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Abstract

These days most reproduced sound is consumed using portable devices and headphones, on

which spatial binaural audio can be conveniently presented. One way of converting from

conventional loudspeaker formats to binaural format is through the use of Head Related

Transfer Functions (HRTFs), but head-tracking is also necessary to obtain a satisfactory

externalisation of the simulated sound field. Typically a large HRTF dataset is required in

order to provide enough measurements for a continuous virtual auditory space to be achieved

through simple linear interpolation, or similar.

This work describes an investigation into the use of alternative compact and efficient rep-

resentations of an HRTF dataset measured in the azimuthal plane. The two main prongs

of investigation are the use of orthogonal transformations in a decompositional approach,

and parametric modelling approach that utilises techniques often associated with speech

processing. The latter approach is explored through the application of a linear prediction

derived all-pole model method and a pole-zero model design method proposed by Steiglitz

and McBride [Steiglitz and McBride, 1965]. The all-pole model is deemed to offer superior

performance in matching the measured data after compression of the HRTF set through com-

puter simulation results, whilst a preliminary subjective validation of the pole-zero models,

that contrary to theoretical driven expectations, performed considerably worse in computer

simulation experiments, is conducted as a pilot study.

Consideration is also given to a method of secondary compression and interpolation that

utilises the Discrete Cosine Transform applied to the angular dependent components derived

from each of the approaches. It is possible that these techniques may also be useful in

developing efficient schemes of custom HRTF capture.



Chapter 1

Introduction

The general public listen to audio and spatial audio content in a variety of ways; some-

times this listening occurs in the home using traditional stereo or multi-channel loudspeaker

setups. However, a large amount of this content is consumed on portable media devices

such as smartphones, tablets, and digital media players, all of which commonly deliver au-

dio content over headphones. Headphone listening may well account for a majority of the

listening experience of many users. This trend is echoed by the recent decisions of major

broadcast companies to move some traditional television and radio programming to online

only platforms, clearly illustrating a reliable and foreseeably sustainable demand for content

accessible from devices other than the traditional television or kitchen radio. Therefore,

there is an increasing, and urgent, need to create effective and immersive experiences for

headphone listeners utilising a wide range of devices.

Furthermore, in recent years, media production facilities have also expressed increased ten-

dency toward open plan, or ’transparent’, workspaces, which may contain a multitude of

occupants, many of which may be tasked with the production of audio content for various

delivery platforms. This in turn illustrates an increased value in the accurate simulation

of different listening environments or various loudspeaker formations, without the need for

the physical space required to house conventional loudspeaker setups, let alone the space

and accuracy of placement required to utilise higher order formations for spatial platforms

such as ambisonics. This increase in value is also prompted by the seemingly exponentially

growing number of ’budget’ producers of audio and video content, that come along with the

1
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ever falling cost of enabling software and technologies, and that lack the typically necessary

equipment to trial audio material across multiple or even a single correctly realised repro-

duction system(s).

Stereo headphones present a convenient and well realised platform for the delivery of spa-

tial audio content. Headphones lend themselves particularly well to portability and use in

multi-person environments. The acoustic signature of a listening environment, or a specific

loudspeaker setup, is characterised by the relationship of the sound incident on each of a

listener’s two ears from each of the sound sources present in the auditory space. Head-related

transfer functions (HRTFs), describe the associated acoustic signal incident on each ear as

a function of source location. Using a set of HRTFs measured at a specific listener’s ears, at

the ears of a generalised mannequin of a head and possibly torso, or even via consideration of

an analytical head model such as a sphere, positional cues can be synthesised for any number

of discrete audio signals. As is imposed by the physical form of a pair of headphones, the

resulting audio scene is reproduced through two discrete channels, feeding directly into the

left and right ears individually. Commonly referred to as Binaural Stereo, this technique is

the only effective method of rendering spatial audio content to a listener wearing headphones.

Binaural stereo audio is a well documented spatial audio technique, with implementations

on a wide range of systems and devices. However, the majority of current implementations

make use of large databanks of head-related transfer functions or head-related impulse re-

sponses, in order to represent the auditory space around a listener’s head in as much detail

as possible. For each possible location for which a sound can be synthesised, a pair of HRTFs

or corresponding head related impulse responses (HRIRs) must be stored. Considering that

HRIRs are commonly between 256 and 2048 samples long, it is clear that for accurate repro-

duction purposes, a large number of HRTF/HRIR elements must be stored within the system.

It is therefore desirable to be able to represent the data required to create, or recreate, a

virtual auditory space in a more efficient or compact form, without the loss of the significant

directional information that allows the listener to interpret the location of the various sources

within the scene.

2
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The works described in this thesis comprise of an investigative exploration of techniques

that can be used to achieve a more efficient means of ’handling’ the HRTF data required to

achieve adequate coverage of a virtual auditory space. Previous approaches are broken down

into three main categories; decompositional, filter modelling, and interpolation led, and are

discussed at some length. Following discussion, the thesis presents and discusses the results

and implications of the application, and in some instances, the extension of a decomposi-

tional approach and two filter modelling approaches applied to a set of HRIR measurements

made in the azimuth plane. Objective analysis is performed for all three methods through

simulation of results with a subjective analysis of the most promising of the three methods

conducted in parallel.

The remainder of this thesis will be structured in the following manner; the introduction

is followed by a literature review section in which the reader will be led through a sum-

mary and consideration of previous works pertaining to the thesis topic of efficient and

compact HRTF representations; highlighting the use and validation of techniques that will

be adapted to form a large portion of the works described by the thesis. The thesis will then

detail the application and experimentation of several methods of HRTF compression both

adapted, and in some cases, extended from the techniques outlined in the literature review,

this section will take the form of a series of subsections describing the various approaches

conducted, each with a methodology, results, and brief ongoing discussion structure. After

which a comparison and general discussion of all the results will be presented, leading into

the final conclusions and suggestions of further work. Relevant theory sections regarding

techniques pertinent to the works of the thesis are given throughout the thesis where ap-

propriate, though an approximately undergraduate level knowledge of acoustics and signal

processing is assumed.

3



Chapter 2

Literature Review

A broad spectrum of works have already been conducted in the field of head-related transfer

functions and their optimal representations, however the ongoing efforts of many authors to

develop new methods tells that the question of efficient HRTF representation is still an open

one. Past works have approached the problem from various angles but are commonly led by

either the aim to compress the HRTF by some means, or alternatively to employ a robust

means of HRTF interpolation. This section will attempt to summarise previous works on

the topic, beginning with a brief introduction to the concept of the HRTF, then progressing

to highlight important commonalities and differences in the methods and works of previous

authors in the field that will go on to steadily influence the investigative works described in

the latter sections of this thesis.

2.1 Localisation Cues

Spatial audio is the general term for audio that manipulates psychoacoustic cues to give

the illusion of virtual sound sources positioned three dimensionally round a listener’s head.

Spatial audio can be realised through a variety of reproduction systems ranging from two

channel systems such as a stereo loudspeaker setup or headphones, to high order ambisonics

arrays with many tens of loudspeakers.

The two simplest examples are virtually identical in nature; a stereo loudspeaker pair, and a

4
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pair of headphones, the only difference in terms of signal is the inclusion of a cross coupling

network between the two loudspeakers and the listener, whereas in the case of the head-

phones the two audio channels are presented discretely to each of the listener’s ears.

The localisation of a source within a space is a result of acoustic cues generated by the

difference between a sounds arrival at each of a listener’s two independent ears. A listener’s

ears are typically spaced between 18cm and 23cm apart, considering this spatial separation

it is clear that the sound incident on each ear will differ depending on the ear’s proximity to

the source and other factors [Howard and Angus, 2009].

L R

Figure 2.1.1: Spatial cue formation

2.1.1 ITD & ILD

Figure 2.1.1 illustrates the formation of the two vital cues for creating a spatial impression of

a source; ’Interaural Time Difference’ and ’Interaural Level Difference’, hereafter referred to

as ITD and ILD respectively for brevity. The two dashed lines represent the average acoustic

path from the source to the listener’s left and right ears respectively, it is clear that path

L is significantly longer than path R as the sound must travel an additional length around

the listener’s head to reach the left ear. This path length difference gives rise to a phase (or

time) difference between the sound incident on the left and right ears. The path length dif-

ference also gives rise to a level difference, obviously the ear closest to the sound source will

5
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be subject to a higher acoustic pressure due to the laws of spherical divergence, this effect

is compounded by a more dominant effect; the ’acoustic shadow’ cast by the hard skull of

the listener attenuating the sound incident on the occluded ear [Everest and Pohlman, 2009].

ITDs provide the dominant spatial cue for low frequencies below approximately 1500Hz

[Zölzer, 2011]. Above this approximate limit the wavelength of sound is shorter than the

spacing of the ears, subsequently the phase differences between the two ears become ambigu-

ous and the ILD becomes the dominant cue.

Considering the case of the sound source positioned laterally at 90◦, i.e. at minimum dis-

tance to one ear and maximum distance to the other, a rudimentary maximum value of

the inter-aural time delay can be calculated as approximately 670µs, assuming a 23cm ear

spacing [Woodworth, 1938].

2.1.2 Cone of Confusion

Considering simple geometry it is evident that there exists a cone extending from each ear

about the interaural axis, for which a source placed anywhere on its surface will exhibit

the same ITD and ILD (due to distance) cues. The so called Cone of Confusion is a well

documented psychoacoustic pitfall, and is a common source of front-rear confusions. Figure

2.1.2 illustrates the geometry of the Cone of Confusion about the listener’s head.

6
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θ
φ

Cone of 
Confusion

Sound Source

z
x

y

Figure 2.1.2: Cone of Confusion

Ambiguities along the cone of confusion are resolved in two ways [Howard and Angus, 2009].

The first method uses the filtering effects of the ear itself; sound incident on the outer ear is

reflected into the ear canal by the grooves and ridges of cartilage that make up the pinna and

outer ear structure. These reflections from the pinnae are delayed, if only by a small amount,

but the delay is significant to result in comb filtering of the sound incident on the ear drum.

The amount of delay varies depending on the angle of arrival of the sound in both azimuth

and elevation, with additional filtering effects present in sounds emanating from rear posi-

tions due to transmission path through the pinnae. Due to the small order of length of these

pinna substructures, the filtering cues occur at high frequencies approximately above 5kHz

[Zölzer, 2011]. It is significant to note that this method of ambiguity resolution is unique to

each individual listener; the structure of grooves and ridges of the pinnae vary from person

to person, and as such, each person is accustomed to the unique ’acoustic fingerprint’ of

their own pinnae. This individuality can significantly impact the successful externalisation

of binaural stereo audio synthesised using non-individualised HRTFs, particularly for angles

where front-rear confusions often occur [Begault et al., 2001].

7
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The second method of resolving directional ambiguities is the act of head movement, when

a listener hears a sound of interest it is common for said listener to turn their head towards

that sound, often attempting even to place the sound directly in front of the head at which

the ITD and ILD cues will be equalised. The act of moving the head serves to alter the

direction of sound arrival at the ears, this change in direction is dependent on the source

position relative to the listener and will therefore serve to resolve the ambiguity. Movement

of the head is an important factor to be considered in the attempted externalisation of

binaural audio over headphones; if the auditory scene moves with the listener’s head then

the listener is highly likely to lose the illusion of the audio emanating from elsewhere than

the headphones themselves, this is referred to as internalisation. Systems can be designed

to compensate the angle used as a criteria for HRTF selection in real-time by tracking the

movement of the listener’s head by some means.

2.2 Binaural Stereo

Binaural stereo is a spatial audio scheme in which two-channel audio is presented discretely to

each of the listener’s ears through headphones [Wightman and Kistler, 1989]. Binaural audio

can be captured by making recordings with a microphone positioned close to the entrance

of each ear canal of a listener or a dummy head, ideally as close as possible. This method

of microphone placement attempts to capture the sound incident on each ear separately,

thus capturing the all important ILD and ITD cues between the two recorded channels, and

ensuring they are preserved in headphone reproduction of the recording.

8
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L R

Recorder 

Figure 2.2.1: Binaural recording

Due to the naturally occurring variation in head and pinnae shapes between listener’s, indi-

vidual listeners are accustomed to hearing a specific set of locational cues unique to them-

selves. A binaural recording made with a specific head, be it real or artificial will achieve

varying degrees of success of 3D reproduction across a multitude of listeners [Begault et al.,

2001] [Wenzel et al., 1993].

2.3 Head-Related Transfer Functions

The Head Related Transfer Function (HRTF) describes the relationship between the sound

emanating from a source in a spatial location and the sound incident at the open end of left

or right ear canal (as specified). A pair of HRTFs, one for each ear, can be used to simulate

sound emanating from the location described by the two HRTFs in question, as the HRTF

encapsulates all of the ITD, ILD, filtering, and shading cues caused by reflections from the

head, torso, and pinnae etc.

The HRTF of a listener or dummy head can be measured for any source angle using the

binaural stereo recording method; a broadband stimulus such as a Dirac delta pulse yields

an impulse response measurement at each ear that encapsulates the HRTF information per-

taining to the source direction measured. Other, more practical stimuli such as a broadband

9
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sine sweep may be used, as such the known stimulus signal must be deconvolved from the

measured response at each ear to obtain the corresponding impulse response measurements.

HRTFs are often presented as twin sets of discrete responses representing a full, or sometimes

limited, sweep of source angles around the head in both azimuth and elevation. Commonly

denoted as HL(f, θ, φ) & HR(f, θ, φ) when presented in the frequency domain, where f

denotes frequency and θ and φ denote angle of azimuth and elevation respectively. The

transfer functions are sometimes given in the time domain in the form of a Head Related

Impulse Response, denoted as hL(t, θ, φ) & hR(t, θ, φ), where t denotes time. The HRTF

is simply the Fourier Transform of the HRIR, and thus the HRIR is the Inverse Fourier

Transform of the HRTF.

2.4 Minimum Phase Assumption

Perhaps the best place to begin the analysis of the literature is with the discussion of the

minimum phase assumption often adopted in an attempt to simplify the HRTF compression

problem.

A system exhibits minimum phase characteristics if both the system and its inverse are

causal and stable. In the z-domain this translates to the system having no poles or zeros

on or outside the unit circle; poles outside the unit circle imply feedback gain of more than

unity, hence the system would become unstable, zeros outside the unit circle, though stable

in the original system, translate to unstable poles in the inverse of the system.

The inverse of a system H(z) can be thought of as a corresponding system H−1(z) that

exactly rectifies the effect of the original filter, such that:

H(z)H−1(z) = 1 (2.4.1)

Letting hI(k) be the impulse response of inverse system H−1(z) in the discrete time domain

this corresponds to:
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h(k) ∗ hI(k) = δ(k) =

0, k 6= 0

1, k = 0
(2.4.2)

First presented by Mehrgardt & Mellert [Mehrgardt and Mellert, 1977], it was found that

HRTFs can be approximated to be minimum phase systems. That is, the excess phase

component that results from the subtraction of a minimum phase version of an HRTF from

it’s original phase response has been shown to be approximately linear [Huopaniemi et al.,

1999]. This minimum phase assumption implies that the HRTF can be decomposed into

two sections [Oppenheim and Schaeffer, 1975]; the first is an angle-dependent frequency-

independent delay line or all pass section, the second is the minimum phase filter section.

H(ejw) = Hap(e
jw)Hmin(ejw) (2.4.3)

Where H is the HRTF, and Hap and Hmin are the associated all pass and minimum phase

components of H.

This is somewhat intuitively evident given the typical structure of a HRIR, an example of

which is shown in figure 2.4.1; a presumed minimum phase sequence is preceded by an onset

delay of nominally zero valued samples.
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Figure 2.4.1: A typical HRIR

This assumption has been tested both objectively and subjectively, and deemed to have

no significant undesired effects by several authors [Kistler and Wightman, 1992] [Kulkarni,

1995] [Kulkarni et al., 1999] [Nam et al., 2008].

The minimum phase assumption has been utilised in a wealth of works as it allows the excess

delay component of the HRTFs, corresponding to the ITD, to be removed from consider-

ation. The remaining minimum phase component of the HRTF is particularly convenient

to work with as the minimum phase characteristic of the component implies that only the

log-magnitude of the filter need be considered as the phase component is unique and obtain-

able via the Hilbert transform of the log magnitude response [Kulkarni and Colburn, 2004]

[Oppenheim and Schaeffer, 1975].

It has also been highlighted that in addition to the reduction of components to compress

or model, the minimum phase assumption provides an important time domain character-

istic; for a minimum phase impulse response the energy is optimally concentrated in the

beginning of the response, i.e. from the initial sample. Not only does this allow for shorter

filter lengths, with fewer taps, to achieve the same magnitude response, but also this implies

that minimum phase filters are far superior in the implementation of dynamic interpolation

[Huopaniemi et al., 1999].
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This removal of the need to preserve non-minimum phase information during the attempted

transformation or modelling of HRTFs is an attractive property, however not all approaches

have utilised this assumption. Chen. et al [1995] for example implement a means of HRTF

compression considering the complex output of the Fourier transform of measured HRIRs,

and Evans et al. [1998] perform a parallel analysis on both the magnitude and unwrapped

phase components.

The works described in the latter sections of this thesis will adopt the minimum phase

assumption of the HRTF, concentrating on the compression and efficient representation of

the minimum phase component.

2.5 ITD Extraction

The topic of extraction of the interaural time differences from measured data follows closely

from that of the minimum phase assumptions, as the ITD must be reintroduced to the mod-

elled or compressed minimum phase component for synthesis. A number of different means

of ITD extraction have been contrasted in prior works [Busson et al., 2005], [Lindau, 2010]

[Minnaar and Plogsties, 2000].

It is noted by Mills [1958] that the threshold of detection for changes in ITD is approximately

10µs in optimal conditions. This fact must be taken into consideration as a common sample

rate of 44100Hz has an inter-sample time step of approximately 23µs, subsequently it is

pertinent in the interest of accurate ITD extraction to first upsample the measured impulse

responses or use a peak detection scheme.

2.5.1 Spherical Head Model

Perhaps the simplest method of extraction of the inter-aural time difference for HRIR re-

construction is not extraction, but in fact a model based approach. A simple model for the

ITD can be derived from the spherical head assumption [Woodworth, 1938].
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ITDθ =
d

2c
(θ + sinθ) (2.5.1)

Where d is the distance between the ears, often assumed to be 18cm, θ is the azimuthal

angle, and c is the speed of sound.

This model is reasonably robust due to its physical nature, and gives a good approximation

of the ITD in the azimuthal plane [Busson et al., 2005], however it is HRTF measurement

independent, and will not provide accurate reproduction of individualised data.

2.5.2 IACC and IACCe Method

Presented by Kistler & Wightman [1992] the Inter-Aural Cross Correlation method models

the ITD for a given angle as the time, or lag, for which the maximum value of the cross

correlation function of the corresponding left and right ear impulse responses occurs. This

approach is based upon the assumption that the auditory system utilises the cross correla-

tion of signals present at the left and right ears in order to retrieve spatial information and

localise the sound source [Busson et al., 2005].

Minnaar & Plogsties report that the IACC method consistently overestimated the ITD by

as much as 30µs approaching the inter-aural axis [Minnaar and Plogsties, 2000], suggesting

that the technique yields more accurate results if the left and right impulse responses are

instead cross correlated with their respective minimum phase components. The ITD is then

equal to the difference between the centroids of the left and right cross correlation functions.

Busson et al. suggest that the technique can be improved by instead computing the cross

correlation of the signal envelopes of the corresponding left and right impulse responses for

any given angle [Busson et al., 2005]. Dubbed the IACCe method, it was shown to perform

well in perceptual testing.

It has also been remarked that this method may produce inaccuracies at angles approaching

or on the inter-aural axis due to the relatively low signal to noise ratio of the contralateral
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impulse response and the possible lack of coherence between the ipsilateral and contralateral

impulse responses for these angles [Busson et al., 2005].

2.5.3 Leading Edge Detection Method

Sandvad & Hammershøi propose a method for ITD extraction known as the Leading Edge

Detection method, the ITD is calculated as the difference between the times at which each

of the left and right impulse responses reaches a threshold value [Sandvad and Hammershoi,

1994]. The threshold value is defined separately for each of the left and right impulse re-

sponses as a percentage of the peak value in the left and right impulse responses respectively.

This method assumes that the initial portion of the HRIR consists purely of zeros after which

the HRTF filter taps begin, i.e the min phase HRTF is preceded by a simple linear phase

component.

Busson. et al found that this method successfully predicted the ITD the most closely when

compared to psychoacoustic values alongside methods including the IACCe [Busson et al.,

2005]. Somewhat conversely, Minnaar. et al remark that the method underestimates the

ITD for angles between 90◦ and 110◦ [Minnaar and Plogsties, 2000], suggesting instead that

it is appropriate when used in conjunction with a phase-based method to determine the

inter-aural group delay of the excess phase components.

2.5.4 Phase Methods

Minnaar and Plogsties introduce a method of ITD extraction based upon phase analysis

[Minnaar and Plogsties, 2000]. The ITD can be calculated by first evaluating the group

delay of the excess phase component of the HRTF for each ear, the ITD is extracted as the

inter-aural difference of the left and right group delay at 0Hz.

A number of different techniques have been employed by several authors in order to evaluate

the group delay of excess phase component [Busson et al., 2005] [Minnaar and Plogsties,

2000] [Katz and Noisternig, 2014]. These methods are regarded as numerically robust, as

they are not impacted by the limitations of the inter-sample time step in the same manner as
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the other methods. They can however be made less reliable due to high-pass filtering effects

introduced by the frequency response of measurement equipment [Estrella et al., 2010].

2.6 Decompositional Approach

An approach to achieving HRTF compression adopted by several authors is that which is

based on the decomposition of the measured dataset into orthogonal subspaces. This can

be achieved through the application of techniques commonplace in various disciplines such

as the statistical Principal Component Analysis (PCA), the signal processing Karhunen-

Loeve Theorem (KLT), or the image processing Singular Value Decomposition (SVD). All

three techniques are built upon the efficient decomposition of data into a compressed, more

efficient form, achieved through an orthogonal transformation. As such there exist applica-

tions in which the three methods are interchangeable, but this is not true for all applications.

The similarities and more importantly, the differences between the PCA, KLT, and SVD, are

delineated in detail by Gerbrands [1981], who sought to alleviate the confusion surrounding

the choice between the three techniques. Through detailed analysis of the three techniques

it is revealed that in the case of a single vector or an n by m matrix in which the m columns

are regarded as m realisations of a random stochastic process that the PCA and KLT are

in fact identical, apart from a possible shift of the coordinate system origin. If the column

covariance matrix of the PCA and KLT is calculated from the m realisations then the iden-

tical PCA and KLT are also the same as the SVD, however this similarity only holds true

in the application of the techniques to a single matrix [X] of m realisations. In the case of

two-dimensional image processing, if the image [X] is considered to be a single realisation

of a two-dimensional random process then the covariance matrices for the KLT and PCA

techniques will be incorrectly calculated as they should be computed from a number of real-

isations of that process, i.e. multiple images. It can be concluded that in the case of image

processing the correct technique to be used is the deterministically defined SVD. For other

applications concerning the realisations of a one dimensional random process the statistically

defined PCA and KLT are appropriate.

Principal component analysis is a statistical technique used to reduce the dimensionality of a
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multi-dimensional data set [Jolliffe, 2005]. Given a set of observations of possibly correlated

variables, PCA transforms the data into a set of values in orthogonal basis referred to as

principal components (PCs). The transformation is designed such that the first PC explains

the largest amount of variance within the data set, the second PC explains the second largest

amount of variance, and so on.

The output of the principal component analysis is the original data transformed into a series

of basis vectors and associated weight vectors. The weight vectors describe the contribution

of each of the basis vectors required to recreate the original data. Not only are the basis

vectors an orthogonal series, but they are also uncorrelated with the weight vectors [Chen

et al., 1995]; when considering an HRTF dataset this can be translated to the separation of

frequency and angle. The basis vectors describe the principal spectral shapes in decreasing

importance, and the weight vectors describe the variation in the basis vector contribution

with respect to angle.

PCA attempts to convert a data set into its most efficient form, in which each subsequent

component or variable contains only new information, this new information is always ac-

countable for a smaller amount of total variance than that of the preceding component or

variable.

The following equations detail the process of conducting a principal component analysis

across the log magnitude spectra of an HRTF measurement suite [Kistler and Wightman,

1992]:

Firstly the log magnitude spectra are arranged in a matrix and empirical mean of the data

is calculated:

uj =
1

n

n∑
i=1

Xk,j (2.6.1)

Where uj is the mean spectrum, Xi,j is the matrix of the log magnitude spectra, and i and

j are indexes such that Xk,j is an n by m matrix where k = 1, 2, ...n and j = 1, 2, ...m; n is

the total number of spectra and m is the number of frequency bins in each spectrum.

17



J. Sinker Compact HRTFs CHAPTER 2. LIT. REVIEW

The mean is then subtracted from the original data:

Dk,j = Xk,j − uj (2.6.2)

In the case of an HRTF data set, the subtraction of the mean leaves a set of ’Directional

Transfer Functions’ or DTFs. DTFs contain only information that is directionally unique, as

artefacts common to all directional measurements, such as ear canal resonances, are removed

with the subtraction of the ’mean spectrum’.

The next step is the computation of the covariance matrix S, where the covariance of a given

pair of frequencies is defined as:

Si,j =
1

n
(
∑

Dk,iDk,j) (2.6.3)

for i, j = 1, 2...,m

Where again n is the total number of transfer functions, m is the total number of frequencies,

and Dk,i is the log magnitude at the ith frequency of the kth DTF.

The basis vectors are the eigenvectors of the covariance matrix S, the lowest ’order’ of which

correspond to the largest eigenvalues, q.

The weights Wk corresponding to the contribution of each basis vector to a given DTF is

given by:

Wk = C ′dk (2.6.4)

Where C is a matrix, of which the columns are the basis vectors and dk is the kth DTF

magnitude vector.

And hence the DTF magnitude vector is equal to a weighted sum of the basis vectors:

dk = CWk (2.6.5)
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Once the analysis has been conducted the original data set can be fully reconstructed through

a weighted sum of the total number of basis functions. However, a partial reconstruction

of the original data can also be created from the weighted sums of any number of the low-

est ’order’ principal components, this allows for a compromise between the total amount of

original variance explained by the reconstruction, and the greatly reduced expression of the

original data set. This was documented by Kistler & Wightman, who found that approxi-

mately 90% of the variance of their 5300 HRTF dataset (2 ears of 10 subjects measured at

265 locations) could be expressed with a reconstruction based upon only the first 5 principal

components [Kistler and Wightman, 1992]. Similar levels of compression have been achieved

when the technique is extrapolated to much larger datasets, such as the CIPIC database of

56250 HRTF pairs (45 subjects measured at 1250 locations), for which Wang et al found

that approximately 92% of the variance in the HRTF magnitudes was captured by the first

10 basis functions [Wang et al., 2008].

Chen et al [1995] applied similar techniques; utilising the discrete Karhunen-Loeve expan-

sion to decompose the complex valued Fourier transform of measured HRIRs. The resulting

complex valued eigentransfer functions (EFs) are a set of orthogonal frequency dependent

functions, by projecting each EF onto the measured data the accompanying weight functions

are derived. The weight functions are termed spatial characteristic functions (SCFs) as they

are functions of only spatial location. 99.9% of the variance is captured by the first 12 EFs

for the measured KEMAR data used in the work, though this is a larger number of basis

vectors than was reported by Wightman & Kistler [1992], it is important to note that the

technique proposed by Chen et al captures both the magnitude and phase components of

the HRTFs.

The PCA (or similar) based decomposition of HRTFs allows for the implementation of a log-

ical interpolation technique based upon manipulation of the angle dependent weight vectors

or SCFs, as above. Chen et al. [1995] and Carlile et al. [2000] both propose a continuous

functional representation of the HRTF achieved through the process of fitting a continuous

piecewise function to the discrete, spatially sampled, weight vectors. Chen et al. utilise
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a series of thin plate splines to fit the real and imaginary components of each of the Spa-

tial Characteristic Functions derived from the decomposition of the complex valued Fourier

components, whereas Carlile et al. opt to fit a series of spherical thin plate splines to the

principal component weights derived from the decomposition of the frequency domain mag-

nitude components of the HRTF dataset used.

Both studies found the interpolation to be reasonably robust; Chen et al. report average

percent mean squared errors of less than 1% over most of the frontal and ipsilateral regions,

with larger errors occurring in contralateral and lower elevation regions [Chen et al., 1995].

Carlile et al. conclude that by reducing the number of measurement positions retained in a

series of models, all of which are constructed from a single measured superset of data, that

a high fidelity recreation of a continuous auditory space can be achieved with as few as 150

evenly distributed recorded HRTF positions [Carlile et al., 2000].

The increased error of interpolated data at contralateral positions can be attributed to the

large inter-aural level difference due to head shadowing [Chen et al., 1995].

Evans et al. propose a trio of methods akin to the above discussed PCA methods, that are

based upon the decomposition of the HRIR and HRTF into the weighted sum of surface

spherical harmonics [Evans et al., 1998]. The surface spherical harmonics are a set of basis

functions which are orthogonal on the surface of a sphere, and as they are continuous, the

derived spherical harmonic representations of the HRTF are also. The method is applied in

both the time and frequency domain. Firstly in the time domain on a sample by sample

basis of the HRIR. Then again in the time domain on HRIRs with the variable onset delay,

representing the ITD, normalised in sacrifice to alleviate undesired reconstruction effects,

and finally in the frequency domain on a frequency bin by frequency bin basis of the HRTF

magnitude and unwrapped phase. The frequency domain model is reported to be superior

after a comparative objective based analysis of results from each of the three variations of

the technique; the time domain analysis yielding ’pre-echo’ effects in the un-normalised case,

likely due to the high amplitude unshadowed measurements included in the analysis that

have shorter onset delay than the shadowed measurements.
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Evans et al. conclude, similarly to the other authors mentioned in this section, that a large

HRTF dataset can successfully be decomposed into a series of basis functions and correspond-

ing weight functions, in this case a parallel pair of the first 17 surface spherical harmonics and

their derived weight functions for both the magnitude and phase components [Evans et al.,

1998]. However it is noted that although the surface spherical harmonic method proposed

yields greater consistency in recreation of measured data, it does not perform as robustly as

Chen et al’s EF and SCF based analysis when interpolation error is considered.

Comparatively, the surface spherical harmonic based decomposition does not offer as great

an efficiency as other techniques mentioned in this section, however it is most appropriately

compared to the approach proposed by Chen et al. [1995] as neither of these methods rely

on the minimum phase assumption, opting instead to directly encode the phase in the pre-

scribed methods. It is remarked by Evans et al. that for applications concerned with storage

efficiency, the Karhunen-Loeve expansion based method proposed by Chen et al. may be

considered more appropriate [Evans et al., 1998].

Like the surface spherical harmonic led approach proposed by Evans et al. [1998], Zhang et

al. propose a decomposition approach not based on optimality such as the PCA and KLE

approaches, but by instead using non-measurement specific functions with mathematical

definition as the bases [Zhang, 2009]. A continuous two dimensional model of the azimuthal

plane is constructed,a Fourier-Bessel series is used to reproduce the spectral variation in

measured data, and a Fourier series is used in tandem to reproduce the corresponding spa-

tial variation. Empirical data is used to guide the choice of orthonormal function as the basis

function for the spectral variation, however even so, the basis functions are independent of

the empirical data, and all subject or measurement dependent differences are encoded in the

model coefficients. In validating the model, Zhang et al. directly compare their modelling

technique to those previously conducted using the statistical based PCA [Kistler and Wight-

man, 1992] and KLE [Chen et al., 1995] methods, by re-implementing them on the same 2D

dataset.

Although providing the least (approximate) error of reconstruction for the magnitude spec-

tra, the PCA approach is dismissed as it does not attempt to encode or predict the phase
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components of the HRTFs [Zhang, 2009]. The KLE method is reported to give marginally

superior error in the reconstruction of both the magnitude and phase data for a little over

300 less model parameters than the total of 4900 used in the proposed Fourier-Bessel /

Fourier model. It is concluded that the proposed model’s measurement data independence

and continuous nature, without the need for interpolation (spline fitting), is advantageous

over the aforementioned KLE techniques.

The potential efficiency of the PCA based approach is furthered by Wang et al., who propose

that following a PCA decomposition of the CIPIC HRTF database, the principal component

weights may be expressed further more efficiently using a vector codebook technique [Wang

et al., 2008]. The codebook technique achieves compression via a technique known as vector

quantisation, in which a given vector is approximated by the nearest matching vector in a

designed vector codebook, allowing the input vector to be recorded as a single value repre-

senting the closest matching codebook index. Wang et al. report that the error introduced

by the quantisation can be considered negligible; 7.23% compared to the 6.71% average error

already present in the unquantised PCA reconstruction.

2.7 FIR and IIR Modelling

Another arm of approach to the problem of HRTF compression comes not from a basis of

decomposition, but rather the consideration of the HRTF as an implementable digital filter.

The simplest of such implementations is to utilise the HRIR itself; the samples of a given

HRIR, or any IR for that matter, represent the taps or coefficient weights of a finite impulse

response (FIR) digital filter [Zölzer, 2011]. A rudimentary form of HRTF compression can

be realised by truncating, or windowing, the measured HRIRs to reduce the number of filter

taps, usually referred to as the order of the filter, used to represent each component of the

HRTF dataset.

Sandvad & Hammershøi found through experimentation that for the purpose of HRIR trun-

cation, there was no sufficient justification to use any window type other than rectangular

22



J. Sinker Compact HRTFs CHAPTER 2. LIT. REVIEW

[Sandvad and Hammershoi, 1994], though rectangular windowing can result in frequency do-

main oscillation or ripple known as the Gibbs phenomenon, the nature of the HRIR filters,

more specifically their lack of frequency domain discontinuities, allows for simple rectangu-

lar windowing to be used with negligible undesired effects being introduced to the frequency

domain response of the filters. The use of alternative window designs, such as the Ham-

ming window, typically selected as an alternative to rectangular windowing in an attempt

to negate the influence of the Gibbs phenomenon, significantly smooths the frequency do-

main response of the filter, which could possibly translate to the loss of pertinent spectral

characteristics contained in the ’detail’ of the response.

Several authors have conducted works which suggest that the fine detail lost in HRTF

smoothing or HRIR truncation is perceptually unimportant. Senova et al. [2002] found

that the psychoacoustic performance of truncated HRIRs only began to perform poorer

than free field loudspeaker signals for IR lengths of between 0.32 and 5.12ms. Through the

use of a gammatone filterbank designed to mimic the spectral filtering of the human cochlea,

Breebaart and Kohlrausch [2001] show that HRTF phase and magnitude spectra do not need

a higher spectral resolution than that of the filterbank of the peripheral auditory system.

More specifically they show that a first order gammatone filterbank with bandwidths of one

equivalent rectangular band sufficiently describes the phase and magnitude spectra. In par-

ticular the high frequency content of the HRTF has been shown to be of little importance

for both the ipsilateral and contralateral ears, with the least detriment to psychoacoustic

perception occurring for the contralateral Xie and Zhang [2010]. As such it can be con-

sidered that the truncation of measured HRIRs may provide a simple means of reducing

the number of stored elements in an HRTF/HRIR dataset without significantly altering the

psychoacoustic perception of the data. Furthermore, simple HRIR truncation could be used

in conjunction with further methods of compression to improve the overall efficiency of the

system.

More advanced approaches consider the modelling of HRTFs or HRIRs as alternative filter

types, a common starting point of which is the infinite impulse response filter (IIR). IIR

filters offer numerous advantages over their FIR counterparts, the most useful of which is

their efficiency in approximating, or even matching, filter designs that would require com-
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paratively high order FIR implementations, in far fewer coefficients. This is due to the IIR

filter’s feedback coefficients in the denominator of the transfer function, which can create a

more pronounced response with superior efficiency to the FIR in terms of processing power

required for implementation.

The IIR approximation of a given system, such as the HRTF for a given direction, can

be derived by modelling the time domain system output, the HRIR, as the output of an

auto-regressive moving average (ARMA) system [Farhang-Boroujeny, 1999]. For an ARMA

system the output sample y(k) is defined as the weighted sum of all previous input and

output samples, this can be expressed as:

y(k) = −
n∑
i=1

aiy(k − i) +
m∑
i=0

bix(k − i) (2.7.1)

and yields the transfer function:

H(z) =

m∑
i=0

biz
−i

n∑
i=0

aiz−i
=
B(z)

A(z)
(2.7.2)

Where x is the record of input samples, m and n are the orders of the numerator and de-

nominator respectively, and ai and bi are the coefficients or tap weights.

The poles of the model, the locations of which are described by the denominator of the

transfer function; the a coefficients, make up the auto-regressive component of the system,

and in the case of the HRTF, translate to the acoustic resonances in the sound path be-

tween the source and the ear. The zeros of the model, the locations of which are described

by the numerator of the transfer function; the b coefficients, make up the moving-average

component of the system, and in the case of the HRTF, translate to the anti-resonances and

reflections in the sound path between the source and the ear [Asano et al., 1990].

The order of the numerator and denominator (m and n) dictate the number of poles and

zeros in the system model, i.e. the number of a and b coefficients. The coefficients of the

system model are determined such that they minimise the quadratic expression of the error
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between the model and the system to be modelled, first proposed by Kalman [Kalman, 1958]:

E2 =
1

2π

π∫
−π

|H(w)A(w)−B(w)|2dw (2.7.3)

Where A(w) = A(z)|z=ejw and B(w) = B(z)|z=ejw .

Kulkarni & Colburn detail two low order model approximations made using IIR filters; an

all-pole model and a general pole-zero model [Kulkarni and Colburn, 2004]. The all pole

case is derived as an implementation of the autocorrelation method for linear prediction as

described by Makhoul [1975], whereas the pole-zero case is derived from a weighted-least-

squares variation of the modified least-squares problem proposed by Kalman [1958]. The

pole-zero derivation uses a technique known as the Steiglitz-McBride iteration [Steiglitz and

McBride, 1965] to minimise the quadratic error function presented by Kalman, and obtain

the optimum coefficients of the IIR filter model. In order to simplify the modelling process

the mean spectrum was computed and subtracted from all HRTFs, thus leaving the DTFs,

as described in the initial steps of the PCA procedure implemented by Wightman & Kistler

[1992]. The removal of the mean, or common, spectral components of the data is believed to

likely reduce the order of the derived IIR models needed to sufficiently recreate the measured

dataset, as only the spatially dependent variances are encoded in such an approach. Small

scale subjective evaluation across three subjects found that a model with just 6 poles and 6

zeros, was largely indistinguishable from original measurements, the 25 pole all-pole model

performed similarly well but it does not provide as much representational efficiency as the

pole-zero formulation.

Prior to the work of Kulkarni & Colburn, Asano et al. adopted a similar pole-zero model

restricted to fit HRTFs in the horizontal plane only [Asano et al., 1990]. Using the ARMA

model to define the general form of the transfer function and the quadratic form of error

minimisation as proposed by Kalman shown in equation 2.7.3 to determine the pole and zero

locations to be used. Asano et al. solve the minimisation using both the measured impulse

response and its covariance sequence in a method described by Mullis & Roberts [1976].
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Kulkarni & Colburn provide an insightful comparison into the differences in the approaches,

and subsequently results, of the two studies. Asano et al. report that comparatively high

model orders (40 poles and 40 zeros) were required to approach the same psychophysical per-

formance as was found with the measured HRTFs in an absolute localisation task; clashing

with the finding of Kulkarni & Colburn, that as low an order as 6 poles and 6 zeros is almost

indistinguishable from the empirically obtained data. The difference in findings is explained

as a combination of two likely sources of inconstancy between the studies. Firstly, the model

proposed by Asano et al. is based on the Kalman estimate algorithm alone, whereas the

method proposed by Kulkarni & Colburn utilises an iterative weighting procedure ([Steiglitz

and McBride, 1965]) to achieve an optimal fit between the modelled and measured HRTF log

magnitude functions. Secondly, Asano et al. modelled the HRTFs directly, whereas Kulkarni

& Colburn modelled the DTFs calculated as the HRTFs of a dataset less the empirical mean.

It is likely that the modelling of the more complex HRTFs that include not only the spatially

dependent characteristics but the common-to-all spatial independent characteristics as well,

means that the efficiency of the modelling process is reduced due to the need to fit poles and

zeros to these addition spectral characteristics [Kulkarni and Colburn, 2004].

Ramos & Cobos present a parametric model of the HRTF based on a low order IIR imple-

mentation achieved as a chain of second order sections of conventional shelving and peak

audio filters [Ramos and Cobos, 2013]. The minimum phase component of the HRTF is

modelled via an iterative process for which the central frequency wi, log-gain Gi, and the

quality factor Qi of the shelving ad then successive peak filters is defined in order. A random

optimisation is used to vary the parameters of each section until the error of each designated

error frequency zone is minimised, upon completion a global post optimisation process is

performed in which the second order sections are ordered in decreasing frequency order and

the random optimisation is performed again, however this time it is performed for groups

of 3 adjacent second order sections simultaneously. It was found through both objective

analysis and subjective evaluation, using the MUSHRA recommendation, that as little as

6 second order sections could be used to recreate a given HRTF with reasonable accuracy;

outperforming alternative Yule-Walker and Prony methods for frequencies below 3kHz and

performing slightly worse at frequencies above 10kHz. Ramos & Cobos conclude that not

only does the proposed method allow for a reduction in HRTF database size, through the
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transformation of HRIR samples to 3-parameter filter section parameters, but that the filter

parameters also represent a convenient means of performing a nearest neighbour interpola-

tion scheme.

2.8 Interpolation Led Approaches

An alternative means of improving the efficiency of HRTF storage, or in particular the re-

duction in measurement redundancy, such that less measurements need be performed, is to

deduce a means of interpolating a dense measurement scheme from a comparatively sparse

one.

Nishimura et al. propose an interpolation algorithm based upon spatial linear prediction

[Nishimura et al., 2009]. The method requires that a single set of measurements are made

with a high spatial resolution, this resolution defines the interpolation points for additional

datasets. The high resolution data is used to calculate the optimum filter coefficients w, that

satisfy the system of simultaneous equations associated with the theory of linear prediction,

against the complex Fourier coefficients of the HRTF set. The coefficients obtained can be

used to interpolate HRTF sets measured at a lower spatial resolution as far as the limit im-

posed by the spatial resolution of the dataset used to calculate the coefficients. The method

attempts to exploit the observed periodicity of the measured HRTFs in the azimuthal plane,

Nishimura et al. report a significant reduction in interpolation error compared to simple

linear time domain alternative methods, as well as an increased rate of correct judgement of

the rotation of a virtual sound source in unofficial listening tests. It is concluded that the

interpolation method might be expanded by interpolating the coefficient set, which would

allow interpolation of coarse datasets up to higher spatial resolutions than the current limit

of the resolution of the dataset used to derive said coefficients.

The test HRTFs were obtained for all directions (360◦) by applying one of four methods

to a subsampled dataset with angular resolution of 15◦ [Nishimura et al., 2009]. The four

interpolation methods comprised: the proposed method with a tap length of 2, the proposed

method with a tap length of 6, a simple linear interpolation in the time domain, and the

27



J. Sinker Compact HRTFs CHAPTER 2. LIT. REVIEW

same time domain interpolation with a correction to equalise impulse response arrival time,

as was suggested as the outcome of investigation by Matsumoto & Yamanaka [2004]. The

aforementioned investigation [Matsumoto and Yamanaka, 2004] considered the differences of

accuracy of three interpolation methods, with and without arrival time correction. The ar-

rival times of the interpolated responses were calculated linearly from the difference between

the cross correlation of the left and right ear impulse responses for the two adjacent mea-

sured angles. The methods considered were simple linear interpolation, spline interpolation,

in which a piecewise mathematical polynomial is fitted to the data to achieve a continuous

functional representation, and a method based on the Discrete Fourier Transform (DFT).

The DFT method consists of arranging all HRIRs as the columns of a matrix and taking the

DFT of each row, the output of each DFT is then transformed by adding zeros to the center

of the array, finally the inverse DFT is taken of each of the transformed arrays resulting

in a larger matrix of spatially oversampled HRIRs. Arrival time correction coupled with

the simple linear interpolation case was shown to yield the greatest interpolation accuracy

of the six cases for most angles, and arrival time correction improved the accuracy of all

three methods, the results were assessed by comparing the signal to deviation ratio of the

interpolated and measured HRIRs.

In an attempt to better consider the interpolation and the often neglected range effects for

close sources, Duraiswami et al. approached the HRTF through a scattering analysis [Du-

raiswaini, 2004]. In considering that the sound field captured by the HRTF arises from the

scattering of sound from a source caused by the torso, head, and pinnae of a listener, it

can be shown that the HRTF is expressible in terms of a series of multipole solutions to

the Helmholtz equation. Under the principle of reciprocity, which states that source and re-

ceiver are interchangeable in a complex audio scene in terms of observed signal, the ears are

considered to be sources and as such the multi-path sound measured at the ear microphone

from the speaker can be assumed to the be the multi-path sound at the speaker location,

assuming the idealised point source speaker were in the ear. Measured points extracted

from the HRTF dataset are used to solve a system of linear equations and define a set of

coefficients, after which, the acoustic field of the virtual auditory scene can be evaluated at

any desired location outside of the sphere encapsulating the sound sources in the scene.
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Due to the physical nature of the method in question [Duraiswaini, 2004], in particular the

modelled source-encapsulating sphere, the scattering analysis method yields impressive re-

sults when compared to the analytical model of a spherical head as used by Duda & Martens

[Duda and Martens, 1998], the objective analysis of the scattering analysis model also fair

well when fitted to a set of KEMAR data. The evolution of the predicted potential field

at varying distances offers logical physical arguments including the growth of the HRTF

magnitude in the direction corresponding to the direct path, and the enlargement of the

shadowed magnitude region as the source approaches the head. It is noted that although

highly promising, the reported results are based on objective analysis alone, and performance

of the method should be investigated perceptually.

Some approaches to HRTF interpolation have been designed to take large numbers of, or

even all of, the measurement points within a dataset; although such approaches have yielded

increased interpolation accuracy over methods that consider only a small subset of measure-

ment positions, they demand comparatively high computational expenses. This increased

computational expense can become troublesome when attempting to render a complex au-

ditory scene containing multiple sources, even more so if the sources are to be rendered as

moving through the virtual auditory space.

A relatively straightforward approach to HRIR interpolation is to apply the bilinear inter-

polation method; considering a subset of the four closest points for which measured data

is available. Given an HRIR dataset containing information for all points on the measure-

ment grid defined by the fixed angular intervals θgrid for azimuth and φgrid for elevation. An

interpolated HRIR for a desired direction (θ, φ) can be evaluated as:

hi(k) = (1− cθ)(1− cφ)ha(k) + cθ(1− cφ)hb(k) + cθcφhc(k) + (1− cθ)cφhd(k) (2.8.1)

where ha(k),hb(k),hc(k), and hd(k) are the HRIRs of the four adjacent measurement points,

and cθ and cφ are the normalised relative angular positions, calculated as:

cθ =
θ mod θgrid

θgrid
cφ =

φ mod φgrid
φgrid

(2.8.2)
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Bilinear interpolation of four adjacent measurement points has been shown to exhibit smoother

variation with change in angle than similar methods, such as bilinear interpolation of three

adjacent measurement points [Gamper, 2013]. This property yields smoother interpolation,

without discontinuities, and is an attractive facet in the rendering of moving sources.

Gamper proposes an alternative method of subset selection and subsequent interpolation

based on the vectorisation of the HRTF measurement grid [Gamper, 2013]. Assuming a

source distance of at least 1m for all measured points and desired points (to be interpolated),

the distance effects of the HRTF can be assumed to be negligible, thus the directions to all

measurement points and desired points can be described as unit vectors. Gamper’s proposed

method is based on the assumption that an HRTF estimate for the desired source direction

s can be constructed as a linear combination of three measurement directions h1, h2, h3 that

form an enclosing convexly curved triangle around s on the unit sphere. In the interests of

both speed and computational efficiency a triangulation of the unit sphere is performed as

the algorithm is initialised; during which the surface of the unit sphere is mapped as a series

of non overlapping triangles constructed from triplets of measurement points, the results of

which are stored. A Delaunay triangulation is used to maximise the minimum angle of all

the angles of the triangles in the triangulation, this has been shown to be advantageous for

interpolation by other authors. To further increase runtime efficiency, the inverse of each

measurement point triplet, required to calculate the contribution gain of each measurement

vector to obtain the desired direction, is calculated and stored during the same initialisation

process.

Gamper draws comparison between the proposed vector based amplitude panning method

of interpolation weight calculation, with an inverse distance weighting, and a bilinear inter-

polation of three measurement points. It is shown that the interpolation algorithm performs

comparably to, if not better than the other methods used in the objective tests. In partic-

ular, the proposed method yields smooth variation of interpolation weights with changes in

both azimuth and elevation, allowing for the convenient rendering of moving sources without

the negative effects imposed by interpolation discontinuities [Gamper, 2013].
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2.9 Conclusion

It is evident from the literature discussed in this section that given an interest in both effi-

cient representation and interpolation of the HRTF dataset then an interpolation led method

is largely unsuitable, though an interpolation based approach can be thought of as offering

a means of compression through the reduced number of measurements that need be stored

this level of compression is minimal in comparison to that which is achievable via a decom-

positional or filter modelling approach.

Both the decompositional and filter modelling approaches have apparent strengths and some

similar weaknesses, such as the recurring increased error at contralateral positions, however

no one method seems to be identifiable as optimal in so far as to offer maximal compression

for minimal loss in reconstruction/model error. As such the experimental works described in

this thesis will approach the initial compression problem from both a decompositional and

parametric filter modelling standing. In order to take advantage of possible underlying cyclic

features of the HRTF and also to simplify the problem to a more appropriate project length,

the methods will be investigated using an HRTF dataset limited to the azimuthal plane only.

Restricting the analysis to the horizontal plane somewhat limits the exploration of spectral

compression methods, as many of the psychoacoustically significant spectral variations are

an effect of the influence of the asymmetrical pinnae on changes in source elevation. How-

ever this limitation should not affect the objective analysis of the compression methods or

interpolation scheme presented in the remainder of this work. Furthermore, human ability

to detect source direction is known to be most acute in the horizontal plane as such it can

be considered to be of principal interest, particularly in the context of interpolation.

The investigative works will begin with a decompositional analysis and partial reconstruc-

tion of the measured magnitude spectra in both the linear and logarithmic domain, followed

by a parametric modelling approach broken into two halves; an all-pole filter approximation

made using linear predictive coding techniques, and a pole-zero filter approximation using

an implementation of the Steiglitz-McBride iteration.
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Further to the compression-centric methods, a means of secondary compression and possi-

ble convenient interpolation of the angle dependent decompositional or parametric model

components, in the spirit of Wang et al. [Wang et al., 2008], will be investigated.
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Chapter 3

Preparation for Experimental Works

3.1 TU Berlin HRTF Analysis

This section of the report gives a brief analysis of the dataset used as the basis of the inves-

tigative works described in the following sections. The aim of this section is to highlight the

key features of the HRTF and HRIR in the azimuthal plane, and familiarise the reader with

the measured dataset.

For this project, the HRIR measurement dataset chosen has been provided by TU Berlin

[Wierstorf et al., 2011], the set is made freely available under a Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 license.

The impulse responses were measured in an anechoic chamber, with lower frequency limit

63Hz, using a KEMAR mannequin at a range of four different loudspeaker distances; 0.5m,

1m, 2m, and 3m. The excitation signal was a 5.3s linear sine sweep with a 6dB per octave

low-shelf emphasis below 1kHz, resulting in an amplification of 20dB for low frequencies.

The loudspeaker was positioned at ear-level, and a high precision stepper motor was used to

rotate the mannequin in order to obtain measurements in increments of one degree in the

azimuthal plane.

The dataset has been compensated for inaccuracies in the measurement procedure; firstly
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the minimum ITDs were determined between measurement angles −90◦ and 90◦, the dataset

was then rotated by 2◦ − 3◦ to align the minimum to 0◦, secondly the ILD between the two

ears was corrected by adjusting the gain of the left and right HRIRs to achieve an ILD of

0dB at 0◦. The loudspeaker transfer function was also compensated between 100Hz and

10kHz by the design and application of inverse FIR filters.

θ

r= 0.5m, 1m, 2m, 3m

Figure 3.1.1: TU Berlin measurement scheme

The co-ordinate nomenclature used in the TU Berlin dataset and adopted in this project, is

defined such that the azimuth angle θ describes the placement of the loudspeaker or source,

anti-clockwise around the head. Thus the angle denoted in Figure 3.1.1 is −60◦.
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(b) −90◦ : Contralateral
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Figure 3.1.2: Measured HRIRs for cardinal directions with respect to left ear

Figure 3.1.2 shows the first 256 samples of the measured head related impulse responses

corresponding to the four cardinal directions, the front, contralateral, ipsilateral, and rear

positions as measured at the left ear. Several important characteristics of the HRIR in

the azimuthal plane can be approximated simply by comparing these four impulse response

plots. Comparing subfigures 3.1.2a and 3.1.2c, illustrates the slight level difference between

the front and rear measurements that occurs due to the shading and filtering effects of the

pinnae, without introducing a significant arrival time difference between the two as the two
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measurement positions are approximately equidistant from the either ear. Comparing subfig-

ures 3.1.2b and 3.1.2d clearly conveys the difference in sound path between the contralateral

and ipsilateral ear respectively. The ipsilateral position clearly yields maximal excitation

out of the four cardinal directions, as well as the shortest onset/arrival time, conversely the

contralateral position is characterised by minimal excitation due to the acoustic shading of

the head positioned directly between the speaker and, in this case occluded, ear, and the

longest onset/arrival time of all four pictured responses.

All four of the HRIRs presented in figure 3.1.2 share a common onset delay before the vari-

able onset delay due to measurement position. The common onset delay occurs due to the

distance between the loudspeaker and the dummy head used to measure the data; the data

was measured with a constant distance of 1m between the centre of the loudspeaker and

the centre of the mannequin. In post-processing the length of the onset delay of all 1m

measurements was trimmed to that equivalent to a measurement distance of 0.5m between

the centre of the loudspeaker and the centre of the mannequin [Wierstorf et al., 2011]. At

the sample rate of 44100Hz a distance of 0.5m should correspond to a common onset delay

of approximately 64 samples, however due to the distance from the centre of the mannequin

to the microphone transducers at the ear canals, this value is slightly too large. A better

estimate is to address the case of the ipsilateral measurement position; assuming an ear

spacing of 0.18m, true of the KEMAR design, the expected onset delay due to measurement

distance of (0.5-0.09) 0.41m is approximately 53 samples. This seems congruent with the

measured impulse response of the ipsilateral position in subfigure 3.1.2d, which seemingly

exhibits an onset delay of similar order to the approximated value.

The overall variation in the amplitude and onset/arrival time of the measured HRIRs for

each ear with respect to source angle is better depicted in figure 3.1.3.

36



J. Sinker Compact HRTFs CHAPTER 3. PREPARATION

Azimuth (Deg)

S
a
m

p
le

 N
o

 

 

−150 −100 −50 0 50 100 150

20

40

60

80

100

120

140

S
a
m

p
le

 V
a
lu

e

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Left Ear

Azimuth (Deg)

S
a
m

p
le

 N
o

 

 

−150 −100 −50 0 50 100 150

20

40

60

80

100

120

140

S
a
m

p
le

 V
a
lu

e

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Right Ear

Figure 3.1.3: Measured HRIRs

Figure 3.1.3 shows a portion of the measured head related impulse responses for all measured

angles at each ear. For illustrative purposes only 128 samples of the impulse responses have

been plotted, starting at sample number 20 and ending with sample number 148. Both the

inter-aural time and level differences can be seen clearly across the angular variation; the

highest contrast areas represent maximal excitation in the measured sound field. It is evident

that the largest amplitudes occur in the ipsilateral regions for each ear, occurring around

+90◦ for the left ear in figure 3.1.3a and around −90◦ for the right ear in figure 3.1.3b. The

image plots also show the variation in onset delay of the HRIRs with respect to the variation

in source angle, the uppermost region of excitation on each of the two plots, corresponding

to the shortest onset delay, occurs as expected at the ipsilateral source position of +90◦ and

−90◦ for subfigures 3.1.3a and 3.1.3b, reaching a corresponding minimum at −90◦ and +90◦

respectively.
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Figure 3.1.4: Measured HRTFs

Figure 3.1.4 shows the magnitude spectra of the measured head related transfer functions

for each ear obtained as 20log10 of the 2048 point Fourier transform of the measured HRIRs.

The lightest regions between the axes of angle and frequency represent the larger magni-

tudes of the measured responses, the largest magnitudes occur around the ipsilateral source

positions between approximately 2kHz and 8kHz for each ear. The darkest regions depict

the areas of lowest magnitude, considering the contralateral angle positions of each ear and

moving South to North along the frequency axis shows the effects of head shading and how

such shading varies with frequency. Lower frequencies at the contralateral source positions

exhibit low order diffraction patterns, characterised by the semi-periodic minima that occur

as a result of the superposition of the sound waves that split to travel around either side of

the head, incurring a significant path difference that results in cancellation of the acoustic

pressure. At higher frequencies the magnitude at these contralateral positions is significantly

lower due to both increased air absorption, and the increased directivity of high frequency

sound (less diffraction).

As the basis of the conducted works is concerned with the efficient representation or com-

pression of the HRTF, it is desirable to be able to increase the efficiency of representation

before the application of more advanced techniques. As is suggested by the representations
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of the HRIR measurement set in figures 3.1.2 and 3.1.3, a fundamental means of compression

may be achieved through the truncation of the measured impulse responses to include the

important region of excitation, including the variable onset delay. The measured impulse

responses are of length 2048 samples, however upon simple visual inspection it seems that

the latter portion of the responses contains little to no aptitude variation. To ensure that

no significant information is lost in truncation, the energy in the impulse response should be

considered as a basis for determining the truncation value.

The energy decay curve was defined by Schroeder [1965] as a means of measuring and defining

the reverberation time of a space using the impulse response. The energy decay curve (EDC)

is defined as the reverse integral of the squared impulse response at time t and describes the

total signal energy remaining in the impulse response at that time:

EDC(t) ≡
∫ ∞
t

h2(t)dt (3.1.1)

In order to select an appropriate truncation length, the EDC of the impulse response corre-

sponding to the contralateral source position measured at the left ear is plotted. Logically

the contralateral impulse response should have the slowest decay of energy, partially due to

its minimal total energy, and partially due to the almost exclusive presence of lower frequency

diffracted frequencies at the occluded ear.
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Figure 3.1.5: EDCs of ipsilateral and contralateral positions
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Figure 3.1.5 shows the energy decay curve of the ipsilateral and contralateral impulse re-

sponses measured at the left ear, for illustrative purposes both curves have been normalised

to the total energy of the ipsilateral HRIR. Considering the values of each curve at the first

sample shows that the contralateral HRIR has approximately 20dB less total energy than the

ipsilateral, this is of course due to the previously mentioned effects of head shadowing. Both

curves converge around -40dB approximately 500 samples into the responses, after which

they exhibit a similar decay over the remaining IR length. In the latter region the curves do

diverge up to a maximum of ∼5dB, the similarity between the curves in this region suggests

that it is likely that this region is dominated by noise in the measured HRIRs. The relatively

gentle decay is an artefact of the reverse Schroeder integration technique used to calculate

the curves, the HRIRs are reversed and then summed from beginning to end, as such the

noise floor in the measurements would yield a steady yet likely shallow gradient in the curve

as the cumulative energy in the noise with respect to time increases. The ∼5dB deviation

between the curves in the latter 1500 sample region is most likely due to the lower signal to

noise ratio of the contralateral HRIR; as less of the total energy in the signal is due to the

sound emanating from the source on the other side of the head, more of the total energy in

the signal is due to the noise, subsequently the relative contribution of the noise dominated

region of the EDC will be greater than that of the ipsilateral counterpart.

The fact that the energy decay curves shown in figure 3.1.5 both seem to exhibit a noise dom-

inated response after approximately 500 samples suggests that the HRIRs can be truncated

to a 512 sample length with no significant loss of any pertinent binaural cues. Taking the

512 and 2048 point Fourier transforms of the truncated and full length HRIRs respectively

was found to yield no discernible truncation effects such as the Gibb’s phenomenon.

3.2 ITD Extraction

For the purposes of the works described in this thesis: the application and possible exten-

sion of discussed decompositional and parametric modelling techniques to the TU Berlin

HRIR dataset, the measured responses will be assumed to comply with the aforementioned

minimum phase assumption. As such the remainder of this thesis will deal mainly with

the compression or efficient representation of the magnitude components of the HRTF given
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that the key ITD information can be synthesised as required simply by zero padding of the

processed minimum phase impulse responses.

This section of the thesis presents a brief comparison of a number of previously identified

techniques for the extraction of the ITD applied to the TU Berlin dataset, and leads to the

selection and justification of the method that is used in later reconstructions.

−150 −100 −50 0 50 100 150

−8

−6

−4

−2

0

2

4

6

8

x 10
−4

Angle (deg)

IT
D

 (
S

e
c
)

 

 

Spherical Model

IACC

(a) IACC

−150 −100 −50 0 50 100 150

−8

−6

−4

−2

0

2

4

6

8

x 10
−4

Angle (deg)

IT
D

 (
S

e
c
)

 

 

Spherical Model

IACCe

(b) IACCe

−150 −100 −50 0 50 100 150

−8

−6

−4

−2

0

2

4

6

8

x 10
−4

Angle (deg)

IT
D

 (
S

e
c
)

 

 

Spherical Model

Edge Detection

(c) Edge Detection

−150 −100 −50 0 50 100 150

−8

−6

−4

−2

0

2

4

6

8

x 10
−4

Angle (deg)

IT
D

 (
S

e
c
)

 

 

Spherical Model

IGD(0Hz)

(d) IGD0Hz

Figure 3.2.1: Comparison of ITD extraction methods
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Figure 3.2.1 shows the ITD with respect to angle extracted from the measured Tu Berlin

data using each of the four methods. The resulting ITD curve for each method has been

plotted against the reference curve of the spherical head model ITD prediction, the spherical

head model provides a useful measurement independent reference for the Tu Berlin data as

it is known to give a good estimation of ITD in the azimuthal plane, but also because the

Tu Berlin data was measured using the KEMAR mannequin and as such should fit well with

the approximation of a spherical head.

For the first three methods; the IACC, IACCe, and Edge Detection, the measured impulse

responses are first up sampled by a factor of 20, in order to alleviate errors in the ITD time

calculation in seconds that is imposed by the measurement sample rate of 44100Hz.

The IACC derived ITD curve shown in figure 3.2.1a was calculated by first computing the

cross-correlation function between the left and right ear measurements for each angle using

the xcorr.m function in MATLAB, and then finding the lag value, in samples, for which the

maximum of each function occurs. These sample values are then divided by the sample rate

of the original measurement and the up sampling factor to obtain ITD values in terms of

seconds.

The ITD curve derived using the IACCe method as shown in 3.2.1b is computed using the

same method as the IACC, the only difference is that the cross-correlation of the envelopes of

the left and right ear impulse responses is taken rather than of the raw signals. The impulse

response envelopes are calculated as the magnitude of the Hilbert analytical signal for each

of the left and right signals respectively using the hilbert.m function.

The ITD curve that is the result of the Edge Detection method is shown in figure 3.2.1c,

it is computed simply by defining for each pair of HRIR measurements; a pair of threshold

values, 15% of the peak value in the left and right measurements, for each angle. The ITD

in samples at each angle is then equal to the difference between the sample numbers at

which the left and right measurements first exceed the corresponding threshold value. As

with the IACC methods the ITD values in samples are then divided by the sample rate and

upsampling factor to obtain the corresponding values in seconds.
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Figure 3.2.1d shows the ITD curve derived from the phase based IGD method. It is computed

ideally in three steps for every angle; firstly by calculating the group delay of the measured

HRTF pair and its corresponding minimum phase representation, secondly by subtracting

them from one another to obtain the group delay of the excess phase components for both

the left and right ear impulse responses, then finally by evaluating the group delay at 0Hz,

the difference between the two evaluations is the ITD in samples. However in practice it is

usually not possible to obtain a meaningful evaluation of the group delay at 0Hz for real

measurements, due to the limitations of the physical transducer, to overcome this the group

delay has instead been evaluated at the first adjacent frequency bin, 172Hz, assuming that

for low frequencies the group delay is constant [Minnaar and Plogsties, 2000].

Comparing the four curves it is clear that the IACC and IACCe methods both suffer from

significant discontinuity for angles close to the inter aural axis, though the discontinuity is

somewhat smoothed in the IACCe case at the apparent cost of further more subtle disconti-

nuities at angles slightly further to either side of the inter aural axis. These discontinuities

have been explained by other authors as a result of the comparatively low signal to noise

ratio of the contralateral impulse responses and the subsequent lack of coherence this may

cause between the ipsilateral and contralateral measurements. The Edge Detection method

yields an ITD curve very close to that of the spherical head model however it exhibits a

minor skewing that results in a slight under prediction of the values near the interaural axis,

this effect may be due to the physical shape of the KEMAR mannequin head not being a

perfect sphere. The phase method matches the overall shape of the spherical head model

curve very closely however it suffers from consistant small scale fluctuations that are likely

caused by noise in the measured HRIR.

Given the consideration of the computed ITD curves shown in figure 3.2.1, for the TU Berlin

dataset the Edge Detection method seems to be the most appropriate of the four. The com-

paratively smooth behaviour of the ITD curve and lack of discontinuities is congruent with

the expected ITD behaviour. This is further evidenced by the goodness of fit of the derived

curve with that of the estimation belonging to the spherical head model, which as previously

stated is known to achieve a good approximation of the ITD in the azimuthal plane. The

Edge Detection method has been shown to match well with psychoacoustically derived ITD
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values [Busson et al., 2005], and importantly, the method is also computationally inexpen-

sive, especially when compared to the phase method that requires the use of comparatively

complex routines to evaluate the various phase components at each position.
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3.3 Error Metric

In order to be able to effectively interpret the relative merit of HRTF compression methods,

specifically reconstruction techniques, a consistent error metric must be adopted. One such

metric that appears quite commonly in the field of HRTF compression is the mean squared

error (MSE) between reference and reconstructed or modelled spectra defined as:

MSE =
1

n

n∑
i=1

(X̂i −Xi)
2 (3.3.1)

The mean squared error is a parameter often used in statistical disciplines to asses the qual-

ity of an estimator or series of predictions with reference to measured data. The MSE can

be thought of as a means of costing the goodness of fit between two vectors such as two

frequency spectra, and as such provides a convenient and consistent means of comparing

different prediction models, or in the case of the current works, of comparing different re-

construction and even interpolated reconstruction methods.

A potential criticism of the mean squared error is that due to the squaring of every term,

larger errors are effectively weighted more heavily than smaller errors. This can lead to

marred interpretations of overall error trends when the MSE value is calculated for data con-

taining outliers. However in the application of MSE as an error metric between a measured

and modelled/reconstructed HRTF this criticism can be considered somewhat advantageous;

the effective weighting of larger errors means that the MSE calculated between two spectra

will be dominated by the extremes of the data, i.e. the spectral peaks. This means that the

use of MSE in this context is actually quite apt, as the auditory system can also be con-

sidered to be peak dominated; peak amplitude frequencies cause maximal excitation on the

basilar membrane and lower amplitude frequencies, particularly those that occur adjacent

to the area of maximum excitation on the membrane can become masked. Thus suggesting

that the peak frequencies can be considered the most important in the characterisation of a

complex sound consisting of multiple frequency components.

MSE has been utilised in many previous works in the field, sometimes a variation of the

MSE such as the percentage mean error (PMSE) [Wang et al., 2008] is developed, but the
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key components, and limitations, of the MSE metric remain, they are merely reported in

alternate units.

As such it can be deemed that MSE provides a somewhat psychoacoustically weighted error

metric that will serve to highlight error regions that are most likely to introduce tangible

subjective listening misjudgements. However, careful consideration should be given to the

application of MSE as an error metric when considering in particular; the error between

frequency spectra. There exists an inherent ambiguity in the definition of the MSE error,

pertaining to wether the MSE should be calculated between the logarithmic (dB) or linear

spectra of the measured and modelled systems, as the results can vary substantially not only

in scale but also in meaning.
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Figure 3.3.1: Comparison of logarithmic and linear MSE calculations

An example of the effect that domain in which the MSE is calculated is shown in figure

3.3.1; MSElog (3.3.1a) is calculated using equation 3.3.1 where X̂ and X are the measured

and modelled logarithmic spectra (in dB) respectively, whereas MSElin (3.3.1b) is calculated

again using equation 3.3.1 but where X̂ and X are the measured and modelled linear spectra,

the resulting MSElin values are then converted the log domain using 10log10(X).

Figures 3.3.1c and 3.3.1d illustrate the difference between a portion the measured and mod-
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elled frequency spectra at a single angle selected for demonstrative purposes. The frequency

spectra are shown in the log domain in 3.3.1c and the linear domain in 3.3.1d. The modelled

results used to create these demonstrative figures are obtained using the log-domain PCA

based decompositional approach.

The resulting distributions for MSE calculated in the linear and logarithmic domains over

angles -180 to +180 differ substantially, not simply in terms of scaling but more importantly

in terms of meaning; the MSElog distribution shows a clear increase in error in the contralat-

eral hemisphere, whilst the MSElin distribution shows the opposite.

Certain peaks and nulls are aligned in both distributions however many are not, and peak

error values seem far more pronounced in figure 3.3.1a. This is almost certainly due to large

increases calculated in MSElog that occur due to the underprediction of significant notches

that arise in the logarithmic frequency responses of many measurement positions at high

frequencies. Figure 3.3.1c shows a portion of the high frequency responses of a measured

and modelled HRTF; notice the grossly underpredicted notch that occurs at approximately

104.3Hz, sharp notches such as these are common among the higher frequencies and of course

occur at frequencies of low magnitude, however these detailed high frequency notches are

not crucial to the adequate reconstruction of spectral based locational cues [Humanski and

Butler, 1988] [Morimoto, 2001] and as such it is inconvenient that they skew the MSE calcu-

lated across the spectrum. The relative magnitude of these notches is an artefact introduced

by the conversion of the linear magnitude frequency response to the logarithmic domain, as

the log domain is unbounded in the negative direction, i.e. extending infinitely, the finite

linear range between one and zero maps from zero to minus infinity upon conversion. This

means that positive linear values approaching zero become much much smaller and as such

high frequencies of low linear magnitude are expressed in the log domain as sharp notches.

Therefore it may be more appropriate to calculate the MSE in the linear domain, which can

then be expressed logarithmically, for as it can be seen in figure 3.3.1d, in the linear domain

the low magnitude of the high frequency components and more importantly the difference

between two low magnitude components is not numerically exaggerated as it is in the log

domain.

48



J. Sinker Compact HRTFs CHAPTER 3. PREPARATION

Upon studying the measured and modelled spectra at the angles which pertain to a minimum

and maximum in the MSElin a further characteristic of the linear MSE calculation becomes

apparent.
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Figure 3.3.2: Comparison of maximum and minimum MSElin cases

Figure 3.3.2 shows the measured and modelled logarithmic spectra at the angles for which

the maximum and minimum MSElin values can be seen in figure 3.3.1b; approximately +75◦

and −65◦ respectively. According to the MSElin calculation there is a difference between the

error of the two cases of approximately 25dB, however it can clearly be seen that both cases

exhibit a similar performance upon visual inspection of figure 3.3.2. The larger magnitude

of the ipsilateral HRTFs means that the same relative error performance as may be present

in a corresponding contralateral model will be reported as larger due to the larger amount

of total energy in the ipsilateral measurements.

To abate this inconsistency the linear MSE calculation can be improved by normalising the

MSE at each angle by the total amount of energy in the measured spectra for that angle,

thus yielding an error metric that reports the relative MSE performance between modelled

spectra made for different angles. This metric is referred to as the normalised means squared

error (NMSE) and is defined as:
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NMSE =

n∑
i=1

(X̂i −X2
i )

n∑
i=1

(X̂i
2
)

(3.3.2)

The works described in this thesis are assessed, when appropriate using the NMSE metric.
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Chapter 4

Decompositional Approach

This section of the thesis details the application of a decompositional approach to the com-

pression of the TU Berlin azimuthal HRIR dataset. The decompositional technique used is

the principal component analysis according to the description given by Kistler & Wightman

[1992]. It is noted that this description is congruent with other PCA definitions offered by

alternative authors [Jolliffe, 2005] [Martens, 1987], as well as Chen et al.’s description of the

discrete Karhunen-Loeve transform [Chen et al., 1995].

The terminology used to describe the output elements of the principal component analysis

varies slightly from the aforementioned works. In this section, and for the remainder of the

thesis, the eigenvectors of the covariance matrix will be described as the basis vectors, the

corresponding weightings will be described as the weight vectors, and the term principal

component will be used to describe a singular pair of vectors consisting of a basis vector and

its corresponding weight vector. Common to all previous author terminologies, the order of

principal components will be described such that the first principal component is the basis

and weight vector pair that explains the largest proportion of the variance of the total data

set, i.e. the eigenvector (basis vector) corresponding to the largest eigenvalue.

The principal component analysis and subsequent decomposition is performed on both the

linear and logarithmic magnitude components of the TU Berlin HRTF data, obtained by the

Fourier transform of the measured HRIR data.
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The principal component analysis was performed using the software package MATLAB [The

MathWorks Inc., 2014] according to the following procedure:

First the magnitude spectra are arranged in a matrix such that each column corresponds

to a Fourier transform frequency bin, and each row corresponds to a measurement position,

or angle. The mean value of each frequency bin calculated across all angles is calculated

to form a row vector equal to the average spectrum of the measurement set. This average

spectrum is then subtracted from all rows, i.e. each of the measured magnitude spectra, to

leave the original data less the mean; the measured direct transfer functions (DTFs). The

cov.m function in MATLAB is used to compute the covariance matrix of the DTF dataset,

and the eig.m function is called to extract the eigenvectors and corresponding eigenvalues of

the matrix. The output of eig.m is a matrix, each column of which is an eigenvector, and a

diagonal matrix of corresponding eigenvalues in ascending order; the fliplr.m function is used

to reverse the order of the eigenvalues and corresponding eigenvectors such that the largest

eigenvalue and eigenvector are contained in the first column of the two matrices. Finally the

weights are computed according to equation 2.6.5 with inv.m used to perform the inversion

of the eigenvector matrix.

It has already been stated that the eigenvalues of the covariance matrix correspond to the

amount of total variance of the data set that is explained by the principal component corre-

sponding to that eigenvalue. However, the eigenvalues themselves explain little other than

the order of importance of the PCs; a more useful representation of the eigenvalues is to cal-

culate the percentage of total variance explained by each PC. This can be calculated simply

as:

Vi =
λi

N∑
n=1

λn

× 100% (4.0.1)

where Vi is the percentage explained by the ith principal component, λi is the ith eigenvalue,

and N is the total numbers of principal components and subsequently eigenvalues.
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4.1 PCA of Linear HRTF Magnitudes
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Figure 4.1.1: Linear magnitude basis vectors

Figure 4.1.1 shows the first four basis vectors in principal component order, i.e. in order of

descending variance explained. Note that all four basis functions are approximately or at

least very close to zero for frequencies below approximately 1-3kHz, this occurs due to the

fact that there is little directionally dependent variation at theses lower frequencies, likely

due to the diffraction that occurs allowing the low frequency waves to ’bend’ around the
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comparatively small diameter of the head. It is clear that the first four basis vectors that

account for 85, 11, 2, and less than 1 percent of the total variance respectively, are dominated

by the directionally dependent high frequency variations occurring from around 3kHz and

up.
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Figure 4.1.2: Linear magnitude weight vectors

Figure 4.1.2 show the first four weight vectors that correspond to the first four basis vectors

shown in figure 4.1.1. The weight vectors describe relative contribution of each of the basis

vectors to the original HRTF for all measured angles (or positions). All four weight vectors
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exhibit similar ripple-like behaviour over the contralateral angle region of approximately

-150 to -50 degrees, once again this is likely due to the lower signal to noise ratio of the con-

tralateral HRIRs. The first principal component weight vector shown in figure 4.1.2a shows

a general formulation such that the contribution of the first basis vector, that accounts for

∼85% of the total variance, is negative in the contralateral hemisphere and mostly positive

in the ipsilateral hemisphere. This trend is slightly skewed by the rear positions (-180 and

+180) that are also negative, and the curve crosses the x axis to become positive approxi-

mately 5◦ from the frontal position (0◦) towards the contralateral side. This skewing is likely

due to the orientation of the KEMAR ear canals, which lie slightly off the inter-aural axis.

It can further be seen that there is a difference in the magnitude of the positive and negative

peaks of first weight vector; the negative peak, in the contralateral hemisphere, has smaller

magnitude than that of the positive peak, which lays within the ipsilateral hemisphere. The

smaller magnitude of the minimum peak is due to the reduced level at the (left) ear for

contralateral source positions, i.e. head shadowing.

The implications of the trend described in the first weight vector in figure 4.1.2a are somewhat

difficult to interpret given that the corresponding basis vector represents a linear spectral

shape, but the most evident features do seem consistent with the remarks made by Kistler &

Wightman during the initial analysis of their log magnitude PCA components [Kistler and

Wightman, 1992].
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Figure 4.1.3: Pareto plot : Linear magnitude PCA

Figure 4.1.3 illustrates the amount of variance explained by each of the principal compo-

nents until 95% of the total variance has been cumulatively explained. The bars represent

the amount of variance explained by each principal component and the black line depicts the

cumulative total of variance explained by the principal components combined. For the PCA

applied to the linear magnitude HRTF data 95% of the variance of the data set is captured

by the first two principal components; that is two basis vectors defining key spectral shapes,

and a corresponding two weight vectors defining the angular variation in the contribution of

these spectral shapes.

This result in itself suggests that a high level of compression can be achieved using this

method, the reduction from 360 HRTFs of length 256 frequency bins each to two basis vec-

tors of length 256 frequency bins, and two weight vectors of length 360 angular positions,

is a significant reduction. In fact this result suggests that the method of applying the PCA

to the linear magnitude components of the HRTFs outperforms the methods described in

previous works [Kistler and Wightman, 1992] [Wang et al., 2008], both of which suggest more

than two principal components are required to recapture as little as 90% of the variance of

other datasets. This is most likely due to the fact that both the dataset used by Kistler &

Wightman and the CIPIC database used by Wang et al. feature measurements made across

several different listeners as opposed to solely the KEMAR mannequin as in the TU Berlin
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data. It is to be expected that greater variance will be introduced into the measurement

suite for every additional head measured and thus the principal component analysis would

infer seemingly less efficient results.

It is also key to discuss that although this method yields conveniently smooth and arguably

appealing basis and weight vector definitions, they mask a critical obstacle that becomes

apparent in the attempted reconstruction of the data using a reduced number of principal

components. Due to the low magnitude of certain high frequency components in the mea-

sured HRTFs, some of which approach zero, that occur predominately at the contralateral

measurement positions; reconstructions at some of these angles do not exceed zero at said

frequencies. The information required to recreate such frequencies at contralateral angles

may well be contained in high order principal components; components that may not be

included in the reconstruction. It is also possible that the total magnitude of these more

subtle spectral fluctuations at higher frequencies are staggered across many of the principal

components, unlike the macroscopic spectral fluctuations that are captured by low order

principal components that account for a greater proportion of the total variance. Though

at larger magnitude frequency components the loss of a small amount of detail in terms

of absolute magnitude may not be a concern, at higher ’notch’ frequencies for which the

total magnitude is of similar order to the magnitude inaccuracies introduced by the reduc-

tion of the number of principal components used in the reconstruction, this presents an issue.
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Figure 4.1.4: Minimum reconstructed values of linear magnitude PCA

Figure 4.1.4 shows the minimum reconstructed value for each azimuth angle using just 2

principal components. Clearly there exists a wide region centred on the contralateral azimuth

for which the principal components used to reconstruct the data do not carry enough of the

measured magnitude information to ensure that the reconstruction clears zero. Although

the reconstructed negative components are of small magnitude themselves and in other

disciplines such a reconstruction may be suitable and valid, however in an acoustical sense

they simply cannot be ignored. A negative linear magnitude implies a complex logarithmic

magnitude (dB) as:

|X|dB = 20log10(|Xlin|) (4.1.1)

For which log10(−x) is undefined; considering y = log10(x), as the base (10) is positive, the

base raised to the power of y must be positive for any real value of y.

A possible means of overcoming this would be to ’correct’ all negative values to an almost

negligibly small positive value, doing so would avoid the aforementioned numerical com-

plications however it is possible that the relative increase of ’corrected’ notch frequency

magnitudes to the more correctly captured peak frequency magnitudes could serve to distort
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the binaural cues contained within he reconstructed HRTF.

The simplest means of avoiding the issue however, is to ensure that enough principal compo-

nents are used in the data reconstruction so that the minimum reconstructed value at each

angle is greater than zero, as it is in the unprocessed measured HRTF data.
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Figure 4.1.5: Minimum reconstructed values against number of PCs used in reconstruction

Figure 4.1.5 shows the number of PCs required for the minimum reconstructed value to clear

zero; the red region of the curve indicates a minimum reconstructed value of less than or

equal to zero, whereas the black region indicates a minimum reconstructed value greater

than zero. It can be seen that a minimum of between 125 and 150 principal components are

required to provide a wholly positive reconstruction of the linear spectra at all angles.

Although still a viable means of HRTF dataset compression, due to the numerical com-

plication that arise from the small magnitude values at high frequencies in contralateral

angles,and the subsequent need for a large number of principle components to be retained

in reconstruction, it is likely that this is far from an optimal representation of the data.
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4.2 PCA of Logarithmic HRTF Magnitudes

A similar approach, that was adopted by several previous authors is to apply the principal

component analysis to the log magnitude values of the HRTFs, i.e. the spectra in dB. In

converting the linear magnitude spectra into their log counterparts (20log10(|X|)) before

conducting the principal component analysis, the numerical issue of attempting to take the

logarithm of a negative reconstructed value is bypassed completely as the HRTFs are already

expressed in terms of the desired and more commonly used decibel scale.
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Figure 4.2.1: Logarithmic magnitude basis vectors
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Figure 4.2.1 shows the first four basis vectors derived from the PCA of the HRTF log mag-

nitudes. Similarly to the first four basis vectors of the linear magnitude PCA (figure 4.1.1),

the second and third basis vectors are fairly constant at zero below approximately 1kHz,

however the first and fourth are not. The first basis vector is of a fairly constant shallow

positive gradient below approximately 5kHz above which it exhibits a slight peak and small

notch before seemingly settling somewhat into the higher frequencies (10kHz and above).

The first four basis vectors account for approximately 85, 4, 3 ,and 2 percent of the total

variance explained and clearly reflect an important directionally dependent fluctuation in

the magnitudes of higher frequency components. This was identified similarly for the linear

magnitude basis vectors, and the log magnitude basis vectors reported by other authors

[Kistler and Wightman, 1992] [Martens, 1987].
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Figure 4.2.2: Logarithmic magnitude weight vectors

Figure 4.2.2 shows the first four weight vectors corresponding to the first four principal

components of the log magnitude PCA. As with the linear PCA weight functions in figure

4.1.2 the first weight function is perhaps the most easily interpreted in a physical sense; the

first weight vector in figure 4.2.2a exhibits a similar shape to the first linear magnitude weight

function shown in 4.1.2a, albeit on a much larger scale, this suggests that the PCA of both the

linear and logarithmic HRTF magnitudes yields the same first principal component. However

it is easier to observe the nature of the first component in the log magnitude analysis; the
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first basis vector is effectively of a shallow positive gradient from roughly 200Hz and beyond,

with some slight variation at higher frequencies, this spectral shape coupled with the weight

vector which exhibits mostly negative values in the contralateral hemisphere and mostly

positive values in the ipsilateral hemisphere, implies an overall de-emphasis of high, and to a

lesser extent mid, frequencies in the contralateral hemisphere and an increased emphasis of

the same frequencies in the ipsilateral hemisphere. The first weight vector reaches minimum

and maximum values along the inter-aural axis, that is at ±90◦, and as such these values

give rise to the largest emphasis and de-emphasis of the high frequencies. The nature of

the first principal component in both the linear and logarithmic magnitude PCA offers a

conveniently interpretable definition of a primarily angular-dependent phenomenon of the

HRTF; high frequency content is de-emphasised in the contralateral hemisphere, maximally

at the contralateral ear, caused by the lack of diffraction due to the order of the diameter

of the head and the subsequent acoustic shadow cast by the hard skull of the listener at

these frequencies. A similar trend can be seen in the first principal component derived in

the works of other authors [Kistler and Wightman, 1992] .
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Figure 4.2.3: Pareto plot : Logarithmic magnitude PCA

Varying further from the similarities with the linear magnitude PCA, figure 4.2.3 shows that

the first six principal components are needed in order to explain 95% of the total variance of

the log magnitude data. The first principal component accounts for approximately 85% of

the total variance in the data with the remaining five only accounting for less than roughly
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4% each. The amount of variance explained by the first component is almost identical to the

amount of variance explained by the first component of the linear magnitude PCA, shown

in figure 4.1.3. This suggests that the first principal component derived in both analyses

represents the same characteristic of the measured HRTF, namely the de-emphasis of high

frequency components of the HRTFs located in the contralateral hemisphere. The need for

another five components to capture the remaining 10% of the total variance, and to account

for 95% of the total variance, in contrast to the one additional component required in the

linear magnitude analysis, reflects the visible differences in the smoothness of the weight

vectors. The increased amount of small magnitude fluctuations present in the logarithmic

magnitude weight vectors are likely caused by the exaggeration of some ’microscopic’ details

in the measured spectra, that become increasingly statistically significant when the HRTF

spectra are analysed on the numerically much larger, negatively unbounded, logarithmic

(dB) scale.

4.2.1 Reconstruction Performance
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Figure 4.2.4: Normalised mean squared error of 6 PC reconstruction

Figure 4.2.4 shows the NMSE calculated between the measured HRTF magnitude spectrum

and the counterpart spectrum reconstructed using only the first six principal components for

all measured angles (-180◦ to 180◦). The figure shows that the six component reconstruction
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performs similarly well for the majority of all angles, though with a significant increase in

error around the contralateral and rear positions. Note that the maximum error does not

occur at the contralateral angle −90◦ but slightly further towards the rear of the head, the

off-interaural-axis occurrence of the two error peaks towards the rear and the descending

two peaks that fall slightly toward the front of the head with reference to he contralateral

angle, indicate a possible source of error that may stem from a specific HRTF characteristic

that is exhibited significantly only in a relatively small range of angles either side of the

contralateral position. The asymmetry of the series of peaks is likely due to the asymmetry

of the pinna about the interaural axis. Though in isolation this figure tells little besides the

increased error in proximity to the contralateral position, it serves a reference for comparison

when considering the error introduced in the interpolation discussed in the following section.

As the NMSE for each angle is calculated as a single value representing the average squared

error across all frequencies, it is perhaps beneficial to investigate the source of the increased

NMSE reported around the contralateral angle. This should shed light onto the nature of the

increase NMSE in particular it should aid in identifying if the error stems from a particular

frequency range, or an inherent flaw in the decompositional method at these angles.
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Figure 4.2.5: Maximum and minimum error reconstructions using 6 PCs

65



J. Sinker Compact HRTFs CHAPTER 4. DECOMP. APPR.

As stated above, the maximum value of the NMSE between the measured and reconstructed

data was calculated at azimuthal angle -118◦; figure 4.2.5a shows the magnitude spectra of

both the measured and 6 PC reconstructed HRTFs at this angle. In contrast, figure 4.2.5b

shows the measured and reconstructed magnitude spectra of an angle taken from a region

of minimum NMSE. The reconstruction performs similarly well for frequencies below ap-

proximately 1kHz, where little directional dependence is expected, however the performance

differs quite substantially at higher frequencies. In particular the maximum error case of the

six component reconstruction, shown in figure 4.2.5a seems to over predict the magnitude

of the dip just between 1kHz and 3kHz and the broad double peak centred around approxi-

mately 4kHz, this over-prediction of these two features appear to contribute somewhat to the

increased error, however there also exists a severe notch in the measured response at approx-

imately 19kHz that is entirely omitted from the reconstruction, the difference between the

reconstructed response and the measured notch is on the order of 20dB, and will certainly

have impacted the average of the squared error over the whole spectrum. As such extreme

high frequency variation occurs only in a subset of the measured responses, centred around

the contralateral angle, it can be assumed that the information needed to reconstruct them

is contained in higher order PCs, as statistically they account for only a small amount of the

total variance of all measured HRTFs.

The limited component reconstruction is less successful in capturing some of the more subtle

high frequency detail above 10-15kHz, however such high frequencies are often regarded as

less important in the preservation of localisation cues and have even been omitted from

analysis and evaluation in the works of some other authors [Kistler and Wightman, 1992]

[Evans et al., 1997] [Zhang and Abhayapala, 2009]. Subsequently the lack of reconstruction of

the sharp high frequency notch or notches that occur upwards of 15kHz for some contralateral

positions, such as in figure 4.2.5a, should not necessarily be considered to imply the need for

more principal components in the reconstruction.

4.3 Interpolation of Weight Vectors

An advantage of the decompositional approach to HRTF compression is that it separates

the positional and frequency dependent variations in the dataset. Such an approach offers
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a logical and somewhat intuitive means of unambiguous HRTF interpolation through the

interpolation of only the spatial decompositional components, i.e., the weight vectors. Each

weight vector can be interpolated to effectively up-sample the measurement positions of the

dataset by an interpolation factor as and when higher spatial resolution is required, however

a stronger method sees each weight vector translated to a functional form that is continuous

by definition; therefore allowing for HRTF interpolation with comparatively little run-time

computation, as the functional representation can be evaluated for any desired measurement

angle, whereas the former method requires computation of an interpolated vector through

an interpolant that is dependent on the requirement for positional accuracy etc in the virtual

auditory scene.

4.3.1 One-Dimensional PCA/KLT

In addition to the application of a PCA/KLT to a 2-dimensional dataset, as was demon-

strated in the decomposition of the HRTF dataset into a series of frequency dependent basis

vectors and spatially dependent weight vectors, the PCA/KLT can also be applied to a 1-

dimensional set of data. In this case the 1-dimensional data is a single weight vector that

will be decomposed into a series of orthogonal basis vectors and singular set of weights that

describe the relative contribution of each basis vector to the reconstruction of the original

weight vector. In this application the previous method must be altered slightly; instead

of the eigenvectors and eigenvalues of the covariance matrix estimated from the matrix of

input observations, the eigenvectors and corresponding eigenvalues are taken from the auto-

correlation function of the input vector expressed in toeplitz matrix form.

In order to alleviate confusion, for the remainder of this section the formerly conducted

principal component analysis of the log-magnitude spectra will be referred to as PCA-1, and

the further ’sub’ principal component analysis of the weight vectors derived in PCA-1 will

be referred to as PCA-2.
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(c) Third Basis Vector
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(d) Fourth Basis Vector

Figure 4.3.1: Basis vectors of first weight vector decomposition

Figure 4.3.1 shows the first four basis vectors derived from the first PCA-1 weight vector

during the PCA-2 process. The principal component analysis is designed such that the de-

rived basis vectors are an orthogonal series of optimally efficient basis functions, thus it is

convenient to observe that the optimal basis vectors for the reconstruction of the PCA-1

weight functions appear to be sinusoidal/cosinusoidal. Note that although only the PCA-2

basis vectors derived for the first PCA-1 weight vector are presented, the PCA-2 basis vec-

tors derived for all PCA-1 weight functions exhibit this characteristic.
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Considering once more the PCA-1 weight vectors shown in figure 4.2.2, the overall variation

of the weight values in the y axis is large or macroscopic in the first weight vector, as such

one might expect to find that only a small number of low order sinusoidal components are

needed to capture most of the variance in the vector. However for the successive weight

vectors, the overall variation of the weight values tends towards becoming increasingly small

or microscopic, hence one would correctly expect that a greater number of higher order or

higher frequency sinusoidal components will be required to recapture the same amount of

variance for each vector.

The presence of these underlying sinusoidal and cosinusoidal functions is perhaps not surpris-

ing when one considers the composition of the HRTF, less surprising still when considering

the prior decomposition of the HRTF into the PCA-1 derived frequency and angular basis

vectors. The angular variation of the HRTF in the azimuthal plane is by definition periodic,

where one period completes a rotation around the head at a fixed distance, but also consider

that, particularly in the case of the dummy head (KEMAR head in the case of the TU

Berlin data), the geometry of the head is close to that of a sphere or cylinder. It is rational

to expect to identify characteristics of near simple oscillations in the angular variation of the

relative weightings of the crucial spectral shapes moving around the head.

An important outcome of the reduction of the PCA-1 weight vectors to the weighted sum

of optimally decorrelated basis functions, and the observation that these basis functions so

closely resemble simple sine and cosine functions becomes overtly evident when considering

interpolation. The sine and cosine functions are continuous, they are mathematically defined

for any possible input, therefore an approximate representation of the PCA-1 weight vectors

as the weighted sum of continuous functions will also be a continuous function. This is a

powerful implication for the compression of an HRTF measurement dataset, as not only can

one express the data in a compact form consisting of a small subset of basis and weight

vectors, but the weight vectors can further be simplified and expressed as set of weights and

frequencies of sine and cosine terms, in addition to being superiorly compact to the original

data, this representation is also theoretically functional in terms of measurement angle θ.

69



J. Sinker Compact HRTFs CHAPTER 4. DECOMP. APPR.

4.3.2 The Discrete Cosine Transform

In the same way that the discrete Fourier transform decomposes a finite length sampled

signal into a weighted sum of sine and cosine functions oscillating at different frequencies,

the discrete cosine transform decomposes a finite length sampled signal into a weighted sum

of varied frequency cosine functions only. The DCT is a technique commonly used in data

compression applications often in the fields of image and signal processing, that was origi-

nally derived as means of approximating the eigenvectors of a of the auto-correlation matrix

of an autoregressive (AR(1)) signal block, which pertains to a special case of the Karhunen-

Loeve transform [Malvar, 1992]. In this special case, for an AR(1) signal, as the correlation

between adjacent samples tends to one, the KLT basis functions become sinusoidal.

The DCT of a finite length sampled sequence xn is defined as:

Xk =
N−1∑
n=0

xncos[
π

N
(n+

1

2
)k] (4.3.1)

4.3.3 DCT Approximation of Weight Functions

Taking the N -point DCT of one of the PCA derived weight vectors yields a new vector

describing the magnitude, or in the spirit of the aforementioned PCA, the coefficient weights

of N cosine functions oscillating at orthogonal frequencies, the sum of which (
∑N−1

n=0 ) returns

the original PCA derived vector. The frequency of each cosine function is prescribed by the

number of the frequency bin n, and the value in that bin prescribes the magnitude or weight

of that cosine function contained in the original vector.

Much in the same way as with the PCA decomposition of the magnitude spectra vectors,

it is true that only a subset of the N cosine functions are required in order to capture the

total variance of the PCA derived weight vector up to some arbitrary threshold. It can be

assumed that the DCT components with the largest magnitudes, that represent a larger

contribution in the reconstruction of the original domain signal, are equivalent to the largest

eigenvalues in the PCA composition; in other words, that the largest magnitude components

of the DCT of series x account for the largest proportions of total variance explained in x.
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By first arranging the DCT component magnitudes in descending order, the amount of total

variance explained V% by i orthogonal cosine functions can be calculated as:

Vi =
||xi||
||x||

× 100 (4.3.2)

Where xi is the ith largest magnitude cosine function and || · || denotes the 2-norm operation

which can be written as:

||xi|| =

√√√√ n∑
i=0

x2i (4.3.3)
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(a) First 20 DCT Components
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(b) DCT Components Required to Explain 99% of
Variance

Figure 4.3.2: DCT representations of first PCA-1 weight vector

Figure 4.3.2a shows the first 20 DCT components of the first PCA-1 weight vector. In 4.3.2b

the DCT components are limited to the 5 components that have the largest magnitude and

account for 99% of the variance of the weight vector. In figure 4.3.2b the ’non-essential’

DCT components that pertain to the remaining ∼1% of the total variance have been set to

zero.
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Figure 4.3.3: DCT reconstruction of first weight vector

Figure 4.3.3 compares the first PCA-1 weight vector with an approximated version recon-

structed from the 5 largest DCT components only. The reconstructed weight vector is

generated by taking the inverse discrete cosine transform of the DCT component vector,

recall that although the vector is still 256 elements long, all but the largest 5 elements have

been set to zero. The DCT method clearly provides an effective means of compression of

the weight vectors in addition to the compression of the whole dataset realised by the initial

principal component analysis. The number of DCT components required to capture the

desired threshold level of the total variance in each of the weight vectors is dependent on the

order of the weight vector, a general trend emerges that the number of DCT components

needed increases as the order of the weight vector increases.
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Figure 4.3.4: Number of DCT components vs principal component weight vector order

Figure 4.3.4 shows the number of DCT components required to capture 99% of the variance

of each PCA derived weight vector. The figure shows a sharp increase in the number of DCT

components required as the principal component number increases, this sharp incline appears

to level off at approximately the 50th principal component. The weight vectors themselves

are each 256 samples long, evidently the DCT compression method offers little to no gain in

efficiency in representing the weight vectors for the latter 200 or so principal components,

however as was previously shown in figure 4.2.3 only the first 6 principal components need be

considered to capture 95% of the total variance of the original dataset. Returning to figure

4.3.4 it can be seen that for the first 6 principal components the number of DCT components

required to express the weight vectors is significantly less than 256, and so the DCT method

offer a significant compression of the weight vectors.

The DCT also offers a convenient means of computationally efficient interpolation. Typically

both the DCT and the IDCT performed to respectively deconstruct and then reconstruct

one of the principal component weight vectors use the same number of evaluation points N .

However it is possible to effectively oversample the original data by zero padding the DCT

component vector in the reciprocal domain, or oversample the reciprocal domain response

by zero padding the original vector. For example, considering an azimuthal HRTF dataset

with 180 measurement points, or a spatial resolution of 2◦; taking the 180 point DCT of
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one of the PCA derived weight vectors of the set will yield a vector describing the DCT

component magnitudes with 180 DCT bins. By appending 180 additional zeros to the end

of the DCT vector and taking the 360 point IDCT one obtains the original weight vector

with an additional 180 samples interleaved with the original 180 samples, this total of 360

samples characterises an interpolation by a factor of 2.

Interpolation via this method results in a reduction of amplitude in the reconstructed weight

vector; the reduction is equal to the square root of the interpolation factor. In the example

mentioned above, the interpolation factor of 2 results a reconstructed amplitude reduction

of a factor of
√

2, in order to correct for the reduction in y axis displacement of the recon-

structed weight vector, the values of either the weight vector or the DCT component vector

must be compensated by multiplying by the reduction factor.

Thus the PCA weight vectors derived from an HRTF measurement set of an arbitrary num-

ber of evenly spaced positions can be zero padded in the reciprocal DCT domain in order

to oversample the measurement scheme spatially and obtain weight vectors of any desired

length, ultimately allowing for the PCA reconstruction of HRTF data at positions for which

no measurement was taken. This of course has intriguing implications regarding the pos-

sible applications of convenient interpolation such as upscaling of small measurement sets

in order to achieve more accurate reproduction of a virtual auditory space, but also pos-

sibly for the implementation of efficient HRTF measurement schemes that could be used

to greatly reduce the time taken to capture personalised HRTF data which would result in

better externalisation for specific listeners than measurements captured using a dummy head

or non-personalised head model.

4.3.4 Interpolation Performance

The performance of the interpolation method can be reported meaningfully by comparing

the reconstructed spectra with that of the original measured data in terms of the MSE,

in the same way as was used to investigate the uninterpolated data reconstruction using a

minimal number of principal components in reconstruction. In order to demonstrate the

performance of the proposed interpolation method the measured data is resampled with a
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decreased sample rate, such that the resampled data has less measurements positions than

the original TU Berlin dataset but retains a constant measurement density in the azimuthal

plane. The principal component analysis is conducted using the log magnitude spectra of

the resampled dataset, and the derived weight vectors are deconstructed into cosine weights

use the DCT as described earlier in this section of the thesis. Pending the IDCT operation

to reconstruct the simplified weight vectors, the DCT component vectors are zero padded

such that the output of the IDCT operation are reconstructed weight vectors of length 360

elements, corresponding to the 360 measurement points of the original TU Berlin dataset.

Using the interpolated weight vectors, the original data can be reconstructed for any number

of principal components at an interpolated number of measurement positions. Thus by

calculating the MSE between the Tu Berlin measured spectra and the reconstructed spectra,

interpolated from the smaller subset of measurements, at each of the original measurement

angles an overview of the interpolation performance of the method can be attained.
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(a) 256 PCs ; Interpolation Factor = 1
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(b) 6 PCs ; Interpolation Factor = 1
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(c) 256 PCs ; Interpolation Factor = 10
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(d) 6 PCs ; Interpolation Factor = 10

Figure 4.3.5: DCT interpolation performance in MSE

Figure 4.3.5 illustrates the variation in the NMSE between the measured and reconstructed

spectra for full (256) and partial (6) PC reconstructions both with and without interpola-

tion. For the purpose of demonstration an interpolation factor of 10 has been chosen, this

corresponds to a resampled subset of 36 measurement positions with a inter-measurement

spacing of 10◦.

Figures 4.3.5c and 4.3.5d show the NMSE of the same 256 and 6 principal component recon-
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structions as in figures 4.3.5a and 4.3.5b respectively, however in figures 4.3.5c and 4.3.5d

the HRTF dataset has been downsampled by a factor of 10 and then re-interpolated back to

the original spatial sample density.

Figure 4.3.5a shows the inherent NMSE introduced to the system by using the DCT based

decomposition and reconstruction of the individual weight vectors; as only 99% of the vari-

ance of each weight vector is retained upon reconstruction some small amount of error is

introduced, even if all 256 principal components are used to reconstruct the log-magnitude

spectra.

Figure 4.3.5b shows the NMSE of the data reconstructed using 6 PCs and the DCT re-

constructed weight vectors with a resampling ratio of 1:1. The MSE distribution is very

similar to that of the 6 PC reconstruction using the unaltered weight vectors shown in figure

4.2.4, performing only fractionally worse at some angles due to the introduction of the small

amount of error associated with the use of the DCT reconstructed weight vectors.

Figure 4.3.5c shows the NMSE of the data reconstructed using all 256 principal components,

and weight vectors that have been interpolated from 36 to 360 measurement positions using

the proposed DCT based interpolation method. The figure shows that the interpolation of

the weight vectors by a factor of ten incurs an increase in the NMSE, peak values are in-

creased by between approximately 2-5dB and the whole distribution is seemingly compressed

and also somewhat smoothed, such that the ratio between the local minima maxima of the

curve has reduced significantly. For some local minima, such as that at approximately -50◦ in

figure 4.3.5a, the interpolation results in an increase in NMSE of ∼20dB, which is certainly

significant, however the NMSE distribution for the interpolated results seen in 4.3.5c may

well still be within the boundaries of an acceptable HRTF compression system. The curve

still retains most of the key features of the uninterpolated performance curve, specifically

the increase in NMSE at the contralateral positions, in fact the difference in NMSE between

the contralateral and ipsilateral positional ranges is somewhat more pronounced in the in-

terpolated results.

It is interesting to observe the change in the NMSE distribution for the same interpolated
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data following the reduction of the number of principal components used in the reconstruc-

tion of the HRTF data from 256 to 6. Figure 4.3.5d shows this NMSE distribution, note

that although the NMSE has increased by a small amount on the order of 1-2dB for almost

all angles, this increase is not as large as may be expected. It is not unreasonable to expect

to find that the MSE error distribution for this case would be similar in magnitude to the

logarithmic sum of the distributions for the 6 PC - Interpolation Factor 1 (4.3.5b) and the

256 PC Interpolation - Factor 10 (4.3.5c) reconstructions. However it is apparent that the

MSE distribution for the 6 PC - Interpolation Factor 10 (4.3.5d) reconstruction exhibits

only a slight increase in NMSE evenly across all angles, most noticeably in the local minima,

than shown for the 6 PC - Interpolation Factor 1 reconstruction shown in figure 4.3.5b. The

maximum occurs at the same position as that of the uninterpolated 6 PC reconstruction

shown in 4.3.5b.

It is significant to find that a resampled measurement set, with only one tenth as many

measurement points as the original set, can be used to derive a reconstructed dataset with as

little increase to the normalised mean square error above the baseline distribution imposed by

the reconstruction using only 6 principal components. This finding is most likely explained

by considering the difference in the amount of total variance between the measured and

downsampled datasets; as the spatially downsampled dataset contains only 36 measured

spectra it is expected that the analysis of the frequency spectra and their variation over

measurement angle will yield less overall variation simply due to the lack of more subtle

changes that occur gradually over small changes in angle. However, given that the data is

subject to a principal component analysis which extracts the basis vectors or spectral shapes

in descending order of importance, the most crucial variations in the spectra will be captured

within the first principal components, these first components are likely to be very similar

to if not identical to the first components that are derived from the untampered dataset

with full spatial resolution. As both the reconstruction of the uninterpolated full dataset

and interpolated downsampled dataset are both limited to use only the first 6 principal

components there is very little increase in reconstruction error due to interpolation; the finer

spectral details that perhaps pertain to specific angular subsets or regions are captured and

contained in higher order principal components and thus the missing detail in the interpolated

dataset does not become apparent until a greater number of principal components are used
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in reconstruction, this is evidenced by the difference in the NMSE between the full dataset

and downsampled/interpolated dataset reconsrcutions using all 256 principal components

shown in figure 4.3.5a and figure 4.3.5c respectively.
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Chapter 5

Parametric Modelling Approach

This section of the thesis details the application of parametric modelling techniques in a bid to

compress the TU Berlin azimuthal HRIR dataset. The section begins with the application of

a linear prediction model which is used to generate all-pole variants of the measured HRTFs,

this is followed by an advancement to the use of the Steiglitz-McBride iteration, a useful

system identification technique, in order to model the measured HRTFs as pole-zero filters

of varying order.

5.1 Linear Prediction

Linear predictive coding, often abbreviated to LPC, is a signal processing technique that

can be used to express a frequency spectrum in a compressed from. Developed as a means

of compression in speech signal processing applications, LPC techniques are derived from an

approximate model of the human vocal system.

The technique begins with the basic assumption that the discrete time signal Sn is considered

to be the output of a system with unknown output Un such that:

Sn = −
p∑

k=1

akSn−k +G

q∑
l=0

blUn−l , b0 = 1 (5.1.1)

where ak,p,bl,q, and G are the as yet undefined system parameters. Note that this is also

the difference equation of an IIR filter, and as such states that the signal Sn is a linear
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function of previous input and output samples. This implies that the system output is in

fact predictable by the linear combination of previous input and output samples.

The model described by equation 5.1.1 can take three forms depending on the values of the

a and b coefficients. If all a coefficients of the model are set to zero then the modelled system

will have only zeros at non-zero locations, in the fields of statistics and economics this is

referred to as a moving average (MA) model. Conversely, if all the b coefficients are set

to zero then the modelled system has only poles at non-zero locations, this is known as an

autoregressive (AR) model. The third form has both poles and zeros at non-zero locations,

and is known as an autoregressive moving-average (ARMA) model.

For the purposes of LPC the vocal system is modelled simply as a buzzing excitation source

representing the vocal folds, at one end of a variable diameter tube, in turn representing the

vocal tract. In this model speech is assumed to be an autoregressive process, i.e. an all-pole

model representing a series of acoustic resonances formed by the physical cavities and pipes

that occur in the vocal tract and mouth.

z-1 ∑
Input Signal

Prediction Filter

Prediction Error 
(e)

+

-

Figure 5.1.1: LPC diagram

Mathematically LPC seeks to minimise the mean squared error of the linear prediction filter

with respect to the coefficients of that filter. Theoretically the mean squared error should

be calculated as a continuous integral over all time (from −∞ to +∞), however in practice,

and in the digital domain, it can be approximated for any given time t from a finite range

of samples spaced symmetrically around the time of interest.

Therefore MSE can be approximated as:
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Et ≈
1

n

∑
n

e2t (n) (5.1.2)

Where Et is the MSE at time t, n is the set of samples around time t, and et is the prediction

error at time t.

If the predicted signal is a weighted sum of delayed samples of the input signal then it can

be written as:

Yt =
M∑
k=1

akSt(n− k) (5.1.3)

Where Yt is the prediction at time t, ak is one of M weighting coefficients, and St(n− k) is

the input signal delayed by k samples.

This can be rewritten in a more compact vector form as:

either

Yt = [a1 a2 ... aL]


St(n− 1)

St(n− 2)
...

St(n− L)

 = aTS (5.1.4)

or

Yt = [St(n− 1) St(n− 2) ... St(n− L)]


a1

a2
...

aL

 = STa (5.1.5)

The mean squared error can therefore be rewritten as:

e2t = (St(n)− aTS)2 (5.1.6)
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Expanding brackets gives:

e2t = aTS STa− 2St(n)STa+ S2
t (n) (5.1.7)

Attempting to simplify further:

SST =


St(n− 1)

St(n− 2)
...

St(n− L)

 [St(n− 1) St(n− 2) ... St(n− L)] (5.1.8)

Which can also be written as:

SST =


St(n− 1)St(n− 1) St(n− 1)St(n− 2) ... St(n− 1)St(n− L)

St(n− 2)St(n− 1) St(n− 2)St(n− 2) ... St(n− 2)St(n− L)
...

...
. . .

...

St(n− L)St(n− 1) St(n− L)St(n− 2) ... St(n− L)St(n− L)

 (5.1.9)

and:

St(n)S = St(n)


St(n− 1)

St(n− 2)
...

St(n− L)

 =


St(n)St(n− 1)

St(n)St(n− 2)
...

St(n)St(n− L)

 (5.1.10)

Due to the fact that the mean squared error is calculated as a sum over n samples it is useful

to define the following matrix:

R =
1

n

∑
n

SST =
1

n


∑

n St(n− 1)St(n− 1)
∑

n St(n− 1)St(n− 2) ...
∑

n St(n− 1)St(n− L)∑
n St(n− 2)St(n− 1)

∑
n St(n− 2)St(n− 2) ...

∑
n St(n− 2)St(n− L)

...
...

. . .
...∑

n St(n− L)St(n− 1)
∑

n St(n− L)St(n− 2) ...
∑

n St(n− L)St(n− L)


(5.1.11)
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And the following vector:

P =
1

n

∑
n

St(n)S =
1

n


∑

n St(n)St(n− 1)∑
n St(n)St(n− 2)

...∑
n St(n)St(n− L)

 (5.1.12)

MSE can therefore be expressed as:

Et = aTRa− 2P Ta+
1

n

∑
n

S2
t (n) (5.1.13)

Equation 5.1.13 shows that the mean squared error of the prediction filter can be expressed

as a quadratic in a. Therefore it is shown that there exists a single global minimum on the

MSE curve which represents the optimum set of filter coefficients for the system.

This lack of local minima and single optimum set of filter coefficients are an obvious strength

of the linear predictive coding technique and are likely largely responsible for its wide use in

speech signal processing applications.

The coefficients can be calculated by equating the derivative of equation 5.1.13 to zero and

rearranging to find:

Ra = P (5.1.14)

Equation 5.1.14 presents a set of linear simultaneous equations that can be solved using a

range of conventional methods for solving such systems.

5.1.1 Levinson-Durbin Recursion

The Levinson-Durbin Recursion is an algorithm that is commonly used to form a solution

to equations in the form of equation 5.1.14. Written more generally the Levinson-Durbin

Recursion solves systems in the form:
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−→y = M−→x (5.1.15)

Where −→y is a known vector, −→x is an unknown vector to be calculated, and M is a known

matrix in Toeplitz form.

The algorithm manipulates the inherent symmetry of the Toeplitz matrix to reduce the order

of calculation required to solve the system from n3 to n2.

5.1.2 Implementation

The linear prediction model of each HRTF is generated using MATLAB function levinson.m

to solve the system of linear equations associated with the autocorrelation input method.

This is implemented by first using xcorr.m to find the autocorrelation sequence of the mea-

sured HRIR that is to be modelled, then removing the first portion of the autocorrelation

function that pertains to the negative lags, this prepared autocorrelation function of the

HRIR is then passed to levinson.m along with the desired order of the model. The levin-

son.m function converts the input autocorrelation sequence to symmetric Toeplitz form and

returns the a coefficients that satisfy the associated system of linear equations described in

equation 5.1.14.
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5.1.3 All Pole Model Performance
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Figure 5.1.2: NMSE of all-pole model order 15

Figure 5.1.2 shows the normalised mean squared error calculated between the measured spec-

tra and the spectra modelled as a 15th order All Pole filter using the linear prediction method.

The figure shows a range of a little over 15dB between the angles at which maximum and

minimum NMSE occurs. The worst performance of the model occurs in the contralateral

hemisphere, with the maximum error arising at -107◦, however the model exhibits a similar

level of error in the angles close to the ipsilateral position, and as such exhibits an approxi-

mate symmetry that is centred not around 0◦ but seemingly centred around ∼ 25◦. A fairly

flat region of minimum NMSE exists between approximately 0◦ and 50◦, covering the centre

of the apparent symmetry in the error.

The distribution of the NMSE over angle, shown in figure 5.1.2 appears to be a direct

characterisation of the inherent weakness in the all-pole approximation of the HRTF. Notches

are a significant feature of the HRTF, at both ipsilateral and contralateral angles sharp

notches arise due to destructive interference caused by pinna reflections, as the all-pole filter

has no non-zero zeros it is unable to capture the notches in the frequency response of the

HRTF.

86



J. Sinker Compact HRTFs CHAPTER 5. PARAM. APPR.

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Measured

Modelled

(a) Maximum NMSE Case: -107◦

10
2

10
3

10
4

−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Measured

Modelled

(b) Minimum NMSE Case: 29◦

Figure 5.1.3: Maximum and minimum error HRTFs : All-pole order 15

Figure 5.1.3 illustrates the measured and modelled HRTF at the two angles which yield the

maximum and minimum NMSE respectively when using a 15th order all-pole filter. The

minimum NMSE case occurs at 29◦, in the frontal region of the measurement circle, whereas

the maximum NMSE case occurs at -107◦, towards the rear of the head in the contralateral

hemisphere. The increased error of the modelled spectra observed at the maximum NMSE

case shown in figure 5.1.3a is clearly a result of the significant notches present in the measured

HRTF at this angle, such notches are not present in the frontal HRTFs like the one shown

in figure 5.1.3b. For relatively low orders of all-pole filter, the model is unable to capture

the spectral notches in a given frequency response and as such is incapable of reproducing

the measured spectra with sufficient detail to maintain a consistent level of model error.

However it is possible that given a sufficient, comparatively high, number of poles to be

allocated, the linear prediction method will seek to approximate notches in the frequency

spectra using clustered pole placements.
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Figure 5.1.4: MNMSE of all-pole model orders 1 to 100

Figure 5.1.4 shows the mean normalised mean squared error of the all-pole linear prediction

model as a function of the model order; that is the NMSE of each model order averaged

over all angles to obtain a single value per model order expressed in decibels. The data was

generated by analysing the performance of a series of linear prediction all-pole filters used to

model the Tu Berlin measured HRTF at each angle for all-pole model orders ranging from

1 to 100. It is clear that with the addition of poles the model is better able to capture the

spectral detail of the measured HRTF, and based upon the already well performing fit of the

peaks in the spectra shown for relatively low orders in figure 5.1.3, it can be reasoned that

the increased performance is a result of the improved ability to capture detail surrounding

notches that comes with a surplus of available poles. This can be seen directly by observing

the increased accuracy of the modelled spectra for the same angles that yield the minimum

and maximum NMSE for the order 15 all-pole case.
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(a) Prior Maximum NMSE: -107◦
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(b) Prior Minimum NMSE: 29◦

Figure 5.1.5: Prior maximum and minimum error HRTFs of all-pole order 15 modelled with
all-pole order 100

Figure 5.1.5 shows the improved performance of the 100th order all-pole model for the angles

which correspond to the maximum and minimum NMSE in the 15th order case respectively.

Note that the order 100 model still performs worse for the more notched frequency response

shown in 5.1.5a, however for both angles it can be seen that the increased number of poles

allows the linear prediction method to better approximate the frequency notches.

The overall trend in figure 5.1.4 appears to be similar to that of an exponential decay; the

MNMSE reduces rapidly as the number of poles increases from 1 to approximately 7, this

is followed by a small region of noticeably shallower gradient, at approximately model order

11 the roughly exponential shape resumes. The curve exhibits slight fluctuations deviating

from the ideal exponential curve at lower model order, but exhibits increasing smoothness

approaching the higher model orders in the plot. These fluctuations are likely caused at

lower model orders due to the number of poles available being less than optimal for the

modelling of specific measured HRTF spectra, as such the linear prediction method may

focus all available poles on significant peak details, possibly leaving too few poles to capture

other lesser peaks, differently depending on the relative optimality of the number of poles

used to each of the measured HRTFs. The decrease in NMSE continues with a progressively
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shallower gradient as the model order is increased, between model order 80 and 100 the curve

exhibits a near smoothness and very shallow negative gradient, seemingly suggesting that

the NMNSE is approaching convergence with a lower limit between -25dB and -30dB. If the

trend continues beyond model order 100 it is likely that the exponential decay characteristic

of the curve will yield an asymptote at approximately -26dB, meaning that the addition of

poles after approximately 80 will yield little to no further increase in performance according

to the MNMSE criterion.

5.2 K Coefficients

K Coefficients, sometimes referred to as reflection or lattice coefficients are the associated

weights of the lattice filter structure. The lattice filter structure is of modular design such

that increasing the filter order is achieved simply by adding one extra module to the filter

with no changes needing to be made to the existing modules.

K1

K1

x(n)

b0(n)b0(n-1)bM-1(n)bM-1(n-1)bM(n)

fM(n) fM-1(n)

Z -1

∑

∑

+

-

+

+

Z -1

∑

∑

+

-

+

+

f0(n)

KM

KM

y(n)

f1(n)

Figure 5.2.1: Lattice filter structure

Figure 5.2.1 shows the general form of an IIR all-pole recursive filter in lattice form, where

the dashed lines indicate the separation between modules.

A convenient property of the K coefficient representation of the modelled HRTFs is that they

offer a hierarchical representation quality of reconstruction as a function of model order. As

the first module of the lattice filter structure pertains to the most significant spectral char-

acteristic, the second module pertains to the second and so on. Thus a single model with
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an upper limit of accuracy dictated by the order specified at calculation can be created and

adapted for reduced quality simply by reducing the number of K coefficients included in the

lattice filter structure at run time.
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Figure 5.2.2: First 5 K coefficients variation with angle

Figure 5.2.2 shows the variation of the first 5 K coefficients of the 15 pole all-pole model

derived using the linear prediction method with respect to angle. The first K coefficient ap-

pears to vary the most smoothly with respect to angle, as the K coefficients are an orthogonal

series it is possible that this behaviour signifies that the first K coefficient pertains to low

order physical phenomenon as a general emphasis or de-emphasis of high frequency content

in the measured spectra. The higher order coefficients are less directly interpretable due to

their more complex variations, they do however exhibit notable characteristics; coefficients

K2−5 all show ’noisier’ behaviour in the contralateral hemisphere, presumably once again

due to the significantly lower signal to noise ratio of the measurements at these positions.

Coefficients K3−5 are low valued approaching ±180◦, suggesting that they pertain to features

that are less prevalent in the spectra measured for rear positions.

Observing that the K coefficient variation with respect to angle is largely continuous leads

to the assumption that, in combination with their orthogonal properties, the K coefficients

may provide a convenient platform for interpolation between measured angles. The ’one-

dimensional’ principal component analysis of each of the K coefficient vectors yields an
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further orthogonal series of sinusoidal/cosinusoidal basis vectors; suggesting that the DCT

based compression and interpolation of these angular dependent K coefficient vectors, as

described in detail in Section 4.3.3 of this thesis, may yield promising results.
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Figure 5.2.3: DCT reconstruction of first K coefficient across measured angles

Figure 5.2.3 shows DCT approximation of the first K coefficient vector; 23 DCT components

are required to obtain a representation of the K coefficient vector that retains 99.999% of the

total variance of the untampered vector. A larger value than 99% (0.99) is required in the

calculation of how many DCT components are to be retained in the reconstruction of the

vector. This is because the magnitude of the first significant component is far larger than

that of the succeeding components. As the first (and second) K coefficient vector is non-zero

mean, or not approaching zero mean, the first DCT component that accounts for the greatest

amount of the variance is that which corresponds to a cosine function oscillating at 0Hz, i.e.

the DC offset. As the DC offset component accounts for such a large amount of the variance

in the K coefficient vector, the DCT retention calculation with a threshold value of only 99%

returns only the DC offset component, which is obviously not very useful in preserving the

angular variation of the first (and second) K coefficients. Hence a higher threshold value,

in this case 99.999%, is chosen to ensure that a sufficient amount of non-constant DCT

components are retained.
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Figure 5.2.4: Number of DCT components vs K coefficient order

Figure 5.2.4 illustrates the number of DCT components required to retain 99.999% of the

variance of each of the 15 K coefficient vectors describing angular variation. The figure shows

a reasonably linear relationship between the order of the K coefficient vector and the number

of DCT components required; the minimum occurs for the first order K coefficient vector

for which 26 DCT components are needed, and the maximum occurs for the penultimate

(14th) order vector for which 315 DCT components are needed. Though the higher order K

coefficients seemingly require comparatively large numbers of DCT components it is worth

noting that any number of DCT components below the number of points in the original array,

360, represents an effective compression in the number of elements that must be stored to

use the untampered K coefficient vectors, which themselves represent a greatly compressed

representation of the original dataset from 2048 to, in this section, 15 elements per single

HRTF spectra.
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5.2.1 Interpolation Performance
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(a) Interpolation Factor: 1
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(b) Interpolation Factor: 10

Figure 5.2.5: NMSE performance of order 15 all-pole model using DCT approximation of K
coefficents

Figure 5.2.5 shows the NMSE performance of the K coefficient representation of the 15

pole all-pole model derived from both the full 360 measurement dataset and a downsampled

subset of 36 measurements at 10◦ spacing. Both models make use of the DCT decomposition

and reconstruction of the angular K coefficient vectors, with an interpolation factor of 1 and

10 in sub-figures 5.2.5a and 5.2.5b respectively. Figure 5.2.5a shows an almost identical

NMSE distribution over angle as seen in the direct 15 pole all-pole implementation show

in figure 5.1.2, which is unsurprising given the high threshold used in the calculation of the

number of DCT components to be retained to reconstruct the K coefficient vectors. The

NMSE distribution shown in figure 5.2.5b shows a marked increase in error across all angles;

this increase is of largest magnitude in the contralateral region where a peak increase of

approximately 5dB can be seen at -115◦ to -120◦. The increased error in the contralateral

region seems likely to be a symptom of the increased ’microscopic’ variation visible in the

contralateral regions of the K coefficient vectors, which are mis-predicted as a consequence

of the reduction in the number of DCT components used to reconstruct said vectors.
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5.3 Steiglitz-McBride Iteration

The Steiglitz-McBride Iteration is a technique useful for the identification of linear systems

using known samples of the system’s input and output. The technique models the system as

an ARMA process (Pole-Zero filter) and performs an iterative method to approximate the

system coefficients.

The technique was derived first considering a common simple linear problem; assuming the

input and output records are related by a rational z-transform N(z)
D(z)

.

Where

N(z) = α0 + α1z
−1 + ...+ αn−1z

−(n−1) (5.3.1)

and

D(z) = 1 + β1z
−1 + ...+ βnz

−n (5.3.2)

in which α and β are the n numerator and denominator coefficients, and z is the z-transform

variable.

Plant
G

D(z)N(z)

x wy + +

n

+-

e

Figure 5.3.1: Simple linear problem

Given the available input and output records, x and w respectively, figure 5.3.1 leads to the
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following minimisation task:

∑
e2j =

1

2πj

∮
|XN −WD|2dz

z
= min (5.3.3)

Where: X = X(z) =
∑
xjz

−j; W = W (z) =
∑
wjz

−j; summations are carried out over

record length; and the contour of integration is the unit circle.

For such a minimisation task it can be shown that the solution is

δ = Q−1c (5.3.4)

Where

δ =

[
α

−β

]
(5.3.5)

is the coefficient vector, and Q and c are the appropriate correlation matrix and vector com-

puted from the records of x and w.

However, although this case is easily solved it is not of any particular interest; the error

residual does not pertain to a real physical property of the system.
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e
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Figure 5.3.2: Complex non-linear problem
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Figure 5.3.2 illustrates a more useful system definition, the solution to which is far more

meaningful as the error residual is that of the error between the predicted and observed

plant outputs. The mean squared error residual minimisation for this system can be written

as ∑
e2j =

1

2πj

∮
|XN

D
−W |2dz

z
= min (5.3.6)

This minimisation represents a complex and highly non-linear regression problem for which

the Steiglitz-McBride Iteration technique defines an iterative process of pre-filtering of the

input and output records to reduce the problem in complexity to that of the simple case

seen in figure 5.3.1.

Plant
G

1
Di-1(z)

x wy + +

n

+-

e

Ni(z) Di(z)

x̂ ŵ

1
Di-1(z)

Figure 5.3.3: Iterative method system

First the original minimisation problem pertaining to the simple case shown in figure 5.3.3 is

solved using equation 5.3.4 to obtain an initial estimate of N(z) and D(z). This is known as

the Kalman estimate, as it was Kalman who first suggested the application of the input out-

put record linear regression analysis that leads to the associated minimisation task [Kalman,
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1958]. The estimate of D(z) is then used to pre-filter the input and output records, the pre-

filtered input and output records are then used to define the vectors in equation 5.3.4 and

the minimisation problem is solved again. The second estimate of the system denominator

D(z) is then used to pre filter the original input and output records again and the process

is repeated for i iterations. If the denominator coefficients converge as i becomes large then

the error of figure 5.3.3 becomes equal to the error of figure 5.3.2 and hence the complex

non-linear regression problem has been approximated.

In MATLAB the stmcb.m function performs the Steiglitz-McBride iteration in order to obtain

the a and b coefficients of a filter with an impulse response approximately equal to the input

desired impulse response using as many poles and zeros, or a and b coefficients as specified

[The MathWorks Inc., 2014]. If an initial estimate of the denominator coefficients is not

given by the user at the time of calling stmcb.m then the function utilises prony.m to obtain

the denominator coefficients for the first iteration of the Steiglitz-McBride process. prony.m

is an implementation Prony’s method, a technique in which an evenly sampled time domain

signal is effectively decomposed into a sum of damped complex exponentials, adapted to the

application of IIR filter design the method of which is described in detail by Parks & Burrus

[Parks and Burrus, 1987].
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5.3.1 Pole-Zero Model Performance
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Figure 5.3.4: NMSE performance of 15 pole 15 zero model

Figure 5.3.4 shows the NMSE between the measured spectra and the counterpart spectra

obtained using a 15 pole 15 zero model derived using the Steiglitz-McBride method, at all

measured angles. The maximum NMSE occurs in close proximity to the contralateral ear

at approximately -95◦, travelling towards the back of the head from this angle the peak

error region is followed by one of three global minima of value between -8dB and -10dB, the

other two minima occur at ∼ 35◦ and ∼ 175◦ respectively. The range of NMSE between

the minima and maxima is approximately ∼ 7dB suggesting that the method yields mod-

elled HRTFs that perform quite consistently across all angles. There appears to be a slight

increase in the NMSE of the modelled spectra for ipsilateral positions in the approximate

range 50◦ to 100◦.
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(a) Maximum NMSE Case: -95◦
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(b) Minimum NMSE Case: 32◦

Figure 5.3.5: Measured and modelled spectra at angles of worst and best performance

Figure 5.3.5 shows the measured and modelled HRTF spectra for the two angles that yield

the maximum and minimum NMSE respectively for a 15 pole 15 zero filter approximation of

the system. The maximum NMSE case occurs close to the contralateral ear at -95◦ whereas

the case for which the model performs best is located at 32◦, in the frontal region, off-axis

in the direction of the ipsilateral ear. Figure 5.3.5a illustrates the worst performance case

of the 15 pole 15 zero model, the figure exhibits two prominent characteristics that likely

pertain to the primary sources of the increased error in the approximation; firstly the model

underestimates the low frequency range of the HRTF by a significant amount, below approx-

imately 3kHz the modelled magnitudes are consistently under predicted by as much as 30dB,

and secondly the model attempts to approximate the wide peak in the measured response

between approximately 3kHz and 7kHz as a series of poles of seemingly high quality factor,

leading to an increased prediction error in the frequency regions immediately to either side

of these pole locations as the consecutive narrow width peaks form an almost combed re-

sponse in this region. With these two issues aside it can be seen that the modelled HRTF in

figure 5.3.5a does manage to retain some of the key features of the measured HRTF, such as

the secondary peak at 10kHz and the global minima defined by the high frequency notches

between 10kHz and 20kHz.
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Figure 5.3.5b shows the best performance case of the 15 pole 15 zero model, the modelled

HRTF spectrum at this frontal angle is clearly a far superior approximation of the measured

data than that of the contralateral worst case. The best case model still under predicts

the low frequency components below approximately 2kHz to 3kHz, however the difference

in magnitude is much smaller, at maximum approximately 10dB. The figure also shows that

the model is superior in capturing the overall shape of the main peak region of the measured

response located between approximately 2kHz and 10kHz, though the series of peaks in the

modelled response still appear to be of a narrow bandwidth, the error in this region is re-

duced by the lack of such severe notches in-between the modelled peaks in close proximity

to one another seen in the maximum NMSE case. The modelled response in figure 5.3.5b

also accurately captures the location of the secondary and even tertiary peaks located in the

high frequency region upwards of 10kHz, however the model error in this region will still

be significant again due to the exceedingly narrow bandwidth of the modelled peaks. For

both the maximum and minimum NMSE cases, the modelled spectra contain a similar error

region, between approximately 7kHz and 11kHz for which the modelled response retains

the correct shape of the measured frequency response but under predicts it’s magnitude by

∼15-20dB.
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Figure 5.3.6: Mean normalised mean squared error

In order to observe the relationships between the number of poles and zeros in the Steiglitz-
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McBride models and the performance of said models in terms of the error between the

measured and modelled HRTF spectra, a simulation of the methods performance with all

combinations of 1-40 poles and 1-40 zeros measured at all 360 angles was conducted. Fig-

ure 5.3.6 shows the error surface derived from the simulated results, where for each model

containing nP poles and nZ zeros a single value of mean normalised mean squared error

(MNMSE) has been calculated as the mean of the NMSE values computed over all 360 an-

gles for which measured and modelled HRTF spectra available. The figure shows that for

a model consisting of any number poles (up to 40) and a single zero the performance will

improve little after the addition of the first 10 poles. Similarly, a single pole with any number

of 1 to 40 zeros yields a constant high MNMSE value. The surface exhibits slight troughs

of local minima running North-West to South-East, in parallel with the ’Num Zeros’ axis,

suggesting that certain numbers of poles are somewhat optimal, regardless of the number

or zeros in the model, however these troughs or channels become less prevalent at higher

numbers of zeros. For higher numbers of zeros above approximately 20, it can be seen that

the reduction of poles yields a seemingly exponential increase in MNMSE and subsequent

curvature of the error surface in the South-West to North-East direction. In contrast, for

seemingly all numbers of poles the increase in number of zeros leads to an approximately

linear decrease in the MNMSE, the gradient of which becomes steeper as the number of

poles is also increased. Both of these characteristics lead the surface to a global minimum

at the highest model order, which pertains to a model consisting of 40 poles and 40 zeros,

and achieves a minimal value of approximately -14dB MNMSE.
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Chapter 6

Pilot Study: Subjective Validation of

Pole-Zero Models

Given the inherent ambiguity surrounding error criteria and the lack of a well developed psy-

choacoustically derived performance metric, the works described in this thesis were designed

to include a subjective experiment in an aim to better understand the real implications of

the HRTF compression performance described in a means by the normalised mean squared

error metric. Ideally the experiment would asses the psychoacostic performance of all three

of the methods applied to the Tu Berlin data; Principal Component Decomposition, Linear

Prediction All-Pole Modelling, and Steiglitz-McBride, however the size of such an experi-

ment designed to evaluate not only all three methods, but a range of model or reconstruction

orders for each, would be too large to rest within the scope of the works conducted. Hence

only a single method was selected as the basis for subjective experimentation as a pilot study.

The pilot experiment was designed and run in parallel with the computer simulation and

objective analysis of the three methods in the latter stages of the works, at the time of the

design of the experiment the Steiglitz-McBride Pole-Zero Modelling approach was deemed

the most promising in terms of retention of key spectral detail for the minimum number

of stored elements. As such the experiment was designed to evaluate the performance of

Steiglitz-McBride HRTF approximations of varying order.

The objective analysis of the three methods for the compression of measured HRIRs in the

prior sections of this thesis show that each technique offers differing degrees of objective
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success. However it is difficult to predict the performance of such compressed HRIR or

HRTFs from objective evaluation alone, and there is no clear way to determine the influence

of the amount of spectral detail retained or discarded by differing model or reconstruction

orders on the psychoacoustic interpretation of the filters, therefore subjective validation of

the modelled HRIRs or HRTFs is desired.

A subjective validation offers an additional arm of investigation into the plausibility of us-

ing the described methods to express measured HRIR or HRTFs in a more compact form.

The methods yield varying reductions in the amount of data required to be stored as well

as a convenient means of real time implementation, but it is unclear as to whether or not

the methods are capable of retaining enough key components of the spectra, unique to

each measured HRTF, in order to sufficiently preserve the ILD and pinnae filtering cues that

allow the listener to localise a sound filtered by the HRTF as coming from a specific direction.

6.1 Experimental Design

The aim of the experiment is to asses the effect of the order of the IIR models used to

approximate the Tu Berlin measured HRIR dataset, more specifically to asses the the effect

of the model order on how well the subjective impression of source location is preserved. By

testing a series of IIR HRTF models of decreasing order, one should be able to observe any

deterioration in the subjective localisation as a result of this decrease.

The experiment in question was originally designed as a test of absolute positional judgement;

participants were to be played a sound which had been filtered by a modelled or measured

HRTF, then asked to report the apparent position of the sound on a circle of fixed distance

around the listener’s head in the azimuthal plane. The test was to be conducted using an

automated graphical user interface constructed and run in MATLAB. In order to provide

more reliable results and alleviate high precision errors in reported location the participant

was asked to report the perceived location of each sound using a clock face paradigm; select-

ing two options from drop down menus to render a phrase in format ’D H’, one to indicate

the descriptor ’D’, and the other to denote the hour ’H’. The descriptors available in the
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list were ”Just before”, ”Exactly”, ”Just after”, and ”Half past”, the hours available are of

course one to twelve, as such a rendered phrase might read ”Exactly 10”, or ”Just before 3”.

Using this syntax to record the perceived locations effectively divides the continuous circle

of possible angles around the head into 48 possible positions, each covering a 7.5◦ subset

of angles. Localisation quantisation of the perceived angles in this was included as a mea-

sure to improve the reliability of results and reduce the amount of error introduced by the

perhaps unnecessary precision invited by an open response simply in terms of an absolute

angle; it should be noted that 7.5◦ pertains to approximately twice the perceptual resolution

of the human ear in the azimuthal plane. As a part of the GUI the participant would receive

visual feedback regarding the selected position in realtime; this took the form of a simple

diagram of a clock face with a representation of the listener pictured at the centre, a single

’clock hand’ was imposed over the diagram to illustrate the position currently described by

the selected descriptor and hour variables in the GUI. The visual feedback was included to

attempt to ensure that the participant fully understood the paradigm and also to aid in the

visualisation of the source location such that a relatively accurate description could be made

using the available inputs.

After preliminary implementation, the original experimental design was retired for fear that

it relied too heavily on each participant’s ability to judge the localisation of sound sources

in absolute values. Instead, the experiment was redesigned using a simple A/B test config-

uration that asked participants to report answers in relative terms only.

As stated, the redesigned experiment took the form of a series of A/B comparison tests, for

each test A and B represent a sound filtered with a measured HRTF and a sound filtered

with a corresponding modelled HRTF in a random order. The experiment is conducted using

an automated GUI constructed and operated in MATLAB, the interface consists of a pair

of sliders, one horizontal and one vertical, a pair of buttons labelled ’A’ and ’B’, and a third

button labelled ’Submit’. The participant is asked to move the two sliders, one to mark

the position of sound B relative to sound A, as if the position of sound A always provided

the anchor for the centre of the slider, and the second to describe the timbre of sound B

with reference to sound A, again as if the timbre of sound A always provided the anchor for

the centre of the second slider. The timbre slider is labelled at either end with a descriptor;
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’Brighter’ at the maximum vertical position and ’Darker’ and the minimum vertical position.

The participant is able to play samples A and B as many times as needed before choosing

to submit the values of the sliders and proceed to the next test.

6.1.1 Subjects

A total of ten subjects participated in the experiment, the group consisted of eight males and

two females. The age of the participants ranged from 20 to 50, though it should be noted only

a single participant was over the age of 30. All ten participants claimed to have no known

hearing impairments, however audiometric testing was not performed for the purposes of the

experiment in question. 7 of the 10 participants can be considered to be trained listeners,

having participated in numerous unrelated listening experiments previously.

6.2 Experimental Stimuli

The stimuli used in the experiment are filtered bursts of pink noise, pink noise was selected

due to its inverse energy distribution over frequency which yields a constant energy per

octave. Pink noise is common in acoustical measurement procedures, in particular those

that are concerned with listening as the -3dB per octave downward slope and subsequent

relatively greater proportion of energy at lower frequencies characteristic of pink noise is

known to approach the way in which the human ear subjectively perceives sound [Everest

and Pohlman, 2009].

Seven model cases were chosen for testing, five different order IIR models generated using

the Steiglitz-McBride method, and two reference cases. The IIR model orders were selected

as points of interest on the MNMSE error surface shown in figure 5.3.6, more specifically

they were selected as points of interest along the diagonal intersection with the surface along

which the number of poles and zeros is always equal. The decision was made to keep the

number of poles and zeros equal for the models used in the test as the overall trend in fig-

ure 5.3.6 does show the normalised mean squared error to decrease proportionally with the

increase in the total number of poles and zeros, albeit at different rates, and the inclusion
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of each pole and zero pair added both to the denominator and numerator costs little or no

more than the inclusion of just one pole or one zero to either the denominator or numerator

respectively, computationally speaking. The five model orders chosen were 30, 22, 16, 10,

and 4; the remaining two model cases consisted of a positive and negative reference intended

to aid in the comparison of results. The positive reference case was the perfect model, i.e.

the measured HRIR implemented as a full length FIR filter, whereas the negative reference

case represents the worst possible model, i.e. no minimum phase component filter, simply

an ITD introduced between the left and right audio channels.

Alongside the seven model cases, ten test positions were selected; five positions limited to

within a single frontal quadrant of the azimuthal plane: 0◦, 15◦, 30◦, 60◦, and 90◦. Each of

the five positions is also mirrored in the front rear axis to obtain a total of ten measurement

positions at ±0◦, ±15◦, ±30◦, ±60◦, and ±90◦. Test positions were limited to the frontal

hemisphere of the azimuthal plane as the resolution of the human ear performs optimally

in this range, this limit was also imposed in order to keep the test length reasonably short,

hopefully avoiding effects of participant fatigue, the mirror doubling of positions was influ-

enced by the desire to obtain robust statistics without the need to repeat discrete test cases,

and also influenced in part to reflect common positions that may be exploited in virtual

implementation of a common loudspeaker formation.

Overall, seven model cases tested at ten positions yields a total of 70 A/B comparisons per

participant. The 70 test samples were rendered prior to testing as stereo wav files, in the

interest of maximum efficiency only left ear data is used to construct the samples, the right

ear data is assumed to be the mirror image of the left ear data and is treated as such. For

the IIR model cases the wav files were generated by using the appropriate HRTF model

coefficients to filter the pink noise sample and generate the left and right stereo components

at each test angle, following this the ITD is added to the lagging channel by appending the

correct amount of sample zeros according the ITD curve extracted using the edge detection

method in figure 3.2.1c. For the positive reference case, the appropriate measured HRIR

pair was used as the b coefficients of an FIR filter to render the left and right channels of the

filtered pink noise sample. Finally for the negative reference case the pink noise sample was

simply rendered to left and right channels with the appropriate ITD added to the lagging
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channel again as a series of zero value samples dictated by the extracted results in figure

3.2.1c.

Testing was conducted using a single laptop computer running a copy of MATLAB, a Focus-

rite Scarlett 2i2 USB Audio Interface, and a pair of Beyerdynamic DT770 Pro headphones.

The frequency response of the audio interface is specified by the manufacturer as being max-

imally flat between 20Hz and 20kHz to within ±0.2dB and is considered to have no effect on

the test audio that could affect the results. Testing was conducted in a nominally quiet en-

vironment, but due to time constraints the room used was not specially treated acoustically,

however the closed back circumaural design of the DT770 headphones provide sufficient iso-

lation, quoted as approximately 18dBA by the manufacturer [beyerdynamic GmbH & Co.

KG, 2014], to assume that the background noise level in the testing room was low enough

to have negligible effect on the test results.

Figure 6.2.1: DT770 Pro frequency response [Man and Reiss, 2013]

Figure 6.2.1 illustrates the frequency response of the DT770 Pro headphone as measured

using the KEMAR mannequin by Man & Reiss [Man and Reiss, 2013]. The response has

been averaged over 3 left ear and 3 right ear measurements made using a swept sine exci-

tation signal. The figure shows the response to be essentially flat between approximately
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100Hz and 3kHz, with a primary and secondary peak at approximately 6kHz and 8.5kHz

respectively. A significant notch occurs in the response at approximately 16kHz, this most

likely corresponds to a cavity resonance that arises from the circumaural closed-back design

of the headphones.

The pink noise sample used to excite each of the 70 test files was normalised to -18dBFS,

measurements were performed using a B&K Head and Torso Simulator in order to calibrate

the presentation level of the experimental stimuli. The processed wav files were not nor-

malised as the adjustment of the relative level of the HRTF at different angles interferes

with the broadband ILD cues that exist between, for example, frontal and rear positions,

in which the ITD is ambiguous and the spectral differences and broadband ILD provide the

dominate source of localisation cue. Thus instead, the A-weighted RMS level in dBFS of

each of the processed wav files calculated, the wav file corresponding to the maximum was

used to set the maximum A-weighted SPL at the ear. A 94dB SPL at 1kHz calibration tone

was used as a reference such that the relationship between the internal dBFS level and the

output SPL level of the system could be calculated. The master level of the USB audio

interface was calibrated such that the maximum A-weighted RMS dBFS sample yielded a

sound pressure level of 75dBA at each ear; a comfortable listening level within the bounds of

the Lower Action Level of the Physical Agents Directives for Noise [European Parliament,

2003].

6.3 Experimental Methodology

The methodology of the experiment was quite simple given the use of an automated GUI.

Each participant was first given an information sheet regarding the experiment that outlined

the nature of the project and the experiment within which they were to participate, a copy

of which can be found in Appendix B.1 of this report. Before beginning the test each par-

ticipant was also asked to read and sign a formal declaration of consent to participate in the

experiment and for the data collected to be used in the project works anonymously, again a

copy of this consent form can be found in Appendix B.2 of this document.

Following the signing of the consent document each participant was then instructed to put
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on the headphones, adjusting the headband size to allow for a comfortable fit. For each

participant, upon instantiation, the test GUI randomises both the order of the tests from

1 to 70 as well as the allocation of the reference and non-reference sample to the A and B

stimuli slots for each of the 70 tests. The orders of all random permutations were recorded

by the system such that the test results could be re-ordered consistently for data processing.

Upon completion of the experiment participants were given the opportunity to offer informal

feedback on the test and test method. Significant remarks were noted anonymously such

that over the course of the experiment common remarks could be recognised and brought

forward to reconsideration of the experimental design.
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6.4 Experimental Results

Several variables were measured during the experiment, including the positional differences

for each A/B pair, the timbral differences, the time taken before submitting the slider values

for each pair, and the number of times both A and B were played for each test, however the

variable of most interest was the reported positional differences as they provide the crucial

information as to how well the spatial impression of the modelled HRTFs were retained in

each model case. Subsequently this is the focus of the results reported in this section.
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Figure 6.4.1: Histograms of reported positional differences per model

Figure 6.4.1 shows the number of occurrences of grouped reported positional difference values

for each model order across all participants and positions. An important characteristic of the

various model histograms is that they all appear to exhibit an approximately normal distri-

bution, as is evidenced by the distribution fit superimposed in red over each of the individual

plots. The varying widths of the normal fit distributions describe the amount of variance

from the mean of the reported values; figures 6.4.1a and 6.4.0g show the histogram plots of

the ’0 order’ ITD only model and the ’perfect’ reconstruction model respectively, as may be
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expected these two model cases exhibit the widest and narrowest normal distribution fits of

all model cases. The fact that all of the distribution fits center on approximately 0 suggest

that there was no consistent source of directional bias introduced by either the experimental

stimuli or method. An important advantage of the approximately normal distribution of

the collected experimental data for each model is that it allows for convenient analysis and

comparison through commonplace statistical techniques.

Of particular interest is the standard deviation of the positional difference data obtained

for each model. The standard deviation is a measure of the average deviation of the the

measured data from the mean of that data, and is defined as follows:

σ =

√∑
(x− µ)2

N
(6.4.1)

Where σ is the standard deviation of the data group, x is the data group, µ is the mean of

the data group, and N is the number of elements in the data group x.

As the measured data for the positional differences are approximately zero-mean, the stan-

dard deviation of the data pertaining to each of the 7 model cases provides a suitably robust

measure of the perceived variation in the localisation of the modelled HRTF compared to

the measured HRTF.
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Figure 6.4.2: Sigma of reported positional differences against model case
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Figure 6.4.2 shows the standard deviations of each of the 7 model cases, each derived from

the 100 model specific observations collected during the experimental run; 10 participants

remarking upon the positional differences of 10 positions for each model. The 0th and ’infi-

nite’ order models yield the largest and smallest values of standard deviation respectively;

this is an expected result as the two model cases were designed to yield a worst and best case

reference in terms of observed positional deviations. The values for the 5 IIR model cases lay

in-between the best and worst cases as expected, however the standard deviation observed

for IIR model orders 22 and 30 provide an unexpected result. The experimental hypothesis

states that the increase in IIR model order should yield a decrease in the observed variation

in positional difference as reported by the experimental participants, i.e. the higher the

model order, the closer the standard deviation should be to that of the ’infinite’ order model

case. The 4th, 10th, and 16th order models seem to exhibit an approximately linear trend

that agrees with this hypothesis, however the 22nd order model exhibits approximately the

same standard deviation as the 16th order model and the 30th order shows an increase in the

standard deviation to approximately the same value as the 10th order model. It is possible

that the increase in standard deviation of the higher two model orders is telling of a limit for

which the addition of further poles and zeros to the IIR model actually causes the model to

effectively become overdetermined. It is also possible that the seemingly narrow spread of

the standard deviations for the 5 IIR model cases suggests that additional experimental data

should be gathered before the experimental hypothesis and null hypothesis can be remarked

upon with sufficient confidence.

The ANOVA test, short for Analysis of Variance, is a statistical model useful for testing the

means of three or more groups of observations or variables for statistical significance. The

procedure serves to identify a single probability value p, under the null hypothesis that all

samples from all data groups are drawn from populations with the same mean; i.e. that the

IIR model order has no significant impact in the mean value of reported positional differ-

ences of the A and B samples. However the 1-way ANOVA test merely remarks that at least

one group has a statistically significantly different mean value, a more convenient method

of analysis is to use the 1-way ANOVA data to perform a multiple comparison test. The

multiple comparison test provides information regarding which pairs of group means are sig-

nificantly different and which are not, whereas the ANOVA test only returns an indication
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of whether or not all group means are statistically similar.

−5 0 5 10 15 20 25

inf

30

22

16

10

4

0

Positional Difference

M
o

d
e

l 
O

rd
e

r

Figure 6.4.3: Multiple comparison of model means

Figure 6.4.3 illustrates the findings of the multiple comparison procedure; the circle markers

represent the means of the different data groups listed along the Y-axis, the pair of symmet-

rical lines protruding from each of the mean values represent the confidence intervals of each

group mean. In the figure the 4th order model data group is selected, as such the mean of this

model is highlighted in blue, the remaining IIR model groups exhibit confidence intervals

that overlap with that of the selected group and as such are coloured grey to indicate that

the means of these groups are not significantly different from the 4th order model group.

Conversely the 0th and ’infinite’ order model groups are highlighted in red to denote that

their means can be considered significantly different from that of the 4th order group, or any

of the IIR model groups in fact, as none of the confidence intervals extend sufficiently to

overlap with the two extreme group means. The confidence intervals may be reduced in size

given a larger population from which the statistics are generated, that is to say that further

subjective testing would likely reduce the size of the confidence intervals sufficiently that

the confidence intervals of some overlapping groups may no longer overlap. However the

fact that the confidence intervals of the 0th and 4th order model groups do not overlap may

be considered to suggest that a sufficient population was sampled to somewhat confidently

remark on the experimental findings.
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Chapter 7

Discussion

This chapter of the thesis provides a comparison and critical discussion of the results and

implications of the application of the described methods of HRTF compression and interpo-

lation to a measured dataset. This section also highlights possible flaws in the experimental

procedure forming a foundation from which the concluding remarks and designation of fur-

ther works may be drawn.

7.1 Compression

Broadly speaking, the results presented in sections 4 and 5 show that both the decom-

positional and parametric modelling based approaches are able to achieve a compressed

representation of the measured HRIR dataset with differing levels of accuracy in reconstruc-

tion or modelling performance. Under the umbrellas of these two approaches a total of four

methods of HRIR/HRTF compression have been investigated: under the decompositional

approach; the application of the principal component analysis to the measured magnitude

spectra in the linear domain and the application of the principal component analysis to the

measured magnitude spectra in the logarithmic domain, and under the parametric modelling

approach; the modelling of measured HRTFs as all-pole filters using linear prediction and

the modelling of measured HRTFs as pole-zero filters using the Steiglitz-McBride algorithm.

To summarise the implications of the findings regarding the level of compression achiev-
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able through each technique at the cost of NMSE performance: The linear PCA technique

achieves a reduction from 360 measurements each of 512 samples to as few as two 256 ele-

ment basis vectors and two corresponding 360 element weight vectors whilst retaining 95%

of the total variance, however the low values of the linear magnitudes require a much greater

number of basis and weight vector pairs to be used, shown in figure 4.1.5 to be approxi-

mately 125 pairs needed to ensure no reconstructed elements are negative. The logarithmic

PCA technique requires 6 principal components, that is 6 basis and weight vector pairs,

to be retained in order to reconstruct 95% of the variance of the dataset, furthermore as

the PCA is applied to the logarithmic magnitudes no additional principal components need

be retained to ensure a practical reconstruction is achieved, and as such the logarithmic

domain PCA should be considered the superior of the two decompositional methods used.

The parametric modelling approaches offer a reduction from 360 measurements each of 512

samples to 360 sets of coefficient weights, the order of which can be adjusted in order to

increase or decrease the performance of the model filters; this is also true of the decomposi-

tional approach in that the number of principal components used in reconstruction can be

adjusted at the benefit or cost of the reconstruction performance. Superior performance was

shown to be obtained from as little as 15 coefficients using the linear prediction method to

derive all-pole filter approximations of the measured HRTFs (figure 5.1.2) when compared

to the logarithmic PCA method using a 6 PC reconstruction (figure 4.2.4). However the

same cannot be said of the simulation results for the Steiglitz-McBride based method, which

showed a significantly poorer performance, in particular when used to derive the 15th order

pole-zero filter approximations of the measured spectra that exhibited higher NMSE for all

angles (figure 5.3.4) than that of the counterpart 15th order all-pole models (figure 5.1.2).

The unexpectedly poor performance of the Steiglitz-McBride method will be discussed in

some detail later in this section.

From the fundamental compression standpoint alone it is perhaps quite difficult to objectively

define which of either the logarithmic PCA or linear prediction all-pole methods achieves a

more efficient representation of the measured dataset, as they have been shown to perform

somewhat comparably for a similar number of total stored elements. However when the

techniques are extended to include the DCT deconstruction and limited component recon-

struction of angle dependent element vectors then it can be shown that, ignoring further
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compression achievable via spatially downsampling the measured dataset and assuming the

use of the 6 PC reconstruction and the 15th order all-pole model, the linear prediction

method yields superior compression for slightly improved NMSE performance than that of

the logarithmic PCA method.

The performance of the DCT based method of secondary compression of the angular depen-

dent element vectors could be improved. By implementing varying reconstruction thresholds

which are dependent on the relative level of total variance captured by the angular dependent

vector in question. For example, in the linear prediction method, a high threshold value was

required to account for the large amount of variance in the angular variation of the first order

K coefficient. However for higher order K coefficient vectors this threshold could have been

reduced with little cost to the overall model performance. This is also true of the PCA weight

vector DCT decomposition and reconstruction, as both methods see the angular dependent

vectors arranged in order of importance, or amount of total variance explained. As such

both can be exploited to this end by reducing the DCT reconstruction threshold for each

angle dependent vector, be it PCA weight or K coefficient, proportionally to the amount of

the total dataset variance it accounts for.

7.2 Interpolation

Continuing the discussion of the application of the DCT to not only compress but also to

interpolate the angle dependent features in both methods; the DCT was shown to allow for a

compressed expression of the PCA weight vectors and the K coefficient vectors, for the lower

order vectors in each method the number of DCT components required was significantly

lower than the number of elements in the uncompressed vector with an approximate loss

of less than 1% of the variance of the vector. The DCT has been shown to be an effective

and robust means of interpolation in other applications by other authors [Agbinya, 1992]

[Hsu and Chen, 1997], and the work of these past authors can be considered to support the

interpolation results identified in the works of this thesis.

The compression and interpolation results obtained for both methods and ’sub-methods’
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show a recurring increase in reconstruction/modelling error of HRTFs at contralateral an-

gles. This phenomenon has been addressed by many authors, and is consistently attributed

to the comparatively low signal level at the occluded ear for source positions on or close to

the inter aural axis, and the relative complexity of the spectral shapes at these positions, due

to diffraction around the head [Kulkarni et al., 1999] [Chen et al., 1995] [Zhang, 2009]. For

the purposes of ITD estimation or extraction, it is possible that HRIR measurement could be

conducted using a higher level acoustic stimulus, such that the lower level signal measured

at contralateral positions is sufficiently clear of the system noise floor. This would attempt

to reduce the inaccuracies of the ITD extraction methods that likely occur as a result of the

lower signal to noise ratio. However a global level adjustment as described would provide no

improvement in the reconstruction/modelling error that occurs due to the increased spectral

complexity and relatively lower level of contralateral measurements. Possible improvements

may be achievable in the reconstruction or modelling of contralateral positions should they

be given a weighted emphasis during processing. In particular for the decompositional pro-

cess; a boost in the relative level of the contralateral measurements would serve to add

’importance’ to them, increasing their share of the total variance of the dataset. Hence

during decomposition the more complex spectral shapes, that occurred previously only at

relatively low levels, would be better represented by the lower order principal components,

or perhaps orthogonal K coefficients. Such a method would likely result in an increased

number of principal components or K coefficients required in order to capture the whole

variance of the dataset, and of course an appropriate inverse weighting after reconstruction,

but should serve to increase the reconstruction or modelling accuracy of the contralateral

positions. Chen et al. suggested similarly that the contralateral data could be weighted upon

the construction of the PCA covariance matrix, however they did not attempt to implement

such an optimisation [Chen et al., 1995].

7.3 Steiglitz McBride Performance

A surprising feature of the simulation results is the consistently poor performance of the

Steiglitz-McBride derived pole-zero filter models, which exhibit the largest amount of NMSE

of all the implemented techniques for comparable or equivalent model quality or order. The
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Steigltiz-McBride derived filters with 15 poles and 15 zeros gave an overall worse NMSE

performance across all angles than that of the linear prediction method 15 pole all-pole

equivalent, with a difference on the order of 20dB NMSE at some angles. It was expected

that the effective addition of the zeros to the all-pole model would yield a reduction of NMSE

for all angles, due to the models improved ability to capture and recreate notch details in the

measured frequency spectra, however the results suggest this expectation to be erroneous. In

previous work Kulkarni & Colburn [Kulkarni and Colburn, 2004] found superior results using

a modification of the Steiglitz-McBride method; by introducing a weighting to the quadratic

cost function originally proposed by Kalman [Kalman, 1958], they were able to obtain a

superior fit of the HRTF spectra in the logarithmic domain. It should also be noted that

Kulkarni & Colburn performed the modelling procedure only for frequencies below 15kHz

and on the mean-less direct transfer functions as opposed to the measured HRTFs directly.

Although these differences should be considered to explain some of the inconsistency be-

tween the results obtained by Kulkarni & Colburn and the results found in this work, it is

unlikely that they account for all of it. The lack of the logarithmic based weighting function

should not have had much of an impact on the high NMSE observed as the error calculation

is performed in the linear domain, which is the same as the unweighted cost function at

the heart of the Steiglitz-McBride method. The lower number of modelled frequencies and

the use of the DTF in Kulkarni & Colburn’s work should certainly result in a more optimal

placement of poles and zeros for the same model order when compared to the wideband

HRTF models, however the wideband models observed in these works consistently exhibit

sharp peaks that under predict many of the wider peak features of the measured HRTFs. It

is likely that this characteristic has formed as an effect of an element of the Steiglitz-McBride

function stmcb.m in MATLAB. By default stmcb.m uses Prony’s method to obtain an initial

estimate of the denominator coefficients, which are in turn used to pre-filter the input and

output records of the system in the iterative procedure as described by Steiglitz & McBride

[Steiglitz and McBride, 1965]. Prony’s method is known to perform poorly in the presence

of noise [Marple, 1987] and is likely a largely contributing factor to the unexpectedly poor

performance of the pole-zero filter models. In testing certain model orders greater than 40

resulted in huge error peaks on the MNMSE surface such as the one shown in 5.3.6, upon

further informal examination it was found that the source of the increased error was a gross

mis-prediciton of excessively high peaks in one or two of the contralateral models. As the
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lower level contralateral positions are the ’noisiest’ of the measured positions this seems to

support this explanation. A final criticism of the implementation of the iterative method

used is that the stmcb.m function performs a fixed number of iterations, 5 by default [The

MathWorks Inc., 2014], and does not perform a means of checking to see if the model coef-

ficients have converged. It is possible that this blind approach to the number of iterations

performed could be responsible in part for the poor performance of the models, however

Kulkarni & Colburn found that their, albeit adapted, procedure usually converged within 4

iterations [Kulkarni and Colburn, 2004].

An alternative improvement that could be made to the Steiglitz-McBride method used in

these works, besides those implemented by Kulkarni & Colburn [Kulkarni and Colburn, 2004],

would be to combine it with the linear prediction method used to generate the all-pole filter

models. The results obtained for the all-pole method simulation show a promising fit with

the measured data for low model orders. As such the linear prediction method described

in section 5.1 could be used to obtain the first estimate of the denominator coefficients for

the iterative method. Though still affected by noise, the linear prediction method has been

shown to yield comparatively good results for all angles, and as such are assumed to provide

a superior estimate of the denominator coefficients, which should in turn yield an improved

accuracy in the placement of the numerator terms or zeros, for the same fixed number of

iterations.

7.4 Pilot Study

Regarding the subjective experiment designed and run as a pilot study in order to elicit a

trend between pole-zero model order and pychoacoustically judged source position. Though

the pole-zero models were selected for use in the pilot study under a false prediction made

during preliminary simulation results, the results of the subjective experiment still offer some

relevant information regarding the influence of pole-zero model order on the perceived loca-

tion of the stimuli. The most informative results are displayed in figure 6.4.3; It is significant

to observe, with statistical confidence, that the ITD only model case performed poorer than

any of the pole-zero model cases. Furthermore a possible trend seems to be emerging amidst
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the pole-zero case results; that the positional error decreases proportionally to the increase

in pole-zero model order. However given the small preliminary sample size it is unclear as

to whether the trend would develop further, or whether the two highest model orders do in

fact represent cases of overdetermination due to an excess of zero components. This possible

trend would of course be better supported or unsupported given further testing to gather a

larger sample base from which the statistics are drawn.

During testing a number of remarks made by participants highlighted possible ’weak’ el-

ements of the experimental design, which given the purpose of a pilot study, would be

appropriate to be considered as a basis of re-design of said elements before extensive testing

begins. The remarks addressed two design elements in particular. The first is the use of a

relative position slider, which was remarked to be somewhat confusing due to the need for the

participants to mentally reposition the slider such that the centre of the slider corresponded

to the location of the A stimulus. The second is the apparent ambiguity in the definition of

the timbre slider, which is likely due to the shown multi-dimensionality of the term timbre

[Plomp and Smoorenburg, 1970] [Schouten, 1968] [Samson et al., 1997]. In hindsight the

choice of the term timbre is perhaps inappropriate as the purpose of the slider was to elicit

a remark on the similarity of the two stimuli in question, not the complex qualities of the

sounds themselves.

Considering the means by which the data has been analysed, and given the exact nature

of the experimental hypothesis the positional slider may be simplified to represent a di-

rectionally independent measure of the proximity of two stimuli. Such that the maximum

slider position would denote that the two stimuli appear to emanate from the same spatial

location, and conversely the minimum slider position would denote that the sources are at

a maximum distance apart. The ambiguity in the definition of the timbre slider should be

somewhat alleviated by the use of an alternate naming scheme. A meaningful simplification

of the similarity/dissimilarity between the two stimuli might be obtained by applying a sim-

ilar unidirectional encoding scheme as the revised proximity slider. In the revised scheme a

maximum slider value would denote that the two samples sound identical regardless of their

relative positions, and the minimum slider value would denote that the two samples sound

maximally different.
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A possible improvement to the overall design of the test could see the implementation of a

Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) design [ITU, 2014]. Choos-

ing to either perform two simultaneous tests to capture the revised proximity and similarity

slider information, or possibly discarding the secondary similarity slider information alto-

gether. The MUSHRA design would permit the convenient testing of an expanded stimuli

base whilst also serving to provide key results with higher statistical significance than the

original A/B test design.
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Chapter 8

Conclusions

The aim of the work described in this thesis was to investigate a pair of decompositional and

a pair of parametric modelling approaches to the compression of a measured HRIR dataset

restricted to the azimuthal plane. Novel application of a secondary compression and con-

venient interpolation scheme to orthogonal angle dependent components using the Discrete

Cosine Transform has been considered also. Overall it can be claimed that this aim has

been met; of the four methods investigated the relative strengths and weaknesses have been

identified and compared, with consideration given to the underlying causes of differences in

the performance of the methods with respect to an adapted error metric.

To summarise the four methods in question, it has been shown that of the two decomposi-

tional approaches the PCA approach in the linear domain is inferior to the PCA approach

in the logarithmic domain. This is due to the need of a large number of principal compo-

nents required to obtain a wholly positive reconstructed spectrum. Of the two parametric

modelling approaches, the linear prediction method offers vastly superior accuracy in mod-

elling the measured spectra for comparable model orders than those models generated using

the Steiglitz-McBride approach. Though the relevant theory would lead to the assumption

that the pole-zero models generated using the Steiglitz-McBride method should provide a

superior fit of modelled to measured data, several explanations have been offered regarding

sources of the unexpectedly poor performance of the method. Furthermore, likely means of

improving the implementation of the Steiglitz-McBride method have also been given.
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Subjective experimentation in the preliminary form of a pilot study has suggested that, al-

though the Steiglitz-McBride derived pole-zero models performed poorly with respect to the

NMSE metric, the models perform better than an ITD only case with regards to the preser-

vation of subjective impression of source location, but perform considerably worse than the

measured HRTF. The early results also indicate that more test participants are required

in order to confirm, or deny, the presence of a seemingly emergent trend between the pole-

zero model order and subjective localisation performance with greater statistical significance.

Further to the compression achieved by the application of either the PCA approach in the

logarithmic domain or the linear prediction all-pole method, consideration has also been

given to an extension of each of these methods. Utilising the discrete cosine transform one

obtains a means of performing a secondary compression and convenient interpolation of the

orthogonal angle dependent terms of the efficient representation. For the logarithmic PCA

method, these are the weight vectors that describe the contribution of each of the basis vec-

tors to the reconstructed spectrum at each angle. Whereas for the linear prediction method

these are the variation of the K coefficients with respect to angle, constructed as vectors.

This extension of the HRTF compression methods is shown to yield significant levels of ad-

ditional compression. These levels are particularly marked for the comparatively low order

variation in the vectors pertaining to either the first PCA weights or the low order K coeffi-

cients.

In terms of interpolation performance, the validity of the DCT-based interpolation in this

application is illustrated by observing the increase in the distribution of NMSE over angle

between full and interpolated datasets. Interpolated approaches are realised using a down-

sampled dataset of 36 evenly distributed measurements. These subsets are then interpolated

back to the 1◦ accuracy of the measured superset, using the DCT method in conjunction

with one of the compression methods. The DCT method of interpolation is shown to incur

a moderately low increase in NMSE over the non-interpolated, but identically compressed

cases. As such the method can be considered to be an inexpensive and convenient means

of interpolating the compressed datasets. However the interpolation method is yet to be

compared directly to other interpolation algorithms applied at the same stage in the recon-

struction process, and as such should be considered somewhat unverified.
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Upon consideration of the extended logarithmic domain PCA and K-coefficient linear predic-

tion methods, it can be concluded that the latter holds greater potential for representational

efficiency of a measured HRTF dataset. The method achieves this potential through a combi-

nation of factors. Firstly via the reduction from lengthy impulse responses to comparatively

low order all-pole filter coefficients. Secondly through the possible reduction in reference data

measurement size through convenient interpolation to higher spatial sampling rates. Finally

through the expression of each of the orthogonal K coefficient angular variation vectors as a

smaller number of DCT components.
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Chapter 9

Further Work

Immediate further work on the project will see a full scale subjective investigation con-

ducted. This will include refinement of the experimental design following the preliminary

results obtained through the pilot study, as well as expansion of the stimuli base to include

the reconstructed or modelled HRTFs of both the log magnitude PCA and linear prediction

methods respectively.

The secondary compression stage of the K-coefficient linear prediction method may be im-

proved even further, by realising the reconstruction threshold of each DCT analysis pro-

portionally to the order of the K coefficient vector being analysed. This would result in a

reduction of the number of DCT components retained for higher order angular K coefficient

vectors, which should contain less pertinent spectral information. Ultimately this modifica-

tion would serve to further increase compression, with only minor loss of high order detail

that accounts for significantly less of the total variance of the measured data.

Furthermore, the current DCT based interpolation scheme could be altered in order to ob-

tain a functional representation of the K coefficient, or even PCA weight, angle dependent

vectors. During the DCT analysis, if rather than retaining the DCT output as a vector, to

be IDCT’d, the DCT output can be realised as the weights of a series of continuous cosine

functions of varying argument. The resulting weighted sum is continuous and therefore can

be queried for any angle on a continuous scale. A functional representation of the data such

as this is advantageous in applications for which the desired spatial resolution is initially

127



J. Sinker Compact HRTFs CHAPTER 9. FURTHER WORK

unknown or varying, as the function requires no adjustment or re-analysis of the original

dataset to provide data for any angle.

An additional avenue of investigation that is within short reach from the current state of the

works is the orthogonal transformation of the linear prediction a coefficients through either

the Fourier or discrete cosine transform. Instead of expressing the all-pole filters in terms of

the orthogonal K coefficients that drop out of the Levinson-Durbin solution, an alternative

orthogonal transformation of the series of a coefficients for each angle, in particular one with

a sinusoidal/cosinusoidal basis, may yield yet further compression and may also uncover

simpler or lower order angular variation vectors of the compressed coefficients.

Likely informative results will be gathered from an in-depth comparison of alternative inter-

polation methods and the DCT interpolation in orthogonal domains as suggested in the works

described in this thesis. Considering interpolation methods that operate in the time, fre-

quency, or further orthogonal domains will offer a more contextual validation of the amount

of error introduced using the proposed DCT based interpolation method.

Looking further the works will extend to cover further investigation into the somewhat

surprising shortcomings of the Steiglitz-McBride method for the derivation of the pole-zero

filter models. Further work will attempt to isolate and explore the source of the behaviour of

the method in this implementation, beyond the comparison with the more successful results

obtained using an extended form of the technique by another author, as previously discussed.
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Appendix A

Pole-Zero Model Performances
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Figure A.0.-1: NMSE of pole-zero model orders used as subjective stimuli

136



Appendix B

Subjective Testing Information

B.1 Information for Participant
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Efficient Representation of Head Related Transfer Functions !
You are invited to take part in a research study. Before you decide whether or not you wish to 
take part it is important for you to understand why the study is being done and what it will 
involve if you agree to take part. Please read the following information carefully. Ask the 
researcher if there is anything you don’t understand or if you would like more information.  !
What is the purpose of the study? 
To investigate efficient and compact representations of the Head Related Transfer Functions 
necessary to create 3D audio over headphones. !
What will happen to me if I take part? 
You will be asked to wear a pair of headphones and listen to a series of 70 A/B comparisons 
of filtered noise samples. For each comparison you will be asked to indicate on a scale the 
relative position of one sample compared to the other, you will also be asked to the indicate 
the difference in timbre of the two sounds on a second scale. The test should take no longer 
than 30 minutes to complete. !
Is there any risk? 
There is no risk of harm. All audio has been set to a comfortable listening level well in 
accordance with the relevant guidance. !
Confidentiality – who will have access to the data? 
All the data will be held securely and will be treated confidentially. The arrangements for data 
storage and security comply with the terms of the Data Protection Act. If it helps to clarify the 
results of the study we may quote some phrases that you say when talking to the researcher. 
Any quotes will be anonymous – nobody will know you have taken part in the study. If you 
decide to withdraw from the study for any reason or at any time, any data already collected 
will be deleted and any paper copies destroyed. !
What will happen to the study results? 
In any material published from this study, all participants will be anonymous. !
You can decide to change your mind and withdraw from the study at any time without having 

to give a reason for withdrawing.  !
The researcher conducting the test will be able to answer your questions 
(Researcher’s name and contact details) 
…………………… 
…………………… !
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B.2 Consent Form

139



CONSENT FORM  !
Title of Project: Efficient Representation of Head Related Transfer Functions	

!
Participant Identification Number for this trial:     !!
Name of Researcher:   __________________________________ !
Please tick box and sign.      !
1.  I confirm that I have read and understand the information sheet for the above 
study. I have had the opportunity to consider the information, ask questions and have 
had these answered satisfactorily.  
         
 2.  I understand that my participation is voluntary and that I am free to withdraw at 
any time without giving any reason.     !
3.  I understand that some things I say to the researcher may be quoted anonymously 
in project reports. I give permission for anonymous quotes to be used. !
4. I agree to take part in the above study.             !!!
________________                  ________________                _________________  
Name of Participant                  Date                                         Signature                                              !!
Name of Person                        Date                                         Signature   
taking consent         !
When completed, 1 for participant; 1 for researcher file
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