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Abstract An end-to-end AV broadcast system providing an immersive, interactive experience for 

live events is the development aim for the EU FP7 funded project, FascinatE. The project has 

developed real time audio object event detection and localisation, scene modelling and processing 

methods for multimedia data including 3D audio, which will allow users to navigate the event by 

creating their own unique user-defined scene. As part of the first implementation of the system a 

test shoot was carried out capturing a live Premier League football game and methods have been 

developed to detect, analyse, extract and localise salient audio events from a range of sensors and 

represent them within an audio scene in order to allow free navigation within the scene.  
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Introduction 

Project background 

The FascinatE project, funded under EU FP7, is developing an end-to-end AV 

broadcast system that will provide an immersive, interactive experience for live 

events. The system will allow users to create and navigate their own AV scene 

based on their preferences or by free pan, tilt and zoom control. As part of this 

project, techniques are being developed to provide new methods for capturing 

real-time audio events and embedding them within a modelled 3D scene to 

facilitate an interactive audio experience. 

 

The FascinatE project is utilising Fraunhofer HHI’s OmniCam (Schreer et al., 

2013) to produce a high resolution 180° panorama that is stitched with the output 

of HD camera clusters, used to produce regions of interest (ROIs) that can be 

freely navigated or selected by the user. Methods have been developed for real-

time live audio event detection, analysis, location and extraction in order to enable 

dynamic audio interaction for dynamically changing user-generated scenes. A 

modeled 3D audio scene has been defined allowing users to pan around and zoom 
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into the high resolution panoramic video with corresponding changes to the audio 

scene. 

 

This user control involves a considerable paradigm shift for users whose role has 

then changed from that of passive viewer to active participant in creating the 

scene. For FascinatE audio this shift is analogous to moving away from traditional 

television broadcast and toward an experience more like a first person gaming 

environment where, for example, turning the character (visual scene rotation) 

leads to a corresponding rotation of the audio scene. This is unlike current practice 

of broadcasting sports events as described in section 1.2. Current practices utilise 

a static ambient surround sound regardless of camera movement together with 

other microphone feeds which are panned centrally and manually raised or 

lowered dependent on the location of the action on the pitch. The concepts of first 

person gaming have previously been linked with such an fotmat-agnostic/object-

based approach to audio with scene representation formats such as VRML (Carey 

and Bell, 1997), however this paper presents a different approach to the 

representation of a format agnostic audio scene which will be described in section 

2.5. 

 

To facilitate this interactive audio experience a corresponding shift in production 

methods is required that involves developing event detection techniques and 

modeling of a 3D audio scene in such a way that new user requirements for free 

navigation can be satisfied. The potential for users to freely navigate a live event, 

and in particular, to be able to zoom into the video content introduces 

considerable challenges for the project; although the navigation and zooming is 

into a 2D video stream the impression for the user in zooming into a scene is that 

other events will move towards, around and even behind the viewing position. 

This implies that sound source locations must be clearly defined in 3D space 

relative to a 2D visual display.  

 

In order to allow users to zoom into the scene and beyond sound source locations 

the project has had to develop methods to detect, analyse and auto-localise key 

audio events in addition to manipulating ambient 3D audio recordings. The audio 

event model developed for the project has been designed to function across a 

range of genres incorporating both sporting events and also other genres such as 

live music and theatre however its initial trial implementation documented here 

has been that of a live Premier League football game. 

 

Television broadcast of football 

Current methods for capturing sound at a live football match for 5.1 surround 

sound reproduction are based on associated production choices and values. 

Ambient sound such as crowd noise is generally recorded using a single 

SoundField® ambisonic microphone or stereo pair suspended high above the 

crowd. Sounds on the field of play are recorded using twelve highly directional 

shotgun microphones arranged around the pitch as shown in Fig. 1. The ambient 

crowd noise is reproduced as a static surround signal, unaffected by camera 

choice, pan and zoom and all pitch-side shotgun microphone signals are panned to 

the front centre of the mix. An engineer at the event is responsible for raising and 

lowering these microphone signals according to play so that only those 
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microphones picking up sound near to the action are active at a given point in 

time.  

 

 

Fig. 1 Typical Microphone setup for and English Premier League match - the dotted lines mark the 

principle pick-up zones for each of the 12 shotgun microphones surrounding the pitch 

 

Automatic mixing applications have been suggested in the literature (Cengarle et 

al., 2001), these techniques require that the engineer tracks the position of the on-

pitch action using a remote device such as a tablet PC and the microphone signals 

are automatically mixed from this data. The object-based audio techniques 

presented in this paper could be used to realise an automatic mixing algorithm that 

would not require manual tracking. From the audio feeds alone, the algorithm 

detects when a significant on-pitch sound has occurred and adds the 

corresponding microphone feeds into the mix accordingly. 

 

This paper is organised as follows. In section 2 an overview of object-based audio 

approaches is given including distinction between implicit and explicit audio 

objects, and definition of a new broadcast file/streaming format for the object-

based audio scene. Section 3 describes the process of extracting the key on-pitch 

sounds of football as audio objects including object positioning. Section 4 

describes the testing of the extraction algorithms; applications, improvements and 

conclusions are presented in sections 5, 6 and 7 respectively.  

 

Object-based Audio 

Background 

Object-based audio operates on a different paradigm to channel-based systems. In 

channel-based audio, such as two channel stereo, 5.1, 7.1, 9.1, etc., the production 

(or the recording) is tailored for a specific loudspeaker configuration. In object-

based systems each audio object, each sound, is defined not by its relationship to 

the loudspeakers and their placement but by a 3D coordinate location. In principal 

this means you can define your audio objects in production and render them 

across a wide variety of loudspeaker configurations, everything from conventional 
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5.1 and 7.1 to more immersive systems with a height component provided by 

loudspeakers above your head. 

 

Object-based audio is considered an essential requirement of interactive systems 

in order to allow manipulation of the audio scene with reference to viewer/camera 

movements and to enable interaction with individual elements of an audiovisual 

scene. Bove Jr, (1995) and Watlington (Watlington and Bove Jr, 1997) suggest a 

computational framework for object-based encoding and suggest that in addition 

to being useful for compression, an object-based approach could open the door to 

interactive television content. These papers concentrate on video as being the 

biggest computation challenge owing to the high data rates involved, however an 

object-based approach to audio is also a necessary part of interactive and 3D 

media and poses many additional challenges.  

 

One such challenge of implementing an object-based audio approach is that it puts 

new requirements on audio capture. Westner, (1998) suggests new methods for 

capturing the audio objects and identifies issues with separating acoustical sources 

in real-time. Kyriakakis, (1998) further emphasised the need for audio to play a 

part in the “suspension of disbelief” needed for 3D media systems and identifies 

both acoustical and technological factors that limit the capabilities and 

implementations of object-based 3D audio systems. Bove Jr, (1996) predicted that 

the benefits of such systems would include new production and post-production 

methods and include script based interaction with media objects. This paper also 

identified the difficulties inherent in analysis of audio scenes; correctly indicating 

that the rendering part of object-based audio is much more clearly understood and 

more easily carried out than the analysis. Various methods for separation of 

acoustic signals or blind source separation (BSS) have been proposed (Choi et al., 

2005; Torkkola, 1999; Vincent et al., 2005) however the computing required for 

these higher order statistical analysis methods means that they are currently 

mainly unsuitable for real-time implementations such as that described in this 

paper.  

 

Previous research has looked at the potential of using multimodal multimedia for 

high level event detection (such as a goal scored in a football game) (Chen et al., 

2003; Wang et al., 2004) and also using audio only data (Kim et al., 2006). 

However this has been restricted to high level event detection such as detecting 

when goals are scored rather than low level events, e.g. when the ball has been 

kicked, and has been conducted in an offline situation for detection of football 

highlights.  

 

Audio object description is also an open issue and several representations of audio 

objects have been proposed in the literature (Geier et al., 2010; Hoffmann et al., 

2003; Peters, 2008; Pihkala and Lokki, 2003), one the most relevant here being 

the audio descriptors documented in the object-based multimedia standards 

MPEG-4 (MPEG., 1998). In this standard audio BIFS (BInary Format for Stream) 

are used to represent both natural and synthetic audio in a three dimensional scene 

graph (Scheirer et al., 1999) allowing implementation of 3D audio features into 

gaming, virtual environments and other interactive media applications (Lindsay 

and Herre, 2001). The MPEG-4 standard is extremely comprehensive and is 

perhaps hampered by its complexity which has not seen it widely adopted. 
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Audio Objects 

Current broadcast standards do not use an objective audio approach but instead 

broadcast audio signals defined by the loudspeaker layout on which they are 

intended to be reproduced, so there are an equal number of audio channels as there 

are loudspeakers in the target reproduction system - two signals for two channel 

stereo, 6 channels for 5.1 surround etc. However the FascinatE project has at its 

root a format agnostic ethos; for audio this means that the audio must be captured 

and transmitted in such a way that it can be reproduced on any sound reproduction 

system, including large multi-channel systems such as ambisonics and wave field 

synthesis. This requires a shift in methodology from the current practice towards 

an object-based audio approach. 

  

Broadcasting in this manner puts new requirements on the audio scene capture as 

most scenes contain many audio objects which may or may not be clearly defined. 

For this reason the complexity of the audio object capture depends on the type of 

audio source and also the capture system used. In this paper two types of audio 

objects are defined that need to be considered when capturing an audio scene. 

Explicit 

Explicit audio objects are objects that directly represent a sound source and have a 

clearly defined position within the coordinate system. This could include a sound 

source that is recorded at close proximity either by microphone or by a line audio 

signal and is placed, tracked or stationary with defined coordinates. Example: 

instruments close miked in a performance which are static and have little or no 

crosstalk from other sources, or the commentator at a football match. 

Implicit 

Implicit audio objects represent sound sources in a more indirect manner, these 

could include signals that are picked up by more distant microphone techniques or 

by microphone arrays where the source of sound may be derived from several 

recording devices. Example: in a football match the audio object describing the 

ball being kicked can be derived from one or more shotgun microphones around 

the pitch. In this instance the ball could not be tracked so both the content and 

position of the audio object need to be extracted from the available capture 

devices. This example is described in detail later in this paper. 

 

Although both implicit and explicit objects need to be broadcast for most sports 

broadcasts, this paper focuses chiefly on the extraction of the position and content 

of implicit audio objects for sports broadcasting. 

Broadcasting the Audio Objects 

Once the content and position of the audio objects in the scene have been 

determined, they can be broadcast, together with the recorded ambient sound 

field, using a broadcast audio file format designed around object-based audio, to 

provide the user with a fully customisable audio scene  

Requirements on an audio file/streaming format 

The audio scene will generally consist of several audio tracks. These audio tracks 

contain single audio objects as well as sound field descriptions. The sound field 
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descriptions are represented in the well-known ambisonics format (Gerzon, 1973, 

1985). Ambisonics is based on a spherical harmonic decomposition of a sound 

field which is then represented by a series of spherical harmonic coefficients, the 

ambisonic order defines the order of these coefficients and hence the spatial 

resolution of the recorded sound field.  The number of tracks will vary over time 

as the content of the captured scene changes; new tracks can be 'born' (become 

active in the scene) and old tracks can 'die' (become inactive in the scene). A good 

example is a whistle-blow or ball-kick which will only be active in the scene at 

the extracted position for a short period of time. That track will 'live' for a few 

seconds so the broadcast reflects this by only broadcasting the necessary content 

for each period of time.  

 

Over time the scene is split into audio frames, with a variable length as shown in 

Fig. 2. 

 

 

Fig. 2 Relation between audio tracks and frames 

 

An audio frame contains information about the frame itself, information about the 

tracks and also of the payload (the audio data). A frame can be used as an access 

point to allow random access at some points in time. Instead of transmitting the 

whole frame length track by track, which would require a long buffer, the payload 

should also be split into smaller segments as depicted in Fig. 3. 

 

 

Fig. 3 Sequence of data packages per audio frame 

 

The Frame Header has a unique frame number, a timestamp, the number of 

tracks, the sample rate, the number of samples per segment and potentially some 

room environment information could also be included. Each Track Header 
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requires a unique number, a timestamp offset, the track type (to distinguish 

between single Audio Objects and Sound Field tracks), the position and 

potentially a directional pattern using spherical harmonics coefficients or a VRML 

description (Carey and Bell, 1997). In case of a Sound Field track, parameters like 

2D/3D, the Ambisonics order, the orientation of the Sound Field, the rotation, the 

bit depths, the coefficient order and the normalization method used (e.g. “Furse-

Malham weights”, “Schmidt Semi-Normalized” or 4π Normalized etc) should also 

be part of this header information. 

 

Extracting Audio Objects 

The algorithm presented here has been primarily developed for football 

applications but the concepts involved have application in other sports such as 

tennis, athletics, rugby etc. The algorithm ingests the audio feeds from the 

microphones surrounding the field of play in frames, analyses the content of each 

frame and assesses whether or not it contains a significant on-pitch audio event 

(OPAE). In the context of a football match, we define principally three categories 

of OPAE corresponding to ball-kicks, whistle-blows and players’/managers’ 

communications, this paper concentrates on the detection and extraction of ball-

kicks and whistle-blows. If the algorithm detects such an event in the audio frame, 

it determines that action is taking place in the vicinity of that microphone. For a 

standard broadcast scenario, this can be used to retrospectively add that 

microphone signal into the broadcast mix for the window of time in which the 

audio event occurred, this requires that the live be broadcast be delayed by 

approximately 1 second to allow for the processing time. For a broadcast scenario 

utilising an object-based audio approach, further processing can additionally be 

done to determine the location of the OPAE such that it can be extracted as an 

audio object with both content and location. 

 

The methodology for extracting the audio events differs depending on the sport 

and type of OPAE that is to be detected however the principle of analysing the 

audio feed for salient features remains the same. An algorithmic approach has 

been applied here rather than using artificial intelligence techniques for the 

content extraction due to computation speed constraints on the system and the 

extremely large training data sets that would be needed especially for ball kicks 

where the sound changes significantly based on how hard the ball is kicked and 

which part of the boot/body the ball was hit with. Consequently the approach 

adopted here analyses the microphones for lower level audio characteristics for a 

very fast content extraction process. 

Extracting ball-kicks 

To successfully detect a ball-kick from the audio data, it is important to analyse 

the key characteristics of the audio generated by such a kick. Fig. 4b shows the 

spectrogram of a typical ball kick as recorded at a football match in the English 

Premier League. 
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a) 

 
b) 

Fig. 4 a) Time history and b) spectrogram of a typical ball-kick from a live broadcast 

 

As can be seen from Fig. 4b the kick of a football is characterised by broadband 

transient energy in the audio feed particularly at low frequencies. This is in 

contrast to the wash of crowd noise that contains few transients. This feature can 

be exploited to efficiently extract the audio from the microphone signal in real-

time.  

 

Using the recordings from the premier league match, 25 typical ball-kicks were 

analysed to look for the common signal characteristics that can be used to identify 

and extract the ball-kick from the broadcast microphone feed. These 

characteristics were used to fine tune the algorithm and identify signal thresholds 

for extraction. Fig. 4a shows the time history of a typical ball-kick which has a 

transient lasting ~25ms. In this case the ball-kick is significantly louder than the 

background noise, however there are many cases where this is not the case and 

visual inspection of the time history does not reveal the presence of a ball-kick, 

although the ball-kick is clearly audible. In this case, the sound of the kick can be 

extracted using other features of the audio signal. 

 

The process for extracting the ball-kick can be described by the flow diagram in 

Fig. 5: 
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Fig. 5 Flow diagram of the ball-kick extraction process 

 

Firstly the power spectral density of the input signal is computed at several 

analysis frequencies corresponding to the significant frequencies of an average 

ball-kick using the short-time Fourier transform (STFT) method. The frequencies 

chosen for the analysis here were 25, 30, 40, 50, 60, 80, 100, 125, 250 and 500Hz. 

The power spectral density is a measure of how the energy of a signal is 

distributed with frequency and is calculated from the square of the signal’s 

Fourier transform as per equation 1: 

   
2

2

1





 dtetsPSD tj


 , 1 

This PSD function can be considered as the envelope of the signal in the given 

frequency band, thus the gradient of this function describes how quickly energy 

changes in that frequency band which illuminates points of the signal with 

transient energy. The gradient of this function is thus computed for all the analysis 

frequencies. A series of weights for each frequency are then applied to this 

gradient function giving greater or lesser preference to certain frequencies 

allowing fine-tuning of the search algorithm and for extracting transients with 

different characteristics for different scenarios such as the hit of a tennis ball 

where transients are still needed but the frequency content is very different. For 

the N weights, wi a weighted mean is then taken to give a combined mean 

gradient,   as equation 2. 
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The algorithm then searches through the samples in    to find both onset and offset 

transients. The average length of a ball-kick transient is 20ms although some have 

longer or shorter durations so the algorithm looks for onset and offset pairs that 

occur within 5-25ms of each other. This ensures that the algorithm doesn't detect 

global changes in sound pressure with a sharp transient onset or longer duration 

transients but only detects ball-kick transients. The gradient function is 

normalised to the median value of the signal in each frame and adaptive frame 

dependent threshold is derived to look for significant changes in transience. When 

this threshold is exceeded the algorithm has detected a ball-kick and the signal is 

multiplied by an amplitude envelope between the time interval of the detected 

ball-kick and the content of the audio object is determined. The onset time of the 

audio object must also be recorded and imbedded into the broadcast stream, as 

audio objects will become active and inactive at different times during the 

broadcast as described in section 2.5. 
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A further safeguard is put in place to prevent loud transient cheers from the crowd 

being erroneously extracted. This is done by looking at the sound power in the 

input channel. If the sound power exceeds a given value then the search algorithm 

is temporarily disabled. This is done for two reasons. Firstly, if the sound is very 

loud as is the case for a cheer when a goal is scored, or is about to be scored, the 

high level will cause a global increase in sound power which will highlight the 

sudden inclusion of the audio object into the mix (even after the attack and decay 

ramps have been applied). For standard audio object inclusion, this is not a 

problem as the audio from the ambient microphones picking up the crowd noise, 

mask the inclusion of the audio object (this also the case currently for a standard 

broadcast when the sound engineer adds the pitch microphones into the mix as 

described in section 1.2), but the masking of the audio object will be less effective 

if the audio object is very loud. The second difficulty is that if the extracted audio 

object contains a large amount of crowd noise and is mistakenly considered to be 

an OPAE, crowd noise will be positioned on the pitch, which when reproduced 

over a surround sound system will produce confusing auditory localisation cues 

and an incorrect audio scene. Future versions of the algorithm and new recording 

techniques however hope to alleviate these problems still further as described in 

section 6.1. 

 

Enhancing ball-kicks    

The sound of the ball-kicks can even be enhanced, bringing them out of the 

background noise for a better sound reproduction and listener experience, by 

multiplying the original signal by the absolute signal gradient over the analysis 

frequencies. This has the effect of increasing the transience of the signal which 

makes it perceptually more noticeable. Knowing the nature of the audio object, in 

this case a ball-kick, also means that a filter can be designed that further enhances 

this sound. The enhancing of on-pitch sounds is becoming more of a feature of 

modern broadcasts (Andrews, 2011) as consumers expect more immersion and a 

hyper real viewing experience more akin to a computer game. 

 

Extracting whistle-blows 

The technique for extracting the referee’s whistle differs from that of extracting 

ball-kicks. The spectrogram of a typical blow from a referee’s whistle as recorded 

during a broadcast of a live football match is shown in Fig. 6. For the duration of 

the whistle-blow (from t ≈ 0.7s - 1.8s) it is characterised by its harmonic content, 

having a fundamental frequency of approximately 4 kHz. This feature can be 

exploited to detect and extract the whistle-blow by using the signal’s cepstrum. 
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Fig. 6 A spectrogram of a typical referee’s whistle-blow beginning at ~0.7s and finishing at ~1.8s 

 

 

Fig. 7 Frequency spectrum of a typical referee’s whistle blow - Note the harmonic content with ~4 

kHz fundamental frequency 

 

The cepstrum is often used in speech processing to determine the fundamental 

frequency of formants and for other scenarios where pitch detection is needed. 

The real cepstrum, xc   is calculated by taking the inverse Fourier Transform of 

the magnitude of the natural logarithm of the source frequency response as per 

equation 3: 

 




 


deSc tj

x log
2

1
, 3 

 

Where is the frequency spectrum of the source signal: 

 

    dtetsS tj 


 , 4 

 

As the cepstrum is calculated from the Fourier Transform of the frequency 

domain description of a signal, it highlights the periodic components in the 

frequency response, which hence equate to the signal's harmonic components. It is 

therefore ideally suited to detect a whistle-blow which, as seen from Fig. 6 and 

Fig. 7, is rich in harmonic content. If the input signal contains many harmonics, its 

spectrum will exhibit, peaks at the harmonic frequencies, whose spacing is 

 S 
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determined by the fundamental frequency of the signal. The more prominent these 

harmonics are in the signal, the greater the value of the cepstrum. The peak in the 

signals cepstrum will occur at a quefrency value, in temporal units, which is 

reciprocally related to the fundamental frequency. The cepstrum of a 0.2s section 

of a typical whistle-blow is shown in Fig. 8. The pink band in the plot corresponds 

to the analysis frequency range, i.e. the range of frequencies in which the 

fundamental frequency of the referee’s whistle is likely to occur in (3 - 4.5 kHz). 

The extraction algorithm sums the cepstrum in this analysis band to determine 

when to extract a whistle-blow. 

 

 

Fig. 8 Real cepstrum of a 0.25s chunk of a typical whistle-blow. The peak in the cepstrum at a 

quefrency of 2.7×10
-4

s
 
equates to a fundamental frequency of 3.7 kHz. The pink section shows the 

analysis frequency band for a typical whistle (3 - 4.5 kHz) 

 

The method for whistle-blow extraction utilises a short-time cepstrum analysis 

with a signal frame length of 0.2s and with a frame overlap of 95%. A moving 

average of the summed value of the cepstrum in the analysis range is taken (as 

shown in Fig. 9) averaging the summed cepstrum value every 0.2s. The median 

value of the detected fundamental frequency for each 0.2s frame is also 

calculated. The algorithm looks for sections of the signal where the average 

summed cepstrum value is above the threshold value and the fundamental 

frequency falls within the frequency range of a typical whistle-blow (3 - 4.5 kHz).  

 

If the above criteria are met, a whistle-blow has been detected and the microphone 

feed should be added into the mix for the corresponding time window and 

extracted as an audio object. In order for the onset and offset of the microphone 

signal to not be perceptually obvious an attack and decay ramp is applied with a 

1.5s duration, the subsequent increase in level introduced with the addition of the 

microphone feed is not problematic as it is masked by the crowd noise from the 

ambient microphones as is the case for a standard broadcast when the engineer 

raises the level of shotgun microphones manually. 
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Fig. 9 Changes in the summed cepstrum with respect to time for the onset of a whistle-blow. The 

red line shows the summed cepstrum for each frame, the blue line shows the mean value for each 

0.2s section of the signal. The light blue area shows the threshold value. 

 

For the extraction of both ball-kicks and whistle-blows it would be possible to 

derive a receiver operating characteristic (ROC) curve (Metz, 1978) for the 

optimization of the level of the threshold, however this would only be of benefit 

to the specific recorded scenario as the required thresholds are liable to change 

based upon the given scene (i.e. it will change based on the stadium and the 

number of supporters in the stadium etc.). For a real implementation of the system 

the sound engineer would be given a sensitivity control which would enable a fine 

tuning of the extraction system, changing the threshold based on the specific 

scenario.  

Extracting the object’s location 

Once the audio object content has been extracted using the techniques described 

above, the extracted content is compared with the signals from the remaining 11 

microphone signals to determine if they contain the same signal. This is done by 

computing the cross correlation with the extracted source and the raw feeds from 

the other microphones in the time window of the audio object. If the cross 

correlation coefficient is high enough it is determined that the microphones are 

picking up the same signal and hence can be used to determine object's position. 

This step is necessary because the ball-kick or whistle-blow may only be a weak 

signal in the other microphones and consequently may not be detected by the 

extraction algorithm (especially if the sensitivity of the algorithm is reduced to 

avoid false detections), but if a significant amount of the audio source is in the 

microphone signal at even a very low level, it can still be used to position the 

source on the pitch.  

 

The source positioning is based on a time delay estimation technique (Carter, 

1993). The cross correlation between microphone pairs is computed and hence the 

delay between the received signals is calculated. The cross correlation can be 

performed using several techniques (Barsanti and Tummala, 2003; Cheng and 

Tjhung, 2003; Grennberg, Anders and Sandell, 1994; Jakobsson et al., 1998; 
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Knapp and Carter, 1976; Zongchuang et al., 2002); here we use generalised cross 

correlation coefficient (GCC) with the phase transform (PHAT) pre-filter (Knapp 

and Carter, 1976) as it is more robust to signals with a lower signal to noise ratio. 

 

To find the time delay, D between two microphone signals  tx1       and       

the GCC is computed: 

     
1 2 1 2

2j f

x x phat x xR f G f e df  



  , 5 

 

where the phase transform pre-filter       is given by  

 
 

1 2

1
phat

x x

f
G f

  , 6 

and  fG xx 21
is the cross power spectral density between the two signals. The time 

offset, τ at which this function  
21xxR  is maximum gives the estimate of the 

relative delay between signals  tx1       and  2x t . This TDOA allows the 

calculation of the relative distances from the source to each microphones, R  as 

given by equation 7 where the geometry is given by Fig. 10. 

 

1 2 2R R R R c t     ,  7 

Where t  is the time-difference-of-arrival between the sound arriving at Mic 1 

and Mic 2 and c is the speed of sound in the medium. 

 

 
Fig. 10 Source geometry 

There are many source positions that satisfy equation 7, plotting these possible 

positions reveals that they can be located along a hyperbola between the two 

microphones as a hyperbola is given by a set of all points in a plane such that the 

difference of the distances from two fixed points (foci) is constant. In this case the 

foci are the microphone positions and the source will be located on either the right 

hand or left hand hyperbolic path shown in Fig. 10 depending on which 

microphone received the sound first. 
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It can be shown that for a hyperbola the relative distances between R1 and R2 is 

given as 

 

2 1 2R R R a    , 8 

 

Where a is the absolute value along the x-axis from the origin of the vertices of 

the hyperbola. The equation for the hyperbola is then given as 

 
2 2

2 2
1

x y

a b
  , 9 

 

Where b is derived from the asymptotes of the hyperbola as: 

 
2

2

4

MD
b a  , 10 

 

Thus a hyperbola can be plotted, taking the positive solution of x along which the 

source will be situated. It should be noted that this derivation constitutes a specific 

geometry where the two microphones are located along the x-axis and equally 

spaced around the origin, thus for microphones not at these positions a coordinate 

transform is required to plot the correct hyperbola. 

  

If there are two or more microphone pairs containing the same source signal, the 

source can be accurately positioned in 2D space by finding the point of 

intersection of the computed hyperbolae. If there are many hyperbolae, the points 

of intersection are averaged to give an accurate estimation of the source position. 

This can be seen from the measured data in Fig. 13. This approach has been 

chosen over more complicated optimization methods for source localisation 

(Benesty., 2000; Do et al., 2007; Silverman et al., 2005) due to the large search 

area that would be involved here; as such this constitutes a very computational 

efficient method which can be carried out in real-time. 
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Fig. 11 Flow diagram for the possible source positioning scenarios based on the available capture 

data. The yellow dots show the predicted source location, the turquoise dots show the actual 

position 

 

In some cases, the captured content provides insufficient information to be able to 

accurately identify the source position and in this case an approximation of the 

source position is made based on the information available. For example if only 

one microphone picks up the OPAE or the correlation between two microphones 

is not good enough to determine the relative time delay, the source must be 

positioned approximately based on the principle capture zone of the active 

microphone. Additionally, if the OPAE can only be found in two microphone 

signals the source can only be approximately positioned along one hyperbola, in 

which case it can be positioned along the hyperbola and halfway into the principle 

capture zone of the active microphone as shown in Fig. 11. Positioning the source 

half-way into the principle capture zone in this way minimizes the probability for 

very large position errors.  

 

Testing the algorithm 

Extraction of audio object content 

To test the algorithm, a one minute section of audio was selected at random from 

each of the 12 pitch-side shotgun microphones. The number of ball-kicks and 

whistle-blows in each section was counted manually, then the audio was fed 

through the algorithms and the number of detected objects counted. Also counted 

were the number of ball-kicks that were in the original audio stream but that were 

missed by the algorithm and the number of false object detections for each 

microphone signal. 
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Results 

The results from the content extraction experiment are shown in Table 1. The 

table shows the number of correct object detections in each test section of audio, 

additionally, it shows the number of false object detections, that is to say, when 

the extractor incorrectly determined a section of audio was a ball-kick or whistle-

blow. The final column states the number of OPAE which were present in the 

original audio but were not interpreted as OPAE by the algorithm. 

 

 

Microphone position 

BALL-KICKS WHISTLE-BLOWS 

Correct 

detection 

False 

detection 
Missed 

Correct 

detection 

False 

detection 
Missed 

1. Left hand Goal 8 1 1 3 0 0 

2. Far Left Corner 8 2 1 0 0 0 

3. Far left wing 1 1 0 0 0 0 

4. Far Centre 8 2 0 1 0 0 

5. Far Right wing 11 2 0 0 1 0 

6. Far Right Corner 8 5 0 0 0 0 

7. Right Hand Goal 11 3 0 0 0 0 

8. Near Right Corner 7 1 0 0 1 0 

9. Near Right wing 7 0 0 0 0 0 

10. Near Centre 9 0 2 1 0 0 

11. Near Left wing 7 0 0 0 0 0 

12. Near Left Corner 1 0 0 3 0 0 

Table 1. Results from the ball-kick and whistle-blow extraction test. The microphone numbers 

correspond to the numbers on Fig. 1 

 

Discussion 

Ball-kick extraction 

The results from the ball-kick extraction show that the algorithm is sufficiently 

robust to extract over 95% of the ball-kicks that could be discerned in the raw 

audio feed. There were however a small number of false detections which could 

potentially be problematic in a broadcast scenario. There are three possible causes 

of the false detections. Firstly an on-pitch noise other than a ball-kick (possibly 

someone on the pitch shouting for example) could be picked up if the signal 

happened to contain a similar transient structure to a typical ball-kick. This case is 

not too problematic for a broadcast scenario, as the motivation of the algorithm is 

to extract on-pitch sounds, so this case could be considered a success as the real 

sound is at least coming from the pitch even if it is not a ball-kick. Secondly, 

noise from the crowd could be picked up and detected as a ball-kick. This 

situation is difficult to avoid, especially where it is the culture for the crowd to 

bang drums or seats in support of their teams. This type of false detection 

however can be greatly reduced and even eliminated if more complex recording 

techniques are used as described in section 6.1 where multiple microphones at 

each location can be used to discern whether the sounds are coming from in front 

or behind the microphones and extracting, accordingly, only the events that are 

detected in front of the microphone, i.e. the on-pitch sounds. The third cause of 

false detections is the public address system. The level of this system is high and 
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as it is used for speech it contains lots of transient energy, in the case of this 

captured material the frequency equalisation was such that the content was low 

frequency biased, hence on one occasion the algorithm detected the content as an 

OPAE. This could be eliminated by either decreasing the sensitivity of the 

algorithm or having a link to the public address system that switch off the 

extractor for the duration of the announcement or by using a matched filter to 

reduce the level of the system in the microphone feeds. 

 

An interesting feature of the results in Table 1 is that most of the false detections 

of ball-kicks occurred in the microphones situated in the corners. This is to some 

extent unsurprising, as those are the microphones that are closest to the crowd. As 

the microphones used are highly directional in this scenario they exhibit a large 

rear lobe, thus picking up a lot of energy from the nearby crowd which contains a 

lot of transient energy. For future versions of the algorithm a microphone position 

dependent sensitivity should be introduced such that these microphones are less 

sensitive to transient and only detect strong OPAE such as a corner kick. 

 

Whistle-blow extraction 

As the test data used for this experiment contained comparatively few whistle-

blows, the algorithm was further tested with 12 shorter sections of audio each 

containing one whistle-blow each. In this case the algorithm was very robust and 

successfully detected all 12 whistle-blows without any false detections. The two 

false detections in Table 1 were caused by crowd noise, in one case, someone 

whistling at a frequency within the range of a referee's whistle; the other false 

detection was from singing in the crowd. As with the ball-kick detection, these 

false detections can be suppressed by utilising more advanced recording 

techniques such as those described in section 6.1. 

 

The results for both the ball-kick and whistle-blow experiments highlight the 

importance of fine-tuning the algorithms. There is a tradeoff here between not 

missing any OPAE and falsely detecting them. For a broadcast scenario the 

threshold and coefficients would need to be optimised such that false events were 

not detected as it is considered more detrimental to incorrectly position an audio 

object on the pitch rather than to fail to pick one up. Turning the sensitivity of the 

algorithm down is not problematic because in most cases, if the OPAE is not 

clearly detected in a microphone feed, it is because the sound occurred outside the 

principle capture zone of that microphone and hence will be most likely detected 

in another microphone feed instead. To improve both this situation and the false 

detection of sounds from the crowd, microphones with a broader directivity could 

be used. This would not only increase the principle capture zone of the 

microphones but would also reduce the rear lobe of the microphone such that less 

crowd noise would be picked up. Currently highly directional microphones are 

used in broadcasts to reduce crowd noise from the side of the microphone; 

however this results in areas of the pitch which are not covered by any 

microphone. Using a broader directivity microphone would decrease these quiet 

zones and decrease crowd noise from the rear of the microphone. The additional 

crowd noise that this would introduce from the sides would be less problematic 

for the extraction algorithm because the incident crowd noise would be further 

away and therefore contain less transient energy that that from the rear of the 

microphone. 
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Audio object positioning 

Testing the performance of the audio object positioning algorithm is fairly 

difficult, as the exact positions the OPAEs in a real football match are not known 

accurately, so there is no clear reference. Consequently a simple test case was set 

up on a football pitch while no match was taking place. Controlled ball-kicks and 

whistle-blows were made at 13 different locations on the pitch and were recorded 

at 4 microphone positions that would be used in a real match as shown in Fig. 12. 

The microphones were Sennheiser 416 shotgun microphones which are the 

microphones commonly used in real broadcast situations. The four microphone 

signals were recorded simultaneously using a 4-channel solid-state recorder, thus 

ensuring sample accuracy between channels. For both the ball-kicks and the 

whistle-blows the captured audio for each source position was fed in to the source 

positioning algorithm and a position estimated. This estimated position was then 

compared with the measured source position.  

 

 

 

Fig. 12 Diagram of test setup for the source positioning experiment with the yellow circles 

showing the 13 source positions 

 

The test was designed to test the validity of the approach to object positioning that 

has been employed. The test data was collected in a low noise environment 

allowing noise to be added to each of the microphone channels separately to 

determine the algorithm's ability to operate correctly in the high noise 

environment of a real match scenario. 

Results 

Once the source position had been estimated for each test location, the error 

between the manually measured position and the estimated position was 

calculated. Table 2 shows the results for both the whistle-blow and the ball-kick 

test sources. The table shows the error in estimated source location and also the 

standard deviation (STD) that gives a measure of the variance in all of the 

calculated points of intersection from the hyperbola pairs. Hence a larger STD 

means a greater difference in the location predicted using different pairs of 
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hyperbolae  (different microphone combinations) and is a measure of uncertainty. 

Fig. 12 shows how the information from each of the 4 microphone pairs is used to 

plot a hyperbola of possible source positions to estimate the source position. 

 

 

Position WHISTLE-BLOWS BALL-KICKS 

Position 

Error (m) 

std Position 

Error (m) 

std 

1 0.09 0.40 0.43 0.32 

2 0.32 0.29 0.45 0.36 

3 1.03 1.55 0.95 1.73 

4 0.31 0.86 0.34 0.51 

5 0.58 0.09 0.38 0.14 

6 0.48 0.14 0.05 0.18 

7 0.55 0.19 0.57 0.19 

8 0.18 0.24 0.23 0.11 

9 0.19 0.11 0.35 0.44 

10 0.62 0.60 0.64 0.80 

11 0.65 0.79 1.15 0.40 

12 0.40 0.79 0.72 0.37 

13 0.24 0.61 0.39 0.71 

Averages 0.43 0.51 0.51 0.48 

Table 2 Results for the source positioning experiment 

 

  

Fig. 13 Example result from source positioning experiment for a ball-kick at position 7 showing 

the possible source location hyperbolae from each microphone pair. The predicted source position 

is shown by the yellow circle. 

Discussion 

The results show that for the low noise case the algorithm performs very well at 

predicting the source positions. The average error is within the region of 0.5m 

which for most applications is acceptable especially as the average football pitch 

as dimensions of 100m × 70m. The viewer would not notice any perceptible 

discrepancy between the audio and video objects with this error unless they were 

to zoom in such that the screen only showed a very small section of the pitch, 
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which is an unlikely scenario. Further experiments will test the algorithm's 

performance in a higher noise environment. Additionally perceptual tests to prove 

the subjective validity of this approach are planned as a topic of a subsequent 

publication. 

Applications 

FascinatE 

As mentioned in Section 1.1 the FascinatE Project is concentrating on a format 

agnostic approach to the broadcast of both video and the audio. For audio this 

means broadcasting audio objects and sound field as described in section 2.5 thus 

allowing the customised rendering of the audio scene at the user end whatever the 

format of the reproduction system. The audio object extractor presented here will 

be used at the production end to separate out the key audio sources from within 

the microphone signals at the scene and position them in space such that the they 

can be placed and manipulated in the sound scene at the render end. The algorithm 

presented here has been developed specifically for the broadcast of football but 

can equally be used for other sports events. For example the sound of the hits in a 

tennis match, the sound effects at track and field athletics etc. While the specific 

features of the algorithm would require adaptation to the given capture scenario, 

the main concepts of picking out sections from the microphones with audio 

salience remain. A voice activity detection module has also been written which 

could be used for microphones that pick up individuals' communications, but that 

has not been applied in this version of the audio object extractor. 

Format-agnostic spatial audio reproduction 

The use of audio objects allows a format agnostic rendering as audio can be mixed 

down into any format from wave field synthesis and higher order ambisonics to 

stereo. At the user end, the audio objects are positioned in the 2D or 3D sound 

field (depending on the user's audio system); the sound field component is 

decoded at the user end and then combined with the audio objects and the 

corresponding loudspeaker signals are then derived for the specific loudspeaker 

setup. 

 

Non-FascinatE 

Automatic content retrieval 

For non-FascinatE applications the audio object extractor can be used for offline 

navigation of the originally broadcast content. Searching through the broadcast 

media could also be facilitated using the audio object extractor, allowing the 

retrieval, for example, of every time the referee blew his whistle, or the passage of 

play just before the goal was scored etc. As each audio object is extracted, 

metadata is also generated, pertaining to the type of object, when and where it 

appears in the audio scene and levels of confidence, i.e. how significant the object 

is in the scene. All of this information allows the offline navigation of the 

originally broadcast content such that search algorithms could pick out the most 

significant and interesting sections of a match by looking at, for example, all the 

instances where the referee blows his whistle or by analysing the crowd 

microphones and looking for the times when the levels are particularly high. 
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Assisted production and highlight generation 

The audio object extraction data could also be used to assist the production of 

both live broadcast and highlights programming. This would involve determining 

which area(s) of the pitch contain the most significant action and thus selecting 

which cameras should be made active at that point in time. It could also assist 

with shot framing and selecting suitable content for a highlights program.  

Automatic mixing 

As described in section 1.2, football is currently dynamically mixed by the 

broadcast sound engineer such that each of the pitch-side microphones is only 

added into the mix when the play is within the vicinity of the microphone in 

question. The audio object extractor can be used in this scenario to automatically 

add in to the mix the microphones that are near the play and indeed to do so only 

when there is significant audio content in the microphone feed.  

Further improvements 

Using additional microphones 

The constraints of broadcasting live sport events mean that there are a limited 

number of approved pitch-side microphone positions available for audio capture. 

This makes the extraction and positioning of audio objects difficult as the array of 

microphones is so sparse. However it is possible to include more than one 

microphone at each location without any additional problems. A second 

microphone can be placed at each position but with the capsule slightly behind the 

broadcast microphone. This second microphone is not used for the broadcast but 

only used for the analysis and extraction of the OPAE. With the positions of the 

microphones offset with respect to each other an initial analysis stage can be 

performed to determine whether the event is in front or behind the microphone, 

this can be done using a cross-correlation method to determine the relative delay 

between the audio arriving at each microphone capsule. This data can then be 

used to discard any audio objects that are from the crowd and will only allow the 

significant on-pitch objects to be broadcast. Further tests are planned at an English 

Premier League match to test the validity of this approach for a real broadcast 

system. 

Using camera data for better source positioning 

Using audio data alone for the localization and positioning of audio sources can 

work well but in some circumstances, the lack of audio data available from more 

than one microphone may make it difficult to position the source accurately on the 

pitch. With this is mind it is possible to use the data from the cameras to locate the 

position of the sources on the pitch and from this data to either turn on or point 

multiple capsule microphone polar patterns in the right direction for better 

capturing or to position the source more accurately in the sound field for 

rendering. 

 

The camera data that can be used includes, camera zoom, pan/tilt position and 

focal length. Increasingly broadcast cameras are utilising camera heads that are 

able to provide this kind of metadata with respect to time. For the main broadcast 

camera (whose job it is to follow the play around) this gives an approximate 
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position of the main on-pitch action and therefore the main audio source(s). It 

would provide only a rough position but when combined with data from the other 

cameras, it is possible to perform some triangulation to get better source positions 

as shown in Fig. 14. 

 

Fig. 14 Using camera data to better position audio sources 

 

The potential of using this approach does raise the question as to whether the 

visual information from the video content could be used to localise the position of 

the ball using visual tracking systems and a artificial ball kick inserted at a 

corresponding time. Problems with this idea are that it would be difficult to detect 

when the ball was actually kicked and that each kick has a different sound 

depending on how hard the ball is kicked. Additionally this method would not 

allow the detection of a referee’s whistle-blow.  

Using player tracking for better source positioning 

Another part of the FascinatE project is implementing a player tracking system. 

For FascinatE, this will allow the user to keep their view on one particular player 

or even to track the ball and follow the ball around the pitch automatically. One 

could however imagine a hybrid system that included visual tracking to help 

inform the audio object extraction process as to the source position once an OPAE 

is detected in the microphone streams. One can even imagine tracking the referee 

as well as the player which would enable an increased accuracy of whistle-blows. 

 

This is a topic for further work. 

 

Capturing more audio objects 

A further extension to this work will include the capture of additional OPAE 

including players’/managers’ communications. To this end a voice activity 

detection algorithm has been written and will be implemented in future versions 

of the system. Additionally, for a better spatialisation of the recorded scene, the 

crowd can be recorded using more microphones such that it can be spatialised, 

giving different audiences control over the level of the crowd noise they here from 

the home and away fans respectively.  
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Recording and transmitting the audio scene in the object-based manner described 

in this paper also allows the listener to have control over the respective levels of 

the commentary (foreground) and the crowd (background/ambience) which can be 

used as a means of improving the speech intelligibility for hearing impaired 

listeners (Shirley and Kendrick, 2004). It also enables the possibility of creating a 

hyper-real broadcast where the on-pitch (diegetic) sounds can be made louder to 

add to the drama of the football match an audio object approach enables the 

viewer to make these choices at the rendering end. Non-diegetic sounds such as 

the crowd could also be adjusted in level, giving a greater sense of presence in the 

scene. 

Conclusions 

A robust system has been demonstrated for extracting low level audio objects for 

object-based, format agnostic reproduction for football coverage as part of the EU 

FP7 FascinatE project. Using a standard microphone configuration as currently 

used for coverage of the English Premier League the system has demonstrated 

reliable, close to real-time, audio object extraction with a mean localisation 

accuracy of 0.5m under experimental conditions, and has been shown to be 

reliable in extracting audible ball kicks from recorded broadcast microphone feeds 

from coverage of an English Premier League fixture. An example audio format is 

presented which can combine both object-based audio and higher order ambisonic 

recordings in order to provide interactive and format agnostic reproduction. 

Future development work has been identified to further enhance the system in 

providing real-time automated mixing of microphone feeds and for offline 

navigation and search of recorded material from a live sports event. 
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