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Analytical and numerical approaches have been made to the problems of (a) propagation through a

doubly periodic array of elastic shells in air, (b) scattering by a single elastic shell in air, and

(c) scattering by a finite periodic array of elastic shells in air. Using the Rayleigh identity and the

Kirchhoff–Love approximations, a relationship is found between the elastic material parameters

and the size of the bandgap below the first Bragg frequency, which results from the axisymmetric

resonance of the shells in an array. Predictions and laboratory data confirm that use of a suitably

“soft” non-vulcanized rubber results in substantial insertion loss peaks related to the resonances of

the shells. Inclusion of viscoelasticity is found to improve the correspondence between predictions

and data. In addition the possible influences of inhomogeneity due to the manufacturing of the elas-

tic shells (i.e., the effects of gluing sheet edges together) and of departures from circular cylindrical

cross-sections are considered by means of numerical methods.
VC 2010 Acoustical Society of America. [DOI: 10.1121/1.3506342]
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I. INTRODUCTION

Periodic arrays of circular cylinders are known to give

high attenuation at selective frequencies as a consequence of

Bragg scattering.1,2 They give rise to bandgaps, i.e., peaks in

transmission loss, related to the spacing between scattering

elements (the lattice constant). The first bandgap central fre-

quency occurs when the lattice constant is equal to half

wavelength. Such arrays have been dubbed “sonic crystals”

(SCs) or “phononic crystals” because of the analogous

effects to those of photonic crystals on electromagnetic

waves. By varying the lattice constant and/or filling fraction

it is possible to attain peaks of attenuation in a certain range

of frequencies. Potentially, barriers made in the form of peri-

odic cylinder arrays will be more esthetically pleasing than

conventional noise barriers and their performance might be

less affected by wind.

For SCs to be useful as sound barriers, methods must be

found of reducing the angle-dependence of the stop bands

and targeting the noise spectrum of interest. One possibility

for achieving a relatively low-frequency angle-independent

stop band is to use resonant scatterers. There has been previ-

ous numerical and theoretical work in respect of periodic

arrays of elastic scatterers in a gas involving hollow spheres

and cylinders.3 There have also been numerical studies of

the acoustical performance of a periodic array of resonant

silicone rubber scatterers embedded in an epoxy resin ma-

trix.4 Previous laboratory work in respect of periodic arrays

of scatterers in air has investigated the use of pressurized

gas-filled cylindrical balloons.5,6 However it was found diffi-

cult to predict the measured effects. Indeed it is essential to

introduce the effect of any static external load to model scat-

tering by elastic materials under tension. Another form of

resonant scatterer is a cylinder with a slit along its length.7

Recent studies8 suggest the possibility of using hollow tubes

with multiple narrow slits, such that all the slits occupy the

quadrants facing the source, to create a broader bandgap.

In this paper, first the theory of wave propagation

through doubly periodic arrays of elastic shells is developed.

A new result compared with previous work is a semi-analyti-

cal approximation for thin “soft” elastic shells. It is assumed

that the elastic material is called soft, if c2=c1� 1, where c1

and c2 are the compressional and shear wave speeds, respec-

tively. The properties of this material allow several relatively

low-frequency resonances that generate stop bands in the

scattering problem for array. These stop bands are additional

to those related to the wave propagation through the array of

rigid/porous scatterers.2 In the experiments and predictions

reported here, commercially available non-vulcanized rubber

(latex) is used as an example of a suitable material. Using the

approximation results, the scattering problem is solved for a

single scatterer and for a finite array of scatterers. Com-

parisons with data confirm the presence of the interesting

resonances for the chosen material and geometry of the shell.

II. ANALYTICAL AND NUMERICAL RESULTS

A. Doubly periodic array of elastic shells: Formulation

First consider the problem of acoustic wave propagation

through a doubly periodic array of identical elastic shells.

Throughout the paper the time-harmonic dependence is taken
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as exp(�ixt). It is assumed that waves propagate in the plane

perpendicular to the main axis of infinite cylindrical shells Cj,

j takes positive integer values, so each shell can be replaced

by its cross-section (i.e., elastic ring), see Fig. 1. The acoustic

environment outside/inside of each shell is described by

density qo=qi and sound speed co=ci, whereas the elastic lin-

ear isotropic material of the shell is represented by density q,

compressional velocity c1, and shear velocity c2.

Without loss of generality, the origins of the Cartesian

(x, y) and polar coordinates (r, h) used in this section coin-

cide with the center of the scatterer C0 in the primary cell of

size L, referred to as the lattice constant. Center Oj of each

scatterer in the infinite periodic array is defined by the posi-

tion vector Rj ¼ n1a1 þ n2a2; n1, n2 take integer values,

where a1 and a2 are the fundamental translation vectors.9

Displacement potential p(r) in the acoustic medium sat-

isfies the Helmholtz equation,

Dpþ k2
ap ¼ 0; (1)

and the quasi-periodicity conditions,

pðr þ RjÞ ¼ expðibTRjÞpðrÞ; (2)

where D¼ð1=rÞð@=@rÞ r@=@rð Þþð1=r2Þð@2=@h2Þ, ka ¼ x=ca

is the wavenumber defined as the ratio between angular

frequency x and sound speed of the outer acoustic environ-

ment ca, b ¼ (q1, q2)T is a given wave vector, and index a
relates density to one of the acoustic media (i.e., it equals to

either “o” or “i”). p(r) is related to the acoustic pressure U(r)

and particle velocity potential ÛðrÞ by

U ¼ qax
2p; (3a)

Û ¼ �ixp: (3b)

The wave field in the elastic ring is represented by two

displacement potentials /(r) and w(r), which are solutions of

the following equations:10

D/þ k2
1/ ¼ 0; (4a)

Dwþ k2
2w ¼ 0; (4b)

where k1 ¼ x=c1 and k2 ¼ x=c2.

The solutions to Eqs. (1) and (4) are subject to continu-

ity conditions at the elastic–acoustic interface of scatterer Cj.

This gives at r ¼ ao and r ¼ ai,

rrr ¼ �qax
2p; (5a)

rrh ¼ 0; (5b)

@p

@r
¼ @/
@r
þ 1

r

@w
@h

; (5c)

where stresses rrr and rrh are defined by

rrr ¼
2qc2

2

r2

@

@h
r
@w
@r
�w

� �
� r

@/
@r
þ @

2/

@h2

� �� �
� qx2/;

(6a)

rrh ¼
2qc2

2

r2

@

@h
r
@/
@r
� /

� �
þ r

@w
@r
þ @

2w

@h2

� �
þ qx2w:

(6b)

The solutions to the problems (1)–(5) can be described

by orthogonal series of Bessel and trigonometric functions.

In the outer and inner acoustic media the potentials take the

following forms:

poðr; hÞ ¼
Xþ1

n¼�1
AnJnðkorÞ þ BnYnðkorÞ½ �

� expðinhÞ; r > ao; (7a)

piðr; hÞ ¼
Xþ1

n¼�1
EnJnðkirÞ expðinhÞ; r < ai; (7b)

whereas the solutions of the elastic shell are expanded as

/ðr; hÞ ¼
Xþ1

n¼�1
C1;nJnðk1rÞ þ C2;nYnðk1rÞ
� �

� expðinhÞ; ai < r < ao; (8a)

wðr; hÞ ¼
Xþ1

n¼�1
D1;nJnðk2rÞ þ D2;nYnðk2rÞ
� �

� expðinhÞ; ai < r < ao: (8b)

The set of unknown coefficients fAn, C1,n, C2,n, D1,n, D2,n,

Eng can be identified in terms of coefficient Bn by using

boundary conditions at the surface of the elastic shell. Thus,

substituting solutions of Eqs. (7) and (8) into Eq. (5) and

FIG. 1. Cross-section of an elastic shell in the primary cell of doubly peri-

odic array.
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taking inner product
Ð 2p

0
h�i expðimhÞdh one can derive an

algebraic system of equations,

An ¼
aoJ0nðkoaoÞ; i n JnðkoaoÞ; aoY0nðkoaoÞ; i n YnðkoaoÞ
� �

Xn

aoJ0nðkoaoÞ

� Y0nðkoaoÞ
J0nðkoaoÞ

Bn; (9)

CnXn ¼ 0; 0;� 2jo�ok2
o

aopJ0nðkoaoÞ
; 0

� �T

Bn; (10)

where �1 < n < 1, ja ¼ ca=c2, �a ¼ qaca=(qc2), and

Z0nðkarÞ ¼ dZnðkarÞ=dr is the derivative of cylindrical func-

tion, Xn is the vector (C1,n, D1,n, C2,n, D2,n)T of unknown

coefficients, and Cn is the matrix of 4 � 4 elements in the

following form:

Cn ¼

f1;i;J f2;i;J f1;i;Y f2;i;Y

g1;i;J g2;i;J g1;i;Y g2;i;Y

f1;o;J f2;o;J f1;o;Y f2;o;Y

g1;o;J g2;o;J g1;o;Y g2;o;Y

0
BBB@

1
CCCA; (11)

where the coefficients are defined as

f1;a;Z ¼ � 2

aa
þ �ajak2

aZnðkaaaÞ
Z0nðkaaaÞ

� �
Z0nðk1aaÞ

þ 2n2 � k2
2a2

a

a2
a

Znðk1aaÞ; (12a)

f2;a;Z ¼
in

aa
2 Z0nðk2aaÞ þ � 2

aa
þ �ajak2

aZnðkaaaÞ
Z0nðkaaaÞ

� ��

� Znðk2aaÞ
	
; (12b)

g1;a;Z ¼
2 in

aa
Z0nðk1aaÞ �

Znðk1aaÞ
aa

� �
; (12c)

g2;a;Z ¼
1

aa
2 Z0nðk2aaÞ �

2n2 � k2
2a2

a

aa
Znðk2aaÞ

� �
: (12d)

In the case of the rigid scatterer Eq. (9) is reduced to the

well-known relation between coefficients An and Bn by set-

ting Xn to the zero vector and eo to the zero value.

The periodicity condition (2) can now be used to estab-

lish the dispersion relation in the form of the Rayleigh

identity11,12 for solution of the wave propagation problems

(1)–(5), yielding

An ¼
Xþ1

m¼�1
ð�1Þm�nrm�nðko; bÞBm; �1 < n <1: (13)

Equation (13) involves the lattice sum,

rnðko; bÞ ¼
X

Rj2Knf0g
expðibTRjÞYnðkoRjÞ expðinajÞ;

�1 < n <1; (14)

within which K is the lattice where scatterers are distributed

and position vector Rj is defined as Rj(cos aj, sin aj)
T. It must

be noted that convergence of infinite sum in Eq. (14) can be

improved by transforming it to the sum over the reciprocal

lattice K� (Ref. 12).

Substitution of Eqs. (9) and (10) into relation (13) gives

MnBn þ
Xþ1

m¼�1
ð�1Þm�nrm�nðko; bÞBm ¼ 0;

�1 < n <1; (15)

where the coefficients Mn obtained from Eq. (9) characterize

the type of the circular scatterer and the boundary conditions

imposed on its surface.13 In the limiting case when the conti-

nuity boundary conditions (5) are replaced by the Neumann

conditions @p=@r ¼ 0 (i.e., for a rigid scatterer) one can find

that

Mn ¼
Y0nðkoaoÞ
J0nðkoaoÞ

: (16)

The solutions are obtained by finding zeros of the deter-

minant based on the coefficients matrix of algebraic set of

equations (15). These solutions represent the dependence of

the frequency parameter ko on the wave vector b. Note that

throughout the paper this wave vector is limited to contour

CMKC also known as first irreducible Brillouin zone. The

nodes of the contour are defined as follows: C ¼ (0, 0), M
¼ (p, 0), and K ¼ (p, p).

The predictions in Fig. 2 illustrate the existence of prop-

agating waves for different types of scatterers. The results

show the difference between rigid and elastic scatterers. In

particular, the result highlighted in the shaded area of Fig.

2(b) proves the fact that the array of soft elastic shells (latex

in our case) may support a low-frequency complete bandgap

characterized by the breathing mode resonance of an elastic

shell in air. The resonance generates a standing wave in the

infinite periodic array that creates the lower bound of the

gap. This gap where waves do not propagate is observed

below the first bandgap associated with the periodic arrange-

ment normally called the Bragg bandgap. The latter charac-

terizes the typical behavior of the doubly periodic array of

rigid scatterers shown in Fig. 2(a). Note that the first Bragg

bandgap exists around the pole kL ¼ p of the lattice sum

rn(k, b), n takes integer values.

Since the surrounding acoustic environment is assumed

to be always the same (in this paper, it is air with qo ¼ qi

¼ 1.25 kg/m3 and co ¼ ci ¼ 344 m/s), it is clear that the

position of resonance only depends on the shell radius ao,

half-thickness h, and the shell material parameters such as

density, Young’s modulus E, and Poisson’s ratio m. Thus,

our main interest is to find the range of shell properties that

will ensure that the bandgap related to a shell resonance

appears below the first Bragg bandgap.

B. Approximations for loaded thin elastic shell

The small thickness, low-frequency regime defined

here as xh=c2 � 1, and the considerable contrast between
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acoustic and elastic material parameters can be exploited to

find the relation between the position of the Bragg bandgap

and shell resonances.

If the thickness of the elastic shell is much smaller than

its mid-surface radius R ¼ (ao þ ai)=2, then g ¼ h=R � 1.

On the other hand the contrast between elastic material of the

shell and air medium considered here is relatively large. This

can be described in terms of the relative impedance

� ¼ qoco=(qc2)� 1. To have better interaction between elas-

tic and acoustic media, the contrast has to be reduced. The lat-

ter can be achieved by assuming that the relative impedance

is of the same order as the ratio between half-thickness and

mid-surface radius of the elastic shell. This can be written as

� � g: (17)

Based on the previously detailed assumptions concern-

ing the thickness and relative impedance, one can derive

long-wave low-frequency approximations for the wave equa-

tions of the thin-walled elastic shell following the technique

described elsewhere.14 Then the problem stated by Eq. (4)

and boundary conditions (5a)–(5c) can be reduced to the as-

ymptotic equations given by

1

R2

@u2

@h
þ u1

� �
� k2

3u1 ¼ �
�

jo

k2
3 poðR; hÞ � piðR; hÞ½ �

2h
;

(18a)

1

R2

@2u2

@h2
þ @u1

@h

� �
þ k2

3u2 ¼ 0; (18b)

where u1(h) and u2(h) are the approximations of the in-plane

displacement components in the elastic shell, k3 ¼ x=c3 and

jo ¼ co=c2. Here the dilatational wave speed c3 for a thin

elastic plate is recalled,

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

q 1� m2ð Þ

s
: (19)

The right-hand sides of Eq. (18) describe the type of surface

loading applied to the walls of the shell. In our case only the

membrane compression form of loading can be observed.14

Equations (18a) and (18b) are solved in conjunction

with the conditions imposed on the displacements at the shell

mid-surface that are

@poðr; hÞ
@r

����
r¼R

¼ @piðr; hÞ
@r

����
r¼R

; (20a)

@poðr; hÞ
@r

����
r¼R

¼ u1ðhÞ: (20b)

The displacements of the elastic shell can be expanded into

the Fourier series,

u1ðhÞ ¼
Xþ1

n¼�1
U1;n expðinhÞ; (21a)

u2ðhÞ ¼
Xþ1

n¼�1
U2;n expðinhÞ; (21b)

whereas acoustic potentials may take the same form as in

relations (7a) and (7b) if wave propagation through the

periodic array of thin elastic shells is studied. Inserting

acoustic and elastic components into Eqs. (18) and (20) one

can derive an approximation for coefficients Mn, yielding

Mn ¼
Y0nðkoRÞ
J0nðkoRÞ 1þ Û1;n

Y0nðkoRÞ

� �
; (22)

where

Û1;n ¼
�

jo

n2 � k2
3R2

pRh 1þ n2 � k2
3R2

� 
J0nðkoRÞ

: (23)

It is noted that as � ! 0 the given form of Mn transforms to

the coefficient for the rigid scatterer (16).

The results can be compared with the exact form of

coefficient Mn derived from Eqs. (9) and (10). Figure 3(a)

demonstrates that the approximation is within 1% of the

exact solution for the modes related to a rigid shell and to

the first elastic shell resonances of different indices. Also,

two major bandgaps below the first Bragg bandgap are pre-

dicted. They can be identified with the two elastic shell

resonances with indices n ¼ 0 and n ¼ 61 as shown by the

predictions in Fig. 3(b). The predictions in Fig. 3(b) are

FIG. 2. Solutions of Eq. (15) along the contour CMKC. The periodic arrays

have lattice constant L ¼ 0.08 m. (a) Periodic array of rigid scatterers of radius

ao¼ 0.0275 m. (b) Periodic array of elastic shells of radius ao¼ 0.0275 m, thick-

ness 2h¼ 0.00025 m, density q¼ 1100 kg/m3, c1¼ 954 m/s, and c2¼ 23 m/s.
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obtained by allowing coefficient Mn only to take form (22)

for the specified indices while for all other values it is given

in the form for the rigid scatterer coefficient (16). There is

also a third resonance related to n ¼ 62, which appears at

kL 	 0.86. The bandgap for this resonance is predicted to be

almost negligible. Nevertheless this bandgap is observed

clearly in the laboratory experiments described in Sec. III C.

Reasons for this are discussed later.

The bandgap for n ¼ 0 is a result of the axisymmetric

resonance of the shell, since it does not depend on polar

angle h. To estimate the lower bound of this gap the reso-

nance of the single shell has to be found. This requires solu-

tion of the appropriate eigenvalue problem, where the outer

acoustic potential is given by the Bessel function of second

kind only and the displacement field in the shell obeys Eq.

(18). The solution of this problem corresponds to zeros of

determinant of the coefficient matrix. The determinant takes

form of the expression found in the square brackets of rela-

tion (22), which can be approximated by introducing a new

small parameter. This parameter is based on the assumption

that the radius of the elastic shell is much smaller than wave-

length in air (i.e., koR� 1).

Expanding Bessel functions and collecting similar

orders of smallness in accordance with Eq. (17) results in the

leading order approximation, yielding

8g 4ðj2 � 1Þ þ j2
oðkRÞ2

h i
þ �jo ðkRÞ2 4 log

2

kR
� 4cþ 1

� �
� 8

� �
¼ 0; as kR! 0;

(24)

where j ¼ c2=c1, and c 	 0.5772 is the Euler’s constant.15

Solution of this equation gives the critical value of the lower

bound of the corresponding bandgap. For example, for a latex

shell of radius ao ¼ 0.0275 m, thickness 2h ¼ 0.00025 m, den-

sity q ¼ 1100 kg/m3, wave velocities c1 ¼ 954 m/s, and c2

¼ 23 m/s, the first solution of Eq. (24) is found at kL 	 1.42.

The resonant frequency of the latex calculated from approxi-

mate equation (24) deviates by no more than 2% from the

exact solution given by zeros of Eq. (22). By lowering the

approximation accuracy to 6% the relation (24) can be

reduced to a simple quadratic equation from which the reso-

nance of the elastic shell in air can be found explicitly, i.e.,

ðkRÞ2 ¼ 1

gj2
o

4gð1� j2Þ þ �jo

� �
; as kR! 0: (25)

A more detailed analysis of how size and position of the

bandgap vary with respect to material parameters is illus-

trated in Fig. 4, where the lower bound is approximated by

roots of Eq. (24) and the upper bound is the solution of

Rayleigh identity, Eq. (15). The results show that to have rel-

atively large bandgap in an interesting frequency interval,

the material contrast at the acoustic–elastic interface has to

be reduced to minimum.

FIG. 3. The eigenvalue solution along the contour CMKC for the periodic array of thin elastic shells of radius ao ¼ 0.0275 m and thickness 2h ¼ 0.00025 m

with lattice constant L ¼ 0.08 m. The material parameters of the shell are q ¼ 1100 kg/m3, c1 ¼ 954 m/s, and c2 ¼ 23 m/s corresponding to E 	 1.75 MPa and

m 	 0.4997. (a) (—–) Solutions of Eq. (15) compared with (- - -), the shell approximations (18). (b) Only the two different types of shell resonances are allowed

in the calculations. The upper graph is associated with n ¼ 0 resonance and the lower graph corresponds to n ¼ 61 resonance.

FIG. 4. (Color online) Size and position of the bandgap characterized by the

axisymmetric resonance of the thin elastic shell. The solution in terms of

scaled frequency koL is plotted against two dimensionless parameters � and

g ¼ h=R with R ¼ 0.027625 m. Upper and lower surfaces correspond to the

upper and lower bounds of the gap.
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C. Auxiliary problem: Single elastic shell

The efficiency of the approximations can be explored fur-

ther by comparing predictions of the solution of the auxiliary

scattering problem for a single shell with the data. We con-

sider a two-dimensional (2D) problem consisting of a single

thin elastic shell surrounded by an acoustic medium. The rela-

tive impedance obeys condition (17). Acoustic waves are gen-

erated by a cylindrical source, which is positioned in the outer

region of the shell. The origin of the Cartesian (x, y) and polar

coordinates (r, h) coincides with the source location.

Potential po(r) in the outer acoustic medium satisfies the

Helmholtz equation (1) and Sommerfeld’s radiation

conditions,

@po

@r
� ikpo ¼ o r�1=2

� �
; as r !1; (26)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The solution representing scattered

field is given by

po;sðr; hÞ ¼
Xþ1

n¼�1
AnZnHð1Þn ðkor̂Þ expðinĥÞ; r̂ > ao;

(27)

so that total field in the outer acoustic medium takes the fol-

lowing form:

poðr; hÞ ¼ H
ð1Þ
0 ðkorÞ þ po;sðr; hÞ; (28)

where r̂ðr; hÞ and ĥðr; hÞ are the polar coordinates of receiver

with origin placed at the center of scatterer, An are unknown

coefficients and factors Zn are found from

Zn ¼
J0nðkoRÞ

H
ð1Þ0
n ðkoRÞ þ iÛ1;n

: (29)

Note that when Û1;n ¼ 0 factors Zn transform to those for the

case of a rigid cylinder.

Use of the formulations from Secs. II A and II B leads

to solutions for the inner acoustic medium and thin shell as

relations (7) and (21), respectively. Note that for future use

the cylindrical source function in Eq. (28) has to be

expanded into series using Graf’s addition theorem so that

only one set of polar coordinates is employed. This gives

poðr̂; ĥÞ ¼
Xþ1

n¼�1
Jnðkor̂ÞHð1Þn ðkoQÞ exp �in pþ að Þ½ �
n

þ AnZnHð1Þn ðkor̂Þ
o

expðinĥÞ; r̂ > ao; (30)

within which vector Q ¼ Q (cos a, sin a) is the radius vector

to the center of shell.

The unknown coefficients can be derived by using as-

ymptotic equations (18a) and (18b), boundary conditions

(20a) and (20b), and the modified solution (30). After solv-

ing the appropriate algebraic system, coefficients An are

derived as

An ¼ �Hð1Þn ðkoQÞ exp �in pþ að Þ½ �; �1 < n <1:
(31)

The formulation outlined here describes wave scattering

from a thin shell made of a perfectly elastic material. Accord-

ing to the results of Sec. II B, interesting effects are observed

for so-called soft elastic materials that can be identified by

c2=c1 � 1. Relevant viscoelasticity has to be taken into ac-

count. For rubber-like solids, viscoelasticity can be described

by a linear model. The dynamic Young’s modulus is16

EðtÞ ¼ Ê 1� f ðtÞ½ �; (32)

within which we introduce dynamic Young’s modulus Ê and

relaxation function of the following well-known form:

f ðtÞ ¼
X

j

Êj 1� expð�t=sjÞ
� �

; (33)

where the sum of measured extensional moduli Êj is taken

over relaxation times sj.

Applying the Laplace transform
Ðþ1

0
h�i expð�stÞdt, one

can derive the Young’s modulus in terms of the transform

parameter s as

EðsÞ ¼ Ê 1� sFðsÞ½ �; (34a)

FðsÞ ¼
X

j

Êj

s 1þ ssj

� : (34b)

This can also be represented in the frequency domain by

using s ¼ �ix, so that

EðxÞ ¼ Ê 1�
X

j

Êj

1� ixsj

� 
" #

: (35)

Equation (35) may also be obtained from the general stress–

strain relation by taking the Fourier transform
Ðþ1
�1 h�i

expðixtÞdt.
We use viscoelasticity data measured for the material

similar to latex used in our experiments.17 Instead of

Eq. (35), this requires use of

EðxÞ ¼ E�
XN

j¼1

ixsjEj

1� ixsj

� ; (36a)

E ¼ Ê�
XN

j¼1

Ej and Ej ¼ ÊÊj; (36b)

where the Young’s modulus E corresponds to the equilib-

rium state and values of Ej and sj are taken for an elastomer

with properties similar to latex,17 see Table I. Note that mod-

ulus E is always set to 1.75 MPa.

In Fig. 5(a) the viscoelastic effect is illustrated. The

assumed configuration is identical to that used in the experi-

ments described in Sec. III. The results are computed in terms

of insertion loss (IL) defined as
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IL ¼ 20 log10

H
ð1Þ
0 ðkorÞ

po

�����
�����: (37)

It is observed that the axisymmetric resonance discussed

in Sec. II B is almost at the same frequency for both visco- and

elastic solids, whereas the resonance related to indices n ¼ 61

is shifted to the higher frequency for the viscoelastic case. The

slight shift in axisymmetric resonance gives better agreement

with the data in Fig. 5(b). We also note the peak around 500

Hz is associated with the resonance of index n ¼61.

D. Array of elastic shells

We next consider finite array of thin elastic shells dis-

tributed in lattice with square cells of size L. Assuming that

cylindrical source generates sound waves and using a multi-

ple scattering technique,2 the solution in the outer acoustic

environment can be derived in the following form:

poðr; hÞ ¼ H
ð1Þ
0 ðkorÞ þ

XM

m¼1

Xþ1
n¼�1

Am
n Zm

n Hð1Þn ðkor̂mÞ expðinĥmÞ;

(38)

where M is the number of scatterers in the array, the first

sum is taken over all numbers of shells in the array, the fac-

tors Zm
n take the previously derived form (29) specified to the

scatterer with index m, and variables r̂mðr; hÞ and ĥmðr; hÞ
are the polar coordinates with origin in the center of shell of

index m. Note that the solutions for the shells and the inner

acoustic medium are identical to those in Sec. II B.

To compute the unknown coefficients Am
n in Eq. (38),

we again need to express solution (38) in terms of one set of

polar coordinates ðr̂m; ĥmÞ that results in

poðr̂m; ĥmÞ ¼
Xþ1

n¼�1
fJnðkor̂mÞHð1Þn ðkoQmÞe�in pþamð Þ

þ Am
n Zm

n Hð1Þn ðkor̂mÞ þ
XM

p¼1; p 6¼m

Xþ1
q¼�1

Ap
qZp

qJn

� ðkor̂mÞHð1Þq�nðkoQmpÞeiðq�nÞðpþampÞg

� einĥm ; m ¼ 1;… ;M; (39)

where vector Qm ¼ Qm(cos am, sin am) is the radius vector to

the center of scatterer Cm and vector Qmp ¼ Qmp(cos amp,

sin amp) defines the position of scatterer Cp with respect to

scatterer Cm.

Use of the modified solution (39) in Eqs. (18) and (20) to-

gether with the solutions of inner acoustic medium and elastic

shell makes it possible to derive the system of algebraic equa-

tions, which is similar to the one in Ref. 2, Eq. (4). This gives

Am
n þ

XM

p¼1; p 6¼m

X
q¼�N

N
Ap

qZp
qHð1Þq�nðkoQmpÞeiðq�nÞðpþampÞ

¼ �Hð1Þn ðkoQmÞe�in pþamð Þ: (40)

The obtained algebraic system must be truncated to the finite

number M(2N þ 1) of equations,18 and then can be used

to obtain the coefficients Am
n ; n ¼ 1;… ;N; m ¼ 1;… ;M

numerically.

Figure 6 illustrates results for the doubly periodic infinite

array and its finite counterpart. The dimensions are taken

from the results of Sec. II B. As expected the gaps between

TABLE I. Relaxation times and elastic moduli used in the definition of

dynamic Young’s modulus [Eq. (36)].

Relaxation time, sj (s) Moduli, Ej (N/m2)

4.32 � 10�9 9.00 � 106

5.84 � 10�8 4.20 � 106

3.51 � 10�7 2.94 � 106

2.28 � 10�6 2.41 � 106

1.68 � 10�5 1.87 � 106

2.82 � 10�4 1.31 � 106

7.96 � 10�3 7.02 � 105

9.50 � 10�3 4.45 � 105

FIG. 5. IL computed and measured experimentally for single elastic shell

made of latex. Distances from scatterer to the source and receiver are 1.5 and

0.05 m, respectively. The elastic shell is of radius 0.0275 m with thickness

0.00025 m. The experiments carried out to obtain these data are described in

Secs. III A and III B. (a) Semi-analytical results for (—–) elastic and (- - -)

viscoelastic solids. (b) Data (—–) compared with semi-analytical results (- - -)

for a viscoelastic solid.
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the eigenvalue solutions correspond to the maxima of IL. In

particular we are interested in the two shaded bandgaps.

The source and receiver are positioned along the line

perpendicular to the longest axis of the finite array. This

means that in the eigenvalue problem waves propagate along

interval GM and the band diagram of this interval is com-

pared with the computed IL. It is clearly seen that the shaded

part of the bandgap related to the axisymmetric resonance is

identified by a broad positive IL peak. Similarly the first and

higher orders Bragg bandgaps can also be associated with

positive IL peaks.

To compare the semi-analytical results with data, we

again introduce viscoelasticity defined by a Young’s modu-

lus of complex form (36). This leads to redefining unknown

coefficients in Eq. (39) by solving system (40) with modified

elastic parameters. In Fig. 7(a) the theoretical predictions

show relatively good agreement with data obtained for 7 � 3

array of elastic shells with lattice constant L ¼ 0.08 m.

Around 2000 Hz one can observe the effect of the periodic

structure defined through the Bragg resonance that is

f ¼ co

2L
Hz: (41)

The first and broad third peaks in the experimental results at

500 and 1200 Hz, respectively, can be identified as the

results of the resonant behavior of the elastic shells. Since

the resonance of index n ¼ 61 is dependent on polar angle,

the small discrepancy in amplitude between theoretical and

experimental results for the first peak may be explained by

differences from the assumed source and receiver positions

in the experiments. Due to the low-frequency regime, choice

of more precise viscoelasticity parameters may also contrib-

ute to better agreement with the experiment for this particu-

lar resonance. The second peak at 750 Hz observed in the

experiment can be explained by the presence of the reso-

nance with index n ¼ 62. In the theoretical predictions

where shell is homogeneous this resonance is almost negligi-

ble. However its contribution is predicted to be substantial if

the elastic shell model is modified to include relatively stiff

strips (modeled as rigid) and if the ideal cylindrical shape is

slightly deformed. These modifications are pursued in Sec.

III C. This model is closer to the cylindrical forms that result

from the method of manufacture of the cylinders used in the

experiments described in Sec. III.

Similar results depicted in Fig. 7(b) are obtained for big-

ger lattice constant L ¼ 0.1 m. By changing size of the lattice

cell, the frequencies of shell resonances are clearly not

affected though the size of the associated IL peaks varies. As

predicted by Eq. (41), we expect a shift in the position of the

Bragg resonance that results in a new position of the associ-

ated IL peak.

III. MEASUREMENTS

A. Cylinders and support system

Latex sheets 2 m long and 0.25 m thick have been

formed into cylinders with outer diameters of 27.5 and

55 mm, respectively. This has been achieved by overlapping

FIG. 6. The eigenvalue solution for the doubly periodic array of elastic

shells and the corresponding prediction of IL for a finite array of 7 � 3

shells. The shaded areas indicate potentially useful bandgap regions.

FIG. 7. IL spectra computed and measured experimentally for an array of 7 � 3 elastic shells. Distances from scatterer to the source and receiver are 1.5 and

0.05 m, respectively. The elastic shells are of radius 0.0275 m and thickness 0.00025 m. Data (—–) are compared with semi-analytical results (- - -) for visco-

elastic shell material. The experiments carried out to obtain these data are described in Secs. III A and III B. (a) L ¼ 0.08 m; (b) L ¼ 0.1 m.
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edges by a few millimeters and gluing them together. Sup-

ports for the 2 m long cylinders were provided by holed

wooden boards at the top and base of each array [see Fig.

8(a)]. The lattice constant for the arrays of latex cylinders

was 80 mm. To maintain their shape and vertical orientation,

the latex cylinders were slightly inflated above atmospheric

pressure through a common pipe connecting to a small

pump. However deviations from the cylindrical shape were

likely and could not be avoided.

B. Measurement system and data analysis

The sound source was a Bruel & Kjaer point source

loudspeaker controlled by a maximum-length sequence sys-

tem analyzer (MLSSA) system thus enabling determination

of impulse responses. Measurements were taken from the IL

spectra for single cylinders and arrays of cylinders in an

anechoic chamber. Figures 8(a) and 8(b) show an example

measurement arrangement. During the array measurements,

the receiver microphone was positioned 50 mm from the

nearest face of the array but on the opposite side to the

source. Both source and receiver were 1.2 m above the floor

of the chamber. The loudspeaker was placed between 1.5

and 1.63 m away from the array, such that the source–re-

ceiver axis was normal to the array orientation [see Fig.

8(b)]. IL spectra were calculated by subtracting signals

received without and with the cylinder array present but with

the support structure in place on both occasions.

C. Effect of gluing on the resonances of the shell

The elastic shell with glued section has non-uniform sur-

face. This may have a significant effect on the performance

of the SC composed of these shells. In order to study this

effect the shell is modeled in COMSOL Multiphysics 3.4 as an

elastic material with rigid strips that approximates the over-

lapping glued edges of the elastic sheet. The finite element

(FE) simulation is defined by the quadratic elements and the

active domain is meshed by at least five elements per wave-

length. The numerical results have been obtained on a Dell

workstation with 8 � Intel E430 processors and 32 GB ran-

dom access memory (RAM). The estimated computational

time for solving the full problem in the frequency interval

(0, 3000) Hz is 2 h.

Figure 9 illustrates the geometry used in the 2D numeri-

cal simulation. A rigid inclusion of width l has Neumann

boundary conditions imposed at the acoustic interface and

fixed faces (zero displacements) at the elastic interface. The

elastic shell is modeled in a manner similar to that consid-

ered in the previous sections. As before the viscoelasticity is

described by the dynamical Young’s modulus given by rela-

tion (36) and Table I. Also it should be noted that the source

is assumed to be an incident plane wave exp(ikx) propagat-

ing parallel to the Ox axis. However at the source–scatterer

distances of interest, this is likely to give similar results to a

point source. Note that some inaccuracy is expected below

500 Hz where the source–scatterer distance does not exceed

three wavelengths.

In the formulation of the COMSOL model, the boundary

conditions imposed on the surface of the elastic shell are

similar to those in Eq. (5). The outer environment is sur-

rounded by perfectly matched layers (PML) that replace the

radiation condition (26). With PML boundaries and approxi-

mation of the point source by incident plane waves, the area

FIG. 8. (Color online) (a) 7 � 3 array of latex cylinders in the anechoic chamber; (b) plan of source, receiver, and array.

FIG. 9. Cross-section of elastic cylindrical shell with rigid inclusion.
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of the outer domain in finite-element method (FEM) can be

reduced to the size related to the array–receiver distance.

In Fig. 10(a) the performance of a 7 � 3 array of modi-

fied latex shells is compared with the results obtained in Sec.

II D. It is shown that rigid inclusion of the given size has little

impact on the positions of all three resonance frequencies of

the elastic shell ( n ¼ 0, n ¼ 61, and n ¼ 62). However, the

third resonance f 	 750 Hz with index n ¼ 62 is amplified

and becomes more noticeable.

As well as non-uniform boundary conditions due to glu-

ing, significant changes in the form of the second and third

resonances can also be the result of departures of the cross-

sectional shapes of the elastic shells from circular. Figure

10(b) shows numerical predictions for a 7 � 3 array of ellip-

tical shells. The semi-major ao,1 and semi-minor ao,2 axes

are calculated on the assumption that the circumference is the

same as that of a circular cylinder of radius ao ¼ 0.0275 m.

Although it has not been possible to reproduce the measured

form of the third resonance around f 	 650 Hz exactly, it is

predicted that this peak will broaden if the elastic shells are

elliptical rather than circular in cross-section.

IV. CONCLUSIONS

SCs composed of elastic shells have been considered.

Additional low-frequency bandgaps are predicted in an infi-

nite periodic structure formed by the thin elastic shells made

of suitably soft rubber. The additional bandgap due to the

axisymmetric resonance of the shell is predicted to be the

widest among those generated by the shell resonances. Its

lower bound is given by a simple relation between material

and geometrical parameters of the shell. This relation is

obtained by using asymptotic equations for the thin elastic

isotropic cylindrical shell subjected to the membrane com-

pression form of loading. It provides a tool for choosing the

material as well as radius and thickness of the shell so that

the first resonances are positioned below the first Bragg

bandgap of the array. Viscoelasticity effect has also been

included into the final results and gives better agreement

with the experiments.

The presented semi-analytical method offers a fast and

reliable approach to solving the problem of scattering by an

array of cylindrical elastic shells. The computational time

required by this method is less than one tenth of that needed

for traditional numerical methods such as FEM.

The predicted performance of arrays of elastic shells in

the low-frequency range has been verified by laboratory

experiments. Measured low-frequency peaks correspond to

the bandgaps related to the first shell resonances with indices

n ¼ 0, n ¼ 61, and n ¼ 62.

Without some form of protection, arrays of latex cylin-

ders would be impractical in outdoor environments. There-

fore the acoustical effects of providing suitable protection

are being investigated.
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