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Discrete nonlinear Schrödinger (dNLS) equations have come to play a pivotal role in optics since their 

proposal by Christodoulides and Joseph nearly three decades ago [1].  In the context of cavity solitons and 

pattern formation, dNLS-type approaches have been used to describe light in discrete waveguide arrays confined 

to ring [2a] and Fabry-Pérot [2b] resonators.  The resultant governing equations for the averaged intracavity field 

turn out to be discrete generalizations of the more familiar continuum models first derived by Lugiato and 

Lefever [3].  Here, we avoid the ubiquitous mean-field limit (with all its advantages and disadvantages) to focus 

on spontaneous patterns in two new discrete models where propagation effects have not been eliminated. 

(i) Ring cavities.  We consider the (dimensionless) complex electric field amplitudes En,m propagating along 

the (local-time) longitudinal z axis in waveguide channel (n, m) with period D and a Kerr-type nonlinearity [1]: 
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where c is a coupling constant and L parametrizes the nonlinear phase shift acquired over a cavity of length L.  

At the start of every round trip, the cirulating field is subjected to the ‘lumped’ boundary condition familiar from 

the corresponding continuum model of McLaughlin et al. [4], En,m(0) = t1Ein + r1exp(i)En,m(1), capturing 

periodic pumping by the plane wave Ein, losses at the coupling mirror (where r1
2 

+ t1
2
 = 1), and a common linear 

mistuning  for each channel.  In this way, emergent cavity phenomena beyond the assumptions of mean-field 

theory may be investigated. We have derived the uniform states of the discrete system, and performed a linear 

stability analysis that has uncovered a (periodic-in-K) multiple-minimum Turing threshold instability spectrum 

[5] – see Fig. 1(a).  In this presentation, we will discuss simulation results testing our new theoretical predictions, 

and demonstrate emergent patterns in one- and two-dimensional discrete arrays [see Fig. 1(b)(e)]. 
 

 
Fig. 1. (a) Multi-Turing instability spectrum [5] for the one-dimensional dNLS ring cavity system in the case of a self-

defocusing nonlinearity (where  < 0, and with Ith representing threshold intracavity intensity).  (b) – (e) Evolution of a 
perturbed plane wave state towards a static square pattern for a two-dimensional waveguide array in a ring cavity. 

 

(ii) Counter-propagating beams.  Alongside ring cavity geometries, we have re-considered the classic 

problem of counter-propagating beams [6] but within the coupled-waveguides context.  A dNLS-type model has 

been proposed for describing the evolution of slowly-varying forward and backward envelopes; it is, in essence, 

a discrete analogue of the continuum system proposed by Firth and Paré. [6].  The time-independent uniform 

states of the new dNLS system have been derived (subject to equal-intensity constant plane-wave pump fields), 

and linearization techniques deployed to assess their susceptibility to small-amplitude fluctuations.  The 

perturbative method is reminiscent of that developed for the continuum case [7] and involves a boundary-value 

problem whose solution requires the exponentiation of a 44 matrix.  We will report on the multi-Turing 

threshold instability spectrum [5] that has been uncovered to predict the most-unstable spatial frequency in the 

discrete counter-propagation system, and present a selection of simulation results to illustrate pattern formation. 
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