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Abstract

Alan Turing’s profound insight into morphogen-
esis, published in 1952, has provided the corner-
stone for understanding the origin of pattern
and form in Nature. When the uniform states
of a nonlinear reaction-diffusion system are suf-
ficiently stressed, arbitrarily-small disturbances
can drive spontaneous self-organization into sim-
ple patterns with finite amplitude. Emergent
structures have a universal quality (including
hexagons, honeycombs, squares, stripes, rings,
spirals, vortices), and they are characterized by
a single dominant scalelength that is associated
with the most-unstable Fourier component.

In this paper, we extend Turing’s ideas to
three wave-based discrete nonlinear optical mod-
els with a wide range of boundary conditions.
In each case, the susceptibility of the uniform
states to symmetry-breaking fluctuations is ad-
dressed and we predict a threshold instability
spectrum for static patterns that comprises a
multiple-minimum structure. These Turing sys-
tems are also studied numerically, and we un-
cover examples of simple and complex (i.e., frac-
tal, or multi-scale) pattern formation.
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1 Nonlinear Fabry-Pérot Cavity

We begin by considering a thin slice of nonlin-
ear (diffusive Kerr-type) material that is sand-
wiched between two partially reflecting mirrors.
Light injected from an external source bounces
back and forth between the mirrors, and passes
through the slice on each transit. This nonlin-
ear Fabry-Pérot (FP) cavity is the epitome of a
complex optical system, involving the interplay
between diffraction, diffusion, counterpropaga-
tion, and cavity feedback (periodic pumping,
mirror losses, interferomic mistuning, time de-
lays).

The Turing threshold instability spectrum

[1] for the FP cavity is generally found to pos-
sess a discrete island structure as opposed to
the lobes of the closely-related single feedback-
mirror (SFM) system [2] [see Fig. 1(a)]. By
controlling the spatial frequencies that are al-
lowed to propagate, simulations have predicted
a range of simple patterns when the cavity is
initialized with a perturbed plane wave solution
above threshold [see Figs. 1(b)–(e)]. We will
also present evidence of a spontaneous fractal-
generating capacity [see Figs. 1(f)–(i)]. This
strikingly new regime of pattern formation is
tightly connected to a hierarchy of comparable
minima in the threshold spectrum [3].

2 Discrete Nonlinear Ring Cavity

The first discrete nonlinear-Schrödinger (dNLS)
context to consider involves confining a waveg-
uide array to a ring cavity whose total length
is L. The complex amplitude En,m in channel
(n,m) is coupled to those in its nearest neigh-
bours, and the host medium has a local cubic
(Kerr-type) nonlinearity parametrized by χ:

i∂zEn,m + c(En+1,m + En−1,m + En,m+1

+ En,m−1 − 4En,m) + χL|En,m|2En,m = 0,
(1)

where 0 ≤ z ≤ 1 is the (local) longitudinal coor-
dinate and c is the coupling constant. Equation
(1) is supplemented by a boundary condition
applied at the start of each transit, En,m(0) =
t1Ein + r1 exp(iδ)En,m(1), where Ein is the ex-
ternal plane wave pump, r21+t21 = 1 connect the
(intensity) reflectivity and transmissivity coef-
ficients, and δ determines the linear mistuning.

We will report on our analysis of model (1),
and discuss the (periodic in K) multi-Turing
threshold spectrum. Results from simulations
will be presented, demonstrating simple pattern
emergence in arrays with one and two transverse
dimensions. Our approach goes beyond mean-
field descriptions of related dNLS cavity models
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Figure 1: (a) Multi-Turing threshold instability spectrum for an FP cavity (top) and its corresponding
SFM system (bottom). Emergence of a static hexagon pattern from a perturbed plane-wave solution
in the FP cavity [(b)–(e)], and its transformation towards a volume-filling fractal [(f)–(i)].

[4], which are analytically more tractable at the
expense of averaging propagation effects.

3 Discrete Counterpropagating Waves

We have also re-considered the fundamental op-
tical configuration of counterpropagating (CP)
laser beams [5] but within the context of non-
linear waveguide arrays. A dNLS-type model
has been proposed for describing the evolution
of forward and backward envelopes (Fn,m and
Bn,m, respectively) in a Kerr-type medium of
length L, and which is essentially a discrete ana-
logue of the continuum equations:

i(∂zFn,m + ∂tFn,m) + c(Fn+1,m + Fn−1,m

+ Fn,m+1 + Fn,m−1 − 4Fn,m)

+ χL(|Fn,m|2 +G|Bn,m|2)Fn,m = 0, (2a)

i(−∂zBn,m + ∂tBn,m) + c(Bn+1,m +Bn−1,m

+Bn,m+1 +Bn,m−1 − 4Bn,m)

+ χL(|Bn,m|2 +G|Fn,m|2)Bn,m = 0,
(2b)

where t is the time coordinate and 1 ≤ G ≤
2 characterizes the standing-wave interference
grating in the medium [5]. The perturbative
method used to investigate the stability of the
uniform states of model (2) (subject to equal-
intensity constant plane wave pump fields) is
reminiscent of that for the continuum model [6],
and involves a boundary-value problem whose
solution requires the exponentiation of a 4 ×
4 matrix. We will report on the multi-Turing

threshold instability spectrum for this new class
of dNLS system, and present a set of simulations
to illustrate pattern formation.
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