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Abstract

We will report on our latest research into mod-
elling fractal lasers (linear systems that involve
geometrically-unstable resonators with inherent
magnification), and propose two new classes of
cavity configuration. These devices are of fun-
damental theoretical interest as table-top gener-
ators of tunable fractal light that can be used in
a wide range of applications. Moreover, we ex-
pect them to play a pivotal role in new Nature-
inspired optical architectures and designs.

The virtual source theory of classic kaleido-
scope lasers will be reviewed, and we show how
that semi-analytical method can be applied to
novel cavity designs which incorporate a feed-
back mirror whose outer boundary corresponds
to iterations of the von Koch snowflake (an it-
erated function system involving self-similar se-
quences of equilateral triangles) and its isosceles
counterpart, the von Koch pentaflake . A range
of new numerical results will be given, including
calculations of mode patterns, eigenvalue spec-
tra, and detailed computations of fractal dimen-
sion measures.
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1 Fractal Lasers

Unstable cavity lasers involve linear resonators
with inherent magnification whose eigenmodes
possess fractal characteristics (that is, propor-
tional level of details spanning decades of spatial
scale). The physical origin of such multi-scale
patterns in strip resonators (systems compris-
ing a single transverse dimension) has been ex-
plained by considering repeated diffraction of
the circulating cavity field at the feedback mir-
ror (which subsequently plays a key role in de-
termining mode properties) [1].

The term kaleidoscope laser has been coined
to describe similar systems with two transverse
dimensions where the feedback mirror has the

shape of a regular polygon (e.g., an equilat-
eral triangle) [2]. This complicated boundary-
value problem (which involves non-orthogonal
edges in the aperturing element) gives rise to
mode patterns that have a remarkable beauty
and complexity [3]. Here, we propose two new
classes of unstable resonator that involve frac-
tal (rather than regular) boundary conditions:
snowflake and pentaflake systems.

2 Virtual Source Modelling

A confocal unstable resonator is fully described
by two parameters: the equivalent Fresnel num-
ber Neq and the round-trip magnification M .
Southwell’s virtual source (VS) method unfolds
the cavity into a plane wave diffracting through
a sequence of NS = log(250Neq)/ logM aper-
tures, each of which has a characteristic size [4].
The modes of the cavity correspond to a linear
superposition of the edge waves from each of
these fictitious apertures.

Previously, we have applied a two dimen-
sional (2D) VS approach to find the empty-
cavity eigenmodes V (X) of kaleidoscope lasers
across the feedback mirror, where

V (X) = ε

[
ENS+1(XC)

αNS (α− 1)
−

NS∑
m=1

α−mEm(X)

]
,

(1a)
Em(X) is the edge-wave pattern from virtual
aperture m, XC is an arbitrary point on the
boundary of the feedback mirror (typically a
vertex), and ε is a Heaviside function (equal to
1 in the domain of the feedback mirror, and 0
otherwise). The mode eigenvalue α, obtained
by solving the high-order polynomial equation

αNS+1 +

NS∑
m=0

[Em(XC)

−Em+1(XC)]αNS−m = 0, (1b)

plays the role of a formal expansion parameter.
Each individual root of Eq. (1b) thus describes
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Figure 1: Snowflake laser modes (top row) and corresponding magnification of the central portion (bottom
row). For iteration number n = 0, 1, 2, 3 and 4 (left to right), there are N = 3× 4n = 3, 12, 48, 192, and 768
edges to the feedback mirror (a computationally-intensive problem).

an eigenmode of the unstable resonator. In this
way, the virtual source formalism provides a hi-
erarchy of solutions whose round-trip losses are
related to |α| (and where the lowest-loss mode
corresponds to the largest value of |α|). In con-
trast, ABCD (paraxial) matrix modelling in
combination with fast Fourier transforms com-
putes only a single mode per application.

In this presentation, we show how our 2D-
VS theory can also be applied to find the modes
of snowflake (see Fig. 1) and pentaflake res-
onators. The approach requires detailed knowl-
edge of the constituent edge waves, which are
typically found using a line-integral method [5].

3 Modes & Fractal Dimension

A key issue to be addressed in detail is the frac-
tal dimension of unstable-resonator modes for
cavities with arbitrary Neq and M parameters.
Previously, Berry [6] has made similar consid-
erations but only for the lowest-loss modes of
kaleidoscope cavities, and in the limit Neq →
∞ (where asymptotic approximations may be
deployed). We will conclude with a summary
of results from the first detailed exploration of
fractal dimension in kaleidoscope systems. Spe-
cialist software [7] has been deployed in parallel
with our suite of 2D-VS codes to investigate po-
tential anisotropy in the dimension using vari-
ous different measures. Cross-sections through
the lowest-loss (and a set of higher-order) mode
patterns are computed, and direct comparisons
with a strip resonator for the same cavity pa-
rameters [1] uncover some intriguing results.
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