deep within the structure, 

whereas other bacteria at the edges of the fluid channels may live in an aerobic 

environment (Nield-Gehrig, 2005). Thus, the biofilm structure provides multiple 

customized living environments (with differing pHs, nutrient availability, and oxygen 

concentrations) within which bacteria with different physiological needs can survive. 

Within and between each micro-colony, chemical signals are important mediators of 

bacterial communication and greatly influence biofilm development (Nield-Gehrig, 

2005). 
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Figure 1.4: Gross structure of a biofilm (Reproduced from Nield-Gehrig, 2005) 

 

Formation of oral biofilms 

The formation of biofilms in the oral cavity has been the subject of a large body of 

research, involving different constituent micro-organisms. There is now a general 

consensus as to how oral biofilms form, and this process is classically divided into four 

stages, pellicle formations, adhesion, maturation and dispersion (Figure 1.5). 
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Figure 1.5: Schematic overview of oral biofilm formation. (A) Pellicle formation: The 

pellicle is a thin film derived from salivary glycoproteins attached directly to clean 

tooth surfaces. (B) Adhesion: Bacteria in saliva recognise binding proteins in the 

acquired pellicle and attach to them. (C) Maturation: Different bacterial species co-

aggregate and a mature biofilm forms. (D) Dispersion: Bacteria detach from the biofilm 

surface and spread to colonize elsewhere (Reproduced from Huang et al., 2011). 

 

The first step of oral biofilm formation is the attachment of an acquired pellicle, which 

is a thin protein-containing film that comes originally from salivary glycoproteins. 

These have been shown to attach to the tooth surface immediately after cleaning 

(Nield-Gehrig, 2005). This pellicle adheres to the tooth surface on one side and on the 

other side it offers an adhesive surface which provides a means of bacterial 

attachment to the tooth surface (Huang et al., 2011). The second step of biofilm 

formation is bacterial adhesion to the acquired pellicle. Initially, bacterial attachment is 

reversible and is mediated by pili and fimbriae (Bendtsen et al., 2005; Telford et al., 

2006). The role of fimbriae has been explored for numerous bacterial species 

associated with the oral biofilm, for example the type I fimbriae of Actinomyces 

naeslundii (renamed A. oris) promote adhesion to proline-rich proteins within the 

salivary pellicle (Yeung, 2000; Mishra et al., 2010). Other species that adhere via fibrial 

proteins include P. gingivalis (Morten Enersen et al., 2013) and several Streptococcus 
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species including S. salivarius, S. parasanguis, members of the S. mitis group (Handley 

et al., 1990) and S. agalactiae (group B streptococci) (Lauer et al., 2005).  The first 

bacteria to adhere to the salivary pellicle are referred to as primary colonisers, or 

pioneer species. Members of the genera Actinomyces, Streptococcus, Haemophilus, 

Capnocytophaga, Veillonella and Neisseria are considered the main pioneer bacterial 

genera (Kreth et al., 2005).  

 

Adhesion of bacteria to the acquired pellicle is strengthened by interactions between 

bacterial adhesins and specific receptors located in the acquired pellicle. The 

adhesion–receptor interactions are strong and irreversible (Whittaker et al., 1996). 

Examples of these receptors that are found in the superagingival plaque are acidic 

proline-rich proteins that bind S. gordonii (Gibbons et al., 1991; Hsu et al., 1994) and A. 

naeslundii (A. oris) (Sigmund and Anned, 2001) via type 1 fimbriae (Nesbitt et al., 

1992). Fusobacteria and Veillonella species have been shown to bind to the pellicle via 

statherin (McCabe and Donkersloot, 1977). S. mutans further promotes adhesion by 

converting sucrose into glucan, a reaction mediated by glucosyltransferase enzymes 

(Takahashi and Nyvad, 2008; Tanzer et al., 2001). 

 

The maturation stage of oral biofilm development is initiated when secondary and late 

bacterial colonizers adhere to already attached bacteria (Kolenbrander et al., 2000). 

This process results in an increase in microbial diversity within the developing biofilm 

(Kolenbrander et al., 2006). As the biofilm matures other taxa co-colonise including 

Actinomyces and Veillonella species (Al-Ahmad et al., 2009; Diaz et al., 2006). The most 

common late colonisers are F. nucleatum, T. denticola, T. forsythensis, P. gingivalis and 

A. actinomycetemcomitans (Foster and Kolenbrander, 2004; Kolenbrander et al., 

2002). Several late colonisers are strict anaerobes and are strongly associated with the 

progression of periodontal disease. Whilst P. gingivalis has been shown to co-

aggregate with other species via fimbrial proteins MfaI and FimA; T. denticola attaches 

via the major surface protein (Msp) (Nobbs et al., 2011). 

 

The maturation stage is also characterised by the synthesis of exopolymers to form a 

biofilm matrix (Burgess, 2005). An extracellular matrix is a common feature of all 
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biofilms and makes a significant contribution to the structural composition by retaining 

water, nutrients and enzymes within the biofilm. The chemistry of the matrix may also 

prevent the penetration of other molecules, such as some charged antimicrobials, for 

example chlorhexidine and quaternary ammonium compounds (Hata and Mayanagi, 

2003). As the number of species in the biofilm increases, the structure becomes more 

complex and this complexity also bestows important properties on the biofilm, such as 

an increased resistance to antibiotics (Costerton, 1999). Indeed, the antibiotic 

resistance of bacterial cells in biofilms has been reported to be 1,000 to 1,500 times 

greater than the resistance of planktonic cells (Levy, 1998). The close proximity of cells 

to one another in a biofilm facilitates numerous synergistic and antagonistic 

interactions between adjacent species, and helps the development of food chains 

(Kuramitsu et al., 2007). 

 

As the biofilm matures further, bacteria begin to leave the biofilm by single cell 

detachment. Two important drivers for detachment have been proposed. The first is 

nutrient limitation, with bacteria leaving to find more nutrient-rich niches, and the 

second is that bacteria are constantly lost as a result of the sheering forces applied to 

oral biofilms by the passage of saliva and other fluids (Ruijie Huang et al., 2011). 

 

BACTERIAL INTERACTIONS IN ORAL BIOFILMS 

As summarised above, close contact and specific interactions between micro-

organisms is a characteristic of biofilms. The natures of the antagonistic and synergistic 

interactions between bacteria and the underlying mechanisms have been studied in 

some detail, some of which are summarised in Figure 6. 
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Figure 1.6: Interactions between selected members of the oral microbiome.  Solid lines 

show antagonistic interactions while dashed lines show synergetic interactions. The 

direction of the arrow indicates the direction of antagonism or synergism (reproduced 

from Huang et al., 2011). 

 

Infighting and collaborations between primary colonisers 

One of the most studied antagonistic interactions within the oral microbiome is that 

between S. mutans and S. sanguinis. This antagonism possibly explains why S. 

sanguinis is less abundant in the mouths of individuals with ongoing caries than in 

those of caries-free subjects (Huang et al., 2011). The principle mechanism by which S. 

mutans inhibits the growth of S. sanguinis is by the production of a large amount of 

organic acid (Huang et al., 2011). Both species metabolize glucose to produce lactate, 

but S. mutans has a greater capacity to produce acid due to its greater ATP-glucose 

phosphotransferase activity (Komiyama and Kleinberg, 1974). S. mutans excretes lactic 

acid into the environment, which inhibits the growth of S. sanguinis (Iwami and 

Yamada, 1980). Kreth and colleagues (2005) co-cultivated S. mutans and S. sanguinis 



 

34 
 

under acidic conditions and observed that S. mutans grew better than S. sanguinis. 

Acidic conditions can repress or damage the ATP-glucose phosphotransferase activity 

in both species, but repression on S. mutans is less than that on S. sanguinis (Figure 

1.7) (Iwani and Yamada, 1980).  

 

Figure 1.7: Illustration of the interactions between S. mutans and S. sanguinis. Lines 

show inhibition pathways, and the direction of the arrow presents the direction of 

inhibition or facilitation (Huang et al., 2011). 

 

The relative intolerance of S. sanguinis to acid in the presence of S. mutans appears to 

result from S. mutans inhibiting the ability of S. sanguinis to excrete hydrogen 

peroxide. Hydrogen peroxide excretion by S. sanguinis was reduced by 66% when co-

cultivated with S. mutans compared to when cultivated alone (Kreth et al., 2005). S. 

sanguinis is one of the early colonizers of oral surfaces and is considered a beneficial 

species in the oral biofilm ecosystem.  In contrast, S. mutans is a major cause of dental 

caries (tooth decay). The production of hydrogen peroxide by early pioneer species 

acts as a source of oxygen and a non-specific antimicrobial agent inhibiting the growth 

of S. mutans and other anaerobic peridontal pathogens. The inhibition of S. mutans by 

S. sanguinis is greater under aerobic conditions than anaerobic conditions (Kreth et al., 

2008). S. sanguinis also inhibits the production of the bacteriocin mutacin by S. mutans 

(Hale et al., 2005). Mutacin produced by S. mutans effectively inhibits the growth of S. 

sanguinis, which is therefore unable to colonise niches dominated by S. mutans (Kreth 

et al., 2005).  Kreth and colleagues (2005) showed that in vitro mutacin production by 

S. mutans was reduced by 80% when it was co- cultivated with S. sanguinis (Figure 
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1.7).Finally, the doubling time of S. sanguinis is shorter than that of S. mutans 

enhancing its competitiveness with S. mutans (Wen, 2010) (Figure 1.7).  

 

S. gordonii is another key pioneer species of oral biofilms, for which multiple 

interactions with other species have been well characterised. Like S. sanguinis, S. 

gordonii demonstrates antagonistic interaction with S. mutans and, again similar to S. 

sanguinis, this interaction is more apparent under aerobic conditions than under 

anaerobic conditions (Kreth et al., 2008). Interestingly, inhibition of S. mutans growth 

by S. gordonii was found to be reduced in the presence of glucose, which represses 

pyruvate oxidase, thereby reducing hydrogen peroxide production (Wen, 2010). This 

decrease in inhibition was more significant in S. gordonii than in S. sanguinis (Wen, 

2010). The production of hydrogen peroxide by S. gordonii has also been shown to 

inhibit Actinomyces naeslundii growth (Bradshaw, 1998). S. gordonii appears to 

demonstrate synergistic interaction with Veillonella species, and the two taxa are 

commonly co-localised in oral biofilms (Bradshaw, 1998). This interaction could involve 

interspecies metabolic signalling as suggested by studies with V. atypica (Egland et al., 

2004).  Analysis of V. atypica and S. gordonii co-aggregation in a saliva-conditioned 

flow-cells detected enhanced expression of the amylase-encoding gene in S. gordonii.  

As amylase degrades starch to glucose, the authors hypothesised that induction of 

amylase gene expression in S. gordonii would benefit growth of V. atypica, an efficient 

glucose fermenter (Egland et al., 2004).  

 

Several key adhesins that mediate co-aggregation of oral bacteria have been identified. 

The streptococcal Antigen I/II family polypeptides play an important role in the 

attachment of oral streptococci to the salivary pellicle; but also to other bacterial 

species. For example, SspB of S. gordonii binds to several oral surfaces; but also to the 

short fimbriae of the late coloniser, P. gingivalis (Forsgren et al., 2010) 

 

The pivotal role of bridging species 

A. naeslundii (renamed A. oris) is one of the primary bacteria in dental biofilm 

formation and it can cause peridontal disease and root caries. Co-aggregation of other 
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biofilm members is thought to offer protection from H2O2 as A. naeslundii is able to 

metabolise this molecule via protein oxidation (Periasamy et al., 2009). Furthermore, 

the resulting reduction in oxygen concentration is thought to lead to a more 

permissive environment for the growth of several anaerobes (Stadtman and Levine, 

2003). This species can therefore be considered to act as a “bridge” between primarily 

commensal early colonisers and later colonisers that are more associated with disease. 

A. naeslundii is thought to provide S. gordonii with arginine, one of the products of 

protein oxidation, thus the growth of S. gordonii is increased when co-localised with A. 

naeslundii.  In the presence of A. naeslundii, S. gordonii can grow under arginine-

deficient conditions, conditions in which S. gordonii alone cannot survive (Jakubovics 

et al., 2008). 

 

F. nucleatum is one of several Fusobacterium species that are the predominant Gram-

negative bacterial species in mature subgingival dental plaque ((Moore et al., 1982; 

Kolenbrander et al., 2002). The co-aggregation of Fusobacterium species and other 

bacteria is also considered a bridge connection between initial and late dental plaque 

colonization (Kolenbrander et al., 2002).  F. nucleatum co-aggregates with several oral 

streptococci via the arginine-sensitive adhesion, RadD (Kaplan et al 2009); and with P. 

gingivalis via the lectin-like adhesin, FomA (Kinder and Holt, 1993). F. nucleatum also 

supports P. gingivalis growth by providing a capnophilic environment (increased levels 

of CO2) when growing in a low oxygen concentrations (Diaz et al., 2002).  

 

F. nucleatum and the yeast C. albicans have each been shown to co-aggregate with 

Streptococcus species in supragingival plaque to form distinctive corncob structures 

(Figure 1.8). These formations are composed of a central filamentous cell (F. 

nucleatum or C. albicans) surrounded by multiple adherent streptococci (Lancy et al., 

1983; Zijne et al., 2010). These interactions could act as a connecting link between the 

transformations of supra- to subgingival plaque. 
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Figure 1.8: Electron microscopy of bacterial corncob forms in vitro. (A) Scanning 

electron micrograph of F. nucleatum - S. sanguis CC5A corncobs, bar = 1 µm. (B) thin 

section of F.nucleatum - S. sanguis CC5A corncobs. Fm = fimbriae, bar = 0.1 µm (from 

Lancy et al., 1983). 

 

Shifting conditions to welcome the late colonizers 

The bridging species play a pivotal role in the reduction of oxygen to create anaerobic 

microenvironments that are optimal for the growth of oral anaerobes (Bradshaw et al., 

1998; Diaz et al., 2002). F. nucleatum also produces ammonia from glutamic and 

aspartic acids, which results in increased pH to levels that enhance the growth of P. 

gingivalis (Takahashi, 2003). Oral anaerobes have been shown to co-operate in a 

similar way in supragingival plaque. For example, T. denticola produces succinate, 

which is used by P. gingivalis. In turn, P. gingivalis enhances the growth of T. denticola 

by generating proteinaceous substrates and isobutyric acid as a metabolic end product 

(Grenier and Mayrand, 1986; Grenier, 1992; Mahajanet al., 2013; Kuboniwa and 

Lamont 2010). 

 

Metabolic cross-feeding has been suggested to enhance persistence and pathogenicity 

of Aggregatibacter actinomycetemcomitans by streptococci producing L-lactate in a 

polymicrobial infection model. (Ramsey et al., 2011). Finally, Veillonella species are 

thought to metabolise organic acids produced by S. mutans (Huang et al., 2011) and 
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produce vitamin K, which is utilised by Prevotella and Porphyromonas species for 

growth (Marcotte and Lavoie, 1998).  The increased abundance of any of these late 

colonisers in oral communities has been implicated in the development of oral 

diseases (Li et al., 2014; Ge et al., 2013; Wang et al., 2013). 

 

THE ROLE OF THE ORAL MICROBIOME IN ORAL DISEASE 

In a healthy oral cavity an ecological balance exists between the host and the 

numerous indigenous microorganisms (Filoche et al., 2010). However, bacteria that 

live in the dental plaque biofilm are generally believed to be responsible for the two 

most common oral diseases, dental caries and periodontitis (Papaioannou et al., 2009). 

These oral diseases are the most prevalent diseases in the world (Horz and Conrads, 

2007; Selwitz et al., 2007), affecting all ages and geographic populations. Therefore, 

studying the microbial communities responsible for healthy status and disease 

activation and progression is important for combating human and oral diseases 

(Jenkinson and Lamont, 2005). 

 

The role of the oral microbiome in dental caries 

Dental caries is a worldwide chronic infectious disease (Petersen et al., 2005). Many 

studies have reported that S.mutans is the major pathogen of dental caries, because it 

is the most frequently detected bacteria in the caries lesions (Loesche, 1986; Matee et 

al., 1992). However, culture-independent methods for bacterial identification and 

enumeration such as array-based DNA hybridization (Corby et al., 2007; Aas et al., 

2008; Kanasi et al., 2010) or Sanger sequencing of 16S rRNA gene clones (Aas et al., 

2005) have revealed a wide array of bacteria correlated with caries progression. In 

addition as new pyrosequencing techniques are applied in oral microbiology, ever 

greater numbers of bacteria have been identified as being correlated with caries 

progression. A recent study, applying high- throughput barcoded pyrosequencing 

combined with PCR-denaturing gradient gel electrophoresis, found 120 genera in saliva 

and supragingival plaque from children aged 3–6 years with and without tooth decay. 

A review by Chen and Jiang (2014) found that the oral microbiota in children was far 

more diverse than previous studies reported and more than 200 genera belonging to 
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10 phyla were found in the oral cavity. The abundance of six genera (Streptococcus, 

Veillonella, Actinomyces, Granulicatella, Leptotrichia, and Thiomonas) has been shown 

to be significantly different between subjects with dental caries and caries-free 

subjects (Ling et al., 2010). Others have shown that Streptococcus, Granulicatella and 

Actinomyces genera exhibit a relative higher abundance in children with severe early 

caries, while Aestuarimicrobium was more abundant in caries free subjects. These 

findings suggest that there might be no specific pathogens but rather pathogenic 

population structure shifting would lead to the occurrence of dental caries (Jiang et al., 

2013). Yang et al. (2012) reported that caries microbiomes were significantly more 

variable then the healthy ones. They found 147 OTUs associated with adult dental 

caries (Yang et al., 2012). Further research also found that the oral microbiota was 

specific at different stages of caries development. Gomar-Vercher et al. (2014) found 

that Porphyromonas and Prevotella species showed increasing abundance in the oral 

cavity of children with caries compared to healthy children and that bacterial diversity 

diminished as the severity of the disease increased. Chen & Jiang (2014) analysed the 

microbial composition of plaque from caries-active subjects in different caries stages 

including intact enamel, white spot lesions and carious dentine lesions by 

pyrosequencing technique. In accordance with Gomar-Vercher’s study, their data 

indicated that the diversity of the total plaque bacterial community in the health 

subjects were more complex than caries subjects. Furthermore thirteen genera 

including (Capnocytophaga, Fusobacterium, Porphyromonas, Abiotrophia, 

Comamonas, Tannerella, Eikenella, Paludibacter, Treponema, Actinobaculum, 

Stenotrophomonas, Aestuariimicrobium, and Peptococcus) were associated with dental 

health. Eight genera (Cryptobacterium, Lactobacillus, Megasphaera, Olsenella, 

Scardovia, Shuttleworthia, Cryptobacterium, and Streptococcus) increased significantly 

in cavitated dentine lesions, whereas Actinomyces and Corynebacterium were present 

at significantly higher levels in white spot lesions. Flavobacterium, Neisseria, 

Bergeyella, and Derxia were found to be enriched in the intact surfaces of caries sites 

(Jiang et al., 2014). Others have shown that high proportions of Atopobium Prevotella, 

or Propionibacterium with Streptococcus or Actinomyces dominated in carious dentine 

lesions (Obata et al., 2014). 
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The oral microbiome in peridontitis 

Periodontitis is an infectious and inflammatory disease in which oral bacteria play an 

important role in the progress of disease. This condition has been associated with a 

polymicrobial etiology, and comprehensive studies have been performed to elucidate 

the dynamics of these complex communities between healthy and periodontally 

affected patients (Ashimoto et al., 1996). There are significant differences in 

abundance of many species in periodontally healthy individuals compared to subjects 

with chronic periodontitis. Griffen et al. (2012) found that community diversity was 

higher in health than in disease. They identified 123 species that were significantly 

more abundant in individuals with chronic periodontitis and 53 species to be 

associated with healthly individuals. Among them, Spirochaetes, Synergistetes, and 

Bacteroidetes were health-associated, while Proteobacteria, Clostridia, Negativicutes 

and Erysipelotrichia were associated with chronic peridontitis (Griffen et al., 2012). 

Severe periodontitis is characterised by extensive tissue destruction and bone re-

sorption, leading to the development of deep periodontal pockets (Kim et al.,2006; 

Elter et al., 2004). By comparing the oral microbiome in deep (diseased) and shallow 

(healthy) sites using sequencing 16SrRNA genes the abundance of 14 genus-level 

OTUs, including Streptococcus, Actinomyces and Veillonella, was decreased in deep 

pockets. In contrast, 37 genus-level OTUs (including Prevotella, Porphyromonas, 

Treponema, and Fusobacterium) were present in increased abundance compared to 

shallow sites (Ge et al., 2013).Others, utilizing the same pyrosequencing technique, 

have shown that the Gram-negative genera Selenomonas, Prevotella, Treponema, 

Tannerella, Haemophilus and Catonella are significantly enriched during periodontal 

disease, while Gram-positive genera are significantly enriched in healthy subjects: 

Streptococcus, Actinomyces, and Granulicatella (Liu et al., 2012). Bacteroidetes has 

been suggested as the most abundant phylum in samples of periodontal disease, 

whereas Actinobacteria and Proteobacteria were significantly increased in plaque of 

periodontally healthy subjects in another metagenomics sequencing analysis. At the 

genus level, the microbiota of periodontally healthly individuals was dominated by 

Streptococcus, Haemophilus, Rothia, and Capnocytophaga, whereas microbial 



 

41 
 

communities in periodontal disease exhibited high levels of Prevotella (Wang et al., 

2013). Another 16S rRNA gene sequencing analysis reported that Fusobacterium, 

Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, 

Peptostreptococcus and Catonella showed higher relative abundances in periodontitis 

patients (Li et al., 2014). 

 

Metagenomics and 16S pyrosequencing studies of healthy and diseased mouths 

highlight the complexity of this polymicrobial aetiology. Although there are common 

findings throughout, such as the association of Prevotella spp with disease, there are 

many conflicting reports. Further studies that link other host and environmental 

factors to the oral microbiota are required. 

 

AIMS OF THIS STUDY 

The aims of this study were; (1) to quantify microbial diversity in the mouth using 

culture-based and culture-independent methods, (2) to use next-generation 

sequencing technologies to explore variation in microbiome composition in different 

individuals over different months of the year, and (3) to use an in vitro model system 

to analyse variation in the biofilm forming capacity of members of the oral 

microbiome. 
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AND METHODS 
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BIODIVERSITY ASSESSMENTS 

 

Subjects of the study 

Samples were collected from three subjects during this study. The first subject (OBA) 

was a 37 year old woman, the second (OBB) a 39 year old man and the third (OBC) a 38 

year old woman. All three subjects lived in the North West of England throughout the 

study. Subjects A and B were husband and wife of Arabic descent, so cohabitated and 

shared a very similar lifestyle and diet. Subject OBA became pregnant in January 2013 

and gave birth in September 2013. Subject OBC was married and of Caucasian descent. 

Approval for this study was obtained from the College of Science and Technology 

Research Ethics Panel at University of Salford (REP REFERENCE CST 14/39). 

 

Collection of isolates for culture-based diversity assessments 

All samples were collected from individual OBA in March 2013. Samples were collected 

from the mouth firstly by rolling a sterile cotton swab (CLASSIQSwabs, COPAN) across 

the gingival region and the roof and floor of the oral cavity and secondly by using 

dental floss to sample from the sub-gingival region. Swabs and floss were submerged 

in 1 ml sterile brain heart infusion broth (BHI) (Oxoid CM135) and mixed rigorously to 

generate a suspension of microbiome-associated bacteria.  

 

Aliquots of this suspension were inoculated onto two types of bacteriological agar, 

firstly Columbia agar (Oxoid CM0331) containing 5% defibrillated horse blood (TCS, 

HB034), and secondly the same medium as above supplemented with 10mg/ml of 

vancomycin (VWR) (to inhibit Gram-postive organisms thereby allowing better survey 

of Gram negative organisms). Fifteen replicates of each medium were inoculated and 

incubated under different conditions; (i) 37°C in a 5% CO2 atmosphere, (ii) 37°C in an 

anaerobic atmosphere, (iii) 37°C in an aerobic atmosphere, and (iv) room temperature 

in an aerobic atmosphere. All cultures were checked every day for up to 4 days for the 

presence of bacterial colonies.  
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If present, colonies were picked from primary isolation plates and passaged onto new 

media and re-incubated under the same conditions. Second passage isolates obtained 

in this manner were transferred to cryovials containing BHI + 10% (v/v) glycerol 

(Sigma) and stored at -80°C until required. 

 

Phenotypic characterisation of isolates 

Isolates were provisionally identified on the basis of their colonial morphology and 

Gram staining. For Gram staining, individual bacterial colonies were smeared on clean 

glass slides with a drop of sterile distilled water, air dried, and heat fixed by gently 

passing through a flame. The slides were flooded with crystal violet solution (Fisher) 

for one minute then flooded with Gram’s iodine (Fisher) for one minute. The slides 

were washed with water and colour removed with 100 % ethanol (BDH) until no more 

violet colour was visible in the drain off solution. The slides were washed with water 

and counter stained with safranin stain (Fisher) for 30 sec and washed again with 

water. The slides were blotted dry and examined under a microscope using a 100x 

objective lens and oil immersion.  

 

Genotypic characterisation of isolates 

Bacterial isolates collected from the oral cavity during this study and oral streptococcal 

isolates obtained from Liverpool University were characterised using partial 16S rDNA 

sequencing. Crude DNA extracts were prepared by suspending fresh bacterial colonies 

in sterile dH2O (50 µl). Samples were heated at 100°C in a heat block for 5 min to lyse 

the bacterial cells and release the DNA. Each extract (2 µl) was incorporated into a PCR 

mix containing 2μl of a 10 ƿmol/µl solution of forward primer EUB530 (5′ 

CAGCAGCCGCGGTAATAC 3′), 2 μl of a 10 ƿmol/µl solution of reverse primer EUB790 (5′ 

CTACCAGGGTATCTAAT 3′) (Hunt et al., 2013), 25 µl of 2xMyTaq Red master mix 

(Bioline) and 19 µl of sterile dH2O. PCR mixes were subjected to a thermal programme 

of 96°C for 3 min, then 30 cycles of 96°C for 10 sec, 55°C for 10 sec and 72°C for 50 sec, 

completed with a final step of 72°C for 5 min. 

 

The presence and size of amplicons was determined by UV visualisation of 1% (w/v) 

agarose gels made with Tris borate EDTA (TBE) buffer (Biotech) containing 1.7 µg/ml of 
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Gel Red (Cambridge Biosciences) on which post-reaction PCR mixes (5 µl) had been 

electrophoretically resolved (100 volts for 60 min). Amplicon sizes were estimated by 

comparison with a Hyperladder I molecular weight marker (Bioline). Amplicons of the 

expected size (approximately 300 base pairs) were purified for sequencing using a 

QIAquick PCR purification kit (Qiagen). 

 

Sequencing of amplicons was performed commercially (Source Bioscience). Both 

strands of each amplicon were sequenced using the same primers as used for their 

initial amplification, described above. Sequence data from each strand were verified 

then combined with one another using Chromas Pro (Technelysium Ltd). Primer 

sequences were removed from the extremities, leaving an unambiguous sequence of 

about 260 base pairs to be used for genotypic comparison. This was achieved using the 

NCBI BLAST tool (http://www.ncbi.nlm.nih.gov/Blast/). 

 

Collection of samples for analysis of biodiversity using culture-independent studies. 

Longitudinal samples were collected from the oral cavities of all three subjects on the 

same day every month between May and December 2013. Sampling involved thorough 

brushing of teeth for two min using a sterile dental brush, an interdental brush and 

dental floss.  Dental plaque was obtained by suspending the used tooth brush, the 

interdental brush and the dental floss in 30 ml of phosphate buffered saline 

Sigma(PBS) () and vortexing for 1 min. All dental hygiene tools were removed and 

dental plaque was harvested from each suspension by centrifugation at 7000g for 15 

min. Pellets were resuspended in 1ml of sterile PBS and transferred to 1.7ml 

Eppendorf microfuge tubes. These tubes were centrifuged at 13000g for 2 min then 

stored at -80oC until required. 

 

Extraction of DNA 

Oral samples were thawed and re-suspend in 500 ul Tris-EDTA (TE) buffer (10 mM Tris-

HCl; 1 mM EDTA, pH 7.4) and transferred to Pathogen Lysis L tubes (Qiagen). Bacterial 

cells were lysed using Epicentre Ready-Lyse lysozyme (1000 U) and incubated with 

agitation (300 rpm) at 37°C for 2 h. To ensure thorough lysis of all cells, samples were 

further processed using a mechanical bead beater (Fastprep24, MPBiomedicals); 
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samples were pulsed at 6.5 m/s for 2 x 45 sec with 5 min rest between bursts (on ice). 

Total DNA was extracted from lysed oral samples using the QIAamp mini DNA 

extraction kit (Qiagen) according to the manufacturer’s instructions. DNA was eluted 

from each column using 10 mM Tris•Cl; 0.5 mM EDTA; pH 9.0. DNA was quantified 

using a Nanodrop 2000 spectrophotometer. All samples yielded between 17 and 190 

ng/µl DNA with a 260/280 ratio of between 1.8 and 2.0.  

 

Preparation of sequencing libraries 

Standard 16S primers (F515/R806) with Illumina adapters were used to amplify the V4 

region of the 16S rDNA. The same forward primer was used for all reactions. However, 

the reverse primer included 25 different barcodes (one for each sample, plus negative 

control) with a 12-base error-correcting Golay code. Both PCR primers contained 

sequencer adapter regions, designed to amplify region V4 (291 bp) (Caporaso et al 

2011). 

 

Reactions were set up as follows: 10 µl NEBNext® High-Fidelity 2X PCR Master Mix 

(New England Biolabs) 0.05 µM F515 primer; 0.05 µM 806R primer with unique 

barcode; 1 µl DNA. Cycling conditions were as follows: 94°C for 3 min to denature the 

DNA, with amplification proceeding for 20 cycles at 94 °C for 45 sec, 50 °C for 60 sec, 

and 72 °C for 90 sec; a final extension of 10 min at 72 °C was added to ensure complete 

amplification. 

 

Post-amplification clean-up, quality control and sequencing 

PCR amplicons (400 bp; 291 bp V4 region + barcodes) were visualised on a 1.5 % TBE 

agarose gel and purified using solid-phase paramagnetic AGENCOURT® AMPure® XP 

beads (Beckman Coulter). Briefly, an equal volume of PCR amplicon and AMPure beads 

were mixed thoroughly by vortexing. DNA-bound AMPure beads were separated from 

suspension by placing sample tubes in a Dynamag™ magnetic stand (Life 

Technologies). Beads were washed twice using 70% ethanol. All traces of ethanol were 

removed and DNA was eluted from beads, using nuclease-free water (20 µl) (Life 

Technologies).  
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Purified amplicons were quantified using a Qubit®2.0 Fluorometer with QuantiT™ 

dsDNA HS Assay reagents (Life Technologies) according to the manufacturer’s 

instructions. DNA concentrations were then normalised and pooled. An equal volume 

(16 µl) of pooled sample and Ampure beads were mixed together for further 

purification as described above. 

 

Automatic targeted size selection (400 bp) was performed on the purified 16S rRNA 

library using a Pippin prep capillary based gel system (Sage Science). The purified 

library was analysed for quality using a DNA High Sensitivity chip on the 2100 

Bioanalyser (Agilent Technologies). Paired end sequencing (2x250 bp) was performed 

on the pooled amplicon sample using the illumina MiSeq platform generating data off 

in excess of 12M clusters.  

 

Next generation sequencing sample preparation and processing was performed by Dr 

Chloe James in the Centre for Genomic Research at the University of Liverpool. Briefly, 

a total of 24 pools of amplicons were subject to paired-end sequencing using the 

MiSeq platform. Paired-end reads were trimmed and aligned using PANDAseq (Masella 

et al 2012). Concatenated reads were further processed by clustering sequences with 

at least 97% similarity using USEARCH (Edgar, 2010). Operational taxonomic units 

(OTUs) were assigned to each sequence using Qiime (Caporaso et al 2010) and 

searching the Greengenes database (McDonald et al 2012). 

 

Different relative abundances of OTUs were assessed at the phylum and family levels. 

The significance of temporal and person-to-person variation in the relative abundance 

of specific OTUs was assessed using ANCOVA (analysis of covariance) in MINITAB 16. 

Correlations with P values of equal to or less than 0.05 were considered as being 

significant. 

 

ASSESSMENT OF BIOFILM-FORMING ABILITIES OF STREPTOCOCCUS ISOLATES 

 

Description of isolates 
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Oral streptococci isolates used in the biofilm assays included those obtained in this 

study and two panels of isolates, the first kindly donated by Professor Howard 

Jenkinson at the University of Bristol and the second from The Biomedical Research 

Centre at the University of Liverpool. Details of the identities of the isolates in these 

panels are provided in Table 2.1. 

 

Species name Strain Lab identifier Source Reference 

Streptococcus parasanguinis FW 213  UB2535(B1)  Bristol Chen et al., 2013 

Streptococcus infantis   SK959  UB1619 (B2) Bristol  Hoshino et al., 

2005 

Streptococcus oralis   NCTC11427  UB385(B3) Bristol Do et al., 2009 

Streptococcus cristatus   CR311  UB602(B4) Bristol Wang et al., 2009 

Streptococcus oralis 34 UB2148(B5) Bristol Tawse-Smith et 

al., 2014 

Streptococcus salivarius HB  UB608(B6) Bristol Wessel et al., 

2014 

Streptococcus sanguinis SK36  UB1330(B7) Bristol Turner et al., 

2009 

Streptococcus intermedias ATCC 

27335  

UB601(B8) Bristol  Aguirre-Arzola et 

al., 2013 

Streptococcus salivarius NCTC 8606  UB384 (B9)  Bristol Gamboa & 

Chaves 2012 

Streptococcus pectoris   N/A  L108752(13) Liverpool This study 

Streptococcus parasanguinis N/A L108764(33) Liverpool This study 

Streptococcus spp. N/A L 108814(115)  Liverpool This study 

Streptococcus salivarius  N/A   L 108811(125) Liverpool This study 

Streptococcus species  N/A L 108816(117) Liverpool This study 

 

Table 2.1: Streptococus strains used in this study obtained from Professor Howard 

Jenkinson at the University of Bristol and The Biomedical Research Centre, University 

of Liverpool. Isolates from the University of Liverpool were obtained during an 
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endoscope study of healthy subjects at the University of Liverpool and had been 

identified by mass spectrometry. 

 

Biofilm assays 

Bacterial biofilm studies were conducted using a simple in vitro biofilm assay modified 

from Lemos et al., 2010. 

 

Saliva collection and standardisation 

Volunteers who kindly provided saliva for this study were asked to (i) avoid drinking 

alcohol one day before sample collection, (i) not to exercise any oral hygiene after 

10pm on the day prior to collection, and (iii) not to eat for at least 60 min prior to 

sample collection. Each volunteer firstly rinsed his/her mouth with water to remove 

food residue then repeatedly swallowed to increase saliva production. Saliva was spat 

into a sterile collection beaker and the volunteer was asked to continue until 25ml of 

saliva was in the beaker. The volunteer then took a 30 minute break and drank copious 

water before repeating the saliva collection process. 

 

Harvested saliva was pooled and mixed (1:1) with an adsorption buffer (50 mM KCl, 1 

mM potassium phosphate (0.35 mM K2HPO4 plus 0.65 mM KH2PO4), 1mM CaCl2, 0.1 

mM MgCl2. Adjust pH to 6.5. Store at room temperature, then treated with the 

protease inhibitor Pefabloc SC (Sigma) 1 mM/ml by have it down at 500 μl of 0.1M 

Pefabloc per litre of saliva to prevent protein degradation (manufacturer).   The saliva 

is then subsequently aliquoted and centrifuged to pellet food debris, saliva-borne 

bacteria and human cells. The supernatant (now referred to as clarified whole saliva) 

was then filter-sterilised via a low protein binding 0.22µm filter at 4°C to remove all 

remaining bacterial and human contaminants and this will include live cells (Wei and 

Bobek, 2005) and directly frozen. 

 

This clarified saliva was obtained from Dave Greenwood (PhD student in School of 

Environment & Life Sciences at Salford University). 

 

Biofilm Medium (BM) 



 

50 
 

BM comprised of base medium (58mM K2HPO4(BDH), 15mM KH2PO4 (BDH),  

10mM(NH4)2SO4, 35mM NaCl; 1mM MnCl 4H2O (Sigma), 0.003mM FeSO4 7H2O 

(BDH),2%  (w/v) casamino acids (Difco), amino acids (4mM L-glutamic acid (BDH), 

1.4mM L-arginine (VWR), 6.5mM L-cysteine HCL (SLS) and 1mM l-tryptophan (Sigma)), 

vitamins (1.4mM pyridoxine HCL (Fisher Scientfic), 0.3mM nicotinic acid (SLS), 0.1mM 

pantothenic acid (SLS), 0.01mM riboflavin (Sigma), 0.003mM thiamine HCL (Sigma) and 

0.0005mM D-biotin (Sigma), MgSO4 7H2O (0.8mM )(Sigma), 0.2mM CaCl2  2H2O (Sigma) 

and 1000mM glucose(Sigma). Media was made fresh, filter sterilised and stored at 4oC 

for up to 1 week. 

 

The microtitre plate assay 

Different streptococcal strains were screened to assess their abilities to form biofilms 

by using a slight modification of a previously described microtiter plate assay (Lemos et 

al., 2010). 

 

Each strain was streaked onto a 5% Columbia blood agar then incubated in the 

presence of 5% CO2 at 37°C for 24 hours. Colonies from this plate was used to seed a 

liquid starter culture consisting of 5ml brain heart infusion (BHI) broth, which was 

incubated in the presence of 5% CO2 at 37°C. An overnight broth culture was sub-

cultured by transferring a 100 μl aliquot into 5ml of fresh BHI broth, which was then 

incubated at 37°C in the presence of 5 % CO2 until it reached mid-exponential growth 

phase. This was assessed by measuring the optical density of the culture at a 

wavelength of 600 nm (OD600). An OD600 of 0.5 was considered to indicate mid-

exponential phase. 

 

BM was freshly prepared and pre-warmed to 37°C for 1 h. Individual wells of sterile, 

flat-bottomed 96 well microtitre plates (BD Falcon) were filled with 50 μl of clarified 

saliva and incubated for 1 h at 37°C. Unbound saliva was removed by blotting the plate 

on clean absorbent paper. Each well was then filled with 200 μl aliquots of the mid-

exponential phase cultures (diluted 1:100). BM without culture was used as a negative 

control. 
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Microtitre plates were incubated for 1-7 days at 37°C in the presence of 5% CO2. 

Planktonic and biofilm growth were measured for each strain at 24 hour time intervals 

for up to 7 days. Planktonic growth was measured by removing liquid culture 

(planktonic cells) from the first well of each row and measuring OD600. BM was used as 

a negative control.  Biofilm formation was measured by removing culture media from 

each well and blotting the plate on a paper towel to remove all liquid. Loosely bound 

cells were removed by carefully immersing the microtiter plate, three times, in a large 

sterile dish containing sterile distilled water.  Each washed microtitre plate was blotted 

on a paper towel then each well on the plate was flooded with 0.1% (w/v) crystal violet 

solution and incubated for 15 min at room temperature. Unbound crystal violet was 

removed by again immersing the microtiter plate in a large dish with distilled water 

three times. All liquid was removed from each well and microtitre plates were air 

dried. Bound crystal violet stain was solubilised with 70% ethanol for 10 min at room 

temperature. Optical density (OD) of the wells was determined using a micro ELISA 

auto reader (ThermoFisher Scientific, UK) at a wavelength of 570 nm. These OD values 

were considered as an indicator of attachment to surface and biofilm formation. The 

OD value of the negative control was subtracted from those of each of the test 

samples and the resulting values were plotted against time interval to determine 

planktonic and biofilm growth of the streptococcal strains. Each isolate was tested five 

times and for each, mean values and standard deviations of values about these means 

were calculated using Excel. 
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CHAPTER THREE: RESULTS 
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Isolation and phenotypic characterisation of oral bacteria 

Inoculated plates, incubated under different conditions, were examined for the 

presence of bacterial colonies. For each plate, the variety of colonial morphologies was 

noted and colonies of each morphology were individually sub-cultured onto 

appropriate media. Plates supported growth of up to seven distinct colonial 

morphological variants, giving a total of 29 different variants (Table 3.1). 

 

Incubation conditions Sample Colony morphology Gram Stain 

Anaerobic, 37oC, non- 

selective 

A3 white, large, irregular shape Gram positive rod 

Anaerobic, 37oC, 

vancomycin 

A6 yellow, irregular shape Gram negative cocci 

A8 white, small, irregular shape, raised Gram negative rods 

A12 brown, punctiform, raised Gram negative cocci 

A15 white, large, irregular shape Gram negative rods 

5%  CO2, 37oC, non-

selective 

A23 dark brown, smooth, irregular shape Gram positive cocci 

A1 white, large, granular, circular shape Gram positive cocci 

A7 white/transparent, large, circular shape with raised edge Gram positive cocci 

A16 white, punctiform Gram positive cocci 

A19 white, irregular in shape with fimbriate edge Gram positive rod 

A21 grey, effuse, circular with entire edge Gram positive cocci 

A22 brown circular with entire edge and smooth  texture Gram negative diplococci 

5% CO2, 37oC, 

vancomycin 

A4 grey/white, large, circular with entire edge Gram negative rods 

A5 light grey, tiny satellite colonies, small Gram negative rods 

A13 white colour, irregular shape Gram negative rods 

A17 light grey, circular, smooth Gram negative cocci 

Aerobic, room temp, 

non-selective 

A2 white, circular with entire edge Gram positive cocci 

A9 brown, circular and fimbriate edge Gram positive rods 

A10 dull grey, irregular form and granular surface Gram positive rods 

A11 yellow smooth and irregular shape Gram positive rods 

A14 yellow, punctiform and convex Gram positive cocci 

A18 small circular colonies with entire edge Gram negative rods 

A20 filamentous form with granular texture Gram positive cocci 

A24 white, punctiform Gram positive cocci 

A26 brown, raised, irregular shape Gram positive cocci 

A27 punctiform Gram positive rods 

A28 punctiform, smooth Gram negative cocci 

A29 punctiform, and raised Gram positive cocci 

Aerobic, room temp, 

vancomycin 

A25 yellow, circular with entire edge and raised Gram negative cocci 
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Table 3.1: Details of the incubation conditions, colonial and microscopic appearance of 

isolates obtained from oral swabs in this study 

In total, 29 colonies were sub-cultured and characterised (Table 3.1). The range of 

colony morphologies, obtained under different incubation conditions, suggested a 

broad diversity of bacteria had been isolated. The greatest number of different colonial 

morphologies were obtained under aerobic incubation conditions (13 morphologies) 

compared to elevated CO2 (10 morphologies) and anaerobic conditions (6 

morphologies). Similarly, more morphological variation was observed among isolates 

obtained on non-selective blood agar compared to blood agar containing vancomycin 

(Table 3.1). Microscopic observation of Gram stained smears of each isolate also 

revealed diversity. 

 

Molecular identification of bacterial isolates 

An approximately 260 base pair amplification product was amplified from 29 isolates. 

All amplicons were submitted for Sanger sequencing, and unambiguous sequence data 

were obtained for 15 of these isolates. For the other 10 isolates, chromatograms with 

superimposed peaks were obtained suggesting isolates may not have been pure 

cultures.  BLAST analysis of each unambiguous sequence yielded very high sequence 

similarities (>99%) with GenBank submissions (Table 3.2) and allowed most of the 

isolates to be characterised to species level with confidence. However for others, 

species or even genus-level identification was not possible as their partial 16S rDNA 

sequences were indistinguishable from those of multiple taxa (e.g. sample A11, Table 

3.2). A broad diversity of bacteria were characterised, including representatives of 

three different bacterial phyla; Firmicutes such as Streptococcus, Bacillus and 

Granulicatella species, Proteobacteria such as Kingella, Neissera and Haemophilus 

species and Actinobacteria such as Rothia, Microbacter, Leifsonia and/or 

Actinobacterium species.  

 

Comparison of 16S rDNA and phenotypic data revealed a good correlation, with 13 of 

15 isolates possessing a colonial morphology and microscopic appearance that agreed 

with that predicted from the sequence data. However A28, an apparently Gram 
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negative coccus, did not match with the result from16S rDNA sequence data which 

suggested Streptococcus salivaris. 

 

Table 3.2: 16S rDNA sequence similarities of 15 oral isolates obtained in this study 

Sample 

number 

Taxa sharing highest sequence 

similarity 

% sequence 

similarity 

GenBank accession 

number 

A1 Rothia dentocariosa 99 NR044712 

A2 Granulicatella paraadiacensans 

Granulicatella adiacens 

100 JF803551 

FR822389 

A4 Kingella denititrificans 

Neisseria elongata 

100 KC632208 

AY167422 

A5 Haemophilus parainfluenzae 100 JF506652 

A7 Streptococcus mutans 100 NR074983 

A10 Bacillus ceruns 

Bacillus thuringiensis 

100 KJ399985 

KJ206079 

A11 Microbacter spp. 

Leifsonia spp. 

Actinobacterium spp. 

100 HQ256839 

JX517243 

JQ229622 

A13 Bacillus licheniformis 100 KJ469794 

A17 Neisseria bacilliformis 100 GU397594 

A18 Haemophilus parainfluenzae 100 JF506652 

A19 Bacillus licheniformis 100 KJ469794 

A20 Rothia dentocariosa 100 KC632226 

A22 Neisseria oralis 100 JN986584 

A23 Streptococcus gordonii 100 KJ170416 

A28 Streptococcus salivaris 99 KF193931 
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Using next generation sequencing to assess person-to-person and temporal variation 

in the human oral microbiota. 

Miseq sequence data from the 24 oral samples collected during the study were 

delineated into operational taxonomic units (OTUs) belonging to 13 phyla, 48 families 

and 60 species. 

 

In total, 207 OTUs were identified. However, 14 of these were also present in negative 

control samples, so were considered as contamination and removed from further 

analysis (Table 3.3). 

 

OTU Relative abundance 

(%) in negative control 

Relative abundance 

(%) in samples 

Veillonella 3.13 5.75 - 22.73 

Actinomyces 3.13 0.45 - 3.49 

Parascardovia 3.13 2.06 - 7.65 

Bacteroides 28.13 0.00 - 0.07 

Prevotella 15.63 1.83 - 14.80 

Fibrobacter 3.13 0.00 - 0.01 

Streptococcus 6.25 2.56 - 14.05 

Ruminococcus 3.13 0.00 - 0.01 

Megasphaera 3.13 0.05 - 2.15 

Fusobacterium 9.38 1.34 - 13.13 

Novosphingobium 6.25 0.00 - 0.00 

Escherichia 6.25 0.00 - 0.00 

Acinetobacter 3.13 0.00 - 0.00 

Treponema 6.25 0.05 - 5.06 

 

Table 3.3: The 14 OTUs, and their relative abundances, present in the negative control 

sample. 



 

57 
 

 

A further 76 OTUs were removed from further analysis because they accounted for 

less than 0.01% of the reads in all samples. Thus, 117 OTUs remained for comparative 

analysis. These data were used to explore person-to-person and temporal variation in 

human oral microbiota. 

 

Estimates of biodiversity at the phylum level 

In general, the microbiota in all samples was dominated by members of two phyla, the 

Proteobacteria and the Firmicutes. Together these two phyla accounted for between 

about 35% and 70% of the total abundance of bacteria in all samples. Three other 

phyla, Fusobacteria, Bacteroidetes and Actinobacteria were also relatively abundant in 

all 24 samples tested. All other phyla represented less than 20% of the relative 

abundance of bacteria in all samples (Figure 3.1). 
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Figure 3.1: Relative abundance of phylum members of the oral communities in the 24 

samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013).  

 

Estimates of biodiversity at the family level 

As expected, a general summary of microbiota diversity at the family level was far 

more difficult than at the phylum level, as variation between samples was far more 

apparent. However, numerous families were present in all samples and some were 

consistently among the most abundant encountered. Pasteurellaceae members 

accounted for between 10% and 40% of the relative abundance of bacteria in all 

samples. Each of Neisseriaceae and Veillonellaceae accounted for between about 5% 
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and 30% of the total abundance of bacteria in all samples. Six other families, 

Actinomycetaceae, Leptotrichiaceae, Micrococcaceae, Streptococcaceae, 

Corynebacteriaceae and Paraprevotellaceae were also relatively abundant in all 24 

samples tested. No other families represented more than 5% of the relative 

abundance of bacteria in all samples (Figure 3.2). 
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Figure 3.2: Relative abundance of family members of the oral communities in the 24 

samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013).  
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Person-to-person variation in oral microbiota 

Three people, OBA, OBB and OBC, provided samples for the study. All were in their late 

30s. OBA and OBC were females, OBB was male. OBA and OBB were of Arabic decent 

whereas OBC was Caucasian. Comparison of the relative abundance of OTUs in 

samples from different individuals revealed some significant differences. OBC 

possessed a significantly higher abundance of numerous OTUs than OBA and OBB 

including Pasteurellaceae (p = 0.05), Aggregatibacter (p < 0.01), Prophyromonas (p < 

0.001), Granulicatella (p < 0.001), Haemophilus (p < 0.001), Streptococcaceae (p = 

0.001), Neisseria (p < 0.001), Abiotrophia (p < 0.001), Lactobacillales (p < 0.001) and 

Gemellales (P< 0.001) (Figure 3.4a-c). 
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Figure 3.4a: Relative abundance of Pasteurellaceae, Haemophilus and 

Streptococcaceae OTUs of the oral communities in the 24 samples analysed in this 
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study. The three different individuals are identified as OBA, OBB and OBC. The 

numbers associated with these letter indicate which month of the study the sample 

was collected (1-8 = May-December 2013). 
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Figure 3.4b: Relative abundance of Neisseria, Abiotrophia and Lactobacillales OTUs of 

the oral communities in the 24 samples analysed in this study. The three different 

individuals are identified as OBA, OBB and OBC. The numbers associated with these 

letter indicate which month of the study the sample was collected (1-8 = May-

December 2013). 

 

 

Figure 3.4c: Relative abundance of the Gemellales OTU of the oral communities in the 

24 samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013).  

 

Conversely, OBA and OBB possessed significantly higher relative abundances of several 

OTUs than OBC, including Kingella (p = 0.008), Veillonellaceae (p < 0.001), Prevotella (p 

= 0.031), and TM7 (p < 0.05) (Figure 3.5a-b). 
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Figure 3.5a: Relative abundance of Kingella and Veillonellaceae OTUs of the oral 

communities in the 24 samples analysed in this study. The three different individuals 

are identified as OBA, OBB and OBC. The numbers associated with these letter indicate 

which month of the study the sample was collected (1-8 = May-December 2013). 
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Figure 3.5b: Relative abundance of Prevotella and TM7 OTUs of the oral communities 

in the 24 samples analysed in this study. The three different individuals are identified 

as OBA, OBB and OBC. The numbers associated with these letter indicate which month 

of the study the sample was collected (1-8 = May-December 2013).  

 

OBA and OBC possessed a significantly higher relative abundance of Rothia than OBB 

(p < 0.001) and OBB possessed a significantly higher relative abundance of 

Selenomonas than OBA and OBC (Figure 3.6). 
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Figure 3.6: Relative abundance of different OTUs of the oral communities in the 24 

samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013). 

 

OBA possessed a significantly higher abundance of Atopobium species than OBB and 

OBC (p< 0.001) (Figure 3.7). 
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Figure 3.7: Relative abundance of different OTUs of the oral communities in the 24 

samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013).  

 

Temporal variation in oral microbiota 

Significant temporal variation was observed in two OTUs in the microbiota of all three 

subjects, namely Capnocytophaga (p = 0.023) and Flavobacteriaceae (p = 0.01). For 

both OTUs, their relative abundance increased significantly during the course of the 

study (Figure 3.8).  
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Figure 3.8: Relative abundance of different OTUs of the oral communities in the 24 

samples analysed in this study. The three different individuals are identified as OBA, 

OBB and OBC. The numbers associated with these letter indicate which month of the 

study the sample was collected (1-8 = May-December 2013). 

 

Biofilm formation by oral streptococci 

This study used a simple in vitro biofilm assay to investigate biofilm formation by 

different oral streptococci. A total of 14 different oral streptococci strains were used.  

 

In the microtiter plate assay, the ability of each strain to adhere to the bottom of 

saliva-coated microtitre plate wells was assessed spectrophotometrically following 
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crystal violet staining. Initial optimisation of this assay involved testing for biofilm 

formation at numerous different time-points between 1 and 7 days post-inoculation.  

 

Following optimisation, the adherence of each strain at day 1, 4 and 7 post-inoculation 

was assessed (Figure 3.9). There was marked variation between the adherences of 

different strains at each of these time points. Furthermore, in general, there was little 

consistency between the amounts of adherence demonstrated by each strain at 

different time-points. However, all strains demonstrated most adherence 4 days after 

inoculation (Figure 3.9).The highest amount of biofilm mass formed by strain (13) at 

day 4. Whereas strain (B7) failed to establish a biofilms 

 

A 
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Figure 3.9: Biofilm density at days 1 (A), 4 (B) and 7 (C) after inoculation with the 14 

streptococcal strains used in this study. Each isolate was tested 5 times; the Figure 

shows mean value and standard deviation for each replicate.  

 

Given the nature of the variation described above, it was suspected that the patterns 

observed may have reflected variation in the growth rate of each strain rather than 

variation in their adherence. Thus, for all strains, at all time points, the amount of 

adherence recorded was compared to the number of planktonic (non-adherent) 

bacteria present. This analysis (Figure 3.10) did suggest a possible correlation between 

the two variables, but a statistically-significant correlation was not present (ANCOVA, p 

=0.1).  
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Figure 3.10: Extent of adherence in relation to extent planktonic growth recorded for 

14 streptococcal strains at 1, 4 and 7 days post inoculation. 
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CHAPTER FOUR: 

DISCUSSION 
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IDENTIFICATION OF MICROBIAL DIVERSITY IN THE MOUTH BY USING CULTURE-

BASED AND CULTURE-INDEPENDENT METHODS 

It is now widely acknowledged that the vast majority of microorganisms have yet to be 

isolated. Furthermore, achieving many of these isolations presents a complex 

challenge as many as yet uncultured species are particularly fastidious and thus 

require highly special nutritional and environmental conditions or even co-culture with 

other cells to provide essential metabolic requirements (Wilson et al., 1997). The 

existence of these as yet uncultured organisms has led to a vast underestimation of 

the richness of the human oral microbiota, the diversity of which has only become 

apparent with the advent of molecular techniques (Aas et al., 2005 Paster et al., 2006). 

This dissertation aimed to use polyphasic (culture dependent and culture independent 

approaches) to analyse the diversity of bacterial flora of the human oral cavity, to track 

person to person and temporal changes in this diversity. 

 

A culture-based appraoch 

The range of colony morphologies obtained in this study provided a simple but 

nonetheless immediate indication that the oral microbiome includes a good diversity 

of cultivatable micro-organisms. The use of selective media and different culture 

conditions helped to increase the diversity of colonial morphologies obtained. 

However, compared to the culture-independent approach, this diversity was clearly 

limited and a huge underestimation. Nonetheless, these efforts did result in the 

acquisition of wild-type, low-passage isolates useful for the experimental studies which 

formed part of this dissertation.  

 

The isolates obtained oral microbiota were characterised on the basis of colonial 

morphology, microscopic appearance of Gram-stained smears, and comparative 

analysis of partial 16S rDNA sequences obtained using Sanger sequencing of PCR 

products. In general, the results of these three approaches concurred, although A28 

Gram negative cocci did not match with the result from16S rDNA sequence data which 
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is Streptococcus salivaris.This may be due to contamination of the sample during 

isolation. 

The identities of the organisms isolated in this study were generally in line with what 

has been encountered in previous studies. Three genera were encountered most 

frequently (3 of 15 sequences each).  Comparison of these data with the phenotypic 

data for the isolates for which I did not obtain unambiguous 16S rDNA data suggests 

that Streptococcus species were the most common taxon isolated (3 confirmed and 4 

putative isolates among the 29 isolates obtained). Streptococcus species have been 

commonly identified from healthy subjects (Paster et al., 2006). S. mutans, which is 

often referred to as an oral “pathogen” has also been commonly found as part of the 

normal flora (Aas et al., 2005), although it is also the major cause of dental caries 

worldwide and is considered to be the most important cariogenic species of all of the 

oral streptococci (Ajdic et al., 2002). The relative abundance of S. mutans in oral 

biofilms is thought to be a crucial determinant of caries (Marsh, 2003), with an 

increase in the relative abundance of S. mutans considered as a pre-requisite for the 

formation of caries (Marsh, 2003). Other Streptococcus species, including S. gordonii 

and S. salivarius are also associated with dental plaque formation (Loo et al., 2000) but 

are thought to occupy different niches in the mouth, with S. gordonii preferentially 

colonizing the teeth and S. salivarius being found mostly on the dorsal surface of the 

tongue (Dewhirst et al., 2010, Aas et al., 2005). The sampling protocol used in my 

study involved swabbing both these areas along with other surfaces inside the mouth, 

so it is not surprising that both species were encountered. However, as so few isolates 

were characterised, I had no means of accurately determining the relative abundance 

of either of these, or any other species in the microbiota. 

 

The present study also identified Neisseria species as being amongst the most 

abundant taxa present. Neisseria species have been frequently isolated from the oral 

microbiota previously (e.g. Aas et al., 2005). They are not specifically associated with 

subgingival plaque but are present in most other sites within the mouth, including hard 

and soft tissues (Aas et al., 2005). Neisseria oralis is particularly abundant, being 

frequently detected in the oral microbiomes of healthy individuals (Wolfgang et al., 

2013).The third most abundant genus was Bacillus (3 confirmed and 1 putative 
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isolate). This finding was perhaps the most unexpected, particularly as two isolates 

where assigned to B. licheniformis, a soil-dwelling species associated with infection of 

bird feathers (Williams et al., 1990) rather than the human oral microbiome.  However, 

this result must be treated with care as the sharing of an indistinguishable partial 16S 

rDNA sequence is not definitive confirmation that the isolate obtained was a strain of 

B. licheniformis. Dewhirst et al., (2010), on the basis of partial 16S rDNA sequences 

(c500 bp), characterised numerous members of the genus Bacillus in the mouth 

including Bacillus anthracis, Bacillus subtilis, Bacillus fusiformis and Bacillus clausii 

(Dewhirst et al., 2010). This study used a shorter length of 16S rDNA data so may have 

failed to differentiate Bacillus species as sensitively as Dewhirst and colleagues did.  

 

The remaining isolates characterised were all well-established members of the human 

oral microbiome. Rothia species are generally considered as commensals that 

preferentially colonize the teeth and have also been identified in dental plaque 

samples (Paster et al., 2001). R. dentiocariosa has been detected in the subgingival 

microbiota of patients with aggressive periodontitis after treatment (Laksmana et al., 

2012). R. dentocariosa was described in studies by both Aas and colleagues (2005) and 

Colombo and colleagues (2009) as being more predominant in healthy people than 

those with oral disease, whereas Paster and colleagues (2001) encountered the species 

more commonly in diseased individuals then in healthy people. Granulicatella species 

are considered part of the normal microbiota of the oral cavity and also are found in 

the urogenital and intestinal tracts (Collins and Lawson, 2000; Asa et al., 2005). Other 

studies have implicated them as pathogens (Colombo et al., 2009. G. adiacens has 

been frequently detected in samples from tongue dorsum scrapings of both healthy 

subjects without halitosis and subjects with halitosis (Kazor et al., 2003; Aas et al., 

2005) and in the soft palate (Aas et al., 2005, Siqueira et al., 2006). Haemophilus 

parainfuenzae is well-recognised as a commensal of the human respiratory tract, 

rather than the oral microbiota, but as the two environments overlap, it is not too 

surprising that it was recovered in this study. Other studies focused on the oral 

microbiome have also encountered H. parainfluenzae (Paster et al.,2001). The final 

isolate characterised by 16S rDNA sequence comparison was identified as belonging to 

one of the genera Microbacter, Leifsonia or Actinobacterium. The ubiquity of members 
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of these genera in the human mouth microbiota has been previously noted (Hung et 

al., 2011). 

Culture-independent methods: overall biodiversity 

There have been many studies which have analysed the diversity of microbes within 

the oral cavity. These studies have mainly focused on sampling the periodontal pockets 

of the oral cavity (Haffajee et al., 1998; Sakamoto et al., 2005; Paster et al., 2006), 

however others have sampled more widely, for example Aas and colleagues (2005) 

explored nine different oral sites including the dorsum and lateral sides of the tongue, 

the buccal fold, the hard and soft palate, the labial gingiva and tonsils (of the soft 

tissue surfaces). Both supragingival and subgingival plaque from tooth surfaces was 

also sampled to discover the similarities between them. The sampling strategy in the 

present study was akin to that used by Aas and colleagues and thus it seems 

reasonable to compare their findings with those of this study. However, combination 

of a wider range of studies is also sensible to provide a balanced context for my work. 

Thus, overall, the results in the present study appear to be consistent with the work of 

others, who found the genera with the largest representation in healthy oral cavities 

including: Streptococcus, Veillonella, Granulicatella, Gamella, Actinomyces, 

Corynebacterium, Rothia, Fusobacterium, Porphyromonas, Prevotella, 

Capnocytophaga, Nisseria, Haemophilis, Treponema, Lactobacterium, Eikenella, 

Leptotrichia, Peptostreptococcus, Staphylococcus, Eubacteria and Propionibacterium 

(Aas et al., 2005; Jenkinson and Lamont, 2005; Wilson, 2005; Zaura et al., 2009; Bik et 

al., 2010). 

 

Overall, the Miseq sequence data suggested that the microbiota in all samples was 

dominated by members of two phyla, the Proteobacteria and the Firmicutes. Together 

these two phyla accounted for between about 35% and 70% of the total abundance of 

bacteria in all samples tested. This finding is in agreement with Wang and colleagues 

(2013) who reported that Firmicutes (14.8–58.3%) and Proteobacteria (9.2–46.5%) 

were the most abundant phyla in swabs of periodontally-healthy individuals. 

 

The results of this study were also in line with the findings of other previous studies in 

which the oral microbiome of healthy adult individuals were surveyed (Munson et al., 
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2002; Aas et al., 2005; Preza et al., 2008; Keijser et al., 2008). The consensus from 

these was that Firmicutes (genera Streptococcus and Veillonella) and Bacteroidetes 

(genus Prevotella) were the predominant phyla in saliva, while Firmicutes and 

Actinobacteria (genera Corynebacterium and Actinomyces) dominated supragingival 

areas. Our results also compare well with a study by Liu and colleagues (2012) in which 

the taxonomic profiling of the samples, whether derived from targeted 16S rRNA 

sequencing or from whole-metagenomic data revealed a community dominated by the 

bacterial phyla Firmicutes, Actinobacteria, Bacteroidetes, Fusobacteria and 

Proteobacteria. These data are also consistent with other studies too (Bik et al., 2010; 

Ahn et al., 2011). 

 

One possible discrepancy observed was the relative abundance of Atopobium species 

in one of the subjects of this study (OBA), who was pregnant, was greater than that in 

the non-pregnant female (OBC). In a previous study exploring the vaginal microbiome 

(Romero et al., 2014) it was found that the abundance of the OTU CST IV-B, which is 

most often dominated by Atopobium, was significantly lower in pregnant women 

compared to non-pregnant women. However, the present survey included only one 

pregnant and one non-pregnant woman, whereas that by Romero and colleagues 

included over 50 subjects and the sites surveyed in each study were different.  

 

Culture-independent methods: person-to-person and temporal trends 

Although some components of the microbiota of the human body are shared by entire 

populations and perhaps the entire species, significant differences between close 

relatives, such as members of the same family have been recorded. Although this 

variation has been described in many studies focused on different microbiomes of the 

body such as those colonising the intestinal tract, the skin and the female reproductive 

tract (Eckburg et al., 2005; Dethlefsen et al., 2006; Ley et al., 2006; Palmer et al., 2007; 

Grice et al., 2009; Hamady and Knight, 2009; Chaban et al., 2014), very little is known 

about person-to-person differences in the oral microbiome. Furthermore, to date, 

most of the NGS-based surveys of the human oral microbiota have focused on single 

time points, primarily as they are focused comparison of healthy versus diseased states 

rather than temporal variation (Bik, 2010). There are very few longitudinal studies to 
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assess the dynamics of these microbial communities in multiple subjects over a long 

period of time. One of the aims of this study was to explore both person-to-person and 

temporal variation in microbiome composition using pilot data derived from three 

subjects surveyed once a month for eight months. This generated 24 samples for 

analysis to determine whether distinct patterns in oral microbiome dynamics could be 

detected. 

 

The combination of the use of NGS has impacted on our present view of oral 

microbiology and a much greater diversity of species than was previously thought has 

now been uncovered. One of the reasons for this is the capacity of the technology to 

analyse a large number of samples in great detail, thereby permitting clearer pictures 

of the core human oral microbiome (James et al., 2014). 

 

The result from the present study showed that the individual of Caucasian descent 

possessed a significantly higher abundance of 10 OTUs than the two individuals of 

Arabic descent. In contrast, those of Arabic descent possessed significantly higher 

relative abundances of four other OTUs than the individual of Caucasian descent. This 

finding suggests that ethnicity may be an important determinat of the oral 

microbiome. Such a suggestion is in line with previous studies. Mason and colleagues 

(2014) demonstrated that ethnicity exerts an affect on the oral microbiome, and this 

important affect is genetic rather than environmental, since the two ethnicities 

surveyed (Caucasians and African Americans) despite sharing a common food, 

nutritional and lifestyle heritage, possessed significant differences in their 

microbiomes (Mason et al., 2014). However, perhaps of particular significance in my 

small-scale study, Flores et al. (2014) encountered a high-degree of inter-individual 

variability in the microbiome of the human gut, tongue, forehead, and palm. As a 

result, they suggested a ‘personal microbiome’ concept (Flores et al., 2014). More 

researchs need in this area, perhaps focused on Arabic communities, as there are 

currently no reports of studies in this area. 

 

My study also revealed significant temporal variation in the microbiomes of all three 

individuals included in the study. For example, the relative abundance of 
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Capnocytophaga and Flavobacteriaceae OTUs increased significantly during the course 

of the study in all subjects. This finding of temporal variation is consistent with other 

research. For example, Flores and colleagues (2014) reported high levels of temporal 

variability in both diversity and community structure in microbiomes at four different 

sites in the body. These findings suggest that temporal dynamics may need to be 

considered when attempting to link changes in microbiome structure to changes in 

health status. Furthermore, these findings showed that, not only is the composition of 

an individual’s microbiome highly personalized, but their degree of temporal variability 

is also a personalized feature. 

 

Although drawing meaningful conclusions from the results of this pilot study would be 

somewhat foolhardy, it should serve to give impetus for further wider studies.  

 

Use of an in vitro model system to analyse variation in biofilm forming capacity of 

members of the oral microbiome 

This study set out with the aim of establishing an in vitro setup for mono-species 

cultures to analyse variation in the biofilm forming capacity of members of the oral 

microbiome using both well characterised strains and recently isolated strains from 

healthy individuals. The saliva-coated plastic surfaces of the used 96-well plates clearly 

did not support some of Streptococcus strains. Prior studies demonstrated a 

dependence of S. mitis biofilm formation on the presence of acquired pellicle and 

lectins (Oliveira et al., 2007). Similarly, the S. oralis strain C104 formed only low biofilm 

density, suggesting that this species lacks effective colonization factors for binding to 

abiotic surfaces but can participate in complex biofilms by binding to more successful 

earlier colonizers (Loo et al., 2000). However, I sought the best suited medium for 

biofilm formation of the chosen bacterial species, biofilm Medium (BM). S. oralis C104 

grew very well in BM but could not form biofilm on abiotic surfaces. These results 

show a wide variation in the abilities of oral streptococci grown in BM to form biofilms 

on polystyrene. These variations in the ability to form biofilms were also observed by 

others (Loo et al., 2000). 

Interspecies variation was seen in the ability of oral streptococci to form biofilm on 

polystyrene surfaces that may reflect differences in the mechanisms of colonization by 
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different streptococcal species. Many human viridans streptococci participate in 

intrageneric coaggregation, the cell-to-cell adherence among genetically distinct 

streptococci, and these interactions may foster the initial colonization of the tooth 

surfaces (Kolenbrander et al., 1990). This finding could explain why some strains have 

poor biofilm formation in this experiment, such as Streptococcus parasanguis FW213 

(B1) and Streptococcus intermedias ATCC 27335 (B8). However, these two strains show 

the same result as Loo and colleagues (2000) who claimed that OD values below 1.0 

were categorized into low or non-biofilm producers).  In addition S. oralis NCTC11427 

(B3) showed moderate biofilm growth again similar to Loo et al. (2000) who 

considered that O.D values between 1.0- 2.0 were assessed as moderate biofilm 

producers. 

 

The most important advantage of using the microtitre plate assay is that it is easy and 

inexpensive. Numerous other studies used the same model (Loo et al., 2000; Lemos et 

al., 2010; Standar et al., 2010). Microtiter plates made of polystyrene provide an 

appropriate and sterile abiotic surface for observing bacterial biofilm formation. 

Microtitre multi-well plates were identified for use in biofilm systems because they 

facilitate the use of a high number of replicates. One of the limitations of this 

experiment was the use of one wall as planktonic growth instead of five replicates as 

used for the biofilm formation walls. Due to this limitation it is impossible to compare 

and prove that a strain had poor biofilm formation because it had poor planktonic 

growth. 

 

For future studies there should be more focus on choosing strains that form good 

biofilms. There should be the same number of replicates for planktonic and biofilm 

walls and also improve the biofilm formation on good microtitre surfaces by using low 

nutrient concentrations, and hydroxyapatite (the main component of tooth enamel) as 

a removable substratum. Surfaces should be pre-treated with processed saliva which 

mimics the salivary pellicle, thus giving the correct receptors for the adhesion of 

pioneer species, as has been described previously (Standar et al., 2010). Alternatively, 

a mixed culture model which has a well-like format permits the simultaneous 

screening of the combinations of many species for cooperative interactions, and shows 
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the effect of changes in media composition and the comparison of different strains 

(Tribble et al., 2013). 

 

It would be interesting to revisit this oral diversity analysis again as a separate study, in 

order to analyse many more samples and obtain a data set that is more statistically 

sound, as well as gaining more of an insight into the stability of the oral microflora and 

observe temporal changes. It would also be interesting to investigate whether, given 

further time and attention to the diversity analyses, an increased number of genera 

would be identified, or whether the same number and types of genera would be 

identified in higher amounts. Given the small scale of the diversity study carried out in 

this work, it is reasonable to presume that a larger diversity study would reveal an 

increased number of genera, although it must be presumed that the genera already 

identified would also be seen in future analyses. One option for a more in-depth study 

would be to work with clinical samples from patients with caries or periodontal disease 

attending Tripoli dental hospital in Libya, and compare these data with UK patients as 

few studies had been done exploring inter-racial variation, particularly involving 

people of Arabic descent. 

 

In summary, this study has been set out to establish an in vitro setup for mono-species 

cultures to analyse variation in the biofilm forming capacity of members of the oral 

microbiome using both well characterised strains and recently isolated strains from 

healthy individuals.Further work is required to optimise this in vitro assay and use it to 

study mixed-species cultures to determine the biofilm behaviour of oral bacteria. 
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