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Abstract

The diffraction of plane waves from simple hard-
edged apertures constitutes a class of boundary-
value problem that is well understood in optics,
at least within the scalar approximation. Simi-
larly, the diffraction of such waves from fractal
apertures (amplitude or phase masks possess-
ing structure across decades of spatial scale) has
also received much attention in the literature.
But the diffraction of fractal waves by simple
apertures constitutes an entirely new paradigm
(in optics particularly, and wave physics more
generally) that remains largely unexplored.

Here, we consider the diffraction of fractal
waves by a hard-edged circular aperture using
a range of analytical and semi-analytical meth-
ods. Fast computational techniques are used to
obtain Fresnel (near field) diffraction patterns,
and specialist software assists with the investi-
gation of their properties. Key issues to be ad-
dressed include the fractal dimension of diffrac-
tion patterns, and the asymptotic emergence of
Fraunhofer (far field) predictions in an appro-
priate limit.
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1 Fractal Diffraction

We have recently proposed fractal diffraction as
a context of fundamental physical importance
with enormous scope for potential applications
[1]. Preliminary analyses investigated a Weier-
strass function [2] for modelling fractal illumi-
nation of the most elementary aperture imag-
inable: the infinite single slit. The Weierstrass
function has an intuitive interpretation, com-
prising a set of periodic patterns whose ampli-
tudes and spatial frequencies are connected in a
very particular way. Moreover, each constituent
pattern scale can be constructed from a super-
position of two interfering plane waves.

The diffraction of a uniform wavefront by a
circular aperture is another classic wave-based
problem that has well-known solutions, both in

Fresnel and Fraunhofer regimes [3]. While we
consider the optical analogue with fractal illu-
mination, our results are expected to be readily
applicable to other fields, such as acoustics [4].

2 Diffraction Integral

The diffraction of a scalar optical field U(r) by
a circular aperture of radius a is routinely de-
scribed by the paraxial wave equation. For a
hard-edged circular aperture, and where the in-
cident wave Uj, is azimuthally invariant, the
diffracted wave at a distance L beyond the aper-
ture is given by the formal solution,
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where the radial coordinate r is measured in
units of a. In this representation, the diffrac-
tion pattern is uniquely parametrized by the
aperture Fresnel number N = a?/\L.

3 Weierstrass Illumination

Here, we consider an illuminating field that has
the form of an azimuthally invariant Weierstrass
wave such that

Uin 1
(r) =14e¢ Z —Dom cos(knT + ¢n), (2)

where Uy is a uniform plane-wave amplitude
and € controls the strength of the fractal modu-
lation. The spatial frequencies in Eq. (2) form a
Weierstrass spectrum given by x,, = 2w (a/A)y",
where v > 0 is a free parameter, and the set of
phases ¢,, may be either deterministic or ran-
dom. When N — oo, the number 1 < Dy < 2
corresponds to the Hausdorff-Besicovich dimen-
sion of Uy, with values approaching 2 giving an
increasingly complex fractal curve.

The illuminating field is bandwidth-limited
with a cut-off at n = N; the spatial scalelengths
in Eq. (2) then range from the largest, A, to the
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smallest, Ay~~. Placing a restriction on the
number of spatial scales in Uj, is important for
two principal reasons. Firstly, no physical ob-
ject can possess structure down to arbitrarily-
small scales (since finite-size effects will even-
tually come into play). Secondly, there tends
to exist a high-frequency cut-off beyond which
spatial scales cannot contribute to the diffracted
intensity pattern [5] (so the basis on which one
introduces finite-bandwidth considerations, and
selects a value for N, are rooted in diffraction
theory).

4 Diffraction of Fractal Waves

Earlier analyses focusing on infinite-slit geome-
tries have tended to use Young’s edge waves
as convenient spatial structures for understand-
ing and quantifying fractal diffraction phenom-
ena [1]. While edge waves can be used for cir-
cular apertures and uniform illumination [3],
such a formalism is not quite so readily de-
ployed for fractal illumination (despite the one-
dimensional nature of the system) and one must
instead consider the diffraction integral more di-
rectly. Substitution of Eq. (2) into Eq. (1) yields
a formal expression for U(r) as a linear super-
position of patterns with different scalelengths,
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where P is given by the integral
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and P(r;0,0) fully describes the diffraction pat-
tern in the classic plane-wave problem [3].

A selection of new results will be discussed,
with a combination of analytical methods and
specialist fractal analysis software [6] identify-
ing trends in the Fresnel patterns (see Fig. 1).
Attention is paid to the role played by Ny in
characterizing these patterns, and we consider
different self-affine measures of dimension (such
as roughness-length, variogram, and rescaled-
range). Asymptotic emergence of classic Fraun-
hofer results will also be demonstrated, and a
wide range of potential applications highlighted.
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Figure 1: (a) Hlumination across a circular aper-
ture corresponding to a plane wave (blue) and a
Weierstrass function with fractal dimension Dy =
1.6 and v = 3 (green). (b) Diffracted intensity
patterns when Ng = 1000.
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