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Abstract
Many swarm optimization algorithms have been introduced since the early 60’s, Evolution-

ary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have

demonstrated their potential to solve many optimization problems. This paper provides an

in-depth survey of well-known optimization algorithms. Selected algorithms are briefly ex-

plained and compared with each other comprehensively through experiments conducted

using thirty well-known benchmark functions. Their advantages and disadvantages are also

discussed. A number of statistical tests are then carried out to determine the significant per-

formances. The results indicate the overall advantage of Differential Evolution (DE) and is

closely followed by Particle Swarm Optimization (PSO), compared with other considered

approaches.

Introduction
Swarm Intelligence (SI) has attracted interest from many researchers in various fields. Bona-
beau defined SI as “The emergent collective intelligence of groups of simple agents” [1]. SI is the
collective intelligence behaviour of self-organized and decentralized systems, e.g., artificial
groups of simple agents. Examples of SI include the group foraging of social insects, coopera-
tive transportation, nest-building of social insects, and collective sorting and clustering. Two
fundamental concepts that are considered as necessary properties of SI are self-organization
and division of labour. Self-organization is defined as the capability of a system to evolve its
agents or components in to a suitable form without any external help. Bonabeau et al. [1] also
stated that self-organization relies on four fundamental properties of positive feedback, nega-
tive feedback, fluctuations and multiple interactions. Positive and negative feedbacks are useful
for amplification and stabilization respectively. Fluctuations meanwhile are useful for random-
ness. Multiple interactions occur when the swarms share information among themselves with-
in their searching area. The second property of SI is division of labour which is defined as the
simultaneous execution of various simple and feasible tasks by individuals. This division allows
the swarm to tackle complex problems that require individuals to work together [1].
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This paper outline starts with brief discussion on seven SI-based algorithms and is followed
by general discussion on others available algorithms. After that, an experiment is conducted to
measure the performance of the considered algorithms on thirty benchmark functions. The re-
sults are discussed comprehensively after that with statistical analysis in the following section.
From there, the two best performing algorithms are selected to investigate their variants perfor-
mance against the best performing algorithm in five benchmark functions. The conclusion sec-
tion is presented at the end of this paper.

Swarm Intelligence Algorithms
This section introduces several SI-based algorithms, highlighting their notable variants, their
merits and demerits, and their applications. These algorithms include Genetic Algorithms
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evo-
lution (DE), Artificial Bee Colony (ABC), Glowworm Swarm Optimization (GSO), and Cuck-
oo Search Algorithm (CSA).

Genetic Algorithm
The Genetic Algorithm (GA) introduced by John Holland in 1975 [2, 3], is a search optimiza-
tion algorithm based on the mechanics of the natural selection process. The basic concept of
this algorithm is to mimic the concept of the ‘survival of the fittest’; it simulates the processes
observed in a natural system where the strong tends to adapt and survive while the weak tends
to perish. GA is a population based approach in which members of the population are ranked
based on their solutions’ fitness. In GA, a new population is formed using specific genetic oper-
ators such as crossover, reproduction, and mutation [4–7]. Population can be represented in a
set of strings (referred to as chromosomes). In each generation, a new chromosome (a member
of the population) is created using information originated from the fittest chromosomes of the
previous population [4–6]. GA generates an initial population of feasible solutions and recom-
bines them in a way to guide their search toward more promising areas of the search space.
Each of these feasible solutions is encoded as a chromosome, also referred to as genotype, and
each of these chromosomes will get a measure of fitness through a fitness function (evaluation
or objective function). The value of fitness function of a chromosome determines its capability
to endure and produce offspring. The high fitness value indicates the better solution for maxi-
mization and the low fitness value shows the better solution for minimization problems. A
basic GA has five main components: a random number generator, a fitness evaluation unit, a
reproduction process, a crossover process, and a mutation operation. Reproduction selects the
fittest candidates of the population, while crossover is the procedure of combining the fittest
chromosomes and passing superior genes to the next generation, and mutation alters some of
the genes in a chromosome [4–7].

Fig 1 shows the general flow chart of GA and the main components that contribute to the
overall algorithm. The operation of the GA starts with determining an initial population
whether randomly or by the use of some heuristics. The fitness function is used to evaluate the
members of the population and then they are ranked based on the performances. Once all the
members of the population have been evaluated, the lower rank chromosomes are omitted and
the remaining populations are used for reproduction. This is one of the most common ap-
proaches used for GA. Another possible selection scheme is to use pseudo-random selection,
allowing lower rank chromosomes to have a chance to be selected for reproduction. The cross-
over step randomly selects two members of the remaining population (the fittest chromo-
somes) and exchanges and mates them. The final step of GA is mutation. In this step, the
mutation operator randomly mutates on a gene of a chromosome. Mutation is a crucial step in
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GA since it ensures that every region of the problem space can be reached. Elitism is used to
prevent the best solution of the population from being destroyed during crossover and muta-
tion operation. Elitism guarantees the fitness of new generation will be at least as good as cur-
rent generation. The evaluation and generation of the new populations continue until the
maximum number of generations is reached or the optimum solution is found. GA is advanta-
geous in terms of requiring limited parameter settings and initialising itself from possible solu-
tions rather than a single solution. One of the main drawbacks of GA is the lack of fast
convergence towards the optimal values since the crossover and mutation process are random
[6, 7]. The applications of GA are wide ranging from scheduling [8, 9], machine learning [10],
robotics [11, 12], signal processing [13], business [14], mathematics [15], manufacturing [16,
17], routing [18], and many more.

Since the introduction of GA, many researchers have conducted studies to improve the per-
formance of the GA. They have introduced several alternative approaches for crossover and
mutation to enhance the quality of solutions. In crossover, instead of selecting one crossover
point, De Jong et al. (1992) and Üçoluk (2002) have introduced N-point crossover and seg-
mented crossover which selects several points for crossover [19, 20]. The difference between

Fig 1. Flow Chart of Genetic Algorithmwith all steps involved from beginning until termination conditions met [6].

doi:10.1371/journal.pone.0122827.g001
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them is N-point crossover is choosing several breaking points randomly, while in segmented
crossover, only two breaking points are utilized. Mutation is one of the most important opera-
tors in GA in order to direct the chromosomes towards the better solution. Therefore, several
studies have given different methods for mutation. By default, each gene in a chromosome is
assigned with probability, pm, and mutated depending on that probability. This mutation is
known as uniform mutation. The other approaches for mutation are bitwise inversion where
the whole gene in a chromosome is mutated using a random mutation [19]. Adaptive genetic
algorithms have been introduced in order to allow the use of precise parameters in setting the
population size, the crossing over probability, and the mutation probability. All of these param-
eters are dynamic and changing over the iterations. For instance, if the population is not im-
proving, the mutation rate is increasing and whenever the population is improving, the
mutation rate starts decreasing [21]. Raja and Bhaskaran [22] have suggested a new approach
of GA initialization that improve the overall performance of GA. In this approach, they utilized
initialization twice where the first initialization is uses to identify the promising area. After the
first initialization, all chromosome are ranked and the best chromosomes are selected. After
that, GA is initialize again within the area where the best chromosomes have been identified.

Ant Colony Optimization
Ant Colony Optimization (ACO) is a metaheuristic approach inspired by the Ant System (AS)
proposed by Marco Dorigo in 1992 in his PhD thesis [23–25]. It is inspired by the foraging be-
haviour of real ants. This algorithm consists of four main components (ant, pheromone, dae-
mon action, and decentralized control) that contribute to the overall system. Ants are
imaginary agents that are used in order to mimic the exploration and exploitation of the search
space. In real life pheromone is a chemical material spread by ants over the path they travel
and its intensity changes over time due to evaporation. In ACO the ants drop pheromones
when traveling in the search space and the quantities of these pheromones indicate the intensi-
ty of the trail. The ants choose the direction based on path marked by the high intensity of the
trail. The intensity of the trail can be considered as a global memory of the system. Daemon ac-
tions is used to gather global information which cannot be done by a single ant and uses the in-
formation to determine whether it is necessary to add extra pheromone in order to help the
convergence. The decentralized control is used in order to make the algorithm robust and flexi-
ble within a dynamic environment. The importance of having a decentralized system in ACO
is due to resulting flexibility in the face of ant lost or ant failure offered by such a system. These
basic components contribute to a cooperative interaction that leads to the emergence of short-
est paths [23, 24]. Fig 2.1, 2.2, and 2.3 depict the initial phase, mid-range status of any system,
and the final outcomes of the ACO algorithm respectively. The left figure illustrates the initial
environment when the algorithm starts, where an agent (ant) starts moving randomly from the
nest towards the source and returns back. The middle figure illustrates several iterations of exe-
cution when ants discover multiple possible paths between nest and source. The shortest path
is chosen, and ants use this path frequently which contributes to high intensity of pheromone
trail as shown in the sub-figure 3 in Fig 2. N, S, a, and b represent nest, food source, on-going
path, and returning path respectively. The steps involved to find the best solution starts with
choosing the next node (from the current position in the search space) using following equa-
tion:

pkði;jÞðtÞ ¼
ð½tijðtÞ�a � ½Zij�bÞ

ð
X
k2Jk

½tijðtÞ�a � ½Zij�bÞ
ð1Þ
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pi,j is the probability of going from node i to node j. Jk are the nodes that the ant is allowed to
travel to from node i. ηi j contributes to the visibility between node i and node j. τij(t) represents
the amount of un-evaporated pheromone between node i and node j at time t. α and β in Eq 1
control the influence of τij(t) and ηi j, where if alfa is higher, the searching behaviour of ant is
more depending on pheromone and if beta is higher, the searching behaviour of ant is depend-
ing on its visibility or knowledge. Each ant also has a taboo list which is used to prevent any
ants from visiting the same node twice.

Pheromones, as stated before, are one of the crucial components in ACO as they leave trails
which increase the probability of the next ant choosing the same path. In order to deposit a
pheromone, the following equation is used:

DtkijðtÞ ¼
Q
Lk

ðtÞ

0

ð2Þ
8<
:

Q is a constant, L is the cost of the ant's tour, (i.e., the length of the generated path), t is the
iteration number and k represents a specific ant. The value represents the pheromone rate be-
tween node i and node j that the ant visited in iteration t. The pheromone deposition value for
a path that is not selected is zero. Another important component is the pheromone evaporation
rate. This component determines the exploration and exploitation behaviour of the ant. High
and low evaporation rates result in exploration and exploitation behaviours respectively. Too
high exploration rates result in ants getting lost, while too low values result in an inability to ac-
quire the optimal path [23, 24]. The pheromone decay factor is utilized using following

Fig 2. Ant Colony Optimization Algorithm processes. N and S denote Nest and Source with a is ongoing direction and b is returning direction. Sub
Figure 2.1 shows early process where ants start find a path between nest and source and lay pheromone. Figure 2.2 shows intermediate process where ants
went through all possible paths. Figure 2.3 shows most of ants choose path with highest pheromone [18].

doi:10.1371/journal.pone.0122827.g002
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equation:

tði;jÞðt þ 1Þ ¼ ð1� pÞ � tði;jÞðtÞ þ
Xm

ðk¼1Þ½Dt
k
ði;jÞðtÞ� ð3Þ

m is the number of ants in the system and p is the pheromone evaporation rate or decay factor.
ACO has several advantages over other evolutionary approaches including offering positive
feedback resulting in rapid solution finding, and having distributed computation which avoids
premature convergence. These are in addition to taking advantage of the existing collective in-
teraction of a population of agents [26, 27]. However, ACO has drawbacks such as slower con-
vergence compared with other heuristic-based methods and lack a centralized processor to
guide it towards good solutions. Although the convergence is guaranteed, the time for conver-
gence is uncertain. Another important demerit of ACO is its poor performance within prob-
lems with large search spaces [26, 27]. ACO has been applied in various optimization problems
such as traveling salesman problem (TSP) [28], quadratic assignment problem [29], vehicle
routing [30], network model problem [31, 32], image processing [33], path planning for mobile
robot [34], path optimization for UAV System [35], project management [36] and so on.

A number of ACO variants have been created with the aim to improve overall performance.
Two years after the introduction of ACO, Dorigo and Gambardella made modifications by im-
proving three major aspects (pheromone, state transition rule and local search procedures)
which produce the variant of ACO called Ant Colony System (ACS) [37]. GA is initialize again

ACS uses centralise (global) update approach for pheromone update and only concentrate
the search within a neighbourhood of the best solution found so far in order to increase effi-
ciency for convergence time. The state transition rule is different from ACO where ACS has a
stated probability (q0) to decide which behaviour is used by the ant. q0 is usually set to 0.9 and
compare to a value of q (which 0� q� 1). If the value of q is less than that, then exploitation
behaviour is used and vice versa. For local search procedures, a local optimization heuristic
based on an edge exchange strategy such as 2-opt, 3-opt or Lin-Kernighan is applied to each so-
lution generated by an ant to get its local minima. This combination of new pheromone man-
agement, new state transition, and local search procedures has produced a variant of ACO for
TSP problems [37]. Max-Min Ant System (MMAS) is considered as another notable variant of
ACO. The approach was introduced by Stutzle and Hoos in 2000 and it limits the pheromone
trail values within the interval of [τmin, τmax] [38]. MMAS also modified three aspects of ACO.
First, at the beginning, the pheromone trails are set to the maximum value which escalate the
exploration behaviour of the ants. Second, the authors introduce an interval of [τmin, τmax]
which limits the pheromone trails in order to avoid stagnation. Third, only one ant is allowed
to add pheromone which help exploiting the best solutions found during the execution of the
algorithm. The pheromone may be added by using either an iteration-best approach or a glob-
al-best approach. In the iteration-best approach, only the ant with best solution adds the phero-
mone for each iteration while in the global-best approach, the ant with the best solution can
add the pheromone without considering other ants in the same iteration [38].

Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an optimization technique introduced by Kennedy and
Eberhart in 1995 [39]. It uses a simple mechanism that mimics swarm behaviour in birds flock-
ing and fish schooling to guide the particles to search for global optimal solutions. Del Valle
and his co-authors [40] described PSO with three simple behaviours of separation, alignment,
and cohesion as shown in Fig 3 respectively. Separation is the behaviour of avoiding the
crowded local flockmates while alignment is the behaviour of moving towards the average di-
rection of local flockmates. Cohesion is the behaviour of moving towards the average position
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of local flockmates. The formulas of PSO algorithm are as follows [39, 41]:

vtþ1
id ¼ vtid þ c1 � randð0; 1Þ � ðptid � xtidÞ þ c2 � randð0; 1Þ � ðptgd � xtidÞ ð4Þ

xtþ1
id ¼ xtid þ vtþ1

id ð5Þ

where vtid and x
t
id are particle velocity and particle position respectively. d is the dimension in

the search space, i is the particle index, and t is the iteration number. c1 and c2 represent the
speed, regulating the length when flying towards the most optimal particles of the whole
swarm and the most optimal individual particle. pi is the best position achieved so far by parti-
cle i and pg is the best position found by the neighbours of particle i. rand(0,1) is the random
values between 0 and 1. The exploration happens if either or both of the differences between
the particle’s best (ptid) and previous particle’s position (xtid), and between population’s all-time
best (ptgd) and previous particle’s position (xtid) are large, and exploitation occurs when these

values are both small. PSO proved to be an efficient optimization algorithm by searching an en-
tire high-dimensional problem space. It is a robust stochastic optimization technique based on
the movement and intelligence of swarms. It applies the concept of social interaction to prob-
lem solving and does not use the gradient of the problem being optimized, so it does not re-
quire the optimization problem to be differential, as is required by classic optimization
methods [42]. The optimization of irregular problems that are noisy and change over time can
be determined using PSO [43–45]. The parameters of PSO consist of number of particles, posi-
tion of agent in the solution space, velocity and neighbourhood of agents (communication of
topology).

The PSO algorithm begins by initializing the population first. The second step is calculating
the fitness values of each particle, followed by updating individual and global bests, and later,
the velocity and the position of the particles get updated. The second to fourth steps get repeat-
ed until the termination condition is satisfied [40, 46–48]. Fig 4 illustrates the PSO algorithm
output over iterations. In the first iteration, all particles spread out in order to find the best

Fig 3. PSO Basic Behaviors. Figure 3.1 shows separation behavior where particle avoiding other particles. Figure 3.2 shows alignment behavior where
particle moving towards head of local flockmates and maintain the speed between them. Figure 3.2 shows cohesion behavior where particle moving towards
the average position of local flockmates [30].

doi:10.1371/journal.pone.0122827.g003

Swarm Optimization Algorithms: A Survey

PLOS ONE | DOI:10.1371/journal.pone.0122827 May 18, 2015 7 / 36



solution (exploration). Each particle is evaluated. The best solutions are found with respect to
neighbourhood topology and the personal and global best particles for each member of the
swarm are updated. The convergence would be achieved through attracting all particles to-
wards the particle with the best solution.

The PSO algorithm has many merits. It is simple to implement, has only a few parameters
to be set, it is effective in global search, it is insensitive to scaling of design variables, and it is
easily parallelized for concurrent processing [48–50]. PSO has tendency to result in a fast and
premature convergence in mid optimum points, in addition to having slow convergence in a
refined search area (having weak local search ability) [48–50]. PSO is used in networking [51],
power systems [52], signal processing [53], control system [54], machine learning [55], image
processing [56–58], and many more.

There are several approaches that can be used to improve PSO in general. The size of the
population is one of the important factors. Higher population size can increase the chance of
faster and precise convergence. A second approach is to achieve a balance between exploration
and exploitation. In the beginning of iteration, high exploration would give a high chance to
find a solution which is close to global optima. Meanwhile towards the end of iteration, high
exploitation would give a chance for particle to find the most accurate solution within the
promising area. A sub-swarm approach is another way that can be used to increase the basic
PSO performance which is quite commonly used nowadays. Allocating different tasks or objec-
tives to each sub-swarm can also increase the efficiency of PSO in the multi-objective problems
[59]. Another approach to improve the PSO performance is to set the contributing components
of the velocity equation (dynamic velocity adjustment). Such an approach can direct particles
in different directions resulting in faster convergence towards a global optimum [60].

Fig 4. Particle SwarmOptimization movement towards global optima over iteration numbers [33].

doi:10.1371/journal.pone.0122827.g004
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The two most notable variants in PSO are the introduction of inertia weight and constric-
tion factors. Inertia weight (w) is introduced by Shi and Eberhart three years after PSO was
first introduced to regulate the influence of previous velocity which also controls the explora-
tion and the exploitation behaviours of particle [61]. If the w value is high then the step size is
big, resulting in the occurrence of exploration behaviour. If the w value is low then the step size
is small and the exploitation behaviour occurs. This element has been accepted as new standard
form of velocity equation for basic PSO as illustrated in Eq (6):

vtþ1
id ¼ w � vtid þ c1 � randð0; 1Þ � ðptid � xtidÞ þ c2 � randð0; 1Þ � ðptgd � xtidÞ ð6Þ

The introduction of inertia weight has improved overall performance of PSO in terms of the
speed of convergence and the quality of solutions. From there, much research has been done to
find the best configuration for inertia weight in order to optimize the convergence speed and
the solutions’ quality. Bratton and Kennedy suggested to use an inertia weight value higher
than 1.0 and decreasing eventually to a value lower than 1.0 with the aim of encouraging explo-
ration at an early stage and exploitation of the best area found towards the end [62]. Clerc and
Kennedy later introduced the constriction factor named as K in order to increase the chance of
convergence and avoid particles from leaving the search space [63].

vtþ1
id ¼ K½vtid þ c1 � randð0; 1Þ � ðptid � xtidÞ þ c2 � randð0; 1Þ � ðptgd � xtidÞ� ð7Þ

Both variants have improved the overall performance of the PSO algorithm. Eberhart and
Shi have compared these two variants and come to the conclusion that the constricted PSO
perform better than the improved basic PSO [64]. There are several elements in PSO such as
swarm communication topology, and the number of particles which can determine the quality
of the solution. Figueirdo and Ludermir have evaluated five types of communication topologies
of global, local, von neuman, wheel and four clusters. They concluded that global topology
shows promising results compared to other topologies [65]. Bratton and Kennedy investigated
the effect of number of particles in finding the solutions. Their study showed that there is no
absolute number of population size that can be applied for all optimization problems [62].

Differential Evolution
The Differential Evolution (DE) algorithm is a population-based algorithm that can be consid-
ered to be similar to GA since it employs similar operators; crossover, mutation, and selection.
The main difference between DE and GA is in constructing better solutions, where DE relies
on mutation operation while GA relies on crossover operation. This algorithm was introduced
by Storn and Price in 1997 [66]. Since this algorithm relies on mutation operation, it utilizes
the mutation as a search mechanism and takes advantage of the selection operation in order to
direct the search towards the potential regions in the search space. Target Vector, Mutant Vec-
tor, and Trail Vector are three properties that DE utilizes for generating a new population itera-
tively. The target vector is the vector that contains the solution for the search space; the mutant
vector is the mutation of the target vector; and the trail vector is the resultant vector after the
crossover operation between target vector and mutant vector. The basic steps of the DE algo-
rithm as stated before, are similar to GA with only slight differences [67, 68]. DE starts with
steps such as population initialization followed by evaluation to determine the fittest members
of the population. Later, new parameter vectors get generated by adding the weighted differ-
ence of the two population vectors with the third vector. This step is referred to as mutation.
Within the crossover, the vector is mixed and the algorithm takes a final step of selection. In
order to see the differences between DE and GA, a more detailed discussion on the three main
operators in DE is required.
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In the mutation step each of N parameter vectors goes through mutation. Mutation is the
operation of expanding the search space and a mutant vector is generated by:

vi;Gþ1 ¼ xr1;G þ Fðxr2;G � xr3;GÞ ð8Þ

where F is the scaling factor with a value in the range of [0,1] with solution vectors xr1, xr2, and
xr3 being chosen randomly and satisfying following criteria:

xr1; xr2; xr3jr1 6¼ r2 6¼ r3 6¼ i ð9Þ

where i is the index of the current solution. Fig 5 illustrates a two-dimensional vector which
plays a part in generating the mutant vector.

Crossover operation is introduced to increase the diversity of the disconcerted parameter
vectors. The parent vector is mixed with a mutated vector and a trial vector is produced by:

ui;Gþ1 ¼
vi;Gþ1 if Rj � CR

xi;G if Rj > CR
ð10Þ

(

where CR is a crossover constant and Rj is a random real number between [0,1] with j denoting
the jth component of the resultant array.

In DE, all solutions in the population have the same probability of being selected as parents
without considering their fitness value. This is the main difference in the operations of DE and
GA. Simply put, the child (trail vector) produced is only evaluated after mutation and crossover
operations. After that, the performance of this child vector is compared to its parent and the
better vector is retained in the population. The exploitation behaviour occurs when the differ-
ence between two solution vectors in Eq 6 are small, while the exploration behaviour occurs
when the difference between those two are large. DE is advantageous in terms of enhancing the
capacity of local search and keeping the multiplicity of the population while it suffers from
slow convergence and being unstable [68]. DE is employed in various applications such as elec-
trical engineering [69], image processing [70], machine learning [71], and economy [72].

In general, DE performance can be improved by increasing the population size. It can also
balance between exploration and exploitation behaviour where the scaling factor (which

Fig 5. Illustration of Crossover Process of DE with vector dimension (j) of 7. Target vector is current
solution with mutant vector is another possible solution. Trail vector is new solution after crossover process
between target vector and mutant vector [43].

doi:10.1371/journal.pone.0122827.g005
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determines the step size) is high at the beginning and decreases towards the end of an iteration.
Another step that can be used is the introduction of elitism which can avoid the best solution
from being destroyed when the next generation is created. There are many variants of DE avail-
able since its introduction by Storn and Price. Mezura-Montes et al. have discussed several var-
iants of DE and done a comparative study between them [73]. The variants discussed are DE/
rand/1/bin, DE/rand/1/exp, DE/best/1/bin, DE/best/1/exp, DE/current-to-best/1, DE/current-to-
rand/1, DE/current-to-rand/1/bin, and DE/rand/2/dir. The differences between them are in
terms of individuals selected for mutation, the numbers of pairs of solutions selected and the
type of recombination [74]. In the study the variants of DE are described in DE/x/y/z form
where x represents a string denoting the base vector to be perturbed; for example randmeans
that vectors selected randomly to produce the mutation values and bestmeans that the best
vectors among population is selected to produce the mutation values. y is the number of vectors
considered to generate a new vector and is represented in an integer form which indicate the
number of pairs of solutions used to produce a new solution. z represents the type of crossover,
for instance bin and exp (binmeaning binomial and expmeaning exponential). Meanwhile,
current-to-best and current-to-rand are arithmetic recombination proposed by Price [75] to
eliminate the binomial and exponential crossover operator with the rotation invariant.

Artificial Bee Colony
Artificial Bee Colony (ABC) is one of the most recent swarm intelligence algorithms. It was
proposed by Dervis Karaboga in 2005 [76]; in 2007, the performance of ABC was analysed [77]
and it was concluded that ABC performs quite well compared with several other approaches.
This algorithm is inspired by the intelligent behaviour of real honey bees in finding food
sources, known as nectar, and the sharing of information about that food source among other
bees in the nest. This algorithm is claimed to be as simple and easy to implement as PSO and
DE [78]. In this approach, the artificial agents are defined and categorized into three types, the
employed bee, the onlooker bee, and the scout bee. Each of these bees has different tasks as-
signed to them in order to complete the algorithm’s process. The employed bees focus on a
food source and retain the locality of that food source in their memories. The number of em-
ployed bees is equal to the number of food sources since each employed bee is associated with
one and only one food source. The onlooker bee receives the information of the food source
from the employed bee in the hive. After that, one of the food sources is selected to gather the
nectar. The scout bee is in charge of finding new food sources and the new nectar. The general
process of ABC method and the details of each step are as follows [76–78]:

Step 1. Initialization Phase: All the vectors of the population of food source, xl
!, are initial-

ized (i = 1. . .SN, where SN is population size) by scout bees and control parameters being set.

Each xl
! vector holds n variables, which is optimized, to minimize the objective function. The

following equation is used for initialization phase:

xi ¼ li þ randð0; 1Þ � ðui � liÞ ð11Þ
where li and ui respectively are the lower and upper bound parameters of xi.

Step 2.Employed Bees Phase: In this phase, the search for a new food source, vl
!, increases in

order to have more nectar around the neighbourhood of the food source, xl
!. Once a neigh-

bouring food source is found, its profitability or fitness is evaluated. The new neighbouring
food source is defined by using following formula:

vi ¼ xi þO=iðxi � xjÞ ð12Þ

where xj is a random selected food source and Øi is a random number of [-a, a]. Once the new
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food source, vi, is produced its profitability is measured and a greedy selection is applied be-

tween xl
! and vl

!. The exploration happens if the difference between xi − xj is large and the ex-

ploitation behaviour is when the difference is small. The fitness value of the solution, fiti(xl
!), is

determined using following equation:

fitið xi!Þ ¼
1

1þ fið xi!Þ if fiðxi
!Þ � 0

1þ absðfiðxi!ÞÞ if fið xi!Þ < 0

ð13Þ

8><
>:

where fi ð xl!Þ is the objective function value of solution (xi
!).

Step 3. Onlooker Bees Phase: Onlooker bees that are waiting in the hive choose their food
sources depending on probability values measured using the fitness value and the information
shared by employed bees. The probability value, pi, is measured using the following equation:

pi ¼
fitið xi!ÞXSN

i¼1
fitið xi!Þ

ð14Þ

Step 4. Scout Bees Phase: The scout bees are those unemployed bees that choose their food
sources randomly. Employed bees whose fitness values cannot be improved through predeter-
mined number of iterations, called as limit or abandonment criteria, become the scout bees and
all their food sources get abandoned.

Step 5. The best fitness value and the position associated to that value are memorized.
Step 6. Termination Checking Phase: If the termination condition is met, the programme

terminates, otherwise the programme returns to Step 2 and repeats until the termination con-
dition is met.

Advantages of ABC include being easy to implement, robust, and highly flexible. It is con-
sidered as highly flexible since only requires two control parameters of maximum cycle number
and colony size. Therefore, adding and removing bee can be done without need to reinitialize
the algorithm. It can be used in many optimization problems without any modification, and it
requires fewer control parameters compared with other search techniques [77–80]. The disad-
vantages of ABC include the requirement of new fitness tests for the new parameters to im-
prove performance, being quite slow when used in serial processing, and the need for a high
amount of objective function evaluations [81]. ABC has been implemented in various fields in-
cluding engineering design problems [82, 83], networking [84], business [85], electronics [86],
scheduling [86] and image processing [86].

Although ABC algorithm was only been introduced less than ten years ago there are already
quite number of variants of ABC available. One of the important ABC variant is Interactive
ABC (IABC) designed to solve numerical optimization problems [87]. Bao and Zeng have in-
troduced three selection strategies of food source by onlooker bees for ABC which form three
variants called Rank Selection Strategies ABC (RABC), Tournament Selection ABC (TABC)
and Disruptive Selection ABC (DABC) [88]. The main aim for all these variants is to upsurge
the population diversity and avoid premature convergence. Bao and Zeng have tested these
modified ABCs with the standard ABC and the results showed that these three selection strate-
gies perform better search compared with the standard ABC [88].

Glowworm Swarm Optimization
Glow worm Swarm Optimization (GSO) is a new SI-based technique aimed to optimize multi-
modal functions, proposed by Krishnanad and Ghose in 2005 [89, 90]. GSO employs physical
entities (agents) called glowworms. A condition of glowwormm, at time t has three main
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parameters of a position in the search space (xm(t)), a luciferin level (lm(t)) and a neighbour-
hood range (rm(t)). These three parameters change over time [89–91]. Initially the glowworms
are distributed randomly in the workspace, instead of finite regions being randomly placed in
the search area as demonstrated in ACO. Later, other parameters are initialized using prede-
fined constants. Yet, similar to other methods, three phases are repeated until the termination
condition is satisfied. These phases are luciferin level update, glowworm movement, and neigh-
bourhood range update [89]. In order to update the luciferin level, the fitness of current posi-
tion of a glowwormm is determined using following equation:

lmðtÞ ¼ ð1� pÞ � lmðt � 1Þ þ gJðxmðtÞÞ ð15Þ

where p is the luciferin evaporation factor, γ is the luciferin constant and J is an objective func-
tion. The position in the search space is updated using following equation:

xmðtÞ ¼ xmðt � 1Þ þ s
xnðt � 1Þ � xmðt � 1Þ

k xnðt � 1Þ � xmðt � 1Þ k
� �

ð16Þ

where s is the step size, and ||.|| is Euclidean norm operator. If the difference between xn and xm
is large then exploration behaviour takes place and if this difference is small then exploitation
behaviour occurs. Later, each glowworm tries to find its neighbours. In GSO, a glowwormm is
the neighbour of glowworm n only if the distance between them is shorter than the neighbour-
hood range rm(t), and on condition where glowworm n is brighter than glowwormm. Howev-
er, if a glowworm has multiple choices of neighbours, one neighbour is selected using the
following probability equation.

pmðtÞ ¼
lmðtÞ�lnðtÞX
k2NiðtÞlkðtÞ�lnðtÞ

ð17Þ

where the probability of glowworm atmmoving towards glowworm at n is the difference of lu-
ciferin level between them over difference of luciferin level between all glowworms within the
range of glowwormm. The solution with the highest probability is selected and then the glow-
worm moves one step closer in direction of the chosen neighbour with a constant step size s. In
the final phase, the neighbourhood range (rm(t)) is updated to limit the range of communica-
tion in a group of glowworms. The neighbourhood range is calculated using following equa-
tion:

rmðt þ 1Þ ¼ min rs;max 0; rmðtÞ þ b nd � jnmðtÞjð Þ½ �f g ð18Þ

where rs is a sensor range (a constant that limits the size of the neighbourhood range), nd is the
desired number of neighbours, |nm(t)| is a number of neighbours of the glowwormm at time t
and β is a model constant. Fig 6 illustrates two possible circumstances in GSO’s agents’ evolving
procedures in which with respect to agents’ positions in the search space and the available
neighbouring agents different behaviours occurs. In (a), i, j and k represent the agents of glow-

worm. rjs denotes the sensor range of agent j and r
j
d denotes the local-decision range for agent j.

The same applies with i and k where sensor range and local-decision range are represented by
ris and r

i
d and r

k
s and r

k
d respectively. It is applied in the circumstances where agent i is in the sen-

sor range of agent j and k. Since the agents have different local-decision domains only agent j
uses the information from agent i. In (b), a, b, c, d, e, and f are glowworm agents. 1, 2, 3, 4, 5,
and 6 represent the ranking of the glowworm agents based on their luciferin values. Agents are
ranked based on their luciferin values resulting in agent a being ranked 1 since it has the highest
luciferin value. GSO is effective within applications with limited sensor range and is capable of
detecting multiple sources and is applicable to numerical optimization tasks [89–91]. However,
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it also has low accuracy and slow convergence rate [92, 93]. GSO has been applied to routing
[94], swarm robotics [95], image processing [96], and localization [97, 98] problems.

GSO can be improved in general by considering the following modifications. 1) Expanding
the neighbourhood range to include all agents. Once the best solution has been determined, all
agents can move towards the agent with the best solution. This step can increase the efficiency
in exploitation, since higher number of agents to be within the best solution range. 2) In order
to increase GSO’s convergence rate, the number of neighbours considered within the neigh-
bourhood range need to be as small as possible. This step might reduce the time taken for GSO
since less calculation required to determine the probability and direction of its movement.

GSO has several variants that improve the overall performance of GSO. For example, He
et al. [99] introduced Improved GSO (IGSO) to take advantage of integrating chaos behaviour
in order to avoid local optima and increasing the speed and accuracy of convergence. He et al.
have tested their algorithm on six benchmark functions and the results showed IGSO outper-
form GSO [99]. Zhang et al. [100] have proposed two ideas to improve the performance of
GSO. First, they proposed several approaches to alter the step-size of the glowworm such as
fixed step, dynamic linear decreasing, and dynamic non-linear decreasing [100]. They have
compared the variance of step-size approaches and the results showed that both dynamic linear
and the non-linear decreasing approaches perform better than the fixed step method. Secondly,
they proposed self-exploration behaviour for GSO. In this variant, they suggested that each
glowworm is assigned with a threshold and the fitness value should be greater than this value
for a glowworm and also its neighbours. If not, the glowworm needs to choose randomly be-
tween random spiral search and random Z-shaped search in order to find better fitness value.
If the fitness value is greater than the threshold then the basic GSO algorithm is used [100].

Fig 6. Glowworm Search Optimization (GSO) in two possible conditions. a, b, c, d, e, f, i, j, and k are the glowworm agents. In Figure 6.1, figure
illustrates three glowworm agents with different sensor range and local-decision range. It shows if agent within local-decision of other agent, the agent with
lower luciferin values move towards agent with higher luciferin values. In Figure 6.2, glowworm agents are ranked based on their luciferin values with lower
number represent higher luciferin values and higher number represent lower luciferin values [58].

doi:10.1371/journal.pone.0122827.g006
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Zhao et al. [101] introduced a local search operator to GSO with an aim to increase conver-
gence accuracy and efficiency [101].

Cuckoo Search Algorithm
The Cuckoo Search Algorithm (CSA) is one of the latest metaheuristic approaches introduced
by Yang and Deb in 2009 [102]. This algorithm is inspired by the behaviour of cuckoo species,
such as brood parasites, and the characteristics of Lévy flights, such as some birds and fruit
flies. CSA employs three basic rules or operations in its implementation. First, each cuckoo is
only allowed to lay one egg in each iteration, and the nest is chosen randomly by the cuckoo to
lay its egg in. Second, the eggs and nests with high quality are carried forward to the next gener-
ation. Third, the number of available host nests is fixed and the egg laid by a cuckoo is discov-
ered by a host bird using probability pa� [0, 1]. In other words, the host can choose whether to
throw the egg away or abandon the nest and build a new nest completely. The last assumption
can be approximated as a fraction, pa of the total n nests that are replaced by new nests with a
new random solution. The algorithm also can be extended to more complicated point where
each nest contains multiple eggs [102, 103]. Based on these three main rules the details of steps
taken in CSA are discussed. To generate a new solution, x (t+1), for cuckoo indexedm, the fol-
lowing Levy flight equation is performed [102–104]:

xmðt þ 1Þ ¼ xmðtÞ þ @ � LevyðbÞ ð19Þ
where @ is the step size. In most cases, @ = 1 is used [102]. The product� is an indication of
matrix form multiplication and using entry-wise approach. Levy flights provide a random walk
and the random steps are drawn from a Levy Distribution equation for large steps as follows:

Levy 	 u ¼ t�1�bð0 < b < 2Þ ð20Þ

The equation has infinite variance with an infinite mean. The following steps of a cuckoo
from a random walk process are required to fulfil step-length distribution with a heavy tail. A
fraction, pa, of the worst nest is discarded therefore the new nests can be built at new locations.
The mixing of the solutions is performed by random permutation depending on similarity or
difference to the host eggs. The step size, @, initializes with a large value and iteratively de-
creases towards the final generation allowing the population to be converged towards a solu-
tion in the final generation. In principles this is similar to the steps taken in linear decreasing
PSO. The additional component is introduced to Eq (19) and form Eq (21) by Yang [104]:

xmðt þ 1Þ ¼ xmðtÞ þ @ � LevyðbÞ 	 0:01
u

jvj1=b ðxnðtÞ � xmðtÞÞ ð21Þ

where u and v are drawn from normal distribution which is

u 	 Nð0; s2
uÞ; v 	 Nð0; s2

uÞ ð22Þ

where

su ¼
ðgð1þ bÞsin pb

2

� �Þ
ðg½1þ bÞ=2�b2b�1

2

( )1=b

; sv ¼ 1 ð23Þ

γ is the standard gamma function [104]. The exploration occurs if there is a large difference
value between xn and xm in Eq 21 and a small difference results in an exploitation.

CSA is advantageous with multimodal objective functions and it requires fewer numbers of
parameters to be fine-tuned compared to other approaches. It also has an insensitive
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convergence rate to the parameter pa where on some occasions fine tuning the parameters is
not necessary [102–104]. CSA is applied to various areas including neural network [105], em-
bedded systems [106], electromagnetics [107], economics [108], business [109], and TSP prob-
lem [110].

In 2011, Walton et al. have introduced a variant for CSA called Modified Cuckoo Search
(MCS) where their main objective is to increase the convergence speed [111]. This enhance-
ment involves an additional step in which the top eggs do some information sharing. They
have applied MCS on several benchmark functions and the results show that MCS has outper-
formed the standard CSA. The other popular variant for CSA is Quantum Inspired Cuckoo
Search Algorithm (QICSA) proposed by Layeb in 2011 [112]. The author integrated elements
from quantum computing principles like qubit representation, measure operation, and quan-
tum mutation. The main objectives are to enhance the diversity and the performance of stan-
dard CSA. The results showed that there are still some shortcomings in QICSA and the author
suggested to integrate a local search and parallel machines in order to improve the efficiency
and increase the convergence speed [112].

Other Evolutionary Algorithms
There are so many other evolutionary algorithms available but not discussed in the previous
sections because the purpose of the previous section were to only introduce and discuss the
well-known and commonly used SI-based approaches. Therefore, this section is dedicated to
discuss in general the other interesting evolutionary algorithms such as Genetic Programming
(GP), Evolution Strategy (ES), Evolutionary Programming (EP), Firefly Algorithm (FA), Bat
Algorithm (BA) and Grey Wolf Optimizer (GWO).

GP is another evolutionary algorithm which involves similar procedures taken in GA. GP
uses the term program while GA uses the term chromosome to represent the solution. The pro-
cedures for GP start with creating an initial population randomly. Later, three steps are repeat-
ed until the stopping criteria is met. These steps are fitness evaluation, selection and
reproduction. The only difference between GP and GA is in selection procedure. GA selects
predefined percentages of the fittest population for reproduction while in GP, each program se-
lects one program or a few programs (according to the objective) from the population depend-
ing on the probability assigned to each program (based on their fitness) [113].

The ES algorithm is another type of optimization approach that uses the same methodology
as GA and DE but it utilizes self-adaptive mutation rates. It has three types of procedures
which are (1+1)-ES, (1+λ)-ES and (μ/ρ +, λ)-ES. (1+1)-ES operates where each parent pro-
duces just one mutation (child) who competes with that parent. The mutant will become the
parent on the next generation only if it performs as well as the original parent. If not, then the
mutant is omitted. In (1+λ)-ES, λmutants are generated and the best mutant is selected as the
new parent in the next generation while the current parent is omitted without considering its
fitness. (μ/ρ +, λ)-ES is quite contemporary and often used as standard ES. μ represents number
of individuals contained in the parent population and ρ it the decided numbers of parent indi-
viduals used for recombination. Hence, ρ should be equal or less than μ. λ represents the num-
ber of child produced in each generation. Note that all of these parameters are positive
integers. +, is the operator to decide which strategy applies whether ‘plus’ or ‘comma’ strategy.
‘Plus’ strategy neglects the age of individuals, meaning that parents are competing with their
children to survive and be bought to next generation. ‘Comma’ strategy is where the parents
are always omitted and new parents are chosen from the fittest child for new generation [114].

EP shares the same similarities with the steps taken in GA which involves initialization, mu-
tation and evaluation operations. However, the main difference between EP and GA is where
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EP does not use any crossover operation to generate child or offspring. EP and ES share a lot of
similarities between them. However, they have two main differences which are in selection and
recombination. EP usually uses stochastic selection and ES uses deterministic selection. Sto-
chastic selection means that each solution competes against a predetermined number of other
solutions and the least-fit solutions are eliminated. Deterministic selection means it eliminate
the worst solutions directly after their evaluation [115, 116]. FA was inspired by the behaviour
of fireflies which attract each other using flashing light. FA is quite similar to GSO algorithm in
terms of inspiration. The fitness of the fireflies will determine their flashing brightness. This
brightness also decreases over distance. The less bright firefly will move towards a firefly which
is brighter, and if there is no brighter firefly, the particular firefly will move randomly [117].

The Bat algorithm is another recent introduced optimization technique. It is introduced by
Yang and Gandomi in 2012 and it is inspired form bats behaviour in foraging for food. This al-
gorithm is quite similar to PSO and it is consist of velocity and position equations [118, 119].
Since this algorithm is inspired by bats, it considers the echolocation capability that bats have
and also take advantage of a frequency equation. This frequency equation has direct influence
on the velocity equation which determines the direction in search space [118–120].

Mirjalili et al. introduced GWO which inspired by the predator grey wolf [121]. The algo-
rithm divides the agents (grey wolves) into several categories of hierarchy named alpha, beta,
delta and omega from top to bottom respectively. Each hierarchy has different roles in order to
find the solutions, which in this case are preys [121]. Note that there are many more evolution-
ary algorithms that are not discuss in this paper. Mirjalili et al. listed some existing optimiza-
tion algorithms that have not been discussed in this paper [121].

Benchmark Functions Experiment
There are many optimization techniques claiming superiority over other approaches. Hence, to
determine the most reliable algorithms, benchmark functions can be used as indicator to prove
their effectiveness. Several benchmark functions with different properties have been used to
evaluate the feasibility of the discussed optimization algorithms; their achieved performances
are presented in this section. There are four experiments which have been done. The first ex-
periment is the comparison between seven algorithms discussed with more rigorous conditions
in order to determine the best basic evolutionary algorithm. The second and third experiments
are the variants of the two best evolutionary algorithms based on the performance from the
first experiment. The fourth experiment is available in supplement section where the compari-
son between seven algorithms discussed on twenty benchmark functions with all results being
collected from literature [140–157]. The fifth experiment which is also available in the S1 File
discusses the behaviour of all these algorithm when an offset is added into the function.

Experimental Settings
In evolutionary methods, experimental settings are very important and can influence the out-
come of the experiments. If the settings are not optimal then the outputs are not optimal either.
In order to have a fair assessment between all algorithms, it is important to set the value of
each algorithm to its optimal value. Optimal setting means that the best setting is used in order
to obtain the best possible result. For example in the PSO algorithm, linear decreasing inertia
weight should be used instead of random inertia weight to balance the exploration and exploi-
tation behaviour of the particles which increase the chance of obtaining the global optima.
There are several studies discussed about the optimal value. They have run a number of experi-
ments to obtain the optimal setting value in order to get the best possible outcome from the op-
timization problems. For example, Fernando et. al [122] investigated parameter setting in
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genetic algorithm. Parapar, Vidal and Santos [123] discussed how to find the best parameter
setting for PSO and Zhang, Yu and Hu [124] have suggested the optimal choice of fix inertia
weight value for PSO. Josef [125] and Zhang et. al [126] have recommended the best parameter
setting for DE and GSO respectively. For ABC, Akay and Karaboga [127] have suggested to
tune the parameter for the best optimal result. Gaertner and Clrk [128] and Stutzle et. al [129]
investigated ways to set the parameters for ACO. Various types of benchmark functions and
settings are used for the evaluation. First, the settings of each comparison are discussed and
later, the benchmark functions selected are presented.

Experiment 1: Performance Evaluation on Benchmark Functions with strict condi-
tions. The performance of seven optimization algorithms (GA, ACO, DE, PSO, ABC, GSO,
and CSA) discussed earlier are compared against each other with rigorous conditions applied.
The aim of this experiment is to distinguish which optimization algorithm can give the best
performance in terms of outcome and time taken with limited iterations. In order to have fair
comparison of performance among the evolutionary methods, all methods have the same itera-
tion numbers and population sizes which is one hundred. The experimental settings utilized in
this study are presented in Table 1. The benchmark functions selected and their characteristics
are presented in Table 2 [130, 131].

Experiment 2: Performance Evaluation on Benchmark Functions between several modi-
fied DE algorithms. Various modified DE-based algorithms are considered to assess their
performance against the basic DE approach. The selected DE-based algorithms are Strategy
Adaption Differential Evolution (SADE) [132], Adaptive Differential Evolution with Optional
External Archive (JADE) [133], Opposition-based Differential Evolution (OBDE) [134], and
Compact Differential Evolution (cDE) [135] together with basic Differential Evolution (DE).
The performance evaluation is assessed based on the reported fitness on six benchmark func-
tions including Sphere, Rosenbrock, Schwefek, Rastrigin, Michalewicz5 and Griewank
functions.

Experiment 3: Performance Evaluation on Benchmark Functions between several modi-
fied PSO algorithms. Four modified PSO algorithms are considered to assess their perfor-
mance against the basic PSO method. The selected approaches include Selection PSO (SPSO)
[136], Compact PSO (cPSO) [137], Intelligence Single PSO (ISPSO) [138], and Comprehensive
Learning PSO (CLPSO) [139] along with original PSO. The performances of the chosen ap-
proaches are assessed based on their fitness on a similar set of benchmark functions to those

Table 1. Experimental settings of the utilized methods.

Method Settings Details

GA Single point crossover type is used with 1 crossover probability. Mutation probability is set to
0.01 and 2 best solutions are selected for elitism.

ACO Initial pheromone value used is 1.0E-06 with Q (pheromone update constant) is 20 and q0
(exploration constant) is 1. Global pheromone decay rate is 0.9 and local pheromone decay rate
is 0.5. α used is 0.5 and β used is 2.5.

PSO Inertia weight value used is 0.728994 with acceleration coefficients for cognitive and social are
0.5 and 2.5 respectively.

DE Crossover constant used is 0.9 with type of DE used is DE/best/1/bin.

ABC The number of colony size used is 100. The number of food sources is half of the colony size.
The limit value is 10 where after that, the food source will be abandoned by employed bee if
there is no improvement at all.

GSO Number of max neighbour considered, N is set to 12 with γ value is 0.64. The ρ value is 0.35
and the β value is 0.45

CSA Number of nests used is 25 with discover rate of alien eggs, pa is 0.25. Tolerance value is set to
1.0E-05.

doi:10.1371/journal.pone.0122827.t001
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Table 2. Benchmark Functions Selected for Comparison.

No Function Formula Value Dim Range Properties

1 Sumsquare
fðxÞ ¼

Xn
i¼1

ix2
i

0 30 [-5.12, 5.12] Unimodal,
Separable

2 Sphere
fðxÞ ¼

Xn
i¼1

x2
i

0 30 [–100, 100] Unimodal,
Separable

3 Beale fðxÞ ¼ ð1:5� x1 þ x1x2Þ2 þ ð2:25� x1 þ x1x
2
2Þ2 þ ð2:625� x1 þ x1x

3
2Þ2 0 2 [-4.5, 4.5] Unimodal,

Inseparable

4 Colville fðxÞ ¼ 100ðx2
1 � x2Þ2 þ ðx1 � 1Þ2

þðx3 � 1Þ2 þ 90ðx2
3 � x4Þ2

þ10:1ððx2 � 1Þ2 þ ðx4 � 1Þ2Þ
þ19:8ðx2 � 1Þðx4 � 1Þ

0 4 [–10, –10] Unimodal,
Inseparable

5 Dixon-Price
fðxÞ ¼ �ðx1 � 1Þ2 þ

Xn
i¼0

ið2x2
i � xi � 1Þ2 0 24 [–5, 5] Unimodal,

Inseparable

6 Easom fðxÞ ¼ �cosðx1Þcosðx2Þ
expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ

0 30 [–30, 30] Unimodal,
Inseparable

7 Matyas fðxÞ ¼ 0:26ðx2
1 þ x2

2Þ � 0:48x1x2 0 2 [–10, 10] Unimodal,
Inseparable

8 Powell fðxÞ ¼
Xðn=kÞ

ði¼1Þ ðxð4i�3Þ þ 10xð4i�2ÞÞ2

þ5ðxð4i�1Þ þ x4 iÞ2 þ ðxð4i�2Þ þ xð4i�1ÞÞ4

þ10ðxð4i�3Þ þ x4 iÞ4

0 2 [–100, 100] Unimodal,
Inseparable

9 Rosenbrock
fðxÞ ¼

Xn�1

i¼1

½100ðxiþ1 � x2
i Þ2 þ ðxi � 1Þ2 �

-1 2 [–100, 100] Unimodal,
Inseparable

10 Schwefel
fðxÞ ¼

Xn
i¼1

� xisinð
ffiffiffiffiffiffijxi j

p Þ 0 30 [–500, 500] Unimodal,
Inseparable

11 Trid 6
fðxÞ ¼

Xn
i¼1

ðxi � 1Þ2 �
Xn
i¼1

xixi�1

-50 6 [-D2, D2] Unimodal,
Inseparable

12 Zakharov
fðxÞ ¼

Xn
i¼1

xi þ
 Xn

i¼1

0:5ixi

!2

þ
 Xn

i¼1

0:5ixi

!4 0 10 [–5, 10] Unimodal,
Inseparable

13 Bohachevsky1 fðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1Þ � 0:4cosð4px2Þ þ 0:7 0 2 [–100, 100] Multimodal,
Separable

14 Booth f(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 0 2 [–10, 10] Multimodal,
Separable

15 Branin fðxÞ ¼ ðx2 � 5:1
4p2 x

2
1 þ 5

p x
2
1 � 6Þ2 þ 10ð1� 1

8pÞcosx1 þ 10 0.398 2 [–5, 10] x [0,
15]

Multimodal,
Separable

16 Michalewicz5
fðxÞ ¼ �

Xn
i¼1

sinðxiÞðsinðix2
i =pÞÞ2m

-4.688 5 [0, π] Multimodal,
Separable

17 Rastrigin
fðxÞ ¼

Xn
i¼1

x2
i � 10cosð2pxiÞ þ 10

0 30 [-5.12, 5.12] Multimodal,
Separable

18 Shubert
fðxÞ ¼

 X5
i¼1

icosðði þ 1Þx1 þ iÞ
! X5

i¼1

icosðði þ 1Þx2 þ iÞ
!

-186.73 2 [–10, 10] Multimodal,
Separable

19 Ackley
fðxÞ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

x2
i

s !
� exp 1

n

Xn
i¼1

cosð2pxiÞ
 !

þ 20þ e
0 30 [–32, 32] Multimodal,

Inseparable

20 Bohachevsky2 fðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1Þcosð4px2Þ þ 0:3 0 2 [–100, 100] Multimodal,
Inseparable

21 Bohachevsky3 fðxÞ ¼ x2
1 þ 2x2

2 � 0:3cosð3px1 þ 4px2Þ þ 0:3 0 2 [–100, 100] Multimodal,
Inseparable

22 Bukin 6 fðxÞ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx2 � 0:01x2

1 j
p þ 0:01jx1 þ 10j 0 2 x1 2 [–15, –

5], x2 2 [–3,
3]

Multimodal,
Inseparable

23 Drop-Wave
fðxÞ ¼ � 1þcos

�
12
ffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p �
0:5

�
x2
1
þx2

2

�
þ2

-1 2 [-5.12, 5.12] Multimodal,
Inseparable

24 Eggholder fðxÞ ¼ �ðx2 þ 47Þsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 þ x1

2
þ 47j

q� �
� x1sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijx1 þ ðx2 þ 47jp Þ -959.6407 2 [-5.12, 5.12] Multimodal,
Inseparable

25 GoldStein-
Price

fðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x2
1 � 14x2 þ 6x1x2 þ 3x2

2 �
½30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2
1 þ 48x2 � 36x1x2 þ 27x22 � 0 2 [–10, 10] Multimodal,

Inseparable

26 Griewank
fðxÞ ¼ 1

4000

Xn
i¼1

x2
i �

Yn
i¼1

cos xiffi
i

p þ 1
0 30 [–600, 600] Multimodal,

Inseparable

27 McCormick f(x) = sin(x1 + x2) + (x1 + x2)
2
− 1.5x1 + x2.52 + 1 -1.9133 2 x1 2 [-1.5, 4],

x2 2 [–3, 4]
Multimodal,
Inseparable

(Continued)
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that have been used in experiment 2 (Sphere, Rosenbrock, Schwefek, Rastrigin, Michalewicz5
and Griewank functions).

Benchmark Functions
Every benchmark function has its own properties whether it is unimodal, multimodal, separa-
ble or non-separable. It is noteworthy that the combination of these properties determines the
complexity of the functions. A function is considered multimodal if it has two or more local op-
tima and it is considered separable if it can be rewritten as a sum of function just from one vari-
able. The concept of epistasis or interrelation between variables of the function is related to
separable properties. The concept of epistasis is a concept of genetics where the outcome of one
genetic factor can be governed by the existence of one or more modified genetic factor. The
problem becomes more complicated if the function is multimodal as well. The global optimum
is the value that needs to be estimated during the search process, therefore, the regions around
local minima must be avoided as far as possible. If the local optima are distributed randomly in
the search area, it is considered as the most difficult problem. The aim of optimization process
is to obtain the global optima, therefore the regions around local optima should be avoided be-
cause the swarm might get stuck in local optima and consider that local optima as the global
optima. Another important property that determines the difficulty of the problem is the di-
mension of the search area. Table 2 presents the list of benchmark functions utilized to assess
the performance of the considered evolutionary methods. The table consists of the name of the
benchmark function, the range, the dimension, the characteristic of the function and its formu-
la. The characteristic of the function determines the complexity of the function.

Comparisons and Discussion
The reported results in this section do not necessarily reflect the performance of the utilized
methods under all circumstances. The overall performance of such methods can be influenced
by the utilized parameterizations and other experimental conditions. However, benchmark
functions can be the indicators of how well the optimization algorithms perform under several
degrees of complexities. In this section, the results of all selected algorithms tested on thirty
benchmark functions are presented and discussed.

Performance Evaluation on Benchmark Functions
In this experiment, the performance of optimization techniques selected are assessed on a vari-
ety of benchmark functions using MATLAB2011 on a CORE i5 CPU with 2GB RAM and have
been run thirty times. The average result of the runs (Mean), standard deviation (SD) and time
taken (in seconds) to complete each run are reported in Tables 3, 4 and 5. If the mean value is
less than 1.000E-10, then the result is reported as 0.000E+00. In this experiment, only basic ver-
sions of SI techniques are considered and no modifications are applied. Algorithm codes are

Table 2. (Continued)

No Function Formula Value Dim Range Properties

28 Perm
fðxÞ ¼

Xn
k¼1

Xn
i¼1

ðik þ bÞðxi=iÞk � 1Þ2 0 4 [-D, D] Multimodal,
Inseparable

29 Schaffer 2 fðxÞ ¼ 0:5þ sin2 ð
ffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p
Þ�0:5�

1þ0:0001

� ffiffiffiffiffiffiffiffiffi
x2
1
þx2

2

p ��2 0 2 [–100, 100] Multimodal,
Inseparable

30 Schaffer 4 fðxÞ ¼ 0:5þ cosðsinðjx2
1
þx2

2
ÞÞ�0:5

ð1þ0:0001ðx2
1
þx2

2
ÞÞ2

0 2 [–100, 100] Multimodal,
Inseparable

doi:10.1371/journal.pone.0122827.t002

Swarm Optimization Algorithms: A Survey

PLOS ONE | DOI:10.1371/journal.pone.0122827 May 18, 2015 20 / 36



adapted from several sources and are modified to be compatible with our experimental setup
[158–161].

Tables 3 and 4. The first two benchmark functions in Table 3 and Table 4 (e.g., Sphere
and Sumsquare) are unimodal and separable with a theoretical minimization value of zero. In
Sphere, the result which is closest to the theoretical optimal value is acquired by DE with
5.5942E+03 and GA becomes the second best with 6.4415E+03. In the Sumsquare function,
none of the algorithms achieved the best minimization performance but PSO has become the
best algorithm with 3.7357E+00 and ACO has become the second best with 5.6363E+00. The
third best is DE where it managed to achieve 7.7637E+00. The next ten functions in these tables

Table 3. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function GA ACO PSO DE

Sphere (Separable) 6.4415E+03 1.7596E+04 1.0454E+05 5.5942E+03

±1.6876E+03 ±1.8603E+03 ±7.1998E+04 ±1.5091E+03

(4.3531s) (7.3219s) (2.8906s) (10.9984s)

Sumsquare (Separable) 1.7376E+01 5.6363E+00 3.7357E+00 7.7637E+00

±3.7449E-15 ±4.0719E-01 ±1.8203E-01 ±1.4868E+00

(3.8938s) (6.9031s) (3.1422s) (11.4047s)

Beale (Inseparable) 7.0313E-01 7.0313E-01 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(3.1078s) (2.8938s) (1.9094s) (4.9531s)

Colville (Inseparable) 0.0000E+00 6.6160E+01 0.0000E+00 1.4017E+00

±0.0000E+00 ±3.7940E+01 ±0.0000E+00 ±2.1101E+00

(2.6875s) (2.2703s) (1.8922s) (4.7859s)

Dixon-Price (Inseparable) 1.1029E+05 1.8708E+06 4.9633E+06 1.3145E+04

±3.4184E+04 ±4.3444E+05 ±3.4317E+06 ±6.3822E+03

(4.1063s) (6.7469s) (3.1000s) (11.3109s)

Easom (Inseparable) -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(6.0281s) (2.0016s) (1.8875s) (4.8734s)

Matyas (Inseparable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.7453s) (2.0500s) (2.0250s) (5.0875s)

Powell (Inseparable) 4.2230E+02 9.4665E+03 1.0689E+04 3.1662E+02

±1.2382E+02 ±1.4600E+03 ±3.7167E+03 ±1.3003E+02

(3.9266s) (5.5594s) (2.6859s) (9.4516s)

Rosenbrock (Inseparable) 1.2493E+07 1.1051E+08 7.0289E+08 3.8901E+06

±8.6725E+06 ±2.1694E+07 ±4.8937E+08 ±2.2417E+06

(4.0797s) (6.9359s) (2.9797s) (11.0344s)

Schwefel (Inseparable) 5.2808E+03 3.2250E+03 7.0202E+03 5.6371E+03

±6.2830E+02 ±4.5211E+02 ±1.2171E+02 ±5.9306E+02

(4.4391s) (9.9703s) (2.8094s) (12.5828s)

Trid6 (Inseparable) -2.5000E+01 -2.4300E+01 -5.0000E+01 -4.7697E+01

±1.2293E+01 ±9.3339E+00 ±0.0000E+00 ±5.0327E+00

(3.1516s) (2.7422s) (2.0859s) (5.8891s)

Zakharov (Inseparable) 2.9550E+01 7.1088E+01 0.0000E+00 0.0000E+00

±2.0370E+01 ±1.4866E+01 ±0.0000E+00 ±0.0000E+00

(3.8078s) (3.4719s) (2.3953s) (6.8844s)

doi:10.1371/journal.pone.0122827.t003
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are unimodal and inseparable (Beale, Coville, Dixon-Price, Easom, Matyas, Powell, Rosen-
brock, Schwefel, Trid6 and Zakharov). The results in Beale function indicated that PSO, DE
and ABC have achieved the optimal value (0.0) followed by CSA with 6.5750E-02. PSO and
GA achieve better minimization performance compared with the other approaches when ap-
plied to the Coville functions (with zero being the optimal value). DE is the best performing
method on the Dixon-Price function with the mean value of 1.3145E+04 followed by GA with
the mean value of 1.1029E+05. In Easom function, GA, ACO, PSO and DE are the best per-
forming approaches with all of them recording -1.0000E+00 mean value. All algorithms man-
aged to achieve the theoretical optimal value with the Matyas function except for GSO where

Table 4. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function ABC GSO CSA p-value

Sphere (Separable) 1.1820E+05 1.1844E+06 4.4138E+04 0.0001

±8.3508E+03 ±8.0723E+04 ±5.5047E+04

(0.5641s) (12.3234s) (2.0959s)

Sumsquare (Separable) 1.7476E+01 2.0526E+01 1.6531E+01 0.0001

±3.1623E-01 ±2.9771E-01 ±7.9493E-01

(0.7153s) (12.1047s) (2.1822s)

Beale (Inseparable) 0.0000E+00 1.7223E+00 6.5750E-02 0.0001

±0.0000E+00 ±6.0540E-02 ±2.1365E-02

(0.7496s) (4.9531s) (1.5618s)

Colville (Inseparable) 7.3760E+01 1.1701E+02 6.4181E+01 0.0001

±2.8049E+01 ±2.6130E+01 ±5.5250E+00

(0.4483s) (6.7732s) (1.4921s)

Dixon-Price (Inseparable) 2.2939E+06 3.1354E+08 8.1887E+05 0.0145

±1.5742E+06 ±3.6645E+08 ±2.4639E+06

(6.7469s) (14.2784s) (2.2086s)

Easom (Inseparable) 1.8974E-03 1.0670E+00 -1.7374E-03 0.001

±1.2470E-04 ±5.3736E-02 ±5.6839E-04

(0.5687s) (6.4734s) (1.2498s)

Matyas (Inseparable) 0.0000E+00 2.4540E+00 0.0000E+00 0.001

±0.0000E+00 ±2.6413E-01 ±0.0000E+00

(1.8700s) (7.0736s) (1.9967s)

Powell (Inseparable) 2.6977E+05 3.6742E+06 1.0722E+04 0.0913

±4.3360E+05 ±6.5117E+06 ±3.7790E+03

(0.5690s) (11.5516s) (1.7003s)

Rosenbrock (Inseparable) 4.8807E+10 1.7626E+12 1.2493E+07 0.0592

±1.1684E+10 ±2.7674E+12 ±8.6725E+06

(0.6313s) (15.2344s) (2.0009s)

Schwefel (Inseparable) 3.6619E+03 7.7821E+04 6.6619E+03 0.001

±2.3244E+02 ±2.0826E+03 ±4.1047E+02

(0.9188s) (14.6285s) (1.7777s)

Trid6 (Inseparable) -2.6800E+01 -1.5100E+01 -3.3100E+01 0.001

±2.8206E+00 ±1.1836E+01 ±3.2813E+00

(0.5126s) (7.1442s) (2.7422s)

Zakharov (Inseparable) 9.2688E+01 1.3259E+02 1.8454E+01 0.001

±5.5187E+00 ±1.1658E+01 ±2.9051E+00

(0.6348s) (8.7891s) (1.3908s)

doi:10.1371/journal.pone.0122827.t004
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the mean value obtained is 2.4540E+00. DE managed to outperform other approaches by
achieving 3.1662E+02 mean value which is the closest to the theoretical optimum value of -1
on the Powell function. DE and ACO are the best performing approaches on Rosenbrock and
Schwefel functions respectively with the mean value of 3.8901E+06 and 3.2250E+03. In Trid6
function the theoretical value of -50, PSO manage to achieved this theoretical value and outper-
form the other algorithms. The second best algorithm is DE with the mean value of -4.7697E+
01. In Zakharov function, PSO and DE managed to perform best by obtaining the theoretical
value of 0. Considering the reported results in Table 3, DE is the best performing since it man-
aged to be selected as the best approach with eight out of twelve functions closely followed by
PSO, being selected as the best approach in seven out of twelve function. The third best ap-
proach for unimodal functions are GA and ACO where both of them have been selected as the
best approach for three out of twelve functions. From all these considered methods, GSO is the
poorest performing method due to not being able to become the best performing method in
any of the functions. This is closely followed by CSA being selected as the best performing
method in only one function. However, from literature investigation, ABC and CSA perform
quite well when the number of evolutions were higher [140, 141]. They even managed to out-
perform other algorithms in several benchmark functions. Further discussion is available in the
S1 File.

Table 5. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function GA ACO PSO DE

Bohachecvsky1 (Separable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(6.3516s) (1.8641s) (1.9328s) (5.1844s)

Booth (Separable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.5125s) (1.8719s) (1.8234s) (4.7984s)

Branin (Separable) 3.9789E-01 3.9789E-01 3.9789E-01 3.9789E-01

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(5.9844s) (1.8563s) (1.9719s) (4.9469s)

Michalewciz5 (Separable) -1.5651E+00 -1.5651E+00 -1.1906E+00 -4.1803E+00

±0.0000E+00 ±0.0000E+00 ±3.3261E-01 ±4.2335E-01

(2.6859s) (2.5172s) (1.9797s) (5.3094s)

Rastrigin (Separable) 5.5900E+01 1.7840E+02 5.4130E+02 1.8730E+02

±1.4294E+01 ±2.5299E+01 ±1.5969E+01 ±1.9989E+01

(3.7891s) (6.8125s) (2.9531s) (10.1328s)

Shubert (Separable) -1.2884E+02 -1.2884E+02 -1.8673E+02 -1.8673E+02

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(3.2000s) (1.8266s) (1.9844s) (4.9500s)

Ackley (Inseparable) 1.7194E+01 1.5884E+01 1.6004E+01 1.2795E+01

±7.9083E-01 ±1.2211E+00 ±5.3105E+00 ±8.4147E-01

(4.0344s) (8.9734s) (2.9844s) (11.5375s)

Bohachecvsky2 (Inseparable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(5.7203s) (1.8516s) (2.0359s) (5.0547s)

Bohachecvsky3 (Inseparable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(5.5688s) (1.8547s) (1.9438s) (5.0203s)

doi:10.1371/journal.pone.0122827.t005
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Tables 5, 6, 7 and 8. Tables 5 to 8 are focusing on multimodal functions with the first six
functions (Bohachecvsky1, Booth, Branin, Michalewicz5, Rastrigin and Shubert) being separa-
ble. The best performance for Bohachecvsky1 is shared between five algorithms of GA, ACO,
PSO, DE and ABC where they managed to find the theoretical value of 0. The second and third
functions utilized are Booth and Branin functions where in these functions the best perfor-
mance is shared between six algorithms (GA, ACO, PSO, DE, ABC and CSA). The forth func-
tion is Michalewicz5 with theoretical value of -4.687658. DE achieved the closest average per
value to the theoretical value with -4.1803. In Rastrigin with 0 theoretical value, GA managed
to outperform other algorithms with the mean value of 5.5900E+01. In Shuber function, PSO
and DE managed to acquire the theoretical value of -186.7309.

The rest of the functions considered in these tables are multimodal and inseparable. The
functions that are this type of characteristic are Ackley, Bohachecvsky2, Bohachecvsky3,
Bukin6, Drop-Wave, Egg Holder, Goldstein-Price, Griewank, McCormick, Perm, Schaffer2
and Schaffer4. Considering these functions, DE, became the best performing approach achiev-
ing the best performance in 11 out of 12 functions. DE has performed best in all functions ex-
cept Egg-Holder where GA is the best performing approaches. In Egg-Holder, GA managed to
record a mean value of -9.1540E+02 which is the closest to the optimal value of -959.6407. PSO
and GA shared the second best performing approaches where they become the best algorithm

Table 6. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function ABC GSO CSA p-value

Bohachecvsky1 (Separable) 0.0000E+00 1.7640E+00 8.2066E-03 0.001

±0.0000E+00 ±8.0414E-02 ±8.0204E-03

(0.5953s) (6.9719s) (1.0634s)

Booth (Separable) 0.0000E+00 4.6000E+00 0.0000E+00 0.001

±0.0000E+00 ±2.3002E-01 ±0.0000E+00

(0.5858s) (4.7984s) (1.0859s)

Branin (Separable) 3.9789E-01 3.7481E+01 3.9789E-01 0.001

±0.0000E+00 ±8.6588E-01 ±0.0000E+00

(0.4856s) (6.4852s) (1.0778s)

Michalewciz5 (Separable) -3.5684E+00 -9.9061E-01 -1.5436E+00 0.001

±3.2433E-02 ±2.5724E-01 ±6.7793E-02

(0.5264s) (6.1347s) (1.9797s)

Rastrigin (Separable) 1.2382E+05 1.2679E+08 1.3202E+05 0.001

±1.1630E+04 ±1.3932E+07 ±1.6245E+04

(0.6391s) (12.3106s) (2.0863s)

Shubert (Separable) -1.2942E+01 -8.8424E+00 -2.7642E+01 0.001

±3.1623E-01 ±0.0000E+00 ±2.1499E+00

(0.4758s) (6.5500s) (1.0811s)

Ackley (Inseparable) 2.0681E+01 1.9896E+01 1.2795E+01 0.001

±3.8721E-02 ±5.3227E-01 ±8.4147E-01

(0.9875s) (12.1059s) (0.9875s)

Bohachecvsky2 (Inseparable) 4.7124E-01 3.0422E+01 5.4223E+00 0.001

±2.8573E-01 ±6.9014E+00 ±2.6812E+00

(0.4566s) (6.7005s) (1.1120s)

Bohachecvsky3 (Inseparable) 5.2233E-01 1.2818E+01 2.8223E+00 0.001

±3.3498E-01 ±4.6593E-01 ± 4.6749E-01

(0.4595s) (6.1463s) (1.0485s)

doi:10.1371/journal.pone.0122827.t006
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in eight out of twelve function. It is noticeable that GA, ACO, PSO and DE share the best per-
forming approaches in Bohachecvsky2, Bohachecvsky3, Bukin6, Drop-Wave, Goldstein-Price,
McCormick and Schaffer functions where all of them managed to find the theoretical optimal
value of zero. Within the Griewank and Perm functions, DE has become the best performing
approach with a mean value of 1.1282E+00 and 0 respectively. PSO and DE once again have
become the best methods when applied to Schaffer2 function where they managed to obtain an
optimal value of 0.

Overall performance. The results presented in Tables 3 to 8 can also be investigated based
on the characteristics of the fitness functions utilized in the study. Considering categories of i)
Unimodal and Separable (US), ii) Unimodal and Inseparable (UI), iii) Multimodal and Separa-
ble (MS), iv) Multimodal and Inseparable (MI), v) Multimodal (M), vi) Unimodal (U), vii) Sep-
arable (S), and viii) Inseparable (I), Table 9 is formed. Considering the results presented in
Table 9, DE seems to be the best overall performing approach, outperforming other methods
in 24 out of 30 functions followed by PSO with the best performance in 19 out of 30. The third
best is GA with 14 out 30 best performance and closely followed by ACO with 13 out of 30 best
performance. ABC, and CSA reached the best performance in 6 and 3 out of 30 functions re-
spectively. Focusing on the breakdown results it is noticeable that DE has been the best per-
forming method in all categories. However, in terms of time consumed to complete the

Table 7. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function GA ACO PSO DE

Bukin 6 (Inseparable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.4766s) (1.8250s) (1.9625s) (4.9813s)

Drop-Wave (Inseparable) -1.0000E+00 -1.0000E+00 -1.0000E+00 -1.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.7391s) (2.3813s) (1.9641s) (5.3031s)

Egg Holder (Insepearable) -9.1540E+02 -8.4202E+02 -8.9632E+02 -9.0219E+02

±3.0628E+01 ±5.5959E+01 ±5.7481E+01 ±6.0614E+01

(2.8531s) (2.6031s) (1.9313s) (5.2063s)

Goldstein-Price (Inseparable) 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.4531s) (2.6172s) (1.8375s) (5.0313s)

Griewank (Inseparable) 1.2194E+00 1.1711E+00 3.2000E+00 1.1282E+00

±8.9937E-02 ±2.9271E-02 ±1.5451E+00 ±4.0468E-02

(4.0516s) (10.9766s) (3.0766s) (11.8531s)

McCormick (Inseparable) -1.9134E+00 -1.9134E+00 -1.9133E+00 -1.9132E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.7969s) (2.3266s) (1.8844s) (5.0672s)

Perm (Inseparable) 7.2815E+02 7.2815E+02 2.9684E+04 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±1.8921E+04 ±0.0000E+00

(3.0047s) (2.5734s) (2.1234s) (5.2578s)

Schaffer 2 (Inseparable) 3.9880E-04 1.4299E-02 0.0000E+00 0.0000E+00

±8.4075E-04 ±1.9474E-02 ±0.0000E+00 ±0.0000E+00

(2.4000s) (2.2672s) (2.0328s) (5.3063s)

Schaffer 4 (Inseparable) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

±0.0000E+00 ±0.0000E+00 ±0.0000E+00 ±0.0000E+00

(2.7844s) (2.4375s) (1.9438s) (5.3531s)

doi:10.1371/journal.pone.0122827.t007
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benchmark test, ABC is the best with an average for all 30 functions is 0.8850 seconds and fol-
lowed by CSA with an average of 1.5738. Even DE is the best overall performance in term of
mean value but it is the second slowest algorithm after GSO.

Analysis of significance (inter-relation analysis). In the first step, the Lilliefors test is
used to examine the parametric nature of the results. Subsequently, the Anova and Kruskal-

Table 8. Benchmark Functions Comparison of mean error (Mean ± SD) and time (Seconds) on Several Optimization Techniques.

Function ABC GSO CSA p-value

Bukin 6 (Inseparable) 0.0000E+00 3.5842E+00 5.5644E-04 0.001

±0.0000E+00 ±1.0744E-01 ±1.7146E-05

(0.5403s) (7.3113s) (1.0375s)

Drop-Wave (Inseparable) -2.6485E-01 3.2720E+00 -5.5375E-01 0.001

±1.7913E-02 ±2.6682E-02 ±2.4066E-02

(0.7640s) (8.6189s) (1.3165s)

Egg Holder (Insepearable) -8.0087E+02 -4.0822E+01 -8.1346E+02 0.001

±4.8686E+01 ±6.5870E+00 ±5.2962E+01

(0.9230s) (7.4538s) (1.4645s)

Goldstein-Price (Inseparable) 3.0000E+00 6.7935E+00 3.0000E+00 0.001

±0.0000E+00 ±2.3954E-01 ±0.0000E+00

(0.6580s) (7.4520s) (1.2443s)

Griewank (Inseparable) 3.0996E+01 9.3869E+01 9.2549E+00 0.001

±2.2269E+00 ±3.0447E+00 ±3.3997E-01

(1.1484s) (13.9829s) (2.1890s)

McCormick (Inseparable) -1.8428E+00 1.2761E+00 -1.8450E+00 0.001

±2.3137E-02 ±1.1802E-01 ±2.0994E-02

(0.5780s) (6.3157s) (1.2875s)

Perm (Inseparable) 6.6668E+05 3.5024E+06 2.9684E+04 0.001

±2.0984E+05 ±2.5331E+06 ±1.8921E+04

(0.7153s) (7.2672s) (1.5224s)

Schaffer 2 (Inseparable) 1.4111E-02 1.7486E+01 1.4498E-02 0.001

±1.9614E-02 ±8.5832E-01 ±1.9321E-02

(0.5408s) (7.2107s) (1.6002s)

Schaffer 4 (Inseparable) 1.5864E-02 1.7718E+01 8.2066E-03 0.001

±1.8986E-02 ±8.4297E-01 ±8.0204E-03

(0.5408s) (7.2107s) (1.6309s)

doi:10.1371/journal.pone.0122827.t008

Table 9. Performance breakdown based on the benchmark functions’ characteristics.

Category Number of functions GA ACO PSO DE ABC GSO CSA

Being best performing method 30 15 13 19 24 6 0 3

Unimodal Separable (US) 2 0 0 1 1 0 0 0

Unimodal Inseparable (UI) 10 3 3 6 7 2 0 1

Multimodal Separable (MS) 6 4 3 4 5 3 0 2

Multimodal Inseparable (MI) 12 8 7 8 11 1 0 0

Unimodal (U) 12 3 3 7 8 2 0 1

Multimodal (M) 18 12 10 12 16 4 0 2

Separable (S) 8 4 3 5 6 3 0 2

Inseparable (I) 22 11 10 14 18 3 0 1

doi:10.1371/journal.pone.0122827.t009
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Wallis tests are utilized in order to assess the statistical significance of any findings: the Anova
test is used if the data is parametric and the Kruskal-Wallis test is utilized if the data is non-
parametric. The results indicated a lack of significance among algorithms (p = 0.4116> 0.05),
benchmark functions (p = 0.4405> 0.05), and benchmark function characteristics
(p = 0.1239> 0.05). The inter-relation significance analysis between benchmark functions’
characteristics and benchmark functions also shows no significance (p = 0.1767> 0.05).

Given the superiority of DE and PSO compared with other approaches considered in this
study, further assessment is performed on these two approaches in experiments 2 and 3. In ex-
periment 2 the overall performances of four well-known variations of DE algorithm are as-
sessed against the basic DE. The rationale behind this is to investigate the potential of these
modified versions of DE and the possibility of achieving better overall performance. This issue
is assessed using a subset of benchmark functions considered in experiment 1 and the experi-
mental results are taken from literature. These benchmark functions include Sphere (US),
Rosenbrock (UI), Schwefel and Griewank (MI), and Rastrigin and Michalewicz5 (MS). Similar-
ly, in experiment 3, four well-known variations of PSO are assessed against basic PSO.

Performance Evaluation on Benchmark Functions between Several
Variants of DE
In this comparison, four modified DE-based algorithms have been selected and their perfor-
mance on a sub-selection of benchmark functions utilized in experiment 1 are evaluated. The
selected modified DE-based algorithms include Strategy Adaption Differential Evolution
(SADE) [132], Adaptive Differential Evolution with Optional External Archive (JADE) [133],
Opposition-based Differential Evolution (OBDE) [134], and Compact Differential Evolution
(cDE) [135]. In order to facilitate better understanding of the results with respect to what is re-
ported in experiment 1, the reported results in experiment 1 for original DE and the best per-
forming algorithm are also included. The parameter settings of each of the algorithms can be
found in [132–135]. The results are reported in Table 10. SADE, JADE and cDE demonstrated
better performance in Sphere function and achieved the theoretical optimum which DE has
not been able to achieve in experiment 1. As mentioned before, Sphere is a unimodal and sepa-
rable function while Rosenbrock is a unimodal and inseparable function. SADE also performed
better than all other variations of DE on the Rosenbrock function achieving the theoretical op-
timum while also outperforming the best performing algorithm on this function in experiment
1 (DE). SADE also performed best among the DE variations on the Schwefel function (multi-
modal and separable), and also outperformed experiment 1’s champion (ACO), and managed
to reach the theoretical optimum. The Rastrigin and Michalewicz5 functions share the same
characteristics by being multimodal and separable. In this function, basic DE from literature
(see the S1 File) has managed to outperform all DE variant. The overall results presented in
Table 10 indicated SADE as the best performing variation of DE among those considered in
this experiment.

Performance Evaluation on Benchmark Functions between Several
Variants of PSO
Similar to experiment 2, four well-known variations of PSO have been evaluated against the
basic PSO and the best performing algorithm found in experiment 1. These selected ap-
proaches include Selection PSO (SPSO) [136], Compact PSO [137], Intelligence Single PSO
(ISPSO) [138], and Comprehensive Learning PSO (CLPSO) [139]. Table 11 depicts the perfor-
mance achieved by these selected variations of PSO based on their outcome on the Sphere,
Rosenbrock, Schwefel, Rastrigin, Michalewicz5 and Griewank functions. SPSO and ISPOS
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perform better in the Sphere function and achieve the theoretical optimum and also outper-
form the result achieved by DE in experiment 1. SPSO has outperformed other variants of PSO
and experiment 1’s champion (DE) in Rosenbrock function even it did not managed to obtain
the theoretical value. ISPSO demonstrated the best minimization for the Schwefel function in
comparison to experiment 1’s champion (ACO) and other variations of PSO. Within Rastrigin
function, neither of the PSO variations managed to achieve theoretical optimal value but
CLSPO achieved better performance compare to the others. The experiment 1’s champion
(DE) has managed to outperform all PSO variants on the Michalewicz5 function, including the
basic PSO result obtained from literature (see the S1 File). SPSO is the best performing varia-
tion of PSO on the Griewank function and also managed to outperform experiment 1’s cham-
pion (DE). The results reported in Table 7 indicate that SPSO is the best performing algorithm

Table 10. Comparison of various DE-based algorithms (Mean ± SD).

Function Basic DE
[140,141]

Strategy Adaptive
Differential
Evolution (SADE)
[132]

Adaptive Differential
Evolution with Optional
External Archive (JADE)
[133]

Opposition-based
Differential
Evolution (OBDE)
[134]

Compact
Differential
Evolution (cDE)
[135]

The best achieved
performance in
experiment 1

Sphere 2.000E-03 0.000E+00 0.000E+00 5.951E-05 0.000E+00 (DE) 5.5942E+03

±3.000E-03 ±0.000E+00 ±0.000E+00 ±2.780E-05 ±0.000E+00 ±1.5091E+03

Rosenbrock 1.685E+02 0.000E+00 1.030E+06 5.362E+01 1.291E+02 (DE) 3.8901E+06

±6.468E
+01

±0.000E+00 ±0.000E+00 ±3.585E+01 ±1.83E+02 ±2.2417E+06

Schwefel 1.027E+04 0.000E+00 2.880E+01 - 3.779E+03 (ACO) 3.2250E+03

±5.218E
+02

±0.000E+00 ±0.000E+00 - ±1.84E+03 ±4.5211E+02

Rastrigin 1.172E+01 2.198E-02 4.700E+02 5.150E+01 7.943E+01 (GA) 5.5900E+01

±2.538E
+00

±0.000E+00 ±0.000E+00 ±1.155E+01 ±1.490E+01 ±1.4294E+01

Michalewicz5 -4.683E+00 -4.693E+00 1.470E+02 -4.1054E+00 -4.937E+01 (DE) 4.1803E+00

±1.252E-02 ±0.000E+00 ±0.000E+00 ±4.790E+00 ±3.530E+00 ±4.2335E-01

Griewank 1.479E-03 1.724E-02 2.320E+02 1.429E-02 4.982E+03 (DE) 1.1282E+00

±2.958E-03 ±0.000E+00 ±0.000E+00 ±1.850E-02 ±3.790E+03 ±4.0468E-02

doi:10.1371/journal.pone.0122827.t010

Table 11. Comparison between various PSO-based algorithms (Mean ± SD).

Function Basic PSO
[140,141]

Selection PSO
(SPSO) [136]

Compact PSO
(cPSO) [137]

Intelligence Single
PSO (ISPSO) [138]

Comprehensive Learning
PSO (CLPSO) [139]

The best achieved
performance in
experiment 1

Sphere 0.000E+00 0.000E+00 6.471E+01 0.000E+00 2.870E+03 (DE) 5.5942E+03

±0.000E+00 ±0.000E+00 ±2.280E+01 ±0.000E+00 ±7.443E+02 ±1.5091E+03

Rosenbrock 6.768E+01 1.213E+01 1.291E+02 2.030E+02 5.190E+01 (DE) 3.8901E+06

±3.037E+01 ±3.533E+01 ±1.830E+02 ±3.200E+02 ±2.770E+01 ±2.2417E+06

Schwefel -6.910E+03 2.560E+03 1.672E+03 1.183E+01 -1.080E+04 (ACO) 3.2250E+03

±4.580E+02 ±2.400E+03 ±4.49E+02 ±5.900E+00 ±3.610E+02 ±4.5211E+02

Rastrigin 2.781E+01 1.360E+02 7.943E+01 2.547E+02 5.610E-06 (GA) 5.5900E+0

±7.412E+00 ±3.233E+01 ±1.490E+01 ±4.220E+01 ±4.960E-06 ±1.4294E+01

Michalewicz5 -2.491E+00 - -3.346E+01 - 6.470E-09 (DE) -4.1803E+00

±2.570E-01 - ±1.860E+00 - ±2.320E-09 ±4.2335E-01

Griewank 2.326E-01 3.913E-03 4.288E-03 1.123E+01 1.800E-02 (DE) 1.1282E+00

±9.442E-02 ±1.000E+01 ±1.370E-02 ±1.750E+01 ±2.060E-02 ±4.0468E-02

doi:10.1371/journal.pone.0122827.t011
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among the considered variations of PSO since it is selected as the best PSO variation in 3 out of
6 benchmark functions in addition to being able to outperform the best performing approach
in experiment 1 in 3 of the benchmark functions (Sphere, Rosenbrock and Griewank). ISPSO
is the second best performing variation of PSO by outperforming other variations in 2 bench-
mark functions and also outperformed experiment 1’s champion (Sphere and Schwefel).
CLPSO is the third best performance where it managed to outperform other competitors in
Rastrigin function. cPSO is the least favourable variation among the selected methods because
of incompetency to outperform others in any function listed.

Conclusions
This study was concerned with overall performance of various Swarm Intelligence (SI) based
approaches and aimed to provide a comparison among the well-known SI-based approaches.
A set of methods including Genetic algorithm (GA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), Glow-
worm Swarm Optimization (GSO), and Cuckoo Search Algorithm (CSA) are considered and a
selection of thirty benchmark functions that have been utilized in MATLAB to measure the
performance of these approaches. These benchmark functions cover a range of characteristics
including unimodal, multimodal, separable, and inseparable. The results indicated the superi-
ority of DE with the ability to outperform or perform equally to the best algorithm in 24 out of
30 functions. DE performed very well on multimodal functions, being selected as the best per-
forming approach in 11 out of 12 such functions. This performance repeater in unimodal and
inseparable functions in which DE outperformed others in 8 out of 12 and 18 out of 22 func-
tions respectively. PSO is the second best approach that outperformed or performed equally to
the best algorithm in 18 out of 30 functions and follows by GA with 14 out of 30. Two extra ex-
periments are offered to capture the performance of four well-known modified versions of
PSO and DE on a sub set of 6 benchmark functions. These variations included Strategy Adap-
tion Differential Evolution (SADE) [132], Adaptive Differential Evolution with Optional Exter-
nal Archive (133) [134], Opposition-based Differential Evolution (OBDE) [88], Compact
Differential Evolution (cDE) [135], Selection PSO (SPSO) [136], Compact PSO [137], Intelli-
gence Single PSO (ISPSO) [138], and Comprehensive Learning PSO (CLPSO) [139]. The re-
sults identified SADE and SPSO as the best performing approaches.
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