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Abstract. Invasive plant pathogens are increasing with international trade and travel,
with damaging environmental and economic consequences. Recent examples include tree
diseases such as sudden oak death in the Western United States and ash dieback in Europe. To
control an invading pathogen it is crucial that newly infected sites are quickly detected so that
measures can be implemented to control the epidemic. However, since sampling resources are
often limited, not all locations can be inspected and locations must be prioritized for
surveying. Existing approaches to achieve this are often species specific and rely on detailed
data collection and parameterization, which is difficult, especially when new arrivals are
unanticipated. Consequently regulatory sampling responses are often ad hoc and developed
without due consideration of epidemiology, leading to the suboptimal deployment of
expensive sampling resources. We introduce a flexible risk-based sampling method that is
pathogen generic and enables available information to be utilized to develop epidemiologically
informed sampling programs for virtually any biologically relevant plant pathogen. By
targeting risk we aim to inform sampling schemes that identify high-impact locations that can
be subsequently treated in order to reduce inoculum in the landscape. This ‘‘damage
limitation’’ is often the initial management objective following the first discovery of a new
invader. Risk at each location is determined by the product of the basic reproductive number
(R0), as a measure of local epidemic size, and the probability of infection. We illustrate how
the risk estimates can be used to prioritize a survey by weighting a random sample so that the
highest-risk locations have the highest probability of selection. We demonstrate and test the
method using a high-quality spatially and temporally resolved data set on Huanglongbing
disease (HLB) in Florida, USA. We show that even when available epidemiological
information is relatively minimal, the method has strong predictive value and can result in
highly effective targeted surveying plans.

Key words: citrus plantings, Florida, USA; early detection; epidemic; Huanglongbing disease; invasive
species; landscape epidemiology; monitoring; pathogen risk; surveillance.

INTRODUCTION

The global movement of plants and plant products

has increased rapidly in recent times with an associated

increase in the number of introduced plant pathogens

(Jones and Baker 2007, Brasier 2008). Exotic pathogens

often face little natural resistance outside their native

ranges and so have caused severe environmental and

economic damage in natural and cultivated plant

communities. A prominent example is sudden oak death

(causal agent Phytophthora ramorum), which has caused

extensive environmental damage to woodland commu-

nities in the western Uniited States since its introduction

in 1995 (Rizzo and Garbelotto 2003) and currently poses

a significant threat to heathland and woodland environ-

ments in the United Kingdom (Brasier et al. 2004).

Another example is ash dieback (Chalara fraxinea), a

damaging fungal disease that has recently invaded a

number of countries in Europe (Kowalski 2009,

Chandelier et al. 2011, Husson et al. 2011, Timmermann

et al. 2011, Bari�c et al. 2012, Bengtsson et al. 2013),

prompting the rapid deployment of extensive surveying

and control resources (Anonymous 2012a). Following

the first discovery of an invading plant pathogen a

regulatory agency must act quickly to mitigate the

problem since management becomes disproportionately

more costly and difficult with increasing pathogen

incidence. However, the large-scale spatial and temporal

dynamics of an invasive pathogen spreading through a

heterogeneous landscape are difficult to predict. Detect-

ing new positive sites is therefore challenging and

requires the deployment of extensive surveying resourc-

es, at great cost.

A large body of work has focused on methods to

inform surveying programs for invasive species detec-

tion. These studies have made significant progress in

terms of incorporating environmental and population-

level information to accurately predict species distribu-

tion (Allouche et al. 2006, Inglis et al. 2006, Austin 2007,

Václavik and Meentemeyer 2009, 2012, Williams et al.
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2009), which in turn can be used to target surveying

programs (Crall et al. 2013). However, many of these

methods depend upon extensive species-specific model

development and data collection. For many potential

plant pathogen threats this is not possible, since many

new arrivals are unanticipated and the state of

epidemiological knowledge available varies widely from

species to species. There is thus a need for a more

general method that can incorporate the available

epidemiological information to improve survey effec-

tiveness and facilitate the rapid emergency development

of sampling plans. The lack of such a method means that

in practice regulatory sampling plans are ad hoc and can

result in the suboptimal deployment of finite and

expensive sampling resources. Any improvement in the

efficiency to detect new positive sites will save sampling

resources as well as increase the likelihood of success of

the management program.

In this paper we propose a risk-based sampling

method aimed at identifying high-risk locations in a

landscape and targeting control resources for inoculum

reduction and disease containment. The method has

been adopted in practice by the USDA (U.S. Depart-

ment of Agriculture) and Defra (Department for

Environment, Food, and Rural Affairs, UK) for

different pathosystems. The aim of this paper is to

present the general method and validate it based on

available data. By framing our approach around an

epidemiologically motivated definition of risk we pro-

vide a generic method that allows available information

to be incorporated in a clear mechanistic way. For some

invasive pathogens the biological parameters will be well

known from previous epidemics or from epidemics in

similar host regions. However, for many invasive

pathogens little epidemiological information is available

as they are either novel emerging species or are invading

a novel environment. Thus, we analyze two distinct

scenarios that may confront a regulatory agency: either

(1) the biological parameters associated with risk are

known, or can be inferred from expert opinion, or (2)

the parameters are not known and therefore must be

estimated using the survey data. We illustrate the

method using an epidemic of a bacterial pathogen of

citrus that is the causal agent of Huanglongbing (HLB)

(syn. ‘‘Citrus Greening’’) in Florida, USA (Gottwald

2010). Although we use a crop-tree example to test the

method, due to the availability of a high-quality

spatially and temporally resolved data set, the method

equally lends itself to nonagricultural applications in

natural and seminatural landscapes.

MATERIALS AND METHODS

In this section we describe how estimates of pathogen

risk can be derived for different host locations within a

landscape. We describe a straightforward way to

parameterize and validate the method, and then suggest

an approach that can be taken by a practitioner to use the

estimates of risk to determine a sampling program, i.e.,

risk-weighted random sampling. Finally, we demonstrate

the method by means of a specific example, an epidemic

of citrus HLB (Huanglongbing) in Florida, USA.

Calculating risk

The purpose of the method is to determine spatially

referenced estimates of risk that can be used to inform

targeted sampling plans in a host landscape. The

individual spatial unit we associate with risk is a ‘‘host

location.’’ We define a host location as ‘‘any relatively

homogenous area of discrete habitat that contains plants

susceptible to the pathogen’’; for example, this could be

an individual plant or a collection of plants in a host

location. The risk associated with a host location is

defined as the product of (1) the expected local-epidemic

size if the pathogen were to arrive and (2) the probability

that the pathogen arrives and causes an epidemic at that

location, P. (See the Discussion section for further details

of our general interpretation of risk.) The latter is a

measure of the dispersal of the pathogen population

between host locations in the landscape. The former is

characterized by the basic reproductive number R0. A

widely accepted definition for R0 is ‘‘the average number

of offspring produced by a single individual in its

lifetime,’’ and thus it is proportional to the expected size

of a local epidemic (Anderson and May 1986). This is the

definition of R0 that we use throughout this paper. The

risk estimate for host location i is therefore

Wi ¼ R0i 3 Pi: ð1Þ

The specific calculation ofR0 andP andwill depend on the

pathogen speciesof concernand the state of knowledgeand

data available for it. Generally R0 is characterized by the

life-history traits of the pathogen species and can be

calculated for virtually any plant pathogen. However, this

can be challenging for some pathogens and, depending on

the level of data available, it can bedone either using awell-

parameterized population model (Diekmann et al. 1990,

van den Bosch et al. 2008, Hartemink et al. 2009) or

approximated, using more informal heuristic reasoning.

The probability of an epidemic P at a particular host

location is determinedby thedispersal characteristicsof the

pathogen and the connectivity of the host location in

relation to the rest of the host landscape (Ovaskainen and

Hanski 2001). Many plant pathogens spread via distance-

dependent processes well characterized by dispersal

gradients. The probability that a particular location

receives a pathogen from a single source thus tends to

increase with increasing Euclidean proximity to it.

Therefore, for a host location i the probability that a

pathogen arrives and causes a local epidemic is propor-

tional to

Pi ¼ 1� exp �b
X
j2pos

Kða; dijÞ þ e

 !
ð2Þ

where Pi is the probability of an epidemic at host location i

and K(a, dij) is the dispersal kernel. The dispersal kernel
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describes how the probability that location i receives a

pathogen from a disease-positive location j declines with

Euclidean distance according to some function with

parameter a, and b represents the transmission rate. We

also include a random pathogen invasion parameter e that
describes mechanisms by which a pathogen may be

introduced to a location independent of distance to current

positives (e.g., due to random human movements of the

pathogen). This finalizes the method. As described in the

Introduction, we now consider two cases—either the

biological parameters are knownor theymust be estimated

using available data. In the latter case, the following section

gives details on how this can be achieved.

Parameter estimation

If the parameter values are not known in advance, nor

can be inferred from expert opinion, then they must be

estimated from available data on the epidemic. The fit of

the model can be quantified by comparing the estimated

risk of each sampled host location i with its corresponding

observed disease status (positive or negative) (ensuring

training and test data are separated). The fit will be best

when risk is on average close to 0 for observed-negative

host locations and close to 1 for observed-positive host

locations. The most straightforward way to determine this

in practice is to calculate the sum of the absolute errors

(SAE) i.e., SAE¼
PN

i¼0 jDi � wij, whereDi is the observed

binary status of host location i (1 if positive, 0 if negative)

andwi is the risk estimate, rescaled on the interval [0,1].We

thus assume that the expected local epidemic size of a host

location (i.e., risk weighting) will have a positive linear

dependence on the probability to have been detected in the

survey (i.e., have a positive disease status). The SAE is a

standard statistic used inmodel fitting and gives the sumof

the errors between corresponding predicted and observed

values. A least-squares approach could also have been

used; however we favor using the absolute error for

simplicity, but it also has the advantage that it is less

sensitive to outliers. The SAE can be adjusted to account

for any difference in the total number of positive and

negative host locations by simply taking the average of

each respective contribution.

The best-fit parameter values can be found simply by

iterating over a plausible range of values, calculating the

risk weightings and then the SAE for each. Those that

minimize the SAE can thus be identified. In the interest

of parsimony it is important to keep the number of

parameters to a minimum. However, if there are many

parameters to estimate, to minimize computation time,

more-sophisticated search techniques may be required to

find the best set of parameter values (e.g., optimization

methods such as gradient-descent algorithms (Snyman

2005) or simulated annealing (Kirkpatrick et al. 1983)).

Model testing

The method can be tested using data on observed

positive and negative locations. It is crucial, however, that

data used for parameterization are independent of those

used to test the model. We illustrate three separate ways

to test the method. Firstly, we simply separate the risk

estimates for all host locations by a binary disease status,

positive or negative (since abundance data at each

location is usually too expensive to collect at the

landscape scale). The former grouping should display

higher weightings than the latter, which can be evaluated

using a significance test. Secondly, we generate receiver

operating characteristic (ROC) curves, which are com-

monly used in studies of invasive species to assess the

predictive accuracy of species-distribution models and

thus enable comparison with a wide range of methods

(Guisan and Zimmermann 2000, Václavı́k and Meente-

meyer 2009, Baxter and Possingham 2011). To facilitate

comparison between ROC curves we also calculate the

area under the ROC curves (AUC). This quantifies each

ROC curve and gives a single number that can be used to

compare different curves across the current study as well

as other methods. Finally we explicitly test the perfor-

mance of the sampling method suggested in this paper,

risk-weighted random sampling (described in full in the

following section) via Monte-Carlo simulation. The risk

estimates can be used to simulate multiple stochastic

realizations of a weighted random-sampling plan. The

mean number of positive host locations in the test data

that are ‘‘found’’ (i.e., selected) from each realization of

the sampling plan can be used as a measure of

performance, i.e., performance increases with the pro-

portion of positive host locations found. This can be

compared with simulated simple random sampling, which

provides a useful reference point since it is what is done

when no information, or no method to incorporate

information, is available. However, this approach can

only be used as a relative measure of the proportion of

positive host locations found. This is because not all

previous positive locations are observed in the data and

so only the ability to find observed positives can be tested.

Using risk to generate a weighted random-sampling plan

Here we describe one approach that can be used to

generate sampling plans from the risk estimates. Other

methods of utilizing risk to prioritize a sampling plan are

possible (see Discussion). We wish to randomly select

host locations for sampling in such a way that those with

the highest risk have the highest probability of selection.

In the following text we describe an algorithm that can

be used to achieve this. First, rescale each risk estimate

Wi on the interval [0,1] by dividing by the sum of risk

estimates Wk, i.e., wi ¼Wi=
PN

k¼1 Wk. The rescaled risk

estimates wi form a discrete probability distribution that

can be sampled using the table look-up method. The

table look-up method is the discrete analog of the

inversion method for continuous random variables and

can be used to sample from a discrete probability

distribution that has unknown mathematical form

(Morgan 1995).
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Applying the method, we draw a random number U

from the uniform distribution U[0,1) and set Hi ¼ wk,

where
Pk�1

l�1 Wl � U �
Pk

l¼1 wk, and where Hi is the host

location that is selected and wl and wk are the rescaled

risk estimates (i.e., the selection probabilities) of host

locations l and k, respectively.Hi can be found by simply

working through the list of host locations and summing

successive values (but more efficient search methods are

available if required, e.g., successive bisection methods

[Press et al. 1992]). The order of the list makes no

difference to the selection process only the relative size

of the risk estimate of each host location. As each

successive host location is selected, it is removed from

the list of candidate locations to create a new list. That

is, during any single round of sampling we assume that

no single location should be visited more than once, i.e.,

we sample without replacement. We then rescale the risk

estimates in the new list and repeat the application of the

table look-up method to select a further host location.

This process of rescaling and selection is repeated until

the number of host locations N to be sampled is reached.

This algorithm assumes that the desired selection

probability of a location is equivalent to its rescaled

risk. However, it is also possible to differentially weight

this so that selection probability is some other propor-

tional function of risk. In the extreme case this could be

adjusted so that locations are simply selected in order of

risk. The desired number of host locations to be sampled

N will be determined by the regulatory agency that is to

conduct the sampling and will depend on a multitude of

factors—not least the budget limitations that they face.

Case study and test of the method: Huanglongbing

in Florida 2010–2011

We demonstrate the above method using the example

of the current Huanglongbing (HLB) epidemic in

Florida, USA. HLB is a bacterial disease of citrus

spread by a pysllid vector, and is currently of serious

concern to citrus plant health in Florida as well as other

citrus-producing regions (Gottwald 2010). This case

study provides us with a useful example of a heuristic

way to define risk that is pertinent to diseases where

there is not sufficient information to determine risk

explicitly from data. We calculate risk based on survey

data from six cycles of sampling conducted during 2010

and 2011 (see Table 1 for details). In this study example

a host location is represented by a single discrete

planting of citrus trees. In Florida the plantings are

grown in rectangular arrays of regularly spaced trees of

varying area (1–205 ha, mean 5.3 ha). Florida contains

over 38 000 plantings representing ;215 087 ha of citrus

(Anonymous 2012b) and they are predominantly situat-

ed in the center of the State. The centroid coordinates of

each location are known as well as various character-

istics such as planting age and size (area).

During each sampling cycle, host locations were

selected randomly but with a weighting toward the

discovery of a range of important citrus pathogen

species including HLB, citrus canker, citrus black spot,

citrus leprosis virus, and citrus variegated chlorosis.

Weighting for a wide variety of pathogens allows the

survey data to be considered approximately random

when considering any particular pathogen in isolation.

Indeed, the number of pathogens targeted resulted in the

deployment of sampling resources over a broad area

throughout the commercial citrus growing region in

Florida (Fig. 1, Table 1). Up to 15% of the host

locations in Florida were inspected during a single round

of sampling (Fig.1, Table 1). Each inspection was

conducted by a team of trained USDA-APHIS (Animal

and Plant Health Inspection Service) plant health

inspectors for visible symptoms of a range of diseases,

including HLB, and the status of each location was

recorded (including either positive or negative for HLB

symptoms).

The first component of risk that we need to determine

is R0 (Eq. 1). Like many emerging exotic plant

pathogens it is not possible to explicitly calculate R0

for HLB due to a lack of detailed epidemiological data.

For HLB the latency and infectious periods of the

pathogen have not yet been estimated experimentally

(Gottwald 2010). A key determinant of the severity of an

HLB epidemic is planting age, with younger trees being

more susceptible and infectious (Bassanezi and Bassa-

nezi 2008, Gottwald 2010). Bassanezi and Bassanezi

(2008) show disease progress curves for HLB in citrus

plantings of varying ages. By reading data from these

TABLE 1. Summary of the survey program for Huanglongbing (HLB) disease in Florida (USA)
commercial citrus plantings.

Cycle no. Total plantings sampled

Observed positives
Dates of

sample collection�New only� New and current

1 2667 631 631 8 Nov–30 Dec 2010
2 3665 386 954 3 Jan–12 Feb 2011
3 5486 390 1358 14 Feb–25 Mar 2011
4 6248 187 1496 28 Mar–6 May 2011
5 6228 216 1573 9 May–17 Jun 2011
6 4908 87 1347 20 Jun–29 Jul 2011

� ‘‘New positives’’ are those that have not been discovered in previous sampling cycles.
� The survey was conducted in ;6 six-week nonoverlapping cycles.
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graphs we estimated the epidemic growth rate, r, for

HLB for different tree ages via regression using a logistic

growth model. R0 is known to be proportional to the

initial growth of an epidemic as determined by an

exponential function of the epidemic growth rate r and

generation interval T, i.e., R0 ¼ exp(rT ) (Wallinga and

Lipsitch 2007). Using the Bassanezi and Bassanezi

(2008) data we find a linear relationship between R0

and the inverse age of a host location (Fig. 2). We used T

¼ 5 as a generation time for HLB; however, the linearity

is not significantly different for T ¼ 1 or T ¼ 10.

Therefore, we use the inverse age of a host location as

proportional to the basic reproductive number R0 and

thus epidemic size. In addition, planting size obviously

will affect R0, and we assume a linear dependence for

this due to a lack of data to quantify more precisely

(Keeling and Rohani 2008). Extra hosts intercept the

airborne insects or inoculum and subsequently contrib-

ute to further transmission. We therefore use the

product of the size (S; total area) and inverse age (A)

of a host location as proportional to R0, i.e., R0i } Si/Ai.

The second component of risk is the probability that an

epidemic is initiated at location i, Pi (Eq. 1). For each

host location i the probability of an HLB epidemic is

determined by a negative exponential function of the

sum of all Euclidean distances from host location i to

FIG. 1. Maps of Florida (USA) showing the position of Huanglongbing (HLB) sampled plantings for each of the six sampling
cycles, 1 through 6. The red dots denote observed HLB-positive plantings in each cycle and the gray dots denote observed HLB-
negative plantings in each cycle. Note that only the positive and negative plantings observed during the single cycle indicated are
shown.
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positive host location j, i.e., K(a, dij) ¼ e�adij . HLB is

transmitted via a psyllid that disperses repeated short

distances and is thus well characterized by the negative

exponential (van den Bosch et al. 1999).

Note that this leaves only one parameter value to

assign, the exponent of the dispersal kernel a. However,

a is not the only parameter in the risk model we have

derived for the HLB example. In this case however, we

have constructed the model in such a way that, although

there are multiple parameters in the model, we only need

to assign a value to one parameter, a, since the others

can be subsumed into wi by division. However, in

general, for other pathosystems, the number of param-

eters that require estimation will depend on how the two

components of risk have been constructed for the

particular pathogen case. The mean dispersal distance

can be calculated from the exponent of the kernel a and

can be shown to be 2/a (since we integrate over two-

dimensional space) and thus has a clear biological

interpretation. The method was tested using the

validation approaches described in the previous section

(Model testing). To fit the risk weightings to the data

requires a rescaling of Eq. 1. For the example of HLB we

rescale between 0 and 1 by dividing by the maximum

risk weighting. This is essentially our rescaling param-

eter, which allows us to apply the fitting and validation

procedures described earlier.

We separated training and test data in all analyses.

That is, specifically, if the method was tested on data

from cycle N, the risk estimates were determined using

only data from previous cycles not including cycle N. We

tested the method accumulatively on different sampling

cycles to detect any differences in the accuracy of the

method through the course of an epidemic.

RESULTS

Parameter estimation

Here we show results for the two hypothetical

scenarios as highlighted in the Introduction: (1) the

parameter is known or can be inferred from expert

opinion (referred to as the inferred value), and (2)

nothing is known and therefore the parameter must be

estimated using available data from the survey (referred

to as the estimated value). For the inferred value, we use

a mean dispersal distance of 10 km for Huanglongbing

(HLB). Authors on the current paper have observed and

written extensively about HLB, and identified 10 km as a

good guestimate of the mean dispersal distance, 2/a, of
HLB in the observed region. For the estimated value,

i.e., when the parameter is not known, we use the survey

data from previous cycles. The estimated mean dispersal

distance (2/a) ranged between 3.6 km and 25 km (Fig.

3). A clear minimum in the sum of the absolute errors

(SAE) of the risk estimates existed, indicating a strong

relationship with positive host locations (Fig. 3). The

only exception was in the case of sampling cycle 5 where

a minimum SAE could not be found (Fig. 3). This

implies that for this cycle the best fit was achieved using

the age and size data only, and that the HLB-positive

data did not contribute to a better fit (since a zero value

for a results in multiplication by 1) (Fig. 3).

Method testing

As expected, for each SAE-minimizing value, the risk

weightings were larger for HLB-positive plantings than

for HLB-negative plantings (Fig. 4). The median values

of the weightings for HLB-positive plantings were

consistently higher than for negative plantings and the

distributions were significantly different (Fig. 4). There

was little difference between the results for the estimated

value of mean dispersal distance, 2/a, (Fig. 4A), and the

inferred value (Fig. 4B). The validation based on the

receiver operating characteristics (ROC) curves showed

good predictive power in each cycle (Fig. 5, Table 2).

Cycle 6 was predicted less well due to the comparatively

low number of observed positives (Fig. 5, Table 2). The

inferred value of 2/a consistently outperformed that of

the estimated value, although the differences were not

substantial except in the case of cycle 6 (Fig. 5, Table 2).

Finally, the method was also validated in terms of the

ability of risk-weighted random sampling to detect new

positive host locations via Monte-Carlo simulation (Fig.

6). The performance of risk-weighted sampling using the

estimated value closely matched that of the inferred

value of 10 km (Fig. 6). However, although the

differences between each were marginal for most cycles

(Fig. 6: cycles 3–5) the difference was more apparent for

cycle 6 (Fig. 6) where the inferred mean dispersal

distance of 10 km resulted in a greater performance than

the estimated value. However, as previously stated, there

were far fewer positives available in this cycle and

therefore greater variability in the stochastic sampling

FIG. 2. The change in inverse age of a host location with the
basic reproductive number R0 approximated by an exponential
function of the epidemic growth rate, r, (R0 ¼ exp(rT ) for
different age classes (data read from Bassanezi and Bassanezi
[2008]) and generation time T¼ 5. Shown are the mid-points of
age classes 0–2, 3–5, 6–10, .10 years and the inverse of these
ages are used. R2 ¼ 0.96.
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process. As expected, the proportion of observed-

positive finds increased with increasing sampling size

regardless of the sampling method (estimated-value

inferred-value, or simple random sampling) (Fig. 6).

The number of finds increased linearly with sample size

for simple random sampling but the risk-based sampling

plans tended toward an upper asymptote (Fig. 6). The

diminishing return of risk-based sampling with increas-

ing sampling size indicates that a sampling size that

maximizes the performance per unit of sampling effort

can be identified. Further, in practice a particular

sampling size that maximizes the gain between random

sampling and risk-based sampling can also be identified

and potentially used to identify an optimal sampling

effort (Fig. 6).

DISCUSSION

In this paper we have presented a generic method to

determine risk estimates for an invading plant pathogen

in a landscape. This can be used by a regulatory agency

to design targeted surveys aimed at reducing inoculum

and minimizing further spread. The term ‘‘risk’’ is often

used loosely and may be interpreted in a number of

varying ways. We adopt a precise definition of risk as the

product of the consequences of an adverse event and the

probability of that event occurring (National Research

Council 2002). In our case this leads to a useful

epidemiological interpretation as the product of (1) the

expected epidemic size if the pathogen were to arrive and

(2) the probability that the pathogen arrives and causes

a local epidemic, P (see Eq. 1). By using a clear

epidemiologically motivated definition of risk we pro-

vide a transparent and flexible framework that allows

available information to be incorporated in a clear

mechanistic way based on biologically meaningful

processes.

The first objective of a surveying program for an

invading plant pathogen is usually early warning— that

is, conducting proactive surveillance for a plant patho-

gen threat before it has arrived in order to detect it as

early as possible following its invasion. We have

developed methods to estimate the incidence that an

epidemic will have reached when it is first discovered;

these methods relate the temporal dynamics of the

monitoring program to the dynamics of the invading

epidemic, and can be used to inform the design of early

warning surveillance programs (Parnell et al. 2012).

Some work has also been done to determine spatially

optimized monitoring programs to detect an invading

plant pathogen at an early stage (Demon et al. 2011).

However, once a first detection has occurred the

management objective shifts from early warning to one

of containment or inoculum reduction. Eradication of

plant pathogens is rare due to the challenges associated

FIG. 3. The change in the sum of the absolute errors (SAE), with the mean dispersal distance 2/a for the six sampling cycles:
cycle 2 (minimum at a ¼ 5.5 3 10�4; mean dispersal distance, 2/a, 3.6 km); cycle 3 (minimum at a ¼ 8 3 10�5; mean dispersal
distance, 2/a, 25 km); cycle 4 (minimum at a¼ 1 3 10�4; mean dispersal distance, 2/a, 20 km); cycle 5 (minimum at a¼ 0; mean
dispersal distance, 2/a, n/a); cycle 6 (minimum at a¼ 13 10�4; mean dispersal distance, 2/a, 20 km). Note that only cycles 2–6 can
be used for parameter estimation since at least one previous cycle is required to estimate the dispersal parameter a.
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with, for example, asymptomatic spread and the costs of

host removal (Gottwald et al. 2001, Madden and

Wheelis 2003, Gottwald and Irey 2007). Therefore

inoculum reduction (effectively, damage limitation or

containment) is usually the immediate management

objective following the first discovery of an invading

pathogen. This is especially important if a particular

threat was not anticipated and thus no proactive

surveillance program was in place to detect at an early

stage. Our definition of risk specifically targets this

objective since the highest-risk locations are those most

likely to carry the greatest inoculum load. The method

also maximizes the number of new positive finds since,

for plant pathogens, detectable symptoms generally

increase with the size of the outbreak (i.e., the first

component of risk [Eq. 1]). Epidemiological theory

suggests that the earlier mitigation measures are taken

the greater the chance of success (Ferguson et al. 2001).

There is thus a need for a regulatory agency to respond

quickly to new pathogen invasions, and the risk-based

framework provided here aims to facilitate this and

provide a rational basis for the design of detection

surveys that can be tailored to virtually any biologically

relevant plant pathogen.

Our approach is similar to those taken in plant disease

mapping, as well as mapping of invasive species more

generally. For example, Parnell et al. (2011) demon-

strated a method to derive a spatial estimate of pathogen

distribution from a random sample; that method

captured the limiting effect of spatial pathogen spread

that arises from limited dispersal ability and gaps in host

availability. Invasive species distribution modelling

studies similarly seek to estimate a map of an invader

and which can be used to prioritize survey efforts

(Allouche et al. 2006, Inglis et al. 2006, Austin 2007,

Václavik and Meentemeyer 2009, 2012, Williams et al.

2009, Crall et al. 2013). These studies incorporate factors

on environmental suitability, presence or absence of the

species, and dispersal constraints to arrive at spatially

referenced estimates of risk. However, in contrast to

these studies, our approach utilizes similar information,

but we present a generic and flexible framework in which

to do this for plant pathogens.

Additional studies have used population-dynamic

models to explicitly link survey and management

programs and show how surveys can be further

optimized for particular management objectives (Mehta

et al. 2007, Cacho et al. 2010, McCarthy et al. 2010,

Wallinga et al. 2010, Emry et al. 2011, Giljohann et al.

2011, Homans and Horie 2011, Epanchin-Niell et al.

2012, Horie et al. 2013). For example, McCarthy et al.

(2010) showed how, for the control of H5N1 influenza,

the optimal distribution of sampling resources depended

on what percentage reduction in incidence was attempt-

ed. If the reduction was low (5% compared to 10%
incidence) then it was optimal to spread resources more

evenly (i.e., the objective could be achieved at less cost

by doing this) (McCarthy et al. 2010). Other studies

have shown how, for situations where survey and

control resources originate from a common resource

base, an optimal balance in the deployment of each can

be identified (i.e., whether to invest more in survey or

control) (Bogich et al. 2008, Hauser and McCarthy

2009, Ndeffo Mbah and Gilligan 2010). Although we do

not explicitly link to such management impacts here, a

logical development would be to test the method’s

performance to determine the optimal use of the risk

estimates for different management objectives. For

example, if the aim of the management plan is to detect

new disease foci (i.e., different disease clusters), then

rather than prioritize a survey based on risk alone, it

may be optimal to spread survey resources more evenly

in space since only one detection per disease cluster

would be required. This might be an objective if a two-

tiered procedure is in place where a single detection

triggers a second stage of localized sampling or a

localized host treatment zone. Nonetheless, targeting

FIG. 4. Box plots displaying the distribution of risk
estimates, wi, for observed positive (Pos) and negative (Neg)
locations i for (A) the estimated values of a (which varied per
cycle; see Fig. 3), and (B) the inferred value a ¼ 0.0002 (mean
dispersal 2/a¼ 10 km). The whiskers denote the 10th and 90th
percentiles and the dots denote the 5th and 95th percentiles. In
each case the distribution of risk estimates for observed-positive
citrus plantings was significantly higher than for observed-
negative plantings (confirmed with two-sample Kolmogorov-
Smirnov test). Note that only cycles 3–6 can be validated since
two previous cycles are required as training data to generate
risk. To allow the medians to be clearly shown the data are
plotted on a scale that hides two 95th percentile dots; in panel
(A) the 95th percentile for positives in cycle 6 is 0.37964; in
panel (B) the 95th percentile for positives in cycle 6 is 0.324135.
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high-risk locations for inoculum reduction or contain-

ment is a common management goal and often the

immediate objective following a new invasion.

Here we used the economically significant disease of

citrus Huanglongbing (HLB) in Florida, USA, as a case

study. This disease offers a good test of our method

since relatively little is known about the pathogen’s

epidemiology, making a spatially resolved prediction of

risk challenging. The method clearly out-performed

what would be achieved by random sampling (Figs.

5 and 6, Table 2), indicating that even when information

is lacking our risk-based approach can significantly

improve otherwise entirely ad hoc surveying layouts.

Moreover, we have illustrated how the method can

accommodate the contrasting scenarios where either

some information is known on a pathogen (the

parameter values can be inferred from expert opinion)

or very little (the parameters must be estimated from

available data). We analyzed examples of these scenarios

for HLB and did not find significant differences in

performance (Figs. 4–6). This indicates the strong role

expert knowledge can have when a framework for its

inclusion is available. Moreover, where expert opinion

can be utilized to parameterize the model much time is

saved, thus allowing the targeted surveying program to

be rapidly deployed following the discovery of a new

invader.

In the case of HLB in Florida, risk was calculated

based on available information, which included the age

and size of host locations and their distance to known

positives. The two components of risk (Eq. 1) can be

calculated in various ways and should be tailored to the

pathogen species and information available. The poten-

tial local-epidemic size (i.e., R0) can be calculated either

heuristically, as in the HLB example given in this paper,

or using a population model. Which route is chosen will

depend on the challenges of calculating R0 for the

FIG. 5. Receiver operating characteristic (ROC) curves for the risk estimates validated based on data from four sampling
cycles. The dotted lines denote the no-discrimination line. The solid lines denote risk estimates based on the estimated values of the
mean dispersal distance 2/a (see Fig. 3). The dashed lines indicate the risk estimates generated using the inferred value a¼ 0.0002
(mean dispersal distance 2/a, 10 km). The closer the lines are to the top left corner (i.e., the farthest from the no-discrimination line)
the stronger the predictive power. Note that only cycles 3–6 can be used to validate since two previous cycles are required as
training data to generate the risk estimates (in the case of the estimated parameters [solid lines]).

TABLE 2. Area under the receiver operator characteristic
(ROC) curves (AUC) for each survey cycle and the two
compared values of the disease dispersal parameter a,
estimated from the data (estimated a) or inferred from
expert opinion (inferred a), each cycle corresponds to that
shown in Fig. 5.

Survey cycle

AUC

Estimated a Inferred a

3 0.656236 0.715305
4 0.580586 0.636254
5 0.70377 0.757957
6 0.660826 0.787627
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particular pathosystem. Calculating R0 for HLB is

problematic because of difficulties measuring the latency

and infectious periods (Gottwald 2010). In this paper we

show how estimates of R0 can be calculated heuristically

and even this relatively coarse approach yields useful
estimates of risk (Figs. 5 and 6). More accurate

calculations of R0 should lead to more accurate

estimates of risk. For example, Hartemink et al. (2009)

demonstrated a model-based approach using the next-

generation-matrix method to estimate R0 maps for

vector-borne diseases. Model-based approaches can
provide accurate estimates of R0, but at the cost of

extensive information requirements for parameteriza-

tion.

The probability that an epidemic occurs, P, can also

be calculated in various ways. For example, in the HLB

example we used a negative exponential dispersal kernel.
Other forms of dispersal kernel such as the power-law

could have been used and may be a more appropriate

choice for other pathogens, for example if more frequent

long-range dispersal events are anticipated. Also the

randomized dispersal parameter e (Eq. 2) was not used

in our example but could be employed where there are

data available. Our method can thus be tailored to suit

the differing epidemiological characteristics of a range of

pathogen species. Although in the HLB example we

have presented it was only necessary to estimate a single
parameter in order to fit and validate the model, in other

cases there may be more than one parameter and a full

sensitivity analysis may be appropriate to understand

the risk factors that are having the most influence on the

model outcome.

Since detection and diagnostic techniques are imper-

fect, and a complete census cannot be collected at each
location, imperfect detection may influence the accuracy

of the method. A number of studies have shown how

likelihood and Bayesian methods can be used to

calculate the probability that a location is negative

given that a non-detection has been observed and use
this to inform estimates of population abundance (Tyre

et al. 2003, Mackenzie and Royle 2005, Royle et al.

2005, Guillera-Arroita et al. 2010, Wintle et al. 2012).

Hughes et al. (2002), for example, show how for plant

pathogens the number of samples required to ensure a

FIG. 6. The relative performance of risk-weighted random sampling with changing sample size (100 Monte Carlo simulations),
tested against observed positive plantings from four sampling cycles. Solid circles denote the performance of a risk estimate
generated using the estimated value of a (see Fig. 3). Open triangles denote the performance of a risk estimate generated using the
inferred value a ¼ 0.0002 (mean dispersal distance, 10 km). Open squares denote the performance of simulated simple-random
sampling without replacement as a reference point. Data are means 6 SD. The solid lines are the theoretical binomial sampling
lines (i.e., random sampling with replacement). Note that only cycles 3–6 can be validated since two previous cycles are required as
training data to generate the risk estimates.
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site is below a certain incidence threshold can be

calculated in the face of misclassification errors and

the possibility of non-detection. This is a particular issue

with plant pathogens since there is the confounding

problem of asymptomatic infection. Although not

within the scope of our present study, the accuracy of

our validation may of course be influenced by imperfect

detection, i.e., that uninfected sites were actually

infected. Furthermore, the uncertainties associated with

the risk estimates themselves could impact the effective-

ness of a survey program. This provides a justification

for using a random element to determine a sampling

plan (i.e., risk-weighted random sampling) rather than

simply ordering locations to survey directly by risk. For

example, Baxter and Possingham (2011) suggest that in

cases where the underlying risk map is poor, it is more

effective to conduct widespread cursory searches than to

target resources intensively. Risk-weighted random

sampling achieves a similar goal in that where knowl-

edge is imperfect sites with low risk estimates still have a

chance of being selected. However, if the confidence and

uncertainty around the risk estimates are strong for a

particular pathogen then a straightforward ranking of

locations to survey directly based on risk could be

adopted.

The enhanced availability and uptake of epidemio-

logically informed methods to determine targeted survey

programs is critical in meeting the rising challenges

posed by invading plant pathogens. We have developed

a generic risk-based method and demonstrated its utility

by application to a real problem. We hope our method

provides a platform to facilitate the incorporation of

epidemiological information into surveying strategies.

Indeed the method is used routinely by the USDA

Animal and Plant Health Inspection Service to survey

for a range of citrus pests and pathogens and has been

used by DEFRA to survey for Phytophthora ramorum in

England and Wales. The contribution of this paper is to

make the method widely available to researchers and

policy makers and to test the method on a characteristic

plant disease problem.
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