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Abstract

The origin of conventional models for nonlinear
optical pulse propagation lies in the ubiquitous
slowly-varying envelope approximation (SVEA)
accompanied by a Galilean boost to a local-time
frame. While such a near-universal procedure
typically results in a simpler (parabolic) model
of the nonlinear Schrödinger-type, in reality a
more subtle but less well-explored class of wave
equation underpins the propagation problem.

In reassessing the way conventional mod-
els treat the linear part of the wave operator
(by omitting the “SVEA + Galilean boost” de-
vice), we have uncovered a powerful and elegant
framework for describing time-domain nonlin-
ear optical phenomena that has strong over-
laps with Einstein’s special theory of relativ-
ity. Here, we generalize our scalar modelling
to accommodate two coupled waves experienc-
ing spatiotemporal dispersion and cubic non-
linearity. A range of analytical methods has
been deployed to derive new families of phase-
topological vector solitons (dark-bright and dark-
dark), and their stability properties investigated
using new numerical algorithms.
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1 Beyond Slowly-Varying Envelopes

Menyuk’s seminal analysis from 1987 [1] has un-
deniably helped lay the foundations of today’s
understanding of coupled waves in nonlinear op-
tical systems. Formulated in terms of slowly-
varying envelopes and Galilean boosts, scores of
vectorized Schrödinger-type models have been
proposed and studied over nearly three decades.
While the SVEA survives as a theoretical main-
stay of modelling wave-based nonlinear systems,
Bianacalana and Creatore [2] have pointed out
that there exist modern contexts in condensed-
matter physics where its validity may be re-
assessed. In particular, they assert that spatial
dispersion (for example, related to light-exciton

coupling inside superlattice structures) is not
necessarily well-described by the SVEA.

In this paper, we generalize our scalar ap-
proach to pulse evolution [3] by accommodat-
ing the simultaneous propagation of two cou-
pled optical waves which may represent, for in-
stance, the excitations in two orthogonal polar-
izations of a fibre waveguide whose core has a
cubic (Kerr-type) nonlinearity. Moreover, the
mathematical context of finding exact solitary
solutions to universal hyperbolic or elliptic en-
velope equations (as generalizations of simpler
parabolic models) is both timely and novel.

2 Coupled Governing Equations

We consider a pair of normalized fully second-
order (in space and time) coupled equations de-
scribing optical waves uj , where j = 1 and 2:
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Here, τ and ζ are the dimensionless time and
(longitudinal) space coordinates in the labora-
tory frame, respectively, αj is related to the (lin-
ear) group velocity, spatial dispersion is quan-
tified by |κj | � O(1), group-velocity dispersion
(GVD) by sj [positive and negative values for
anomalous- and normal-GVD regimes, respec-
tively, and typically with |sj | = O(1)], and σ de-
termines the strength of nonlinear coupling (i.e.,
the cross-phase modulation terms |u3−j |2uj).

Frame-of-reference considerations take cen-
tre stage in our approach, and space-time co-
ordinate transformations dominate much of the
analysis [3]. Conventional pulse theory emerges
asymptotically from equation (1) and its solu-
tions, in much the same way that Newtonian
mechanics corresponds to the low-speed limit
of Einstein’s relativistic physics (e.g., the veloc-
ity combination rule for spatiotemporal pulses
is akin to that for particles in special relativity).
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Operationally, one can recover (a general-
ized version of) Menyuk’s classic vector model
[1] alongside all its predictions by: (i) assuming
|κj∂ζζuj | � |∂ζuj |, and (ii) Galilean-boosting
to a local-time frame moving at an averaged
group speed by introducing a new pair of co-
ordinates τloc = τ − αζ and ζloc = ζ, where
α ≡ (α1 + α2)/2:

i

(
∂u1
∂ζloc

+ δ
∂u1
∂τloc

)
+
s1
2

∂2u1
∂τ2loc

+ (|u1|2 + σ|u2|2)u1 ' 0, (2a)

i

(
∂u2
∂ζloc

− δ ∂u2
∂τloc

)
+
s2
2

∂2u2
∂τ2loc

+ (|u2|2 + σ|u1|2)u2 ' 0, (2b)

where δ ≡ (α1−α2)/2 parametrizes a mismatch
in the group velocity. Implementing such a trans-
formation without first making the SVEA hin-
ders rather than helps the analysis of spatiotem-
poral effects (e.g., by generating mixed-derivative
terms that can be awkward to interpret physi-
cally) [3].

3 Dark-Bright & Dark-Dark Solitons

Exact analytical dark-bright and dark-dark soli-
tons of Eq. (1) will be presented, derived by
combining ansatz methods with linear transfor-
mations in the space-time plane. Such solutions
(with their nontrivial phase topology) offer the
greatest potential impact in the arena of future
optical device designs when their continuous-
wave (cw) backgrounds are not susceptible to
spontaneous fluctuations.

A vector generalization of our scalar linear
analysis [4] has been deployed to quantify the
modulational instability spectrum for cw solu-
tions (obtained by solving an eighth-degree poly-
nomial characteristic equation) that have been
subjected to small disturbances. Computations
have confirmed theoretical predictions for the
most-unstable frequency in the system.

Finally, we will summarize results from nu-
merical perturbative analyses demonstrating the
instability of exact conventional dark-bright and
dark-dark solitons [5] when used as initial con-
ditions in Eq. (1) (see Fig. 1). In contrast, we
fully expect the more general spatiotemporal
dark-type vector solitons to be relatively robust
entities exhibiting waves of invariant form char-
acteristics in regimes where the cw backgrounds
are modulationally stable.

Figure 1: Instability of exact conventional dark-
bright [(a) bright |u1|2, (b) dark |u2|2] and dark-
dark [(c) |u1|2, (d) |u2|2] solitons when used as
initial conditions in equation (1) [κ1 = 1.0×10−3,
κ2 = 2.5 × 10−3, and σ = 2/3]. Pulse splitting,
snaking, and radiation shedding are observed.
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