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Abstract 

This paper analyzes the impact of load factor, facility and generator types on the 

productivity of Korean electric power plants. In order to capture important differences in 

the effect of load policy on power output, we use a semiparametric smooth coefficient 

(SPSC) model that allows us to model heterogeneous performances across power plants 

and over time by allowing underlying technologies to be heterogeneous. The SPSC model 

accommodates both continuous and discrete covariates. Various specification tests are 

conducted to compare performance of the SPSC model. Using a unique generator level 

panel dataset spanning the period 1995-2006, we find that the impact of load factor, 

generator and facility types on power generation varies substantially in terms of magnitude 

and significance across different plant characteristics. The results have strong implications 

for generation policy in Korea as outlined in this study. 
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1. Introduction 

Semiparametric and nonparametric estimation techniques have in recent years attracted 

much attention from applied researchers (Li and Racine, 2007 and 2010). Their 

attractiveness is attributed to their flexibility in capturing heterogeneous responsiveness of 

decision making units with minimum distributional assumptions. Robinson (1988) and 

Stock (1989) are prime examples of semiparametric and nonparametric models where the 

functional form of the nonparametric part is not specified. Fan and Li (1996) and Park et 

al. (1998) provide empirical panel data examples of semiparametric approaches, while the 

time series smooth transition autoregressive (STAR) model version of the smooth 

coefficient models introduced by Chen and Tsay (1993) and Hastie and Tibshirani (1993) 

suggest ways to estimate the unknown time varying smooth coefficient functions.  

The semiparametric models are generalized in Li et al. (2002) in the context of production 

function to include a semiparametric smooth coefficient (SPSC) model formulation 

estimated via kernel method. In such a model the input coefficients are specified as 

unknown smooth functions of firm’s R&D input. The model follows the generalized 

knowledge production function of Griliches (1979, 1986). In an application based on 

Chinese industry data, Li et al. (2002) find the semiparametric model is more flexible than 

a parametric model. In addition it requires smaller sample size to obtain reliable estimation 

compared to its non-parametric counterpart. The issue of regional heterogeneity and impact 

of R&D on productivity of high tech industry at the provincial level in China is 

investigated by Zhang et al. (2012) using a semiparametric approach. In their model the 

impact of R&D on output is found to vary across different regions.  

Recently Li and Racine (2010) proposed a semiparametric varying-coefficient model that 

admits both qualitative and quantitative covariates in specification of the varying 

coefficients along with a test for correct specification of the parametric varying-coefficient 

models. In this paper we use their approach that allows us to model heterogeneities across 

power plants and over time in order to capture important differences in the effect of load 

policy on power output that arise from public energy policy in Korea. The model 

accommodates both continuous and discrete covariates. Various specification tests are 
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conducted to compare its performance relative to both of the conventional semiparametric 

and standard parametric models. Using a unique generator level panel dataset spanning the 

period 1995-2006, we find that the impact of load factor, generator and facility types on 

power generation varies substantially across different plant characteristics. The results are 

useful for the public energy policy in Korea.   

The remainder of this study is organized into the following sections. Section 2 is a review 

of the electricity market in Korea. Section 3 is dedicated to data description and Section 4 

to semiparametric estimation of the electricity generation model. Section 5 discusses the 

results that are presented for each methodology, grouped by time-invariant firm 

characteristics. Finally, a summary and conclusion are provided.  

 

2. The Korean Electric Power Industry 

The energy sector in Korea has expanded greatly due to its crucial role in supporting the 

economic development over the past 40 years. The country has experienced a rapid growth 

of electricity generation and subsequent structural change in the electricity market. In the 

process of economic development, the world oil crisis led Korea to pursue diversification 

of its energy sources. Main primary energy sources for generating electricity have been 

diversified into coal, oil, liquefied natural gas (LNG), and nuclear. In recent years, there is 

great public interest in developing renewable energy sources. The choice of energy has, 

however, been constrained by the large-scale investment in power plants and equipment 

under the long-term demand forecast.  

Korea is highly dependent on imports of primary energy to meet its continuously 

increasing energy demand. The country has limited supplies of indigenous natural, primary 

and final energy resources. It has no domestic oil resources and only a very small amount 

of natural gas that has been produced locally. Recognizing its high dependence on external 

sources of energy, the country has successfully managed to satisfy its energy needs and 

diversify its energy use to reduce risk and vulnerability. The energy situation has a critical 

impact on the export oriented national economy as power consumption in Korea is 
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continuously increasing with the growth of the economy. Another problem that needs to be 

considered seriously regarding the Korean electricity market is that the imported energy is 

from a small number of source countries, leading to a high level of vulnerability and 

insecurity in the energy supply. Korea not only ranks fifth among oil importing countries, 

but also is a significant importer of LNG. In this situation the electricity market has to 

operate under optimal conditions in order not to face a shortage. The most fundamental 

way to secure the energy supply is to raise the efficiency and productivity of the 

generation, transmission and distribution stages of the electricity industry.  

Many countries have taken restructuring or reforms to facilitate competition as a solution 

to enhance the productivity of their electricity markets. Over 76 countries worldwide are 

currently implementing or planning to implement a reorganization of their electricity 

industries. The vertically monopolized structure of the electricity industry, in which only 

one company takes charge of all the processes in the generation, transmission, distribution, 

and market sale, is now radically changing. In order to examine the present status of 

overseas electricity industry reorganization, Horwath Choongjung Consulting and Seoul 

National University Engineering Lab (HCC-SNUEL, 2008) conducted a study analysing 

the market in seven countries, which are the UK, Nord Pool (Norway, Sweden, Finland, 

and Denmark), the US, Spain, Australia, France, and Japan. Examination of the different 

markets reorganizations led to a number of conclusions. The reorganization process should 

progress but not be associated with price cuts. Facility investment needs which are under 

long-term plan be supplemented with support by the government. A consideration of 

environmental problems and alternative energy is urgently needed.  

In an attempt to reform the electricity industry to overcome the problem of the KEPCO 

(Korea Electric Power Corporation) monopoly, the power generation sector in Korea was 

transformed into a competitive system. As a result of such efforts, KEPCO was separated 

into six GENCOs (Generation Companies) in 2001, but it still retains the national 

transmission and distribution grids, and it owns all of the six GENCOs. At the same time, a 

power market, the state-owned Korea Power Exchange (KPX), was established. While 

liberalization remains a key policy goal of the government, it has not been able to establish 
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timetables for these halted liberalization efforts.  

The HCC-SNUEL (2008) study analysed performance of the generation part of the Korean 

electricity market. The objective was to compare performance before and after the 

separation. They used three methods: process benchmarking methodology (PBM) to 

compare performance before and after reorganization, data envelopment analysis (DEA) to 

estimate efficiency, and Malmquist productivity index (MPI) to analyse efficiency change 

at each process. Stable supply and low generation cost has resulted from competition 

among the generation companies. Heshmati (2012) used parametric stochastic frontier 

analysis (SFA) as well as DEA and MPI for performance analysis. He found that the net-

generation is mainly affected by facility type, maintenance cost, real fuel cost, and other 

costs. When heterogeneity in efficiency is considered, the national generation plan is 

characterized by the high efficiency of nuclear plants, base type and large size facilities. 

The management efficiency was slightly lowered after the six GENCO were separated 

from KEPCO. Furthermore, efficiency enhancement from the restructuring effect is not 

clearly distinguished when comparing periods before and after restructuring. 

Through maintaining a stable supply of energy, the Korean government has provided the 

long-term energy policy directions and information on electricity supply and demand. In 

this regard, the First Basic Plan of National Energy (MKE, 2008a) and the Fourth Basic 

Plan of Long-term Electricity Supply and Demand (MKE, 2008b) were introduced to 

secure the electricity supply. Korea’s overall energy policies seek to achieve a sustainable 

development through energy security, energy efficiency, and environmental protection. The 

government has not only accelerated the policies and measures for energy efficiency linked 

with a carbon abatement measure, but also considered transition of the market. The desired 

transition is from the current energy system, which centres on a concentrated supply-

oriented system, toward a sustainable energy system, which involves the elements of a 

distributed demand-oriented system. 

Power consumption is steadily increasing in Korea. In spite of a decline in the growth rate 

since the early 1990s, the average power consumption per capita is relatively high in 

comparison with other OECD members. The industry sector is the largest consumer, 
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accounting for 53% of the total amount of generated electricity in 2007. In terms of the 

price, electricity for the agriculture sector is the cheapest due to government subsidies. The 

Korean electricity market uses a cost-based pool system. The price system differs 

depending on the type of generator and the inclusion or exclusion of unconstrained supply 

schedules. The structure of the electricity market involves stages from generation via 

transmission and distribution to consumers. 

At an early stage, the electricity market was made up of only seven members in the trading 

market, including KEPCO and the six GENCOs. In late 2008, there were 302 members 

who participated in the market. Based on the amount of transactions for each energy 

source, nuclear, coal, and LNG are the top three primary sources since 2001. However, the 

ranking changes over time due to fluctuations in the different source prices. In 2007 power 

generation from coal power plants was first and nuclear power plants were in the second 

position. The third position was held by the combined cycle power plant. In the field of 

combined cycle power plants, many private companies operated the plants, but the share of 

GENCOs was much higher. The Korea Hydro and Nuclear Power (KHNP) operates 20 

nuclear power plants commercially. Hydro power plants generated only 1.0% of the total 

power generation. The proportion of new and renewable energy sources is very small, 

2.24% of the total generation. The low proportion was mainly because they lacked 

profitability compared to conventional energy resources. The Korean government aimed to 

increase the proportion to 5.0% by 2011.  

In relation with the regulations and agreements such as the Kyoto protocol, several 

strategies are being put into action. The adequacy of generation mix against environmental 

change is under consideration. The government aims to contribute to the expansion of 

renewable energy sources by reflecting the related facilities in its decisions. Optimization 

of resource utilization for demand side management is taking into consideration the status 

of the electricity balance. All trends demonstrate that the Korean electricity industry is 

changing its character. These dynamic situations require the generation companies to invest 

more effort in research and development (R&D) and to cooperate in development of the 

efficient and low-cost generation technologies. Previous analysis of the industry was 
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carried out by Choi and Ang (2002), Lee and Ahn (2006), and Park and Lesourd (2000).  

The review above elaborated with the past situation of the Korean electric market and 

electricity policy. Currently the energy market and policy have been affected by recent 

changes in energy markets including Fukushima nuclear power plant accident and shale 

gas revolution affecting the fuel mix. The recent future of Korean electric market is 

discussed in a number of studies. Hayashi and Hughes (2013) examine the crisis-driven 

changes to energy security, energy policy and regulations in the immediate aftermath of the 

Fukushima accident. Min and Chung (2013) present a portfolio for the long-term power 

generation to optimize the power generation mix. The authors evaluate LNG and coal as 

cost effective alternatives to reduce dependency on nuclear. Shin et al. (2014) also find 

increasing acceptability for renewable portfolio standard in Korea. Ryu et al. (2014) 

discuss electricity generation mix by considering energy security, energy cost and carbon 

emission mitigation. The appropriate portion of nuclear energy is the determining policy 

factor.  Kim et al. (2011) in looking at trends in energy demand, supply, policies and 

security find that nuclear power continues to hold a crucial position in the energy policy, 

but nuclear power expansion will not be sufficient to attain the “green economy” and 

greenhouse gas emission reduction goals. Baek and Kim (2013) confirm the positive effect 

of GDP growth on environmental outcomes. The issues of diffusion of five renewable 

energy technologies and their competitive interrelationships is discussed in Huh and Lee 

(2014). To support the renewable energy diffusion pattern and to overcome policy 

limitations, Korean government is recommended to implement new and technology 

specific policies. Park and Kim (2014) view the Fukushima accident as a key factor 

influencing the public attitude-intention towards use of renewable energy sources and 

technologies with implications for affordability of energy for Korean companies (Suk et al. 

2014). Kim et al. (2014) find that growth of renewable technology and its penetration level 

is proportional to cumulative R&D investment indicating the necessity of more active 

supportive public investment policies.   

 

3. The Data 
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The data used in this study are obtained from the HCC-SNUEL (2008) and consists of a 

sample of 171 of generators which are observed during the period from 1995 to 2006. The 

panel data is unbalanced. Generators are observed at most 12 years. The total number of 

observations is 1,637. All monetary values are expressed in fixed 2000 prices.  

The data contains output, inputs and generator characteristics. All variables used here and 

their definitions are as described below. We used generation quantity (Gen) as output 

measured in MWh. The regressors include facility capacity which measure capital (K), 

maintenance cost (M), sale expenditure (S), primary fuel cost (F), other costs (O), wages 

(W), and time trend (Trn). These inputs are in logarithmic form, except the time trend 

variable which is included in the parametric part to capture technical change. The 

characteristic variables include number of generators (NG) in a plant, age of generator 

(Age), facility type (FT) including base load (type=1), middle load (type=2), and Peak load 

(type=3), dummy for positive facility capacity (dK), dummy for positive primary fuel type 

(dF), and  dummy for positive wage (dW) are introduced to capture effect of zero-valued 

variables. Total generation cost is defined as the sum of fuel cost, wages, sales and 

management expenditure, and other costs. The summary statistics of the data set are 

reported in Table 1.  

 

Table 1. Summary statistics of the electricity generation data, 1995-2006, n=1637. 

Variable Mean Std. Dev. 

Electricity generation (MWh) 1,940,094  2,299,155  

Facility capacity (MW) 328  272  

Maintenance cost (million won) 1,676  2,061  

Sales and management expenditure (million won) 1,128  1,279  

Other costs1) (million won) 46,064  59,826  

O&M cost2) (million won) 42,549  59,519  

O&M unit cost3) (won/kWh) 71  576  

Real fuel cost (1000 USD) 38,839  39,217  

Wages (million won) 2,915  3,163  

Age of generator 17  15  

(1) Other costs = (total cost) - (fuel cost) - (wage) - (sales and management expenditure); (2) O&M cost = 

(sales and management expenditure) + (other cost); (3) O&M unit cost = (O&M cost)/(net generation).  
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4. Econometric Model 

We use a production function to examine the relationships between output, inputs and 

production environmental characteristics. The logarithmic transformation of a production 

function linearizes the production relation with respect to the unknown parameters. Instead 

of including the environmental and production characteristic factors (Z) additively and 

estimate the model using ordinary least squares (OLS), we include them into the 

coefficients in our semiparametric model. The semiparametric production function (using 

panel data) that we estimate is of the form: 

(1)  
ititititititititit

itititititititit

uTrnZWZOZFZ

SZMZKZZGen

+)(β+)log()(β+)log()(β+)log()(β+

)log()(β+)log()(β+)log()(β+)(β=log

7654

3210  

where i indexes generator and t indexes time; itu is zero mean i.i.d. random disturbance 

term. The dependent output variable is quantity of generated electricity (Gen) and the 

independent input variables include generation capacity (K), maintenance cost (M), sales 

expenses (S), primary fuel cost (F), other expenses (O) wages (W), and time trend (Trn). 

All the coefficients (i.e., intercept and slopes) are some unknown functions of the vector of 

Z variables: 

(2)  ( , , , , , )
it it it it it it it

Z NG Age FT dK dF dW . 

The Z variables include number of generators per plant (NG), age of generator (Age), 

facility type (FT) with three categories, dummies for facility capacity (dK), fuel cost (dF) 

and wages (dW) to capture the effect of non-zero valued variables. This model follows the 

approach of Li et al. (2002) and Zhang et al. (2012) where a number of environmental 

variables included in Z affect the firm’s ability to transform inputs into outputs. If the shift 

in production function is neutral these environmental factors can be introduced in the 

intercept parameter and if non-neutral they influence productivity via all other covariates 

as in (1). In such case the environmental variables affect input elasticities in a flexible 

manner. For a given level of environmental factor, the model is reduced to the standard 

constant coefficient Cobb-Douglas production model.     

The generalized production model in (1) can be written more compactly as: 
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(3)  itititit uZXY  )(
'   

where log( ), [1 log( ), log( ), log( ), log( ), log( ), log( ), ],
it it it it it it it it it it

Y Gen X K M S F O W Trn  ，
 

and 
'

0 1 7
( ) [ ( ), ( ),..., ( )]

it it it it
Z Z Z Z    . Following Li et al. (2002), the semiparametric 

estimator of the functional coefficients can be written as:  

(4)  
 



 










N

j

T

itjjj

N

j

T

itjjjit ZZKYXZZKXXZ
1 1

1

1 1

'
),(),()(ˆ





 , 

where N and T denotes the number of cross-sections and time periods, respectively, K(.) is 

a generalized kernel function (Racine and Li, 2004). Here we define ],[
d

it

c

itit ZZZ  , where 

[ , ]
c

it it it
Z NG Age  is a vector containing continuous variables, and 

],,,[ itititit

d

it dWdFdKFTZ   is a vector of categorical and dummy variables. The kernel 

function K(.) can then be explicitly written as:  

(5)  
2 4

1 1

( , ) ( , , )

c c

sj sitc d d d

j it rj rit r

s rs

Z Z
K Z Z K K Z Z

h



  
 

 
   

 
  ,  

where 

(6)  

2

1 1
(.) exp

22

c c

sj sitc

s

Z Z
K

h





  
        

 

and 

(7)  
1 if

(.)
/ ( 1) otherwise

d d

r rj ritd

r

Z Z
K

c





  
 



 

where, in our application, c, the number of categories, is equal to two, for dummy variables 

that take the value of 0 or 1. The 1, 2
s

h s   are the bandwidths for each continuous 

variable in 
c

itZ , and 1, 2,3, 4
r

r    are the bandwidths for each discrete variable in 
d

itZ . 

They are selected by minimizing the objective function: 
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(8)  
2

'

1 1

ˆ ( )
N T

it it it it

i t

Y X Z


 

 
  , 

where 

(9)  

1

'ˆ ( ) ( , ) ( , )
N T N T

it it j j j it j j j it

j i t j i t

Z X X K Z Z X Y K Z Z     

 







   

 
  
 
  . 

)( itZ in equation (3) can be interpreted as input elasticities since ( ) /
it it it

Z Y X     

where both itY
 
and itX  are in logarithmic forms. One can also measure the marginal effect 

of 
c

itZ   on itY  since ]/)([/
' c

ititit

c

itit ZZXZY   . The marginal effect of 
d

itZ  on itY , on 

the other hand, can be calculated via the finite difference 

( 1) ( 0), 1,2,3,4
d d

it rit it rit
Y Z Y Z r     . 

It is worth mentioning that we can test whether   in (3) is indeed an unknown function of 

Z. That is, we can test the null hypothesis: 

H0: 0 0
( ) ( ; )

it it
Z Z   , 

where 0
  is a parameter vector that can possibly have zero-valued slopes and a non-zero 

intercept. The model under the null can thus be written as: 

(10)    
'

0
( ; )

it it it it
Y X Z e   . 

Following Li and Racine (2010), the consistent model specification test statistic is 

constructed as: 

(11)    '

2
1 1

1ˆ ˆ ˆ ( , )
( )

N T N T

NT j it j it j it

j i j t

I X X e e K Z Z
NT

  

    

  , 

where '

0
ˆˆ ( ; )

it it it it
e Y X Z    are the residuals from (10). 0 0

( ; )
it

Z   can be specified as 

either a constant or any parametric functions such as a function that is linear in Z and 0
 . 

We then use the residual-based wild bootstrap method (Li and Racine 2010) to determine 

whether to reject the null hypothesis or not. To do this, we first estimate (10) via OLS and 
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obtain the fitted values ( ˆ
it

Y ) and residuals. The wild bootstrap disturbance, *

it
e , is generated 

such that * ˆ[(1 5) / 2]
it it

e e   with probability ( 5 1) / (2 5) , and * ˆ[(1 5) / 2]
it it

e e   

with probability ( 5 1) / (2 5) . A new dependent variable can then be generated using 

the old fitted values, ˆ
it

Y , and the new residuals, *

it
e . The new sample is then used to 

estimate the parametric model (10), and the residuals can be obtained. These residuals are 

used to construct the bootstrap statistic, *ˆ
NT

I , using (11). Finally, re-generate the bootstrap 

disturbance and then re-calculate *ˆ
NT

I  a large number of times, say, B=399 times, and a p-

value is obtained as *

1

1 ˆ ˆI( )
B

b

NT NT

b

I I
B 

 , where I(.) is the indicator function with a value of 1 

if the statement in the parentheses is true, and *ˆb

NT
I  is the bootstrap statistic from the b-th 

replication. The null hypothesis can be rejected if the p-value is less than the level of 

significance, say, 0.05. 

   

5. Estimation Results 

5.1 Specification tests 

In order to identify and estimate a better model, several model specifications are 

formulated and estimated. These models are nested and as such testable against each other. 

It seems more appropriate to start from a simple Cobb-Douglas model and generalize it 

stepwise to the following set of nested models. 

The first model (Model 1) is a simple Cobb-Douglas production model where output is 

modeled as function of inputs. Here plant characteristics and environmental variables (Z) 

are introduced in the intercept );( 00  itZ  which is specified as a linear function with 0


 
as 

the parameter vector. The advantage of this model over the basic traditional model without 

the Z variables is that it allows for plant heterogeneity by specifying the intercept as a 

parametric function of various environmental factors which can be both continuous and 

discrete. The model is estimated by using ordinary least squares (OLS) method where the 
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marginal effects of the Z variables on the intercept is its corresponding estimated constant 

parameters.  

The second model (Model 2) is a generalized production model where both intercept and 

slope parameters vary with plant characteristics and production environmental variables. 

Model 2 is a generalization of Model 1 in which the coefficients are linear parametric 

functions of the Z variables implying non-neutral parametric shift in the production 

function. The model still can be estimated parametrically and by the OLS method.1  

The final model (Model 3) is a further generalization of the production model (equation 1) 

in which, similar to Model 2, both intercept and slope parameters vary with plant 

characteristics and production environmental variables. The difference with Model 2, 

however, is that the intercept as well as the slope coefficients are unknown smooth 

functions of the Z variables implying nonparametric non-neutral shift in the production 

function. These functional coefficients are estimated nonparametrically using 

semiparametric smooth coefficient model via local constant least squares procedure 

introduced in Li et al. (2002) and Li and Racine (2010).  

It is worth mentioning that the smooth coefficient model (Model 3) which includes the 

kernel function (equation 5) can reduce to the traditional Cobb-Douglas production 

function with constant elasticities (Model 1). A model specification test of Model 1 against 

Model 3 (Li and Racine, 2010) rejects the simple parametric Cobb-Douglas production 

model with constant slopes at the 1% level, supporting the semiparametric Model 3 with 

parametric heterogeneous intercept and slopes. Given this, the rest of the analysis focuses 

on Model 3 results. 

 

5.2 Parametric results 

The estimation results from Model 1 and Model 3 are presented in Tables 2A and 2B. In 

order to conserve space, we do not report results from Model 2. These tables summarize 

                                                           
1 Not all parameters from the intermediate Model 2 are identifiable because of the singularity problem (i.e., 

multicollinearity). For example, dK*log(K) is computationally collinear with log(K)  because dK is almost 

always equal to one. Results from Model 2 are not reported here.  
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the estimation and elasticity results from the two models with respect to facility capacity, 

maintenance cost, sales and management expenses, fuel cost, other costs, wages and 

technical change.    

The results from Model 1 represents only neutral shift in the production function. It shows 

that facility capacity representing elasticity of output with respect to capital is the highest 

(0.7803) followed by fuel cost (0.6274) and sales and management expenses (0.2402). The 

output elasticity with respect to maintenance and other costs are lower, 0.0702 and 0.0800, 

respectively. All these elasticities are as expected positive and statistically significant at the 

less than 5 percent level of significance. The rate of technological change is negative (-

0.0510) suggesting technical regress which might be attributed to lowered generation 

intensity per plant, costly improved energy security and greater emphasis on demand 

management policies. The output elasticity of labor represented by wage cost is negative (-

0.1435). The latter two elasticities are of unexpected sign. The negative labor elasticity in 

the short run might be due to labor hoarding or increasing construction capacity without 

any generation or costly enhanced plant security.       

The coefficients of the characteristic variables representing a neutral shift in the production 

function are reported in Table 2B. The sign of number of generators is negative, thereby 

meaning that more generators reduce the intensity of their use individually. Age of 

generators has a positive effect possibly due to learning by doing and improved capacity 

utilization over time. The facility types medium and peak loads are negative, as expected 

indicating basic load being more responsive to total amount of electricity generation. The 

dummy variables related to zero values of facility capacity, fuel cost and wages are all 

significant suggesting corrections for possible selection bias.   

 

5.3 Semiparametric results  

Unlike the restrictive Model 1, Model 3 gives observation specific parameter estimates. In 

order to compress the result, we report the estimates at the mean, 25th, 50th (median) and 

75th percentiles and their respective standard errors. At a later stage we report the results by 
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different plant characteristics to investigate performance heterogeneity across the plants. 

As it is shown in Table 2A with the exception of the intercepts, all slope coefficients are 

statistically significant at the 5 percent level or lower.     

In general, the average results across the two models are consistent with each other and of 

the expected signs. However, in few cases differences and in their variations are found 

across the two models. Comparison of the OLS with (mean) semiparametric elasticities we 

note that the coefficient of maintenance cost is negative (-0.0089) which is in violation of 

the regulatory conditions. Another key difference is with size of the intercept and lower 

mean elasticity of output with respect to capacity utilization (0.5582) and wages (-0.0117). 

The other output elasticities among the two models differ marginally. The rate of technical 

regress is one percentage point lower in the semiparametric model.  

Considering the semiparametric model and heterogeneity in outputs responses to changes 

in the inputs we note that mean and median differs suggesting skewed distribution in the 

output elasticities. This applies to the rate of technical change as well. The mean and 

median values of output elasticity with respect to wages differ in sign indicating largest 

skewness to the left tail of the distribution. The largest gaps, ranked by the order of 

magnitude, are attributed to wages, sales and management expenses, facility capacity and 

lastly to fuel cost. The large gaps between the first and third quartiles suggest large 

dispersion in most output elasticities and the rate of technical change. This is supported by 

the fact that for maintenance costs, other costs and wage, the sign of the elasticity changes 

from negative to positive when the two quartiles are compared.    

The partial derivatives of output with respect to the characteristic factors (Z) are reported 

in Table 2B for both models. The characteristics include the number of generators at a 

plant, their average age, facility type in respect with generation load, and a number of 

dummy variables indicating zero values of facility capacity, fuel cost and wages.  

The marginal effects of the characteristic variables in the case of semiparametric model 

represent a non-neutral shift in the production function. The sign of marginal effect of 

number of generators at the mean is negative, meaning that as the number of generators 

increases the output per unit decreases, ceteris paribus. A negative marginal effect is not 
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meaningful, but it is a result of reduced capacity utilization in use of some generators 

operating with for the time expensive energy type. Unlike in Model 1, the average age of 

generators in a plant has a negative effect. However, the effects of semi-continuous 

variables of number of generators per plant and age of generator are small and negligible. 

The signs of facility types of medium and peak loads are negative, as expected, indicating 

basic load more responsive to changes in the amount of electricity generation. The dummy 

variables related to zero values of facility capacity, fuel costs, are all statistically 

significant thereby distinguishing the neutral and non-neutral model specifications.  

Similar to the distribution of the semiparametric coefficients, distributions of the partial 

derivatives of generation of electricity with respect to different plant characteristics differ 

substantially. Table 2B shows that the mean and median values of number of generators, 

age and facility capacity differs but less in magnitude compared with the output elasticities 

and compared with the zero characteristics dummy variables. The largest difference is 

attributed to dummy variables related to zero facility capacity and fuel costs. The gaps 

between the 1st and 3rd quartiles are much larger suggesting skewed distribution of these 

non-neutral shifters of production. Facility load type is the main shifter followed by fuel 

cost and wages.  

 

5.4 Heterogeneity by plant characteristics 

Similar to the large variations in the observation specific levels of output elasticities and 

partial effects of characteristics on production, there are also large variations in their 

averages across different generator characteristics and over time. The characteristics of 

interest include: number of generators per plant, average age of generator in years, fuel 

source, plant type, facility load type, percentage facility utilization rate, and holding time 

measured in hours per year. These are reported in Table 3A and 3B. In order to conserve 

spaces, the point elasticity and marginal effects are not reported here.     

 A close look at the changes in the mean output elasticities of inputs over time (Table 3A) 

show that the output elasticity with respect to facility capacity (which is the largest) is 
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declining over time, while the output elasticity in respect with fuel cost is increasing. The 

third largest output elasticity is that of sales and management expenditure which is 

declining. All of these three key output elasticities are positive in each year. Similar to 

these three cases where we find trends in their development over time, -- there is positive 

trend in the maintenance and other costs which switch from negative to positive in 2005/6 

and 1997/8 respectively. The output elasticity of wages is small and mainly negative and 

without any trend in its development. The high yearly rate of technical regress ranges from 

7.8 percent to 4.9 percent.  

The partial effect with respect to fuel cost dummy is large, negative and declining over 

time. Similar negatively signed and trended partial effects are observed in relation with 

facility types of medium and peak loads compared with the base load which serves as 

reference load type. Marginal effect of facility capacity is relatively large and changed 

from negative to positive over time. The marginal wage effect is low and its mean value is 

volatile over time. The marginal effects of age and number of generator effect are small 

(see Table 3B). 

The output elasticities of facility capacity, sales and management costs are negatively 

related to the number of generators, while fuel cost is positively related due to the fact that 

peak load generators are operating with high cost of primary fuel sources. There is also a 

positive relationship between output elasticity of wages and number of generators 

suggesting that wages at the peak load generators operating at the margin capacity is 

higher. The rate of technical regress in general increases with the number of generators per 

plant. Variations in the marginal effects of output with respect to generator characteristics 

are less systematic in relation to the number of generators per plant (see Tables 3A and 

3B).   

The difference in the output elasticities across age cohort of generators is pronounced. The 

elasticity of output with respect to facility capacity is negatively correlated to the age of 

generator. Similar is the case with fuel cost, and wages, while it is positively correlated 

with maintenance cost and sales and management expenditures. Similar relationships are 

found between age and the marginal effects of generator characteristics. The number of 
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generators, facility capacity, higher loads and facility dummy variable are all positively 

related, while age of generator and fuel cost dummy variables are negatively related. 

The output elasticity of facility capacity is highest for nuclear, the two types of coals and 

hydro plants, while it is lowest for oil and gas driven plants which are used only as peak 

load. The sales and management expenditures is highest for hydro and gas plants. The fuel 

cost is the highest for gas and oil but lowest for hydro plants. The other cost elasticity with 

the exception of hydro which is surprisingly negative is almost of equal size. Oil and gas 

due to their high price level and their volatility contribute most to the technical regress. 

Considering the marginal effects, again hydro, oil and gas fuel driven generators are more 

responsive than those generators driven by nuclear and coal sources.   

In the case of plant type, nuclear, combined cycle, hydro pump and internal combustion 

show the highest output elasticities with respect to facility capacity. The lowest output 

elasticity is related to gas turbine and small hydro type. In terms of fuel cost, the output 

elasticity is found to be high for gas turbine, hydro pump and small hydro, while it is low 

for combined cycle and negative for internal combustion. Internal combustion is the only 

plant type which shows technical progress, while remaining types are subject to technical 

regress, which the rate is highest for gas turbine type. Again we find large variations in the 

marginal effects across plant types. The main variations are attributed to load type and 

facility capacity and fuel cost dummy variable.  

As expected the base load facility capacity has higher output elasticity, followed by the 

peak load and it is lowest for the middle load capacity. The low responsiveness for middle 

load capacity suggests that volatility in electricity demand is high which is mainly satisfied 

by the base and peak loads. The costs attributed to sale, management and fuel show large 

variations across different load capacities. It is as expected highest for the peak load. The 

output elasticity with respect to wages reflecting efficiency in use of labor at these plant 

types differs. It is negative for the peak load plants. The rate of technical regress is lowest 

for the middle load which is it capacity is utilized less. Similar results are found for the 

partial effects in the case of middle load.  
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We note a clear difference between output elasticity of facility capacity and its rate of 

utilization. In particular the rate of technical regress is much higher for the plants with low 

rate of capacity utilization. We note lower differences in outputs responsiveness to changes 

in costs of fuel and sales and management expenditure. Again variation in the marginal 

effects is large in respect with degree of capacity utilization of generators/plants. 

The last plant characteristic as source of heterogeneity is the generators holding time for 

repairs, services and malfunctions. We note the output elasticities with respect to the key 

factor of facility capacity and sales and management expenditure are inversely related to 

the holding time. A high maintenance cost affects the rate of holding time negatively. The 

rate of technical regress is much higher for the plants classified in the category with high 

holding times. Significant heterogeneity in the size of partial effects is also observed in 

respect with holding time of generators/plants operation.   

       

5.5 Policy implications of the results 

Unlike traditional models where supply response is practiced, in the deregulated electricity 

markets case demand response and its management is increasingly employed (Heshmati, 

2013a). In situations with expansion of demand for electricity, it might be cheaper to 

reduce demand than to increase supply. This is evidenced in particular in cases where price 

is regulated below the cost of incremental supply which does not give incentives to 

consumers to conserve. In such cases, it is better for the utility to pay price corrections in 

exchange for consumer demand reductions to balance supply and demand. The collapse of 

oil prices in 1998-1999 led to increased capacity expansion and the following energy price 

surge led to excess capacity which further increased its cost coverage. These differences 

between supply and demand response and increased marginal cost for incremental supply 

explain the rate of technical regress in our results.  

In line with the result here, several previously conducted studies (Heshmati, 2013b) show 

evidence of a decreasing trend in the performance in the electricity market. After 

separation in 2001 the DEA based efficiency is reduced slightly due to a lower scale 
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efficiency change. The results show that, the efficiency of generating companies did not 

improve, as was expected, after the separation process. However, the magnitude of scale 

effect was increased after the separation. The MPI results suggest decreased efficiency 

over the period. By separating the period into before and after separation, one can see a 

slowly increasing pattern before 2001 while a gradually decreasing trend after 2001. 

Inefficiency comes from scale efficiency in the before-restructuring time, while in the 

after-restructuring time it comes from decline in the technical change. This means there 

were not enough technological improvements in the electricity generation industry after 

2001. In total, productivity declined over time which is consistent with our findings of 

technical regress.  

Heshmati (2012) analyzes the technical efficiency of generation units, rank each unit for 

comparative assessment of their technical efficiency status and suggests policy 

recommendations. Although most of strategic activities for generation are decided by 

company or business unit levels, one can suggest suitable performance enhancement 

strategies and measures at the generator level. Based on the efficiency result, the effect 

from facility age or technological change was found to be small. Inefficiency of units is 

mostly related to the type of facility. It means that the market operating scheme is a basic 

factor in the operation performance. Although the facility type affects generation as the 

most important factor, in the view of control, the flexible labor management can be 

recognized as an easier way to introduce changes. More flexibility in human resource 

management in form of the labor transfer and labor pool of the same generation source or 

the same generation type facilities has been suggested. However, such reallocation of labor 

among generation companies is not an easy task in reality. The inflexible labor use in the 

generation may explain the low output elasticity of labor and for some segments 

irregularities in the labor coefficient.   

The strategy for improving the effectiveness of the fuel factor is most urgent. The 

increased fuel price is very likely the most important factor attributed to productivity 

decrease. Thus, a stabilizing strategy in response to the volatile fuel price in the long term 

is required. That is, not only a low purchasing price but also a stabilization of fuel price is 
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important measures to reduce variations in the efficiency and productivity levels. In this 

regard, the long term fuel purchasing and purchasing diversification should be considered. 

A reorganization of the electricity generation sector by the same fuel type can be a way to 

obtain high purchasing power. It can have fuel purchasing power under the unified simple 

energy source and also make the operational performance higher and organizational 

management easier. 

 

6. Summary and Conclusion  

Semiparametric varying-coefficient method used in the paper accommodates both 

qualitative and quantitative covariates in specification of the varying coefficients. In this 

paper we used the semiparametric approach to analyze the impact of load factor, facility 

and generator type and other characteristics on the productivity of Korean electric power 

plants. The model captures important heterogeneities in the effect arising from public 

energy policy across power plants and over time. Various specification tests are conducted 

to compare the model performance.  

The tradition parametric models such as the Cobb-Douglas can be derived as a special case 

of the smooth coefficient model with constant elasticities. A model specification test 

rejects the simple parametric production model with constant slopes, supporting the 

semiparametric model with heterogeneous intercept and slopes. Using a unique generator 

level panel dataset, we find that the impact of load factor and generator and facility types 

on power generation varies substantially. The period of our study 1995-2006, which covers 

the electricity generation market restructuring period of 2001, allows us to examine the 

impact of reform on the performance of plants. The variations in the impact are large 

across different plant characteristics. This result is useful for the public energy policy in 

Korea.  

The elasticity estimates from the two models with respect to facility capacity, fuel cost, 

wages, other inputs costs and technical change are provided. In general, the output 

elasticity results across the two models are consistent with each other, have expected signs 
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and statistical significance. The results from simple and varying coefficient semiparametric 

models represent neutral and non-neutral shifts in the production function, respectively. 

The rate of technological change is negative suggesting technical regress which might be 

attributed to lowered generation intensity per unit, improved energy security and practice 

of demand management policies in the electricity market. The output elasticity of labor 

represented by wage cost is unexpectedly negative which might be due to labor hoarding, 

faster wage increases than labor productivity, increasing construction capacity and 

enhanced power plant security. The estimated effects of plant characteristics are as 

expected where increased number of generator reduce the intensity in their use 

individually. Age of generators has a positive effect indicating learning by doing over time. 

The facility types show that basic load being more responsive to total generation.  

The smooth coefficient model gives rise to observation specific coefficient estimates. 

Summary of the result at different segments of the distribution suggest presence of 

heterogeneity in estimates by various plants characteristics. Large skewness in the 

distributions of output elasticities is also observed. The largest gaps are attributed to 

wages, sales and management expenses, facility capacity and fuel cost. The large gaps 

between the first and third quartiles also suggest large dispersion in most output elasticities 

and the rate of technical change. A comparison of the OLS elasticiticities with the mean 

semiparametric elasticities led to a number of differences, mainly, related to the output 

elasticities with respect to capacity utilization and wages. The other mean output 

elasticities differ marginally, while the rate of technical regress is lower in the 

semiparametric model. In sum, the results suggest presence of large heterogeneity in the 

plant’s output response to changes in the production factors and technological change.  

Similar to the large variations in the levels of output elasticities and marginal effects of 

various characteristics on production, there is also large variation in their averages across 

different generator characteristics and over time. The key factors of interest include: 

number of generators per plant, average age of generator in years, fuel source, plant type, 

facility load type, facility utilization rate, and holding time. Focusing at the changes in the 

mean output elasticities of inputs over time, we note that output elasticity with respect to 
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facility capacity is declining over time, while the output elasticity with respect to fuel cost 

is increasing.  

Large heterogeneity in output elasticities and marginal effects of plant characteristics over 

time and across different plant characteristics suggest that the volatile fuel price 

development, the high quasi fixed wage costs, difficulties in investment decision in new 

capacity considering the specific primary fuel types, as well as capacity distribution and 

utilization are the key issues to be considered in the strategy for improving the 

effectiveness of the fuel factor. The increased and volatile fuel price is likely to be the 

main source of productivity decrease. A reorganization of the electricity generation sector 

by the same fuel type can be a way to obtain high purchasing power and stability in fuel 

prices. It can also make the operational performance higher and organizational 

management easier. 
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Table 2A. Summary statistics of output elasticities wrt inputs X   

Dep. Var. = log Elec Gen 
Intercept Fac Cap 

Main. 

Cost 
SalManExp FuelCost OthCost Wages time 

OLS:                 

  12.5610 0.7803 0.0702 0.2402 0.6274 0.0800 -0.1435 -0.0510 

  (0.1536) (0.0297) (0.0173) (0.0258) (0.0203) (0.0326) (0.0386) (0.0057) 

Semiparametric:                 

Mean 3.9590 0.5582 -0.0089 0.2547 0.4432 0.0828 -0.0117 -0.0611 

  (0.1316) (0.0172) (0.0037) (0.0086) (0.0138) (0.0139) (0.0138) (0.0042) 

25% 1.6460 0.2165 -0.0802 0.1565 0.2578 -0.1575 -0.2599 -0.0805 

  (0.0594) (0.0110) (0.0029) (0.0046) (0.0063) (0.0064) (0.0027) (0.0027) 

Median 3.1970 0.6186 -0.0171 0.1739 0.4694 0.0810 0.0768 -0.0432 

  (0.0532) (0.0127) (0.0020) (0.0009) (0.0086) (0.0047) (0.0037) (0.0010) 

75% 5.4570 0.9019 0.0332 0.3135 0.7571 0.2501 0.1354 -0.0253 

  (0.1419) (0.0359) (0.0014) (0.0470) (0.0256) (0.0031) (0.0050) (0.0006) 

Notes: Standard errors are in parentheses. 

            factyp=1, dfaccap=0, dreafuecos=0, dwage=0 are base categories. 
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Table 2B. Summary statistics of partial derivatives of log electricity generation with respect to Characteristics Z 

Dep. Var. = log Elec Gen No Gen Age FacType 2 FacType 3 DFacCap DFuelCost Dwages 

OLS:               

  -0.1710 0.0056 -0.3274 -0.7786 -3.9403 -6.3124 -0.2423 

  (0.0210) (0.0018) (0.0662) (0.0626) (0.1845) (0.1950) (0.2486) 

Semiparametric:               

Mean -0.0064 -0.0013 -0.2151 -0.4726 0.1531 -0.7526 0.0100 

  (0.0008) (0.0006) (0.0136) (0.0195) (0.0362) (0.0572) (0.0275) 

25% -0.0033 -0.0101 -0.4261 -0.8777 -0.0002 -0.5766 -0.2546 

  (0.0001) (0.0003) (0.0142) (0.0315) (0.0017) (0.0174) (0.0100) 

Median 0.0000 0.0003 -0.1817 -0.4307 0.0000 -0.0112 -0.0240 

  (0.0000) (0.0002) (0.0096) (0.0113) (0.0000) (0.0017) (0.0069) 

75% 0.0001 0.0106 0.0000 -0.0145 0.0083 0.3014 0.2182 

  (0.0001) (0.0004) (0.0066) (0.0101) (0.0009) (0.0177) (0.0061) 

Notes: Standard errors are in parentheses.  

            factyp=1, dfaccap=0, dreafuecos=0, dwage=0 are base categories. 
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Table 3A. Mean semiparametric output elasticity with respect to inputs X  

 

Intercept 

Facility 

Capacity 

Mainten- 

ance Cost 

Sales 

and Man 

Exp 

Fuel 

Cost 

Other 

Costs Wages Technology 

Year of operation: 

1995 4.989 0.612 -0.036 0.362 0.371 -0.019 -0.009 -0.067 

1996 5.246 0.566 -0.056 0.364 0.363 -0.011 0.005 -0.078 

1997 4.306 0.591 -0.022 0.283 0.431 -0.005 0.053 -0.075 

1998 4.258 0.579 -0.016 0.284 0.433 -0.030 0.091 -0.076 

1999 3.934 0.579 -0.009 0.270 0.436 0.092 -0.039 -0.052 

2000 3.822 0.565 -0.006 0.257 0.445 0.094 -0.019 -0.054 

2001 3.799 0.560 -0.003 0.248 0.453 0.080 0.002 -0.058 

2002 3.591 0.540 -0.003 0.213 0.467 0.152 -0.047 -0.060 

2003 3.705 0.534 -0.001 0.215 0.468 0.130 -0.032 -0.064 

2004 3.488 0.541 0.008 0.207 0.468 0.143 -0.043 -0.049 

2005 3.516 0.533 0.009 0.208 0.467 0.148 -0.044 -0.052 

2006 3.446 0.523 0.009 0.204 0.478 0.152 -0.037 -0.056 

Number of Generators: 

0 9.394 0.478 -0.152 0.636 0.347 -0.238 0.021 -0.300 

1 3.736 0.614 0.000 0.253 0.375 0.149 -0.047 -0.038 

2 3.578 0.337 -0.049 0.285 0.692 -0.052 0.035 -0.072 

3 3.528 0.392 -0.032 0.217 0.770 -0.161 0.074 -0.066 

4 5.480 0.353 0.041 0.428 0.603 -0.082 -0.139 -0.081 

5 6.398 0.197 -0.046 0.238 0.735 -0.509 0.460 -0.234 

6 5.068 0.278 -0.081 0.207 0.779 -0.063 -0.130 -0.058 

7 16.079 -0.100 0.017 -0.858 0.695 -0.787 1.834 -1.491 

8 14.903 0.109 -0.023 -0.186 1.005 -0.839 1.485 -1.329 

Generator Age: 

0-6 years 2.124 0.632 -0.019 0.219 0.585 0.047 0.085 -0.062 

7-20 years 3.871 0.574 -0.052 0.243 0.470 0.104 0.052 -0.090 

21+ years 5.587 0.481 0.044 0.296 0.297 0.091 -0.158 -0.030 

Fuel Source: 

Nuclear 2.368 0.892 -0.043 0.169 0.367 0.154 0.107 -0.036 

Hydro 7.027 0.598 -0.003 0.455 0.107 -0.077 -0.129 0.004 

Oil 3.705 0.199 0.060 0.142 0.707 0.089 0.103 -0.180 

Coal 

Anthracite 2.698 0.841 -0.014 0.192 0.321 0.144 0.165 -0.078 

Coal 

Bituminous 2.086 0.868 -0.020 0.173 0.398 0.149 0.105 -0.042 

LNG 3.525 0.262 -0.037 0.247 0.731 0.145 -0.175 -0.071 
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Table 3A. Mean semiparametric output elasticity with respect to inputs X (cont.)  

 

Intercept 

Facility 

Capacity 

Mainten- 

ance Cost 

Sales 

and Man 

Exp 

Fuel 

Cost 

Other 

Costs Wages Technology 

Plant Type: 

Nuclear 2.368 0.892 -0.043 0.169 0.367 0.154 0.107 -0.036 

Intl comb. 8.481 0.667 0.023 0.505 -0.065 -0.207 -0.095 0.028 

Gas turbine 3.705 0.199 0.060 0.142 0.707 0.089 0.103 -0.180 

Comb. cycle 2.698 0.841 -0.014 0.192 0.321 0.144 0.165 -0.078 

Hydro 2.086 0.868 -0.020 0.173 0.398 0.149 0.105 -0.042 

Hydro pump 1.953 0.357 -0.093 0.280 0.706 0.377 -0.247 -0.082 

Hydro small 3.525 0.262 -0.037 0.247 0.731 0.145 -0.175 -0.071 

Facility Type: 

Base load 2.271 0.872 -0.027 0.175 0.376 0.150 0.115 -0.045 

Mid load 3.705 0.199 0.060 0.142 0.707 0.089 0.103 -0.180 

Peak load 5.365 0.439 -0.019 0.356 0.403 0.029 -0.151 -0.032 

Capacity Utilization: 

-95.0% 3.214 0.591 0.041 0.198 0.453 0.104 0.062 -0.083 

951.0-97.8% 2.632 0.611 -0.030 0.189 0.535 0.182 -0.007 -0.064 

97.9-% 6.203 0.466 -0.043 0.388 0.334 -0.045 -0.100 -0.034 

Holding Time: 

0 hours 5.492 0.710 -0.003 0.326 0.213 -0.057 0.058 -0.049 

1-1500 

hours 2.428 0.698 -0.011 0.188 0.449 0.180 0.061 -0.061 

1501- hours 3.215 0.254 -0.015 0.216 0.732 0.185 -0.158 -0.077 

Sample:  

Mean 3.959 0.558 -0.009 0.255 0.443 0.083 -0.012 -0.061 

Std Dev 3.301 0.388 0.149 0.248 0.330 0.559 0.548 0.156 
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Table 3B. Mean semiparametric partial derivative of log generation with respect to Z 

characteristics 

 

Number 

of 

Generator 

Generator 

Age 

Facility 

Type 2 

Midload 

Facility 

Type 3 

Peakload 

Facility  

Capacity 

Dummy 

Fuel Cost 

Dummy 

Wages 

Dummy 

Year of operation: 

1995 0.003 0.007 0.019 -0.248 -0.018 -0.362 -0.119 

1996 -0.004 0.008 0.037 -0.145 -0.245 -0.443 0.089 

1997 -0.007 0.006 -0.103 -0.288 0.136 -0.391 -0.099 

1998 -0.011 0.002 -0.255 -0.512 0.151 -0.711 -0.138 

1999 -0.008 -0.002 -0.205 -0.523 0.142 -0.708 -0.024 

2000 -0.012 -0.002 -0.173 -0.491 0.102 -0.785 -0.006 

2001 -0.014 -0.001 -0.262 -0.543 0.081 -0.770 0.130 

2002 -0.007 0.001 -0.229 -0.527 0.213 -0.882 0.089 

2003 -0.006 -0.002 -0.270 -0.525 0.259 -0.867 0.157 

2004 -0.004 -0.006 -0.317 -0.587 0.275 -0.898 0.052 

2005 -0.004 -0.009 -0.327 -0.577 0.276 -0.921 -0.006 

2006 -0.002 -0.009 -0.365 -0.569 0.327 -1.061 -0.042 

Number of Generators: 

0 0.000 0.000 0.143 0.400 -1.384 -0.906 -0.791 

1 -0.002 -0.001 -0.195 -0.489 0.212 -0.945 0.007 

2 -0.002 0.017 -0.330 -0.428 -0.111 -0.002 0.228 

3 -0.027 -0.013 -0.370 -0.613 0.152 0.121 0.136 

4 -0.055 -0.044 -0.019 -0.133 -0.083 -0.207 -0.514 

5 -0.054 -0.014 -0.427 -0.777 0.137 0.176 -0.297 

6 -0.044 -0.003 -0.301 -0.812 -0.005 0.289 0.171 

7 -0.013 -0.017 -0.121 -0.659 0.011 -0.007 -2.509 

8 -0.099 -0.016 -0.138 1.538 0.113 0.005 1.086 

Generator Age: 

0-6 years -0.010 0.002 -0.264 -0.774 -0.075 -0.182 0.083 

7-20 years -0.007 -0.002 -0.322 -0.519 -0.006 -0.191 -0.059 

21+ years -0.002 -0.004 -0.064 -0.173 0.508 -1.806 0.020 

Fuel Source: 

Nuclear 0.001 0.003 -0.443 -1.128 0.010 0.418 0.061 

Hydro -0.003 -0.001 -0.112 -0.241 0.689 -3.088 0.175 

Oil -0.011 -0.006 -0.080 -0.062 -0.014 -0.080 -0.225 

Coal 

Anthracite 0.000 0.005 -0.044 -0.117 -0.024 -0.201 -0.301 

Coal 

Bituminous -0.002 0.001 -0.264 -0.718 0.033 -0.161 -0.070 

LNG -0.016 -0.004 -0.309 -0.560 -0.094 0.068 0.120 
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Table 3B. Mean semiparametric partial derivative of log generation with respect to Z 

characteristics (cont.) 

 

Number 

of 

Generator 

Generator 

Age 

Facility 

Type 2 

Midload 

Facility 

Type 3 

Peakload 

Facility  

Capacity 

Dummy 

Fuel Cost 

Dummy 

Wages 

Dummy 

Plant Type: 

Nuclear 0.001 0.003 -0.443 -1.128 0.010 0.418 0.061 

Intl comb. 0.000 -0.001 0.162 -0.012 0.905 -3.577 0.239 

Gas turbine -0.011 -0.006 -0.080 -0.062 -0.014 -0.080 -0.225 

Comb. cycle 0.000 0.005 -0.044 -0.117 -0.024 -0.201 -0.301 

Hydro -0.002 0.001 -0.264 -0.718 0.033 -0.161 -0.070 

Hydro pump -0.011 -0.004 -1.067 -1.042 -0.066 -1.380 -0.049 

Hydro small -0.016 -0.004 -0.309 -0.560 -0.094 0.068 0.120 

Facility Type: 

Base load -0.001 0.002 -0.288 -0.758 0.017 0.020 -0.063 

Mid load -0.011 -0.006 -0.080 -0.062 -0.014 -0.080 -0.225 

Peak load -0.009 -0.002 -0.205 -0.393 0.317 -1.590 0.149 

Capacity Utilization: 

-95.0% -0.004 -0.003 -0.139 -0.463 0.072 -0.223 0.131 

951.0-97.8% -0.007 0.002 -0.279 -0.667 -0.105 0.093 -0.049 

97.9-% -0.008 -0.002 -0.233 -0.277 0.517 -2.244 -0.064 

Holding Time: 

0 hours -0.002 0.001 -0.126 -0.462 0.432 -1.648 0.087 

1-1500 

hours -0.004 0.002 -0.146 -0.419 0.012 0.010 -0.195 

1501- hours -0.014 -0.006 -0.384 -0.528 -0.091 -0.214 0.075 

Sample:               

Mean -0.006 -0.001 -0.215 -0.473 0.153 -0.753 0.010 

Std Dev 0.031 0.026 0.534 0.637 1.451 2.198 1.110 

 

 

 

 

 

 

 

 


