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Abstract

The interaction of self-localized waves with an
abrupt interface is a problem of fundamental
importance in many branches of physics, engi-
neering, and applied mathematics. Waveguide
optics, for instance, is dominated in an essen-
tial way by such considerations. There, the
full complexity of electromagnetic propagation
is conveniently reduced to an equation of the
nonlinear Schrödinger (NLS) class. These sim-
plified models are physically intuitive, mathe-
matically tractable, and hold a certain universal
appeal.

All their desirable features notwithstanding,
theories based on paraxial diffraction are sel-
dom appropriate when angular considerations
are of principal interest. Here, we report on
our recent analyses of nonlinear optical wave
refraction using more general Helmholtz equa-
tions, and introduce (for the first time in this
single-interface context) a cubic-quintic system
response. A Snell law is derived for beams, and
its predictions tested by exhaustive computa-
tions. New Goos-Hänchen (GH) shift calcula-
tions are also detailed for this material regime
of nonlinear-interface problem.
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1 Interface Problems

The seminal work of Aceves et al. [1] proposed a
theory of self-localizing nonlinear optical waves
(spatial solitons) at interfaces within an inho-
mogeneous NLS-type formalism. While their
blend of paraxial diffraction and cubic nonlin-
earity undoubtedly makes for an elegant and in-
structive analysis, it sacrifices a detailed treat-
ment of oblique-propagation effects. One way
to address these inherently nonparaxial consid-
erations is to deploy Helmholtz-type models [2],
which retain a simplified scalar character while
simultaneously relaxing angular (paraxial) re-
strictions placed on the spatial spectrum.

Here, our Helmholtz analyses of soliton re-
fraction in cubic systems [2] are extended to
capture the quintic term in the nonlinear op-
tical response of the host media [3]. The inter-
action of a (normalized) electric field envelope u
with a planar interface between two dissimilar
cubic-quintic materials is described by
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where (ξ, ζ) denote transverse and longitudinal
coordinates, κ � O(1) parametrizes the (in-
verse) beam waist, and σ controls the strength
of the quintic response. Mismatches in the lin-
ear and nonlinear refractive index are deter-
mined by ∆ and (α, ν), respectively, while H
is a Heaviside unit function that prescribes the
position of the interface in the (ξ, ζ) plane.

2 Snell’s Law for Spatial Solitons

Using exact solutions of the corresponding ho-
mogeneous problem [4], we have derived a Snell
law for spatial soliton refraction. Respecting
phase continuity at the interface then leads to

γn01 cos θinc = n02 cos θref , (2)

where θinc and θref are the incidence and re-
fraction angles (relative to the interface) in the
laboratory frame, n0j is the linear refractive in-
dex of medium j (where j = 1, 2), and γ is a
function of the system and incident soliton pa-
rameters.

Equation (2) has shown excellent agreement
with simulations of model (1) over a wide pa-
rameter range (see Fig. 1). The best fit occurs
for broader beams (smaller κ values), where am-
plitude curvature is relatively low. This analysis
paves the way for a systematic generalization of
our earlier dark soliton-refraction research [5] to
regimes involving cubic-quintic nonlinearity [6].
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Figure 1: Predictions of the Snell law [see equa-
tion (1)] for purely linear interfaces, where the
refractive-index mismatch is defined by ∆ ≡ 1 −
(n02/n01)2 when (a) κ = 2.5 × 10−3 and (b)
κ = 1.0 × 10−4. The cubic and quintic material
responses remain unchanged across the boundary.

3 Giant Goos-Hänchen Shifts

Equation (2) can be used to make a theoreti-
cal approximation for the critical angle of in-
cidence (denoted by θc) at a given interface,
informing subsequent calculations of GH shifts
(see Fig. 2) [7]. By considering the condition
θref = 0 when θinc = θc (so that the refracted
beam, in principle, propagates along the bound-
ary), Eq. (2) can be used to show that
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where ρ0 is the (normalized) peak intensity of
the incident soliton. Equation (3) provides a
reasonable estimate for θc, though non-adiabatic
processes (e.g., radiation and splitting phenom-
ena) often conspire to reduce its accuracy.

We will conclude with a summary of recent
extensive simulations that have investigated the
Helmholtz nonparaxial character of GH shifts at
(both linear and nonlinear) planar interfaces [8]
but in cubic-quintic systems. Qualitatively new
predictions are made that appear to have no
counterpart in the more familiar purely-cubic
scenario [8], including an oscillatory dependence
of the GH shift on θinc. We have also found a
strong dependence on the nonparaxial param-
eter κ, identifying physical (finite beam waist)
regimes wherein one would expect paraxial (i.e.,
NLS-based) modelling to break down.
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