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It has been shown in the earlier work of Umnova et al. [Noise Control Eng. 50, 204–210 (2002)]

that interaction of a relatively long, high amplitude acoustic pulse with a rigid porous material can

be accurately described accounting for the Forchheimer nonlinearity. In the present study, the goal

is to determine whether the accuracy of the modeling can be improved in the case of a lower

amplitude and a shorter pulse. A model that accounts for the Forchheimer’s nonlinearity and the

transient effects is developed. It is assumed that all the contributions to the viscous force are addi-

tive in the time domain. The governing equations are solved numerically using finite difference

time domain scheme. The results are compared with the data for two granular materials. The latter

are obtained in an impedance tube and in a shock tube experiments, where acoustic pulses with var-

ious amplitudes and durations are generated. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4824969]

PACS number(s): 43.25.Cb, 43.25.Jh, 43.25.Ed, 43.20.El [KVH] Pages: 4763–4774

I. INTRODUCTION

Peak amplitudes of shock pulses, due to explosions or

those from a jet engine, can be higher than 150 dB and

depend strongly on the distance to the receiver. The impul-

sive noise can be attenuated using inexpensive and mechani-

cally robust natural porous materials, such as gravel, sand,

pebbles, porous asphalt, and concrete. At high sound pres-

sure levels, many porous materials exhibit substantial nonli-

nearity. This means that their acoustic properties vary with

the amplitude of sound. In this regime, there is a strong inter-

action between different spectral components of the acoustic

signal within the material. For this reason, any models

formulated in the frequency domain are difficult to use for

predicting sound attenuation.

A significant volume of literature is devoted to time

domain numerical studies of high amplitude pulse propaga-

tion in porous materials assuming Forchheimer’s filtration

law.1 The latter accounts for a linear growth of static flow

resistivity with the increase of flow velocity. In the presence

of sound, the same type of flow resistivity dependence

on particle velocity amplitude is assumed. In Ref. 2, for

instance, the propagation of a moderate amplitude acoustic

pulse in a rigid porous material has been studied, assuming

Forchheimer’s correction to Darcy’s law and quadratic non-

linearity. This approximation is valid when most of the

acoustic energy is concentrated in the lower frequency range,

which implies relatively long pulses.

For shorter pulses, the transient (also called memory or

inertial) effects need to be taken into consideration. They

account for a non-instantaneous response of the medium to

sound. Modeling of the transient effects in a linear regime

has been performed in the past and is described in Refs. 3–5.

The analysis given in Refs. 4 and 5 is valid for short pulses

of low amplitude and with most of the energy concentrated

in the higher frequency range. Accounting for the transient

effects is also important for predicting sound attenuation in

concentrated emulsions.6

In this work, the interaction of an intermediate ampli-

tude and duration pulse with rigid frame porous materials is

studied. The contributions of both Forchheimer’s nonlinear-

ity and the transient effects to the drag force are taken into

account, in order to correctly predict the material response.

In Sec. II the approach to modeling is described. The

linear model is formulated first. It is assumed that all the

contributions to the drag force are additive in the time

domain. This is strictly valid for the drag force acting, for

instance, on a sphere moving arbitrarily in a viscous incom-

pressible fluid.7 However, it is argued that similar expression

can be formulated for the force arising when acoustic pulse

propagates in a rigid porous material with an arbitrary pore

geometry. It is shown that when transferred into frequency

domain, the expression satisfies physically correct low and

high frequency limits. Forchheimer’s nonlinearity term is

then incorporated into the time domain model to account for

the finite amplitude effects.

The governing equations are solved numerically using a

finite difference time domain (FDTD) scheme. The numeri-

cal technique described in Refs. 8 and 9 has been used before

to consider the contribution of inertia, convection, viscosity,

and relaxation effects. In the present work, the relative im-

portance of viscous and transient effects is evaluated using

two numerical codes. One of them accounts for the viscosity

effects (including Forchheimer’s nonlinear term) only, while

the other accounts for both viscosity and transient effects.
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The range of acoustic pulse and material parameters, where

both Forchheimer’s nonlinearity and transient effects contri-

butions are strong, is identified in Sec. III.

In Secs. IV and V the experiments are described.

Predictions of the linear model are compared with the im-

pedance tube measurements. The shock tube setup was used

to generate acoustic pulses with amplitudes between 2 kPa and

20 kPa and durations of 3 ms and 1.5 ms. The nonlinear model

has been validated by comparing its results with the shock

tube data. The main findings are summarized in Sec. VI.

II. THE MODEL

The response of a rigid frame porous material to an

acoustic excitation is often described using complex tortuos-

ity10 and complex compressibility functions.11,12 The former

accounts for the viscosity related effects, whereas the latter

is designed to account for thermal losses. For low frequency

sound the viscous losses are described by a static flow resis-

tivity r0. This range of frequencies is referred to as the vis-

cous regime. It is assumed in the following that flow

resistivity grows linearly with flow velocity

rðUÞ � r0ð1þ njUjÞ; (1)

where n is Forchheimer’s nonlinearity parameter. Both r0

and n can be measured in standard flow resistivity tests. At

higher frequencies, the response is influenced by the tempo-

ral delay in viscous boundary layer development. This range

of frequencies is referred to as the inertial or the transient re-

gime. Material response in this regime is governed by an

additional parameter, K, which is called the characteristic

viscous length.10

We assume that the terms describing viscous and tran-

sient regimes are additive in the expression for the complex

tortuosity function

aðxÞ ¼ a1 þ
r0/
�ixq0

þ 2a1
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixq0

r
; (2)

where a1 is tortuosity, / is porosity, x is angular frequency,

and q0 and g are density and dynamic viscosity of air,

respectively. The function defined by Eq. (2) is different

from the conventional scaling function of the equivalent

fluid model.10 However, it still satisfies the same physically

correct low and high frequency limits, i.e., aðx!1Þ ¼ a1
þ2a1

ffiffiffi
g
p

=ðK ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ixq0

p Þ and aðx! 0Þ ¼ a1 þ r0/=
ð�ixq0Þ. The scaling function in Ref. 10 has been chosen to

be the simplest one that satisfies these limits. However, a

whole family of other functions with the same limits can be

constructed. Equation (2) describes one of them.

In the time domain, the use of expression (2), leads to

the following expression for the drag force F(t) acting on a

unit volume of air in a porous material

FðtÞ ¼ q0ða1 � 1Þ dv

dt
þ r/v

þ 2a1
K

ffiffiffiffiffiffiffiffi
g

pq0

r ðt

�1

dv

dt

dsffiffiffiffiffiffiffiffiffiffi
t� s
p : (3)

The structure of this expression is similar to that of the fric-

tion force f(t), acting on a sphere of radius R, which is mov-

ing in an arbitrary manner with velocity v in an unbounded

incompressible fluid7

f ðtÞ ¼ 2

3
pq0R3 dv

dt
þ 6pgRv

þ 6q0R2

ffiffiffiffiffiffi
gp
q0

r ðt

�1

dv

dt

dsffiffiffiffiffiffiffiffiffiffi
t� s
p : (4)

The second term in Eq. (4) is known as the Stokes force. The

third term is known as the transient or Basset force. It takes

into account the influence of the velocity history on its value

at present time and is called the transient term in this work.

The same name is used for the third term on the right hand

side of Eq. (3).

The transient term can be neglected if the influence of

the early stages of the viscous boundary layer formation is

not significant. In the time domain this implies relatively

long pulses. In the frequency domain, this is equivalent to

the viscous regime of interaction mentioned above. In this

regime the viscous boundary layer thickness exceeds the

characteristic pore size. The acoustic signal has mostly low

frequency content, x� xc.

The transient effects become significant for shorter

pulses and dominate for the shortest ones. In the frequency

domain, this is equivalent to the assumption of the transient

regime mentioned above. The viscous boundary layer thick-

ness is much less than the characteristic pore size. The

acoustic signal has mostly high frequency content, x � xc.

Here xc is the critical angular frequency of the medium

defined as

xc ¼
r0

2/2K2

4gq0a12
: (5)

The use of a scaling function, similar to that described

by Eq. (2), results in the following expression for complex

compressibility:

CðxÞ¼c�ðc�1Þ

� 1þ /g
�ixNPrq0k0

þ 2

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixNPrq0

r !�1

; (6)

where NPr is Prandtl number (NPr ¼ cpg=j, cp is specific

heat at constant pressure and j is thermal conductivity), c is

adiabatic constant, K0 is characteristic thermal length, and k0

is thermal permeability. This function has the same low and

high frequency limits as the one introduced in Refs. 11 and

12.

The condition x � xc has been always met in the

experiments described in this work. For this reason, the high

frequency limit of complex compressibility (6), i.e.,

CðxÞ ¼ 1þ 2ðc� 1Þ
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

�ixNPrq0

r
; (7)

has been used in the model.
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In the frequency domain the linear governing equations

are

�ixaðxÞq0U ¼ �/rP; (8)

�ixCðxÞP ¼ � q0c2

/
r � U; (9)

where c is sound speed in air, U is particle velocity averaged

over the porous material volume, and P is acoustic pressure.

First, the Fourier transformation of Eqs. (8) and (9) is

performed, where expression (2) is used for the complex tor-

tuosity function and complex compressibility function is

described by Eq. (7). After that, Forchheimer’s correction to

Darcy’s law (1) is introduced into the time domain equa-

tions. This results in the following equations:

a1q0

@v

@t
þ 2a1q0

K

ffiffiffiffiffiffiffiffi
g

pq0

r ðt

�1

@v

@t0
dt0ffiffiffiffiffiffiffiffiffiffi
t� t0
p

þ r0/ð1þ njvjÞv ¼ �/
@p

@x
; (10)

@p

@t
þ 2ðc� 1Þ

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

NPrpq0

r ðt

�1

@p

@t0
dt0ffiffiffiffiffiffiffiffiffiffi
t� t0
p ¼ �q0c2

/
@v

@x
;

(11)

where p and v are pressure and particle velocity in time

domain.

If the viscous force with Forchheimer’s correction [third

term on the left hand side of Eq. (10)] can be neglected, in

comparison with transient term (second term on the left hand

side), than Eq. (10) coincides with the one used to model

propagation of low amplitude short pulses in Refs. 3 and 4.

When transient term is small compared to the viscous force

with Forchheimer’s correction, Eq. (10) is reduced to the

one used to model high amplitude long pulse propagation in

Ref. 2.

III. ANALYSIS OF DIMENSIONLESS GOVERNING
EQUATION

In order to define the range of parameters, where the

contributions of the transient term and the Forchheimer’s

term are equally strong, an analysis of coefficients in

Eqs. (10) and (11) is performed.

First, the following dimensionless quantities are intro-

duced: p� ¼ p=pref , v� ¼ v=vref , t� ¼ t=tref , and x� ¼ x=xref .

The reference values for the pressure, particle velocity, time,

and space coordinates have been chosen as follows:

pref ¼ q0cvref ¼ pexc, vref ¼ pexc=ðq0cÞ, tref ¼ texc, and xref

¼ vreftexc ¼ texcpexc=ðq0cÞ. Here pexc is pressure amplitude

and texc is duration of the excitation pulse.

Second, Eqs. (10) and (11) are written in the dimension-

less form

@v�

@t�
þ 2

K

ffiffiffiffiffiffiffiffiffi
gtexc

pq0

r ðt

�1

@v�

@t�0
dt�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t� � t�0
p

þ r0/texc

a1q0

1þ n
pexc

q0c
jv�j

� �
v� ¼ � /q0c2

a1pexc

@p�

@x�
;

(12)

@p�

@t�
þ2ðc�1Þ

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtexc

NPrpq0

r ðt

�1

@p�

@t�0
dt�0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� � t�0
p ¼� q0c2

/pref

@v�

@x�
:

(13)

After separation the linear viscous term from the quadratic

one (Forchheimer’s term), Eq. (12) becomes

@v�

@t�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4gtexc

pK2q0

s ðt

�1

@v�

@t�0
dt�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� � t�0
p

þr0/texc

a1q0

v� þ n
r0/pexctexc

a1q0
2c

v�2 ¼� /q0c2

a1pexc

@p�

@x�
:

(14)

The transient term has the same order of magnitude as

the linear viscous term if the following condition is satisfied:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g

pK2q0

texc

s
� r0/

a1q0

texc: (15)

This leads to the following condition on pulse duration:

texc �
1

p

� �
4a12q0g

r0
2/2K2

: (16)

Introducing the critical frequency (5), Eq. (16) can be rewrit-

ten as

texc �
1

pxc
: (17)

From the frequency domain analysis,13 it was found that the

transient and the linear viscosity effects are comparable

when the angular frequency of sound is equal to the critical

frequency defined by Eq. (5). Equation (17) is the time

domain analog of this condition.

Transient effects are stronger than those of the linear

viscosity if

texc <
1

pxc
: (18)

Now the coefficients at the transient and Forchheimer’s

terms are compared. They are the same order of magnitude

when ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g

pK2q0

texc

s
� n

r0/
a1

pexc

q0
2c

texc; (19)

which means

texc

pexc
2

q0c2
� q0

n2p

� �
4a12q0g

r0
2/2K2

¼ q0

n2

� �
1

pxc
: (20)

Combining conditions (17) and (20), we conclude that tran-

sient, linear and Forchheimer’s terms have same order of

magnitude when pressure amplitude satisfies the following

condition:

texc

pexc
2

q0c2
� q0

n2

� �
1

pxc
) pexc �

q0c

n
: (21)
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The transient term is dominant, compared to the

Forchheimer’s term, if

texc <
1

pexc
2

q0c

n

� �2 1

pxc
: (22)

Rearranging Eq. (20), we conclude that Forchheimer’s term

and the transient term are the same order of magnitude when

pexc �
q0c

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

pxctexc

r
: (23)

For the pulse with amplitude higher than that estimated by

Eq. (23), Forchheimer’s nonlinearity effect is dominant. For

the pulses with lower amplitude or with durations defined by

inequality (22), the transient effect is stronger.

Typical values of Forchheimer’s nonlinearity parameter

n are in the range {0, 10} s/m.2,14 For materials with n
� 1 s/m (such as mineral wool or granular material with

very small particles, e.g., sand), the three effects are compa-

rable in strength only at high level of excitation. For

instance, for n ¼ 0:1 s/m acoustic pulse amplitude predicted

by Eq. (21) is around 4 kPa. For more common granular

media (such as pebbles, stones, and asphalt) Forchheimer’s

parameter n values are of the order of unity. This means that

only for pressure amplitude around 0.4 kPa and duration

defined by Eq. (17) the linear viscosity, Forchheimer’s nonli-

nearity and the transient effects are comparable in strength.

In Fig. 1 the dimensionless coefficient values are shown

as functions of the pulse duration for two excitation ampli-

tudes. The calculations have been performed for the lead

shot with parameters summarized in Table I. The viscous

and Forchheimer’s nonlinearity parameters were measured,

tortuosity and porosity were reported in Refs. 13 and 14,

whereas thermal parameters have been evaluated using the

cell model.15 In Table I fc ¼ xc=ð2pÞ is the critical fre-

quency of the sample.

The transient term has the same order of magnitude as

the linear viscous term for pulses with time durations on the

order of 1.5 ms. The effect of the Forchheimer’s nonlinearity

is weak for a pulse with amplitude of 40 kPa, while for that

with amplitude of 4 kPa it dominates over the viscous and

the inertial effects irrespective of pulse duration.

IV. VALIDATION OF THE LINEAR MODEL:
IMPEDANCE TUBE EXPERIMENTS

The aim of this part of the work is to validate the model

for a low amplitude pulse and to investigate the relative im-

portance of viscous, inertial, and Forchheimer’s nonlinearity

effects. The data are compared with the model predictions

obtained (a) accounting for Forchheimer’ correction, (b) with-

out it, i.e., setting n ¼ 0 in Eq. (10), (c) accounting for tran-

sient effect and (d) neglecting the transient term in Eq. (10).

A FDTD method with one-dimensional staggered spatial

scheme is used to numerically solve Eqs. (10) and (11). The

two-dimensional representation of this scheme is illustrated

in Ref. 16. The stability condition requires the Courant num-

ber to be smaller than unity.17

The experiments and numerical calculations have been

performed for a packing of gravel. Its parameters are sum-

marized in Table I.

A low amplitude acoustic pulse is generated in an im-

pedance tube. The tube is designed specifically for investi-

gating acoustic pulse propagation in granular media.18 The

incident pulse is generated by a loudspeaker, then reflected

by a 5.5 cm thick sample of gravel placed 4.5 cm away from

the rigid wall and recorded by a microphone placed at

0.079 m from the sample surface. This arrangement is used

to maximize the influence of the transient effects.

The gravel used in the experiments is identical to that

described in Ref. 13, however, its static flow resistivity and

Forchheimer’s nonlinearity parameter were measured again.

Although the flow resistivity and Forchheimer’s parameter

of gravel are close to that of the lead shot, the characteristic

viscous length is substantially smaller. This means that the

influence of a transient term is stronger in this material.

The measured spectrum of the pulse is shown in Fig. 2.

The proportion of the pulse energy distributed above the crit-

ical frequency fc is 99.8%, so the inertial regime is achieved.

FIG. 1. Dimensionless coefficients in Eq. (14) for different pulse durations

and amplitudes. Lead shot (parameters in Table I). Solid line: transient term

coefficient; dashed lines: quadratic viscous (Forchheimer nonlinearity) term

coefficient for different pulse amplitudes; dotted line: linear viscous term

coefficient.

TABLE I. Samples parameters: lead shot and gravel.

Sample Particle radius ð10�3 mÞ a1 / r0 ðPa s=m2Þ n ðs=mÞ K ð10�3 mÞ K0 ð10�3 mÞ k0
0 ð10�9 m2Þ fc ðHzÞ

Lead shot 1.89 1.60 0.385 1026 3.70 0.55 0.79 31.8 33.18

Gravel 4.51 1.55 0.380 1064 4.06 0.19 1.84 173.0 10.60
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Figures 3(a)–3(c) shows that, in this case, the model pre-

dictions are in a very good agreement with the reflection

data. Prediction accounting for Forchheimer’s correction is

almost undistinguishable from that without it [Fig. 3(b)].

Accounting for the transient effect leads to a better agree-

ment with the data [Fig. 3(c)].

V. VALIDATION OF THE NONLINEAR MODEL: SHOCK
TUBE EXPERIMENTS

The aim of this part of the work is to validate the nonlin-

ear model and to investigate the importance of the transient

effects in this case.

A shock tube set up can be used to generate pulses with

amplitudes up to 65 kPa and durations longer than 1.6 ms.19

A shock tube is an enclosed metal pipe with a chamber at

one end and a rigid wall at the other one. A sample can be

placed at the end of the pipe or in the middle of it. A mem-

brane separates the chamber from the rest of the pipe. The

chamber is pressurized until the break of the membrane.

When the membrane breaks down, a shock wave propagates

along the tube and the microphones placed in front and at

the back of the sample record incident, reflected, and trans-

mitted pulses. With this setup, the pulse amplitude and dura-

tion can be controlled in two ways: varying the type of

membrane or using multiple reflections of the pulse from the

pipe ends. The former can be achieved using membranes

made from different materials (the stiffer the material, the

higher the pulse amplitude) or with different thicknesses (the

thicker the membrane, the higher the pulse amplitude). The

latter, instead, uses the deformation of the shock wave due to

its nonlinear propagation in air and attenuation due to the

sample. The shock deformation due to the air nonlinearity

changes both amplitude and pulse duration.

A pulse with maximum amplitude of 25 kPa and duration

of 2.5 ms is generated rupturing the aluminum foil mem-

brane. A sketch of the experimental setups is shown in Fig. 4.

Piezoelectric microphones record pressure at fixed

positions along the tube. In the case of a reflection setup,

FIG. 2. Spectrum of a low amplitude (48 Pa) pulse. Dashed line: critical fre-

quency of gravel (data in Table I).

FIG. 3. Low amplitude pulse reflection. (a) Incident pulse. Gray circles:

data; solid line: data reconstruction. Pulse reflected by 5.5 cm layer of

gravel, air gap 4.5 cm. (b) Gray circles: data; solid line: Eqs. (10) and (11);

dashed gray line equations (10) and (11) with n ¼ 0. (c) Gray circles: data;

solid line: Eqs. (10) and (11); dashed line Eqs. (10) and (11) without tran-

sient term in Eq. (10).
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Fig. 4(a), the sample is placed at the end of the tube and

records of the incident pulse and the reflected pulse are

taken. The sample holder has a microphone holder placed at

its middle point, which allows recording pulses propagating

through the sample.

In the case of a transmission setup, Fig. 4(b), a tube

extension of 3.25 m is used and the sample holder is placed

between the main tube and the extension. To avoid the

superposition of the pulse transmitted through the sample

and the pulse reflected from the rigid termination of the tube,

the shock front time of flight must be at least twice the pulse

duration. With an extension of 3.25 m, a time of flight is

around 19 ms [t ¼ 2ð3:25=cÞ s]. This is around 6 times lon-

ger than the pulse duration, so the superposition between the

two pulses is avoided.

A proportion of the pulse energy which corresponds to

frequencies lower than 1 kHz is 97% (Fig. 7). This means

that the shortest wavelength of interest is 34.3 cm, which is

around 6 times longer than the tube diameter (5.7 cm). This

confirms the validity of the plane wave approximation. For

this reason a one dimensional numerical scheme has been

implemented to solve the equations.

The peak pressure is measured by a pressure transducer

at a distance of 1 m from the foil, Pos. 0 in Fig. 4(a). The pres-

sure is also measured at different locations along the tube

with three piezoelectric transducers PCB Piezotronics113B21.

Each transducer can measure pressures up to 7000 kPa

(70 bar). The measurements confirm that the peak pressure

does not vary significantly from one rupture to another.

However, to take into account the small variations due the foil

mounting procedure, the value averaged over four measure-

ments is used for comparison with the model.

A. Pulse propagation in air

The influence of the nonlinear convection is neglected

in the model. In air, as shown below, this is possible due to

relatively low pulse amplitude and short distances between

the transducers.

Convection leads to attenuation of the pulse peak and

the increase of its duration. In Fig. 5 the distortions due to

nonlinear convection are shown for a pulse with amplitude

of around 18 kPa. The predictions have been obtained solv-

ing the Burgers’ equation20

@p

@x
¼ b

q0c
p
@p

@t0
þ e

2c3

@2p

@t02
; (24)

using a FDTD scheme. Here t0 ¼ t� x=c, b ¼ ðcþ 1Þ=2 is

coefficient of nonlinearity, and e is the diffusivity coefficient

which accounts for heat conduction and viscosity of air.

A one dimensional MacCormack scheme21 was imple-

mented. A forward difference predictor and backward differ-

ence corrector were used for evaluating the convection term,

whereas a central difference was performed for evaluating

the diffusion term.

The nonlinear convection contribution is evident at Pos.

0. The pulse amplitude is attenuated by 20% and the pulse

duration is increased by 30%.

These data are consistent with the numerical results and

also with a simple triangular pulse approximation described

FIG. 4. Shock tube setup for reflection

(a) and transmission (b) measurements.

All dimensions are shown in mm.

FIG. 5. Pulse propagation in an empty shock tube. Using the reflection setup

with no sample, the pulse has been measured at Pos. 0 and Pos. 1 as in Fig.

4(a). The measured shock profile at Pos. 1 is affected by the pulse reflected

from the rigid termination.
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in Ref. 7. According to this approximation, the amplitude

Dp0 and the pulse duration T0 at a distance x are calculated as

T0 ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cþ 1

2

Dp0x

q0c0
3T0

� �� �s

Dp0 ¼ Dp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cþ 1

2

Dp0x

q0c0
3T0

� �� �s ;

8>>>>>>><
>>>>>>>:

(25)

where Dp0, T0 are amplitude and duration of the pulse at the

initial position x ¼ 0. In Eq. (25) the influence of the dissipa-

tion is neglected. In order to be able to use Eq. (25), the

measured waveform is approximated with a triangular pulse

of amplitude 18 kPa and duration of 0.84 ms. The distance

traveled by the pulse between the first and the second record-

ings at Pos. 0 is x¼ 0.845 m. According to Eq. (25) the peak

is attenuated by 17% whereas the pulse duration (measured

from a shock front to a zero pressure point) is increased by

21% in a reasonable agreement with the data. This confirms

the validity of Eqs. (25).

Using these equations it can be shown, that if a pulse with

amplitude 10 kPa or less and with duration of 1 ms travels

between Pos. 1 and Pos. 3 (x¼ 0.345 m), its amplitude

decrease and its duration increase are both less than 5% of the

initial values. Due to this, convection contribution is not

accounted for, when propagation between these transducer

positions is considered. In the following, pulses with amplitude

less than 10 kPa are used for comparisons with the model.

It has been justified in Ref. 2 that nonlinear convection

can be neglected for a pulse propagating inside porous

material.

B. Pulse propagation in porous materials

In the shock tube, multiple data sets can be recorded

performing a single rupture of the foil. In Fig. 6 a typical

data set is shown and the main advantage of using this exper-

imental setup is demonstrated. A single rupture allows col-

lecting at least three sets of data. The first set includes the

direct incident pulse superimposed with the one reflected by

the sample surface, the pulse recorded inside the sample, and

the pulse transmitted through the sample. The second set of

pulses is the same as the first one with the difference that the

pulse reflected by the rigid wall of the chamber now acts as

the incident one. This set of pulses is separated from the first

one by 0.012 s. This is the time required for the pulse to

propagate over 4.1 m. This distance is equal to twice the dis-

tance between Pos. 1 and the wall of the chamber plus twice

the distance between Pos. 1 and the surface of the sample.

Third set of pulses is initiated by the pulse reflected from the

rigid termination of the extension. In fact, the order of

appearance of records is inverted in this set. The fourth set

of pulses is initiated by the reflection of the second set from

the chamber wall. The delay between the first and the second

sets is the same as that between the second and the fourth.

Due to these multiple reflections, it is possible to collect the

data sets with incident pulses of different amplitudes and

durations.

A FDTD method is used to numerically solve Eqs. (10)

and (11). In order to use the convolution integral approxima-

tion suggested in Ref. 13, the time step is set to a value two

orders of magnitude smaller than the shock front thickness.

The pulses used in computations satisfy the following

criteria. First, the amplitude is chosen lower than 10 kPa and

duration is longer than 1 ms. These two conditions justify the

omission of the convection term in the governing equations

for air. Second, pulse energy is mostly distributed over

frequencies higher than the critical frequency of the sample.

This justifies the use of the high frequency formulation of

complex compressibility function.

In order to show that Forchheimer’s correction is impor-

tant only for relatively high amplitude pulses, the data is

FIG. 6. Shock tube measurement: transmission setup. Data obtained from a

single foil rupture. Record positions are shown in Fig. 4(b). The sample

holder is filled with the lead shot.Set of data I: incident pulse superimposed

with the one reflected by the sample surface (solid line); pulse recorded

inside the sample (dashed line); transmitted pulse (dotted line). Set of data

II: same as I, but the pulse reflected from the rigid termination of the cham-

ber acts as an incident one. Set of data III is due to the pulse reflected by the

rigid wall of the extension. Set of pulses IV is the reflection of set II from

the chamber wall

FIG. 7. Pulse spectrum of a high amplitude pulse (3 kPa) measured with

reflection setup. Dashed line: critical frequency of the lead shot.
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compared with predictions obtained (a) accounting for

Forchheimer’ correction and (b) without it, i.e., setting n ¼ 0

in Eq. (10).

The spectrum of the incident shock wave is shown in

Fig. 7. It shows that more than 87% of the pulse energy is

distributed above fc.

The pressure peak of the pulse generated in a shock tube

is initially higher than 10 kPa (Fig. 6). However, after two

reflections, the peak amplitude is reduced to 3 kPa. This

pulse is used for comparisons with the model. The pulse

recorded at Pos. 0, Fig. 4(a), is used as an input signal. The

assumption that the amplitude and the duration do not

change, when pulse travels a distance of 0.85 m to the sur-

face of the sample, has been confirmed by numerical solu-

tion of the Burgess equation in air (24) as described in the

previous section. It predicts less than 5% change in pulse

amplitude and duration over this distance. For the transmis-

sion simulations, the pulse measured at Pos. 1, Fig. 4(b), is

used as an input signal. However, the input signals shown in

Fig. 8 is oversampled and reconstructed as a smoother func-

tion of time in order to eliminate the influence of the noise.

It is shown in Fig. 8(b), that the transducer records superpo-

sition of the incident pulse and the pulse reflected from the

sample. The waveform of the incident pulse used in the sim-

ulations is then obtained performing a linear interpolation

and extrapolation of the data. Figures 9(a) and 9(b) show

that accounting for Forchheimer’s correction is crucial for

correct predictions of both reflected pulse and pulse inside

the rigidly backed material layer.

In order to investigate the range of pulse amplitudes and

durations, where both transient and Forchheimer’s nonlinear-

ity effects are important, the following procedure is followed.

First, it is assumed that the transient term is negligible and

the following set of equations is solved numerically:

a1q0

@v

@t
þ r0/ð1þ njvjÞv ¼ �/

@p

@x
; (26)

@p

@t
þ 2ðc� 1Þ

K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

NPrpq0

r ðt

�1

@p

@t0
dt0ffiffiffiffiffiffiffiffiffiffi
t� t0
p ¼ �q0c0

2

/
@v

@x
:

(27)

After that, the full system of equations (10) and (11) is solved.

The comparisons of the predictions and the data obtained in a

reflection set up are shown in Figs. 10(a) and 10(b). The effect

FIG. 8. Incident pulses used for reflection (a) and transmission (b) measure-

ments. Gray circles: data; solid line: data reconstruction.

FIG. 9. Influence of the Forchheimer’s nonlinearity. High amplitude pulse

(3 kPa), reflection set up. Lead shot layer, thickness 9 cm. (a) Reflected pulse

(Pos. 1). (b) Pulse recorded inside the layer (Pos. 2). Gray circles: data; solid

line: full equations (10) and (11); dashed line: equations (10) and (11) with-

out Forchheimer’s nonlinearity term.
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of the transient term is weak, as predicted by the dimension-

less analysis in the previous section. However, its inclusion

gives a slightly better prediction of the reflected pulse, Fig.

10(a), and the pulse transmitted inside the porous sample,

Fig. 10(b).

In Figs. 11(a)–11(c) the data obtained in a transmission

set up are compared with the predictions. The influence of

the transient effects on the reflected pulse [Fig. 11(a)] and on

the one recorded inside the material [Fig. 11(b)] is weak.

However, the extra attenuation introduced by the transient

term improves the agreement between the data and the pre-

dictions for the pulse transmitted through the material layer,

Fig. 11(c). The amplitude of the pulse traveling through the

material is low, which makes the influence of the

Forchheimer term weak and consequently increases the rela-

tive contribution of the transient term.

It can be concluded, that although in both low and high

amplitude pulses the energy is mostly distributed in the

range of frequencies above fc, the transient effects are domi-

nant for low amplitude pulse only, since in this case the

contribution of Forchheimer’s correction is negligible. For

higher amplitude pulse, the transient effects are weak com-

pared to the Forchheimer’s nonlinearity.

FIG. 10. Influence of the transient effects. High amplitude pulse (3 kPa),

reflection set up. Lead shot layer, thickness 9 cm. (a) Reflected pulse (Pos.

1). (b) Pulse recorded inside the layer (Pos. 2). Gray circles: data; solid line:

Eqs. (10) and (11); dashed line: Eqs. (26) and (27).

FIG. 11. Influence of transient effects. High amplitude pulse (3.5 kPa), trans-

mission set up. Lead shot layer, thickness 9 cm. (a) Reflected pulse (Pos. 1). (b)

Pulse recorded inside the layer (Pos. 2). (c) Transmitted pulse (Pos. 3). Gray

circles: data; solid line: Eqs. (10) and (11); dashed line: Eqs. (26) and (27).
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C. Reflection, transmission, and absorption
coefficients at high levels of excitation

In this section comparisons between the data and the

model predictions for the acoustical characteristics of lead

shot and gravel layers are presented. From pulse reflection

and transmission measurements, described above, the reflec-

tion and transmission coefficients can be estimated. The

reflection coefficient is defined as the ratio between the peak

pressure of the reflected pulse and that of the incident one.

The transmission coefficient is defined as the ratio of the

peak pressure of the transmitted pulse and that of the inci-

dent pulse. It is also possible to estimate the attenuation

coefficient using the pressure peak of the incident pulse

Pincident;peak, at the porous material surface, and the pressure

peak, Pinside;peak, recorded inside the porous medium at the

position d. Then the attenuation coefficient a is evaluated as

a ¼ � 1

d
ln

Pinside;peak

Pincident;peak

� �
: (28)

Using samples with thickness of 0.09 mm, reflection, trans-

mission, and attenuation coefficients are deduced for differ-

ent pulse amplitudes.

A set of pulses with different amplitudes and durations

is obtained performing a single foil rupture for each sample.

When the pulse propagates inside the tube, its duration

increases from 1 to 3 ms whereas the amplitude decreases

from 20 to 2 kPa. However, a high proportion of the pulse

energy is still distributed above the critical frequencies of

the samples.

In order to investigate the importance of the transient

effects, once again two different models are used for numerical

simulations: one of them takes into account both Forchheimer

nonlinearity and transient effects [Eqs. (10) and (11)] whereas

the other takes into account Forchheimer’s nonlinearity effect

only [Eqs. (26) and (27)].

The dependence of reflection and transmission coeffi-

cients on the incident pulse amplitude is shown in Figs.

12(a) and 12(b) and Figs. 13(a) and 13(b).

The reflection coefficient increases with the increase of

pulse amplitude, while the transmission coefficient decreases

as the amplitude grows. This clearly demonstrates the nonlin-

ear behavior. When the pulse amplitude grows, the flow resis-

tivity of the medium grows as well due to Forchheimer’s

FIG. 12. Reflection coefficient dependence on the incident pulse amplitude.

Reflection set up. (a) Lead shot (b) Gravel. Gray circle: data; black squares:

numerical prediction using the model with both Forchheimer’s nonlinearity

and transient effects, Eqs. (10) and (11); black triangles: numerical prediction

using the model with Forchheimer’s nonlinearity only, Eqs. (26) and (27).

FIG. 13. Transmission coefficient dependence on incident pulse amplitude.

Transmission set up. (a) Lead shot. (b) Gravel. Legend as in Fig. 12.
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nonlinearity. This increases the impedance mismatch

between the air and the sample and leads to stronger reflec-

tions. The increase in losses inside the sample results in

weaker transmission. For the lead shot sample the model is in

a good agreement with the data. It should be noted that for

lower pulse amplitudes, accounting for the transient effects

improves the agreement between the model and the data [Fig.

13(a)]. For higher amplitudes, good agreement with the data

is obtained for both models, confirming the relative weakness

of the transient effects.

Attenuation coefficient dependence on the incident

pulse amplitude is shown in Figs. 14(a) and 14(b). The

higher is the pulse amplitude, the stronger is the attenuation

inside the material. Again the agreement between the predic-

tions of both models and the data is good for the lead shot

and is less satisfactory for gravel. This disagreement could

be due the fact that some parameters of the gravel are

assumed to be equal to that reported in Ref. 13. They might

not correspond to the particular packing used in measure-

ments. In fact, gravel particles have irregular shape and their

different packings can exhibit different acoustic properties.

For high amplitude pulses the predictions of both mod-

els (with and without transient effects) converge to the same

limit where Forchheimer’s nonlinearity is dominant and the

transient effects contribution is insignificant. For the lower

amplitudes, the transient effects become dominant and the

predictions obtained accounting for it agree better with

the data.

VI. CONCLUSIONS

A time domain model describing finite amplitude pulse

propagation in rigid porous materials has been developed.

The model accounts for both Forchheimer’s nonlinearity and

transient effects. The approach is based on the assumption

that the viscous and the transient term contributions to the

drag force are additive. The model has been validated first in

a linear regime by comparing its predictions with the reflec-

tion data for a low amplitude pulse. These measurements

have been performed in an impedance tube using a layer of

gravel. Further comparisons with the shock tube experiments

have demonstrated that for a high amplitude pulse, reflec-

tion, and transmission data is in a satisfactory agreement

with the model which accounts for the nonlinearity of mate-

rial response.

For the materials considered in this work i.e. packings

of relatively large lead shot and gravel, the transient effects

dominate for low amplitude pulses with duration in the order

of a millisecond. However, even for weak shocks with the

same duration, the influence of transient effects is negligible

compared to that of the Forchheimer’s nonlinearity. It is

shown, that due to strong Forchheimer’s nonlinearity, the

reflection coefficients of porous layers grow as pulse ampli-

tude increases from 1 to 10 kPa, while the transmission coef-

ficients decrease.

The dimensionless analysis suggests that in granular

materials considered in this work and for the pulses with

duration less than 0.01 ms, the influence of the transient term

might be significant even in the presence of Forchheimer’s

nonlinearity. However, considering the size of the particles

(several millimeters), the high frequency content of such

short pulses means that particles are no longer small com-

pared to the wavelength and, consequently, sound propagates

in a scattering regime.

The nonlinear model could be extended to include the

effects of poro-elasticity. This is particularly important for

high amplitude shocks when the sound induced compression

is significant.
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