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Abstract: Time-domain prediction models have been developed for
auditorium reflectors and room acoustic diffusers. The models are time-
domain equivalents of the single-frequency formulations that exploit
the Kirchhoff boundary conditions. Consequently, they are approxi-
mate, wave-based solutions to the Kirchhoff integral equation using
surface meshes. The new time-domain formulations are validated by
comparison to their frequency-domain equivalents for three different
surfaces: a plane surface, a curved reflector, and a Schroeder diffuser. In
terms of computation time and accuracy, the new models lie between
the finite difference time domain and geometric room models.
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1. Introduction

A variety of models exist to predict the reflection and diffraction from architectural struc-
tures such as noise barriers, stage canopies and room acoustic diffusers.1,2 In the time-
domain, finite difference time domain (FDTD) is arguably the most popular wave-based
approach. As a method that uses a volumetric mesh, however, calculation times can
become excessively long. Green’s theorem enables the linear wave equation to be written
as a boundary integral equation, removing the need to use a volumetric mesh. This leads
to techniques such as boundary element methods (BEMs) based on the Helmholtz-
Kirchhoff integral equation. A BEM requires the solution of a potentially large number
of simultaneous equations and so can also be slow to compute. For this reason, there are
a number of single-frequency approximate solutions analogous to Kirchhoff, Fresnel,
and Fraunhofer models used in optics. These frequency-domain models are, however,
inefficient for calculating impulse responses. Consequently, this paper derives time-
domain formulations that are equivalent to single-frequency methods that exploit the
Kirchhoff boundary conditions.

2. Theory

First, the formulation for non-absorbing, thin reflectors such as curved or flat surfaces
is derived using the geometry shown in Fig. 1. The sound field at receiver point r and
time t in the vicinity of a scatterer S is represented by the pressure ptðr; tÞ ¼ pi þ ps,
where pi represents the sound traveling directly from the source to the receiver along
vector rd , and ps the sound scattered off the surface. The pressure can be found from
the Kirchhoff integral equation3

ptðr; tÞ ¼ piðr; tÞ þ
ðð

S
½ptðrs; tÞ � n̂:rgðrjrs; tÞ � gðrjrs; tÞ � n̂:rptðrs; tÞ�ds; (1)

where rs is a point on that surface; n is the normal to surface, and � denotes convolu-
tion. gð Þ is the time-domain Green’s function that describes how the pressure created
by an instantaneous point source at time t ¼ 0, travels to another location. It is given
by
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g rajrb; tð Þ ¼ d t� Rab=cð Þ
4pRab

; (2)

where Rab ¼ ra � rb and dðÞ is a Dirac delta function. As the surface material is consid-
ered to be hard and non-absorbing, the last term in the integral in Eq. (1), which rep-
resents the normal component of the particle velocity, is for now assumed to be zero.
The incident field is taken to be created by a monopole with time-dependent ampli-
tude, FðtÞ,

piðr; tÞ ¼ FðtÞ � gðrjr0; tÞ ¼ Fðt� rd=cÞ; (3)

where rd is the vector from the point source to the receiver point and c the speed of
sound.

For non-absorbing materials, the Kirchhoff boundary conditions simply states
that there will be a doubling of the incident pressure at the surface,1 i.e., pt ¼ 2pi and
n̂:rptðrs; tÞ ¼ 0. Learning from the frequency domain models that use this boundary
condition, it would be anticipated that inaccuracies will arise when the surface: (i) has
significant corrugation that can then create second order reflections and (ii) is small
compared to wavelength, because edge diffraction is not fully modeled.

To solve the integration, the surface is discretized into N elements that are
small compared to wavelength, so the pressure can be approximated to be constant
across the elements. Applying this to the integral equation with the source function
and boundary condition gives

pt r; tð Þ ¼ F tð Þ � g rjr0; tð Þ þ 2
XN

n¼1

cosðhÞ
ðð

F tð Þ � g rsjr0; tð Þ � @g rjrs; tð Þ
@r2

ds; (4)

where h is the angle of reflection relative to the surface differential normal and r2 the
vector from the point on the surface to the receiver. The last term includes the differen-
tial of the Green’s function, which is the differential of a delta function. This is dealt
by using the following identity that exploits the quotient rule and includes a far field
approximation so that the 1=r2 term can be moved outside the differential:4

Fig. 1. The geometry used in the prediction models.
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F tð Þ � @g rjrs; tð Þ
@r2

� � 1
4pr2c

_F t� r2

c

� �
; (5)

where a dot over the function signifies the time derivative. Substituting Eq. (5) into
Eq. (4) yields

pt r; tð Þ ¼ F tð Þ � g rjr0; tð Þ � 2
XN

n¼1

cos ðhÞ
4pr2c

ðð
g rsjr0; tð Þ � _F t� r2

c

� �
ds: (6)

As it has already been assumed that this is a far field model, the term in 1=r2 can be
moved outside the integration. A Gaussian function is chosen as the excitation func-
tion, as it is commonly used in many time-domain models5

F tð Þ ¼ 1ffiffiffiffiffiffi
2p
p

r
e� t2=2r2ð Þ: (7)

The following differential is also required:

_F t� r2

c

� �
¼

t� r2

c

� �
cr2 F t� r2

c

� �
: (8)

Substituting Eqs. (7) and (8) into Eq. (6) yields

pt r; tð Þ ¼
1

4
ffiffiffi
2
p

p3=2rrd
e� t�rd=cð Þ2=2r2

�
XN

n¼1

cosðhÞ
8
ffiffiffi
2
p

p5=2r1r2r3c

ðð
d t� r1=cð Þ � t� r2

c

� �
e� t�r2=cð Þ2=2r2

ds; (9)

where 1=r1 has been moved outside the integration as this is a far field solution.
The integration in Eq. (9) is treated as a simple summation and the convolution

with the delta function is resolved. If each element has area Ds, then the pressure is

pt r; tð Þ ¼
1

4
ffiffiffi
2
p

p3=2rrd
e�ðt�rd=cÞ2=2r2

�
XN

n¼1

cosðhÞDs

8
ffiffiffi
2
p

p5=2r1r2r3c
t� r1 þ r2

c

� �
e�ðt�ðr1þr2Þ=cÞ2=2r2

: (10)

The plane and curved reflectors are assumed to be thin. The front face is discretized
into elements that are smaller than a sixth of a wavelength for the highest frequency of
interest. An important detail of note is that the accurate modeling of arrival times of
the Gaussian pulses is vital and so oversampling is used.6 Equation (10) is calculated
with a sampling frequency at least ten times the highest frequency of interest and the
samples of each Gaussian pulse are moved to the nearest sample point.

The first model of a Schroeder diffuser needs an addition to Eq. (10). A
Schroeder diffuser, such as the quadratic residue diffuser (QRD) shown as an inset in
Fig. 2(d), is made up of a set of wells that cause the sound reflecting from the surface
to be delayed as plane waves propagate down and back up each well.7 A common ap-
proximate representation is to consider the diffuser as a thin flat surface that has a
reflection coefficient that models the effects of the plane wave propagation within the
wells. A similar approach can be taken in the time domain and has previously been
used for TBEM3 and FDTD.8 In the proposed technique, the diffuser is modeled as a
flat surface, but the reflections are delayed by the time it takes the sound waves to
propagate within the wells assuming no losses. If the nth element is at the mouth of a
well of depth dn then the scattered pressure in Eq. (10) is modified to
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ps r; tð Þ ¼ �
XN

n¼1

cos ðhÞDs

8
ffiffiffi
2
p

p5=2r1r2r3c
t� 2dn þ r1 þ r2

c

� �
e� t� 2dnþr1þr2ð Þ=cð Þ2=2r2

: (11)

Equation (11) is equivalent to common models used in the frequency domain (e.g.,
Ref. 7) and will be described as the Fraunhofer model. This representation is expected
to be suitable under similar conditions that the analogous frequency-domain model
works: (i) the frequency content of the Gaussian pulse must be low enough that plane
wave propagation in the wells dominates; (ii) the radiation coupling between the wells
has to be small, and (iii) the radiation impedance of each well must be small.

A comparison of Eqs. (1) and (11) show, however, that the approximations in
the derivation has removed some effects that arise for oblique incident sound, because
there are no terms that explicitly have the angle of incidence, w. A more precise model
needs to include the last term of Eq. (1). For this, the Kirchhoff Boundary condition
also needs to be more completely considered. For a Schroeder diffuser, the pressure at
the well entrance can be approximated as ptðr; tÞ ¼ piðr; tÞ þ piðr; t� 2dn=cÞ. The first
term represents an incident wave traveling with an angle of �w to the normal. The sec-
ond term is the wave reflected from the surface at an angle of w0 to the normal.
Following the normal rules of refraction, for many surfaces, w0 ¼ w would be an
appropriate assumption. But for the narrow wells in a Schroeder diffuser, a better
approximation might be that the reflected waves that reradiate from the wells travel
parallel to the surface normal, w0 ¼ 0. Applying this to Eq. (1) and simplifying yields
the following for the scattered pressure:

Fig. 2. Impulse response for (a) plane surface with both direct and reflected sound shown; (b) plane surface,
reflection only; (c) curved surface, reflection only; (d) Schroeder diffuser, reflection only, Fraunhofer model; and
(e) Schroeder diffuser, reflection only, Kirchhoff model. The peak of the direct sound has been set to unity for
the plots. The insets in (c) and (d) illustrate two of the surface shapes.
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ps r; tð Þ ¼
�Ds

16
ffiffiffi
2
p

p5=2r1r2cr3

X(
t� r1 þ r2

c

� �
e�ðt�ðr1þr2Þ=cÞ2=2r2

cos hð Þ � cos wð Þ
� �

þ t� r1 þ r2 þ 2dn

c

� �
e�ðt�ðr1þr2þ2dnÞ=cÞ2=2r2

cos hð Þ þ cos w0
� �� �)

: (12)

This will be referred to as the Kirchhoff model, and is implemented in a similar manner
to the previous models.

3. Validation

The results section include example predictions for various samples. The geometry cho-
sen for the illustration were picked at random. The surfaces were all 1.4� 1 m in size.
The curved surface was such that the difference between the minimum and maximum
corrugation was 19 cm. The shape of the corrugated surface was formed by adding
some randomly chosen harmonics to create a wavy shape [see inset in Fig. 2(c)]. A
one-dimensional quadratic residue diffuser was made based on the prime number 7
with the depth sequence along the x-direction. There were ten periods and the well
width was 2 cm. The design frequency was 1000 Hz. The following (x, y, z) coordinates
for the oblique source and receiver positions were chosen: (�2.5, 4, �1) and (4, 3, 1) m,
respectively. Predictions were carried out up to 8 kHz. A sampling frequency of
128 kHz was used and there were eight elements per minimum wavelength for the sur-
face discretization.

To check that the new models were correct, the scattering was compared to
standard single-frequency models. These are evaluations of the Helmholtz-Kirchhoff
Integral Equation after the Kirchhoff boundary conditions had been applied. The fre-
quency domain equivalent of Eqs. (10) and (11) is Eq. (8.26) from Ref. 1 with the sur-
face reflection coefficient R(rs) explicitly stated as follows:

pt

�
rÞ ¼ Gðrjr0Þ � ik

ðð
S
RðrsÞGðrsjr0Þ cosðhÞds; (13)

where k is the wavenumber and the frequency domain Green’s function is
GðrajrbÞ ¼ expð�ikRabÞ=4pRab. The frequency domain equivalent of Eq. (12) for the
scattered pressure from a Schroeder diffuser is Eq. (8.25) from Ref. 1,

psðrÞ ¼ �ik
ðð

Gðrsjr0ÞGðrjrsÞ½ðcosðhÞ � cosðwÞÞ þ ðcosðhÞ þ cosðw0ÞÞRðrsÞ�ds: (14)

4. Results

Figure 2 shows the pressure vs time for the three surfaces tested using the various time
domain formulations. Figure 2(a) shows both the direct and reflected sound for the
plane surface. Figures 2(b)–2(e) zoom in on just the scattered sound for: (b) plane, (c)
curved, (d) Schroeder diffuser, Fraunhofer model, and (e) Schroeder diffuser,
Kirchhoff model. For the plane surface, the reflection from the center of the surface
and the additional delayed edge diffraction waves are as expected. The other surfaces
create complex reflection patterns because of waves reflecting from different parts of
the surface.

Figure 3 shows the scattered pressure vs frequency for the same surfaces with
markers showing the prediction from the frequency-domain models. This demonstrates
that the new time-domain models are equivalent and achieve the same accuracy as the
frequency-domain formulations. In terms of prediction time, the graphs shown in
Fig. 3 where produced, on average, about 12 times quicker with the new time-domain
models, compared to using the frequency-domain formulations.
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5. Conclusions

New formulations have been developed that allow the scattered impulse response from
architectural surfaces such as reflectors and diffusers to be rapidly predicted. The meth-
ods exploit the Kirchhoff boundary conditions and are analogous to a set of single-
frequency models that are commonly used. The single-frequency models have been
shown to be accurate for reflectors and diffusers with low absorption made from mate-
rials such as hardwood, metal, and glass reinforced gypsum. The new methods are
anticipated to work in the same situations with the advantage that they can more rap-
idly obtain the impulse response.

FDTD models have a computational cost that scales with the maximum fre-
quency f at Oðf 4Þ because of the combination of using a volumetric mesh and iterative
time stepping. In contrast, the new time-domain models use a summation over a sur-
face mesh with computation cost scaling at Oðf 2Þ. Consequently, in many scenarios,
the new models will be faster than FDTD methods. FDTD will be more accurate,
however, because the Kirchhoff boundary conditions are only an approximation of the
true surface pressure. The new approaches are intrinsically slower than geometric mod-
els because accurate modeling of wave effects requires a higher spatial sampling than
is normally used in geometric methods such as ray tracing. The new methods are
inherently more accurate at modeling diffraction than geometric methods, however,
because the new formulations are wave-based solutions. Example code for the predic-
tion methods used to generate the figures can be downloaded from Ref. 9.
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