
 

A Biomechanical Analysis of Variations of the Power 

Clean and their Application for Athletic Development 

 

Paul Comfort 

 

 

The University of Salford 

School of Health Sciences 

 

 

Submitted in Partial Fulfilment of the Requirements of the Degree of 

Doctor of Philosophy by Published Works 

 

 

March 2015 

 



i | P a g e  

 

TABLE OF CONTENTS 

 

Page 

List of Tables.....................................................................................................i 

Acknowledgements..........................................................................................iv 

Terms and Abbreviations................................................................................v 

1 ..... OVERVIEW AND PROGRESSION OF STUDIES ................................. 2 

1.1 Study 1......................................................................................................................... 4 

1.1.1 Summary ......................................................................................................................... 4 

1.2 Study 2 & 3 ................................................................................................................. 5 

1.2.1 Summary ......................................................................................................................... 6 

1.3 Study 4......................................................................................................................... 6 

1.3.1 Summary ......................................................................................................................... 7 

1.4 Study 5......................................................................................................................... 8 

1.4.1 Summary ......................................................................................................................... 8 

1.5 Study 6......................................................................................................................... 8 

1.5.1 Summary ......................................................................................................................... 9 

1.6 Conclusions ................................................................................................................. 9 

INTRODUCTION ............................................................................................. 11 

2 ..... INTRODUCTION ...................................................................................... 12 

2.1 Methods of Training used to Enhance Power Output ............................................... 12 

2.1.1 Strength Training .......................................................................................................... 12 

2.1.2 Ballistic Training........................................................................................................... 18 

2.1.3 Plyometric Training ...................................................................................................... 20 

2.1.4 Olympic Lifts ................................................................................................................ 26 

2.2 Areas for Further Research ....................................................................................... 31 

3 ..... CRITICAL REVIEW OF LITERATURE .............................................. 34 

3.1 Methodological Issues with Assessment of Power ................................................... 34 

3.1.1 Kinetic methods ............................................................................................................ 35 

3.1.2 Kinematic methods ....................................................................................................... 38 

3.1.3 Comparisons of Different and Combined Methods ...................................................... 41 

3.1.4 Summary ....................................................................................................................... 45 

3.2 Rate of Force Development....................................................................................... 46 

3.2.1 Force and Rate of Force Development.......................................................................... 46 

3.2.2 Factors Affecting Rate of Force Development ............................................................. 47 



ii | P a g e  

 

3.2.3 Multi-Joint Assessment of Rate of Force Development ............................................... 49 

3.2.4 The Role of Rate of Force Development ...................................................................... 53 

3.2.5 Methodological Differences in Assessment of Rate of Force Development ................ 55 

3.2.6 Rate of Force Development and Impulse ...................................................................... 62 

3.2.7 Summary ....................................................................................................................... 64 

3.3 Olympic Lifts and their Component Lifts ................................................................. 65 

3.3.1 Relationships with Athletic Performance ...................................................................... 65 

3.3.2 Kinematic Assessment of the Olympic Lifts ................................................................ 66 

3.3.3 Kinetic Assessment of the Olympic Lifts ..................................................................... 68 

3.3.4 Summary ....................................................................................................................... 69 

3.3.5 Areas for Further Research ........................................................................................... 70 

3.4 Optimal Loading for Peak Power Output .................................................................. 71 

3.4.1 Optimal Loading during Single Joint Exercises ............................................................ 72 

3.4.2 Optimal Loading during Squats .................................................................................... 73 

3.4.3 Optimal Loading during Squat Jumps........................................................................... 76 

3.4.4 Optimal Loading during the Power Clean and its Variations ....................................... 79 

3.4.4.1 Power Clean .......................................................................................................... 81 

3.4.4.2 Hang Power Clean ................................................................................................ 82 

3.4.4.3 Mid-thigh Clean Pulls ........................................................................................... 84 

3.4.4.4 Summary and Applications ................................................................................... 85 

3.4.5 Areas for Further Research ........................................................................................... 85 

3.5 Research Hypotheses................................................................................................. 87 

4 ..... Study 1 ......................................................................................................... 88 

4.1 Study 1 Commentary ................................................................................................. 90 

5 ..... Study 2 ......................................................................................................... 91 

5.1 Study 2 Commentary ................................................................................................. 93 

5.2 Erratum ...................................................................................................................... 93 

6 ..... Study 3 ......................................................................................................... 95 

6.1 Study 3 Commentary ................................................................................................. 97 

6.2 Erratum ...................................................................................................................... 97 

7 ..... Study 4 ......................................................................................................... 99 

7.1 Study 4 Commentary ............................................................................................... 101 

8 ..... Study 5 ....................................................................................................... 102 

8.1 Study 5 Commentary ............................................................................................... 104 

9 ..... Study 6 ....................................................................................................... 105 

9.1 Study 6 Commentary ............................................................................................... 107 

10 .. DISCUSSION ............................................................................................ 109 



iii | P a g e  

 

10.1 Practical Application ............................................................................................... 117 

10.2 Ongoing Research ................................................................................................... 119 

10.2.1 Citations ...................................................................................................................... 119 

10.2.2 Influence in the field ................................................................................................... 120 

10.3 Limitations .............................................................................................................. 122 

10.4 Areas of Future Research ........................................................................................ 126 

10.5 Conclusion ............................................................................................................... 129 

11 .. REFERENCES ......................................................................................... 131 

 

 

  



iv | P a g e  

 

LIST OF FIGURES AND TABLES 

 

Figures 1.1 Progression of Studies.............................................................................................3 

 

Figure 5.1: Comparison of peak force during variations of the power clean...........................94 

Figure 5.2: Comparison of peak RFD during variations of the power clean...........................95 

 

Table 3.1 Isometric Single Joint Assessments of Rate of Force Development........................56 

Table 3.2 Isometric Multi-joint Assessment of Rate of Force Development...........................58 

Table 3.3 Dynamic Multi-joint Assessment of Rate of Force Development...........................60 

 

Table 10.1 Citations for Each Publication..............................................................................120 

 

 

 

 

 

 

 

 

 

 

 



v | P a g e  

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank numerous friends and colleagues for their help, guidance and continued 

support during the completion of this thesis for PhD by published works.  

Firstly, thank you to Dr Phil Graham-Smith for providing me with the opportunity to work at 

the University of Salford and the early discussions and inspiration to commence this series of 

studies. Thank you for the continued support and advice throughout the research process. 

Thank you to Dr Steve Pearson for the valuable input and discussions relating to all aspects 

of research, related to this series of studies and a variety of additional publications, which 

have all helped to understand, develop and implement numerous research methodologies 

across a range of studies. Thank you to John McMahon and Dr Paul Jones for their assistance 

and input during the latter studies that make up this thesis, along with their continued input 

and assistance with ongoing research projects. Also, thank you to Dr Lee Herrington for his 

valuable feedback, insight and the odd shove in the right direction, during the writing of this 

thesis; I owe you one. 

Dr Jason Lake and Peter Mundy, thank you for collaborating on additional research projects 

and publications; the discussions from which have greatly enhanced subsequent research and 

writing, especially regarding the methodological issues relating to the assessment of power 

and rate of force development. I am looking forward to continued collaborations with you 

both. 

Finally, to my family, who have always been supportive, no matter what I decide to do; 

THANK YOU, you are my motivation and inspiration. To my children, Oliver and Charlotte, 

thank you for believing in me! xxx 

 

 

 

 

 

 

 

  



vi | P a g e  

 

TERMS AND ABBREVIATIONS 

Clean: Part of the Olympic lift, Clean and Jerk. The bar starts on the 

floor, is displaced via extension of the knees, to just above the 

patella and is then rapidly repositions via a double knee bend 

and accelerated upwards via a triple extension of the ankles, 

knees and hips and then caught in a full depth front squat, with 

a knee angle <90 degrees 

CMJ:  Countermovement jump; initiated with a rapid 

countermovement to stimulate the stretch shorten cycle 

COM:     Centre of mass of an object 

Forward Dynamics:  Method of calculating power output based on force time data 

collected using a force plate 

GTO Golgi tendon Organ: Sensory receptor responsible for 

monitoring tendon length and tension of the tendons 

GRF: Ground reaction force. In this case vertical ground reaction 

force (vGRF) collected through the use of the force platform. 

Hang Power Clean:  A derivative of the power clean, where the bar starts just above 

the patella and is rapidly repositions via a double knee bend 

and accelerated upwards via a triple extension of the ankles, 

knees and hips and then caught in a shallow front squat 

position, with a knee angle >90 degrees 

Inverse Dynamics:  Method of calculating power output based on displacement 

time data, usually based on barbell velocity 

IMTP:  Isometric mid-thigh pull; multi-joint method of isometric 

assessment of lower limb kinetics 

LPT:  Linear Position Transducer; a device which measures 

displacement time data which permits calculation of velocity, 

usually of a barbell 

Mid-Thigh Power Clean:  A derivative of the power clean, where the bar starts at mid-

thigh and is rapidly accelerated upwards via a triple extension 

of the ankles, knees and hips and then caught in a shallow front 

squat position, with a knee angle >90 degrees 

MTCP:  Mid-Thigh Clean Pull; where the bar starts mid-thigh and is 

rapidly accelerated upwards via a triple extension of the ankles, 

knees and hips 
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MVIC:  Maximum voluntary isometric contraction; method of isometric 

assessment of lower limb kinetics, usually single joint, e.g. 

Knee extension 

PMax:  Maximal Power Load; the optimal load to elicit peak power for 

a specific exercise 

Power Clean:  A derivative of the clean, where the bar starts on the floor, is 

displaced via extension of the knees, to just above the patella 

and is then rapidly repositions via a double knee bend and 

accelerated upwards via a triple extension of the ankles, knees 

and hips and then caught in a shallow front squat position, with 

a knee angle >90 degrees 

RFD:     Rate of Force Development 

SJ:  Squat jump; Performed from a static position with no 

countermovement to eliminate the stretch shorten cycle 

SSC Stretch-shortening cycle; where a movement is initiated with a 

rapid eccentric action to stimulate the muscle spindle and store 

elastic energy, immediately followed by a rapid concentric 

action which utilises the neurological potentiation and elastic 

energy 

System Mass:  The mass of an individual and the external load applied to it, 

(e.g. Body mass + barbell mass) 

1-RM:  One repetition maximum; the greatest load that can be 

successfully lifted for one repetition during a given exercise 
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ABSTRACT 

The aim of this series of studies was to determine the effect of power clean variation (power 

clean (PC), hang power clean (HPC), mid-thigh power clean (MTPC) and mid-thigh clean 

pull (MTCP)) and load on force time characteristics, in an attempt to identify the optimal 

variation and load to develop specific force time characteristics.  

Study 1 demonstrated that assessment of peak force, peak rate of force development (RFD) 

and peak power were highly reliable (ICC r≥0.968) during the PC, with smallest detectable 

differences of  ≥8.68 N, ≥24.54 N.s, ≥68.01 W, respectively, signifying a meaningful change. 

Study 2 and 3 demonstrate that the MTCP and MTPC are preferential in terms of maximising 

acute kinetic performances when compared to the PC and HPC, as they result in the greatest 

peak force, peak RFD and peak power. 

In contrast, study 4 showed no kinetic differences (p>0.05) across PC variations (PC, HPC, 

MTPC) or load (70, 70, 80% 1-RM) in inexperienced female collegiate athletes. 

Study 5 revealed that peak power output during the PC was achieved at a load of 70% 1-RM, 

although this was not significantly (p>0.05) different when compared to the 60% and 80% 1-

RM loading conditions, in inexperienced athletes, in line with previous research in well 

trained athletes. 

Finally, study 6 demonstrated that when the MTCP is performed with loads of 120-140% 1-

RM PC, significantly greater peak force (p<0.001), peak RFD (p=0.004) and impulse 

(p≤0.023) occur when compared to loads ≤100% 1-RM. In contrast, significantly greater 

peak power (p≤0.02), bar displacement (p≤0.02) and bar velocity (p<0.001) occurs when 

performed at a load of 40-60% 1-RM. 
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When incorporating the MTCP into different training mesocycles, it would be useful to use 

heavier loads during the strength phases, progressing from 120-140% 1-RM PC, to maximise 

force production and RFD. In contrast, during power mesocycles, it would be advantageous 

to progressively reducing load to 40-60% 1-RM PC, to elicit the greatest peak power possible 

during the MTCP or MTPC. 
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1 OVERVIEW AND PROGRESSION OF STUDIES 

The Olympic lifts and their derivatives are regularly included in strength and conditioning 

programmes, especially during power mesocycles. The power clean and the hang power clean 

are probably the most commonly used versions of these lifts, due to the fact that they are 

generally easier for coaches to teach and athletes to master when compared to the full clean 

or the snatch. In addition, performance in such exercises has been shown to be related to 

athletic tasks, such as sprint, agility performance and jump performance (Stone, 1993; Baker, 

1996; Stone et al., 2003a; Stone et al., 2003b; Blackwood, 2004; Hedrick and Wada, 2008; 

Hori et al., 2008). 
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Figure 1.1 Progression of studies 

Within and between session reliability of power,
force development during the power

Confirmed high reliability of each variable both
) and between (r≥0.988, p<0.001) session,

detectable differences for peak force (≥8.68 N), peak
peak power (≥68.01 W).

Comparisons of peak ground reaction force and rate of 
force development during variations of the power lean

Identified that the mid-thigh power clean and MTCP resulted in 
significantly (p<0.001) greater peak force and peak RFD compared to 
the power clean and hang power clean

Kinetic comparisons during variations of the power clean

Confirmed findings of the previous study and identified that mid
power clean and MTCP resulted in significantly (p<0.001) greater peak 
force and peak RFD, along with significantly (p<0.001) greater peak 
power compared to the power clean and hang power clean

No kinetic differences during variations of the power clean 
in inexperienced female collegiate athletes

There were no significant differences (p>0.05) in peak force, peak RFD 
or peak power, between power clean variation (power clean, hang power 
clean, mid-thigh power clean), or across loads (60, 70, 80% 1

Determination of optimal load during the power clean, in 
collegiate athletes

Found 70% 1-RM power clean to elicit peak power output, 
significantly greater than the 30% (p=0.007), 40% (p=0.04) and 50% 
(p=0.05) 1-RM loads, but not significantly (p>0.05) different when 
compared to the 60% and 80% loads. 

The effect of loading on kinematic and kinetic variables 
during the mid-thigh clean pull

Found peak force, peak RFD and impulse to occur between 120
RM power clean, whereas peak bar velocity and peak power were 

achieved at 40% 1-RM (3712.8 ± 254.4 W), although not significantly 
greater (p>0.05) than peak power at 60% 1-RM (3604.1 
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power, force and
power clean

both within (r≥0.969,
session, and low smallest

RFD (≥233.93 N.s-

Comparisons of peak ground reaction force and rate of 
force development during variations of the power lean

thigh power clean and MTCP resulted in 
significantly (p<0.001) greater peak force and peak RFD compared to 

Kinetic comparisons during variations of the power clean

Confirmed findings of the previous study and identified that mid-thigh 
power clean and MTCP resulted in significantly (p<0.001) greater peak 
force and peak RFD, along with significantly (p<0.001) greater peak 
power compared to the power clean and hang power clean

No kinetic differences during variations of the power clean 

There were no significant differences (p>0.05) in peak force, peak RFD 
or peak power, between power clean variation (power clean, hang power 

thigh power clean), or across loads (60, 70, 80% 1-RM)

Determination of optimal load during the power clean, in 

RM power clean to elicit peak power output, which was 
significantly greater than the 30% (p=0.007), 40% (p=0.04) and 50% 

RM loads, but not significantly (p>0.05) different when 

The effect of loading on kinematic and kinetic variables 

Found peak force, peak RFD and impulse to occur between 120-140% 
RM power clean, whereas peak bar velocity and peak power were 

, although not significantly 
RM (3604.1 ± 259.9 W). 
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1.1 Study 1 

Numerous studies have investigated or discussed the most appropriate methods to assess 

power generated during lower body power exercises, concluding that force time data should 

be collected using a force platform and power calculated using a forward dynamics approach, 

based on the impulse momentum relationship (Hori et al., 2006; Cormie et al., 2007a; Cormie 

et al., 2007c; Cormie et al., 2007b; Hori et al., 2007; Lake et al., 2012). No studies, however, 

have reported the stability of such measures between testing sessions, or the smallest 

detectable differences, making it difficult for researchers and strength and conditioning 

coaches to infer meaningful changes in performance pre and post intervention, or between 

training or testing sessions. In addition, it was essential to establish the within and between 

session reliability and measurement error (Study 1) prior to undertaking any further studies. 

 

1.1.1 Summary 

The findings of this study revealed that the assessment of kinetic variables (peak force, peak 

RFD and peak power) were highly reproducible within session (r≥0.969, p<0.001) and 

between sessions (r≥0.988, p<0.001), with very low smallest detectable differences for peak 

force (≥8.68 N), peak RFD (≥233.93 N
.
s

-1
), and peak power (≥68.01 W). The results 

highlight that a change of 0.5%, 2.5%, 2.1% for peak force, peak RFD and peak power, 

respectively demonstrate a meaningful change during performance of the power clean. 
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1.2 Study 2 & 3 

Variations of the power clean are regularly incorporated into athletes’ training regimes, with 

specific potential benefits hypothesised for each variation of the clean, although many of 

these theoretical benefits have not been substantiated by empirical evidence. The optimal 

loads which elicit peak power output for the power clean (Cormie et al., 2007c; Cormie et al., 

2007b; Cormie et al., 2007e), hang power clean (Kawamori et al., 2005; Kilduff et al., 2007) 

and MTCP (Kawamori et al., 2006) have been reported between 60-80% one repetition 

maximum (1-RM) power clean, although these were generally not significantly different at 

loads ±10% of the optimal load.  

In addition, observation of Olympic lifters revealed that the second pull phase of the clean 

results in the greatest force (Enoka, 1979; Hakkinen et al., 1984; Garhammer and Gregor, 

1992; Souza et al., 2002) and power (Garhammer, 1979; Garhammer, 1980; Garhammer, 

1982; Garhammer, 1985). It should be noted, however, that by the time the bar reaches this 

phase of the lift, it has already gained momentum making it unsurprising that the highest 

power output, assessed via bar velocity, has been observed during the second pull. In 

addition, the transition phase (also referred to as the double knee bend) results in an 

unweighting phase which is similar to the countermovement in a countermovement jump 

(Garhammer, 1980; Garhammer, 1985; Garhammer and Gregor, 1992) and therefore may 

increase force production and RFD compared to starting at mid-thigh. No research, however, 

had compared the peak force or peak RFD, during the power clean, hang power clean (bar 

held just above the patella in the start position, caught in a semi-squat position) the mid-thigh 

power clean (bar held mid-thigh in the start position, caught in a semi-squat position) and the 

MTCP (this is the concentric phase of the mid-thigh power clean without the catch phase) 

(Study 2). Furthermore, no studies had compared peak power during the power clean, hang 

power clean, mid-thigh power clean and MTCP to establish which variation of the lift 
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generates the greatest peak power, even though these variations are regularly used by athletes 

in training (Study 3). 

 

1.2.1 Summary 

The results from these two studies are interesting as they imply that the MTCP and mid-thigh 

power clean are equally effective in generating peak power and may be more beneficial in 

maximising power development compared to the power clean and hang power clean.  As 

these techniques require less technical competence and only a limited range of motion, they 

may be able to be performed by inexperienced athletes. Such variations of the clean may 

permit an enhancement in peak force, peak RFD and peak power, from the time they 

commence a strength and conditioning programme, without the need to acquire the skill to 

perform classical Olympic lifting techniques. Furthermore, when athletes’ have injuries that 

restrict range of motion and they cannot perform the power clean or hang power clean, the 

mid-thigh variations may be an excellent alternative.  

 

 

1.3 Study 4 

The majority of previous research has been conducted using well trained team sport athletes 

(as with studies 1-3) or Olympic Weightlifters (Haff et al., 1997; Haff et al., 2005; Kawamori 

et al., 2005; Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 

2007e; Haff et al., 2008), and therefore the application of these findings to inexperienced 

athletes is problematic. In addition no studies have investigated the effect of loading or 

variation of the power clean in female athletes. Furthermore, based on the findings of studies 

2 and 3, where the mid-thigh power clean resulted in significantly greater peak force, peak 
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RFD and peak power, compared to the hang power clean and power clean; it was 

hypothesised that recreational athletes would demonstrated greater differences in kinetic 

variables across the variations of the power clean due to the lower level of technical 

competence required to perform the mid-thigh power clean, thus resulting in greater peak 

force, peak RFD and peak power, when compared to the power clean and hang power clean 

(study 4). The effect of loading was also expected to have an effect on the kinetic 

performance of the variations of the clean, based on the findings of previous research, where 

lower relative loads resulted in greater peak power due to an increased movement velocity 

(Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007e; Hori et al., 2007). It was 

further hypothesised that the lowest load (60% 1-RM), during the mid-thigh power clean, 

would result in the greatest peak force, RFD and peak power, in line with previous research 

(Kawamori et al., 2006) (Study 4). 

  

1.3.1 Summary 

The findings of this study imply that loads of 60-80% 1-RM power clean can be used 

interchangeably without a resultant decrease in kinetic values, in inexperienced female 

athletes. It is suggested that this be adopted in a periodized manner starting with the lighter 

loads and gradually progressing to the heavier loads as technique improves. Moreover, the 

results of this study show that the variation of the power clean (power clean, hang power 

clean, mid-thigh power clean) does not affect the kinetic performances in inexperienced 

athletes. It may, therefore, be beneficial to alter the variation of the lift performed during each 

training session, so that athletes develop competency in each variation of the lift and to 

prevent monotony within the athletes training programme. 
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1.4 Study 5 

As previously mentioned, the majority of previous research has been conducted using well 

trained team sport athletes (as with studies 1-3) or Olympic Weightlifters (Haff et al., 1997; 

Haff et al., 2005; Kawamori et al., 2005; Kawamori et al., 2006; Cormie et al., 2007c; Cormie 

et al., 2007b; Cormie et al., 2007e; Haff et al., 2008), and therefore the application of these 

findings to inexperienced athletes is problematic. The aim of study five, therefore, was to 

identify the optimal load during the power clean in relatively inexperienced collegiate 

athletes. It was hypothesised that 70% 1-RM would result in peak power output, in line with 

previous research (Cormie et al., 2007c; Cormie et al., 2007d). 

 

1.4.1 Summary  

The results of study 5 revealed, as hypothesised, that peak power output was achieved at a 

load of 70% 1-RM, although this was not significantly (p>0.05) different when compared to 

the 60% and 80% loads, which is in line with previous research in well trained  athletes 

(Cormie et al., 2007c; Cormie et al., 2007d). 

 

 

1.5 Study 6 

Based on the findings of study 2 and 3, where the mid-thigh variations of the clean, more 

specifically the MTCP, resulted in the greatest peak force, peak RFD and peak power, the 

effects of load during the MTCP was investigated. The MTCP was of interest as it is simple 

to learn and does not require a catch phase which can be problematic in injured athletes, and 

athletes who struggle to disassociate movement when rapidly changing from the concentric 
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phase of the pull to the rapid eccentric phase of the descent into the catch phase. Additionally, 

as the catch phase of the power clean is omitted during the MTCP, it is possible to use loads 

that are greater than 100% of the 1-RM power clean. The aim of study 6 therefore was to 

identify the effects of loading (40-140% 1-RM power clean) on kinematic and kinetic 

variables during the mid-thigh clean pull. Based on the force velocity relationship it was 

hypothesised that the lowest load (40% 1-RM) would result in the highest bar velocity and 

greatest peak power and that the heaviest load would result in the greatest peak force and 

peak RFD. 

 

1.5.1 Summary  

The findings of study 6 revealed that the heavier loads, of 120-140% 1-RM power clean, 

resulted in the greatest peak force, peak RFD and impulse and that the lightest load (40% 1-

RM) resulted in the highest bar velocity and greatest peak power, as hypothesised. It is 

therefore suggested that the MTPC may be effective at developing both speed strength (40-

60% 1-RM) and strength speed (120-140% 1-RM) if appropriate loading is applied. This 

loading should be applied in a periodized manner appropriate to the athletes’ specific goals. 

 

 

1.6 Conclusions 

It appears that the MTCP and mid-thigh power clean are preferential in terms of maximising 

acute kinetic performances compared to the other derivatives of the power clean (power clean 

and hang power clean), as it results in the greatest peak force, peak RFD and peak power, 

when performed at a comparable load (Figure 1.1).  A load of 40-60% 1-RM power clean 

appears to be optimal in terms of peak power during the MTCP, although <40% 1-RM was 
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not assessed. Moreover, as the MTCP does not include the catch phase of the power clean, it 

permits a load greater than 100% 1-RM power clean to be used, which at 120-140% 1-RM 

power clean, results in greater peak force, peak RFD and impulse, when compared to loads 

≤100% 1-RM power clean (Figure 1.1). To further elucidate the possible advantages of such 

variations in the performance and loading of these exercises a training intervention study is 

recommended. 

 

It should be noted however, that the other variations of the clean do have their advantages, 

and should be used accordingly. In general, the power clean permits athletes to uses heavier 

loads than the other versions of the power clean which include the catch phase, as the bar is 

displaced further permitting additional time for force to be applied to the bar, resulting in 

greater acceleration and therefore peak height of the bar, which results in a successful catch 

with a higher load. The hang power clean, begins with a countermovement where the knees 

slide back under the bar, which is suggested to train the stretch shorten cycle (Enoka, 1979; 

Isaka et al., 1996), although more research is required to substantiate this claim: if this were 

true it would be feasible to expect that the power output would be greater than during the 

mid-thigh versions of the exercise. In addition, the power clean and the clean incorporate the 

transition phase and also exhibit a force time curve which represents an unweighting phase 

similar to that of a countermovement jump (Garhammer, 1980; Garhammer, 1985; 

Garhammer and Gregor, 1992). It is also worth noting that the catch phase of the power clean 

may be useful in training general athleticism of athletes as it relies on a rapid transition from 

rapid high force concentric muscle action (pull phase) which takes 0.66-0.76 s (Garhammer, 

1985), to rapid lengthening of the muscles (rapid descent phase) lasting 0.32-0.38 s 

(Garhammer, 1985),  followed by a rapid isometric muscle action (catch phase).  
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2 INTRODUCTION 

Power is an essential component of sports performance, not just in short duration explosive 

activities (e.g. sprinting, jumping and throwing events) but also during decisive moments in 

team sports (e.g. acceleration, change of direction and jumping) (Gabbett et al., 2011c; 

Gabbett et al., 2011a; Gabbett et al., 2011b). The development of power within an athletes’ 

training programme is therefore essential, however, there are a variety of methods including 

strength training, ballistic training, plyometric training and Olympic lifts which are 

commonly used to increase power output (Stone, 1993; McBride et al., 2002; Hansen et al., 

2003; Stone et al., 2003a; Cormie et al., 2007d; Harris et al., 2008; Cormie et al., 2010b; 

Cormie et al., 2010a; Cormie et al., 2011b) with no clear consensus regarding which method 

or mode of training is optimal. What is clear is that there are moderate to strong associations 

between power output and athletic performance in sports specific tasks (Cronin and Hansen, 

2005; Harris et al., 2008; Harris et al., 2010b; Gabbett et al., 2011c; Lopez-Segovia et al., 

2011; Marques et al., 2011; Requena et al., 2011; Cunningham et al., 2013; Sekulic et al., 

2013). Moreover, power output is one of the key determinants of tackling ability in rugby 

league (Gabbett et al., 2011a; Gabbett et al., 2011b) and more importantly match 

performance in rugby league (Gabbett et al., 2011c).  

 

 

2.1 Methods of Training used to Enhance Power Output 

2.1.1 Strength Training 

Strength training usually consists of compound (multi-joint) exercises performed with 

relatively high loads (85-95% of one repetition maximum (1-RM)), for 4-6 sets per muscle 
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group of 2-6 repetitions, with a 3-5 minute rest between sets 2-3 days per week (Baechle et 

al., 2008). With differences in the optimal intensity, sets, repetitions and frequency identified 

for previously untrained (60% 1-RM, 4 sets, 3 days per week), recreationally trained non-

athletes (80% 1-RM, 4 sets, 2 days per week), and trained athletes (85% 1-RM, 8 sets, 2 days 

per week) (Peterson et al., 2004; Peterson et al., 2005).   

 

Possibly the most commonly performed and extensively researched exercise for the 

development of lower body strength is the back squat, with a number of studies finding 

moderate to strong associations between maximal strength (1-RM) and short sprint 

performance (Baker and & Nance, 1999; Wisloff et al., 2004; McBride et al., 2009; Requena 

et al., 2009; Requena et al., 2011; Comfort et al., 2012a; Kirkpatrick and Comfort, 2012), and 

three repetition maximum back squat (3-RM) and 10 and 30m sprint performance (Baker and 

& Nance, 1999; Brechue et al., 2010; Lockie et al., 2011; Comfort et al., 2013b; Cunningham 

et al., 2013).  

 

While such observational studies have found correlations between maximal back squat 

strength and short sprint performance, this does not demonstrate cause and effect, however 

research has also demonstrated that as maximal back squat strength increases there is a 

concomitant increase in sprint performance, indicated by a decrease in sprint times over 5, 10 

and 20 m (Comfort et al., 2012b). Such findings must still be viewed with some caution as 

the participants in the study by Comfort et al. (2012b) were also performing their ‘normal’ 

sprint, agility and power training during this period and therefore the improvement in sprint 

performance may not only be attributable to the increase in back squat strength. In terms of 

ecological validity, however, this study does demonstrate what actually happens in 

professional team sports, where confounding variables cannot be eliminated from research. 
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Additional research, in soccer players, has also demonstrated improvements in sprint 

performance and change of direction associated with increases in squat strength (Helgerud et 

al., 2011; Keiner et al., 2013). Similarly, Nimphius, McGuigan and Newton (2012) also 

found improvements in sprint and change of direction performance along with increases in 

relative strength during the competitive season, in female softball players. In contrast de 

Villarreal (2012) found no change in sprint performance even though they observed an 

increase in strength and power after 7 weeks of training; however, the subjects were 

relatively weak to start with and therefore the increases in strength may have been 

predominantly neurological and therefore not transferred to sprint performance within the 

duration of the study. 

 

Greater maximal strength levels are also associated with greater power output (Baker and 

Nance, 1999; Baker, 2001; Baker et al., 2001; Stone et al., 2003a; Cormie et al., 2007d; 

Nuzzo et al., 2008; Cormie et al., 2010b; Cormie et al., 2010a; Cormie et al., 2011b). Baker 

and Nance (1999) demonstrated a strong correlations (r=0.79) between 3-RM back squat 

performance and squat jump performance, and even stronger correlations between 3-RM 

back squat performance and hang power clean performance (1-RM), in elite rugby league 

players. Nuzzo et al (2008) reported similarly strong correlations (r=0.945) between 1-RM 

back squat and power clean performances (1-RM), 1-RM back squat and vertical jump 

performance (r=0.836) and 1-RM power clean and vertical jump performance (r=0.856). 

Even though power was not assessed in these studies (vertical jump height was used as an 

indicator of peak power output). A higher power output is associated with an increase in load 

lifted by Olympic lifters during the Olympic lifts (Garhammer, 1980; Garhammer, 1985; 

Garhammer, 1991), with similar kinetics observed between the concentric phase of the hang 

snatch and vertical jumping (Garhammer and Gregor, 1992; Canavan et al., 1996). 
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Furthermore, Stone et al. (2003a) observed that stronger athletes (1-RM = 2.00 ± 0.24 kg/kg) 

generated much higher peak power during the countermovement jump (CMJ) (5079 ± 2363 

W vs. 3785 ± 376 W) and SJ (5464 ± 2507 W vs. 3842 ± 443 W), when compared to weaker 

athletes (1-RM = 1.21 ± 0.18 kg/kg).  

 

In a study of relatively weak subjects, Cormie et al (2010a) reported greater improvements in 

strength after 10 weeks of training, in the strength training group (75-90% 1-RM) compared 

to the power trained group (0-30% 1-RM), highlighting the benefits of strength training for 

increasing strength development; although both groups showed similar improvements in 

jump and sprint performance. While another study by the same authors showed similar 

improvements in athletic performance in relatively strong (1-RM/BM = 1.97 ± 0.08 kg/kg) 

and relatively weak groups (1-RM/BM = 1.32 ± 0.14 kg/kg) after 10 weeks of power training 

(0-30% 1-RM), although they noted a tendency towards greater improvements in the strong 

group (Cormie et al., 2010b). It is important to note, however, that both of these studies used 

low load high velocity power training (0-30% 1-RM), rather than the higher loads (80-95% 1-

RM) usually recommended for power development during Olympic style lifts (Baechle et al., 

2008). In addition, Baker et al. (2001) previously demonstrated that stronger athletes tend to 

achieve peak power, during squat jumps, at a lower percentage (51%) of their 1-RM back 

squat compared to weaker athletes (55%), which is in contrast to the findings of Stone et al. 

(2003a) who found that stronger athletes achieved peak power at 40% 1-RM compared to 

weaker athletes who achieved peak power at 10% 1-RM. It should be noted, however, that 

both of these studies calculated power using inverse dynamics, based on bar velocity, which 

has been shown to alter both the power output and the load that elicits peak power (Cormie et 

al., 2007a; Cormie et al., 2007c; Hori et al., 2007; McBride et al., 2011; Lake et al., 2012) 

(Discussed in detail in Chapter 3.1). In contrast to the previous findings, Cronin et al. (2000) 
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reported that the participants relative strength only influenced initial power production (≤200 

ms) during stretch shorten cycle movements and not those performed from a static position 

without a prior eccentric stimulus, however, this was during the bench press.  

 

One of the problems with training power through normal strength training modes is that the 

load has to be decelerated at the end of the range of motion, resulting in an altered force 

velocity profile when compared to ballistic exercises where no deceleration is required. 

During traditional strength training exercises, such as the back squat, this deceleration phase 

can account for as much as 45% of the entire range of motion, although this decreases as load 

increases (Newton et al., 1996). Swinton et al. (2011b), however, found that the inclusion of 

chain resistance permitted greater force across a greater range of the concentric phase, with a 

significant increase (p<0.05) in peak force and impulse, although in contrast velocity, power 

and rate of force development decreased significantly (p<0.05), as would be expected with a 

load that progressively increases throughout the range of motion. Baker and Newton (2009) 

found that substituting 10% of the load with chains during bench press resulted in a higher 

bar velocity compared to traditional loading, with a further study revealing an increase in 

power output during the bench press performed with 10% of the load from chain resistance 

(Baker, 2009). In contrast, when comparing squats performed at 80% 1-RM, using standard 

plate loading, band or chain resistance, Ebben and Jensen (2002) reported no significant 

differences in ground reaction forces or surface electromyography across loading methods, 

with McCurdy  et al., (2009) reporting no difference in bench press performance between 

plate loading and chain loading, after 9 weeks of strength training. Swinton et al. (2011b) 

may have observed differences in kinetics when using chains compared to plate loading as 

the chains represented 20% and 40% of the subjects’ 1-RM, whereas most other 

investigations have only used ~5% (Ebben and Jensen, 2002; Coker et al., 2006; Berning et 
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al., 2008; McCurdy et al., 2009), which may explain the difference in the findings and the 

lack of differences observed between traditional plate loading and the inclusion of chain 

loading in most studies. 

 

Maximising strength levels has been shown to be more beneficial than high velocity power 

training in athletes with relatively low strength levels (those that can squat <1.9 x body mass 

as barbell mass), whereas higher velocity power training in relatively strong athletes (those 

that can squat ≥1.9 x body mass as barbell mass) appears to be more beneficial than focussing 

on strength development (Cormie et al., 2010b; Cormie et al., 2010a). In contrast however, 

Fatouros et al., (2000) reported that weight training combined with plyometric training 

resulted in significantly greater improvements (p<0.05) in jump performances than weight 

training alone, however, the weight training had a muscular endurance focus (8-12 repetitions 

per set) rather than a strength focus. It is not surprising that group that performed jumping 

activities in their training demonstrated greater improvements in jump performances due 

specificity of training. There were, however, no significant differences (p>0.05) in squat or 

leg press strength between groups.  

 

Based on the findings of the aforementioned studies, it would appear that the initial focus for 

power training should be to maximise strength levels until the individual is relatively strong 

(back squat ≥1.9 x body mass) while simultaneously developing technique for ballistic 

training, plyometric training and Olympic lifts. Once a good relative strength level is 

achieved greater emphasis should be placed on higher velocity movements such as ballistic 

training, plyometrics and Olympic lifting, while maintaining or continuing to develop 

maximal strength levels. 
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2.1.2 Ballistic Training 

Ballistic training usually consists of more dynamic versions of strength training exercises 

(speed squats and deadlifts), ideally with no deceleration phase during the final stages of the 

concentric phase, as with squat jumps and bench throws (Newton et al., 1996; Swinton et al., 

2011a; Swinton et al., 2011b; Swinton et al., 2012). During such power based training loads 

of 75-95% 1-RM, for 3-5 sets of 1-6 repetitions have traditionally been recommended 

(Baechle et al., 2008). Numerous studies, however, have identified that the optimal loads to 

elicit peak power output for such exercise is substantially lower (Baker, 2001; Stone et al., 

2003a; Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; 

Hori et al., 2007; Cormie et al., 2008; Thomasson and Comfort, 2012) than the loads 

traditionally recommended for such training, as these guidelines were originally based 

performances in on Olympic lifts (Baechle et al., 2008).  

 

Baker (2001) demonstrated that stronger athletes utilized a lower percentage of 1-RM (51%) 

to attain maximal power (PMax) during squat jumps than less strong athletes (55%), although 

they calculated power based on bar velocity (inverse dynamics) which has been shown to 

substantially increase the load at which peak power is achieved (Cormie et al., 2007a; Cormie 

et al., 2007c; Hori et al., 2007; Cormie et al., 2008). In contrast, Stone et al. (2003a) 

previously reported that peak power output during weighted CMJ and SJ occurred at 40% 1-

RM in strong athletes (2.00 ± 0.24 kg/kg)  and 10% 1-RM in weaker athletes (1.21 ± 0.18 

kg/kg), although they did not assess power in an unloaded (body mass with no external load) 

condition, and the differences in peak power ± 10% 1-RM either side of these loads were not 

noticeably different. In addition, power was again calculated based on barbell velocity and 

barbell mass using an inverse dynamics approach, which has been shown to substantially 
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increase the load at which peak power is achieved (Cormie et al., 2007a; Cormie et al., 

2007c; Hori et al., 2007; Cormie et al., 2008) (This is discussed in detail in Chapter 3.1). 

 

Cormie et al. (2010a) conducted a training study with participants training at the individual 

load which elicited peak power (PMax) in relatively weak subjects, finding greater 

improvements in strength (31.2 ± 11.3%) in the strength training group after 10 weeks, 

compared to the power training group (4.5 ± 7.1%). This demonstrates of increasing strength 

alone, and highlights the specificity of adaptations associated with such training; although 

both groups showed similar improvements in jump and sprint performance. It is not 

surprising, however, that the group that performed exercises with the lower loads (0-30% 1-

RM) did not demonstrate as great an increase in strength as the group using the heavier loads 

(75-90% 1-RM). The similar improvements in jump performance may be explained by the 

fact that both peak force and peak RFD have been shown to be closely associated with 

vertical jump performances (McLellan et al., 2011b). Another study by the same authors 

showed similar improvements in athletic performance (sprint and jump performances) in 

relatively strong (1-RM/BM = 1.97 ± 0.08 kg/kg) and relatively weak groups (1-RM/BM = 

1.32 ± 0.14 kg/kg) after 10 weeks of power training (0-30% 1-RM), although they noted a 

tendency towards greater improvements in the strong group (Cormie et al., 2010b). Similarly, 

Harris et al. (2008) compared the effects of heavy load (80% 1-RM) machine squat jump 

training compared with individual PMax loads (20-43.5% 1-RM) on sprint performances, 

finding similar improvements in 10m and 30m sprint times across groups, although the heavy 

load group did demonstrate a greater increase in 1-RM hack squat strength (15 ± 9 %) 

compared to the PMax group (11 ± 8 %). It should be noted, however, that the squat jump 

only account for ~20% of the volume of training. Numerous authors have previously 
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presented such velocity specific adaptations of training across a spectrum of loads (Kaneko et 

al., 1983; Moss et al., 1997; Jones et al., 2001; McBride et al., 2002). 

 

It would appear, therefore, that the initial focus of athletic development should be on 

maximising strength, while developing appropriate technique during power exercises 

(ballistic and Olympic style lifts) until athletes can be considered as being strong (parallel 

depth back squat ≥1.9 x body mass) (Cormie et al., 2010b; Cormie et al., 2010a; Cormie et 

al., 2011b; Cormie et al., 2011a). Low load ballistic exercises such as squat jumps are likely 

to be most beneficial in developing speed-strength and power, where as higher load ballistic 

exercises, such as speed deadlifts, with 20-40% load from chains, are likely to develop 

strength-speed, once athletes have developed a base level of strength (Swinton et al., 2011b). 

It is important, however, that strength is maintained if such an approach is adopted, as any 

decline in force production would result in a decrease in power generating capacity (Cormie 

et al., 2011b; Haff and Nimphius, 2012). 

 

 

2.1.3 Plyometric Training 

Plyometric exercises are characterised by a rapid eccentric muscle action followed 

immediately by a rapid concentric muscle action, thereby utilising the stretch-shortening 

cycle (SSC), resulting in greater force, RFD, power and therefore jump performance, when 

compared to a muscle contracting from an isometric condition (Cavagna et al., 1968; Komi, 

2000; McGuigan et al., 2006; Hawkins et al., 2009). The stretch shorten cycle utilises both 

elastic energy and neurological potentiation to increase force production and RFD to enhance 
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athletic performance (Bosco and Komi, 1979; Bosco et al., 1981; Bosco et al., 1982a; Bosco 

et al., 1982b; Komi, 2000).  

 

Elastic energy is generated via the lengthening of the associated tendons (series elastic 

component (SEC)) and the muscle fascia (parallel elastic component (PEC)), during the 

eccentric phase of the activity and returned during the concentric phase (Asmussen and 

Bonde-Petersen, 1974a; Asmussen and Bonde-Petersen, 1974b; Komi, 2000; Wilson and 

Flanagan, 2008). Simultaneously, during the eccentric phase, both the change in length and 

the rate of change in length is detected by the muscle spindles, which result in increased 

potentiation of the agonist muscles and therefore increased force production, during the 

concentric phase, referred to as the contractile element (Cavagna et al., 1968; Bosco and 

Komi, 1979; Bosco et al., 1981; Bosco et al., 1982a; Bosco et al., 1982b; Bobbert et al., 

1996). The relative contribution of the elastic element and the contractile element have been 

shown to be determined by the lengths of both components, with a longer tendon resulting in 

a larger contribution from the elastic component and longer muscle fascicles, resulting in a 

greater contribution from the contractile element (Arakawa et al., 2010). It is therefore not 

surprising that medial and lateral gastrocnemius fascicle length, pennation angle and Achilles 

tendon length have been shown to be related to jump performance (Earp et al., 2010; Earp et 

al., 2011; Comfort et al., 2014b). 

 

It is worth noting that if the magnitude of stretch and therefore force is too great, the stretch 

applied to the tendon can result in stimulation of the golgi tendon organ (GTO) which results 

in reciprocal inhibition of the agonist muscle (Gabriel et al., 2006; Folland and Williams, 

2007). It is important, therefore, to ensure that the intensity of the plyometric task is 

appropriate for the individual athletes’ strength level which minimises the likelihood of 
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stimulation of the GTO. Part of the adaptive response to strength training is a reduction in the 

sensitivity of the GTO (Gabriel et al., 2006; Folland and Williams, 2007) , therefore requiring 

a higher force prior to stimulation of the GTO and the resultant inhibition of the antagonist 

muscle. It is possible that this apparent reduced sensitivity of the GTO is due to the increase 

in tendon stiffness associated with training (Narici et al., 1996; Kubo et al., 2006; Burgess et 

al., 2007; Kubo et al., 2007), which in turn results in a greater force required to elicit the 

same magnitude of stretch to the tendon.  

 

General recommendations for plyometric training suggest that they should be performed 2-4 

x week, on non-consecutive days, with 5-10 s rest between repetitions, 2-3 mins rest between 

sets, for 80-100 repetitions for beginners, 100-120 repetitions at intermediate level and 120-

140 repetitions for advanced level athletes (Potach and Chu, 2008). Although, if the intensity 

of the exercise is increased; for example progressing from a countermovement jump to a 

depth jump, the total volume (number of repetitions) should be reduced to accommodate the 

increased demands of the tasks (Potach and Chu, 2008).  

 

Relatively low loads are usually used during plyometric tasks, with numerous studies 

highlighting that peak power occurs at body mass (no additional external load) during 

jumping tasks (Wilson et al., 1993; Dugan et al., 2004; Cormie et al., 2007a; Cormie et al., 

2007c; Cormie et al., 2007e; Cormie et al., 2008; Bevan et al., 2010; McBride et al., 2011; 

Swinton et al., 2012; Turner et al., 2012). While additional external load can be used to 

increase intensity of an exercise, simply performing the eccentric phase of a plyometric task 

more rapidly results in an increase in force required to decelerate the body, and increases the 

rate of lengthening of the muscles which results in greater potentiation, via stimulation of the 

muscle spindle (Bosco and Komi, 1979; Bosco et al., 1981; Bosco et al., 1982a; Bosco et al., 
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1982b; Bobbert et al., 1996). It is important to note that increasing drop height, during depth 

jumps, results in an increase in loading (force on ground contact) but that this also increases 

ground contact time.   

 

Lower body plyometrics are commonly divided into long contact times (>250 ms), whereby 

large angular displacement of the ankles, knees and hips occur, and short contact times (≤250 

ms) with reduced angular displacement of the associated joints (Schmidtbleicher, 1992; 

Wilson and Flanagan, 2008). These different categories of plyometrics are usually selected in 

an attempt to meet the demands of different sporting tasks, for example the longer ground 

contact times during the initial acceleration phase of a sprint and the low ground contact 

times during maximal velocity sprinting (Brughelli et al., 2011; Cross et al., 2014).  

 

The improvements in athletic performance occur as a result of neurological adaptations, 

including increased neural drive, rate of neural activation and inter-muscular co-ordination 

which result in an increase in RFD (Chimera et al., 2004). Adaptations in muscle and tendon 

architecture have also been shown to enhance RFD and jump performance (Burgess et al., 

2007; Vissing et al., 2008; Wilson and Flanagan, 2008), although such adaptations are likely 

to take longer to occur. These adaptations manifest via an increase in force development and 

a decrease in duration, resulting in an increased RFD during the eccentric phase, which is 

likely to increase stimulation of the muscle spindle therefore increasing force, RFD and 

power during the concentric phase (Cormie et al., 2010c). Barr and Nolte (2014) also 

reported that maximal squat strength is strongly associated with depth jump performances, 

further highlighting the need to develop force production capabilities. This is likely a product 

of increased force production from the relevant musculature combined with increased elastic 

energy return from stiffer tendons (Kubo et al., 2006; Burgess et al., 2007; Kubo et al., 2007). 



24 | P a g e  

 

Numerous studies have identified that plyometric training enhances performance in athletic 

tasks (Adams et al., 1992; Lyttle et al., 1996; Fatouros et al., 2000; Tricoli et al., 2005; 

Arabatzi et al., 2010; Lloyd et al., 2012) albeit generally in low load tasks such a vertical 

jump performance (Adams et al., 1992; Wilson et al., 1993; Tricoli et al., 2005). Adams et al. 

(1992) investigated the effect of 6 weeks of plyometric training, strength training (squats) and 

combined plyometric and strength training, on jump performance, in 48 recreationally trained 

college students. Results demonstrated that each group improved their vertical jump 

performance (3.30 cm, 3.81 cm, 10.76 cm respectively), although the combined training was 

more effective, demonstrating a significantly (p<0.001) greater increase in jump performance 

compared to the other groups. More recently, Fatouros et al. (2000)  found similar results 

after a 12 week training programme, with each intervention resulting in an increase in jump 

performance (plyometric training, 6.0 cm; strength training, 5.4 cm; combined training, 9.6 

cm) with a significantly (p<0.05) greater increase in jump performance in the combined 

training group. The greater increase in the combined training group is likely a result of the 

greater increase in maximal strength, as identified by 1-RM back squat performance in the 

combined group (plyometric, 6.4 kg; strength, 28.9 kg; combined, 36.1 kg), combined with 

the specificity of the movement patterns from the plyometric training.  

 

In contrast to the aforementioned studies, Lyttle et al. (1996) previously reported significant 

(p<0.05) increases in jump and 1-RM back squat performance, when recreational athletes. 

Subjects performed 8 weeks of either power training, using the load that resulted in the 

greatest mean mechanical power, during SSC activities (SJ 7.1 cm, CMJ 3.6 cm, 14.0 kg), or 

combined power and strength training (SJ 6.7 cm, CMJ 5.6 cm, 15.0 kg), although there were 

no significant (p>0.05) differences between groups. It is worth noting, however, that the 

optimal load for the power training was based on inverse dynamics calculations, which has 
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been shown to misrepresent the true power applied to the system centre of mass and therefore 

results in an increase in the load which elicits the greatest peak and mean power (Cormie et 

al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007d; Cormie et al., 

2007e; Cormie et al., 2008; McBride et al., 2011; Lake et al., 2012) (See Chapter 3.1 for a 

detailed discussion of methods of assessing power). In addition, the strength training was 

sub-optimal, using loads which permitted 6-10 repetitions, rather than the usual high loads 

(85-95% of one repetition maximum (1-RM)), for 2-6 repetitions (Baechle et al., 2008), 

which may have reduced the resultant adaptive responses. 

 

Similarly, Arabatzi et al. (2010) compared the effects of plyometric training, weightlifting 

and combined training on jump performance, in 36 college students. Results revealed 

significant (p<0.05) improvements in SJ (5.7 cm, 4.2 cm, 4.3 cm, respectively) and CMJ (5.2 

cm, 4.6 cm, 5.2 cm, respectively) performance in each group, although there were no 

differences in improvements between groups. The importance of increasing force 

development capacity via focussed strength training, along with plyometric training is 

highlighted by the fact that when plyometrics are combined with strength training the 

increases in jump performance appear to be greater than either intervention alone (Adams et 

al., 1992; Fatouros et al., 2000), whereas combining plyometrics and weightlifting exercises 

does not appear to provide an additive benefit (Arabatzi et al., 2010). These differences may 

be attributable to the greater increases in force production during the strength training 

compared to the changes in force production associated with plyometric training and strength 

training. It also appears that most of the adaptations in countermovement jump (CMJ) 

performances occur during the eccentric phase, where athletes are able to perform this phase 

in a shorter time period and cope with the associated increase in loading via increased force 

production and RFD (Cormie et al., 2010a; Earp et al., 2011).  
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While plyometric training and combined plyometric and strength training has been shown to 

enhance performance (Adams et al., 1992; Fatouros et al., 2000; Harris et al., 2008), it is 

important to note that the greatest benefits appear to be related to increased force production 

(Cormie et al., 2010b; Cormie et al., 2010a; Cormie et al., 2010c; Cormie et al., 2011b). 

Strength has  been shown to be more trainable than velocity (Cronin et al., 2002; Cormie et 

al., 2010a; Cormie et al., 2010c; Barr and Nolte, 2014) until athletes are strong (Squat ≥1.9 x 

body mass), at which time a greater emphasis should be placed on the development of 

velocity and power, while maintaining strength (Cormie et al., 2010b; Cormie et al., 2010a; 

Cormie et al., 2010c; Haff and Nimphius, 2012), in a periodised manner. 

 

 

2.1.4 Olympic Lifts 

Olympic lifts consist of the snatch and the clean and jerk, with Strength and Conditioning 

Coaches incorporating numerous variations of these exercises into their athletes’ training 

programmes. Variations of the Olympic lifts are usually performed with the intent to move as 

rapidly as possible for 4-8 sets of 1-6 repetitions at loads of 75-90% 1-RM (Baechle et al., 

2008). 

 

In competition, the snatch and clean are performed with the athlete catching the bar in a full 

depth squat. In contrast, in training the power snatch and power clean are commonly used as 

substitutes, where the athlete catches the bar in a quarter squat positions; or alternatively can 

be caught in a split stance. Further variations of the lifts can be seen in the starting position of 

the lift, for example power cleans can begin with the barbell on the floor (as in competitive 

lifting), in the hang position (from just above the patella, with the athlete in what represents 
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the mid-point of a Romanian deadlift, with the shoulders in front of the bar), or from mid-

thigh (bar resting mid-thigh while the athlete is in a semi-squatting position, with the 

shoulders directly above the bar). Similar start positions can be used for the snatch and power 

snatch, albeit with the bar slightly higher during the hang position (the bar starts at 

approximately mid-thigh) and the snatch from the hip (this replaces the mid-thigh position, 

although the participant is still in a semi-squatting position with the shoulders directly above 

the bar) due to the wider grip width.  

 

Variations of these Olympic lifts are commonly used to enhance power development during 

sports-specific movements (rapid extension of ankles, knees and hips) (Stone, 1993; Stone et 

al., 2003a; Stone et al., 2003b; Stone et al., 2007) with performance in such lifts positively 

associated with performance in athletic tasks, including sprint, jump and agility performances 

(Stone et al., 2003b; Hori et al., 2008; McGuigan and Winchester, 2008; McGuigan et al., 

2010). The positive associations between such performances are unsurprising as Canavan et 

al. (1996) previously reported similar kinetics between Olympic style lifts (hang snatch) and 

squat jump performances, similar to the previous observations between the second pull phase 

of the snatch and jump performances by Garhammer and Gregor (1992).  

 

Olympic lifts and their derivatives are sometimes perceived as being difficult and time 

consuming to perfect and incorrectly associated with a high injury risk (Faigenbaum and 

Palakowski, 1999); with Swedish Weightlifters reporting an incidence of knee and low back 

pain comparable to the general population (Chiu and Schilling, 2005). Observations of elite 

weightlifters have shown a range of demanding technique issues associated with each 

movement (Garhammer, 1979; Garhammer, 1982; Gourgoulis et al., 2000; Gourgoulis et al., 

2002). However, provision of verbal and video feedback across 12 training sessions, in 
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Lacrosse players has been shown to substantially improve technique in the power clean 

(Winchester et al., 2005), highlighting the importance of appropriate coaching of these 

complex activities. 

 

Attributing chronic soft tissue injuries to a specific exercise is difficult due to the other 

training stresses resulting in a range of confounding variables occurring concurrently, 

although it has been concluded that the benefits of such exercises outweigh the possible risk 

of injury (Stone et al., 1994; Hedrick and Wada, 2008). Although, minor soft tissue injuries to 

the wrists, shoulders, back, hips, knees and ankles are relatively common among individuals 

who perform the Olympic lifts (Konig and Biener, 1990; Hedrick and Wada, 2008). A recent 

report by Myer et al (2009) revealed that children had a lower risk of resistance training 

muscle and joint strains and sprains than adults, concluding that with appropriate instruction 

resistance training is safe even in children. The majority of sporting injuries are reported to 

occur during competition, rather than training for the sports (Maffulli et al., 1994; Maffulli et 

al., 2005). In the United Kingdom soccer has the highest incidence of injuries, with a higher 

level of competition being associated with a higher incidence of injury (Maffulli et al., 2005). 

In addition studies have demonstrated that supervised resistance training programmes can 

decrease the incidence of injury during both training and competition in their sport (Cahill 

and Griffith, 1978; Cahill et al., 1984; Abernethy and Bleakley, 2007; Faigenbaum and Myer, 

2010), with similar findings reported in military recruits (Hoffman et al., 1999). Moreover a 

recently published meta-analysis revealed that interventions that increase muscle strength are 

the most favourable in reducing sports injuries; with the review highlighting that strength 

training can reduce sports injuries by approximately 30% and overuse injuries by 

approximately 50% (Lauersen et al., 2013). 
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Technical models for the ‘ideal’ performance in Olympic lifts has been determined by 

observation of elite lifters (Hakkinen et al., 1984; Gourgoulis et al., 2000; Gourgoulis et al., 

2002; Chiu et al., 2010; Hadi et al., 2012; Harbili, 2012) and then applied as technical models 

(Pierce, 1999; Hedrick, 2004) for derivatives of these exercises for non-weightlifters 

(Graham, 2002; Duba et al., 2009). Such approaches, however, have been criticised as they 

assume that success is closely related to technique and general ignore other athletic 

characteristics (Lees, 2002). It is unreasonable to expect athletes from other sports to have the 

technique and athletic ability to perform the Olympic lifts with similar technique as Olympic 

weightlifters who specialise solely in these disciplines, unless they have been subject to an 

effective and progressive long term athlete development programme from a developmental 

age (Lloyd et al., 2013). In addition, athletes other than Olympic weightlifters tend to perform 

the power clean, power snatch and their derivatives rather than the full lifts, with technical 

models commonly provided to guide strength and conditioning coaches (Graham, 2002; 

Blackwood, 2004; Duba et al., 2009). It is important to note that the concentric phase of the 

power clean and clean should demonstrate the same kinematics and kinetics, with only the 

depth of the catch position being different between the two variations. 

 

During Olympic lifting competitions, it has been identified that peak bar velocity (calculated 

from displacement time data) and peak power (calculated from system mass and acceleration 

of the bar) occurs during the second pull (from mid-thigh until the end of the triple extension) 

phase of the clean (Garhammer, 1979; Garhammer, 1980; Garhammer, 1982; Garhammer, 

1985; Garhammer, 1991; Pennington et al., 2010). More recently similar findings have been 

observed in competitive weightlifters using both two and three-dimensional motional capture 

to analyse the Snatch (Isaka et al., 1996; Gourgoulis et al., 2000; Gourgoulis et al., 2002; 
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Pennington et al., 2010; Hadi et al., 2012; Harbili, 2012), where power was assessed using 

the same methods as Garhammer (1980, 1985, 1993).  

 

Only four studies have previously reported kinetic variables during the different phases of the 

power clean, finding that the greatest peak force occurred during the second pull, compared 

to the first pull and transition phases (Enoka, 1979; Hakkinen et al., 1984; Garhammer and 

Gregor, 1992; Souza et al., 2002). No research however, has compared the kinetics of the 

different variations (mid-thigh clean pull, mid-thigh power clean, hang power clean, power 

clean) of the power clean to determine if the second pull phase results in the greatest peak 

force, peak RFD or peak power output, or if this is a product of the bar already gaining 

momentum during the first pull and transition phase of the power clean. No research, 

however, has compared the peak force or peak RFD, during the power clean, hang power 

clean (bar held, in the start position, just above the patella) the mid-thigh power clean and the 

mid-thigh clean pull (this is the concentric phase of the mid-thigh power clean without the 

catch phase). Furthermore, no studies have compared peak power during the power clean, 

hang power clean and mid-thigh power clean to establish which generates the greatest power.   

Variations of the power clean are regularly incorporated in athletes’ training regimes, with 

specific potential benefits hypothesised for each variation of the clean, although many of 

these theoretical benefits have not been substantiated by empirical evidence. The optimal 

loads which elicit peak power output during the power clean (Cormie et al., 2007c; Cormie et 

al., 2007b; Cormie et al., 2007e), hang power clean (Kawamori et al., 2005; Kilduff et al., 

2007) and mid-thigh power clean (Kawamori et al., 2006) have been reported between 60-

80% one repetition maximum (1-RM) power clean, although these were generally not 

significantly different at loads ±10% of the optimal load.  
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2.2 Areas for Further Research 

As the second pull phase of the Olympic lifts has been observed to result in the greatest force 

(Enoka, 1979; Hakkinen et al., 1984; Garhammer and Gregor, 1992; Souza et al., 2002), bar 

velocity and power (Garhammer, 1979; Garhammer, 1980; Garhammer, 1982; Garhammer, 

1985) and the fact that strength and conditioning coaches regularly use various derivatives of 

the clean (e.g. power clean, hang power clean, mid-thigh power clean and mid-thigh clean 

pull) it would be useful to identify differences in force time characteristics between each of 

these variations. The results of such findings would permit strength and conditioning coaches 

to make more informed decisions regarding exercise selection. 

 

The majority of previous research has been conducted using well trained team sport athletes 

or Olympic Weightlifters (Haff et al., 1997; Haff et al., 2005; Kawamori et al., 2005; 

Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Haff 

et al., 2008), and therefore the application of these findings to inexperienced athletes is 

problematic. Based on the findings of previous research, where lower relative loads resulted 

in greater peak power, due to an increased movement velocity (Kawamori et al., 2006; 

Cormie et al., 2007c; Cormie et al., 2007e; Hori et al., 2007), the effect of loading on kinetic 

variables should be investigated, both within and between variations of the exercise. An 

additional area requiring further investigation is the identification of the optimal load during 

the power clean in relatively inexperienced collegiate athletes, as previous research has 

focussed on well trained athletes (Haff et al., 1997; Haff et al., 2005; Kawamori et al., 2005; 

Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Haff 

et al., 2008).  
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Finally, determining the effect of loading, on force time characteristics, during the pulling 

derivatives (e.g. MTCP) is of interest as they are simple exercises to learn and do not require 

a catch phase. The catch phase can be problematic in injured athletes and athletes that 

struggle to disassociate movements, especially when rapidly changing from the concentric 

phase of the pull to the rapid eccentric phase of the descent into the catch phase. Additionally, 

as pulling derivatives omit the catch phase, it is possible to use loads that are greater than 

100% of the 1-RM power clean which may be beneficial in training the force end of the force 

velocity curve.  
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3 CRITICAL REVIEW OF LITERATURE 

3.1 Methodological Issues with Assessment of Power 

Power is expressed as the product of the force applied to and the resulting velocity of an 

object of interest (Winter, 2009). Therefore, knowledge of both the force applied to and the 

resulting velocity of the object (usually the barbell, centre of mass (COM) or system COM) 

are required to calculate the power applied to the object in question, (Cormie et al., 2007a; 

Cormie et al., 2007c; Cormie et al., 2007b; Hori et al., 2007; McBride et al., 2011; Lake et 

al., 2012). Assessment of velocity of either the bar, COM or system COM during squats, 

squat jumps and the power clean only provides a valid assessment of the power applied to the 

point where velocity is assessed (Cormie et al., 2007c; Cormie et al., 2007b; Hori et al., 2007; 

McBride et al., 2011), with Lake et al. (2012) reporting that a difference in velocity >18% 

can occur depending on whether velocity of the bar, COM or system COM assessed. With the 

study by Lake et al. (2012) using back squats, it is realistic to assume that the differences in 

velocity of the bar, COM and system COM would be greater in the Olympic lifts and their 

derivatives as the bar starts lower than the COM and usually finishes above the COM, 

resulting in a much greater difference between velocity of the bar, COM and system COM. 

Such differences in velocity are also presented in the findings of Cormie et al. (2007c). 

Theoretical errors underpinning the choice of instruments and the subsequent calculations for 

either the force or velocity component have been shown to alter the power output and the 

load which elicits peak power output with resultant under or over estimation of force unless 

measured via a force platform (Dugan et al., 2004; Cormie et al., 2007a; Cormie et al., 2007c; 

Cormie et al., 2007b; Hori et al., 2007; McBride et al., 2011; Lake et al., 2012). 
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Numerous researchers have investigated the different methods available for assessing power 

output during dynamic multi-joint exercises including the squat jump and power clean 

(Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Hori et al., 2007; Li et al., 

2008; McBride et al., 2011; Lake et al., 2012). Three categories of methods are available to 

determine power during the power clean: kinetic methods, kinematic methods, and combined 

kinetic and kinematic methods, although a variety of combinations of these methods have 

been employed within the literature (Dugan et al., 2004; Cormie et al., 2007a; Cormie et al., 

2007c; Cormie et al., 2007b; Hori et al., 2007; Li et al., 2008; McBride et al., 2011; Lake et 

al., 2012). Power estimation methods belonging to each category, including both the choice 

of instrument(s) and subsequent calculations, have been previously described within the 

literature (Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Hori et al., 2007; 

Li et al., 2008; Hansen et al., 2011; McBride et al., 2011; Lake et al., 2012). Despite several 

attempts, however, no standardized method for determining the power has been accepted 

(Dugan et al., 2004; Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Hori et 

al., 2007; Li et al., 2008; Hansen et al., 2011; McBride et al., 2011; Lake et al., 2012). 

Although, Lake et al. (2012) suggest that inverse dynamics based on barbell velocity should 

be avoided during lower body exercises. In general, the different methods either result in 

calculation of the power applied to the object (usually the barbell), COM or system COM, but 

result in differing power values and intensities which elicit peak power.  

 

  

3.1.1 Kinetic methods 

The most common method for assessing power output during Olympic lifts and their 

derivatives is by numerically integrating ground reaction force time data, obtained from 

performing the exercise with the athlete standing on a force platform, usually referred to as 



36 | P a g e  

 

either a forward dynamics approach (Cormie et al., 2007a; Cormie et al., 2007c; Cormie et 

al., 2007b; Hori et al., 2007) or an impulse-momentum approach (Dugan et al., 2004). Within 

the numerical integration method, force applied to the system (body + external load) COM 

(F) is directly collected; therefore it is important that the full system mass is applied to the 

force platform prior to the onset of movement (Hori et al., 2007; McBride et al., 2011). 

System COM velocity (v) is obtained by time (t) integration (most commonly by applying the 

Simpson or trapezoidal rule (Street et al., 2001) of system COM acceleration (a); that is, F 

minus system weight (W) divided by system mass (m) (Cavagna, 1975; Driss et al., 2001): 

 

� = 	� �	dt = 	� �F −W�
m dt

�

�

�

�
 

            (1) 

For each time point (i), power (P) is calculated as the product of F and v:  

 

P��� = F��� ∗ ���� 
            (2) 

Peak power output is identified as the greatest power output at any given time point during 

the concentric phase of the activity, with mean power output defined as the average of the 

power outputs at each individual time point during the concentric phase (based on sampling 

frequency) divided by the number of time points within the movement duration.  

 

As the focus of the Olympic lifts, and their derivatives, is to maximize vertical displacement 

of the system COM it is suggested that this should be calculated exclusively via vertical 

ground reaction forces (Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Hori 

et al., 2007; McBride et al., 2011). As the motion of the barbell does not necessarily represent 

motion of the system COM (Hori et al., 2007; Li et al., 2008; Hansen et al., 2011; McBride et 
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al., 2011; Lake et al., 2012), while the effect of horizontal motion of the barbell on the system 

COM remains unclear. It is worth acknowledging, that in Olympic weightlifters bar 

displacement and velocity may be important than the system COM, whereas for athletes 

performing such lifts to enhance lower body power output the motion of the bar is less 

important, with maximising power applied to the system COM the primary focus, in line with 

previous recommendations by McBride et al. (2011) and Lake et al. (2012).  

 

The accuracy of the numerical integration method is limited only by the precision of the 

measured forces and the precision of the initial velocity integration constant (Cavagna, 1975; 

Maus et al., 2011). A correctly mounted and calibrated force platform (Lees and Lake, 2008) 

sampling at a sufficient frequency (1000 Hz recommend, although ≥200 Hz has been shown 

to be sufficient (Vanrenterghem et al., 2001; Hori et al., 2009)) is considered the gold 

standard of force measurement during ground based tasks. Errors related to the precision of 

the measured forces, such as instrumental instability and background noise, appear to be 

minimal. The precision of the initial velocity integration constant and the determination of 

system mass are therefore the primary threats to the integrity of the numerical integration 

method (Cavagna, 1975; Vanrenterghem et al., 2001; Maus et al., 2011). To ensure precision 

and accuracy of these measures it is imperative that subjects remain stationary for a short 

period (~0.5 s), with the system mass applied to the force platform, prior to the 

commencement of any movement, the integration constant of initial velocity is a known zero 

upon the start of integration at the initiation of movement (Cavagna, 1975; Vanrenterghem et 

al., 2001; Hori et al., 2007; Hori et al., 2009; Maus et al., 2011).  

 

The numerical integration method can accurately calculate both the force applied to the 

system COM and the resultant velocity of the system COM during lower body power 

exercises, resulting in this method being recommended as the ‘gold standard’ criterion for the 
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calculation of power applied to the COM during lower body exercises (Cormie et al., 2007a; 

Cormie et al., 2007c; Cormie et al., 2007b; Li et al., 2008; Lake et al., 2012). It should be 

acknowledged, however, that power may be underestimated as the COM moves 

independently of the bar which may result in underestimation of velocity and therefore 

power, calculating power of system COM avoids this (Haff et al., 1997; Cormie et al., 2007c; 

Lake et al., 2012). 

 

 

3.1.2 Kinematic methods 

Motion analysis using video or linear position transducers (LPT) can be utilized to obtain the 

velocity of the barbell from displacement time data. During the Olympic lifts it is essential to 

note that this does not represent the velocity of the COM or system COM as they move 

independently of each other (Garhammer, 1993; Cormie et al., 2007c; McBride et al., 2011; 

Lake et al., 2012). Using this approach (inverse dynamics), barbell velocity (v) and 

acceleration (a) are obtained at each time point (i) by differentiation (most commonly finite 

difference technique) of the barbell displacement (x) time (t) data (Cormie et al., 2007c; 

Winter, 2009): 

 

���� = ��
��  

            (3) 

 

 

���� = ���
���  

 (4) 
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The force applied to the system COM (F) is obtained as the product of system mass (m) and 

the summation of system COM acceleration (based on acceleration of the barbell) and 

acceleration due to gravity (g) (Newton’s second Law): 

 

���� = � ∗ ������� 
(5) 

 

Power is then calculated through equation 2. 

 

This method, often referred to as the inverse dynamics method (Cormie et al., 2007a; Cormie 

et al., 2007b; Hori et al., 2007), has been applied to data obtained from video (Garhammer, 

1980; Garhammer, 1982; Garhammer, 1991; Lake et al., 2010), motion analysis systems 

(Gourgoulis et al., 2000; Gourgoulis et al., 2002; Chiu et al., 2010; Chiu, 2010a) and linear 

position transducers (Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Hori et 

al., 2007; Hansen et al., 2011) during lower body power exercises.   

 

Similar to the numerical integration method, the LPT method calculates power along the 

vertical axis only (Dugan et al., 2004; Cormie et al., 2007a; Cormie et al., 2007c; Hori et al., 

2007). Therefore, the validity of the LPT method is based on the assumption that the 

attachment point does not undergo any extraneous horizontal motion as this appears to 

artificially inflate the vertical displacement value, consequently overestimating both the 

velocity and power outputs (Cormie et al., 2007a; Cormie et al., 2007c). In addition, 

calculated power is also elevated due to the over-estimation of force via the calculations of 

force from system mass, based on velocity and therefore acceleration of the barbell (Equation 

5), whereas if barbell mass alone is used in place of system mass force and therefore power 

are underestimated (Hori et al., 2007) as it is the mass of the entire system which is 
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accelerated during such triple extension movements. To allow vertical only displacement to 

be accurately measured, horizontal motion may be corrected for using basic trigonometry 

with the application of two triangulated LPT (Cormie et al., 2007a; Cormie et al., 2007c). 

Moreover, only horizontal motion of the barbell has been considered, while asymmetrical 

movement of the bar and deformation of the barbell itself may influence the resultant power 

values (Chiu et al., 2008; Chiu, 2010a; Chiu, 2010b), with Lake et al. (2010) demonstrating a 

4-6% difference in peak power from assessing bar velocity at either end of the bar across a 

range of loads.  

 

When assessing Olympic Weightlifting performance in a competitions setting, however, it is 

worth noting that it is only possible to assess bar velocity from two dimensional video 

analyses, as performed by Garhammer (1979, 1980, 1982, 1991). What must be considered 

here is the effect of sampling frequency on the calculation of barbell velocity and its resultant 

affect on the calculation of peak power, with the aforementioned studies using 25 and 50 

frames per second. Similarly, sampling frequency of LPT systems should also be taken into 

account when comparing results of studies, or between technologies (Cronin et al., 2004; 

Hori et al., 2007; Harris et al., 2010a). It is essential to identify how such methods compare to 

alternative laboratory based methods of assessing power output, as numerous authors have 

investigated (Cormie et al., 2007a; Cormie et al., 2007c; Hori et al., 2007; Li et al., 2008; 

McBride et al., 2011; Lake et al., 2012), as this permits appropriate comparisons between 

methods. 
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3.1.3 Comparisons of Different and Combined Methods 

Hori et al. (2007) compared four different methods of assessing power during the hang power 

clean and squat jump in trained males: one LPT plus barbell mass, one LPT plus system 

mass, FP only and FP plus LPT. Results demonstrated that the LPT plus barbell mass 

significantly (p<0.05) underestimate force, due to the exclusion of body mass, and therefore 

power (1644 ± 295 W) (>40% lower than inverse dynamics approach) compared to each of 

the other methods (FP = 3079 ± 638 W; LPT plus system mass = 3821 ± 917 W; FP plus LPT 

= 4017 ± 833 W). The authors also concluded that calculating power using the FP and inverse 

dynamics was the most reliable method for both the hang power clean (ICC r = 0.90) and 

squat jump (ICC r = 0.97). The assumption that the change in bar velocity (acceleration) 

represents the change in velocity (acceleration) of the centre of mass (COM) needs to be 

treated with caution, as there were significant differences (p<0.05) in barbell velocity and 

velocity of COM calculated from the LPT (2.16 ± 0.25 m
.
s

-1
) and FP (1.48 ± 0.20 m

.
s

-1
), 

respectively, demonstrating that inverse dynamics is likely to overestimate the force applied 

to the system. Similar findings for velocity and the therefore power applied the barbell, COM 

and system COM have been reported by McBride et al. (2011) and Lake et al. (2012). 

 

Cormie et al. (2007c) progressed from the previous study and compared six different methods 

of assessing power during squats, squat jumps and power cleans across a spectrum of loads: 

one LPT (including barbell mass), one LTP (including system mass), two LPT’s, FP only, FP 

plus one LPT and a FP plus two LPT’s, in well trained males. Results demonstrated that one 

LPT plus barbell mass under-valued force and therefore power during the squat and jump 

squat, where as the one LPT and two LPT methods (including system mass) over-valued 

force (due to the acceleration of the barbell being greater than the acceleration of the system 

COM), and therefore power in line with the findings of Hori et al. (2007). The differences in 



42 | P a g e  

 

the peak power outputs calculated via the different methods are illustrated by the optimal load 

for power output occurring at different loads across methods. During the power clean, the 

kinematic only data (1 LPT and 2 LPT), which excluded body mass, under-valued force 

resulting in identification of an optimal load for peak power at 30% 1-RM, whereas the 

methods using kinetic data (FP, FP plus 1 LPT and FP plus 2 LPT) identified optimal load as 

80% 1-RM, although peak power values differed across all methods. The combined methods, 

using both FP and LPT data resulted in greater power outputs, compared to the FP only 

method, due to the greater velocity associated with the barbell, compared to the velocity of 

the system COM (McBride et al., 2011; Lake et al., 2012).The authors caution that 

calculating velocity from force time data tends to undervalue bar velocity and therefore result 

in lower power outputs (Cormie et al., 2007c), however, this is power applied to the barbell 

and not power applied to the system COM. In contrast, Lake et al. (2012) caution the use of 

barbell velocity when calculating power as it was shown to be >18% higher than velocity of 

system COM, which results in greater acceleration values required to approximate force. For 

most athletes power applied to the system is more important than power applied to the bar, 

however, for Olympic lifters barbell displacement, velocity and power is highly important. 

 

An additional study by Cormie et al. (2007b) investigating the influence of the addition of 

body mass, body mass minus shank and foot mass on power output during the squat, squat 

jump and power clean demonstrated that the exclusion of body mass results in a significant 

decrease (p<0.05) in power output and the load power relationship. Further supporting 

previous findings that body mass should be included in the calculation to ensure that force is 

not under-estimated and that methods of assessing power, during such exercises, should be 

standardised to ensure that findings are comparable (Cormie et al., 2007c; Hori et al., 2007).  
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More recently, McBride et al. (2011) compared the effects of calculating power from velocity 

of the bar, body COM or system COM, across a range of loads for the squat, squat jump (0-

90% 1-RM) and power clean (30-90% 1-RM) at 10% increments. Results revealed that the 

load that elicits peak power varies during the squat when calculated from velocity of the bar 

(90% 1-RM), body (10% 1-RM) or system (50% 1-RM), with a similarly diverse range of 

loads for the squat jump (80%, 0%, 0% 1-RM respectively). Interestingly, the authors found 

minimal difference in the load that elicits peak power during the clean, when calculated from 

velocity of the bar (90% 1-RM), body (90% 1-RM) or system (80% 1-RM), although there 

were dramatic differences in velocities and peak power outputs across methods bar (1.78 ± 

0.12 m
.
s

-1
; 2145 ± 407 W) body (0.81 ± 0.18 m

.
s

-1
; 1125 ± 528 W) system (0.73 ± 0.15 m

.
s

-1
; 

1611 ± 505 W). These results reinforce the fact that the change in bar velocity does not 

represents the change in velocity of the centre of mass (COM) as previously noted by Hori et 

al. (2007). It is worth noting that the low peak power values reported by McBride et al. 

(2011) are as a result of the fact that system mass was not used in the calculation of force, 

which has previously been reported to result in an underestimation of force and therefore 

power (Cormie et al., 2007c; Hori et al., 2007).  

 

During the power clean and its derivatives, power applied to the system should be assessed to 

monitor training adaptations, rather than power applied to the bar, which could result from 

improved technique in the exercise, it is recommended that kinetic data should be collected 

via a FP and calculated via forward dynamics (Cormie et al., 2007a; Cormie et al., 2007c; 

Cormie et al., 2007b; Hori et al., 2007; McBride et al., 2011). Similar conclusions regarding 

the assessment of power during the squat jump have also been suggested (Hansen et al., 

2011; McBride et al., 2011; Lake et al., 2012) with McBride et al (2011) suggesting that 

assessing power applied to the bar may be more meaningful for weightlifters and throwing 
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athletes, whereas assessment of power applied to the system COM may be more meaningful 

in jumpers and sprinters. Therefore, if monitoring changes in lower body power output, or the 

making kinetic comparisons of exercises or variations in loading, a forward dynamics 

approach should be used when assessing power. In contrast, if assessing changes in technique 

or performance in weightlifters, bar displacement and velocity, with the calculation of power 

output using inverse dynamics may be more valid and informative to the coach and athlete. 

 

Due to the variations and limitations in each of the aforementioned kinetic, kinematic and 

combined methods of assessing power, during lower body exercises it has been suggested 

that the methods should be standardised to ensure that they are comparable (Cormie et al., 

2007c; Hori et al., 2007; McBride et al., 2011; Lake et al., 2012). The concern with 

methodologies that use barbell displacement time data (LPT or video) is the necessity for 

extensive data manipulation. An inverse dynamics approach is required to determine force 

from displacement data and although these calculations are based on sound mathematical 

principles, the methodologies are restricted through the collection of kinematic data, 

including the calculation of force based on the acceleration of the barbell rather than the 

system COM. The amplification of noise and the associated possibility of compromising the 

integrity of the derived data set are inherent in such manipulations (Wood, 1982). These 

methodologies rely on double differentiation procedures involving different filtering and 

smoothing operations, which increase the potential for error, and therefore affects the validity 

of the derived power values (Dugan et al., 2004; Cormie et al., 2007c). 

 

An additional disadvantage associated with methods relying solely on kinematic data is the 

inability to account for the movement of the COM that occurs independently of the barbell, 

an important factor in weightlifting movements (Garhammer, 1993). Displacement based 
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systems track only barbell displacement, resulting in calculation of velocity and acceleration 

of the barbell, which is greater than that of the system COM (Cormie et al., 2007c; Hori et al., 

2007). As a consequence, the force–time curve during the power clean is determined 

independent of the action of the body that is producing the force acting on the barbell. Thus 

the resulting force and power calculations are representative of the barbell and not the entire 

system; this contributes to the elevated power values observed in the power clean (Cormie et 

al., 2007c; Hori et al., 2007). These factors may explain the overestimation of power output 

with kinematic methods, although, in terms of success in weightlifting, power applied to the 

bar may be the most important and valid method of assessment. 

 

 

3.1.4 Summary 

For the assessment and monitoring of athletic development in athletes, other than Olympic 

weightlifters, it is suggested that kinetic methods of assessing power are used, with the full 

system mass applied to the force plate prior to initiation of the movement, as this represents 

the power of the system as a whole. In addition, this would make power outputs during 

different exercises comparable, such as comparisons between  the power clean and squat 

jump, where using barbell velocity varies dramatically between exercises. In contrast, for 

Olympic weightlifters power applied to the barbell and barbell displacement is more 

important in order to ensure a successful lift in training and competition. 
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3.2 Rate of Force Development 

3.2.1 Force and Rate of Force Development 

As the term suggests, RFD refers to the amount of force generated in a given time period, 

usually identified as maximum or peak RFD during a task, or muscle action, or the mean 

RFD achieved in a specified time-epoch. Rate of force development can be calculated as the 

slope of the force time curve (∆force/∆time), although numerous variations in methods have 

been used; for example peak RFD calculated as the maximal tangential slope between two 

adjacent data points during an activity, or mean RFD as the slope of the force time curve over 

a specific time epoch, 0-50 or 0-250 ms (Discussed in detail in section 3.2.5).  

 

In sporting environments, RFD may be more important than peak force, as force needs to be 

developed rapidly, due to the short periods of time (50-250 ms), such as ground contact 

times, in which the athlete has to develop the greatest force possible (Tidow, 1990; Andersen 

and Aagaard, 2006). For example, during high speed sprinting and running ground contact 

times <250ms have been reported (Tidow, 1990; Weyand et al., 2000; Wright and Weyand, 

2001; Weyand et al., 2010), with the ability to generate high ground reaction forces, in <200 

ms, rather than leg speed being identified as the key determinant of running velocity 

(Weyand et al., 2000; Weyand et al., 2010). During sprinting, contact times >200 ms (222 ± 

18 ms) have been observed during the initial acceleration phase, reducing to 169 ± 7.9 ms 

during the maximal velocity phase (Cross et al., 2014), although Brughelli et al. (2011) 

previously reported longer contact times, of 209.7 ± 19.7 ms, during maximal velocity 

sprinting in amateur Australian rules football players. Although there is some variation across 

this data, contact times are still <250 ms, highlighting the importance of developing the 

ability to apply high forces in a short time period. In contrast, longer durations >300 ms are 

required for maximal force development (Thorstensson et al., 1976).  
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3.2.2 Factors Affecting Rate of Force Development 

Physiological factors affecting RFD include cross sectional area (CSA) of the muscle 

(Hakkinen et al., 1985; Narici et al., 1996; Aagaard et al., 2002; Suetta et al., 2004; Folland 

and Williams, 2007), maximal strength (maximal force production) (Hakkinen et al., 1985; 

Schmidtbleicher, 1992; Narici et al., 1996; Andersen and Aagaard, 2006; Holtermann et al., 

2007; Cormie et al., 2010b; Cormie et al., 2011b), muscle fibre type and composition 

(Harridge et al., 1996), along with neural drive (Grimby et al., 1981; Aagaard et al., 2002; 

Gruber and Gollhofer, 2004; Folland and Williams, 2007; Holtermann et al., 2007; Tillin et 

al., 2012) and visco-elastic properties of the musculo-tendinous complex (Narici et al., 1996; 

Bojsen-Moller et al., 2005; Burgess et al., 2007; Tillin et al., 2012).  

 

Strong, positive association between peak force and RFD measures have been observed, as 

may be expected (Mirkov et al., 2004; Stone et al., 2004; McGuigan and Winchester, 2008; 

McGuigan et al., 2010). In addition, when Oliveira et al. (2013) investigated the effects of 6 

weeks of explosive strength training on early and late phase mean RFD (10-250 ms at 10 ms 

intervals), they observed a significant (p≤0.006) increase in force production and mean RFD 

within 10 ms, but no change in RFD over longer epochs in the training group, and no changes 

(p>0.05) in the control group. Further analysis revealed that the increase in mean RFD was 

attributed to the increase in maximal force production. Unfortunately, this investigation only 

used the knee extension exercise as a training intervention, performing 6-10 repetitions per 

set, and only assessed force and RFD during the same exercise; therefore making it difficult 

to generalise and apply these finding to ‘normal’ strength training incorporating heavy load 

(≥85% 1-RM), low repetition (≤6), multi-joint exercises and athletic tasks.  
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Training studies, over 8-24 weeks, have reported that increases in mean RFD over 150-250 

ms mirror increases in maximal muscle force production (Hakkinen and Komi, 1983; 

Hakkinen et al., 1985; Narici et al., 1996; Aagaard et al., 2002; Andersen and Aagaard, 

2006). Hakkinen and Komi (1983) investigated the changes in mechanical characteristics 

after 16 weeks of high intensity (80-120% MVIC) concentric and eccentric knee extension 

training, in 14 trained men. Results demonstrated significant (p<0.05) increases in force and 

RFD, during jump performances along with increases in isometric force production. The 

authors speculated that no changes occurred in the elastic properties of tendons or fascia as 

there was no alteration in eccentric utilisation ratio, although no assessment of tendon 

properties was performed. After a further 8 weeks of detraining there was a significant 

(p<0.001) decrease in peak force, but only a non-significant (p>0.05) decrease in RFD. 

Similarly, a later study by Hakkinen et al. (1985) studied the effects of 24 weeks of high 

intensity (70-120% MVIC; concentric and eccentric) training of the knee extensors, on force, 

RFD and cross sectional area (CSA), in 11 strength trained males. An increase in isometric 

force, RFD and CSA, occurred during the first 12 weeks, with no further changes during the 

final 12 weeks of training. During an additional 12 weeks of detraining, force and cross 

sectional area decreased, as would be expected once the training stimulus has been removed.  

 

More recently, Aagaard et al. (2002) studied the effects of 14 weeks of heavy strength 

training (3-10 RM loads), using single and multi-joint machine exercises, on isometric knee 

extension force, mean RFD (0-30, 0-50, 0-100 and 0-200ms) and neural drive. Results 

demonstrated a significant (p≤0.01) increase in isometric force and isometric mean RFD 

across all epochs and peak RFD, along with an increase in EMG amplitude and rate of rise in 

EMG, post training. The changes in EMG amplitude and rate of rise in EMG indicate 

increases in neural drive as a result of the training intervention. Similarly, Andersen and 
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Aagaard (2006) investigated the influence of maximal muscle strength on contractile 

properties and mean RFD in 25 sedentary males. The results demonstrated strong correlations 

(r=0.89, p<0.001) between MVC and mean RFD (200 ms), with similar relationships for 

mean RFD >90 ms, with MVC accounting for 52-81% of mean RFD between 90-250 ms.   

 

The generalisation of the findings of the aforementioned studies is limited in an athletic 

setting, due to the training status of the subjects, their use of isometric, single joint 

assessment of force and RFD, which does not represent the dynamic and multi-joint nature of 

athletic performances. Additionally, many of the interventions use single joint exercises, with 

loads that are not comparable to those generally recommended for strength and power 

development in athletic populations (Stone et al., 2007; Baechle et al., 2008; Cormie et al., 

2011b; Cormie et al., 2011a; Haff and Nimphius, 2012). Multi-joint isometric assessments, 

such as the isometric mid-thigh (IMTP) pull, however, may be more appropriate and have 

been shown to be reliable (Comfort et al., 2014a) and relate to performance in tasks such as 

vertical jumping (Kawamori et al., 2006; Nuzzo et al., 2008; McGuigan et al., 2010; 

Khamoui et al., 2011; West et al., 2011), maximal squatting (McGuigan and Winchester, 

2008; McGuigan et al., 2010) and performance in the Olympic lifts (Haff et al., 2005). 

 

 

3.2.3 Multi-Joint Assessment of Rate of Force Development 

Isometric multi-joint assessment using either the mid-thigh pull (Haff et al., 1997; Haff et al., 

2000; Stone et al., 2004; Haff et al., 2005; Kawamori et al., 2006; Haff et al., 2008; 

McGuigan and Winchester, 2008; Nuzzo et al., 2008; McGuigan et al., 2010; Nuzzo et al., 

2010), or back squat (Wilson et al., 1995; Nuzzo et al., 2008), have been extensively used to 



50 | P a g e  

 

determine the relationships with dynamic athletic tasks. Haff et al. (2005) demonstrated 

strong correlations between peak force and isometric peak RFD (as measured during the 

IMTP) and clean and jerk (r = 0.69; r = 0.69) and snatch (r = 0.93; r = 0.79) performance in 

competitive female weightlifters. Kawamori et al. (2006) found peak force during IMTP to be 

correlated with jump height in both the countermovement jump (CMJ) (r = 0.82) and squat 

jump (SJ) (r = 0.87), however, peak RFD was not associated with performances in the SJ and 

CMJ, in Olympic weightlifters.  

 

Numerous other authors have also reported similar relationships between absolute and 

relative peak force during the IMTP, isometric squat and vertical jump performance (Nuzzo 

et al., 2008; McGuigan et al., 2010; Khamoui et al., 2011; West et al., 2011).  Nuzzo et al. 

(2008) found stronger correlations between maximal strength assessments (1-RM back squat 

and 1-RM power clean) and peak force and peak power during CMJ performances (r=0.791-

0.896, p≤0.05), compared to peak force during the IMTP (r=0.750, p≤0.05) and isometric 

squat (r=0.706, p≤0.05). In contrast, only weak and non-significant relationships were 

observed between IMTP, isometric squat and jump height, in collegiate male football and 

track and field athletes; with no meaningful or significant relationships observed between 

force measures and jump height. Additionally, when the data was ratio scaled (force / body 

mass) the relationships remained but were slightly reduced, although jump height was 

associated with relative 1-RM back squat (r=0.690, p≤0.05), relative power clean 1-RM, 

(r=0.642, p≤0.05), and IMTP relative peak force (r=0.588, p≤0.05). A moderate and 

significant correlation (r=0.653, p≤0.05) was also observed between mean RFD during the 

IMTP and peak power during CMJ performance. 
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In a study using well trained cyclists, Stone et al. (2004) reported that peak force and peak 

RFD, during the IMTP, were more closely associated with peak power output, during a 

modified Wingate test (r=0.74-0.90, p<0.05), compared to power output during jumping 

tasks. In addition they also observed that the faster cyclists generated significantly (p<0.05) 

greater peak force (4164 ± 803 N) compared to the slower cyclists (2795 ± 528 N) and 

greater peak RFD (13250 ± 5318 N.s
-1 

vs.10326 ± 2209 N.s
-1

; p>0.05), although this was not 

statistically significant. 

 

McGuigan et al. (2008) reported strong correlations (r = 0.61-72, p<0.05) between peak force 

during the IMTP and 1-RM back squat and power clean performances, in well trained 

collegiate football players. In contrast peak RFD was not associated with performance with 1-

RM or jump performances. More recently, McGuigan et al. (2010) found similar 

relationships between performance in the IMTP and dynamic performances, in recreationally 

trained men, with an almost perfect correlation (r=0.97, p<0.05) between peak force during 

the IMTP and 1-RM back squat performance. The authors also observed good associations 

between peak force, during the IMTP, and vertical jump height (r=0.72, p<0.05) and a 

slightly weaker association between maximal back squat performance and vertical jump 

height (r=0.69, p<0.05). In contrast, peak RFD did not relate well to other performance 

measures.  

 

Khamoui et al. (2011) found the strongest relationships between relative peak force (peak 

force / body mass) during the IMTP and vertical jump height (r=0.62, p<0.05) and peak 

velocity during vertical jumps (r=0.61, p<0.05), in recreationally trained males. The 

similarity between these two correlations is not surprising as jump height was calculated from 

velocity of centre of mass at take off, using the impulse momentum relationship. In addition, 
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mean RFD at 50 and 100 ms was also moderately associated with peak velocity (r=0.56, 

p<0.05) and acceleration of the barbell (r=0.52, p<0.05; r=0.49, p<0.05, respectively) during 

the high pull; although mean RFD was not associated with any of the jump or high pull data. 

The authors suggest that mean RFD during the initial 50-100 ms may be a better predictor of 

dynamic performances, and more important to develop in athletes compared to mean RFD 

across longer epochs. Similarly, West et al. (2011) also reported significant inverse 

correlations between force at 100 ms (r = -0.68) and 10 m sprint performance, but also 

between peak RFD (r = -0.66) and 10m sprint performance, in rugby league athletes. 

 

In contrast, peak RFD during isometric squats, performed on a Smith machine were not 

associated with short sprint performance, whereas peak RFD and force at 30 ms, during a 

squat jump, were related (r-0.445; r-0.616) to 30 m sprint performance (Wilson et al., 1995). 

However, the participants in this study appeared to take approximately 1.5 s to achieve peak 

force, which is likely to have substantially reduced the peak RFD, as data from our laboratory 

demonstrates, that peak RFD during IMTP  is achieved in <0.5 s. It is likely that dynamic 

assessment of RFD may be a better predictor of performance in athletic tasks, due to their 

dynamic nature, however, dynamic tasks require higher skill levels and are not as easy to 

standardise as isometric assessments. 

 

It appears from the consensus of findings that absolute and relative peak force, during the 

IMTP, are more closely associated with dynamic performances than peak RFD (Stone et al., 

2004; McGuigan and Winchester, 2008; Nuzzo et al., 2008; McGuigan et al., 2010; Khamoui 

et al., 2011). However, the lack of association between RFD during isometric tasks and 

dynamic tasks may be due to the inconsistencies in methods used to calculate RFD; for 

example, calculating peak RFD during a 20 ms sampling window, or the slope of the force 

time curve over a specific time epoch, 0-250 ms, with some studies not stating a specific 
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method (discussed in more detail later in this chapter, section 3.2.5). In addition, RFD during 

the initial 50-100 ms may be more important than peak RFD in determining performance in 

athletic tasks (Khamoui et al., 2011; West et al., 2011). It is possible that monitoring RFD 

during dynamic tasks, such as the hang power clean, or during loaded jumping tasks, may be 

more closely associated with performance in athletic tasks, due to the dynamic nature of the 

activities. 

 

 

3.2.4 The Role of Rate of Force Development 

McLellan, Lovell & Gass (2011b) investigated the role of RFD in jump performance in well 

trained rugby league players, finding that peak RFD was a strong predictor (r=0.68m p<0.01) 

of CMJ performance and SJ performance (r=0.76, p<0.01). In contrast to most other studies, 

however, arm swing was permitted during the CMJ in this study, which has been shown to 

alter the kinetics and kinematics and increase vertical displacement during jump performance 

(Hara et al., 2008; Domire and Challis, 2010; Blache and Monteil, 2013; Floria and Harrison, 

2013a). It is also worth noting that RFD showed the lowest reliability (ICC r = 0.89) of all 

kinetic variables; although this was still acceptable based on the recommendations of Cortina 

(1993), and Weir (2005) although the authors caution the interpretation of changes in RFD 

due to this observed variability. This study demonstrates that athletes with higher peak RFD 

tend to jump higher during both the SJ and CMJ. While it should be noted that such a 

correlation does not imply cause and effect it is plausible to assume that increases in peak 

force and peak RFD are likely to result in increases in jump performance, based on the 

findings of previous research (Baker and Nance, 1999; Baker, 2001; Baker et al., 2001; Stone 

et al., 2003a; Cormie et al., 2007d; Nuzzo et al., 2008; Cormie et al., 2010b; Cormie et al., 

2010a; Cormie et al., 2011b). This is further supported by the research of Floria and Harrison 

(2013b) who observed that young female gymnasts with higher peak RFD scores also jumped 
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higher during the CMJ. It is important to note, however, that RFD alone may be limited when 

relating this kinetic variable to performance, as an individual can produce a low force, but if 

produced quickly this leads to a high RFD which is unlikely to transfer to a ‘good’ athletic 

performance (Bellumori et al., 2011; Haff and Nimphius, 2012).  

 

A later study by McLellan and Lovell (2012) also highlighted the importance of the 

assessment of peak RFD, as they observed that peak RFD and peak power during a CMJ 

were reduced at both 30 mins and 24 hours post rugby league match, and did not return to 

normal for 48 hours post match, whereas, peak force was only significantly reduced 30 mins 

post match. The authors concluded that assessment of peak RFD, during a CMJ, post match 

in rugby league may be a useful indicator of neuromuscular fatigue and readiness to train. 

They also observed that peak RFD and peak power assessed 30 mins and 24 hours post match 

correlated well (r>0.585, p<0.05) with impacts in zones 4 (7.1-8.0 G), 5 (>8.1-10.0 G) and 6 

(>10 G) and total impacts during the match. In contrast an earlier study by McLellan, Lovell 

and Gass (2011a) showed that hormonal and endocrine markers did not return to baseline for 

5 days post rugby league match, which was attributed to the impacts during the game. These 

apparent contradictory findings are important for the strength and conditioning coach and 

coach as they highlight that although the body may not fully recover from the trauma 

associated with high impact forces (≥8.1 G) for 5 days, neuromuscular function is restored 

within 48 hours. Based on these findings it would appear reasonable to suggest that between 

2-5 days post game contact / impacts in training should be minimised to promote full 

recovery, but that during this time frame neuromuscular conditioning can take place as 

kinetic variables will have returned to normal. Based on these findings, assessment of peak 

RFD may also be a useful method of determining readiness to train, with Peñailillo et al. 

(2014) demonstrating that decreases in knee extensors isometric RFD (100-200 ms), is a 

better indicator of exercise induced muscle damage, compared to peak force during a MVIC. 
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Further research should identify if either multi-joint isometric (e.g. IMTP) or dynamic 

assessment (mid-thigh pull) of peak RFD is preferential for identification of neuromuscular 

fatigue.  

 

 

3.2.5 Methodological Differences in Assessment of Rate of Force Development 

Rate of force development is calculated as the slope of the force time curve (∆force/∆time), 

although numerous variations in methods have been used; for example calculating RFD as 

the steepest slope between two adjacent force samples (peak RFD), or the slope of the force 

time curve over a specific time epoch (mean RFD). This variation in methodologies can lead 

to difficulties when comparing RFD values between studies. 

 

During single joint isometric assessments of RFD, two different methods of calculating RFD 

have been reported, with the peak (or maximum) RFD usually reported as the maximal 

tangential slope over any two adjacent samples during the initial 200 ms (Aagaard et al., 

2002; Bojsen-Moller et al., 2005; Andersen and Aagaard, 2006; Gruber et al., 2007), 

although Oliveira et al. (2013) report maximum (peak) RFD as peak force / time to peak 

force which actually results in mean RFD. Inconsistencies in reporting and calculating RFD 

may lead to large discrepancies in the RFD values reported within the literature. There is 

consistency between authors, however, when reporting RFD for different time epochs, with 

the slope of the force time curve (change in force / time) being used to calculate mean RFD 

across each epoch (Table 3.1).  As previously mentioned, although single joint isometric 

assessments of peak force, peak RFD and mean RFD are accurate and reliable they generally 

do not relate well to performance in athletic tasks, therefore multi-joint assessments may be 

preferable in athletic populations. 
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Table 3.1 Isometric Single Joint Assessments 

Joint Sampling Frequency Time Period Calculation Method Authors 

Knee (Extension) 1000 Hz Three trials of 2 s (60 s rest)  0-30, 0-50, 0-100, 0-200 ms = mean 

RFD via the slope of force-time curve. 

Peak RFD: Maximal tangential slope 

over any 2 ms during the initial 200 ms 

(Aagaard et al., 2002) 

Knee (Extension) 1000 Hz Four trials of 3 s (60 s rest) 0-10, 0-20, 0-30,..., 0-250 ms = mean 

RFD via the slope of force-time curve. 

Peak RFD: Maximal tangential slope 

over any 2 ms during the initial 200 ms 

(Andersen and Aagaard, 

2006) 

Knee (Extension) 1000 Hz Three trials of 2 s (60 s rest) 0-30, 0-50, 0-100, 0-200 ms = mean 

RFD via the slope of force-time curve. 

Peak RFD: Maximal tangential slope 

over any 2 ms during the initial 200 ms 

(Bojsen-Moller et al., 2005) 

Ankle (Plantar Flexion) 1000 Hz Three trials (Duration not 

stated) 

0-50, 50-100, 100-150, 150-200 ms 

Peak RFD: Maximal tangential slope 

over any 2 ms during the initial 200 ms 

(Gruber et al., 2007) 

Knee (Extension) Not reported Three trials of 5 s (30 s rest) 0-10, 0-20, 0-30,..., 0-250 ms = mean 

RFD via the slope of force-time curve. 

Maximum RFD = Peak force / time to 

peak force (Mean RFD) 

(Oliveira et al., 2013) 
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During multi-joint isometric assessments of RFD the terms maximum RFD and peak RFD 

are used interchangeably, within the literature, with some authors only referring to RFD and 

not specifically stating if this refers to mean or peak RFD (Nuzzo et al., 2008; Cormie et al., 

2010b; Cormie et al., 2010a; Khamoui et al., 2011) (Table 3.2). On two of these occasions the 

authors calculate mean RFD by slope of the force time curve (change in force / time (Nuzzo 

et al., 2008; Khamoui et al., 2011)) and on two other occasions the methods for calculating 

RFD during the isometric squat is not clear in the methods (Cormie et al., 2010b; Cormie et 

al., 2010a). When peak RFD is stated it has been calculated as the maximal tangential slope 

over any two adjacent samples (Table 3.2), however, the range of sampling frequencies 

between studies (500-1000 Hz) will affect the precision of such measures. In contrast, when 

specific epochs are used the calculation provided results in mean RFD, for the specific epoch, 

using the slope of force time curve for the allotted duration (Table 3.2) 
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Table 3.2 Isometric Multi-joint Assessment 

Activity Sampling Frequency Time Period Calculation Method Authors 

IMTP 600 Hz Two trials 5 s (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(Comfort et al., 2014a) 

Squat 1000 Hz Three trials 3 s RFD calculation not stated for isometric 

squat* 

(Cormie et al., 2010a) 

Squat 1000 Hz Three trials 3 s RFD calculation not stated for isometric 

squat* 

(Cormie et al., 2010b) 

Unilateral Leg Press 500 Hz Three trials 3 s Peak RFD = Maximal tangential slope 

over any two adjacent samples.  

RFD 0-30, 0-50, 0-100, 100-200 ms = 

mean slope of force-time curve  

(Gruber and Gollhofer, 

2004) 

IMTP 500 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(Haff et al., 1997) 

IMTP 600 Hz Four trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples  

(Haff et al., 2005) 

IMTP 600 Hz Four trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples  

(Haff et al., 2008) 

IMTP 500 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(Kawamori et al., 2006) 

IMTP 1000 Hz Two trials 3 s (120 s rest) Slope of the force time = Mean RFD 

0-50, 0-100, 0-150, 0-200 and 0-250 ms 

(Khamoui et al., 2011) 
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using slope of force time curve for the 

allotted duration  

IMTP 960 Hz Three trials 5 s (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(McGuigan and 

Winchester, 2008) 

IMTP 960 Hz Three trials 5 s (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(McGuigan et al., 2010) 

IMTP & Squat 1000 Hz Three trials 3 seconds (180 s 

rest) 

Peak force divided by time to peak force 

= Mean RFD 

(Nuzzo et al., 2008) 

IMTP 500 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

across a 5 ms window  

(Stone et al., 2003b) 

IMTP 600 Hz Two to three trials Peak RFD = Maximal tangential slope 

across a 5 ms window 

(Stone et al., 2004) 

IMPT 1000 Hz Three trials of 5 s Peak RFD = Maximal tangential slope 

across two adjacent data points 

(West et al., 2011) 

IMTP 500 Hz Two trials of 3 s (180 s rest) Peak RFD = Maximal tangential slope 

across a 5 ms window 

(Wilson et al., 1995) 

*Cannot be the same as the method used to calculate RFD during the squat jump, as this was the slope of the force time curve for the propulsion phase, 

but could be the slope of the force time curve from onset to peak force. 
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Similarly, during multi-joint dynamic assessments of RFD the terms maximum RFD and peak RFD are also used interchangeably, within the 

literature, with some authors only referring to RFD and not specifically stating if this refers to mean or peak RFD (Table 3.3), in these situations 

the authors calculate RFD by slope of the force time curve (change in force / time (Cormie et al., 2010b; Cormie et al., 2010a; Khamoui et al., 

2011)) resulting in mean RFD rather than peak RFD.   

 

Table 3.3 Dynamic Multi-joint Assessment 

Activity Sampling Frequency Time Period Calculation Method Authors 

Unilateral CMJ 1000 Hz n/a 0-150 ms using slope of force time 

curve for the allotted duration = Mean 

RFD 

(Burgess et al., 2007) 

Squat Jump 1000 Hz n/a Slope of the force time curve for the 

propulsion phase = Mean RFD 

(Cormie et al., 2010a) 

Squat Jump 1000 Hz n/a Slope of the force time curve for the 

propulsion phase = Mean RFD 

(Cormie et al., 2010b) 

MTP 500 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples* 

(Haff et al., 1997) 

MTP 600 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples* 

(Haff et al., 2005) 

MTP 600 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope (Haff et al., 2008) 
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over any two adjacent samples* 

SJ & CMJ 500 Hz  Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(Haff et al., 2000) 

MTP 500 Hz Two trials (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(Kawamori et al., 2006) 

High Pull  

 

MTP  

1000 Hz n/a (210 s rest) Slope of the force time curve for the 

propulsion phase = Mean RFD 

0-50, 0-100, 0-150, 0-200 and 0-250 ms 

using slope of force time curve for the 

allotted duration = Mean RFD 

(Khamoui et al., 2011) 

CMJ 1000 Hz Three trials  (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

Mean RFD = Peak force / time to peak 

force 

(McLellan et al., 2011b) 

CMJ 1000 Hz Three trials  (180 s rest) Peak RFD = Maximal tangential slope 

over any two adjacent samples 

(McLellan and Lovell, 

2012) 

Mid-Thigh Pull (MTP) 

*System mass not applied to force platform prior to commencing movement, bar resting on support bars 
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As with isometric multi-joint assessment of RFD,  when peak RFD is stated it has been 

calculated as the maximal tangential slope over any two adjacent samples (Table 3.2), 

however, the range of sampling frequencies between studies (500-1000 Hz) will affect the 

precision of such measures. In contrast, when specific epochs are used, the calculation 

provided results in mean RFD for the specific epoch using slope of force time curve for the 

allotted duration (Table 3.3). Only McLellan et al. (2011b, 2012) defines the different 

calculations used for mean and peak RFD.  

 

Additionally, when using the mid-thigh pull, Haff et al. (1997, 2005, 2008) did not include 

system mass in the calculation, as the bar was resting on a rack prior to commencing the lift. 

In turn this may amplify the RFD as the load is applied to the force plate as the lift is 

initiated, compared to when system mass is applied to the force plate at the start of the 

activity, as has been shown with the calculation of power (Cormie et al., 2007a; Cormie et al., 

2007c; Cormie et al., 2007b; Hori et al., 2007). 

 

 

3.2.6 Rate of Force Development and Impulse 

Rate of force development refers to the amount of force produced over a period of time and is 

therefore calculated as the slope of the force time curve (∆force/∆time). In contrast, impulse 

represents a change in momentum and is calculated as force multiplied by time (∆F • ∆t) and 

can be used to calculated the change in velocity (acceleration) of a given mass (Lake et al., 

2014b). This is commonly used in the calculation of velocity of system centre of mass when 

calculating power applied to the system using forward dynamics (Cormie et al., 2007a; 
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Cormie et al., 2007c; Haines et al., 2010; Kirby et al., 2011; McBride et al., 2011; Lake et al., 

2012; Lake et al., 2014a) (Discussed in detail in section 3.1.1). 

 

As both mean RFD and impulse can be calculated over different time epochs, appropriate to 

the time frames available for force production in sporting situations, they generally 

demonstrate moderate to strong associations with athletic tasks including jumping and 

sprinting (Sleivert and Taingahue, 2004; Hunter et al., 2005; McBride et al., 2010; Kirby et 

al., 2011; McLellan et al., 2011b; Floria and Harrison, 2013b), although peak RFD (Haff et 

al., 2015) and impulse at 200 ms (Comfort et al., 2015) appear to be the most reliable. With 

Sleivert and Taingahue (2004) reporting a moderate inverse correlation (r= -0.64) between 

net vertical impulse and 5 m sprint time, with Hunter et al. (2005) reporting strong 

associations between both vertical (r=0.76)  and horizontal impulse (r=0.78) and sprint 

velocity during the acceleration phase. 

 

Change in impulse may be a key determinant of adaptation to a training stimuli because of 

this relationship with motion (Weyand et al., 2000; Wright and Weyand, 2001; Hunter et al., 

2005; Knudson, 2009), especially when considering jump performances if calculating jump 

height based on the impulse-momentum relationship (Knudson, 2009; McBride et al., 2010; 

Kirby et al., 2011). Increased impulse is likely to result in an increase in athletic performance, 

due to the fact that it results in greater acceleration of the mass that it is applied to; usually 

body mass during sprinting and jumping. As such, assessment of impulse and peak RFD may 

be useful measures in the identification of adaptations to training and subsequent reductions 

in performance post competition, as previously highlighted (McLellan and Lovell, 2012).  
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3.2.7 Summary 

Based on the differences within the methods of calculating RFD it is suggested that future 

research clearly identifies whether peak RFD, or mean RFD has been calculated and that 

these terms are clearly used within the text, with the exact methods described in detail within 

the methods. It would also be beneficial for future research to clearly identify the effect that 

sampling frequency has on the assessment and calculation of both peak and mean RFD. 

Furthermore, determining if RFD or impulse is a more reliable measure to monitor changes in 

performance, while identifying which of these two force-time characteristics demonstrates a 

stronger association with a variety of athletic performances would also be useful for 

researchers and practitioners alike. 

 

Future investigations should also determine if system mass should be applied to the force 

platform prior to initiation of movements, as with assessment of power output (Cormie et al., 

2007a; Cormie et al., 2007c; Hori et al., 2007; McBride et al., 2011).
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3.3 Olympic Lifts and their Component Lifts 

Olympic lifts consist of the snatch and the clean and jerk, with Strength and Conditioning Coaches 

incorporating numerous variations of these exercises into their athletes’ training programmes. 

Variations of the Olympic lifts are usually performed with the intent to move as rapidly as possible 

for 4-8 sets of 1-6 repetitions at loads of 75-90% 1-RM (Baechle et al., 2008). 

 

In competition the snatch and clean are performed with the athlete catching the bar in a full depth 

squat. In contrast, in training the power snatch and power clean are commonly used as substitutes, 

where the athlete catches the bar in a quarter squat positions; or alternatively can be caught in a 

split stance. Further variations of the clean can be seen in the starting position of the lift, where the 

bar can begin on the floor (as in competitive lifting), in the hang position (from just above the 

patella, with the athlete in what represents the mid-point of a Romanian Deadlift, with the shoulders 

in front of the bar), or from mid-thigh (bar resting mid-thigh while the athlete is in a semi-squatting 

position, with the shoulders directly above the bar). Variations of these Olympic lifts are commonly 

used to enhance power development during sports-specific movements (rapid extension of ankles, 

knees and hips) (Stone, 1993; Stone et al., 2003a; Stone et al., 2003b; Stone et al., 2007). 

 

 

3.3.1 Relationships with Athletic Performance 

Performance, defined as maximal load successfully lifted (1-RM), in the power clean and its 

derivatives have been shown to be strongly associated with athletic performance (Hori et al., 2008; 

Brechue et al., 2010). Hang power clean 1-RM performance has been shown to be related to sprint, 

change of direction and jump performance (Hori et al., 2008), with relative power clean 
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performance (1-RM/body mass) demonstrating a stronger association (r = 0.68, r = 0.58; p≤0.01) 

with average running velocity over 9.1 m and 18.3 m, compared to relative back squat performance 

(r = 0.53, r = 0.50; p≤0.01) (Brechue et al., 2010). Similarly, we recently reported that ratio scaled 

power clean performances were inversely related (r -0.625, r -0.558, r -0.620) to 5 m, 10 m and 20 

m sprint times, in professional rugby league athletes (Comfort and Pearson, 2014). Such 

associations may be explained by the similar kinetics between Olympic style lifts (second pull 

phase of the hang snatch) and squat jump performances (Canavan et al., 1996), which may also 

explain the links with sprint performances due to the rapid force production from combined hip and 

knee extension and plantar flexion (Weyand et al., 2000; Wright and Weyand, 2001; Hunter et al., 

2005; Weyand et al., 2006; Weyand et al., 2010). 

 

 

3.3.2 Kinematic Assessment of the Olympic Lifts 

During Olympic lifting competitions it has been identified that peak bar velocity (calculated from 

displacement time data) and peak power output (calculated from system mass and acceleration of 

the bar) occurs during the second pull phase (from mid-thigh until the end of the triple extension 

phase) of the clean (Garhammer, 1979, 1980, 1982, 1991; Pennington et al., 2010). More recently 

similar findings have been observed in competitive weightlifters using both two and three-

dimensional motional capture to analyse the Snatch (Isaka et al., 1996; Gourgoulis et al., 2000; 

Gourgoulis et al., 2002; Pennington et al., 2010; Hadi et al., 2012; Harbili, 2012; Harbili and 

Alptekin, 2014), where power output was assessed using the same methods as Garhammer (1993).  
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Data collected on seven elite Weightlifters at the 1975 United States National Championships 

revealed that the second pull phase of the lift resulted in the highest barbell velocity and therefore 

power output, with values >4000 W in the ≥100kg athletes (Garhammer, 1980). It must be noted 

that barbell velocity was calculated using displacement time data from video (25 fps), with power 

subsequently calculated using an inverse dynamics approach (See Chapter 3.1 for a detailed 

discussion of methods of assessing power output). A further analysis of five gold medallist 

Weightlifters at the 1984 Olympic Games revealed a similar trend in power development, with 

maximal barbell velocity occurring during the second pull phase of the clean and snatch, and 

comparable power outputs in both the clean and the jerk phases of the clean and jerk (Garhammer, 

1985). In contrast to the previous study, power outputs of >5000W were observed in the 97.7kg 

lifter during both the clean and the jerk, and >6000 W in the 138.5kg lifter, although this may be 

partly explained by the use of a higher frame rate (50 fps) resulting in higher and more precise 

barbell velocities. Garhammer (1991) went on to compare the data from the male athletes, 

presented in the two studies above, to the performances of the nine female gold medal winning 

Weightlifters at the first Women’s World Weightlifting Championships in 1987. Results 

demonstrated that both men and women generate the greatest barbell velocities and power in the 

second pull phase of the clean and snatch, and that peak power during the jerk is comparable to 

second pull phase of the clean. Absolute average power outputs during the snatch and the clean 

were noticeably greater in the men compared to the women, and remained greater when ratio scaled 

for both the snatch (34.4±2.5 W/kg, 22.5±1.7 W/kg; respectively) and the clean (34.2±3.6 W/kg, 

21.0±1.8 W/kg; respectively). Average power during the second pull phase of both the snatch (Men 

52.7±4.5 W/kg vs. Women 40.1±5.0 W/kg) and clean (Men 52.5±8.9 W/kg vs. Women 38.2±3.3 

W/kg) showed comparable trends between lifts and sexes. 
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3.3.3 Kinetic Assessment of the Olympic Lifts 

Only three observational studies have previously reported kinetic variables during the different 

phases of the Olympic lifts, finding that the greatest vertical ground reaction force, which have 

described the peak forces during the first pull, transition and second pull phases (Enoka, 1979; 

Hakkinen et al., 1984; Souza et al., 2002). Enoka (1979) reported a peak force of 2809 N during the 

second pull phase of the clean, in five experienced Olympic weightlifters, with Hakkinen et al. 

(1984) finding similar results in 13 weightlifters performing the clean across a range of loads. More 

recently Souza et al. (2002) conducted  the first study to investigate the forces during the different 

concentric phases of the power clean. Ten collegiate weightlifters, performed power cleans at 60% 

and 70% 1-RM, while standing on a force platform, with results confirming previous observations 

in the clean and snatch, that peak forces, as high as 2336 N, are observed during the second pull 

phase.  

 

Two previous studies had also reported similar trends in force development during the snatch and 

hang snatch (Garhammer and Gregor, 1992; Canavan et al., 1996). Garhammer and Gregor (1992) 

compared force time characteristics in four Olympic weightlifters during performance of the snatch 

and countermovement jumps. The jump performances were performed during the warm up period 

and the two heaviest successful snatches performed during the training session were analysed for 

comparison. Results revealed similarities in force time curves and maximum propulsion force 

developed between both movements. Unfortunately, there was no specific statistical analysis of the 

data presented in this investigation, just a description of the trends. Canavan et al. (1996) compared 

kinetics (peak power, time to peak power, relative peak power, peak force and time to peak force) 

between the hang snatch and the squat jump in trained male athletes (n=7). Data was collected with 

athletes performing all exercises while standing on a force platform and power calculated via 
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forward dynamics. The authors reported significant relationships between exercises for all kinetic 

variables, although they fail to state any specific correlations. Unfortunately the authors did not 

perform any statistical analyses to determine if there was a significant difference between values. 

More recently similar findings have been observed in competitive weightlifters using both two and 

three-dimensional motional capture to analyse the Snatch, albeit with inverse dynamics used to 

calculate peak power output based on bar velocity (Isaka et al., 1996; Gourgoulis et al., 2000; 

Gourgoulis et al., 2002; Pennington et al., 2010; Hadi et al., 2012; Harbili, 2012; Harbili and 

Alptekin, 2014). 

 

 

3.3.4 Summary 

The previous studies appear to demonstrate that the greatest force and power (calculated using 

inverse dynamics) is generated during the second pull phase of the snatch (Garhammer, 1980, 1985, 

1991; Garhammer and Gregor, 1992; Canavan et al., 1996; Hadi et al., 2012; Harbili, 2012; Harbili 

and Alptekin, 2014), clean (Enoka, 1979; Garhammer, 1982; Hakkinen et al., 1984; Garhammer, 

1985, 1991) and power clean (Souza et al., 2002), however, this may be due to the fact that the bar 

has already gaining momentum during the first pull and transition phases. It can be observed that 

the joint kinematics of the snatch and the clean along with the power clean and power snatch are 

very similar during the concentric phases, which may explain the similarities in these findings. 
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3.3.5 Areas for Further Research 

No research has compared the peak force or peak RFD, during the power clean, hang power clean 

(bar held just above the patella in the start position and caught in a shallow front squat) the mid-

thigh power clean (bar held at mid-thigh in the start position and caught in a shallow front squat) 

and the mid-thigh clean pull (this is the concentric phase of the mid-thigh power clean without the 

catch phase). Furthermore, no studies have compared peak power during the power clean, hang 

power clean and mid-thigh power clean to establish which generates the greatest power. The power 

clean was selected as this is more commonly used in the training of athletes from a variety of 

sporting backgrounds, as it is generally thought to be easier to learn than the snatch and does not 

require as much technical excellence or rely on the large range of motion required for performance 

of the clean.   
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3.4 Optimal Loading for Peak Power Output 

Mechanical power can be defined as the force applied to an object multiplied by the velocity of the 

movement, or work divided by the time required to complete the given work:  

 

Power = Force x (Distance/Time) 

Power = Force x Velocity 

Power = Work / Time 

 

Therefore, both force applied to an object and the resultant velocity play an integral role in power 

output, with peak power occurring as a compromise between peak force and peak velocity (Wilkie, 

1949; Siegel et al., 2002; Kawamori and Haff, 2004). In general, peak force occurs during isometric 

conditions (zero velocity) where as peak velocity occurs with no external load. 

 

Numerous studies have been concerned with the load which elicits peak power output across a 

range of exercises including the clean variations (Kawamori et al., 2005; Kawamori et al., 2006; 

Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Kilduff et al., 2007), squat 

(Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e) squat jump (Baker et al., 2001; 

Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e) and bench 

press (Izquierdo et al., 1999; Baker, 2001; Izquierdo et al., 2002; Jandacka and Uchytil, 2011). The 

optimal loads which elicit peak power output for the power clean (Cormie et al., 2007c; Cormie et 

al., 2007b; Cormie et al., 2007e), hang power clean (Kawamori et al., 2005; Kilduff et al., 2007) 

and mid-thigh power clean (Kawamori et al., 2006) have been reported between 60-80% one 
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repetition maximum (1-RM) power clean, although these were generally not significantly different 

at loads ±10% of the optimal load, when forward dynamics is used to assess peak power. In 

contrast, Pennington et al. (2010) found no significant difference (p>0.05) in peak power output 

between 80-100% 1-RM in both the power clean and power snatch. It must be noted, however, that 

power was calculated using inverse dynamics which has been shown to substantially alter both 

power output and the load which elicits peak power (Cormie et al., 2007c; Cormie et al., 2007b; 

Cormie et al., 2007e; Hori et al., 2007) (See Chapter 3.1). 

 

 

3.4.1 Optimal Loading during Single Joint Exercises 

Early research by Kaneko et al., (1983) revealed that peak power output occurred at 30% of 

maximal voluntary isometric contraction (MVIC) during elbow flexion and that adaptations to 

training were specific to the force-velocity requirements of the training mode, whereby the greatest 

adaptations were observed at the velocity at which the participants trained. Toji, Suei and Kaneko 

(1997) progressed this research by conducting a training study to determine if training at 0% and 

30% MVIC  or 30% and 100% MVIC would result in specific adaptations in force, velocity and 

power in 12 male subjects. Results demonstrated that MVIC increased only in the high force group, 

whereas velocity improved in both groups, concluding that higher loads were advantageous in 

terms of adaptations across the force velocity profile. A subsequent study investigated the effects of 

multiple load training (30% and 60% MVIC, 30% and 100% MVIC, and 30%, 60% and 100% 

MVIC), with repetitions matched between groups (Toji and Kaneko, 2004). The authors concluded 

that multiple load training (30%, 60% and 100% MVIC) resulted in the greatest increases in force, 

velocity and therefore power in single joint movements, in line with the recent recommendations 

for power development by Haff and Nimphius (2012). Application of these single joint studies, 
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based on percentage of MVIC is clearly limited in terms of its practical application to dynamic 

tasks (e.g. squats, squat jumps, Olympic lifts) that are usually performed during athletic 

conditioning where maximal strength is usually assessed via one repetition maximum testing and 

not MVIC. 

 

 

3.4.2 Optimal Loading during Squats 

Izquierdo et al (1999) investigated the strength and power characteristics in middle aged (n = 26, 

mean age 46 years) and elderly men (n = 21; mean age 65 years), assessing power across a 

spectrum of loads (0, 15, 30, 45, 60, 70% 1-RM) during the Smith-machine half squat, revealing 

that peak power occurred between 60-70% 1-RM, with no differences between groups. A 

subsequent study by the same group of researchers found that 1-RM Smith-machine half squat 

significantly increased along with peak power output during the half squats across a spectrum of 

loads (15, 30, 45, 60, 70% 1-RM) after 16 weeks of strength training in middle aged (46 ± 2 yr) and 

older (64 ± 2 yr) men (Izquierdo et al., 2001b). Both pre and post training the participants’ peak 

power occurred between 60-70% 1-RM, as reported in their previous study (Izquierdo et al., 1999). 

A further study using the same methods in middle aged (n = 26, mean age 46 yr) and elderly men (n 

= 21, mean age 64 ± 2 yr) also reported peak power occurred between 60-70% 1-RM, although the 

younger and stronger group developed peak power at 60% 1-RM where as the older and weaker 

group developed peak power at 70% 1-RM, highlighting a decline in force and power production 

with increasing age (Izquierdo et al., 2001a). It is worth noting however, that power in the 

aforementioned studies was calculated using inverse dynamics and excluded body mass in the 

calculation resulting in very low power values, (the implications of such methods of assessing 

power are discussed in detail in Chapter 3.1). 
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Siegel et al. (2002) used college age resistance trained subjects (n=25) to investigate the load which 

elicits peak power during squats performed on a Smith machine, with power calculated using 

inverse dynamics and related this to muscle fibre distribution from muscle biopsies of the vastus 

lateralis. Results revealed that peak power occurred between 50-70% 1-RM, similar to the findings 

in older subjects (Izquierdo et al., 1999; Izquierdo et al., 2001a; Izquierdo et al., 2001b), but no 

relationships between performance measures and muscle fibre distribution were observed. Similar 

findings were observed in well trained male sprinters (n=10), with half squats performed on a Smith 

machine. Power was calculated from the product of vertical ground reaction force (assessed using a 

force plate) and bar velocity (assessed using a LPT), revealing that peak power occurred at 60% 1-

RM (3134.3 ± 561.9 W) although this was not significantly different (p>0.05) when compared to 

peak power at any other load (30, 45, 60, 70, 80% 1-RM). While the Smith machine improves the 

accuracy of the assessment of velocity by preventing any horizontal displacement of the bar, it 

limits the application of these findings to free weight back squats, which are more commonly 

performed during strength training programmes. It is also worth noting that using combined kinetic 

(force collected via the force platform) and kinematic (velocity calculated via bar displacement 

time data) methods to calculate power are limited, as Lake et al. (2012) revealed that velocity of the 

bar does not reflect velocity of the COM of the body or system. 

 

Zink et al. (2006) investigated the effects of load (20-90% 1-RM in 10% increments) on peak 

power, force and barbell velocity during free weight back squats, in 12 experienced lifters. The 

authors observed no significant difference (p>0.05) in peak power output across loads, although the 

highest values occurred at 40-50% 1-RM. There was, however, a progressive increase in peak 

ground reaction force and a progressive decrease in bar velocity with an increase in load. The 

slightly lower PMax loads in this study compared to the aforementioned studies may be explained 
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by the fact that this was the only study to assess free weight back squat performance, along with the 

use of older, less well trained participants in the previous studies (Izquierdo et al., 1999; Izquierdo 

et al., 2001a; Izquierdo et al., 2001b). 

 

Cormie et al. (2007c) compared six different methods of assessing power during squats, squat 

jumps and power cleans across a spectrum of loads: one linear position transducer (LPT) (including 

barbell mass), one LTP (including system mass), two LPT’s, FP only, FP plus one LPT and a FP 

plus two LPT’s, in well trained males. Results demonstrated that one LPT plus barbell mass under-

valued force and therefore power during the squat and jump squat, where as the one LPT and two 

LPT methods (including system mass) over-valued force and therefore power in line with the 

findings of Hori et al. (2007) during the hang power clean and squat jump. During the squat, the use 

of 1 LPT and 2 LPT’s resulted in the identification of an optimal load of 30% 1-RM (4215.07 ± 

1227.11 W; 4104.24 ± 1162.01 W, respectively), whereas the methods using kinetic data (FP, FP 

plus 1 LPT) identified optimal load as 71% 1-RM (3243.66 ± 448.78 W, 3291.28 ± 326.41 W, 

respectively) and (FP plus 2 LPT) 56% (3206.32 ± 411.49 W), although peak power values differed 

across all methods. The authors conclude that methods of assessing power need to be standardised 

to ensure that findings between studies are comparable. These findings and recommendations for 

the back squat have been supported by a series of other studies published by these authors (Cormie 

et al., 2007a; Cormie et al., 2007b; Cormie et al., 2007e; McBride et al., 2011).  

 

These results appear to demonstrate that peak power output during squats occur across a spectrum 

of loads, which is influenced by the methods used to assess power (kinetic, kinematic or combined 

methods), the mode of activity (free weight versus Smith machine) and possibly training status. If 

assessed during free weight back squats in trained individuals peak power appears to occur between 
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40-50% 1-RM if assessed based on bar velocity (inverse dynamics) (Zink et al., 2006), or ~70% if 

assessed from force time data (forward dynamics) (Cormie et al., 2007c; Cormie et al., 2007b). 

 

  

3.4.3 Optimal Loading during Squat Jumps 

Baker (2001) reported that peak power output during squat jumps was achieved at 46-51% of 1-RM 

in stronger rugby league athletes, compared to 58-69% 1-RM in the weaker rugby league athletes. 

Power output, however, was calculated from bar velocity and system mass using inverse dynamics 

which has been shown to result in an altered PMax load (Cormie et al., 2007a; Cormie et al., 2007c; 

Cormie et al., 2007b; Cormie et al., 2007e; McBride et al., 2011). 

 

Stone et al. (2003a) investigated the effects of loading (10-90% 1-RM in 10% increments) on 

power output, calculated from bar velocity using inverse dynamics, during vertical jumps in trained 

subjects. Peak power output occurred in the 10% condition in both the squat jump (5113.07 ± 

1482.17 W) and countermovement jump (5199.73 ± 1301.06 W), with a progressive decline in 

power output with an increase in load. When subjects were divided in to the weakest (n=5) and the 

strongest (n=5) peak power output occurred at 10% 1-RM whereas peak power occurred at 40% 1-

RM in the strong group. The differences in optimal loading between the studies of Baker (2001) 

and Stone et al. (2003a) are likely due to the higher strength levels in the rugby league players in 

the earlier study, as both studies highlight that maximal strength can affect the load which elicits 

peak power during squat jumps. More recently, however, Lake et al. (2012) have suggested that 

barbell kinematics should not be used to assess power during squat jumps as it does not reflect 

displacement or velocity of the system CoM, and therefore leads to overestimation of velocity 
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resulting in an elevated power values which was 18.7% greater than the power assessed via forward 

dynamics. 

 

As previously mentioned, Cormie et al. (2007c) compared six different methods of assessing power 

during squats, squat jumps and power cleans across a spectrum of loads, in well trained males. 

Results demonstrated that one LPT plus barbell mass under-valued force and therefore power 

during the squat and jump squat, where as the one LPT and two LPT methods (including system 

mass) over-valued force and therefore power in line with the findings of Hori et al. (2007) during 

the hang power clean and squat jump. During the squat jump, the use of 1 LPT and mass resulted in 

a PMax load of 42% 1-RM (3379.56 ± 505.84 W), whereas all other methods identified body mass 

(no external load) as PMax load 6260.95-6496.95 W). The authors conclude that methods of 

assessing power need to be standardised to ensure that findings between studies are comparable. 

These findings and recommendations for the squat jump have been supported by a series of other 

studies published by these authors (Cormie et al., 2007a; Cormie et al., 2007b; Cormie et al., 2007e; 

McBride et al., 2011).  

A recent study by Turner et al. (2012) found peak power output (calculated from the product of 

vertical ground reaction force and bar velocity) and peak bar velocity to occur at 20% 1-RM, in 

well trained rugby players, although this was not significantly (p>0.05) greater than the 30% 1-RM 

load; unfortunately they did not use loads <20% 1-RM.  Unsurprisingly, peak vertical ground 

reaction force occurred at 100% 1-RM. Our work (Thomasson and Comfort, 2012; Comfort et al., 

2013a) however, found that peak power output during squat jumps, calculated using forward 

dynamics, occurred at body mass (no external load) although this was not significantly different to 

the 10 and 20% loading conditions, in both well trained rugby league players and collegiate level 

athletes, in line with previous findings (Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 

2007e; Cormie et al., 2008; McBride et al., 2011).  
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More recently, Pazin (2013) compared the peak power, peak force and peak velocity (of centre of 

mass) across loads (0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 x body mass) during both squat jumps and 

countermovement jumps in male subjects (n=40). Loading was varied by the use of elastic 

resistance, to either add to or subtract load from body mass. Dependant variables were assessed 

with participants standing on a force plate with power calculated using forward dynamics. Results 

demonstrated that peak power was achieved at body mass, with no difference between strength 

trained athletes (n=10), speed trained athletes (n=10), physically active non-athletes (n=10) and 

sedentary individuals (n=10).  

 

As with the findings for PMax loads during the squat, the mode of exercise (machine versus free 

weight) appears to influence the PMax load, with the use of a machine resulting in a increase in 

both 1-RM performance and PMax load (Harris et al., 2007; Harris et al., 2008). Harris et al. (2007) 

used forward dynamics to assess power output during loaded (10-100% 1-RM) squat jumps, 

performed on a modified hack squat machine, in national level rugby players. Results demonstrated 

that individual peak power output occurred at 39 ± 8.6% 1-RM. Interestingly, a change in load 

±20% either side of the individuals PMax load resulted in only a small change (9.9 ± 2.4%) in peak 

power output. It is worth noting that these subjects were very strong (relative 1-RM 2.67 ± 0.46 

kg/kg), which along with the use of a machine, may have resulted in the increased PMax load 

compared to previous studies (Stone et al., 2003a; Stone et al., 2003b; Cormie et al., 2011b; Cormie 

et al., 2011a; Thomasson and Comfort, 2012; Comfort et al., 2013a). 

 

From the results of these studies it would appear that peak power output, during squat jumps, 

occurs at or around body mass (no external load) when assessed using forward dynamics (Cormie 
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et al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Cormie et al., 2008; 

Pazin et al., 2013), although there may be some variation between individuals, especially if very 

strong (Harris et al., 2007; Harris et al., 2008). It is also worth noting that during such exercises, 

performed at PMax loads, it is possible to perform a greater number of repetitions than those 

usually recommended (1-5 repetitions) for power development, with Thomasson and Comfort 

(2012) finding no decrease in performance during sets of 6 repetitions performed at body mass 

(PMax load), 20% and 40% 1-RM, with a more recent study finding no decrement in performance 

during 10 repetitions performed at body mass (PMax load), 10%, 20%, 30% and 40% 1-RM 

(Comfort et al., 2013a).  

 

 

3.4.4 Optimal Loading during the Power Clean and its Variations 

During Olympic weightlifting competitions it has been identified that peak bar velocity (calculated 

from displacement time data) and peak power (calculated from system mass and acceleration of the 

bar) occurs during the second pull (from mid-thigh until the end of the triple extension phase) phase 

of the clean (Garhammer, 1979, 1980, 1982, 1985, 1991; Pennington et al., 2010). More recently 

similar findings have been observed in competitive weightlifters using both two and three-

dimensional motional capture to analyse the Snatch (Isaka et al., 1996; Gourgoulis et al., 2000; 

Gourgoulis et al., 2002; Pennington et al., 2010; Hadi et al., 2012; Harbili, 2012), where power was 

assessed using the same methods as Garhammer (1993) (Methodological issues of assessing power 

are discussed in detail in Chapter 3.1).  
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Variations of the power clean are regularly incorporated in athletes’ training regimes, with specific 

potential benefits hypothesised for each variation of the clean, although many of these theoretical 

benefits have not been substantiated by empirical evidence. For example it has been observed that 

the transition phase (double knee bend) results in an unweighting phase representative of a 

countermovement, which may result in an increase in force production and power output due to 

utilisation of the stretch shorten cycle (Enoka, 1979; Garhammer, 1980; Garhammer, 1982; 

Hakkinen et al., 1984; Garhammer and Gregor, 1992), however, no research has compared kinetic 

performances in the power clean performed from the hang position with the mid-thigh position. In 

contrast, numerous studies have investigated the load which elicits peak power output across a 

range of exercises including the clean variations (Kawamori et al., 2005; Kawamori et al., 2006; 

Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Kilduff et al., 2007). The optimal 

loads which elicit peak power output for the power clean (Cormie et al., 2007c; Cormie et al., 

2007b; Cormie et al., 2007e), hang power clean (Kawamori et al., 2005; Kilduff et al., 2007) and 

mid-thigh power clean (Kawamori et al., 2006) have been reported between 60-80% one repetition 

maximum (1-RM) power clean, although these were generally not significantly different at loads 

±10% of the optimal load, when forward dynamics is used to assess peak power. In contrast, 

Pennington et al. (2010) found no significant difference (p>0.05) in peak power output between 80-

100% 1-RM in both the power clean and power snatch, although it must be noted that power was 

calculated using inverse dynamics which has been shown to substantially alter both power output 

and the load which elicits peak power (Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 

2007e; Hori et al., 2007). 
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3.4.4.1 Power Clean 

Cormie et al. (2007c) compared six different methods of assessing power during squats, squat 

jumps and power cleans across a spectrum of loads: one linear position transducer (LPT) (including 

barbell mass), one LTP (including system mass), two LPT’s, force platform (FP) only, FP plus one 

LPT and a FP plus two LPT’s, in well trained males. The power cleans were performed at loads of 

30-90% 1-RM at 10% increments. The differences in the power outputs calculated via the different 

methods are illustrated by the optimal load for power output occurring at different loads across 

methods. During the power clean, the kinematic only data (1 LPT and 2 LPT) under-valued force 

resulting in identification of an optimal load of 30% 1-RM, whereas the methods using kinetic data 

(FP, FP plus 1 LPT and FP plus 2 LPT) identified optimal load as 80% 1-RM, although the actual 

peak power values differed across all methods, although not significantly different to loads ±10% 

of the optimal load. Another study by Cormie et al. (2007e) investigated the optimal loading for 

peak power output during the squat, jump squat and power clean in twelve male athletes, with the 

power cleans performed across loads of 30-90% 1-RM at 10% increments. Force was determine via 

a force platform which the athletes stood on during the lifts, with bar velocity determined via two 

LPT’s as previously described (Cormie et al., 2007c); results demonstrated again that peak power 

was achieved at 80% 1-RM, again with no significant differences (p>0.05) ±10% of the optimal 

load. 

 

A further study by Cormie et al. (2007b) investigating the influence of the addition of body mass, 

body mass minus shank and foot mass on power output during the squat, squat jump and power 

clean across a range of loads, demonstrated that the exclusion of body mass results in a significant 

change (p<0.05) in power output and the load power relationship. Further supporting previous 

findings that body mass should be included in the calculation to ensure that force is not under-

estimated and that methods of assessing power, during such exercises, should be standardised to 



82 | P a g e  

 

ensure that findings are comparable (Cormie et al., 2007c; Hori et al., 2007). The subjects 

performed power clean at loads from 30-90% 1-RM in 10% increments, confirming that the peak 

power was achieved at 80% 1-RM, again with no significant differences (p>0.05) ±10% of the 

optimal load. The findings of the investigation revealed that the inclusion of body mass, or body 

mass minus shank mass did not affect the load that elicited peak power output in the power clean 

(80% 1-RM) or squat jump (no external load) where the entire body mass is accelerated throughout 

the exercise, although it did affect the results of the squat. 

 

From the data currently available it would appear that the optimal load for the power clean is ~80% 

1-RM, but that there is no significant difference (p>0.05) between performances at loads ranging 

from 70-90% 1-RM in trained athletes. 

 

 

3.4.4.2 Hang Power Clean 

Kawamori et al. (2005) assessed peak power output, in 15 collegiate athletes during the hang power 

clean, performed across a spectrum of loads (30-90% 1-RM hang power clean) at 10% increments, 

to identify the optimal load that elicits peak power output. Power was calculated from force time 

data collected via the force platform using forward dynamics to calculate the velocity of centre of 

mass of the system, with velocity at each time point multiplied by the corresponding force data. 

Subsequent analysis revealed that peak power and relative peak power (45.57 ± 5.20 W/kg) 

occurred at 70% 1-RM although this was not significantly different to the peak power output 

achieved across loads of 50-90% 1-RM. When the groups were divided into strong (1-RM ≥110 kg) 

and weak (1-RM <110 kg) the strong group achieved peak power (4281.15 ± 634.84 W) at 70% 1-
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RM and the weak group achieved peak power (3982.58 ± 906.49 W) at 80% 1-RM, although these 

were still not substantially different to the peak power values achieved at 50-90% 1-RM. 

 

Similar to the previous study Kilduff et al. (2007) compared peak power output during the hang 

power clean, across loads of 30-90% 1-RM, in twelve profession rugby union player. Force time 

data was collected via a force platform with power calculated using forward dynamics. The results 

demonstrated that peak power output (4467.0 ± 477.2 W) occurred at 80% 1-RM, although this was 

only significantly greater than the power output at 30% 1-RM (3246.0 ± 552.8 W), similar to the 

results from the stronger athletes in the study by Kawamori et al. (2005). In contrast peak force 

(3544.2 ± 551.9 N) occurred at 90% 1-RM; although this was not significantly different (p>0.05) 

compared to the 80% 1-RM load (3487.0 ± 526.6 N). Peak force at both 80% and 90% 1-RM were 

significantly greater (p<0.05) when compared to all of the other loads, with peak force 

progressively increasing in line with increased loading. Peak RFD (29858 ± 17663 N/s) also 

occurred in the 90% 1-RM condition, although this was not significantly different (p>0.05) 

compared to any of the other loads. 

 

As with the power clean, from the available evidence it appears that there is a range of loads (50-

90% 1-RM) at which peak power occurs during the hang power clean, with training status (defined 

by relative strength level) influencing the load at which peak power occurs. Peak power occurs 

between 70-80% 1-RM although this is not significantly different (p>0.05) compared to loads of 

±10%.  
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3.4.4.3 Mid-thigh Clean Pulls 

In a study investigating the relationships between strength and power performances in collegiate 

throwers Stone et al. (2003b) observed that peak power occurred during mid-thigh pulls at 30% 

MVIC (2065 ± 921 W) compared to 60% MVIC (1621 ± 589 W), with the difference remaining 

even after 8 weeks of strength and power training (30% MVIC = 2434 ± 683 W; 60% MVIC = 

2178 ± 686 W). This is in line with previous findings during single joint movements (Kaneko et al., 

1983; Moss et al., 1997; Toji et al., 1997; Toji and Kaneko, 2004). 

 

More recently Kawamori et al. (2006) compared kinetics between the isometric mid-thigh pull and 

dynamic mid-thigh pull across a range of load (30, 60, 90, 120% 1-RM power clean), in eight male 

weightlifters. Peak power occurred in the 60% 1-RM condition (2228.9 ±192.3 W) although this 

was not significantly greater (p>0.05) than the other loading conditions. Isometric peak force 

(3177.5 ± 285.3 N) was greater than the 120% 1-RM condition (2604.5 ± 137.5 N), although this 

was not statistically significant (p>0.05). Peak force was significantly greater (p<0.05) in the 120% 

1-RM conditioning compared to the lower loading conditions, with a progressive increase in peak 

force with an increase in load. In contrast, peak RFD occurred in the 30% condition (27607.4 ± 

4608.3 N/s) and progressively decreased with an increase in load, although this was not statistically 

significant (p>0.05). 

 

It is likely that the higher loads required to elicit peak power output in the power clean (80% 1RM) 

and hang power clean (70% 1RM) are due to the fact that the bar is displaced further, when 

compared to the mid-thigh power clean and MTCP (60% 1RM), resulting in an increased duration 

of force application and acceleration prior to the bar reaching the second pull (mid-thigh position) 

phase.  
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3.4.4.4 Summary and Applications 

It is important to note, however, that although a substantial body research has been published 

investigating the load that elicits peak power output during a range of different exercise, this is not 

the panacea of power training. It is essential that each aspect of the force velocity continuum is 

considered during each mesocycle, with the primary aim of the phase being emphasised, but not at 

the expense of any other aspect of the force production (Newton and Kraemer, 1994; Newton et al., 

2002; Cormie et al., 2011b; Haff and Nimphius, 2012). 

 

 

3.4.5 Areas for Further Research 

As the second pull phase of the Olympic lifts have been observed to result in the greatest force 

(Enoka, 1979; Hakkinen et al., 1984; Garhammer and Gregor, 1992; Souza et al., 2002), bar 

velocity and power (Garhammer, 1979, 1980, 1982, 1985) and the fact that strength and 

conditioning coaches regularly use various derivatives of the clean (e.g. power clean, hang power 

clean, mid-thigh power clean and mid-thigh clean pull) it would be useful to identify differences in 

force time characteristics between each of these variations. The results of such findings would 

permit strength and conditioning coaches to make more informed decisions regarding exercise 

selection. 

 

The majority of previous research has been conducted using well trained team sport athletes  or 

Olympic Weightlifters (Haff et al., 1997; Haff et al., 2005; Kawamori et al., 2005; Kawamori et al., 

2006; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Haff et al., 2008), and 

therefore the application of these findings to inexperienced athletes is problematic. Therefore, 
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determining the effect of load and clean variation on force time characteristics in inexperienced 

female athletes would also be advantageous. An additional  area for further research would is to 

determine the optimal load during the power clean in relatively inexperienced collegiate athletes, as 

previous research has focussed on well trained male athletes (Haff et al., 1997; Haff et al., 2005; 

Kawamori et al., 2005; Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007b; Cormie 

et al., 2007e; Haff et al., 2008).  

 

Finally identifying the effect of load on the kinetics and kinematics during the pulling variations of 

the clean (e.g. MTCP), to identify the optimal loads required to maximise specific force 

characteristics would be interesting, especially as the elimination of the catch phase permits loads 

>100% 1RM power clean. Interestingly, manipulation of load, across a larger range of loads, during 

the pulling variations of the clean, may permit appropriate stimuli across the entire force velocity 

continuum. 
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3.5 Research Hypotheses 

1. Assessment of force time characteristics during power clean performances will be highly 

reliable 

2. Peak force and peak RFD will be highest during the mid-thigh clean and mid-thigh clean 

pull, compared to the hang power clean and power clean, as this phase of the clean 

variations has been shown to elicit the greatest peak force and power during the clean and 

clean pull 

3. Peak power output will be highest during the mid-thigh clean and mid-thigh clean pull, 

compared to the hang power clean and power clean, as this phase of the clean variations has 

been shown to elicit the greatest peak force and power during the clean and clean pull 

4. Females will demonstrate greater peak force, peak RFD and peak power during the mid-

thigh power clean, compared to the hang power clean and power clean as the mid-thigh 

variation has it requires less technical competency compared to the other variations. 

Additionally the mid-thigh power clean has previously been shown to elicit higher peak 

force, peak RFD and peak power when compared to the hang power clean and power clean 

5. It was further hypothesised that peak power output would occur at 60% 1RM power clean, 

during the mid-thigh power clean, in line with previous research 

6. Peak power output will occur at 70% 1RM power clean in inexperienced athletes, in line 

with previous research in well trained, more experienced athletes 

7. During the mid-thigh clean pull, peak bar displacement, peak bar velocity and peak power 

will occur at 40% 1RM power clean, while peak force, impulse and peak RFD will occur at 

140% 1RM power clean 
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4 Study 1 
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Within- and Between-Session Reliability of Power, Force and Rate of Force 

Development during the Power Clean 

Paul Comfort 

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, UK.  

Abstract 

Although there has been extensive research regarding the power clean, its application to sports 

performance and its use as a measure of assessing changes in performance, no research has 

determined the reliability assessing the kinetics of the power clean across testing session. The 

purpose of this study, therefore, was to determine the within and between session reliability of 

kinetic variables during the power clean. Twelve professional rugby league players (age 24.5 ± 2.1 

years; height 182.86 ± 6.97 cm; body mass 92.85 ± 5.67kg; 1-RM power clean 102.50 ± 10.35 kg) 

performed three sets of three repetitions of power cleans at 70% of their predetermined one 

repetition maximum power clean, while standing on a force plate, to determine within session 

reliability. This process was completed on three separate occasions, 4-5 days apart, to determine 

reliability between sessions. Intraclass correlation coefficients revealed a high reliability within 

sessions (r ≥0.969) and between sessions (r ≥0.988). Repeated measures analysis of variance 

showed no significant difference (p>0.05) in peak vertical ground reaction force, rate of force 

development and peak power between sessions, with small SEM’s and SDD’s for each kinetic 

variable (3.13 N, 8.68 N; 84.39 N/s, 233.93 N/s; 24.54 W, 68.01 W, respectively). Therefore, a 

change in peak force ≥ 8.68 N, rate of force development ≥24.54 N/s, and a change on peak power 

≥68.01 W represent a real change in performance between sessions, in well trained athletes who are 

proficient at performing the power clean. 

Due to copyright the full article cannot be presented in this version of the thesis 
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4.1 Study 1 Commentary  

Very small SDD may be due to the fact that strict controls were put in place during each testing 

session and between testing sessions, including visual analysis of force time curves to ensure that 

the force traces were representative of a power clean. In order to do this it was essential that the 

force time data represented stable system mass, prior to commencement of the lift and that two 

clear peaks occurred during the concentric phase of the lift, illustrating the first pull and second pull 

respectively. Any trials that did not meet these criteria was discounted and repeated after an 

appropriate rest period. Such strict criteria improve the scientific rigour of data collection 

procedures, but actually reduce ecological validity as such strict controls are unlikely to be used in 

a real world environment, especially when working in team sports with large numbers of athletes. It 

is likely that the implementation of such criteria dramatically improved the reliability and therefore 

resulted in such small SDD values for each variable. 

 

Subsequent analysis of data revealed that a change in smoothing from 100 ms moving average to 

400 ms moving average was shown not to noticeably affect peak force, peak RFD or peak power, 

which is likely due to the fact that all values were peak instantaneous values and not average 

measures. However, change from a 100 ms moving average to 400 ms moving average did help 

with analysis of force time data from subjects that showed a small amount of movement, based on 

assessment of the force time trace, prior to commencement of the lift, permitting an increase in 

sample size, due to inclusion of a greater number of subjects initially tested.   
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Comparisons of Peak Ground Reaction Force and Rate of Force Development 

during Variations of the Power Clean 

Paul Comfort, Mark Allen & Philip Graham-Smith 

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, UK.  

 

Abstract 

The aim of this investigation was to determine the differences in vertical ground reaction forces and 

rate of force development (RFD) during variations of the power clean. Elite rugby league players (n 

= 11; age 21 6 1.63 years; height 181.56 6 2.61 cm; body mass 93.65 6 6.84 kg) performed 1 set of 

3 repetitions of the power clean, hang-power clean, mid-thigh power clean, or mid-thigh clean pull, 

using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force 

platform. Differences in peak vertical ground reaction forces (Fz) and instantaneous RFD between 

lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical 

analysis revealed a significantly (p<0.001) greater peak Fz during the mid-thigh power clean 

(2,801.7 ± 195.4 N) and the mid-thigh clean pull (2,880.2 ± 236.2 N) compared to both the power 

clean (2,306.2 ± 240.5 N) and the hang-power clean (2,442.9 ± 293.2 N). The mid-thigh power 

clean (14,655.8 ± 4,535.1 N.s
-1

) and the mid-thigh clean pull (15,320.6 ± 3,533.3 N.s
-1

) also 

demonstrated significantly (p<0.001) greater instantaneous RFD when compared to both the power 

clean (8,839.7 ± 2,940.4 N.s
-1

) and the hang-power clean (9,768.9 ± 4,012.4 N.s
-1

). From the 

findings of this study, when training to maximize peak Fz and RFD the mid-thigh power clean and 

mid-thigh clean pull appear to be the most advantageous variations of the power clean to perform. 

 

Due to copyright the full article cannot be presented in this version of the thesis  
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5.1 Study 2 Commentary 

With additional planning this study could have included peak power, as presented in study three, 

however, the initial aim of this study was to progress the work of Enoka et al. (1979) Hakkinen et 

al. (1984) Souza et al. (2002) , who had only investigated force and RFD during the clean and clean 

pull. Further development of this study and its themes led to the planning of study 3, with the 

inclusion of peak power. 

 

5.2 Erratum 

The figures within the published article (Figures 4 and 5 within the published manuscript) did not 

have the significance levels highlighted; this has been amended (Figures 5.1 and 5.2). 

 

 

Figure 5.1: Comparison of peak force during variations of the power clean 
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Figure 5.2: Comparison of peak RFD during variations of the power clean 
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Kinetic Comparisons during Variations of the Power Clean 

Paul Comfort, Mark Allen & Philip Graham-Smith 

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, UK.  

 

Abstract 

The aim of this investigation was to determine the differences in peak power, peak vertical ground 

reaction forces and rate of force development during variations of the power clean. Elite rugby 

league players (n=16; age 22.0 ± 1.58 yrs; height 182.25 ± 2.81 cm; body mass 98.65 ± 7.52 kg) 

performed 1 set of 3 repetitions of the power clean, hang power clean, mid-thigh power clean or 

mid-thigh clean pull, using 60% of 1 repetition maximum power clean, in a randomized order, 

while standing on a force platform. One way analysis of variance with Bonferroni post hoc analysis 

revealed a significantly (p<0.001) greater peak power output during the mid-thigh power clean 

(3565.7 ± 410.6 W) and the mid-thigh clean pull (3686.8 ± 386.5 W) compared to both the power 

clean (2591.2 ± 645.5 W) and the hang power clean (3183.6 ± 309.1 W), along with a significantly 

(p<0.001) greater peak Fz during the mid-thigh power clean (2813.8 ± 200.5 N) and the mid-thigh 

clean pull (2901.3 ± 226.1 N) compared to both the power clean (2264.1 ± 199.6 N) and the hang 

power clean (2479.3 ± 267.6 N). The mid-thigh power clean (15049.8 ± 4415.7 N.s
-1

) and the mid-

thigh clean pull (15623.6 ± 3114.4 N.s
-1

) also demonstrated significantly (p<0.001) greater 

instantaneous RFD when compared to both the power clean (8657.9 ± 2746.6 N.s
-1

) and the hang 

power clean (10314.4 ± 4238.2 N.s
-1

). From the findings of this study, when training to maximize 

power, Fz and RFD the mid-thigh power clean and mid-thigh clean pull appear to be the most 

advantageous variations of the power clean to perform. 

 

Due to copyright the full article cannot be presented in this version of the thesis 
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6.1 Study 3 Commentary 

This was a logical progression from study two, which developed on previously published work of 

investigating the force and RFD during the power clean, clean and clean pull (Enoka, 1979; 

Hakkinen et al., 1984; Souza et al., 2002). This study replicated the findings of study two, 

demonstrating significantly (p<0.001) greater peak force and RFD occurs during the mid-thigh 

power clean and MTCP, when compared to the hang power clean and power clean. Moreover, this 

study demonstrated that the mid-thigh power clean and MTCP also results in significantly 

(p<0.001) greater peak power when compared to the hang power clean and power clean, with no 

significant differences (p>0.05) between the mid-thigh variations. The higher peak power during 

the mid-thigh variations is attributable to the higher forces, which are applied over a shorter 

duration, resulting in a greater acceleration of system centre of mass. When the higher forces 

multiplied by the corresponding velocity of the system centre of mass the result is a higher peak 

power.  

 

6.2 Erratum 

Study three contains an error in the force values presented in the results section:  

‘No significant (p>0.05) differences were found when comparing the peak Fz between the mid 

thigh power clean (2813.82±200.5 N) and the mid thigh clean pull (2901.3±226.1 N). There were 

no significant differences in peak Fz between the hang power clean (2479.3±267.8 N) and the 

power clean (2264.1±199.6 N) (Figure 1).’  

This should be:  

No significant (p>0.05) differences were found when comparing the peak Fz between the mid thigh 

power clean (2801.7±195.4 N) and the mid thigh clean pull (2880.2±236.2 N). There were no 
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significant differences in peak Fz between the hang power clean (2442.9±293.2 N) and the power 

clean (2306.2±240.5 N) (Figure 1). 

This amendment does not alter the differences observed between variations of the power clean, or 

the resultant levels of significance as determined by the one way analysis of variance. 

The same error, with the force data, is also present within the discussion section:  

‘Results also showed greater peak Fz during the mid-thigh power clean (2801.7±195.4 N) and the 

mid-thigh clean pull (2880.2±236.2 N) compared to both the power clean (2306.2±240.5 N) and the 

hang power clean (2442.9±293.2 N). These values are in line with previous research…’ 

‘Results showed greater peak Fz during mid thigh power clean (2813.82±200.5 N) and the mid 

thigh clean pull (2901.3±226.1 N) compared to the power clean (2264.1±199.6 N) and the hang 

power clean (2479.3±267.8 N). These values are in line with previous research…’ 

The Fz data presented in figure 1 and in the abstract is correct. All other data (peak RFD and peak 

power) is also correct.  
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No Kinetic Differences during Variations of the Power Clean in Inexperienced 

Female Collegiate Athletes 

Paul Comfort, John. J. McMahon & Caroline Fletcher 

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, UK.  

 

Abstract 

Previous research has identified that the second pull phase of the clean generates the greatest power 

output and that the mid-thigh variations of the power clean also result in the greatest force and 

power output in male athletes, however, no research has compared the kinetics of the variations of 

the power clean in females. The aim of this investigation was to identify any differences between 

variations of the clean, across a range of loads, in inexperienced female collegiate athletes. Sixteen 

healthy female collegiate athletes (age 19 ± 2.3 yrs; height 166.5 ± 3.22 cm; body mass 62.25 ± 

4.52 kg; 1RM power clean 51.5 ± 2.65 kg) performed three repetitions of three variations (power 

clean, hang power clean, mid-thigh power clean) of the power clean at 60%, 70% and 80% of their 

predetermined one repetition maximum (1RM) power clean, in a randomized and counter-balanced 

order. A two way analysis of variance (3x3; load x variation) revealed no significant differences 

(p>0.05) in peak power, peak force (Fz) or rate of force development (RFD) between loads or 

variations of the power clean. There appears to be no advantage in terms of peak power, Fz or RFD 

between variations of the clean, in inexperienced female athletes, it is suggested, therefore, that 

inexperienced athletes intermittently perform different variations of the clean to ensure all round 

development and technical competence.  

 

 

Due to copyright the full article cannot be presented in this version of the thesis 
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7.1 Study 4 Commentary 

While the range of loads (60, 70 80% 1RM power clean) may initially appear to result in a notable 

difference in loads, and is in line with loading parameters in previous studies, in reality this resulted 

in a mean barbell mass of 30.9 kg, 36.0 kg and 41.2 kg, respectively. With such small changes in 

barbell mass (~5 kg), and a change in system mass of ~5% it is not surprising that the differences in 

kinetic variables between loads was not statistically significant. 
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Determination of Optimal Loading during the Power Clean, in Collegiate 

Athletes 

Paul Comfort, Caroline Fletcher & John. J. McMahon  

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, UK.  

Abstract 

Although previous research has been performed in similar areas of study, the optimal load for the 

development of peak power during training remains controversial, and this has yet to be established 

in collegiate level athletes. The purpose of this study was to determine the optimal load to achieve 

peak power output during the power clean in collegiate athletes. Nineteen male collegiate athletes 

(age 21.5 ± 1.4 years; height 173.86 ± 7.98 cm; body mass 78.85 ± 8.67 kg) performed three 

repetitions of power cleans, while standing on a force platform, using loads of 30, 40, 50, 60, 70 

and 80% of their pre-determined 1RM power clean, in a randomised, counter-balanced order. Peak 

power output occurred at 70% 1RM (2951.7 ± 931.71 W), which was significantly greater than the 

30% (2149.5 ± 406.98 W, p=0.007), 40% (2201.0 ± 438.82 W, p=0.04) and 50% (2231.1 ± 501.09 

W, p=0.05) conditions, although not significantly different when compared to the 60% and 80% 

1RM loads. In addition force increased with an increase in load, and peak force occurred at 80% 

1RM (1939.1 ± 320.97 N), which was significantly greater (p<0.001) than the 30, 40, 50 and 60% 

1RM loads, but not significantly greater (p>0.05) than the 70% 1RM load (1921.2 ± 345.16 N). In 

contrast there was no significant difference (p>0.05) in rate of force development across loads. 

When training to maximise force and power it may be advantageous to use loads equivalent to 70-

80% of 1RM in an attempt to maximise training adaptations and athletic performance. 

 

Due to copyright the full article cannot be presented in this version of the thesis 
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8.1 Study 5 Commentary 

The findings of this study were in line with hypotheses and previous research, demonstrating that 

peak power output occurs at 70% 1-RM power clean, although this was not significantly (p>0.05) 

different to loads ±10% of the load that elicited peak power (Kawamori and Haff, 2004; Haff et al., 

2005; Kawamori et al., 2005; Cormie et al., 2007c; Cormie et al., 2007e; Kilduff et al., 2007).    
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The Effect of Loading on Kinematic and Kinetic Variables during the Mid-

Thigh Clean Pull 

Paul Comfort, Rebecca Udall & Paul. A. Jones.  

Directorate of Sport, Exercise and Physiotherapy, University of Salford, Greater Manchester, 

UK.  

Abstract 

The ability to develop high levels of muscular power is considered a fundamental component 

for many different sporting activities; however the load that elicits peak power still remains 

controversial. The aim of the current study was to determine at which load peak power output 

occurs during the mid-thigh clean pull. Sixteen participants (Age 21.5 ± 2.4 years; height 

173.86 ± 7.98 cm; body mass 70.85 ± 11.67 Kg) performed mid-thigh clean pulls at 

intensities of 40, 60, 80, 100, 120 and 140% of 1 repetition maximum (1RM) power clean in 

a randomised and balanced order using a FT700 ballistic measurement system incorporating a 

force plate and linear position transducer to assess velocity, displacement, peak power, peak 

force (Fz) and rate of force development (RFD). Intra-class correlations for each dependant 

variable demonstrated high reliability (r>0.935, p<0.001), at each intensity; although RFD, 

showed only a moderate reliability (r=0.619, p=0.012). Significantly greater Fz occurred at a 

load of 140% (2778.65 ± 151.58 N, p<0.001), RFD at a load of 120% (26224.23 ± 2461.61 

N.s
-1

, p=0.004), where as peak velocity (1.693 ± 0.042 m.s
-1

, p<0.001) and peak power 

(3712.82 ± 254.38 W, p<0.001) occurred at 40% 1RM.  The results indicate that increased 

loading results in significant (p<0.001) decreases in peak power and peak velocity during the 

mid-thigh clean pull; below peak values obtained at an intensity of 40% 1RM. Moreover, if 

maximising force production is the goal then training at a higher load may be advantageous, 

with peak Fz occurring at 140% 1RM.  
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9.1 Study 6 Commentary 

This study was a progression from studies 2 and 3 to investigate the effect of loading on force 

time characteristics during the MTCP. As studies 2 and 3 showed no significant differences 

in kinetic variables between the MTCP and the mid-thigh power clean, the MTCP was 

selected as it permits loads >100% 1RM power clean, therefore allowing a greater range of 

loads to be studied. 

During the initial submission of the manuscript RFD measures included peak RFD, mean 

RFD and mean RFD from 0-100 ms, 0-200 ms and 0-250 ms, however, only peak RFD was 

reliable (ICC ≥ 0.80) within session. This is in line with recent findings by Haff et al. (2015) 

who reported that peak RFD was the most reliable measure of RFD during the isometric 

MTCP. The reviewers, therefore, recommended that only peak RFD was reported and the 

other RFD variables deleted from the manuscript. A further suggestion, from the reviewers, 

was to look at impulse across different time frames, as included in the final manuscript, as 

these variables demonstrated good within session reliability. 
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10 DISCUSSION 

Numerous variations of the power clean are regularly incorporated into the strength and 

conditioning programmes of athletes, however, there is a distinct lack of evidence to inform 

strength and conditioning coaches on the potential benefits of the primary power clean 

variations. The aims of this series of investigations was to compare the kinetic variables 

(peak force, peak rate of force development (RFD) and peak power) during selected 

variations of the power clean (power clean, hang power clean, mid-thigh power clean and 

mid-thigh clean pull (MTCP)), to identify which of these variations are optimal for the 

development of force time characteristics. An additional aim was to determine if load has the 

same effect on kinetic variables, during the power clean, as previously reported in well 

trained athletes, in inexperienced athletes. A further aim was to identify which loads optimise 

the different force time characteristics, during the preferred power clean variation (MTCP - as 

identified in studies 2 and 3), to help to fully inform strength and conditioning practitioners 

when selecting appropriate variations of the power clean and to inform the process of 

selecting the appropriate loads to elicit the desired force time characteristics during training. 

 

The reliability study (Study 1) highlighted that, in line with hypothesis 1, all kinetic variables 

are highly reliable both within (ICC ≥0.969) and between sessions (ICC ≥0.988). Subsequent 

findings demonstrated that the MTCP and mid-thigh power clean are preferential in terms of 

acutely maximising kinetic performances when compared to the other derivatives of the 

power clean (power clean and hang power clean), as they result in the greatest peak force, 

peak RFD and peak power (Study 2 & 3), in line with hypotheses 2 and 3. These findings are 

comparable to previous observations of Olympic lifters which revealed that the second pull 

phase of the clean results in the greatest force (Enoka, 1979; Hakkinen et al., 1984; 
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Garhammer and Gregor, 1992; Souza et al., 2002) and power (Garhammer, 1979, 1980, 1982, 

1985). As previously mentioned however, by the time the second pull commences the bar has 

already gained momentum, therefore it is unsurprising that the highest power output occurs 

during this phase, especially if assessed via bar velocity. Interestingly, even though the bar 

has already gained momentum, peak force has also been observed to occur during the second 

pull phase of the clean and clean pull (Enoka, 1979; Hakkinen et al., 1984; Garhammer and 

Gregor, 1992; Souza et al., 2002), although until studies 2, 3 and 4, no previous research had 

compared the effect of the different start positions (from the floor, knee and mid-thigh), on 

kinetic variables, during the power clean variations.  

 

The higher peak force observed during the mid-thigh variations, is likely a result of the 

individuals intent to accelerate the bar and the reduced time to apply force and displace the 

bar from mid-thigh when compared to the other start positions (from the floor and from the 

knees).  The greater force production, combined with the reduced duration to apply force, is 

the likely result of the greater peak RFD observed in when the lifts are performed from mid-

thigh. Moreover, the greater force applied at a higher rate (increased RFD) to the mass of the 

system would result in an increased impulse and therefore acceleration of the system COM, 

as explained by Newton’s second law (F=MA). The greater acceleration of the system COM 

would therefore result in a higher peak velocity of system COM, resulting in the higher peak 

power outputs observed from the mid-thigh position. 

 

Our findings have been further supported by Suchomel et al. (2014c), who compared kinetic 

variables (peak force, peak power and peak velocity of system COM) during the jump shrug, 

hang power clean and high pull, performed at different loads (30, 45, 60 and 80% 1-RM hang 
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power clean). Their study demonstrated the greatest peak power and velocity of system COM 

occurred during the jump shrug, when performed at 30% 1-RM, compared to the hang power 

clean and high pulls and compared to other loads, with a progressive increase in peak force as 

loading increased.  

 

In contrast to the previously mentioned findings in well trained males (Studies 2 and 3), it 

was observed that changing load and power clean variations resulted in no kinetic differences 

in inexperienced female collegiate athletes (Study 4); contrary to hypothesis 4. As the mid-

thigh power clean is the least technical variation of the power clean, when compared to the 

power clean and hang power clean, a greater difference between variations was expected, 

with the MTCP expected to demonstrate the greatest values in the kinetic variables compared 

to the hang power clean and power clean, irrespective of load, based on the findings of 

studies 2 and 3. The absence of significant differences in kinetic variables, between loads, is 

likely to be attributable to small absolute changes in barbell mass (~5 kg), resulting in a 

change in system mass of ~5%. While the range of loads (60, 70 80% 1RM power clean) may 

initially appear to result in a notable difference between loads, and is in line with loading 

parameters in previous studies (Kawamori and Haff, 2004; Kawamori et al., 2005; Cormie et 

al., 2007d; Cormie et al., 2007e; Kilduff et al., 2007), in reality this resulted in a mean barbell 

mass of 30.9 kg, 36.0 kg and 41.2 kg, respectively.  

 

Based on the findings of study 4, it is suggested that loads of 60-80% 1-RM power clean can 

be used interchangeably, in inexperienced female athletes, without a resultant decrease in 

kinetic values. It is therefore recommended that loading be adopted in a linear periodized 

approach, starting with the lighter loads and gradually progressing to the heavier loads as 
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technique improves. Moreover, as the study showed no difference in kinetics between 

variations of the power clean, in inexperienced female athletes, it may be beneficial to alter 

the variation of the lift performed during each training session, so that athletes’ develop 

competency in each variation of the lift and reduce monotony within the athletes’ training 

programme. 

 

As hypothesised, study 5 revealed that peak power output was achieved at a load of 70% 1-

RM, although this was not significantly (p>0.05) different when compared to the 60% and 

80% 1-RM loading conditions, in inexperienced athletes. These findings are in line with 

results of previous research investigating the effects of loading, during the power clean, in 

well trained athletes where no significant (p>0.05) differences were observed ±10% of the 

load that elicited the greatest peak power (Cormie et al., 2007c; Cormie et al., 2007d). It may 

be beneficial, therefore, to progressively increase loading from 60-80% 1-RM as the athletes 

experience level and competence increases. The lighter loads may allow the athlete to focus 

more on ensuring appropriate technique, rather than focussing on lifting the load, therefore 

enhancing technical competency, without noticeably reducing the force time characteristics 

during the lift, which will be highly beneficial in athletes inexperienced in performing these 

exercises.  

 

 

Importantly, the MTCP eliminates the catch phase of the power clean, therefore permitting 

the use of loads >100% 1-RM power clean. When loads of 120-140% 1-RM power clean are 

used, during the MTCP significantly, greater peak force, peak RFD and impulse occur when 
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compared to loads ≤100% 1-RM power clean (Study 6), in line with hypothesis 7. These 

increases in peak force and RFD, observed with an increase in load, are in line with previous 

studies identifying the effect of loading on the power clean (Cormie et al., 2007c; Cormie et 

al., 2007e), hang power clean (Kawamori et al., 2005; Kilduff et al., 2007) and the MTCP 

(Kawamori et al., 2006), although none of these studies used loads as high as in the present 

study. Only Kawamori et al. (2006) used loads above 90% 1-RM, although they stopped at 

120% 1-RM. Previous research has also demonstrated similar trends in terms of peak RFD, 

with a progressive increase in peak RFD with an increase in load during the hang power clean 

(Kawamori et al., 2005; Kilduff et al., 2007). In contrast however, Kawamori et al. (2006) 

reported a progressive, although non-significant (p>0.05) decline in peak RFD as load 

increased.  

In contrast to the increase in peak force and peak RFD with an increase in load, during the 

MTCP (Study 6), peak power, bar displacement and bar velocity demonstrated a progressive 

decline as load increased. Peak power, bar displacement and bar velocity occurred at loads of 

40-60% 1-RM power clean, as hypothesised, although <40% 1-RM was not assessed. In line 

with our findings, Suchomel et al. (2013) recently investigated the effects of loading during 

the jump shrug exercise, reporting that 30% 1-RM hang power clean resulted in the greatest 

velocity of COM and peak power, compared to loads of 45, 65, 80% 1-RM. The kinematics 

of the jump shrug is similar to the MTCP in terms of the concentric phase; although the 

authors had the subjects initiate the activity with a countermovement, with the obvious 

difference being that the subjects leave the ground at the end of the concentric phase during 

the jump shrug. Irrespective of this variation in technique, the greatest peak power was 

achieved at the lowest load, similar to Study 6 and previous research using the MTCP 

(Kawamori et al., 2006) and squat jump (Stone et al., 2003a; Cormie et al., 2007a; Cormie et 

al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Cormie et al., 2008; McBride et al., 
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2011). The potential benefits of using a low load to elicit peak power is important as it 

highlights that athletes do not always need to use near maximal loads in order to enhance 

their athletic development; further highlighting the importance of the intention to move 

quickly (Behm and Sale, 1993). Such strategies may be beneficial in aiding in injury risk 

reduction and the reduction of total work volume during tapering, or periods of intensive 

competition when training volumes may need to be reduced to facilitate recovery between 

competitions, although maintenance of force production is essential. 

 

The fact that peak bar velocity shows comparable trends to peak power output, with a 

progressive decline as load increased, is extremely valuable, as strength and conditioning 

coaches that do not have access to force plates could potentially use bar velocity to identify 

the optimal loads, and occurrence of fatigue during training when using the MTCP. While it 

is acknowledged that there are issues with assessing power output using bar velocity, using 

inverse dynamics (Cormie et al., 2007a; Cormie et al., 2007c; Cormie et al., 2008; McBride 

et al., 2011; Lake et al., 2012), as discussed in detail in Chapter 3.1, the use of linear position 

transducers, in an applied setting, can provide rapid feedback to the coach and athlete 

regarding performance during a training session. In such a situation the focus should be on 

bar velocity, rather than calculating power output from bar velocity (inverse dynamics), to 

identify fatigue  (terminating a set once bar velocity decreases >10% (Baker and Newton, 

2007)), or optimal loading. Identifying fatigue during each set of an exercise is important 

when using loads that differ from the usual high loads recommended for training power as, 

Thomasson and Comfort (2012) and Comfort et al. (2013a) identified that a greater number 

of repetitions (~10 repetitions) can be performed, than normally recommended ≤6 repetitions 

(Stone et al., 2007; Baechle et al., 2008; Cormie et al., 2011b; Haff and Nimphius, 2012), 

when using the load that elicits peak power output (body mass, no external load) and loads 
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≤40% 1-RM, during the squat jump. It should be acknowledged, that in such situations, the 

strength and conditioning coach should provide appropriate coaching and feedback to ensure 

that the athlete does not increase bar velocity via changing their technique (e.g. excessive 

elbow flexion during the MTCP). 

 

Importantly, the significant differences (p<0.05) observed between the variations of the 

power clean (Study 2 & 3), between loads of the power clean (Study 5) and between loads 

during the mid-thigh clean pull (Study 6) were all greater that than the SDD’s reported in 

study 1. The magnitudes of these differences, therefore, highlight a meaningful difference in 

kinetic variables between exercises and loads. It should be acknowledged, however, that 

these SDD’s were extremely low and may be due to the fact that strict controls were put in 

place during each testing session and between testing sessions; including visual analysis of 

force time curves to ensure that the force traces were representative of a power clean. For 

calculation of peak power output, using forward dynamics, it was essential that the force time 

data represented a stable system mass prior to commencement of the lift, furthermore it was 

essential that two clear peaks occurred, during the concentric phase of the lift, illustrating the 

first pull and second pull respectively. Any trials that did not meet these criteria were 

discounted and repeated after an appropriate rest period. Such strict criteria improve the 

scientific rigour of data collection procedures, but may actually reduce ecological validity; as 

such strict controls are unlikely to be used in a real world environment, especially when 

working in team sports with large numbers of athletes. It is likely that the implementation of 

such criteria dramatically improved the reliability and therefore resulted in such small SDD’s 

for each variable. 
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It should be noted, however, that the other variations of the power clean do have their 

advantages, and should be used accordingly. In general, the power clean permits athletes to 

uses heavier loads than the other versions of the power clean (mid-thigh power clean and 

hang power clean). This is because the bar is displaced further during the power clean, 

permitting additional time for force to be applied to the bar, which results in greater 

acceleration and therefore greater peak vertical displacement of the bar, which in turn results 

in a successful catch with a higher load (Kelly et al., 2014). The hang power clean, begins 

with a countermovement where the knees slide back under the bar (also referred to as the 

‘double knee bend’, ‘scoop’ or ‘transition’), which is suggested to train the stretch shorten 

cycle (SSC) (Enoka, 1979; Isaka et al., 1996), although more research is required to 

substantiate this claim. If the SSC is stimulated it would be feasible to expect that the power 

output would be greater than during the mid-thigh versions of the exercise, however, greater 

peak force, peak RFD and peak power were not observed during our studies. The transition 

phase, therefore, warrants further research to determine if the SSC is effectively trained using 

the hang power clean. In addition, both the power clean and the clean incorporate the 

transition phase and also exhibit a force time curve which represents an unweighting phase 

similar to that of a countermovement jump (Garhammer, 1980; Garhammer, 1985; 

Garhammer and Gregor, 1992), therefore it would be beneficial to determine if the SSC is 

appropriately stimulated during the power clean and clean.  

 

In proficient lifters, the clean (sometimes referred to as the squat clean), also permits a higher 

load to be lifted when compared to the power clean variations; due to the greater squat depth 

during the catch the bar does not have to be displaced as far as when compared to the power 

clean. The catch phase of the clean may be useful in training general athleticism, as it relies 

on a rapid transition from rapid high force concentric muscle action (pull phase) which takes 
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0.66-0.76 s (Garhammer, 1985), to rapid lengthening of the muscles (rapid descent phase) 

lasting 0.32-0.38 s (Garhammer, 1985),  followed by a rapid isometric muscle action (catch 

phase). Similar qualities, however, may be trained through a variety of plyometric tasks, 

albeit without such external loads.  

 

 

10.1 Practical Application 

When incorporating the MTCP into different training mesocycles, it would be useful to use 

heavier loads during the strength phases, progressing from 120-140% 1-RM power clean, or 

possibly higher loads, to maximise peak force production and peak RFD. Based on the size 

principle, such high loads are also likely to recruit high threshold motor units (Henneman et 

al., 1974; Schmidtbleicher and Haralambie, 1981; Sale, 1987; Henneman, 1991) and are 

therefore likely to enhance the development of both force and RFD (Wilson et al., 1993; 

McBride et al., 2002; Harris et al., 2008). In contrast, during power mesocycles, it would be 

advantageous to progressively reduce load to 40-60% 1-RM power clean, to elicit the greatest 

movement velocity and peak power, during either the MTCP or mid-thigh power clean. 

Strength and conditioning coaches should note, however, that some lower load, higher 

velocity movements should be included during the strength mesocycles, and some high load 

activities should be included during the power mesocycles to ensure that movement velocity 

and maximal force production, respectively, are maintained (Newton and Kraemer, 1994; 

Newton et al., 2002; Cormie et al., 2011b; Haff and Nimphius, 2012). This combined 

approach, with an emphasis on either movement velocity or force production, although not at 

the expense of the other, appears to be the most productive approach to maximising power 
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output (Kaneko et al., 1983; Wilson et al., 1993; Toji et al., 1997; Toji and Kaneko, 2004; 

Cormie et al., 2011b; Haff and Nimphius, 2012). 

 

The findings of this series of studies clearly illustrates that while the power clean is beneficial 

in terms of developing athleticism it is not essential that the catch phase be used when aiming 

to maximise peak force, peak RFD and peak power. Athletes could rely on the MTCP, which 

also permits the use of higher loads (>100% 1-RM) during strength mesocycles. These 

findings have recently been confirmed for other power clean derivatives, namely the jump 

shrug and hang high pull (Suchomel et al., 2013; Suchomel et al., 2014a; Suchomel et al., 

2014b; Suchomel et al., 2014c). Additionally, along with such strategies now being 

incorporated in to athletes’ training programmes, published reviews are also recommended 

similar applications of these findings to maximise force time characteristics during athletes 

training programmes (DeWeese and Scruggs, 2012; DeWeese et al., 2013; Suchomel and 

Sato, 2013). 
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10.2 Ongoing Research 

10.2.1 Citations 

These combined publications have been cited >60 times (Table 10.1) and influenced the 

publication of a series of other related publications (See section 10.2.2 Impact in the field) 

Table 10.1 Citations for each publication 

Publication Number of Citations 

(Google Scholar 18/01/15) 

Comfort, P, Allen, M, and Graham-Smith, P. Comparisons of 

peak ground reaction force and rate of force development 

during variations of the power clean. J Strength Cond Res 25 

(5): 1235-1239, 2011 

23 

Comfort, P, Allen, M, and Graham-Smith, P. Kinetic 

comparisons during variations of the power clean. J Strength 

Cond Res 25 (12): 3269–3273, 2011 

18 

Comfort, P, Fletcher, C, and McMahon, JJ. Determination of 

optimal loading during the power clean, in collegiate athletes. J 

Strength Cond Res 26 (11): 2970–2974, 2012 

12 

Comfort, P, Udall, R, and Jones, PA. The effect of loading on 

kinematic and kinetic variables during the mid-thigh clean pull. 

J Strength Cond Res 26 (5): 1208–1214, 2012 

8 

Comfort, P. Within-and between-session reliability of power, 

force, and rate of force development during the power clean. J 

Strength Cond Res 27 (5): 1210–1214, 2013 

4 

Comfort, P, McMahon, JJ, and Fletcher, C. No kinetic 

differences during variations of the power clean in 

inexperienced female collegiate athletes. J Strength Cond Res 

27 (2): 363–368, 2013 

1 
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10.2.2 Influence in the field 

Since the publication of the studies within this thesis three additional related studies have 

been published developing this theme of research, by Suchomel and colleagues based at East 

Tennessee State University, which support our observations: 

� Suchomel, T.J., Beckham, G.K. and Wright, G.A. (2014). The Impact of Load on 

Lower Body Performance Variables during the Hang Power Clean. Sports 

Biomechanics, 13(1), 87-95. 

� Suchomel, T.J., Wright, G.A., Kernozek, T.W. and Kline, D.E. (2014). Kinetic 

Comparison of the Power Development between Power Clean Variations. The Journal 

of Strength & Conditioning Research, 28 (2): 350-360. 

� Suchomel, T.J., Beckham, G.K. and Wright, G.A. (2013). Lower Body Kinetics 

During the Jump Shrug: Impact of Load. Journal of Trainology, 2: 19-22. 

 

In addition, these studies have been cited by a number of published reviews relating to 

coaching the Olympic lifts and their derivatives, development of strength and power and the 

rehabilitation of injured athletes:  

� Maloney, S.J., Turner, A.N. and Fletcher, I.M. (2014). Ballistic Exercise as a Pre-

Activation Stimulus: A Review of the Literature and Practical Applications. Sports 

Medicine. E-pub ahead of print. 

� Suchomel, T.J., DeWeese, B.H., Beckham, G.K., Serrano, A.J. and Sole, C.J. (2014). 

The Jump Shrug: A Progressive Exercise into Weightlifting Derivatives. Strength & 

Conditioning Journal, 36 (3): 43-47 

� Suchomel, T.J. and Sato, K. (2013). Baseball Resistance Training: Should Power 

Clean Variations Be Incorporated? Journal of Athletic Enhancement., 2 (2). 

� DeWeese, B.H., Serrano, A.J., Scruggs, S.K. and Burton, J.D. (2013). The Mid-thigh 

Pull: Proper Application and Progressions of a Weightlifting Movement Derivative. 

Strength & Conditioning Journal, 35 (6): 54-58. 
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� VanGelder, L.H., Hoogenboom, B.J. and Vaughn, D.W. (2013). A Phased 

Rehabilitation Protocol for Athletes with Lumbar Intervertebral Disc Herniation. Int J 

Sports Phys Ther, 8 (4): 482-516. 

 

Our own research is still progressing in these areas, with articles in press or currently under 

review, including some external collaboration:  

� Comfort, P., Mather, D. and Graham-Smith, P. (2013). No Differences in Kinetics 

between the Squat Jump, Push Press and Mid-Thigh Power Clean. Journal of Athletic 

Enhancement. 2(6). 

� Comfort, P., Jones, P.A., McMahon, J.J. and Newton, R. (2015). Effect of Knee and 

Trunk Angle on Kinetic Variables during the Isometric Mid-Thigh Pull: Test-Retest 

Reliability. Int J Sports Physiol Perform. 10 (1): 58-63 

� Lake, J.P., Mundy, P.D. and Comfort, P. (2014). Power and Impulse Applied During 

Push Press Exercise. J Strength Cond Res. 28 (9): 2552-2559. 

� Suchomel, T. J., Comfort, P. & Stone, M. H. Weightlifting Derivatives: rationale for 

Implementation and Application. Sports Medicine. In Press 

� Comfort, P. Jones, P. A. And Udall, R. The Effect of Load and Sex on Kinetic and 

Kinematic Variables during the Mid-Thigh Clean Pull. Sports Biomechanics. In press 

� Comfort, P. Mundy, P. D., Graham-Smith, P., Jones, P. A., Smith, L. C. And Lake, J. 

P. Comparison of Peak Power Output during Exercises with Similar Lower-limb 

Kinematics. Sports Biomechanics. Under review 

 

In addition to the published reviews recommending similar applications of the findings of this 

thesis (DeWeese and Scruggs, 2012; DeWeese et al., 2013; Suchomel and Sato, 2013), these 

findings are being applied in athletes training programmes. 
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10.3 Limitations 

Very small SDD values observed during study 1 may be due to the fact that strict controls 

were put in place during each testing session and between testing sessions, including visual 

analysis of force time curves to ensure that the force traces were representative of a power 

clean. In order to calculate peak power, using a forward dynamics approach, it was essential 

that the force time data represented stable system mass prior to commencement of the lift. In 

addition, the criteria to determine a ‘good performance’ was visual observation of the lift and 

visual inspection of the force time curve which was required to show two clear peaks 

occurred during the concentric phase of the lift, illustrating the first pull and second pull 

respectively. Any trials that did not meet these criteria were discounted and repeated after an 

appropriate rest period. Such strict criteria improve the scientific rigour of data collection 

procedures, but actually reduce ecological validity as such strict controls are unlikely to be 

used in a real world environment, especially when working in team sports with large numbers 

of athletes. It is likely that the implementation of such criteria dramatically improved the 

reliability and therefore resulted in such small SDD values for each variable.  

Studies 2-3 only used a load of 60% 1-RM power clean, which may slightly bias the results 

towards the MTCP, as research by Kawamori et al. (2006) showed that peak power occurred 

in this loading conditioning, although this was not significantly different (p>0.05) to peak 

power output at 30, 90 and 120% 1-RM power clean. In contrast, peak force progressively 

and significantly (p<0.05) increased with load with the greatest force produced at 120% 1-

RM, similar to our findings in Study 6. Cormie et al. (2007c; , 2007e) reported that peak 

power in the power clean occurred at 80% 1-RM, whereas Kawamori et al. (2005) and 

Kilduff et al. (2007) reported that peak power in the hang power clean occurred at 70% and 

80% 1-RM, respectively. It is worth noting that there were no significant differences (p>0.05) 

in peak power output between loads of 50-90% 1-RM in any of these studies, therefore any 
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bias towards the MTCP should be minimal, and based on the results of the aforementioned 

studies, non-significant. In addition, Study 4 demonstrated no significant differences in 

kinetic variables, based on load (60, 70, 80% 1-RM power clean) or variation of the clean, 

albeit in female athletes who were inexperienced in performing the power clean. 

 

Furthermore, it could be argued that when comparing the power clean, hang power clean and 

mid-thigh power clean, the loads used for each variation should be relative to the 1-RM for 

that specific variations. This approach was not used however, as this would have resulted in 

different loads for each variation of the clean and therefore it would not have been possible to 

identify if any differences in kinetic variables was due to power clean variation or load, 

whereas with a standardised load only the exercise variation could affect the kinetic variables. 

More recently, we have demonstrated that 1-RM power clean performance, does indeed result 

in a higher load lifted compared to the hang power clean (performed from the knee) (6.63%) 

and the mid-thigh power clean (7.35%) (Kelly et al., 2014). As previous research has shown 

no differences in kinetic variables ±10% of the optimal load (Kawamori and Haff, 2004; 

Kawamori et al., 2005; Kawamori et al., 2006; Cormie et al., 2007c; Cormie et al., 2007e; 

Hori et al., 2007; Kilduff et al., 2007; McBride et al., 2011), such differences (<10%) in 

loading are unlikely to significantly affect the kinetics during these lifts. The approach used 

also increased ecological validity, as most strength and conditioning coaches would usually 

select training loads for these exercises based on either a 1-RM power clean or hang power 

clean and would be unlikely independently assess 1-RM performance in each variation of the 

power clean.  
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Studies 1-5 also relied on subjects holding the load off the floor for one second, prior to 

commencing the exercise, which will slightly reduce ecological validity, as the load would 

usually start on the floor during the power clean. However, to ensure that the conditions were 

comparable between variations of the power clean it was essential that the subjects were 

already under tension during the power clean, as this is how the MTCP, mid-thigh power 

clean and hang power clean begin. More importantly, it is also essential that the system mass 

is applied to the force plate, prior to the commencement of the activity, to permit calculation 

of velocity of system centre of mass and therefore power using forward dynamics (Cormie et 

al., 2007a; Cormie et al., 2007c; Cormie et al., 2007b; Cormie et al., 2007e; Hori et al., 2007).  

 

While Study 4 showed no significant differences (p>0.05) in kinetic variables, between load 

or power clean variation, in inexperienced female collegiate athletes, these differences were 

greater than the SDD’s reported both within and between session for the power clean (Study 

1). It must be noted, however, that the resultant SDD’s in Study 1 were for the power clean 

only and used well trained rugby league players. The absence of significant differences in 

kinetic variables, between loads, is likelt to be attributable to small absolute changes in 

barbell mass (~5 kg), resulting in a change in system mass of ~5%. Future research, therefore, 

should examine a greater range of loads using increments of 15% 1RM. 

 

These studies have identified the acute kinetic advantages of the use of the mid-thigh power 

clean and MTCP, the potential chronic benefits and adaptations to such training modalities, 

using an intervention study, have not been investigated. It is likely that a greater adaptive 

response would be likely to occur from to performing the mid-thigh power clean and MTCP, 

compared to the power clean and hang power clean, due to the higher kinetic values during 
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the mid-thigh power clean and MTCP. In addition performing the MTCP at higher loads 

(120-140% 1RM) is also likely to result in greater increases in peak force and peak RFD 

compared to the other variations of the power clean due to the ability to use higher loads 

(>100% 1RM) which acutely result in the greatest peak force and peak RFD. Based on the 

size principle, such loads are likely to recruit high threshold motor units (Henneman et al., 

1974; Schmidtbleicher and Haralambie, 1981; Sale, 1987; Henneman, 1991), especially when 

the intention is to move as quickly as possible (Behm and Sale, 1993) and are therefore likely 

to enhance both force and rate of force development (Wilson et al., 1993; McBride et al., 

2002; Harris et al., 2008). Future studies need to determine if the chronic use of such clean 

variations and loading parameters results in a greater adaptive response in terms of force time 

characteristics and architectural changes to lower limb musculature and more importantly 

athletic performance. 

 

The kinetic observations are likely to be similar in Olympic weightlifters, as they are in line 

with the trends reported previously in such populations (Enoka, 1979; Garhammer, 1979; 

Garhammer, 1980; Garhammer, 1982; Hakkinen et al., 1984; Garhammer, 1985; Garhammer, 

1991; Garhammer, 1993; Souza et al., 2002). However, a primary focus for Olympic 

weightlifters is to ensure maximal displacement of the bar, with an appropriate bar path, to 

permit a successful catch phase with a maximal load, rather than focussing on performing the 

exercise variation and load that maximises lower body power output. Therefore, while some 

team sport and individual athletes could, potentially, perform variations of the clean which do 

not rely on learning to catch the bar in a power clean or full depth position Olympic 

weightlifters must regularly perform the full lift, or drills to enhance their technique during 

the catch phase.  
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While the subject population for each study was homogenous, to meet the assumptions 

required for parametric testing, which may limit the ability to generalise the findings to other 

populations, the subjects for each study were different which should enhance the ability to 

generalise these findings. For example, studies 2 and 3 both used well trained professional 

rugby league players, although the subjects in each study were different; both studies 

demonstrated similar trends. Similarly, studies 4 and 5 both used novice collegiate level 

athletes, and while study 4 used females and 5 used males, both studies demonstrated similar 

findings, with no significant differences (p>0.05) in kinetic variables across loads of 60, 70 

and 80% 1-RM power clean. It is also noteworthy that the subjects used in studies 1, 2 and 3 

are representative of many team sport athletes in terms of their relative strength levels and 

training experience, while the subjects used in studies 4, 5 and 6 are representative of 

collegiate athletes (in the United Kingdom), and as such the findings of these studies should 

be applicable to both categories of athletes. Further research with better trained (stronger 

more experienced) athletes, to determine if these trends are consistent in such populations, is 

suggested. 

 

 

10.4 Areas of Future Research 

The primary aim for the future development of this study area should be to integrate the 

MTCP into a power training mesocycle to compare if the resultant adaptations are greater 

when compared to the other variations of the clean. It is suggested that the mid-thigh 

variations of the power clean will result in greater increases in athletic development 

compared to the power clean and hang power clean, due to the greater peak force, peak RFD 

and peak power achieved during the mid-thigh variations of the power clean. 
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Further comparisons of the kinetics during clean pull variations (clean pull, hang clean pull, 

MTCP) across a range of loads, progressing to loads ≥140% 1-RM power clean would also 

add to the developing body of knowledge in this area. It is likely that the trends between the 

clean pull variations will be similar to the trends observed between power clean variations in 

this thesis, as the concentric phases are identical. Due to the clean pull variations omitting the 

catch phase, it would be interesting to see if such trends occur as load increases. Such studies 

would be beneficial to inform strength and conditioning coaches regarding the effects of 

exercise variation and loading on specific force time variables, which would help to ensure 

appropriate evidence based exercise selection. 

 

In addition kinetic comparisons between the power snatch variations (power snatch, hang 

power snatch, power snatch from the hip) would be advantageous, to determine if the trends 

are similar to the kinetics during the clean variations described in this thesis. Moreover, 

comparison of the kinetics during the power clean variations and the power snatch variations 

would also be useful, to inform strength and conditioning coaches regarding exercise 

selection and appropriate loading to emphasise peak force, peak RFD and peak power. 

 

As there appear to be no differences in kinetic variables between loads, when using 10% 

increments (Kawamori and Haff, 2004; Kawamori et al., 2005; Kawamori et al., 2006; 

Cormie et al., 2007c; Cormie et al., 2007e; Hori et al., 2007; Kilduff et al., 2007; McBride et 

al., 2011), future research could use increments of 15-20% 1-RM, as recently used by 

Suchomel et al. (2013, 2014a, 2014c).  
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Each of the six studies in this thesis began with the participants in a static position and 

eliminated any initial lowering of the barbell, however, in the recent studies by Suchomel et 

al. (2013, 2014a, 2014c)  participants performed the hang power clean and the jump shrug 

from an upright position, initiating movement with a countermovement as they lowered the 

bar to the starting position. It would be useful for future research to identify if the addition or 

exclusion of this countermovement affects kinetic variables during such exercises, to 

determine if commencing the activity by starting from a static position, as used in the studies 

included in this thesis, or by initiation of the SSC, is most beneficial for enhancing force time 

characteristics and adaptations to training. 

 

Additionally, due to the high reliability (r≥0.988) and low SDD’s (≤2.5%) observed during 

the kinetic assessment of the power clean (Study 1) and the recent findings of Comfort et al. 

(2014a) which identified similarly high reliability and low SDD’s during the IMTP, it would 

be useful to identify how such measures can be used to identify neuromuscular fatigue and 

adaptations to training. In addition, comparing whether isometric or dynamic assessments are 

more closely related to performance in athletic tasks, or to determine their ability to identify 

neuromuscular fatigue would be useful in applied settings.  
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10.5 Conclusion 

This series of studies has identified that the MTCP and mid-thigh power clean are 

preferential, when compared to the power clean and hang power clean, when aiming to elicit 

the greatest peak force, peak RFD and peak power output. When peak power is the primary 

focus, it would be advantageous to progressively reduce loading to 40-60% 1-RM power 

clean, to elicit the greatest movement velocity and peak power. As there were no differences 

in kinetics during the mid-thigh power clean and MTCP, these exercises may be used 

interchangeably at submaximal loads during power mesocycles. In addition, when aiming to 

maximise peak force and peak RFD the MTCP would be preferential as loads >100% 1RM 

can be used, with loads of 120-140% 1-RM power clean, or possibly higher, resulting in the 

greatest peak force and peak RFD. 

Additionally, the lighter loads (40-60% 1-RM power clean) which elicit peak power output, 

during the MTCP and mid-thigh power clean, may be beneficial for injury risk reduction and 

the reduction of total work volume during tapering, or periods of intensive competition, when 

training volumes may need to be reduced to facilitate recovery between competitions, 

although maintenance of strength is essential. 
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