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Abstract: Rapid urban population growth and the associated expansion of urban areas in 

China (as elsewhere) present significant environmental challenges, and threaten urban and 

regional ecological security. Modeling land use changes is one way to aid the management 

of cities. Using remote sensing and geographic information system (GIS) software 

platforms, land use data for the years 1989, 1996, 2004, and 2010 for the area inside the 

Jinan third ring-road were interpreted. An urban green space network was developed, as a 

core strategy to ensure landscape ecological security, and subjected to ecological sensitivity 

analysis. The green space network and the result of the ecological sensitivity analysis were 

integrated into the exclusion/attraction layer of an existing cellular automaton model, 

SLEUTH (Slope, Land use, Exclusion/attraction, Urban extent, Transportation, and 

Hillshade). A development scenario for land use change was constructed that integrates 

these Landscape Ecological Security Development (LESD) strategies and reveals trends in 

urban growth for the different development scenarios between 2011 and 2040. The results 

of the LESD scenario were compared with those from two other development scenarios: the 

Historical Trend Development (HTD) and the Transit-Oriented Development (TOD). The 

study revealed three significant findings. First, change in the urban area in the study will be 

dominated by urban edge growth and transit-oriented development, while spontaneous and 

cluster growth were not obvious. Second, the growth rate of built-up land in the urban area 

in all three scenarios exhibits emerging trends. The growth rate, according to the LESD 
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scenario, is significantly lower than that for the HTD and TOD scenarios, and encroachment 

into natural ecological space (such as woodlands, water, and agricultural land) is less than 

that in the other two scenarios. This result indicates that the LESD scenario can protect 

natural ecological spaces effectively and can significantly reduce the ecological security risk. 

This aligns with the integration of smart growth and smart conservation. Third, integrating 

LESD into the SLEUTH model results in the ability to evaluate urban development policies 

and can help characterize development strategies for urban landscape ecological security. 

The results of this study provide reference data and a basis for decision-making for the 

future management of urban growth, urban planning, and land use planning. 

 

Keywords: Landscape ecological security; scenario analysis; SLEUTH urban growth 

model; smart growth; urban growth 
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Introduction 

Since 1978, China has experienced rapid urbanization. The urban population in Chinese 

cities rose from 17.9% in 1978 to 52.6% in 2012, and the area of built-up land increased 

from 6,720 km
2
 to 39,758 km

2
 (The Yearbook of China's Cities, 2012). Such rapid urban 

expansion has been, and it appears will be for the foreseeable future, the main driving force 

of land use change in China. Such land use change will affect environmental conditions: the 

conversion of open, natural ecological space to urban built-up land will result in 

unprecedented pressure on natural resources, and present challenges for ecological 

environmental management (Lin, 2004; Ma, 2004). Urban green space loss or fragmentation 

can entail a consequential series of negative eco-environmental problems, such as the urban 

heat island effect, soil erosion, water pollution, and loss of biodiversity (Kong et al., 2014; 

Hansen and Pauleit, 2014). Rapid structural and functional change in the urban landscape 

weakens the ecological functionality of the green infrastructure, reduces the ecosystem 

service provision, and threatens urban ecological security and sustainable development 

(Lovell and Taylor, 2013; Sperandelli et al., 2013). 

Ecological security is the term commonly used in relation to safeguarding sustainable 

ecological resources (Dabelko et al., 1995; Rogers, 1997; Pirages and DeGeest, 2003). 

However, there is not a universally accepted definition of the term. Concerns over urban 

ecological security are now giving rise to strategies to reconfigure cities and their 
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infrastructures in ways that help secure the natural resources necessary for their ecological 

and material well-being (Hodson and Marvin, 2009). 

The concept of landscape ecological security has developed from that of urban 

ecological security and is based on landscape ecological theory. This is an accepted strategy 

to safeguard urban natural resources that involves considering the spatial pattern and 

function of these resources and that aims to improve urban ecological resilience (Yu, 1996；

Ma et al., 2004; Colding, 2007). However, few studies have integrated landscape ecological 

security development (LESD) strategies with modeling to identify sustainable land use 

development scenarios: ones that can integrate smart growth and smart conservation to 

guarantee the long-term well-being of a city and its inhabitants (Silva et al., 2008; Rafiee et 

al., 2009; Mitsova et al., 2011). Ways to model and assess urban growth scenarios as well as 

forecast the resultant effect on urban ecological security are required to inform decisions on 

urban sustainable development. 

Strategically, landscape ecological security is oriented towards urban sustainable 

development in the context of a rapidly growing population and of expanding urbanization. 

Dynamic land use models can be used to analyze and predict future land use change and to 

understand the influence of the relevant driving forces. The models can help urban planners 

and administrators analyze different scenarios for land use change, and identify the 

characteristics of land use conversion and the influence that this change will have on urban 
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ecosystems. This analysis provides scientific support to policy-making related to sustainable 

land management and urban development (Xiang et al., 2003; Barredo et al., 2003; He et al., 

2008; Liu et al., 2008). Of these models, the cellular automaton (CA) models are renowned 

for their flexibility, openness, non-linearity, and self-adaptiveness, and since the 1980s, they 

have been applied widely to simulate urban growth and land use change (Couclelis, 1997; 

Clarke et al., 1997; Clarke and Gaydos, 1998; Yeh and Li, 2003; Liu et al., 2008; Yang et al., 

2008; Al-shalabi et al., 2012; Akin et al., 2014). With the support of GIS (geographic 

information system) and Remote Sensing, CA models can simulate the complicated 

dynamics in urban spatial patterns through simple regional transfer rules (Clarke et al., 1997; 

Clarke and Gaydos, 1998; Silva and Clarke, 2002; Torrens, 2003; José et al., 2003; 

Berling-Wolff and Wu, 2004; Leao et al., 2004; Li et al., 2007; van Vliet et al., 2012). 

SLEUTH (Slope, Land use, Exclusion/attraction, Urban extent, Transportation, and 

Hillshade) urban growth model, developed by Clarke et al. (1997), has been widely applied 

to simulate urban growth and land use change (Jantz et al., 2003, 2010; Li et al., 2007; 

Mahiny and Clarke, 2012；Onsted and Chowdhury, 2014). SLEUTH, by integrating an 

urban growth model and a land use model, can successfully simulate the spatial expansion 

process of a city (Clarke et al., 1997; Clarke and Gaydos, 1998; Peiman and Clarke, 2014; 

Rienow and Goetzke, 2015). In the SLEUTH model, an area is divided into cells and the 

development possibility of each cell is determined by constraints such as transportation, 
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terrain, and urbanization, and the characteristics of nearby cells: an urbanized cell will be 

the main driver affecting the development of an entire area as its influence spreads out 

(Jantz et al., 2003, 2010; Li et al., 2007; Onsted and Chowdhury, 2014). The SLEUTH 

model can predict the dynamics of urban land use at temporal scales ranging from decades 

to centuries. It has frequently been applied to the simulation and the long-term prediction of 

urban growth (Clarke et al., 1997; Silva and Clarke, 2002; Herold et al., 2003; Jantz et al., 

2010; Vermeiren et al., 2012; Badwi et al., 2014). The SLEUTH model has also been used 

in China to simulate urban expansion (e.g., Wu et al., 2009; Liang and Liu, 2014). However, 

some scholars noted the difficulty in integrating urban development policies into the 

model’s transfer rules (Torrens and O'Sullivan, 2001). Characterizing the impact of policies 

on urban expansion remains a challenge for the model’s users (Lemp et al., 2008). Jantz et 

al. (2003) suggested that the effects of policies on urban growth could be addressed by 

using different scenarios or reconstructing the exclusion/attraction layers in the model. 

Comparison of different scenarios can forecast possible ecological security problems 

resulting from future developments or can assess the health of an urban system. 

Consequently, the main aims of this study are: (1) to construct and test three scenarios 

based on different development strategies using the SLEUTH model; (2) to give a 

perspective on the effects of the different scenarios on urban land use pattern to 2040 (a 

30-year time scale); and (3) to seek an ecologically sustainable development pattern for 
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Jinan City by considering landscape ecological security. The coupling of landscape 

ecological security development with the SLEUTH model will provide an auxiliary 

planning decision-support tool that will assist understanding of the urban eco-environment 

and the relationship between urban expansion and eco-environmental change. 

 

The study area 

Jinan, the capital city of Shandong Province, is located in the eastern coastal region of 

China (latitude 36°32′–36°51′N, longitude 116°49′–117°14′E) (Fig. 1). In the past few 

decades, Jinan has seen rapid economic growth. The city’s gross domestic product (GDP) 

increased from 2 billion RMB (US$0.3 billion) in 1978 to 480 billion RMB (US$76 billion) 

in 2012 (Jinan Statistics Bureau, 2013). Alongside this dramatic economic growth, Jinan, as 

with other Chinese cities, has also experienced intense rural migration to the city: the main 

driver of rapid urban sprawl. The urban population has increased from about 0.6 million in 

1952 to 3.5 million in 2012 (Jinan Statistics Bureau, 2013) (Fig. 2). The area of urban 

built-up land in Jinan City has expanded from 25 km
2
 in 1949 to 315 km

2
 in 2011 

(Statistical Yearbook of Jinan, 2012). The development of Jinan City has occurred despite 

several physical constraints. Growth to the south is restricted by a hilly topography and to 

the north by the Yellow River (Fig. 1). In the Jinan Planning Bureau’s 2006–2020 Master 

Plan, it is proposed to expand further eastward and westward, with the urban area within the 
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third ring road growing to 400km
2
, and the population living in Jinan City increasing to 4 

million (Kong et al., 2010). 

 
Fig. 1. Location of the study area 
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Fig. 2. Gross domestic product and population growth of Jinan City (Source: Jinan Statistic 

Bureau, 2013) 

 

Data and methods 

The SLEUTH Urban Growth Model procedure is shown in Fig. 3. Data from remote 

sensing (SPOT (Landsat Satellite Systeme Probatoire d’Observation de la Terre), TM 

(Landsat Satellite Thematic Mapper), and ALOS (Advanced Land Observation Satellite)) 

and GIS techniques were employed to identify and integrate an urban green space network 

into the SLEUTH model. The three future scenarios: LESD (Landscape Ecological Security 
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Development), HTD (Historical Trend Development), and TOD (Transit-Oriented 

Development) were then designed and set in the exclusion/attraction layers of the SLEUTH 

model. After the model was calibrated, the impact of urban spatial expansion on landscape 

ecological security was assessed for the three scenarios. The data processing and key 

technologies in running the SLEUTH model are explained in detail in the following 

sections. 
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Data sources and data pre-processing 

In this study, SPOT images from 1989 (panchromatic band, 20 m), 1996 and 2004 

(panchromatic band, 10 m; multi-spectral bands, 20 m); TM data (bands 1–5, 7; 30 m 

resolution); and ALOS data from 2010 (panchromatic band, 2.5 m; multi-spectral band, 10 

m) were used. First, geometric correction of the remote sensing images (RMS (Root Mean 

Square) smaller than 1 pixel) was implemented by using the Earth Resources Data Analysis 

System (ERDAS 9.2 version) with the quadratic polynomial model as the correction 

function and uniformly distributed ground control points (GCP) on the images. The self-test 

error of each GCP was controlled by no more than 1. The coordinate system was adjusted to 

WGS_1984 with UTM (World Geodetic System 1984 with Universal Transverse Mercator) 

projection. Then, the SPOT, TM, and ALOS remote sensing images were corrected to the 

same resolution and clipped to the study area boundary. Finally, land use maps at four dates 

(1989, 1996, 2004 and 2010) were developed by visual interpretation based on field survey, 

and seven land use types were mapped: urban built-up land, rural settlements, roads, green 

space, agricultural land, water, and others (Fig. 4). 
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The SLEUTH model 

The SLEUTH model simulates and predicts future urban expansion based on the 

assumption that historical urban growth trends will continue. In the model, each cell can be 

converted into either urban or non-urban use. The cellular state is primarily controlled by 

the interaction between five growth coefficients, i.e., dispersion (the probability of random 

growth), breed (the probability of spontaneous growth), spread (the probability that growth 
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will occur adjacent to an already developed area), slope (the effect of topography – flat 

versus sloping land – on the probability of development), and road gravity (the effect of a 

road on the location of development), and four types of urban land use change: spontaneous 

growth, edge growth, road-influenced growth, and new center spreading (Clarke and 

Gaydos, 1998; Yang and Lo, 2003; Jantz et al., 2010). The exclusion/attraction layers of the 

model also affect predicted urban growth. Exclusion/attraction layers are defined according 

to users’ needs by giving a probability of future urbanization to each region of the city. 

Exclusion/attraction layers reflect the intention of policy-makers, and the five growth 

coefficients determine the probability that any given location will be urbanized (Clarke et 

al., 1997; Jantz et al., 2003). 

 

Data input preparation 

In this study, the five grayscale raster data layers in GIF (Graphics Interchange Format) 

format were used as input into the SLEUTH model (i.e., urban extent, transportation, slope, 

hillshade, and exclusion/attraction layer). The urban extent, transportation, and 

exclusion/attraction layers were generated from the vector maps of land use at four dates 

(1989, 1996, 2004, and 2010). The urban extent layer was in binary format: urban or 

non-urban land use. The transportation layer was assigned a value of 100, 75, or 50, based 

on the category of the road: main road, subsidiary main road, or branch road, respectively 
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(Sangawongse et al., 2005; Myint et al., 2010). The slope and hillshade layers were 

generated from a DEM (Digital Elevation Model) and all slope values above 100% were 

redefined as 100%. Finally, all data were converted to raster maps (raster size 30 m × 30 m) 

in GIF format for the model use (Fig. 5). The exclusion/attraction layer was defined 

according to development strategies and will be explained in each design of the scenario in 

this study. 
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Model calibration 

The aim of calibrating the SLEUTH model is to find a set of growth parameters (i.e. the 

value of the five growth coefficients) that simulate future urban growth. The brute force 

Monte Carlo method was adopted for model calibration (Jantz et al., 2003). This involved 

three stages: coarse, fine, and final calibration (the derive stage). In each stage, the model is 

calibrated by fitting simulated data to historical data collected in the study area. A set of 

metrics is derived that can be used to evaluate the accuracy of the simulation results and to 

narrow down the range of the coefficient values. The growth parameters derived at each 

stage were used for the subsequent stage (Clarke and Gaydos, 1998; Silva and Clarke, 2002; 

Jantz et al., 2003; Dietzel and Clarke, 2007). 

Data from 1989 were used as the initial layer for model calibration with data from 

1996, 2004, and 2010 used as the correction layers for parameter calibration (Table 1). The 

exclusion/attraction layer used in the model calibration stage set only water and urban green 

space as having a 100% probability of not being urbanized. In the coarse and fine 

calibration stages, the raster maps were re-sampled to 120 m × 120 m and 60 m × 60 m, 

respectively. 
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Table 1. Comparison of metrics for each of the SLEUTH model’s calibration stages 

        Calibration stages 

Metrics  

Coarse calibration  Fine calibration  Final calibration  Derive  

Number of Monte Carlo iterations  

Total number of simulations 

Compare 

r2 population  

Edges 

Cluster  

Lee-Salee 

 5 

 3,124 

 0.95 

 0.99 

 0.97 

 0.93 

 0.67 

7 

6,479 

0.99 

0.99 

0.93 

0.97 

0.68 

9 

7,775 

0.89 

0.99 

0.94 

0.99 

0.68 

100 

 

 

The model calibration stage generated a series of metrics to describe the model’s 

accuracy. It is debated which of these metrics best represents the accuracy of models 

(Clarke et al., 1997; Jantz et al., 2003; Herold et al., 2003). Clarke et al. (1997) relied 

primarily on four metrics: r
2
 population, Edges, Cluster, and Lee-Salee. Silva and Clarke 

(2002) used the un-weighted product score (multiplied together) of ten metrics. Yang and 

Lo (2003) relied on a weighted sum of all the metrics. In the study reported here, five 

metrics were used as the main criteria for model calibration and reduction of the parameter 

interval: Lee-Salee, Compare, r
2
 population, Edges, and Cluster. These five metrics were 

selected because many studies have indicated that the correlation among them is small, and 
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they will therefore reflect the accuracy of model simulation (Silva and Clarke, 2002; Dietzel 

and Clarke, 2007; Onsted and Chowdhury, 2014). 

At each calibration stage, the five metrics were used to seek the optimum combination 

of parameters and the range of the five coefficients was reduced to generate five new 

coefficient intervals. The final values of the five coefficients were: diffusion = 22, breed = 

85, spread = 92, slope = 25, and road gravity = 74 (Table 2). Using these coefficients, the 

model calibration was run at a step of 1 and 100 Monte Carlo iterations were run. Urban 

expansion in 2010 was simulated and a threshold of 60% was applied to the resultant 2010 

probability map to create a binary image of urban extent, and this was then compared with 

the actual urban extent at the pixel scale to evaluate quantitatively the model simulation’s 

accuracy (Table 3). 

Table 2. Comparison of coefficients for each of the SLEUTH model’s calibration stages 

      Calibration stages  

 

Growth coefficients 

Coarse calibration Fine calibration Final calibration Derive 

Range Step size Range Step size Range Step size Final  

coefficient 

Step size 

Diffusion coefficient 1~100 25 1~25 5 10~20 2 22 1 

Breed coefficient 1~100 25 50~75 5 55~70 3 85 1 

Spread coefficient 1~100 25 25~75 10 65~75 2 92 1 

Slope coefficient 1~100 25 50~100 10 50~70 4 25 1 

Road gravity coefficient 1~100 25 25~75 10 45~65 4 74 1 

Self-modifying rules ROAD_GRAV_SENSITIVITY = 0.01 SLOPE_SENSITIVITY = 0.1 

CRITICAL_LOW = 0.97 CRITICAL_HIGH = 1.3 CRITICAL_SLOPE = 21.0 

BOOM = 1.01 BUST = 0.09 
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Table 3. Accuracy evaluation of SLEUTH model at the pixel scale 

Evaluation index Nonurban  Urban  New urban  Overall accuracy (%) 

Status of 2010 581,369 259,051 124,786 - 

Modeled pixel  620,993 219,427 85,162 - 

Number correct 551,999 192,086 57,821 88.54 

Producer’s accuracy (%) 94.95 74.15 46.34 - 

User's accuracy (%) 88.89 87.54 67.90 - 

 

Scenario design and model simulation 

The SLEUTH model can pre-set different scenarios of future urban development by 

adjusting coefficient values and designating the exclusion/attraction layers (Jantz et al., 

2003). Based on the current situation and the future plan, three development scenarios were 

produced: LESD (Landscape Ecological Security Development), HTD (Historical Trend 

Development), and TOD (Transit-Oriented Development). 

 

The LESD (Landscape Ecological Security Development) scenario 

In the LESD scenario, an urban green space network is defined and its ecological sensitivity 

is identified to determine the critical green spaces in the study area. The urban green space 

network and ecological sensitivity are integrated into the LESD scenario by defining the 

exclusion/attraction layer in the SLEUTH model. 
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The development of an urban green space network is increasingly being considered a 

suitable approach to increase habitat connectivity and hence ensure the viability of species 

populations by maintaining gene flow, and to facilitate regular migration, dispersal, and 

recolonization (Cook, 2000; Hargrove et al., 2004; Kong et al., 2010). Developing an urban 

green space network includes protecting and maintaining existing green space, creating new 

green spaces, and restoring lost connectivity between urban green spaces. 

The identification of an urban green space network for the study area was done in the 

least cost patch function (a raster format using ESRI’s grid module) of the ARC/Info 

software package. The first step was to identify the core areas that act as sources of wildlife. 

In this study, 12 green space patches were identified as sources (for details, see Kong et al., 

2010, Fig. 4). The second step was to evaluate habitat suitability or the obstacles to wildlife 

dispersal through the different land uses. As plant communities are the major determinant of 

the dispersal of wildlife and habitat suitability (Burley, 1989), obstacles in this study were 

mainly weighted according to vegetative coverage rate, vegetation type, the age of the urban 

green space, and the degree of anthropogenic disturbance. Finally, the distance between 

different green space patches and landscape resistance was considered and the minimum 

cumulative cost path was employed to extract potential ecological corridors which, based on 

a gravity model, would be protected in the study area (for details, see Kong et al., 2010, Fig. 

4). Ecological sensitivity analysis can be used to evaluate the ecological risks and security 
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of ecological resources. This method involves mapping eco-sensitive areas and identifying 

an eco-sensitive resource pattern. In this study, the urban green space network was used as a 

sensitivity factor (extremely high sensitivity) which was combined with terrain, water, 

vegetation, and agricultural factors to construct the graded evaluation system for the 

ecological sensitivity analysis (Table 4). The maximum value method in GIS spatial 

analysis for the multi-factor comprehensive evaluation was applied and an ecological 

sensitivity zonation was obtained (Gadgil et al., 2011). Finally, the probability of a cell not 

being urbanized was scored as 0%, 10%, 40%, 70%, or 100%, according to the degree of 

ecological sensitivity, and the exclusion/attraction layer was derived for the integrated 

LESD scenario (Fig. 6a). The LESD scenario is suitable for preserving the integrity of the 

green space network and the associated ecosystem services while achieving the integration 

of smart conservation and smart growth. 
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Table 4. Sensitivity grade and values of ecological sensitivity factors 

Sensitivity factor Classification (buffer)  Value Ecological sensitivity grade 

Urban green space 

network 

Source area and 

ecological corridor 

 9 Extremely high sensitivity 

Terrain Relief amplitude >50 m 9 Extremely high sensitivity 

20–50 m 7 High sensitivity 

10–20 m 5 Moderate sensitivity 

5–10 m 3 Low sensitivity 

<5 m 1 Non-sensitivity 

Slope >25° 9 Extremely high sensitivity 

15–25° 7 High sensitivity 

10–15° 5 Moderate sensitivity 

5–10° 3 Low sensitivity 

0–5° 1 Non-sensitivity 

Water  Water area 9 Extremely high sensitivity 

<15 m buffer area 7 High sensitivity 

15–25 m buffer area 5 Moderate sensitivity 

Agricultural land   5 Moderate sensitivity 

Green space City park  9 Extremely high sensitivity 

Woodlands  7 High sensitivity 
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The HTD (Historical Trend Development) scenario 

In the HTD scenario, only the water and green space of the study area are defined as the 

exclusion/attraction layer (by assigning a 100% probability of them not being urbanized); 

agricultural land and woodlands surrounding the city are likely to be occupied during urban 

expansion (Fig. 6b). 

 

The TOD (Transit-Orientated Development) scenario 

The planned road network in 2020 was used as the initial layer in the TOD scenario (Fig. 

7a). The planned new urban development area near Jinan’s western high-speed railway 

station was incorporated into this scenario (i.e., the region circled in the urban area of Fig. 

7b). The road gravity coefficient was increased from 74 to 85 to highlight the importance of 

roads. Based on the planned road network in 2020, the cost distance analysis method was 

applied to calculate accessibility (Zetterberg et al., 2010; Kong et al., 2012). The probability 

of a given parcel of land not becoming urbanized was assigned to one of five percentage 

values, i.e., 0%, 5%, 15%, 30%, and 50%, based on the accessibility level from low to high, 

and then the exclusion/attraction layer for the TOD scenario was built (Fig. 6c). 
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The images of the slope, hillshade, transportation, urban extent, and 

exclusion/attraction layer for different scenarios were used as the initialization input data of 

2010, and 100 Monte Carlo iterations were run in the simulation. The growth of urban 

built-up land in the study area of the three scenarios from 2011 to 2040 was predicted by 

using the final year’s probability map with a 60% threshold (Table 5, Figs 8 and 9). 
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Table 5. Predicted statistics on built-up land and other land uses in 2040 for the three 

scenarios 

Variation in land use type LESD -2040 in 

km2 (%) 

 

HTD -2040 in km2 

(%) 

TOD -2040 in 

km2 (%) 

Urban built-up land +85.10 (1.11)* +133.07 (1.62)* +139.86 (1.68) 

Green space -9.59 -26.99 -29.26 

Agricultural land -39.74 -63.01 -66.28 

Water -1.41 -1.88 -2.17 

Other -34.49 -41.48 -42.80 

* The urban growth rate from 2010 to 2040.  
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Results 

Model calibration and simulation accuracy 

The parameters of the five metrics at the different calibration stages indicate that the 

simulation accuracy of the SLEUTH model is satisfactory (Table 1). The model was able to 

capture the amount of growth, as evidenced by the high value (0.89) for the Compare metric, 
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and was also able to simulate urban form successfully, as evidenced by the high value (0.68) 

for the Lee-Salee metric (Table 1). However, the results of the spatial accuracy assessment 

at the pixel scale reveal some of the limitations of the SLEUTH model in simulating local 

urban growth patterns in 2010 (Table 3). The overall accuracy (i.e., the ratio between correct 

pixels and the total pixels) and the accuracy of urban pixels (i.e., the ratio between actual 

urban pixels and the modeled urban pixels) were high (88.54% and 87.54% respectively). 

However, looking at only those areas where new areas of urbanization developed (about 

14.85% of the study area), the accuracy of predicting new urban pixels was low (46.34%). 

At the pixel scale, simulation errors come in two types: a pixel was urban in 2010 but the 

simulation result suggested it would be non-urban, or a pixel was non-urban in 2010 but the 

simulation result suggested it would be urban. Furthermore, the simulation results did not 

accurately capture the development of Jinan’s new eastern city and western high-speed 

railway areas. This indicates that the model has difficulty in accurately capturing new urban 

growth centers resulting from urban development policies. This is probably because the 

current urban area can easily expand outward but a new urban center cannot grow easily 

(Jantz et al., 2003, 2010; Akιn et al., 2014). The failure of the SLEUTH model to capture 

accurately the exact spatial location of urban growth is not surprising, and accuracy at the 

pixel scale is not crucial for a regional assessment (Jantz et al., 2003). 
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At the end of the calibration process, the spread coefficient was the largest (92) of the 

five coefficients calculated (Table 2). This indicates that urban growth is dominated by 

urban edge growth. The breed coefficient is 85, indicating a high possibility of a new city 

center developing. The diffusion coefficient is the smallest (22), which indicates that 

spontaneous growth is not evident. This all suggests that edge growth is the overwhelming 

direction for growth in the study area, and that spontaneous growth will be a relatively 

minor factor (Fig. 9). The road gravity coefficient is also very high (74), which indicates 

that the road network density has a significant impact on urban growth in the study area. 

The slope coefficient is 25, indicating that terrain conditions have an inhibitory role on 

urban growth. In summary, urban expansion in the study area is primarily affected by the 

spread and road gravity coefficients, and it occurs mainly on the fringe of the city and in 

areas of the city with high road network density. 

 

Multi-scenario analysis of urban spatial expansion in Jinan 

According to the simulation results (Table 5 and Fig. 8), in the next 30 years the urban area 

is predicted to grow quickly in all three scenarios tested. However, the LESD scenario was 

the one that resulted in the least urban growth. In this scenario, the urbanized area will 

increase by 85.10 km
2
 at an annual growth rate of 1.11%. Natural, ecological space such as 

woodland and agricultural land will be reduced by only 9.59 km
2
 and 39.74 km

2
, 
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respectively. In comparison, the TOD scenario resulted in the greatest urban growth: the 

urbanized area will increase by 139.86 km
2
 at an annual growth rate of 1.68% and woodland 

and agricultural land will decrease by 29.26 km
2
 and 66.28 km

2
, respectively. The area of 

urban growth suggested in the HTD scenario, 133.07 km
2
, an increase of 1.62%, is slightly 

lower than in the TOD scenario. The rate of and woodland and agricultural land are 

correspondingly reduced by 26.99 km
2
 and 63.01 km

2
. Therefore, the LESD scenario would 

be the preferred option if the aim is to control the increase of built-up land and avoid the 

loss of natural, ecological space. 

As indicated by the data presented in Fig. 9, urban growth in the three scenarios is 

primarily dominated by the edge proliferation and interior-filling patterns. The appearance 

of built-up areas along the urban road network is also significant, whereas its development 

in the new urban center is not remarkable. In the LESD scenario urbanization is effectively 

restricted to those areas with low ecological sensitivity. Hence the woodlands and urban 

green space in the southern mountain region are protected from urbanization. This implies 

that this scenario is capable of sustaining ecologically friendly urban development in the 

long term, and protecting both the southern mountain region and urban green spaces. For 

example, Regions A (the peripheral portion of the scenic area of the Ying Xiongshan 

Mountains) and B (the peripheral portion of the Feng Huangshan Mountains) (Figs. 9 and 

10) are both gradually occupied in the other two scenarios, but the woodlands in these areas 
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are preserved in the LESD scenario. Meanwhile, the increase of built-up land in the 

southern mountain region is better controlled. Therefore, the incorporation of the urban 

green space network and ecological sensitivity into the LESD scenario by the 

exclusion/attraction layer can be seen to have effectively protected the integrity of the green 

space network and the associated ecosystem services. This protection may offer sufficient 

green space for future urban development and achieve the integration of smart growth and 

smart conservation, which accords with sustainable land use. 
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Fig. 10. Specifying the different outcomes of the urban growth under the LESD, TOD and 

HTD scenarios 

 

Compared to the HTD scenario, the edge proliferation growth pattern of built-up land 

is controlled in the TOD scenario. New urban areas are concentrated where there is good 

road accessibility, or in new urban centers. This indicates that highlighting the road gravity 
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coefficient and the transportation accessibility in the exclusion/attraction layer allows the 

model to capture the highly accessible urban growth areas. Meanwhile, incorporating 

planned urban development areas into the initial urban extent layer also helps predict the 

future urban structure and the new city construction pattern in the study area (Region C in 

Figs. 9 and 10). Basically, the embryonic form of the new city in the study area is emerging 

in the first five-year plan, and the new city will be completely constructed within the next 

two or three five-year plans. In this scenario, the plan and expectations of the new city 

center around the western high-speed railway are reflected more accurately than in the other 

two scenarios. However, edge proliferation still dominates the simulated growth in this area 

rather than the development of new urban centers, indicating that it is difficult for the model 

to capture this feature based on the historical data. 

 

Discussion 

Landscape ecological security in response to urban growth 

Urban areas in China are expanding rapidly, a process which brings significant threats to 

natural resource use and environmental sustainability. Seeking a smart and sustainable route 

regarding urbanization is a priority of the Chinese government (China's National Report on 

Sustainable Development, 2012), as well as of the urban planners. By using the LESD, 
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HTD, and TOD scenarios, urban growth patterns to 2040 were revealed and landscape 

ecological security was assessed for each scenario. 

We found that the HTD and TOD scenarios resulted in rapid urban growth (1.62% and 

1.68% per year) with an associated loss of agricultural lands and woodland (90 km
2 

and 96 

km
2
, respectively) (Table 5, Figs. 8 and 9). Such urban growth threatens the security of the 

urban ecological space, which is not conducive to realizing a sustainable and healthy city. 

The LESD scenario, which integrated ecological sensitivity and a green space network, 

resulted in the smallest urban growth (1.11% per year) (Table 5) and effectively conserved 

natural, ecological space. The LESD scenario results indicate that the development 

strategies and the urban green space conservation policies in this scenario will help to 

sustain ecologically friendly urban development. The results also imply that the SLEUTH 

model can provide reference data and support decision-making regarding the management 

of urban land use growth and urban planning, and can effectively protect the natural 

ecological space as part of sustainable development. 

 

The model’s ability to capture the impact of development policies 

Rapid growth of the new urban center is one of the main features of urban expansion in the 

study area (Fig. 4). However, none of the three scenarios successfully captured this urban 

growth pattern well (Fig. 9). This outcome is related, in part, to the priority given to edge 
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growth in the model encoding (Clarke et al., 1997; Jantz et al., 2003) and is most likely also 

to be due to insufficient usable land resources in the study area (Onsted and Chowdhury, 

2014). 

In addition to the above reasons, these new urban centers were mainly the result of the 

urban development policies. Due to non-integration of data on these policies, the SLEUTH 

model cannot accurately capture the impact of urban development policies on the area of 

urban expansion or the direction of that expansion. Urban development policies in China, 

particularly the adjustment of the development direction and the construction of new cities, 

often result in unexpected and abrupt city development. For example, in this study area, the 

construction of the new eastern city and western high-speed railway areas in Jinan City 

converted the urban development direction from eastward only to both eastward and 

westward (Fig. 7b). Correctly acquiring the conversion rule parameter values from the 

historical data before and after unexpected development, therefore, becomes important. 

Urban development policies have zoning characteristics (e.g., the western high-speed 

railway areas) (Fig. 7b). Some previous studies have recognized that zoning may have 

implications for the urban expansion simulation (Clarke et al., 1997; Onsted and 

Chowdhury, 2014). Appropriate use of zoning information incorporated into the model 

simulation in this study would improve the model’s simulation accuracy. 

 



37 
 

Conclusion 

With the aim of creating ecological security in a typical area that faces resource and 

ecological constraints, remote sensing data and GIS techniques were employed to integrate 

an urban green space network and an ecological sensitivity analysis into the 

exclusion/attraction layers of the SLEUTH model. By comparing three urban growth 

scenarios (LESD, HTD and TOD) over the next 30 years, it was found that the LESD 

scenario, which reflects development strategies and urban green space conservation policies, 

leads to a sustainable and healthy urban development more accurately than the other two. 

Both the HTD and TOD scenarios result in a loss of green space that is not conducive to 

realizing a healthy city. 

Based on historical data, the SLEUTH model can accurately predict the future growth 

of urban land use by modifying the prediction parameters or by setting the 

exclusion/attraction image layers, and it has become a powerful tool for urban planning 

(Clarke et al., 1997; Clarke and Gaydos, 1998; Silva and Clarke, 2002; Jantz et al., 2003; 

Rafiee et al., 2009). However, the SLEUTH model currently cannot accurately simulate the 

potential impact of government policies on urban land use (Clarke et al., 1997). Our study 

indicated that development strategies and policies can be incorporated into the SLEUTH 

model by reconstructing the exclusion/attraction layers. Hence, improving the acquisition of 

data to set the parameters, and the exploration and study of modifications must be the 
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direction for future research efforts in the simulation of urban expansion to integrate urban 

development policies (or zoning information) into the SLEUTH model, to improve the 

simulation accuracy of the model, and to increase the model’s capability to account for 

auxiliary planning decisions. 
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