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ABSTRACT

General Relativity (GR) is Einsteins’ theory of gravity whereby the motions of

bodies are explained due to their following geodesic paths (the shortest distance

between two points) in a curved four dimensional space-time. The curvature being

attributed to the presence of mass

As such there is no explicit force present in this theory, contrary to Newtons’ law

of gravity. However in the limit of GR (where the field is both weak and static and

bodies are travelling with velocities slow compared to that of light), then Newtons’

law is recovered in the approximation.

GR has explained all gravitational phenomena extremely well (eg solar system),

that is until one considers the measured motions of galaxies. The galaxies are

rotating too quickly to be consistent with GR/ Newton.

An explanation for this discrepancy has originally been suggested, concerning the

presence of extra mass, of as yet an unknown nature. However, to date not a hint

of this ‘Dark Matter’ has been detected.

A second explanation is that of Modified Newtonian Dynamics (MOND), whereby

at a certain very small acceleration, the actual gravitational physics deviates from

that described by Newton. The MOND proposal seems to fit extremely well with

observations without the need to invoke the presence of DM.

The main problem with the MOND concept is that it does not fit in with the

standard GR.
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The following work details an exploration into the novel assumption that the

presence of mass is not only responsible for the curvature of space-time but also

for a local expansion of space-time.

By introducing an expansion factor at the very beginning of standard GR analysis,

one finds an extra term appears which is consistent throughout. With the inclusion

of this extra term, one can, in the weak, static and slow velocity limit, find a direct

link to the MOND phenomenology. It is found that the extra term is negligible for

small systems (eg Solar) yet it is the dominant term for large systems (eg galaxies).

The work is published in Physical Review D. ‘Gravitational Theoretical Develop-

ment Supporting MOND’.
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Chapter 1

OVERVIEW

The following work culminates in an novel attempt to modify Einstein’s General

Theory of Relativity (GTR) in order for the new theory to explain the dynamical

behaviour of galactic systems as well as solar systems. The novel approach is to

assume a local expansion of space-time due to the presence of mass which is then

included into the standard GTR analysis (as seen in chapter seven).

The mathematics necessary for GTR, and therefore subsequently the new modified

theory, is that of tensor calculus.

As such this work is set out whereby in chapter two there is a brief outline of

the concepts and historical events leading to the present reason for the possible

necessity of a modified GTR.

In chapter three there is then an outline of the mathematics necessary, namely the

tensor calculus.

1



Chapter 1. OVERVIEW 2

Chapter Four then introduces Einstein’s Special Theory of Relativity and explains

why the use of tensors is advantageous within this theory.

In Chapter Five GTR is introduced with direct links back to Chapter Three, since

one is dealing with only a slight mathematical alteration of this chapter together

with a physical interpretation.

Chapter Six explains the problems regarding the observed motions of galaxies.

Chapter Seven is then the tensor analysis of the new theory attempting to solve

the problems encountered in Chapter Six. This modification of the standard GTR

is based on the simple physical assumption that the presence of mass not only

causes a curvature of space-time but also is responsible for a local expansion of it.

The concept of a tensor(any physical or geometrical object that transforms in a

certain definite way) has its origins in the development of differential geometry

[18].

Gauss’s theory of two dimensional surfaces was extended to include any number

of dimensions by Riemann [18].

The invariant differential operations for tensor analysis(tensor calculus or absolute

differential calculus) were developed, as a systematic branch of mathematics, by

Ricci, Levi-Civita and Weyl around the turn of the last century [18] [27]. The

method of tensor calculus allows one to present all physical equations in a form

independent of the choice of reference frame and as such the one can claim that

it is the only possible means of studying conditions of the world which are at the
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basis of physical phenomena, and as such the calculus of tensors is the natural

language of mathematical physics.

The introduction by Minkowski of mathematical space-time to Einstein’s Theory

of Special Relativity [31] [21] [1] made the above observations even more apparent,

and indeed as Einstein developed and formulated his General Theory of Relativity

[21] he found the calculus of tensors invaluable, in fact, one could argue, an absolute

necessity.

The general theory of relativity [21] [17] [30] [19] [25] has applications in the study

of planetary and local stellar motions, the study of the motion of electromagnetic

radiation, the study of the entities named ”black holes”, the study of time itself,

as well as attempts to describe the topology of the universe. However, unless a

postulated, as yet unknown form of mass, can be detected, then GTR fails to

predict the observed motions of galaxies and therefore possibly needs modifying.



Chapter 2

INTRODUCTION

The art of measuring the earth (geodesy) is the source of the doctrine of space,

and derived its name from ’geometry’ which is the Greek word for earth. With the

regular change of day and night, the phases of the moon and the seasons, arose

also the measure of time. These phenomena together with the attention to the

stars, gave birth to the doctrine of the Universe, Cosmology.

The axioms of geometry together with the study of the motions of bodies on earth

and of the ’heavens’ by Ptolemy, Copernicus, Kepler, and Galilei, led to Newton’s

laws motion and his law of gravitation [1] [29], which was a simple inverse square

law which stated that bodies of matter were attracted to one another by means

of a gravitational force which was proportional to the product of their masses and

inversely proportional to their separation. This approach eventually culminates in

Einstein’s theories of first, Special, and then General Relativity.

4



Chapter 2. INTRODUCTION 5

Galilei had realised during his work that there was a principle of relativity [21] [55]

[9] regarding the laws of mechanics (the study of the interactions between matter

and the forces acting on it) in any inertial reference frame (one in which bodies

are free from acceleration). What this principle essentially states is that the laws

of mechanics are the same for any inertial reference frame no matter what the

constant velocity of that frame happens to be, and therefore, in a closed system

it is impossible to determine whether you are moving with a constant velocity or

are totally at rest. However this principle deals solely with mechanics and does

not encompass optics (the study of electromagnetic radiation, ’light’).

The wave theory of ’light’ [9], which had been put on a firm foundation by James

Clark Maxwell, suggested the existence of a medium (to ’carry’ the waves) that

must permeate all of space, and this postulated medium was given the name

’luminiferous ether’.This ether was assumed to be at rest in space.

The search for the ether culminated in the Michelson-Morley experiment [31] [55]

which was an attempt to measure the difference in the speed of light as the earth

travels parallel and then perpendicular to the ether drift velocity. If the ether was

detected it would provide the fixed frame of reference/background for Newton’s

laws.

The results of the experiment failed to show up this ether drift and this was largely

interpreted as revealing that an ether did not exist, although in an attempt to save

the concept of an ether, Fitzgerald suggested a possible interaction between the

ether and objects moving relative to it [55], such that the object became shorter in

all dimensions parallel to the relative velocity. A factor supporting this theory and
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determining this change was derived by Lorentz [55]. Whichever of these two views

is chosen the null result of the Michelson- Morley experiment indicates that all

observers who measure the velocity of light will obtain the same result regardless

of their own velocity through space. The speed of light is thus a constant.

The above consideration led Einstein to conclude that the speed of light does not

depend on the motion of the observer and therefore there is no preferred reference

frame for the laws of physics (contrary to Newton’s laws which assume a fixed

background). Einstein’s concept had therefore introduced optics into Galilean rel-

ativity and since the speed of light was constant, all measurements (lengths and

times) made by observers in different inertial reference frames, when compared

parallel to their relative velocity would actually differ. However each set of mea-

surements would be equally valid. The derived factor (the mathematics) relating

the space and time measurements in any two inertial reference frames is the same

as that derived by Lorentz. It is simply that the physical interpretation of what

is happening is different from the idea put forward by Fitzgerald.

Einstein called his concept, which specifically dealt with inertial reference frames,

the Special Theory of Relativity. The mathematician Minkowski realised that now

space and time were inextricably related, transforms from one inertial frame to

another could be reproduced geometrically, by a simple rotation of Cartesian co-

ordinates in a four dimensional space-time [31]. The invariant quantity in this new

space-time analogous to that of a length in ordinary space under such rotations

(as found using Pythagoras’s theorem) was that of the ’space-time interval’.
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If accelerating frames were to be brought into this relativistic theory then since

any free falling body near the earth is accelerating as measured in a frame at rest

relative to the earth, then gravity would naturally be incorporated into such a

theory. Einstein realised that there is no difference whatsoever between the laws

of physics concerning a body at rest on a large mass and a body which is being

uniformly accelerated in empty space(the Equivalence Principle). Essentially this

principle states the equivalence of gravitational and inertial masses and as such

he realised that there was no need for the idea of a force in order to describe

the motion of bodies within the concept of gravity. It is simply that an inertial

reference frame is one that is free falling within a gravitational field, so both

accelerating and non-accelerating frames can be considered to be at rest.

When a rotating system (which is an accelerating system) is viewed from an inertial

system, with coinciding origins around which a circle is drawn, then, due to the

laws of special relativity, the circumference of the circle will appear to shorten

(length contraction parallel to the motion) whereas the diameter will not. Clocks

placed at the origin and on the circumference will also appear to run differently

(time dilation).

The fact of the length contraction means that the usual relationship in Euclidean

geometry between the constant pi (π) and the circumference of a circle no longer

applies in the accelerated reference frame. The simple conclusion to this ob-

servation is that in the presence of a gravitational field the geometry is not

’flat’(Euclidean). In this situation the geometry is ’curved’. (consider a circle

drawn on the surface of a ball).
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Now that accelerating frames of reference had been brought into the picture, the

theory of Special Relativity could be extended to a General Theory. Due to the

curved geometry which now had to be included, together with the invariance of the

whole concept, in order to formulate such a theory it was natural and necessary to

consider the use of the mathematics of curvilinear co-ordinates, differential geom-

etry and the concept of tensors. A tensor is defined as any physical or geometrical

object that transforms in a certain definite way.

When dealing with purely spacial considerations, Gauss had developed a theory

of two dimensional curved surfaces by means of curvilinear co-ordinates, by which

an infinitesimal area on the curved surface could be considered virtually flat and

a metric or invariant distance could be defined in such a region, and as such, the

full geometry mapped using this metric, also made any choice of co-ordinates for

the surface arbitrary. This was followed by developments of the mathematics in

the form of the general calculus of tensors (a mathematical theory of invariants)

mainly due to Ricci and Levi-Civita [27].

After Riemann had extended Gauss’ idea to any number of dimensions [9], then

by using the interval, as defined in the Special Theory of Relativity, an analogous

system for curved space-time could be conceived. The use of the calculus of tensors

meant this new physics could be formulated in an appropriate manner, whereby all

physical laws could be expressed in such a way that they were independent of any

particular chosen reference frame. It had been his close friend and mathematician

Marcel Grossman whom had suggested the use of tensors which helped Einstein

to formulate his physical theory using the existing mathematics [41].
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What resulted was a formulated gravitational theory with no notion of a force

acting. Bodies were simply following the shortest path they possibly could in

a curved space-time (a geodesic). As such, whereas Newton’s theory explains

gravity as a force attracting two bodies together, Einstein explains gravity as

bodies travelling along geodesics in a curved space-time, the cause of the curvature

being attributed to the presence of the individual bodies or masses.

As Einstein formulated his ’General Theory of Relativity’ he had realised that

in the limit of his theory, where everything was moving slowly compared to the

velocity of light and the gravitational field was both static and weak, that Newton’s

laws must come out in this approximation. This result was achieved within his

analysis.

The tests conducted since that confirm General Relativity as a superior gravita-

tional theory to that of Newton’s consist of:-

1) Deflection of light near a massive body

2) The perihelion of Mercury

3) The Shapiro time delay

4) Gravitational redshift

5) Gravitational lensing (stars)

6) The apparent detection of black holes
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Shortly after Einstein had published his General Theory of Relativity, Herman

Weyl had attempted to generalise it further both mathematically and thus phys-

ically. His mathematical generalisation was to include a comparable length (as

well as a directional) change when vectors were shifted along from point to point

in a curved space-time. He attributed this difference to represent the physical

electromagnetic field [31] [19]. The main failing of this idea was that the small

ambiguities of the length comparisons were too small to be detected. Einstein also

objected on the grounds that he suspected the atomic time and the proper time

from relativity would differ as a result [46].

Since Newton’s laws hold well in every day observations as an approximation to

Einstein’s law, when galaxies were first carefully studied and seen to be rotating,

it was expected that when their rotational velocities were measured (and subse-

quently graphed as velocity rotation curves) and their mass calculated, that the

physics would sit quite nicely with Newton’s laws. However when all the luminous

matter is accounted for, it was found that the observed galaxies were each rotating

as a whole far too quickly for gravity to hold them together [58] [20] [44].

In order to try and explain this discrepancy, it was proposed that there maybe

matter within the galaxies that could not as yet be detected and if this was allowed

for, Newton’s laws would hold. It was suggested that a small percentage of this

matter was ordinary/known matter, whilst the majority was a completely new

form of matter, never before detected [42]. This proposed new substance was

termed ’Dark Matter’ for obvious reasons and was thought to be in the form of

Weakly Interacting Massive Particles ’WIMPS’ [54].
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The possible existence of Dark Matter is still to this day the most popular notion

within the scientific community with which to explain the anomaly and much

money and effort is being used to search for this mysterious and elusive substance

[3].

However around fifty years after the suggestion of Dark Matter, after carefully

studying the galactic motions, Milgrom came up with an alternative suggestion

[37]. The concept was quite simple. Observations of the galaxies seemed to indicate

that their motions followed a different physics to that of Newton’s at a certain

acceleration from the galactic centre (where the accelerations became very small)

and hence as a whole the galaxies were rotating matching this new dynamics.

Milgrom termed the new physics Modified Newtonian Dynamics (MOND) which

has (for the weak accelerations involved) a 1
r

dependence. The concept of MOND

was also backed by an earlier physical observation, the Tully-Fisher relation [53]

which links the luminosity of spiral galaxies to their rotational velocities.

Due to the rotation of a galaxy, an observer will naturally see part of the galaxy

moving towards him and part of the galaxy moving away,thus light will be either

blue shifted or red shifted respectively.

The spectral line of a chosen element will be smeared out due to this motion

and therefore the broader the line the faster the galaxy is spinning. Since the

luminousity (the total amount of energy emitted per unit time) of the galaxy

is directly proportional to its baryonic mass (M), then the total luminousity is

therefore proportional to the rotational velocity (v).
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The Tully-Fisher relationship is found to be M ∝ v4 where the rotational velocity

is independent of the distance.

There are several different types of galaxies (spiral, elliptical, dwarf etc) and al-

though MOND has a very inflexible form it is seen to fit a wide range of indepen-

dent galaxies very well indeed. Whereas the Dark Matter hypothesis has several

free parameters that can appear with any magnitude and with any distribution

for the fits. This fact was well exemplified when attempts were made to fit the

rotation curves of a fake galaxy (the mass distribution of one together with the

rotation curve of another). Having no free parameters MOND cannot fit the curve,

whilst the Dark Matter model can easily fit the fictitious object.

The difficulty about accepting MOND as a complete theory is that there was no

relativistic underpinning to it. Newton’s laws are the approximation in the limit

of Einstein’s General Theory of Relativity. There have been attempts to modify

Einstein’s theory in order to underpin MOND, most notably by Beckenstein [7]

and also Mannheim [24]. However these theories are not wholly satisfactory.

An outline of the mathematics necessary to describe GTR and therefore the new

modification that is presented in Chapter Seven, which incorporates MOND, now

follows.



Chapter 3

TRANSFORMATIONS,

TENSORS AND CURVED

SPACES

3.0.1 Transformations

If time and space are considered absolute entities and are totally independent of

one another, as in the Newtonian description of the world [9], then it is possible

to describe a physical or geometrical object in either space or time separately and

relate the two as and when convenient.

Let us look at the analysis starting with the description of physical and geometrical

objects in space. The subsequent analysis outlines the same arguments as laid out

in [30], [21] and [17].

13
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If in two dimensional Euclidean (’flat’) space, one is to describe a straight line or

vector, a defined origin and co-ordinate system are chosen.

If in two dimensional space the co-ordinate system is Cartesian then one denotes

two orthogonal axes x1 and x2 (which are continuous functions). Then two values

from the origin in both the x1 and x2 co-ordinates axes can be used to specify two

points in the coordinate system in between which an object is located, the object

being that of a straight line or interval (s). The differences (∆) of the x1 values

and of the x2 values (the components) can be used to specify the length of the

straight line. Since moving this vector but keeping it parallel to itself will result

in the same vector, this representation in Euclidean space allows the notion of a

vector which is not necessarily located at a definite point, i.e. a free vector.

The length of the interval can be found using Pythagoras’ theorem.

s2 = ∆x21 + ∆x22 (3.1)

Now, supposing that at the origin the co-ordinate system is rotated (see fig. 3.1)

and the same interval is described using this new co-ordinate system (a type of

transformation [10] [27]), the components (co-ordinate differences) will change

but the interval itself will obviously not. It is covariant under the change of co-

ordinates. The length of the interval is also obviously unchanged and is thus a

scalar invariant.

If Equation 3.1 holds for any orientation then this is what actually defines Eu-

clidean space and Cartesian co-ordinates.
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Figure 3.1: Rotation

The length of a definite interval can be defined to be unity and thus the length

of any other interval can be determined by multiplication of this unit interval and

as such a unit of measure (a metric) has been constructed which is independent

of the co-ordinates. This construction will naturally follow for an infinitely small

interval (ds). Also this form can be extended to any number of dimensions. The

expressions are as follows.

In the case of a general rotational and translational co-ordinate transformation of

Cartesian form the relationship between two co-ordinate systems, x′m and xm is

necessarily linear and of the form,

x′m =
∑
n

amnxn + bm (3.2)

Here the bm is a constant and is the translational shift of the origin. The coordinate

indices m and n would obviously, for three dimensional space, range from 1 to 3
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(giving three equations). The amn are the rotational transformation coefficients

(here they are not functions of the co-ordinates). The x′m can also be thought of

as points in the coordinate systems and so, using the notation above one can show

this transformation of a vector by

∆x′m =
∑
n

amn∆xn (3.3)

On account of the scalar invariance of the length in 3.3 and the definite interval,

one finds that

s2 =
∑
m

∆x2m =
∑
m

∆x′2m (3.4)

One can also express these transformations in matrix form such that equation 3.3

has the equivalent matrix form,

z′ = Az (3.5)

Where, z′ = ∆x′m and A = amn

Matrix algebra involving these transformations leads to,

AAT = AA−1 = I (3.6)

Where,
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AT is the transpose of A, A−1 is the inverse of A, and I is the unit or identity

matrix.

I can be written in component form as

I = δmn =


1 0 0

0 1 0

0 0 1

 (3.7)

again here one is dealing with three dimensions.

The component expression of 3.6 is therefore

∑
m

amnamk = δnk (3.8)

The inverse transformation of 3.3 is

∆xk =
∑
m

amk∆x
′
m (3.9)

This shows that the same coefficients, a, also determine the inverse transformation.

Geometrically amn is the cosine of the angle between the x′ axis and the x axis.

With the use of the δmn the infinitesimal interval can be in differential form as

ds2 =
∑
mn

δmndxmdxn (3.10)
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As the distance s between two points is expressed using Cartesian coordinates

in this very simple manner, then one can say that the Cartesian systems are the

preferred systems in Euclidean geometry. The whole of geometry may be founded

on this concept of distance.

A volume element is another example of an invariant quantity, the determinant is

scaled to unity thus there is no change in volume with respect to a linear orthogonal

transformation. It is independent of the particular choice of Cartesian coordinates

and is therefore invariant.

If one denotes the coordinate differences in 3.3 by a vector, itself in Cartesian

coordinates, say A, one has

A′m =
∑
n

amnAn (3.11)

With m and n now called component indices.

The above equation of a straight line/vector under this transformation, has the

same form for all vectors by which the components change but the vector itself

does not. Vectors therefore also have an objective significance when they are

transformed in Cartesian coordinates. As stated earlier the unit interval can be

used to build any vector by scalar multiplication of the unit interval.

Therefore the equation of a straight line is covariant with respect to linear orthog-

onal transformations.
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In order to condense the writing (thus following the accepted Einstein convention)

the summation sign in any expression is now omitted and it is understood that

the summation in the expression is to be carried out for those indices that appear

twice. The summation indices simply state a sum is to be taken and therefore

they may be changed to any other symbol as and when convenient providing the

new symbol is not already denoting components within the expression.

3.0.2 Tensors

Now, if one has two vectors, Am and Bm and the n2 quantities AmBn are con-

sidered, then under a linear orthogonal transformation, this object will transform

as

A′mB
′
n = amkanlAkBl (3.12)

Or equivalently this can be written as

C ′mn = amkanlCkl (3.13)

An object such as this (which is termed a ’tensor’) may not necessarily be the

product of two vectors but as long as it transforms in exactly this manner it is

defined as a second order/rank tensor (second because of the two indices).

If a tensor is symmetric (eg Amnp = Anmp) or antisymmetric (eg Amnp = −Anmp)

between any pair of indices then this symmetry is preserved upon transformation.
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These transformation laws can be extended to tensors of higher order (third order,

etc) and it is therefore reasonable to term a vector as a first order tensor and a

scalar invariant as a zeroth order tensor.

If one takes the second order tensor, δmn, as defined in 3.7, then under transfor-

mation one has

δ′mn = amkanlδkl = amkank = δmn (3.14)

Now since this particular tensor has components which are the same relative to

all sets of Cartesian coordinates, it is termed the ’fundamental’ tensor of second

order.

New tensors may be formed by addition or subtraction of the corresponding com-

ponents of tensors which are of the same order. The resulting tensor will be one

of the same order, so

Amnp....±Bmnp.... = Cmnp.... (3.15)

Tensors of different or equal order may have their components multiplied together

(an outer product), the resulting tensor will be one which is the sum of the original

orders, so

Amnp....Bqrs.... = Tmnp....qrs.... (3.16)
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A tensor may also be ’contracted’ by means of setting two of its sets of components

equal to one another. It follows then that these sets of components become the

summation and the resulting tensor is now two orders less, so

Ammp.... = Tp.... (3.17)

Tensors may also be formed through differentiation, as such

Amnp.....v =
∂Bmnp....

∂xv
(3.18)

3.0.3 Curvilinear Coordinates and Curved Spaces

Now transformations need not be of the previous special orthogonal category.

Transformations to spherical coordinates (etc) in which the transformation is nei-

ther orthogonal nor linear (they are termed ’curvilinear’) are obviously possible.

In order to emphasise the usefulness of coordinate transforms just in a purely

mathematical sense one can consider the equation of a circle of radius s in Cartesian

coordinates which can be expressed as that of Pythagoras’ theorem (3.1), if one

transforms to polar coordinates this equation can be expressed in even simpler

terms such that

s = ∆x1 (3.19)
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In fact the dramatic change that takes place in a differential equation under a

change of variables is nothing but a change of coordinates.

To generalise transformations, one should start, however, by considering the trans-

formation from Cartesian coordinates to oblique coordinates, in particular consider

the transformation of the invariant quantity of the interval s. If one denotes the

components of a vector in the oblique system, xm, and the orthogonal projections

of this vector onto the axis xm, (note in the Cartesian system, there is no differ-

ence between the components of the vector and the orthogonal projections) (see

fig. 3.2).

Figure 3.2: Orthogonal Projections

One finds that in order to preserve the length of the interval under such a trans-

formation leads to

s2 = xmxm (3.20)

It follows that for an infinitesimal interval ds one has the differential form

ds2 = dxmdxm (3.21)
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Or equivalently

ds2 = gmndx
mdxn (3.22)

which is a generalised version of Pythagoras’ Theorem.

One should note here that if the space is flat and Cartesian coordinates are chosen

then the gmn are equivalent to the δmn of 3.10

The dxm can be thought of as components of a vector themselves. To distinguish,

one therefore calls the dxm ’contravariant’ components and the dxm ’covariant’

components. One therefore has two different kinds of vector (components), eg Am

and Am.

In 3.22 the gmn are thus the set of coefficients (scaling factors) for the length

preservation of the interval/metric under this transformation and as such effec-

tively maps (scales) the contravariant components to the covariant components

and vice versa. Therefore

Am = gmnA
n (3.23)

And

An = gmnAm (3.24)
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where 3.24 is an inverse transformation. Since gmnA
mAn is an invariant, it follows

that the form gmnA
mBn is also an invariant, which is termed the scalar/inner

product.

These transformations from Cartesian coordinates to oblique coordinates, although

still linear, are obviously more general than the linear orthogonal transforma-

tions. To go further and encompass all tensor transformations (a generalisation

that will obviously include the afore mentioned curvilinear transformations in Eu-

clidean/’flat’ space) one can consider general curvilinear coordinates in the form

of the geometry of ’curved’ surfaces/spaces.

So, if one is dealing with an arbitrary curved space in two dimensions (the premise

can later be extended to higher dimensions), a continuous mesh can be ’drawn’ on

the surface, where due to the curvature both angle and interval of intersections on

the mesh will be a function of position. By considering each infinitesimal area to

be ’flat’ and using 3.22 for each infinitesimal interval then the whole geometry of

the surface can be mapped out since the gmn can scale and preserve the interval

from point to point. This means that the gmn will have different values from point

to point and as such is now a field quantity. Since one is now dealing with curved

space the indices notation is changed here to gαβ in order to reflect this fact. Thus

the expression

ds2 = gαβdx
αdxβ (3.25)

is now a full generalisation of the Pythagoras theorem (since it is now a field
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quantity) and since one can transform from one gαβ to another (shown later) this

makes the choice of coordinates totally arbitrary.

The transformation coefficients of a vector (contravariant or covariant) will now

be functions of the coordinates, and as such there are no free vectors in curved

space.

The transformation law for a contravariant vector A is thus

Aα
′
=
∂xα

′

∂xβ
Aβ (3.26)

where now, for clearer notation, the dash denoting a different system now appears

with the component index. For a more concise expression the notation for 3.26

can be changed to

Aα
′
= xα

′

,βA
β (3.27)

where the comma denotes the differentiation.

The transformation law for a covariant vector B is derived to be

Bα′ = xβ,α′Bβ (3.28)

The above transformation laws gives one rules for general tensors and a basis for

a general theory of invariants.
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One can show also that

gα′β′ = gµνx
µ
,α′x

ν
,β′ (3.29)

so the gαβ is a tensor (the ’metric’ tensor, which is symmetrical), and so is gαβ.

They are the fundamental tensors in curved space. The gαβ equals the co-factor of

the corresponding gαβ in the determinant of the gαβ, divided by the determinant

itself, hence the gαβ is also symmetric.

From 3.23 and 3.24 one also has the expression

gαβg
βγ = gγα (3.30)

where gγα = 1 for γ = α and gγα = 0 otherwise.

The volume element is found to be invariant by the use of
√
g′dx′ =

√
gdx where

g is the determinant of gαβ.

Now suppose S is a scalar field quantity, and as such is therefore a function of

either xα or xα
′
, then by partial differentiation one has

S,α′ = S,ρx
ρ
,α′ (3.31)

and thus the derivative of a scalar field is a covariant vector.



Chapter 3. TRANSFORMATIONS, TENSORS AND CURVED SPACES 27

3.0.4 Parallel Transport and the Christoffel Symbols

As stated earlier, in curved space, the metric tensor is a field quantity and therefore

there are no free vectors, so attempting to parallel transport a vector from one

point to another runs into difficulties. However if one examines a point very close to

the original point, P (where a vector is present) one can find a vector parallel to the

original one with an uncertainty of the second order. A vector can be transported

along a path in this manner to a further point Q and as such give some sort of

meaning to the notion of parallel displacement in curved space, by keeping the

length constant, and keeping track of the uncertainty, although different paths

from P to Q would give different results for the final vector. Further a vector

transferred/transported along a closed loop circuit in this manner would result, in

general, in a different vector to the original.

In order to get equations for this parallel displacement, the simplest method is for

one to imagine the curved space embedded in a flat (or tangent) space of higher

dimensions. The use of this flat higher dimensional space, in this instance, is purely

to obtain equations for the parallel displacement of a vector. By introducing

this flat higher N dimensional space one can choose rectilinear co-ordinates zn

(n = 1, 2, 3, ...N). The co-ordinates do not need to be orthogonal, only rectilinear.

Since each co-ordinate yn is a function of the four x co-ordinates, yn(x), then

the equations of the surface can be found by eliminating the four x′s from the

Nyn(x)′s and as such there are N − 4 such equations.

By differentiating the yn(x) with respect to the parameters xµ one has
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∂yn(x)

∂xµ
= yn,µ

In this flat space the invariant distance between two neighbouring points is

ds2 = hmndx
mdxn (3.32)

Where the hmn are obviously constants due to the space being flat.

Now each point, xα, in the curved space determines a definite corresponding point

yn in the flat higher dimensional space.

So for two neighbouring points in the surface differing by δxα one has

δyn = yn,αδx
α (3.33)

By use of the equations of the squared distances in both the flat higher dimensional

space and the curved space and the fact that the hmn are constants, one can find

the relationship

gαβ = yn,αyn,β (3.34)

Now in 3.33 the δyn can itself be considered a vector and so accordingly 3.33 can

be rewritten as
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An = yn,αA
α (3.35)

where An is the contravariant vector in the higher dimensional flat space and Aα

is the contravariant vector in the curved space.

Now under ordinary parallel displacement (x + dx) this vector will no longer lie

in the surface of the curved space but it can be projected back onto the surface.

The method is to split the vector into a tangential part and a normal part and

then quite simply discard the normal part since the normal part is defined to be

tangential to every tangential vector at the point x+ dx.

The change in the vector (dAα)under this parallel displacement is found to be

dAβ = Aαyn,αyn,β,γdx
γ (3.36)

Now by differentiation and careful algebraic manipulation of 3.34 one can find the

relationship

yn,αyn,β,γ =
1

2
(gαβ,γ + gαγ,β − gβγ,α) (3.37)

Let

Γαβγ =
1

2
(gαβ,γ + gαγ,β − gβγ,α) (3.38)



Chapter 3. TRANSFORMATIONS, TENSORS AND CURVED SPACES 30

Note that the object Γαβγ (known as the Christoffel symbols) does not itself trans-

form as a tensor. However the indices may be raised or lowered (the mapping of

the contravariant components to the covariant components and vice versa) in the

usual fashion by use of the metric tensor. It is symmetric between the last two

indices.

A useful expression, stemming directly from 3.38, is

Γαβγ + Γβαγ = gαβ,γ (3.39)

So now using 3.38 the change in the vector under parallel displacement can be

expressed without any mention of the higher dimensional space and, as such, one

is dealing with the curved space alone.

The change under parallel displacement for a covariant vector is now

dAβ = ΓαβγAαdx
γ (3.40)

and the change for a contravariant vector is

dBβ = −ΓβαγB
αdxγ (3.41)

The length of the vector does remain constant under this transport since the

normal part which has been discarded is infinitesimal so that to the first order the

length of the whole part equals that of the tangential part.
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3.0.5 Geodesics

Now it is possible to use this method of parallel displacement for curved spaces in

order to determine the shortest distance between two points (a geodesic) on such

a surface.

The method is to take a point with coordinates say zα and suppose that it moves

along a path of some parameter τ . The tangent vector to the path is then

dzα

dτ
= uα (3.42)

Now if this vector (which can be scaled to unity) is moved under parallel displace-

ment along the path by moving the initial point to the point zα + uαdτ and then

moving the vector uα to this new point, then if this process is repeated (however

many times) the result is a geodesic line.

So by substituting Bβ = uβ together with dxγ = dzγ into 3.41 and then using 3.42

one can acquire the equation for a geodesic, which is

d2zβ

dτ 2
+ Γβαγ

dzα

dτ

dzγ

dτ
= 0 (3.43)

The geodesic line is the invariant form in curved space analogous to the straight

line in Euclidean space.

It should be noted that the same form for a geodesic line may be obtained by

finding the stationary value to the integral
∫
ds between two points [17].
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3.0.6 Covariant Differentiation

Now if one wants to define the differentiation of a vector field (Aα,β) one needs

to compare the values of two neighbouring but distinct points in the vector field,

but since the gαβ are field quantities in curved spaces and as such vary from point

to point, such a comparison cannot lead to a tensor (unless one is dealing with

a linear transformation) and therefore this operation does not conform with a

general theory of invariants.

The problem can be seen below, where the presence of the last term on the right

hand side reveals that Aα,β does not transform as a tensor. With use of 3.28 one

gets

Aα′,β′ = (Aγx
γ
,α′),β′ = Aγ,σx

σ
,β′x

γ
,α′ + Aγx

γ
,α′,β′ (3.44)

One can however modify the process of differentiation in order to obtain a tensor.

If one takes a vector say Aα at a point x and moves it through parallel transport

to a new point x + dx, it may be thought of as the same vector defined at the

neighbouring point. However as seen earlier due to the curvature the components

will be different and this change is expressed in 3.40. One can now take the

difference between the displaced vector and the original vector which is now defined

at the new point. The result is a vector for the small displacement dx,β. The

subtraction of the two vectors yields
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Aα(x+ dx)− [Aα(x) + ΓγαβAγdx
β] (3.45)

When taken to the first order this is found to equal

(Aα,β − ΓγαβAγ)dx
β (3.46)

The coefficient of dxβ is itself a general tensor which of course now satisfies the

mathematical concept of general covariance and so one calls it the covariant deriva-

tive of Aα. This modified differentiation is expressed as

Aα:β = Aα,β − ΓγαβAγ (3.47)

Where the : denotes the covariant differentiation.

The covariant derivative of the outer product XαYβ is now defined to be

(XαYβ):σ = XY:σ + Y X:σ = (XαYβ),σ −XαYγΓ
γ
βσ −XγYβΓγασ (3.48)

Now, as seen in 3.16, the outer product of two or more tensors may be expressed

as a single tensor, so the covariant derivative of a second order tensor, for example,

will be

Tαβ:σ = Tαβ,σ − TαγΓγβσ − TγβΓγασ (3.49)
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This process may be extended for tensors of higher orders with an extra term

appearing for each additional set of components.

The covariant derivative of a scalar quantity is just the same as the ordinary

derivative, so one has

S:σ = S,σ (3.50)

Following the same logic as for the covaviant derivative of an outer product and

with use of 3.47 and 3.50, one gets for the covariant derivative of the scalar product

(AαBα):σ the result

(AαBα),σ = Aα(Bα,σ − ΓγασBγ) +BαA
α
:σ (3.51)

This then leads to

Aα:σ = Aα,σ + ΓαγσA
γ (3.52)

So 3.52 is now the definition of the covariant derivative of a contravariant vector,

which can be extended in a similar fashion as for a covariant vector to contravariant

tensors of higher order.

It should also be noted that from 3.49 and the relationship Γαβγ + Γβγα = gαβ,γ

one can get the result
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gαβ:σ = 0 (3.53)

This shows that the components of the metric tensor are constants under covariant

differentiation and as such the indices of tensors may be raised or lowered before

the operation of covariant differentiation is performed and the result is the same

as if they are moved in this way afterwards.

3.0.7 Riemannian Curvature

Now, the operation of covariant differentiation has a fundamental difference from

that of ordinary differentiation when two operations are performed in succession

and the order of these operations is considered. For ordinary differentiation the

order does not matter. However for covariant differentiation the order does matter.

The reason for this difference is simply the curvature causing the path dependent

result of a vector under parallel transport and can be understood in the following

way.

If one takes a point P in curved space with a vector Aα present, if one now moves

this vector by parallel transport around an infinitesimal closed loop back to the

original point P , as seen earlier there will, in general, be a change in the vector.

The result of this process is equivalent to taking the second covariant derivatives

of Aα (Aα:β:γ) which can be considered a point midway around the loop, and then

subtracting this result from the result of the second covariant derivatives to this
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midway point but in the opposite direction (Aα:γ:β). The end result is not zero,

showing that the order of these operations does indeed matter as seen below

Aα:β:γ − Aα:γ:β = AσR
σ
αβγ (3.54)

Where

Rσ
αβγ = Γσαγ,β − Γσαβ,γ + ΓταγΓ

σ
γβ − ΓταβΓστγ (3.55)

This is known as the curvature tensor (Riemann-Christoffel) which gives a measure

of the deviation from flat space.

It has the property of symmetries such that

Rσ
αβγ = −Rσ

αγβ (3.56)

Rσαβγ = −Rασβγ (3.57)

Rσαβγ = Rβγσα = Rγαβσ (3.58)

Now if space is flat, one may choose a rectilinear system of coordinates. Thus the

gαβ are constants and since the Christoffel symbols are made up of derivatives of

the metric tensor, one gets as expected
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Rαβγσ = 0 (3.59)

Also working the other way, one can prove space is flat if the curvature tensor

vanishes.

The curvature tensor can be contracted in the usual manner, so (avoiding compo-

nents which are anti-symmetrical) one gets, first, the Ricci tensor

Rα
βγα = Rβγ (3.60)

which is a symmetrical tensor.

and secondly, after a further contraction one gets the Ricci scalar

Rβ
β = R (3.61)

There are some useful expressions involving the covariant derivatives of the cur-

vature, Ricci and Ricci scalar tensors, the Bianci relations ;

Rα
βγρ:σ +Rα

βρσ:γ +Rα
βσγ:ρ = 0 (3.62)

and

(Rαβ − 1

2
gαβR):γ = 0 (3.63)



Chapter 3. TRANSFORMATIONS, TENSORS AND CURVED SPACES 38

So one now has an outline of the mathematics of transformations, tensors, and the

calculus of tensors both within the properties of ordinary flat spaces and curved

spaces. In the following chapter it will be seen that an analogous quantity of

the invariant interval as discussed in this chapter can be seen to be the basis

of the representation of the physics of Special Relativity, where one has a four

dimensional space-time continuum.

In Chapter Five it will be seen that for Einstein’s General theory of relativity (a

theory of gravity) this space-time continuum will become curved and as such the

mathematics (with the new interval) will follow the same form as in this chapter

and will then have a real physical interpretation for the laws of nature.
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RELATIVITY

4.0.8 Galilean Relativity

Galilean Relativity states that under the natural physical laws of mechanics there

is no way one can tell the difference, without external reference, between being at

rest or travelling with uniform motion (a constant linear velocity). If one is in this

state, it is classed as an inertial reference frame.

Now travelling with constant velocity means to cover equal distances in equal

amounts of time. However on reflection of the above paragraph, it is impossible

to clearly and definitely mark out equal distances and to be sure of definite time

intervals.

Isaac Newton overcame this problem, and in so doing extensively developed the

classical mechanics of Galileo, by introducing the concept of absolute space and

absolute time [1].

39
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Newton’s notion of absolute space was such that, throughout the entirity of space

there existed a kind of ’lattice’ consisting of points with a definite invariant mea-

sure/distance between them (a fixed background reference frame). His notion of

absolute time was that of the existence of a universal clock that ticked at a definite

invariant rate.

Neither absolute space nor absolute time were observable but Newton assumed

their presence in order to formulate consistent laws of motion.

It is probably worth noting here that Gottfried Leibniz argued with Newton con-

cerning his assumption of absolute space and time. Leibniz was of the opinion

that all motion was a relative concept. In fact using what he termed his Principle

of Sufficient Reason [26], he asked the question, to paraphrase ”if absolute space

exists then why is everything located as it is and not, say, a few feet to the left?”

His argument was similar concerning absolute time, asking ”why was everything

not created a year earlier?”.

Leibniz’s viewpoint of relative motion was later take up by Earnest Mach, who on

realising that the universe itself was not rotating relative to our sense of rotation,

asked the question, to paraphrase and put quite simply, if the universe was rotating

would there be an immediate detectable effect in a local inertial reference frame?

Leibniz and Mach would have answered ”yes” to this question, since they believed

all motion was relative, however Newton would have answered ”no” since he would

claim the universe was rotating solely with respect to absolute space. This became

known as Mach’s Principle [30]
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4.0.9 Newton’s Laws

However returning to Newton’s concept of mechanics, using his notion of a fixed

background reference frame, Newton formulated his laws of mechanics, which

stated that

1) Every object persists in its state of rest or uniform motion in a straight line

unless it is compelled to change that state by forces impressed on it.

2) Force (F ) is equal to the change in momentum (mv), mass(m) velocity (v), per

change in time. For a constant mass, force equals mass times acceleration (a).

F = ma (4.1)

3) For every action, there is an equal and opposite reaction.

Newton took his laws and with them, since any object freely falling to the earth is

actually accelerating, described the phenomenon of gravity as an attractive force

between two objects, thereby explaining the motions of the solar system.

Newton’s law of gravity (gravitation) stated that...

Every object in the universe attracts every other object, with a force directed

along the line of centers for the two objects that is proportional to the product of

their masses and inversely proportional to the square of the separation between

the two objects. This law is expressed as
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F = G
m1m2

r2
(4.2)

and therefore, expressed as the acceleration potential Φ, one has

Φ = −m
r

(4.3)

where, for consistency with later tensor analysis, units are chosen such that G is

equal to unity.

Here G is the gravitational constant, m1 and m2 denote the two masses and r is

the separation distance.

Now 4.3 satisfies the Poisson equation [30], which is

52 Φ = 4πρ (4.4)

where ρ is the density of matter.

Newton’s law of gravity explained the motions of the planets in the solar system

very well, except for the orbit of Mercury.

It should be noted here that the inertial mass of 4.1 and the gravitational mass of

4.2 turn out experimentally, for no obvious reason, to be equivalent, meaning that

objects of different masses will accelerate at the same rate in the same gravitational

field [1].
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When considering 4.1 and accelerated reference frames, Newton introduced the

concept of inertial forces which allows one to treat accelerated frames as inertial

frames with these fictitious forces employed [29].

4.0.10 Galilean Transformations

Now one needs to see how mechanical events in one system (frame of reference/ob-

server) moving with uniform motion appear from another system also moving with

uniform motion. When one considers the principle of Galilean-Newton relativity

it is obvious that no generality is lost if one system (xm) is considered to be at

rest (wrt absolute space) and the other system (x′m) is considered to be mov-

ing with constant linear velocity (v), and time (t). Using Cartesian coordinates,

with an initial coinciding origin and motion parallel the corresponding x1 axis in

both frames. Then one finds the resulting linear orthogonal transformations (as

such there is no difference between covariant and contravariant components) are

translational and of the form 3.2 such that [55] [9],

x′1 = x1 − vt (4.5)

x′2 = x2 (4.6)

x′3 = x3 (4.7)
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t′ = t (4.8)

If u and u′ are the velocities of a test particle relative to the two frames of reference

then this situation results in the velocity addition formula

u′1 = u1 − v (4.9)

From the conservation of momentum and the above transformations one can show

that m′ = m, a′ = a and F ′ = F [30]. This immediately follows from the fact that

distance and time are invariant quantities under these transformations. As such

Newton’s laws of motion are covariant with respect to transformation between

inertial frames. However Newton’s laws deal solely with mechanics and therefore

do not encompass the phenomena of optics/electromagnetic radiation/’light’.

4.0.11 Michelson-Morley Experiment

All experiments concerning the velocity of light (c) had and have always resulted in

the same value c ' 3×108 meters per second. In addition, James Clerk Maxwell’s

field equations for the wave propagation of light found the same value for velocity,

determined purely from constants [31].

Since Maxwell’s theory showed light to be an electromagnetic wave motion, it

was proposed that there must be a medium present to support the waves. This

assumed stationary medium was termed the aether and the Michelson-Morley
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experiment was designed to detect it. The detection of such a medium would have

been conducive to Newton’s concept of absolute space [31] [55] [9].

With the view of this stationary/absolute aether, then during the relative motion

of the earth through the aether (or conversely the aether drift relative to the

earth) then one should be able to take measurements, using a large equal arm

interferometer, of light velocity that would differ. If the beam splitter in the

interferometer is angled such that one path is parallel to the emitted beam of light

and the other path is normal to it, the the orientation can be such that one path

s parallel to the aether drift and the other path normal to the aether drift. By

simple addition and trigonometry, the velocity should be less for light travelling

to a point and back in the situation normal to the aether drift than that of the

light velocity to a point and back in the situation parallel to the aether drift.

The experiment found the velocity of light to be exactly the same repeatedly for

both measurements. As such this null result showed the velocity of light to be a

constant with respect to any inertial reference frame.

In an attempt to save the concept of the aether, Fitzgerald and Lorentz suggested

that objects actually contracted in length parallel to the relative velocity [55]. The

ad-hoc factor they derived for this length contraction was

1√
1− v2

c2

(4.10)
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4.0.12 Special Relativity

Einstein took the simple viewpoint such that the aether did not exist and therefore

there was no preferred reference frame and that all laws of physics are covariant

with respect to all inertial reference frames [21]. This theory is termed special

relativity, since it dealt with inertial reference frames only.

However due to the constant velocity of light for all inertial observers, the trans-

formation laws from one inertial frame to another must be different from that of

the Galilean/Newton transformations. This is most evident when one considers

the afore mentioned situation of two reference frames, one at rest and one moving

with constant linear velocity which have a coinciding origin at a certain time t.

Now supposing that as the origins coincide, a light source radiates a pulse, then at

a later time the wave front will occupy a sphere of radius c∆t. Due to the constant

velocity of light for both frames, the resulting equations of the two spheres as seen

from each frame, must be

∆(x1)
2 + ∆(x2)

2 + ∆(x3)
2 = c2∆t2 (4.11)

and

∆(x′1)
2 + ∆(x′2)

2 + ∆(x′3)
2 = c2∆t′2 (4.12)
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The transformations from one frame to another will now indeed result in different

observed length and time measurements in the direction of motion, but with each

observers measurements being as valid as any other.

The special relativistic transformations are such that

x′1 = γ(x− vt) (4.13)

x′2 = x2 (4.14)

x′3 = x3 (4.15)

t′ = γ(t− vx

c2
) (4.16)

Where the derived transformation factor is

γ =
1√

1− v2

c2

(4.17)

Which is identical to that derived by Lorentz and Fitzgerald. However, there is

now a completely different viewpoint/understanding.

On inspection of the special relativistic transformations it is clear that space and

time are inextricably linked. Also if v > c then both x′ and t′ would be imaginary,
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the conclusion is that no observer can possess a velocity greater than that of light

relative to any observer.

4.0.13 The Space-Time Continuum

The mathematician Hermann Minkowski realised that if the four quantities (three

spacial and one temporal) were geometrically represented in a four dimensional

Cartesian/Euclidean space-time [31] (a space-time continuum), such that

x0 = ict (4.18)

x1 = x1 (4.19)

x2 = x2 (4.20)

x3 = x3 (4.21)

Where i =
√
−1

then one can recover the relativistic transformations (since the tangent of the angle

of rotation = iv
c

) by a simple rotation of the coordinate axes, which is of the form

3.2.
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It is a matter of definition as to whether the factor i is chosen to be with the

spatial coordinates or with the temporal coordinate.

The scalar invariant quantity (evident from 4.11 and 4.12 and using 4.18 ) in four

dimensional space-time analogous to the interval between two points in ordinary

space is thus

s2 = ∆(x0)
2 + ∆(x1)

2 + ∆(x2)
2 + ∆(x3)

2 (4.22)

which represents the interval between two events in space-time.

Thus, under a transformation analogous to 3.4, one has

s2 =
∑
m

∆(xm)2 =
∑
m

∆(x′m)2 (4.23)

Where m now ranges from 0 to 3.

Alternatively by use of the infinitesimal interval and metric tensor one can take

the analogous form of 3.10 or 3.22 for flat space-time with Cartesian coordinates

ds2 = gµνdx
µdxν (4.24)

where now, with units of distance and time chosen such that the velocity of light

is unity, then one can define (give a signature to) gµν such that
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gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(4.25)

where again the choice of sign to either the spacial or temporal is a matter of

definition.

An equivalent method would also be to allow the 1’s in the gµν to remain all

positive and define contravariant and covariant components such that

X0 = X0 X1 = −X1 X2 = −X2 X3 = −X3 (4.26)

The invariant scalar quantity (s) of 4.24, the space-time interval or proper time

interval, may be used to construct a velocity vector vµ with the correct space-time

transformations. So the velocity vector is vµ = dxµ

ds
.

A momentum vector pµ may then also then be constructed with a mass m such that

pµ = mvµ, the p0 component of which is energy, therefore one has conservation of

energy and momentum combined [1].

A material energy tensor or stress energy tensor T µν may also be constructed

whereby one has the flux of the µ′th component of the momentum vector across a
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surface and as such in order for conservation of energy and momentum one must

have T µν,σ = 0 [30].

Inspection of 4.24 shows that ds2 can have three distinct outcomes.

1) If ds2 > 0 (s is real) then the proper time interval between two events is the

ordinary time interval measured in a frame in which the events occur at the same

space point. The interval is said to be timelike and it is possible for a material

body to be present at both events.

2) If ds2 < 0 (s is imaginary) then it is not possible for a material for a material

body to be present at both events. The interval is said to be spacelike.

3) If ds2 = 0 (s = 0) Then only a light pulse can be present at both events. The

interval is said to be null.

So one can see now, that by expressing all physical laws as tensor equations in a

four dimensional Euclidean space-time then the covariance of these laws from one

inertial frame to another can be guaranteed.

The inclusion of accelerated frames of reference into the theory of relativity seen in

the following chapter will lead to a general theory of relativity and hence Einstein’s

law of gravity, where the space-time becomes curved.
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GENERAL RELATIVITY

5.0.14 The Equivalence Principle

The theory of Special Relativity is a theory based solely on the relative uniform

motion of observers, where it was concluded that all inertial systems are equivalent

for the description of physical phenomena.

If accelerated reference frames are to be considered then the phenomena of gravity

(4.2) is naturally included.

Einstein realised that if one imagined an observer to be in, say, a rocket ship

(driven by an engine), in deep outer space (far away from any massive bodies)

then if the rocket ship has an acceleration (a) then any unsupported particles

inside the ship would have, as it would appear to the observer in the ship, an

acceleration parallel to the acceleration of the ship. But knowing that the ship

itself is accelerating (relative to any inertial frame) then the accelerated motion

52
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of the particles is simply attributed to this fact. However one may also treat the

ship’s observer to be in an inertial frame and as such the particle’s motions are

treated as being subjected to inertial forces (as mentioned in the previous chapter)

acting parallel to the ship’s motion. The inertial force on a particle of mass m

would be −ma

Similarly, if the ship is rotating about its center, the observer in the ship may

assume an inertial frame and employ an inertial force (centrifugal) to act on the

particles.

Now due to the fact that the inertial and gravitational mass are found to be

equivalent, then the inertial forces can be thought of as arising from the presence

of gravitational fields, or conversely a freely falling particle in a gravitational field

can be considered to be at rest.

This is the equivalence principle [21] [30] which allows every observer to treat their

reference frame as inertial and as such all observers become equivalent. Quite

simply accelerated reference frames can now be treated as inertial frames and as

such the Special Theory of Relativity has now become a general theory since all

motion is now relative.

In the first example of the accelerated ship, where the observer takes himself to

be at rest, then he will observe all particles/bodies (galaxies included) to have an

acceleration −a to himself and he must attribute the cause of this acceleration to

the presence of a uniform gravitational field affecting the bodies which extends

over the whole of space.
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Similarly, in the second example of the rotating ship, when the inertial frame is

employed for the observer in the ship, it is the rotation of the bodies throughout

the universe which are responsible for the gravitational field within the ship.

Quite simply the gravitational field is always present throughout all of space but

by choosing a frame relative to which all the distant masses are at rest one can

reduce the complication of the situation by this description. This is analogous to

considering a distribution of electric charge, by choosing a frame relative to which

the charge is at rest, then this omits the effect of the magnetic field and so makes

calculations simpler.

This relates back to Mach’s principle. However this is yet to be fully incorporated

within the General Theory of Relativity (GTR) [30].

5.0.15 Curved Space-Time

Einstein also realised that, supposing one imagined a space station in the shape of

a wheel, which again was in deep outer space (far away from any massive bodies)

and the station was rotating with a constant angular velocity and attached to it

there was an observer. Now suppose there was also an observer nearby who was

not rotating, in other words this observer would be in an inertial frame relative to

the rotating station. The observer attached to the station (who could also consider

himself at rest) can, by use of a rigid measuring rod, measure out the radius (r)

and circumference (c) of the circular station. He will obtain a result such that
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c

2r
= π (5.1)

which is the standard result for Euclidean geometry.

The observer not attached to the station, watching the measurement being carried

out, will agree with the measurement concerning the radius. However, due to the

laws of special relativity, during the process of measurement of the circumference

the unattached observer will record a length contraction of the measuring rod in

the direction of motion parallel to his rest frame, as such he will disagree with the

measurement of the circumference and he will obtain a result such that

c

2r
< π (5.2)

and therefore the laws of Euclidean geometry are in conflict with this.

When the Equivalence Principle is considered concerning this result, the conclusion

is such that, relative to a frame at rest in a gravitational field, the geometry is not

Euclidean. In the same way, from the laws of Special Relativity, there is the time

dilation to consider.

The net result is that the space-time geometry of GTR is not Euclidean, whereby

the gravitational field determines the geometry of the space-time continuum.

Now the situation as regards both the uniformly accelerating ship’s gravitational

field and the gravitational field of the rotating station is a little different from the

gravitational field which surrounds a massive body. In the former two cases it is
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possible to transform completely away from the gravitational field (ie one can find

an inertial reference frame relative to which the field vanishes and for which the

space-time geometry is Euclidean). In the last case it is not possible to transform

completely away in such a manner. However one can find a small region of space

for a small duration of time (local space-time) for which the geometry will be

approximately Euclidean, ie a small freely falling reference frame in a gravitational

field which surrounds a massive object. Such an infinitesimal region of the space-

time continuum of GTR would therefore approximate the space-time continuum

of special relativity.

5.0.16 Replacing Newton’s Law of Motion

Since the space-time continuum is now curved in GTR, all physical laws and equa-

tions must be expressed as general tensor quantities with covariant derivatives, as

shown from 3.20 to 3.63, where the mathematical arguments are followed as in [17]

with the extension from ordinary space geometry to space-time geometry. This

curved space-time geometry is built in exactly the same way as the curved space

geometry but the invariant quantity of the interval is now that of 4.24. So one has

the invariant quantity between two events in space-time such that

ds2 = gµνdx
µdxν (5.3)

obviously with the same gµν as 4.25.
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So, with reference to the geodesic equation of 3.43, which was constructed from

the change of a contravariant vector under parallel transport, equation 3.41, one

can now construct an analogous geodesic for the space-time continuum. If one

defines a velocity vector such that vµ = dzµ

ds
where s is the proper time, then one

has the time-like (vµvµ > 0) geodesic equation

dvµ

ds
+ Γµνσv

νvσ = 0 (5.4)

or

d2zµ

ds2
+ Γµνσ

dzν

ds

dzσ

ds
= 0 (5.5)

Now since the space-time is curved, Einstein assumed that a particle/body that is

not acted upon by any forces, but is in a gravitational field, will follow the path of

such a time-like geodesic. Essentially Equations 5.4 or 5.5 now replace Newton’s

first law of motion.

Following the earlier understanding of a null interval, the path of a pulse of light

is now seen to be a null geodesic.

5.0.17 Einstein’s Law of Gravity

Einstein also assumed that in empty space (no matter present and no other physical

fields present except the gravitational field) then the gravitational field is given by
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Rµν = 0 (5.6)

which is the Ricci tensor 3.60 for space-time set equal to zero, and this is Einstein’s

law of gravitation. The use of the Ricci tensor for this law follows from the fact

that, as mentioned earlier, it is not possible to transform completely away from

a gravitational field surrounding a massive body and as such it is not possible to

find a coordinate system where the gµν are constants. This would be the case if

Rµνσρ = 0 (5.7)

with reference to 3.59 but now for space-time.

Now Equation 5.6 will still satisfy flat space with the condition that 5.7 holds.

So the Law of Gravitation is such that

Rµν = Γαµα,ν − Γαµν,α − ΓαµνΓ
β
αβ + ΓαµβΓβνα = 0 (5.8)

and since the space-time version of 3.38 is

Γµνσ =
1

2
(gµν,σ + gµσ,ν − gνσ,µ) (5.9)

it is clear that Einstein’s Law of Gravitation consists of a set of non-linear second

order differential equations, when one considers the gµν . If the gµν are looked on
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as potentials describing the gravitational field then there is a definite similarity

between Einstein’s theory and Newton’s law.

5.0.18 The Newtonian Approximation

Newton’s law of gravity explains the motions of most of the planets in the solar

system very well and as such when one approximates GTR by introducing certain

limits, then GTR reduces to Newton’s law as would be expected.

The three conditions for the approximation are

1) The gravitational field is static.

2) All particles/bodies are moving slowly w.r.t the velocity of light.

3) the gravitational field is weak.

So, considering a static gravitational field, one has

gµν,0 = 0 (5.10)

Also if the space curvature is a function of the space coordinates only, and similarly

the time curvature is a function of the time coordinates only, and since

gµν = yn,µyn,ν (5.11)

then
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gm0 = g0m = 0 (5.12)

where m (and also in the following n) take on the values 1, 2, 3.

From 5.12 one also has gm0 = g0m = 0 and g00 = 1
g00

This now means that from 5.10 and 5.12 one has

Γm0n = 0 (5.13)

and therefore

Γm0n = 0 (5.14)

Now if one divides through equation 5.3 by ds2 and one has the velocity vector

vµ = dxµ

ds
then one has

1 = gµνv
µvν (5.15)

With the use of 5.12, this then gives

1 = g00(v
0)2 + gmnv

mvn (5.16)
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but considering the approximation of slowly moving particles/bodies then vm <<

v0 and vm is a small quantity of the first order and, as such, the quadratic quantities

in the second term on the right hand side of 5.16 can be neglected. This leaves

g00(v
0)2 = 1 (5.17)

Now since (as mentioned earlier) a particle/body is assumed to travel along the

geodesic

dvµ

ds
= −Γµνσv

νvσ (5.18)

which has now led to

dvm

ds
= −Γmνσv

νvσ (5.19)

using 5.14 this now becomes

dvm

ds
= −Γm00(v

0)2 − Γmnqv
nvq (5.20)

Again the second term on the right can be neglected, so this leaves

dvm

ds
= −Γm00(v

0)2 (5.21)
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Multiplying through by gmng
mn gives

dvm

ds
= −gmnΓn00(v

0)2 (5.22)

Now with the use of 5.10 and 5.12 one has

Γn00 = −1

2
g00,n (5.23)

and substituting this into 5.22 gives

dvm

ds
=

1

2
gmng00,n(v0)2 (5.24)

Also, when small terms are neglected, one has

dvm

ds
=
dvm

dxµ
dxµ

ds
=
dvm

dx0
v0 (5.25)

So by equating 5.24 and 5.25 and using 5.16, one gets

dvm

dx0
= gmn(

√
g00),n (5.26)

Multiplying through by gmn leaves

dvm
dx0

= (
√
g00),n (5.27)



Chapter 5. GENERAL RELATIVITY 63

Now this shows that a particle/body moves as if it was under the influence of a

potential of
√
g00. One now needs to take Einstein’s law of gravitation itself and

introduce the limits to obtain a condition for the potential and therefore compare

it to Newton’s law. So, Einstein’s law is such that

Rµν = Γαµα,ν − Γαµν,α − ΓαµνΓ
β
αβ + ΓαµβΓβνα = 0 (5.28)

Now, with the approximation that the gravitational field is weak, there are small

first order corrections to the gµν , hence the gµν,σ are small and hence so are the

Γµνσ and as such the quadratic terms in 5.28 can be neglected. This leaves

Γαµα,ν − Γαµν,α = 0 (5.29)

which leads to

gρσ(gρσ,µν − gνσ,µρ − gµρ,νσ + gµν,ρσ) = 0 (5.30)

with the earlier conditions now giving that µ = ν = 0 (since one is dealing with

the 00 components only, stemming from the geodesic acceleration, and as such one

is finding R00), and also since the gµν are independent of x0 (gµν,0 = 0), one gets

gmng00,mn = 0 (5.31)
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Now as stated earlier, all the equations of physics must be written as tensor equa-

tions. The d’Alembert equation for a scalar Φ, with use of 3.47 and 3.50 is therefore

gµνΦ:µ:ν = gµν(Φ,µν − ΓαµνΦ,α) = 0 (5.32)

In the weak field approximation, the covariant derivative may become an ordinary

derivative, so one has

gµνΦ,µν = 0 (5.33)

and using the earlier approximation of a static gravitational field, this reduces to

the Laplace equation of

gmnΦ,mn = 0 (5.34)

Therefore, a comparison of 5.31 and 5.34 shows that here the Laplace equation is

satisfied with g00 as the potential.

Now, as mentioned, the weak field approximation means there are small corrections

to the g00, therefore the g00 may be written

g00 = 1 + 2Φ (5.35)

where Φ is small.
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therefore a binomial expansion of
√
g00 to the first order gives

√
g00 = 1 + Φ (5.36)

Equation 5.36 can now be substituted into 5.26, which yields

dvm

dx0
= gmnΦ,n (5.37)

and since gmn has diagonal elements which are approximately −1, this gives one

acceleration = −∇Φ (5.38)

where ∇ = grad and Φ is identified with the Newtonian potential of 4.3.

This analysis shows that Newton’s Law is recovered when Einstein’s theory is

considered in the weak and static field limit and the gµν are looked on as potentials.

Einstein’s Theory of Gravitation (in 5.28) is expressed with no matter present

and it has just been shown that the theory expressed in this manner will reduce

to Newton’s law when certain limits are considered. It can also be shown that

Einstein’s theory may be applied, in the special case where there is a static spher-

ically symmetric field produced by a spherically symmetric body at rest, to very

accurately describe the orbit of Mercury [17] [30], a motion that Newton’s law

could not describe.
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5.0.19 Einstein’s Law Including Matter

Einstein’s law may be modified to include the presence of matter, as outlined in

the following [17], so taking

Rµν = 0 (5.39)

this means that

R = 0 (5.40)

Now, when one considers the Bianci relations for the Ricci tensor (from 3.63)

which are found to be

(Rµν − 1

2
gµνR):σ = 0 (5.41)

and since from 5.39 and 5.40 it is clear that

Rµν − 1

2
gµνR = 0 (5.42)

then it is best to work with 5.42 in order to obtain conservation laws when con-

sidering the inclusion of matter.
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If the tensor Y µν is introduced, which is to be associated with the presence of

matter (and with a coefficient of −8π, as will later become apparent in order to

give this tensor the properties of the density and flux of energy and momentum),

then one has

Rµν − 1

2
gµνR = −8πY µν (5.43)

and therefore from 5.41 this must mean that

Y µν
:σ = 0 (5.44)

It should be noted here that only in flat space-time would there be the usual

expected conservation of matter, i.e. Y µν
,σ = 0. In the curved space-time the

covariant derivative means there is an additional term involving Γµνσ. Due to this

additional term the conservation law can only be reconciled if the gravitational

field itself is assumed to possess energy and momentum.

Now, to continue, if one considers a distribution of matter with velocities varying

continuously throughout, then one has the velocity vector

vµ =
dzµ

ds
(5.45)

where dzµ are the coordinates of a molecule of matter.
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If then a scalar field ρ is introduced such that the vector field ρvµ is the density

and flux of the matter, then with the energy density, energy flux, momentum

density and momentum flux considered, one has the density and flux of energy

and momentum given by

ρvµvν = T µν (5.46)

where T µν is the material energy tensor or stress energy tensor.

Now it can be shown that [17],

T µν:σ = 0 (5.47)

So by substitution of 5.47 into 5.43 one has

Rµν − 1

2
gµνR = kρvµvν (5.48)

where k is a constant.

By contraction and limits introduced as in the earlier Newtonian approximation

(as outlined below), then 5.48 becomes

∇2Φ = −1

2
kρ (5.49)

Now in order for 5.49 to be compared with Poisson’s equation 4.4, then k = −8π.



Chapter 5. GENERAL RELATIVITY 69

This analysis shows that Einstein’s equation of gravitation, in the presence of

matter, becomes

Rµν − 1

2
gµνR = −8πρvµvν (5.50)

There are obviously two other forms of 5.50 obtained by lowering of indices. If

one substitutes for 5.46 and lowers indices, this yields

Rµ
ν −

1

2
gµνR = −8πT µν (5.51)

and then again

Rµν −
1

2
gµνR = −8πTµν (5.52)

Now, since gµµ = 4, contraction of 5.51 yields

R = 8πT (5.53)

So substitution of 5.53 into 5.52 and rearrangement gives

Rµν = 8π(
1

2
gµνT − Tµν) (5.54)
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Now, in the static, weak field and slowly moving approximations, since one is

considering simple, stable matter/energy distributions that do not carry a net flow

of force, momentum or energy through space, then there is only one component

(energy density) of the stress energy tensor which is not zero and so one has

T00 = ρ0v0v0 = T (5.55)

For the weak field, one will also have g00 ≈ 1 and so 5.54 will reduce to

R00 = −4πT (5.56)

and as in the earlier calculation for R00 there is a factor gmn which is equal to

minus unity, and therefore 5.56 will reduce to Poisson’s equation as expected.

The law of gravitation with the inclusion of matter will be the one, when modified

in Chapter Seven, which will be used in the analogous approximation analysis. A

point source solution will then be calculated.

Einstein’s Law of Gravitation has had tremendous success in describing a wide

range of local physical phenomena, as mentioned in Chapter Two. However unless

a hypothesised new form of matter can be detected and therefore proved to exist,

GTR may need to be modified in order to explain the physical observed motions

of galaxies, as will be seen in the next chapter.



Chapter 6

THE MOTIONS OF GALAXIES

6.0.20 Rotational Velocities

As seen in the previous chapter Einstein’s General Theory of Relativity reduces

to Newton’s law of gravity when certain approximations are introduced into the

field equations.

The fact that this Newtonian approximation can be achieved is to be expected

since Newton’s law of gravitation explains the motions of the planets in the solar

system very well except for Mercury.

Of all the planets, Mercury has the closest orbit around the sun, where obviously

the gravitational field is the strongest. The rest of the planets have orbits where the

gravitational field is relatively weak and this is then consistent with the Newtonian

approximation of Einstein’s law in the weak field limit.
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So, when considering weak accelerations it is natural to assume that any gravita-

tional system should behave in a manner which follows Newton’s law of gravity,

and, as such, the variation in orbital circular (rotational) velocities reflecting the

mass distribution of such a system should, away from the center, follow the stan-

dard Keplerian decline given by

V =

√
Gm

r
(6.1)

where V is the rotational velocity, r is the distance from the center G is the

gravitational constant and m is the mass.

This Keplerian decline shows the decrease in rotational velocities as a function of

distance from the center which the planets in the solar system follow the further

away they are from the sun.

Now, during the 1930’s, not long after galaxies were actually recognised to be

extra-galactic in nature, Fritz Zwicky measured the velocity dispersion of galaxies

in clusters of galaxies, where the accelerations are weak, and found it was far to

high for these systems to remain stable for a substantial length of time [58]. Quite

simply, according to Newton’s law, these systems should be flying apart.

Some forty years later the rotational velocities of stars in individual spiral galax-

ies were measured [44]. These stars are mainly on approximately circular orbits

around the center of the galaxy and again, since far from the center, the strength

of accelerations is weak, then these systems should also show a Keplerian decline
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for the rotational velocities (of the stars) in the same manner as for the planets in

the solar system.

However when the rotational velocities of these stars were calculated, by taking

their measured Doppler shifts and comparing these quantities with their respective

distance from the galactic center, and the total mass of such systems being that of

the observed stars and gas, they were again found to be too high for these systems

to remain stable. This phenomena was seen to happen over and over again as each

galaxy was studied [44]. The individual galaxies themselves should, according to

Newton’s law, be flying apart.

Figure 6.1: Rotation Curves

Obviously the rotational velocities of the stars in a typical galaxy may be repre-

sented graphically as can be seen in fig. 6.1 , where the Keplerian decline, solid

body velocity and constant velocity are also graphed.

So, as can be seen in fig. 6.2 rather than follow the expected Keplerian decline,

in a typical galaxy the rotation curve tends to remain approximately flat with
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Figure 6.2: Typical Rotation Curve

increasing distance from the center (the velocity becomes approximately constant)

and one has a ’flat rotation curve’.

So the question is now, how does one explain these observed motions?

The two most obvious possible solutions to the problem of explaining the flat

rotation curves are

1) The inclusion of extra mass into the calculations when using the dynamical

laws.

2) A modification of the dynamical laws themselves.

6.0.21 Dark Matter

The first possible solution was initially suggested by Zwicky and subsequently

followed up by Peebles [42].
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The Missing Mass Hypothesis (MMH) [45] postulates that some of the missing

mass (Dark Matter) may be in the form of ordinary baryonic matter that has so

far been unobserved but if the MMH is to fully explain the rotational dynamics

of galaxies then the vast majority of the missing mass must be in the form of as

yet unknown and undetected form of matter, one that does not emit and absorb

radiation as ordinary baryonic matter does. This latter new form of matter was

thought to have two possible forms, cold and hot.

Hot Dark Matter (HDM) is thought to be composed of particles that have zero

or nearly zero mass (the main contender being the neutrino). Since the Special

Theory of Relativity requires that massless particles move at the speed of light

and nearly massless particles move at nearly the speed of light, this means that

such very low mass particles must move at very high velocities, and therefore (by

the kinetic theory of gases) form very hot gases.

Now, on the other hand, Cold Dark Matter (CDM), is thought to be composed

of particles which are sufficiently massive enough causing them to only move at

sub-relativistic velocities, and therefore they form much colder gases.

The significance of the difference between Hot and Cold Dark Matter is impor-

tant in the DM model in structure formation explaining the Cosmic Background

Radiation (CBR), mentioned later.

In the following the reference to Dark Matter (DM) will be that of the new non-

baryonic matter, i.e the CDM.
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The new hypothesised particles of DM are mainly thought to be in the form of

Weakly Interacting Massive Particles (WIMPS) [54] [13] [51], since these particles

are thought to hardly ever interact with ordinary baryonic matter.

So ever since the idea of DM was postulated the hunt has been on to discover this

elusive substance [52]. However, to date, all experiments designed to detect DM

have proved fruitless. The latest experiment (designed at a cost of over a billion

pounds) to try and detect DM is the LUX experiment in Sanford, South Dakota.

The experiment is being performed at a location about a mile underground in

order to reduce interference from any weakly interacting baryonic particles such

as cosmic rays.

The general premise and principle of the experiment is that, if WIMPS exist, then

as they pass through a large volume of liquid Xenon, a collision with an Xenon

atom is expected, the correct predicted energy detection of such a collision would

therefore possibly prove its existence.

It is presumed that the earth experiences a Dark Matter ’wind’ (a flux of Dark

Matter) passing through it due to the earth’s motion through the postulating

Dark Matter halo of our galaxy. The model calculates that there are nearly one

billion WIMPS per square meter per second passing through the earth and it is

expected that these WIMPS have a small yet measurable interaction cross section

with ordinary nuclei (baryonic matter). In other words there is a small but finite

probability of an incoming WIMP scattering off a laboratory target in such a way

that it can be detected. The scattering event would be characterised by a recoil

energy of a few to tens of KeV, which is a very small but theoretically observable
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signal. Such a signal takes one of three forms: Scintillation light, ionization of an

atom within the target or heat energy in the form of phonons.

Xenon is a natural choice as a medium for these direct detection experiments

because it is easy to read out signals from two of these channels. Energy deposited

in the scintillation channel should be easily detectable since Xenon is transparent

to its own characteristic 175 mm scintillation. The assumed energy deposited

in the ionization channel should likewise be easily detectable, since ionization

electrons under the influence of an applied electrical field can drift through Xenon

for relatively large distances - up to several meters.

Furthermore, the ratio of the energy which would be deposited in these two chan-

nels would be a powerful tool for discriminating between nuclear recoils such as

WIMPS and neutrons (which are the signals of interest), and electric recoils such

as gamma rays, which are the major source of background interference.

Xenon is also particularly good for the experiment due to its ’self shielding’ prop-

erties. Liquid Xenon is very dense and therefore gamma and neutrons tend to

attenuate within just a few centimetres of entering the target. As such, any parti-

cle that does not have enough energy to reach the sensor of the target has a high

probability of undergoing multiple scatters, which would be easy to pick out and

reject. This makes Xenon ideal for Dark Matter searches.

The first run of the experiment was carried out in 2013 for a duration of ninety

days but absolutely no hint of DM was detected, and this trial run also ruled
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out any possible hints of DM from previous experiments [2]. The experiment is

running again now in 2014, this time for a period of two hundred days.

As for the theoretical DM model itself [22], the distribution of the dark matter is

thought to be spread out throughout the galaxy but mainly concentrated in a large

halo surrounding the galaxy and as such the term ’Dark Matter Halo’ includes the

dark matter within the galaxy.

In order for the DM model to fit the observed rotational velocities, it is necessary

for at least three free parameters, a minimum of two to describe the DM halo plus

the stellar mass to light ratio.

To give a brief overview of the basic theoretical DM model it is perhaps first best to

return to the afore mentioned observations by Zwicky. The original observations of

Zwicky were of the cluster of galaxies named the ’Coma’, where Zwicky estimated

the potential energy stored in the cluster to be of the form

E = −3Gm2

5r
= −mσ2

Where G is the gravitational constant, r denotes the radius of the cluster, m is the

total mass of the cluster and σ denotes the three dimensional velocity dispersion,

i.e.the root mean square speed(about the mean)of the cluster galaxies. The first

equality is arrived at by approximating the galaxy cluster as a homogeneous sphere

with constant mass density and the second equality is given by the Virial theorem

- which for a stable, self gravitating, spherical distribution of equal mass objects

(stars, galaxies),states that the total Kinetic Energy (KE), of the objects is equal
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to minus one half multiplied by the total gravitational Potential Energy (PE) i.e

KE = −1
2
PE.

From images of galaxy clusters Zwicky was able to estimate the radius, r, and the

observable luminous mass, m0, of the individual galaxies, spectroscopic observa-

tions were able to provide the galactic line of sight velocities and thus the velocity

dispersion. The observed value for the velocity dispersion exceeded the predicted

value (from the Newtonian dynamics) by a factor of around twenty. Now since

m ∝ σ2 this indicated a ’dynamical’, gravitating mass of the system md ≈ 400m0.

It is this obvious discrepancy that led Zwicky to assume that most of the mass

within the galaxy clusters was not luminous and this resulted in his coining of the

phrase ’Dark Matter’. Later observations revealed that the discrepancy was not

as large as Zwicky had initially estimated. A large amount of the luminous matter

within the galaxy cluster was in the form of Hot Gases which were only observable

at X-Ray wavelength. However, even when this is taken in to account, there is

still (for an average galaxy cluster), a substantial mass discrepancy of md ≈ 8m0

As mentioned earlier, some forty years after Zwicky’s observations of galaxy clus-

ters, it became clear that individual galaxies themselves showed a discrepancy

between luminous and dynamical mass. As seen in equa 6.1 the expected rota-

tional velocity (as a function of radius r from the galactic centre)for a galaxy is

that of

V 2(r) =
r∂φ

∂r
=
Gm(r)

r
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Where φ denotes the gravitational potential and m(r) is the mass enclosed within

r, which can be derived from integration over the mass density as a function of r,

ρ(r)

Now since it is observed that the velocity rotation curves are flat i.e. V ≈ constant,

the DM theory postulates that the galaxies behave as if they are surrounded

by halos of matter extending well beyond the visible components.Therefore, by

inspection of 6.1 the indication is that of halos with density profiles ρ(r) ∝ 1

r2
and

as such a simple parameterisation of a DM halo is achieved by a mass density profile

ρ(r) = ρ0
r0
r

2

, where ρ0 is a scaling factor of the dimension of a mass density and r0

denotes a characteristic radius. This functional form of the density profile follows

naturally from the assumption that a DM halo is a self gravitating isothermal

ensemble of particles in equilibrium. As such it follows that any DM halo model

for a given galaxy requires at least three free parameters i.e. the scaling parameters

ρ0 and r0 together with the galaxy’s mass to light ratio which is needed to estimate

the luminous mass from its brightness. An example of a modern sophisticated DM

model would be that of the Navarro-Frank-White profile.

The necessity of at least three free parameters for a DM model is in sharp con-

trast to that of Modified Newtonian Dynamics which has only one parameter - a

constant of nature.
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6.0.22 MOdified Newtonian Dynamics (MOND)

A modification regarding the second possible solution was put forward by Mordehai

Milgrom in the early 1980’s [37].

Milgrom considered a possible change in the proportionality of force and accelera-

tion, since typical accelerations in galactic systems are many orders of magnitude

smaller than those encountered in the solar system.

Milgrom introduced a constant a0 which has the dimensions of acceleration (SI

units). This constant was determined in a few independent ways [5] and found

to have a value of order 10−10. Now if accelerations (a) are much larger than a0

(a � a0) then the assumption is that standard Newtonian dynamics is a good

approximation for the system and hence

a =
mG

r2
(6.2)

In the opposite limit a� a0 then the acceleration is given by

a2

a0
=
mG

r2
(6.3)

Now these two expressions may be interpolated to give

µ(
a

a0
)a =

mG

r2
= aN (6.4)
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where aN is the Newtonian acceleration, and the interpolating function µ(x) sat-

isfies µ(x) ≈ 1 when x� 1 and µ(x) ≈ x when x� 1.

The MOND phenomenology is thus much simpler than the DM model and cannot

be adjusted to fit rotation curves in a way the DM model can. This is evident

when one considers that a0 is a constant of nature, yet any DM model necessarily

requires (as seen earlier), at least three free parameters.

The modified Poisson equation for the MOND phenomenology [6] is

5 ·[µ(
| 5φ |
a0

)5 φ] = 4πρ (6.5)

Note for consistency with the tensor analysis the units have been chosen such that

G = 1.

This modification was originally derived from the action principle for GTR [57].

In order for it to be fully consistent with 6.4, it is assumed there is no curl field

present.

MOND is found to describe the motions of galaxies of all types of galaxies ex-

tremely well [16] [35] [23] [39] including spiral, elliptical and dwarf and it is also

consistent with the Tully-Fisher relationship [53]. It therefore would appear to

have a very strong case for being the correct model for the description of the

motions of galaxies.
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There are several other galactic and cosmological problems which have initially

incurred the MMH and subsequently the DM model. These include the measure-

ments on The Bullet Cluster [11], Cosmic Background Radiation (CBR) [50] and

galactic lensing [14]. Although one’s take on the evidence is somewhat subjective,

pointing one way or another regarding which is a better explanation for these

anomalies, DM or MOND [36], MOND is an equally good candidate [4] [34] [40].

6.0.23 Relativistic MOND

The main problem for MOND is it needs a relativistic extension. If a modification

of GTR can be found which naturally leads to the MOND phenomenology then this

would surely suggest the validity of MOND. There have been several attempts to

modify GTR in this way including TeVeS [8] [49], Conformal Gravity [33] [32], and

DM as a curvature effect [12], but unfortunately none have been wholly satisfactory

[47] [48].

The following chapter describes a new attempt to modify GTR to this end. This

modification of GTR is based on a novel simple physical assumption - that the

space-time continuum is not only curved due to the presence of mass but there is

also the effect of a local expansion of the space-time continuum.



Chapter 7

THE LOCAL EXPANSION OF

SPACE-TIME

7.0.24 A Non-Riemannian Geometry

The previous chapters (excluding Chapter Six) have built up to and culminated

in Einstein’s GTR. The success of the theory at solar system scale has given the

theory huge credibility. However the apparent failure of Newton’s law to explain

the large scale motions of galaxies suggests that possibly GTR is not complete and

as such requires a modification which would lead to the correct predictions for the

dynamics of galaxies.

The following work concerns the novel concept of local space-time expansion in-

cluded within standard GTR. The concept is such that, not only is the geometry of

space-time curved as in standard GTR (a Riemannian geometry for space-time),

but there is also a local expansion of the space-time (a non-Riemannian geometry

84
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for the space-time). The non-Reimannian geometry which results is very similar

to that of Weyl’s. However Weyl attempted to associate the resulting extra math-

ematical term with the physical reality of the electromagnetic field. Einstein had

objected to Weyl’s theory claiming that there would now be an extra time factor

to consider (the proper time would no longer equate to the atomic time). However

it is interesting to note that this was a mainly philosophical argument since the

small ambiguities of length comparisons were too small to be detected [19].

Weyl eventually developed two forms of his theory. Physical quantities may be

represented in the form of a graph and this representation is most often used

when one wishes to set out a mass of information in such a way that the eye

can take it in in at a glance. This representation is of scientific ingenuity and

obviously extremely helpful but it is not a test of the ’nature’ of the world but of

the ingenuity of the mathematician. Weyl’s second form of his theory is of this

nature.

However, this is not the only use of a graphical representation. The representation

of a ’conceptual’ mathematical space of any number of dimensions, and if desired

a non-Euclidean geometry can be achieved in this manner and in this sense physics

geometrised, this is essentially Einstein’s view in his General Theory of Relativity

as a ’natural’ (actual) geometry by using the space-time adaptation of Riemannian

geometry.

Weyl’s concern was such that electromagnetic phenomena itself (the quantity),
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was not represented with Einstein’s theory. One possible way to incorporate elec-

tromagnetic quantities in to the theory was to assume that the Riemannian geom-

etry assigned to actual space was not exact and that the true geometry was of a

broader sense leaving room for the electromagnetic phenomena to be included in

to the natural geometry of space-time (i.e the formulation of a non-Riemannian

geometry).

To distinguish fully between the two forms of Weyl’s theory, one needs to distin-

guish between a ’natural’ geometry and a ’world’ geometry. The natural geometry

is the single ’true’ (actual) geometry in the sense understood by the physicist. The

world geometry is the pure geometry applicable to a conceptual graphical repre-

sentation of all the quantities concerned in physics. Thus in Weyl’s first form of

his theory, it is Einstein’s natural Riemannian geometry which is amended to a

broader natural non-Riemannian geometry.

In Chapter’s three and five it was seen that in Riemannian geometry and the

extended space time geometry, that as a vector undergoes a parallel displacement

the length remains constant, there is no change in length. However as one will

see in this chapter, one can construct a geometry in which a change of length

occurs without leading one in to any type of contradiction. This results in a non-

Riemannian geometry with an extra term appearing as compared with Einstein’s

analysis.

Weyl’s non-Riemannian geometry is that of a geometry where a change of length

occurs and it is mathematically very similar to the non-Riemannian geometry pre-

sented in this chapter. However, the physical interpretation is completely different.
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Within this non-Riemannian geometry, is it possible to compare lengths (beside

zero length) at different places? Since the result of the comparison will depend

on the route taken in bringing the two lengths closer together. In Riemannian

geometry the comparing of two lengths is taken for granted since the interval at

any point has been assigned a definite value and this implies comparison with a

standard.

The new geometry needs to be set up in such a way that comparisons can be

made. This can be achieved by supposing that a definite but arbitrary ’gauge

system’ has been adopted - in other words, at every point of space time a standard

of interval length has been set up and every interval is expressed in terms of the

standard at the point where it is. This avoids the ambiguity involved in transferring

intervals from one point to another to compare with a single standard. Thus one

is now dealing with transformation of a gauge system (gauge invariance), as well

as transformation of co-ordinates.

Change of gauge is a generalisation of change of unit in physical equations, the

unit being no longer a constant but an arbitrary function of position.

The only unit which needs to be considered is that of the interval. Co-ordinates

are merely identification numbers and have no reference to the interval unit (note

- if one changes the unit mesh of a rectangular co-ordinate system from one mile

to one kilometre, one makes a change of co-ordinates not a change of gauge).

So for Weyl this now paved the way for a change in length to manifest itself phys-

ically as an alteration of the electro magnetic field i.e. to describe the phenomena
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of electromagnetism.

Weyl had proposed his theory shortly after Einstein had published his General

Theory of Relativity and at that time it was thought that all the phenomena of

mechanics had been traced to the gµν in Einstein’s theory and thus the change

in length according to Weyl must naturally be linked directly to what was left,

namely the domain of electromagnetism.

Weyl’s theory, involving a natural geometry. has died from an inanation rather

than by direct disproof, in other words it had seemed an unnecessary speculation

to introduce small ambiguities of length comparisons which are too small to be

practically detected, merely to afford the satisfaction of geometrising the electro-

magnetic phenomena.

This leads neatly on to the concept of a local expansion of space time. Since it is

now well established that the motions of galaxies do not fit with GTR/Newton,

then perhaps the change in length does indeed have a mechanical effect. One

assumes that the change in length is linked directly to a local physical expansion

of space time itself and that this expansion can only be ’picked up’ (detected) at

large distances where it manifests itself in the observed mechanics of large systems

such as galaxies. As such in the following theory the General Theory of Relativity

remains unaltered for small systems e.g solar.

Perhaps the local expansion of space time is correlated to Quantum Mechanical

effects on space time. For example, in simple terms, the indeterminate position of

a particle may have the effect of local space time expansion and vice versa.
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In the previous chapters the GTR has been derived whereby a flat higher dimen-

sional space has been assumed (and then discarded) in order to find equations for

the change (in direction) of a vector under parallel displacement within a curved

space-time (following the arguments in [17]).

By introducing an expansion factor into the expression for the interval (distance

measure) in the higher dimensional space one can formulate a situation whereby

there is now found to also be a change in length of the vector under parallel dis-

placement. This procedure is equivalent to introducing conformal geometry into

the standard GTR analysis. Conformal geometry is concerned with the preser-

vation of angles under transformation but not lengths. This change in length is

to be related to the physical concept of the local expansion of space-time, thereby

both the mathematics/geometry and physics are completely generalised.

The inclusion of the expansion factor results in a term additional to the standard

Christoffel symbols. This extra term is present and consistent throughout the

analysis and in the analogous Newtonian approximation it can be used to fit the

observations of the dynamics of the galaxies, that is, the MOND phenomenology.

It can also be shown that the expansion term is negligible for small systems,-

therefore standard GTR is not altered for the solar system. However the expansion

term becomes the dominant term for large systems and therefore gives a physical

basis for the observed MOND dynamics of galaxies. In fact also, throughout

the forthcoming analysis when the expansion factor is set to unity the standard

expressions for the GTR are recovered.
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7.0.25 The Distortion Of Space-Time

The following treatment, not previously published to the best of the authors knowl-

edge, is the same previous derivation for standard GTR but now with an expansion

factor included.

So the interval in the higher dimensional space is initially

ds′2 = hnmdz
′ndz′m (7.1)

now the expansion is introduced (which is isotropic at a point zm) such that

dz′m =
√
αdzm, the expansion factor is thus 1√

α
and is a function of position. The

parameter α is thus linked directly to the local expansion of space-time.

This means 7.1 now becomes

ds′2 = αhnmdz
ndzm (7.2)

It should be noted that the formulation here has no direct relation to Tetrads. A

Tetrad is a set of axis introduced in to the General Theory of Relativity as a frame

from which one can transform to the co-ordinate frame and vis versa in order for

certain areas of physics, (e.g. Quantum Mechanics), to become more transparent.

In a Tetrad formulation the interval has the form

ds2 = γmne
m
µ dx

µenνdx
ν = gµνdx

µdxν
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Where emµ is defined to be the transformation co-efficients between the Tetrad

frame and the co-ordinate frame.

Now the curvature is introduced in exactly the same way as before with a point

yn(x) in the higher dimensional space corresponding to a point xµ in the embedded

curved four dimensional space-time.

So for two neighbouring points on the surface of the four dimensional space-time

one has

δyn = yn,µδx
µ (7.3)

and thus from 7.1 the squared distance between these two points is

δs′2 = αhnmδy
nδym (7.4)

From 7.3 this becomes

δs′2 = αhnmy
n
,µy

m
,ν δx

µδxν (7.5)

= αyn,µyn,νδx
µδxν (7.6)

Now since one also has



Chapter 7. THE LOCAL EXPANSION OF SPACE-TIME 92

δs′2 = gµνδx
µδxν (7.7)

the metric tensor is now given by

gµν = αyn,µyn,ν (7.8)

where both curvature and expansion determine its components. If α = 1 then the

metric tensor is that of standard GTR.

In order for the interval to be invariant one needs

ds2 = yn,µyn,νdx
µdxν (7.9)

and as such in a weak gravitational field then ds = dx0 that is the proper time

becomes the atomic time, to ensure that this is still the case with the expansion

factor included one can have both a gauge rescaling and a counterbalancing length

rescaling present. Therefore equating the infinitesimal of 7.5 with 7.9 one has

αds2 = ds′2 = αyn,µyn,νdx
µdxν (7.10)

The formulation here ( 7.9 and 7.10 ) allows, for weak curvature, the proper time to

become the atomic time, although the theory presented here does not necessarily

need this constraint.
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7.0.26 Parallel Displacement

Now the δxµ of 7.3 is equivalent to a vector(components) Aµ in the physical space-

time (the An being the corresponding vector in the higher dimensional space), thus

An = yn,µA
µ (7.11)

this vector is now shifted by parallel displacement to a neighbouring point x+ dx,

the vector does not now lie in the physical space-time, however (as discussed in

Chapter Three) it can be projected back onto the surface by splitting the vector

into a tangential part and a normal part and then discarding the normal part. So

for the displaced vector one has

An = Antan + Annorm (7.12)

Now let Kµ denote the components of Antan in the curved space-time, so from 7.11

one has

Antan = Kµyn,µ(x+ dx) (7.13)

Now since Annorm is defined to be normal to every tangential vector at x+ dx one

has the scalar product

Annormyn,µ(x+ dx) = 0 (7.14)
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Therefore, by using 7.13 and multiplying 7.12 through by yn,ν(x+ dx) the normal

term is discarded, leaving

Anyn,ν(x+ dx) = Kµyn,µ(x+ dx)yn,ν(x+ dx) (7.15)

substitution of 7.8 then gives

Anyn,ν(x+ dx) =
1

α(x+ dx)
gµν(x+ dx)Kµ(x+ dx) (7.16)

=
1

α(x+ dx)
Kν(x+ dx) (7.17)

rearranging gives

Kν(x+ dx) = Anyn,ν(x+ dx)α(x+ dx) (7.18)

Taylor expansion of the RHS gives

Kν(x+ dx) = An[(yn,ν(x) + yn,νσdx
σ)(α(x) + α,σdx

σ)] (7.19)

with use of 7.11 and 7.8 this then becomes

Kν(x+ dx) = Aν + [Aν(lnα),σ + Aµαyn,µyn,νσ]dxσ (7.20)
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Since the Kν is the result one gets when the vector Aν is parallel displaced to the

point x+ dx one can write

Kν − Aν = dAν (7.21)

where dAν is the change in the vector Aν under parallel displacement, as such

dAν = [Aν(lnα),σ + Aµαyn,µyn,νσ]dxσ (7.22)

or with the use of gµνA
µ = Aν one has

dAν = Aµ[gµν(lnα),σ + αyn,µyn,νσ]dxσ (7.23)

this can be compared with the same manner of change (recall 3.36) in the standard

GTR which is

dAν = Aµyn,µyn,νσdx
σ (7.24)

Now the yn refers to the higher dimensional space, and this reference can be made

to disappear by differentiation, manipulation and subsequent substitution of 7.8

as follows
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gµν,σ = α[yn,µyn,νσ + yn,νy
n
,µσ] + yn,µyn,να,σ (7.25)

= α[yn,µyn,νσ + yn,νyn,µσ] + yn,µyn,να,σ (7.26)

Interchanging µ and σ one gets

gσν,µ = α[yn,σyn,νµ + yn,νyn,σµ] + yn,σyn,να,µ (7.27)

Interchanging ν and σ (from 7.25) one gets

gµσ,ν = α[yn,µyn,σν + yn,σyn,µν ] + yn,µyn,σα,ν (7.28)

Now from 7.8 one has for the last terms in 7.25, 7.27 and 7.28

yn,µyn,να,σ =
gµν
α
α,σ = gµν(lnα),σ (7.29)

Interchange of µ and σ gives

yn,σyn,να,µ =
gσν
α
α,µ = gσν(lnα),µ (7.30)
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Interchange of ν and σ gives

yn,µyn,σα,ν =
gµσ
α
α,ν = gµσ(lnα),ν (7.31)

So if one takes 7.25+7.28−7.27 and divides by two, one has the standard Chrstoffel

symbols (recall 3.38). These are now seen to be of the form

Γµνσ = αyn,µyn,νσ +
1

2
[gµν(lnα),σ + gµσ(lnα),ν − gσν(lnα),µ] (7.32)

7.0.27 The Expansion Symbols

The Expansion symbol E is now introduced such that

Eµνσ =
1

2
[gµν(lnα),σ + gµσ(lnα),ν − gσν(lnα),µ] (7.33)

so 7.32 is now

Γµνσ − Eµνσ = αyn,µyn,νσ (7.34)

with an interchange of µ and ν on E one finds

Γµνσ + Eνµσ = αyn,µyn,νσ + gµν(lnα),σ (7.35)
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substitution into 7.23 results in

dAν = Aµ[Γµνσ + Eνµσ]dxσ (7.36)

or equivalently

dAν = Aµ[Γµνσ − Eµνσ + gµν(lnα),σ]dxσ (7.37)

to be compared with the standard result in GTR (which is obtained when α = 1)

of

dAν = AµΓµνσdx
σ (7.38)

If one then lets

Γ∗µνσ = Γµνσ + Eνµσ (7.39)

then 7.36 can be written as

dAν = AµΓ∗µνσdx
σ (7.40)
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It will become apparent that the standard GTR is modified by simply introducing

the modified Christoffel symbol of 7.39 and that standard GTR is always recovered

when α = 1 in the modified theory.

7.0.28 The Change in Vector Length

Due to the local expansion, the above result for the change in a vector will now

include a change in length of the vector (d(gµνAµAν)) under parallel displacement

which can now be determined as in the following.

d(gµνAµAν) = gµν [AµdAν + AνdAµ] + AµAνg
µν
,σ dx

σ (7.41)

with the usual use of raising/lowering indices and a change of summation indices

in the last term on the RHS, one gets

d(gµνAµAν) = AνdAν + AµdAµ + AαAβg
αβ
,σ dx

σ (7.42)

now substitution of 7.37 yields

d(gµνAµAν) =[AνAµ(Γµνσ + Γνµσ)− AνAµ(Eµνσ + Eνµσ)

+ 2AνAν(lnα),σ + AαAβg
αβ
,σ ]dxσ (7.43)
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Now one can use the relationships

Γµνσ + Γνµσ = gµν,σ (7.44)

and

Eµνσ + Eνµσ = gµν(lnα),σ (7.45)

so substitution into 7.43 gives

d(gµνAµAν) =[AνAµgµν,σ − AνAν(lnα),σ

+ 2AνAν(lnα),σ + AαAβg
αβ
,σ ]dxσ (7.46)

It is now useful to look at a relationship involving derivatives of the metric tensor,

so if one takes

gαµ,σ gµν + gαµgµν,σ = (gαµgµν),σ = gαν,σ = 0 (7.47)

and then multiplies through by gβν one gets

gαβ,σ = −gαµgβνgµν,σ (7.48)
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If one now takes this relationship and substitutes it into 7.46 and performs the

arithmetic, the result is

d(gµνAµAν) = AνAν(lnα),σdx
σ = AνAνd(lnα) (7.49)

so

d(AνAν) = AνAνd(lnα) (7.50)

showing a change in length under parallel displacement by a factor of 1
α

, such that

d[(
1

α
)(AνAν)] = 0 (7.51)

Now if one lets Aν = dxν , then with reference to 7.10 one has

d[(
1

α
)(dxνdxν)] = d(

ds′2

α
) = 0 (7.52)

and so d(ds) = 0 which gives an invariant distance for 7.9 as expected.

The change in a covariant vector has been determined by 7.40, the change in a

contravariant vector now must be determined, not least because it is the expression

for this change in a contravariant vector which is used in order to determine the

equation for a time-like geodesic.

So following directly from 7.50 one has
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d(AνB
ν) = AνB

νd(lnα) = AνdB
ν +BνdAν (7.53)

substituting in 7.40 one gets

d(AνB
ν) = AνdB

ν +BνAµΓ∗µνσdx
σ (7.54)

then using Γ∗µνσ = gµαΓα∗νσ and a swap of summation indices (α and µ), one gets

d(AνB
ν) = AνdB

ν +BνAµΓµ∗νσdx
σ (7.55)

Now rearranging, use of 7.50 and a swap of summation indices (ν and µ) and

cancellation of the repeated Aν term, one has

dBν = Bνd(lnα)−BµΓν∗µσdx
σ (7.56)

If one now defines

Γ∗νµσ = Γν∗µσ − gνµ(lnα),σ (7.57)

multiplying through by gνα one has

Γ∗αµσ = Γ∗αµσ − gαµ(lnα),σ (7.58)
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now, as seen from 7.37 and 7.39 one has Γ∗αµσ = Γαµσ − Eαµσ + gαµ(lnα),σ so

substituting this into 7.58 yields

Γ∗αµσ = Γαµσ − Eαµσ (7.59)

for a consistent notation.

Now substituting 7.57 into 7.56 one gets

dBν = Bνd(lnα)− [BµΓ∗νµσ −Bν(lnα),σ]dxσ (7.60)

therefore the change for a contravariant vector is given by

dBν = −BµΓ∗νµσdx
σ (7.61)

It should now be apparent that the modification of the standard GTR by the use of

the notion of a local expansion of space-time can simply be obtained by replacing

the standard Christoffel symbols with the modified Christoffel symbols.

7.0.29 The Modified Time Like Geodesic, Curvature Ten-

sor and Covariant Differentiation

The time-like geodesic equation of 5.4 is now
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dvµ

ds
= −Γ∗νµσv

νvσ (7.62)

and the curvature tensor of 3.55 is now modified to

Rβ
∗νρσ = Γβ∗νσ,ρ − Γβ∗νρ,σ + Γα∗νσΓβ∗αρ − Γα∗νρΓ

β
∗ασ (7.63)

Also the definition and operation of covariant differentiation from 3.45 and 3.46 is

now

Aµ(x+ dx)− [Aµ(x) + Γα∗µνAαdx
ν ] = (Aµ,ν − Γα∗µνAα)dxν (7.64)

The notation of 3.47 is now changed from a : to a ; to reflect the fact that one now

has a modified covariant derivative, as such one has

Aµ;ν = Aµ,ν − Γα∗µνAα (7.65)

in which the modification has been constructed from the parallel displacement of

a tensor and as such satisfies general covariance and now defines the new covariant

derivative.

The d’Alembert equation of 5.32 is thus modified to

gµνΦ;µ;ν = gµν(Φ,µν − Γα∗µνΦ,α) = 0 (7.66)
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7.0.30 The Geodesic Acceleration

One can now consider the analogous Newtonian approximation which was dealt

with in Chapter Five. The method and approximations are identical, the difference

being is that there is now the extra expansion term 7.33 to consider, which has

for each term, a derivative involving the expansion factor multiplied by the metric

tensor.

So as well as the approximations leading to 5.10, 5.12, 5.13 and 5.14 one now has

the following analogous results to be included in the new approximation analysis

(lnα),0 = 0 (7.67)

Em0n = 0 (7.68)

leading to

Γ∗m0n = Γ∗m0n = 0 (7.69)

Γ∗m0n = Γm∗0n = 0 (7.70)

So starting the new analysis, from 7.10 one has
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αds2 = gµνdx
µdxν (7.71)

therefore following the same definition and procedure as in Chapter Five one has

α = gµνv
µvν (7.72)

and using exactly the same approximations as in Chapter Five this leads to

g00(v
0)2 = α (7.73)

which is to be compared with 5.17.

One now moves on to the geodesic equation to find the new potential analogous

to that of Chapter Five.

The modified time-like geodesic equation is that of 7.62 which is

dvµ

ds
= −Γ∗νµσv

νvσ (7.74)

again using the slow moving approximation, dropping quadratics and also the use

of 7.70 leads to
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dvm

ds
= −Γ∗mνσ v

νvσ

= −Γ∗m00 (v0)2

= −gmnΓ∗n00(v
0)2 (7.75)

Now from 7.59 one has Γ∗n00 = Γn00 − En00, so in the usual manner from Chapter

Five using the static field approximation, one has

Γn00 =
1

2
[gn0,0 + g0n,0 − g00,n]

= −1

2
g00,n (7.76)

and also using the static field approximation of 7.67 one also has

En00 =
1

2
[gn0(lnα),0 + g0n(lnα),0 − g00(lnα),n]

= −1

2
goo(lnα),n (7.77)

so 7.75 now becomes

dvm

ds
=

1

2
gmn[g00,n(v0)2 − g00(lnα),n(v0)2] (7.78)
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Now from 7.73 one has (v0)2 = α
g00

, so

dvm

ds
=

1

2
αgmn[

g00,n
g00
− (lnα),n]

=
1

2
αgmn(ln

g00
α

),n (7.79)

This can now be written

dvm

ds
= αgmnφ,n (7.80)

where the new potential φ is now seen to be

φ = ln

√
g00
α
≈
√
g00
α
− 1 ≈ 1

2
(
g00
α
− 1) (7.81)

So, to check for consistency, when α = 1 then the weak field approximation is such

that g00 = 1 + 2Φ, substitution into 7.79 (also remembering the diagonal elements

of gmn = −1) yields

dvm

ds
= −(ln

√
1 + 2Φ),n

= −[ln(1 + Φ)],n

= −Φ,n (7.82)
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This is then consistent with 5.37 and 5.38 since when α = 1 the standard Newto-

nian approximation of Einstein’s law derived in Chapter Five holds.

The modification to the gravitational potential now depends on α (the local expan-

sion of space time), which is tied in to the gravitational force, so, the gravitational

potential is now seen to be comprised of two ’parts’ - the curvature (as per Ein-

stein), and the local expansion. Both parts are present throughout. However the

curvature dominates the expansion for small local systems (e.g solar system), to

the extent that the expansion is negligible for gravitational effects, therefore leav-

ing standard GTR/Newton unaltered. However for large systems/large distances

(i.e. galaxies), it is the expansion term which dominates leading to an adjusted

gravitational effect.

The metric tensor and its degrees of freedom are thus unchanged for the Gen-

eral Relativistic view of the solar system. The extra degree of freedom for the

gravitational description of galactic systems due to the parameter α is explained

physically by the local expansion of space time. As such there is no contradiction

or ’spare part’.

7.0.31 The Modified Einstein Field Equations and the MOND

Approximation

The very same analysis must now be completed using the new modified law.

The general modified law for empty space is such that
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R∗µν −
1

2
gµνR∗ = 0 (7.83)

Now recalling 5.50, which is

Rµν − 1

2
gµνR = −8πρvµvν (7.84)

where the RHS has the inclusion of matter into Einstein’s law. Since one now also

needs a modification of this law, then the expansion factor must be incorporated

into the RHS as well as the LHS. This can be achieved by defining a velocity vµ∗

such that

vµ∗ =
dxµ

ds′
=

1√
α
vµ (7.85)

and since one has αds2 = gµνdx
µdxν , therefore

α = gµνv
µvν (7.86)

and so

gµνv
µ
∗ v

ν
∗ = 1 (7.87)
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which means that v∗µv
ν
∗;σ = 0. Since the modified velocity is just that of 7.85, then

the same conservation analysis of Chapter Five will ensue. The condition for the

conservation of matter is such that

(ρvµ∗ );µ = 0 (7.88)

so for the material energy tensor T µν one has

T µσ;µ = (ρvµ∗ v
ν
∗ );µ = 0 (7.89)

The new modified law with the inclusion of matter(in lowered index form)is thus

R∗µν −
1

2
gµνR∗ = −8πρv∗µv∗ν (7.90)

again it should be noted here that when α = 1 then R∗ = R and v∗ = v and so

standard GTR is recovered.

Now, the R∗µν must be calculated, and as in standard GTR, in the weak field

approximation the quadratic terms may be neglected, and with use of 7.39 one

has
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R∗µν = Γα∗µα,ν − Γα∗µν,α

= gαβ[Γ∗βµα,ν − Γ∗βµν,α]

= gαβ[Γβµα,ν + Eµβα,ν − Γβµν,α − Eµβν,α]

= gαβ[Γβµα,ν − Γβµν,α] + gαβ[Eµβα,ν − Eµβν,α] (7.91)

For completeness, using 3.38 and 7.33 the two terms on the RHS of 7.91 may be

calculated separately, so one has

gαβ[Γβµα,ν − Γβµν,α] = gαβ[
1

2
(gβµ,αν − gαµ,βν + gβα,µν)

− 1

2
(gβµ,να − gνµ,βα + gβν,µα)] (7.92)

and therefore

gαβ[Γβµα,ν − Γβµν,α] =
1

2
gαβ[gβα,µν − gαµ,βν − gνµ,βα − gβν,µα] (7.93)

and for the second term one has



Chapter 7. THE LOCAL EXPANSION OF SPACE-TIME 113

gαβ[Eµβα,ν − Eµβν,α] =
1

2
gαβ[(gµβ(lnα),α),ν − (gαβ(lnα),µ),ν + (gµα(lnα),β),ν ]

− 1

2
gαβ[(gµβ(lnα),ν),α − (gνβ(lnα),µ),α + (gµν(lnα),β),α]

(7.94)

which with cancellations and differentiation performed, gives

gαβ[Eµβα,ν − Eµβν,α] =
1

2
gαβ[−gαβ(lnα),µν − (lnα),µgαβ,ν

+ gµα(lnα),βν + (lnα),βgµα,ν

− gνβ(lnα),µα + (lnα),µgνβ,α

+ gµν(lnα),βα + (lnα),βgµν,α] (7.95)

Now returning to the new modification of Einstein’s law of gravity of 7.90, which

is

R∗µν −
1

2
gµνR∗ = −8πρv∗µv∗ν (7.96)

and recalling the definition of vµ∗ from 7.85, one can multiply through by α and

obtain

α[R∗µν −
1

2
gµνR∗] = −8πρvµvν (7.97)
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now with a rearrangement equivalent to that of 5.54, the condition of 5.55, a

substitution of R∗µν from 7.91 and the approximation condition µ = ν = 0 (and

g00 ≈ α), then 7.97 becomes

αgαβ[Γβ0α,0 − Γβ00,α] + αgαβ[E0βα,0 − E0β0,α] = −4πρv0v0 (7.98)

Now the static field approximations of gµν,0 = 0 and (lnα),0 = 0 need to be applied

to the Christoffel and Expansion symbols, it is clear that for Γβ0α,0 and E0βα,0 one

will get

Γβ0α,0 = 0 (7.99)

and

E0βα,0 = 0 (7.100)

calculation of the other two terms gives

Γβ00,α =
1

2
[gβ0,0α − g00,βα + gβ0,0α]

= −1

2
g00,βα (7.101)

and
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E0β0,α =
1

2
[(g0β(lnα),0),α − (g0β(lnα),0),α + (g00(lnα),β),α]

=
1

2
[g00(lnα),β],α (7.102)

so now substitution of 7.101 and 7.102 into 7.98 yields

α

2
gαβ[g00,βα − (g00(lnα),β),α] = −4πρv0v0 (7.103)

and one therefore has

αgmn[g00,nm − (g00(lnα),n),m] = −8πρv0v0 (7.104)

Now for a weak field one has

yn,µyn,ν ≈



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(7.105)

and so from 7.8 one has
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gµν = αyn,µyn,ν ≈



α 0 0 0

0 −α 0 0

0 0 −α 0

0 0 0 −α


(7.106)

and therefore

gµν ≈



1/α 0 0 0

0 −1/α 0 0

0 0 −1/α 0

0 0 0 −1/α


(7.107)

Now from 7.73 and using g00 = 1
g00

for a static and weak field one has g00vov0 =1 /α

and from the above this means v0 = 1 also from the above gmn = 1
α

, so substitution

into 7.104 gives

g00,mm − [g00(lnα),m),m] = 4πρ (7.108)

Now from 7.81 one has

φ,n =
1

2
[ln(g00),n − (lnα),n] (7.109)

so rearranging, one has
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ln(g00),n − (lnα),n = 2φ,n (7.110)

therefore

g00,n
g00
− (lnα),n = 2φ,n (7.111)

multiplying through by g00 and rearranging gives

g00(lnα),n = g00,n − 2g00φ,n (7.112)

so substituting 7.112 into 7.108 gives

g00,mm − [g00,m − 2g00φ,m],m = 8πρ (7.113)

therefore

[2g00φ,m],m = 8πρ (7.114)

and finally one has

(g00φ,m),m = 4πρ (7.115)
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which can be compared directly with 6.5, providing g00 can be identified as the

MOND interpolation function µ.

Now since from rearranging 7.81 one has

g00
α

= 1 + 2Φ (7.116)

then it is clear that although g00
α

must be approximately unity, g00 itself is free to

vary as the MOND interpolation function µ.

7.0.32 Point Source and General Solution

With 6.4 in mind, one now has for a point source, Newton’s second law written as

F = mg00a. Where m is the point mass, a is the acceleration and F is the force.

As seen from 7.116 g00 is free to vary as the MOND interpolation function. Also,

as one can see from 5.17, there is no restriction on g00 in standard GTR.

Rearranging (7.81) and then substituting the result g00 = αe2φ into (7.115) and

performing integration gives

αe2φ =
D(

r2|5̃φ|
) (7.117)

for point source of mass M , ρ = Mδ(r), where D is an integration constant,

r =
√
x21 + x22 + x23 and δ(r) is the Dirac delta function.
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If one then matches this solution to the observed flattening of galaxys’ rotation

curves as discussed in chapter 6, then these observations impose that |5̃φ| → D/r2

when |5̃φ| � a0 and that |5̃φ| →
√
a0D/r when |5̃φ| � a0, where a0 is the

acceleration parameter of MOND theory.

Thus a consistent solution for the potential is derived to be

φ = −M/r +
√
a0M ln r, (7.118)

where D has been identified as the point source mass M .

This derivation is based on observation and allows an interpretation of the rate of

expansion, which suggests a physical context and thus an alternative derivation

(see later).

The first term in 7.118 is obviously the Newtonian potential due to the curvature

φNEWT as derived in Chapter Five, and the second term is the MOND potential

(from Chapter Six) which is due to local expansions φMOND, see fig. 7.1.

From 7.118 one has

φ,m = [M/r2 +

√
a0M

r
]~r (7.119)

Now since one has (g00φ,m ),m = 4πρ (7.115) this means that

g00φ,m = (M/r2)~r (7.120)
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so rearranging 7.120 and substituting in for 7.119 one has

g00 =
M/r2

M/r2 +
√
a0M/r

, (7.121)

and substituting 7.118 into 7.116 one has

g00/α = 1− 2M/r + 2
√
aoM ln r (7.122)

as such two limits can now be considered:

For small r such that the curvature term M/r2 dominates the expansion term

√
a0M/r, then this equates to a dominant solution of the Newtonian potential

φNEWT where the accelerations are such that |φN ,m |/a0 >> 1.

This means that (7.118) becomes

φNEWT = −M/r (7.123)

and therefore

φNEWT ,m = (M/r2)~r (7.124)

and also (7.121) therefore becomes
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g00 = 1−
√
a0
M
r ≈ 1 (7.125)

and so from 7.122 one has

g00/α = 1− 2M/r (7.126)

thus the Newtonian point source potential is recovered.

For large r such that the expansion term
√
a0M/r dominates the curvature term

M/r2, then this equates to a dominant solution of the MOND potential φMOND

where the accelerations are such that |φM ,m |/a0 << 1.

Thus (7.118) becomes

φMOND =
√
a0M ln r (7.127)

and therefore

φMOND,m = (
√
a0M/r)~r (7.128)

and (7.121) becomes

g00 =

√
M

a0

1

r
(7.129)
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So substituting 7.127 and 7.129 into (7.115), gives

[

√
M

a0

1

r
(
√
a0M ln r),m ],m = [

M

r2
~r],m = 4πMδ(x) = 4πρ (7.130)

as expected.

Also if limits are introduced directly into (7.117) such that for the Newtonian case

as r → 0, α = 1 and 2φ� 1, this gives

r2 (1 + 2φ) 5̃φ = M. (7.131)

After integration and |φ2| � |φ| yields φ = −M/r as expected.

In the MOND limit |φ2| � |φ3| and α = α(r). After integration this gives φ(r) ∝
√
a0M ln r, where

α(r) =
1

2a0r ln r
. (7.132)

Interestingly, the 1/r ln r dependence for α (the space-time expansion) is identical

to the large r radial velocity of a spherical shock wave [56] [28]. So, if one assumed

this physical origin for expansion one can directly derive the second term in (7.118)

without fitting MOND characteristics to the solution.

It is noted that the factor g00 is approximately unity in the Newtonian approx-

imation, meaning that (7.115) is linear and so a system of point sources can be
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considered as a summation of separate point source solutions. However, in the

MOND approximation, g00 is a varying function, and so (7.115) is non-linear and

cannot be broken down in this way. Furthermore, the mass term on the right hand

side of (7.115) is split into a factor
√
M with the potential and a factor

√
M with

g00. So, the momentum equation of Newton’s second law only makes sense if it is

modified to include the factor g00. Furthermore, because of the nonlinearity this

factor g00 can only be calculated once the complete system is known.

Figure 7.1: The change in acceleration with distance

The point source solution suggests a general solution given by

φ = φNEWT + φMOND

g00 =

∣∣∣∣ ∇φNEWT

∇φNEWT +∇φMOND

∣∣∣∣
α =

1− 2φNEWT − 2φMOND

1 + |∇φMOND/∇φNEWT |

g00/α = 1 + 2φNEWT + 2φMOND
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where ∇ is the differential operator ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

) for Cartesian co-ordinate system

vector representation (x1, x2, x3). φ
NEWT and φMOND are connected in the sense

that they can be seen as limiting values of the same general potential φ, such that

the first is the limit of small relative radius for solar systems, and the second is the

limit of large relative radius for galaxies. So this choice of φ has a certain degree

of physical justification in that it gives the expected physics in these limits. The

two limits are then as follows.

When |φ,n |/a0 >> 1, then curvature dominates so |∇φNEWT | >> |∇φMOND|, and

φ = φNEWT

g00 = 1

α = 1− 2φNEWT

g00/α = 1 + 2φNEWT ,

and so φNEWT ,mm = 4πρ, and the Newtonian gravitational representation is re-

covered. Such accelerations feature in solar system dynamics.

However, when |φ,n |/a0 << 1, then expansion dominates |∇φMOND| >> |∇φNEWT |,

and
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φ = φMOND

g00 =

∣∣∣∣∇φMOND

a0

∣∣∣∣
α =

∣∣∣∣∇φMOND

a0

∣∣∣∣ (1− 2φMOND)

g00/α = 1 + 2φMOND,

and so (7.115) becomes

(g00φ,m ),m = (
|∇φMOND|

a0
φMOND,m ),m = 4πρ,

which is the MOND representation for the potential acceleration, and as seen in

Chapter Six, it is these accelerations that feature in the motions of galaxies.

Thus the analysis within this chapter would appear to show that, by introducing

the physical assumption of a local space-time expansion, due to the presence of

mass, into standard GTR one can explain the observed rotational motions of the

galaxies and yet at the same time leave the standard GTR unaltered to explain

the observed motions of the solar system without assuming any Dark Matter.



Chapter 8

CONCLUSION

8.1 Main Section 1

From the analysis presented in the previous chapters it would seem that the intro-

duction, into standard GTR, of the notion of a local expansion of space-time and

the effects this has on the metric, can be seen to result in the observed MONDian

phenomenology and thus eliminating the need for any Dark Matter.

The main problem for the MOND approach has been the lack of a relativistic

backing and also the lack of a physical basis (why should anything like MOND

happen?). The assumption that there is local space-time expansion (which stems

directly from the non-Riemmanian geometry, or vice versa) may provide the much

needed physical underpinning for a relativistic MOND theory.

126
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This physical mechanism may also help to explain the numerical coincidence that

a0 ≈ cH0 (where c is the velocity of light and H0 is the Hubble constant), which

suggests a connection of MOND to the expansion of the Universe.

At present the choice of g00 for the interpolation function is not backed by a

fully compelling natural derivation that says it must be so. However the non-

Riemmanian geometry resulting from the introduction of local space-time expan-

sion may actually be a necessity. This may possibly be shown to originate from the

rotating disk scenario in Special Relativity where large distances are concerned.

If this can be shown to be the case then it might be expected that the g00 would

naturally become the MOND interpolation function.

In modern cosmology there is also the need to include the mysterious property of

Dark Energy (DE). DE was originally proposed as the major contribution to the

Universe’s energy density in order to account for a flat Euclidean universe which

was favoured by inflationary models [15]. The DE proposal was then further

refined in the late 1990’s when the Universe was observed to be expanding at an

accelerating rate [43]. There are curious coincidences of scales between the DM and

DE sectors [38], showing that these two areas may not be physically independent

and as such the assumption of a local space-time expansion may possibly rid the

need for DE also. This may possibly be achieved by introducing the phenomena

of local space-time expansion into into the standard analysis for the gravitational

red shift.

Early Universe cosmology concerns a regime where the pressure term in the new

energy momentum tensor is no longer negligible. This situation requires analysis
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which may give rise to explanations involving the evolution of Galaxies and is

intended to be explored in further work.

Finally, there is the phenomena of galactic lensing [40], which from observation

requires an extra deflection of light in addition to that given by standard GTR.

Although the work presented within this thesis assumes a conformal transform

when dealing with the electromagnetic field, which would normally imply that

there was no extra deflection, the viewpoint of a local space-time expansion (that

can only be detected in large systems/distances) may possibly be seen to give the

extra deflection.
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of general relativity casts doubt on dark matter, The Hindu, 5 August, 2013 [
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(ii) TF Hodgkinson and GS McDonald, New theory of general relativity casts
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doubt on dark matter, SBS World News, Australia, 6 August, 2013

129



Appendix A. Appendix Title Here 130

(vi) TF Hodgkinson and GS McDonald, New theory of general relativity casts

doubt on dark matter, The Epoch Times, Science & Environment, 16-22 August,

2013

13. TF Hodgkinson and GS McDonald, New theory of general relativity casts

doubt on dark matter, THE CONVERSATION, 5 August, 2013 [ Invited-Authored

Article, Readership of over 1,000,000 per month ]

12. EA Chadwick, TF Hodgkinson and GS McDonald, Salford University scientists

modify Einstein’s equations and cast doubt on dark matter, News Release, 23 July,

2013

11. EA Chadwick, TF Hodgkinson and GS McDonald, Gravitational theoreti-

cal development supporting MOND, PHYSICAL REVIEW D v88, iss 2, art no

024036, 2013 [ Impact Factor: 4.691 ]

10. JM Christian, GS McDonald, TF Hodgkinson and P Chamorro-Posada, Wave

envelopes with second-order spatiotemporal dispersion. I. Bright Kerr solitons and

cnoidal waves, PHYSICAL REVIEW A, v86, iss 2, art no 023838, 2012 [ Impact

Factor: 3.042 ]

9. JM Christian, GS McDonald, TF Hodgkinson and P Chamorro-Posada, Wave

envelopes with second-order spatiotemporal dispersion. II. Modulational instabil-

ities and dark Kerr solitons, PHYSICAL REVIEW A, v86, iss 2, art no 023839,

2012 [ Impact Factor: 3.042 ]

8. GS McDonald, JM Christian, TF Hodgkinson, R Cowey, & G Lancaster, Spa-

tiotemporal pulse propagation: connections to special relativity theory, Science &



Appendix A. Appendix Title Here 131

Technology College Research Showcase Day, University of Salford, UK, 20 June,

2012.

7. JM Christian, GS McDonald, TF Hodgkinson and P Chamorro-Posada, Spa-

tiotemporal Dispersion and Wave Envelopes with Relativistic and Pseudo-Relativistic

Characteristics, PHYSICAL REVIEW LETTERS v108 no 3, Art. No. 034101,

2012 [ Impact Factor: 7.943 ]

6. MJ Lundie, G Lancaster, TF Hodgkinson, JM Christian, GS McDonald and P

Chamorro-Posada, Pulses with Relativistic and Pseudo-Relativistic Aspirations,

Waves 2011 - 10th International Conference on Mathematical and Numerical As-

pects of Waves, 25-29 July, Vancouver, Canada, 2011

5. G Lancaster, MJ Lundie, TF Hodgkinson, JM Christian and GS McDonald,

Universality in Relativistic Aspirations of Helmholtz Soliton Pulses, CLEO Europe

- EQEC 2011, 22-26 May, Munich, Germany, 2011

4. GS McDonald, JM Christian and TF Hodgkinson, Optical soliton pulses with

relativistic characteristics, IEEE Abstract, 5th International Conference on Ad-

vanced Optoelectronics & Lasers, CAOL 2010, Sevastopol, Crimea, Ukraine, 10-14

Sept 2010 [ Invited Conference Paper & Plenary Talk ]

3. JM Christian, GS McDonald, TF Hodgkinson and P Chamorro-Posada, Optical

pulses with spatial dispersion - exact solitons & relativity, National Photonics

Conference, Photon 10, Southampton, UK, 23-26 Aug 2010



Appendix A. Appendix Title Here 132

2. GS McDonald, JM Christian and TF Hodgkinson, Relativistic Effects in Non-

Relativistic Systems, SEE Celebration of Research, meeting abstract & presenta-

tion, University of Salford, UK, 30 June 2010

1. JM Christian, TF Hodgkinson, GS McDonald and P Chamorro-Posada, Helmholtz

pulse propagation & spatially-dispersive light, Optical Society of America entry,

Nonlinear Photonics, Conference Proceedings Paper, Karlsruhe, Germany, 21-24

June 2010



Bibliography

[1] Adams, S. (2003). Relativity: An Introduction to Spacetime Physics. CRC

Press.

[2] Akerib, D., Araujo, H., Bai, X., Bailey, A., Balajthy, J., Bedikian, S., Bernard,

E., Bernstein, A., Bolozdynya, A., Bradley, A., et al. (2014). First results from

the lux dark matter experiment at the sanford underground research facility.

Physical review letters, 112(9):091303.

[3] Akerib, D., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bolozdynya,

A., Bradley, A., Byram, D., Cahn, S., Camp, C., et al. (2013). The large

underground xenon (lux) experiment. Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-

ciated Equipment, 704:111–126.

[4] Angus, G. W. and McGaugh, S. S. (2008). The collision velocity of the bullet

cluster in conventional and modified dynamics. Monthly Notices of the Royal

Astronomical Society, 383(2):417–423.

[5] Bekenstein, J. and Milgrom, M. (1984a). Does the missing mass problem signal

the breakdown of newtonian gravity? The Astrophysical Journal, 286:7–14.

133



Bibliography 134

[6] Bekenstein, J. and Milgrom, M. (1984b). Does the missing mass problem signal

the breakdown of newtonian gravity? The Astrophysical Journal, 286:7–14.

[7] Bekenstein, J. D. (2004a). Relativistic gravitation theory for the modified

newtonian dynamics paradigm. Physical Review D, 70(8):083509.

[8] Bekenstein, J. D. (2004b). Relativistic gravitation theory for the modified

newtonian dynamics paradigm. Physical Review D, 70(8):083509.

[9] Born, M. (1965). Einstein’s theory of relativity. Courier Dover Publications.

[10] Bostock, L., Chandler, S., and Rourke, C. P. (1982). Further pure mathemat-

ics. Nelson Thornes.
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