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We study reliability equivalence factors of a system of independent and identical components with expo-
nentiated Weibull lifetimes. The system has n subsystems connected in parallel and subsystem i has mi

components connected in series, i = 1, . . . , n. We consider improving the reliability of the system by (a)
a reduction method and (b) several duplication methods: (i) hot duplication; (ii) cold duplication with
perfect switching; (iii) cold duplication with imperfect switching. We compute two types of reliability
equivalence factors: survival equivalence factors and mean equivalence factors. Although our methods
adapt for more general lifetime models, we use the exponentiated Weibull distribution because it is flexi- Q6
ble and enables comparisons with other reliability equivalence studies. The example we present demon-
strates the potential for applying these methods to address specific questions that arise when attempting
to improve the reliability of simple systems or simple configurations of possibly complex subsystems in
many diverse applications.

20

25

Keywords: series–parallel system; exponentiated Weibull distribution; reliability equivalence factor;
reduction method; duplication method.30

1. Introduction

The concept of reliability equivalence factors was introduced by Råde (1993a,b). He applied this con-
cept to simple systems that consist of one component or two components connected in series or parallel.
Later, Sarhan (2000, 2005) and Sarhan et al. (2008) applied this concept to more general systems. Most
of the designs considered have components with exponential lifetime distributions although some stud-35

ies applied this concept to other lifetime distributions, such as the Weibull distribution, El-Damcese
(2009), gamma distribution, Xia & Zhang (2007), exponentiated exponential distribution, Abdelkader
et al. (2013) and recently Burr-type X distribution, Migdadi & Al-Batah (2014).

There are two main methods for improving a system’s design. The first method is reduction, which
involves improving the reliability of the system by reducing the failure rate by a factor ρ for some of40

the system components, where ρ ∈ (0, 1). This can be achieved by replacing standard components with
more expensive, higher-quality components. The second method for improving a system’s design is

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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redundancy duplication, which involves adding extra components in parallel to existing system com-
ponents. There are three ways to add extra components to the system: hot duplication; cold duplication
with perfect switch; cold duplication with imperfect switch. Sometimes, and for many different reasons45

such as high cost and space limitation, it is impossible to improve the reliability of the system by the
redundancy duplication method. Reliability equivalence factors refer to the factors by which the failure
rates of some of the system’s components must be reduced in order to attain equality of the reliability
of the system with that of a better system. Such information can then provide useful input for planning Q7
various maintenance strategies as discussed by Percy et al. (2010).50

Series–parallel and parallel–series system configurations are the building blocks for more compli-
cated systems, and an understanding of the analytical processes and optimal strategies involved for these
systems enables and informs arbitrary generalization to complex situations. However, only one of these
is needed to illustrate the methodology and we choose the series–parallel system here. In this study,
we also assume that all the system’s components are independent and follow the exponentiated Weibull55

distribution of Mudholkar & Srivastava (1993) with identical parameters. We choose this distribution
because it includes all common shapes of hazard function and because its hazard and reliability are
elementary functions. In particular, it includes the monotone hazard function of the Weibull distribu-
tion but also permits bathtub and inverted bathtub hazard functions. Special cases of the exponentiated
Weibull distribution include the Weibull, exponentiated exponential and Burr-type X distributions men-60

tioned above. Firstly, we compute the reliability function and the mean time to failure (MTTF) of the
original system. Secondly, we compute the reliability functions and MTTFs of the systems follow-
ing improvement according to reduction, hot duplication and cold duplication (perfect and imperfect)
methods. Thirdly, we equate the reliability function and the MTTF of the system improved according
to the reduction method with the reliability function and the MTTF of the system improved according65

to each of the duplication methods to determine the reliability equivalence factors. Finally, we illustrate
the results obtained with an application example by presenting summary tables and figures. This paper
expands considerably upon some preliminary ideas that Alghamdi & Percy (2014) presented, by inves-
tigating both survival and mean reliability equivalence factors (MREFs) for a series–parallel system,
and both hot and cold duplication methods.70

2. Series–parallel system

The system we consider here is shown in Fig. 1 and consists of n subsystems connected in parallel, Q8
where subsystem i consists of mi components that are connected in series for i = 1, 2, . . . , n. Such a
system is usually referred to as a series–parallel system (El-Damcese, 2009).

We assume that the lifetimes of all the system’s components are independent and follow the expo-75

nentiated Weibull distribution with identical parameters; see Mudholkar & Srivastava (1993) and Lai
(2014). The exponentiated Weibull distribution generalizes well-known lifetime distributions including
exponential, Rayleigh and Weibull, and has the desirable properties of flexibility and tractability noted
earlier.

Under this assumption, the reliability function for each component j (j = 1, 2, . . . , mi) in subsystem80

i (i = 1, 2, . . . , n) is given by
r(t) = 1 − (1 − e−αtβ )θ (1)

for t � 0, as the lifetimes of components are unaffected by failures of other components. Now define
Ri(t) to be the reliability function of subsystem i. This then takes the form

Ri(t) = {r(t)}mi (2)
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1 2 m1

1 2 m2

1 2 mn

Fig. 1. Series–parallel system.

for t � 0, so the reliability function of the series–parallel system is

R(t) = 1 −
n∏

i=1

{1 − Ri(t)} (3)

for t � 0, and the MTTF of the series–parallel system is given by85

MTTF =
∫ ∞

0
R(t) dt. (4)

3. Designs of improved systems

The two main approaches for improving a system are reduction methods and standby redundancy (dupli-
cation) methods. The latter comprise two variations, hot duplication and cold duplication. Furthermore,
cold duplication can be performed with perfect switch or imperfect switch. In this section, we derive the
reliability function and the MTTF, primarily for the series–parallel system, when improved according90

to the methods identified above.

3.1 Reduction method

As mentioned in the introduction, the reliability of a system can be improved by reducing the failure rate
for some of the system’s components by a factor ρ ∈ (0, 1). For the exponentiated Weibull distribution,
reducing only the scale parameter α reduces the failure rate. Here, we consider reducing α for a set A of95

the system’s components by a factor ρ ∈ (0, 1), in order to reduce the failure rate (hazard function) for
the whole system. This is a logical procedure for the exponentiated Weibull distribution.

Define ai (i = 1, 2, . . . , n) to be the number of components in subsystem i whose failure rate is
reduced, so ai ∈ {0, 1, . . . , mi} and the cardinality of the set of improved components is |A| = ∑n

i=1 ai.
By comparison with Equation (2), we see that the reliability function R(A)

i (t) of subsystem i is then100
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given by

R(A)
i (t) = {1 − (1 − e−ραtβ )θ }ai{1 − (1 − e−αtβ )θ }mi−ai

for t � 0 from Equation (1) and by comparison with Equation (3), since the components are connected
in series. Then the reliability function of the system takes the form

R(A)(t) = 1 −
n∏

i=1

{1 − R(A)
i (t)}

since the subsystems are connected in parallel. We can then compute the MTTF of this series–parallel
system as105

MTTF(A) =
∫ ∞

0
R(A)(t) dt.

3.2 Duplication methods

Now we obtain the corresponding reliability measures of the system when it is improved by duplica-
tion. We derive the reliability function and the MTTF, primarily for the series–parallel system, when
improved according to the hot duplication method and the cold duplication methods with perfect and
imperfect switches.110

3.2.1 Hot duplication method. This means that some of the system components are duplicated in
parallel by similar components. We assume that, in the hot duplication method, each component of the
set B is augmented by introducing a new but identical component in the same subsystem.

Let bi (i = 1, 2, . . . , n) be the number of components in subsystem i whose reliability is improved
according to the hot duplication method, so bi ∈ {0, 1, . . . , mi} and |B| = ∑n

i=1 bi. The reliability function115

R(B)
i (t) of subsystem i is given by

R(B)
i (t) = {1 − (1 − e−αtβ )2θ }bi{1 − (1 − e−αtβ )θ }mi−bi

for t � 0 from Equation (1), since the components are connected in series. Then the reliability function
of the whole system takes the form

R(B)(t) = 1 −
n∏

i=1

{1 − R(B)
i (t)}

for t � 0, and the MTTF of this series–parallel system can then computed as

MTTF(B) =
∫ ∞

0
R(B)(t) dt.

3.2.2 Cold duplication method with perfect switch. This approach to improving system reliability120

means that a similar component is connected with an original component in such a way that it is acti-
vated immediately upon failure of the original component. For this aspect of our analysis, the cold
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duplication method assumes that each component of a set C is improved by introducing a new but iden-
tical component with a perfect switch. The switch immediately transfers load to the standby component
when the original component fails, which means the switch operation time is negligible.125

Let ci (i = 1, 2, . . . , n) be the number of components in subsystem i, whose reliability is improved
according to the cold duplication method with perfect switch, so ci ∈ {0, 1, . . . , mi} and |C| = ∑n

i=1 ci.
Let s1(t) be the reliability function of each component whose reliability is improved according to cold
duplication with perfect switch. Regarding a definition of cold duplication with perfect switch, we can
describe this improvement as a renewal process with only one renewal (Gamiz et al., 2011). Using130

the convolution technique, the reliability function of each component whose reliability is improved
according to cold duplication with perfect switch can be derived as follows:

s1(t) = 1 −
∫ t

0

−dr(x)

dx
[1 − r(t − x)] dx, (5)

where r() is the reliability function for the exponentiated Weibull lifetime distribution presented in
Equation (1). By comparison with Equation (2), we see that the reliability function R(C)

i (t) of subsystem
i is given by135

R(C)
i (t) = {s1(t)}ci{1 − (1 − e−αtβ )θ }mi−ci

for t � 0, from Equation (1), since the components are connected in series. Then the reliability function
of the system takes the form

R(C)(t) = 1 −
n∏

i=1

{1 − R(C)
i (t)}

for t � 0, and s1(t) as defined in Equation (5), since the subsystems are connected in parallel. We can
then compute the MTTF of this series–parallel system as

MTTF(C) =
∫ ∞

0
R(C)(t) dt.

3.2.3 Cold duplication method with imperfect switch. This approach to improving system reliability140

means that a similar component is connected with an original component by a cold standby via a ran-
dom switch having a constant failure rate. For this aspect of our analysis, the cold duplication method
assumes that each component of a set D is improved by introducing a new but identical component with
an imperfect switch.

Let di (i = 1, 2, . . . , n) be the number of components in subsystem i, whose reliability is improved145

according to cold duplication with imperfect switch, so di ∈ {0, 1, . . . , mi} and |D| = ∑n
i=1 di. Let s2(t) be

the reliability function of each component whose reliability is improved according to cold duplication
with imperfect switch. Following the same technique that we used for cold duplication with perfect
switch but with the extra condition that the switch is not 100% reliable, Billinton & Allan (1992), we
have150

s2(t) = 1 −
∫ t

0

−dr(x)

dx
[1 − r(t − x)s3(x)] dx, (6)

where r() was defined in Equation (1), and s3() is the reliability function for the imperfect switch. The
imperfect switch is chosen to have a constant failure rate λ, which means that it has an exponential
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lifetime distribution with parameter λ and so

s3(t) = e−λt. (7)

The reliability function R(D)
i (t) of subsystem i is given by

R(D)
i (t) = {s2(t)}di{1 − (1 − e−αtβ )θ }mi−di

for t � 0, from Equation (1), since the components are connected in series. Then the reliability function155

of this series–parallel system takes the form

R(D)(t) = 1 −
n∏

i=1

{1 − R(D)
i (t)}

for t � 0 and s2(t) as defined in Equation (6), since the subsystems are connected in parallel. We can
then compute the MTTF of this series–parallel system as

MTTF(D) =
∫ ∞

0
R(D)(t) dt.

4. Reliability equivalence factors

According to El-Damcese (2009), ‘A reliability equivalence factor is a factor by which a characteristic160

of components of a system design has to be multiplied in order to reach equality of a characteristic of
this design and a different design regarded as a standard’.

We compute two types of reliability equivalence measures. The first type involves survival reliability
equivalence factors (SREFs) and these are determined from the reliability or survival function. The
second type involves MREFs and these are determined from the MTTF.165

4.1 Survival reliability equivalence factors

The idea of SREFs is to assess what degrees of intervention are required to establish equivalence
between the reliability functions of a system whose reliability is improved according to one of the
duplication methods and a system whose reliability is improved according to the reduction method.

That is, to derive the SREFs, we have to solve the following set of equations:170

R(A)(t) = R(H)(t) = ω, H = B, C, D (8)

for the appropriate reduction factor ρ and time fractile t corresponding to a specified reliability require-
ment ω. The system of equations in (8) has no closed-form solutions for our problem and we perform
the calculations numerically using a mathematical package.

4.2 Mean reliability equivalence factors

The idea of MREFs is to assess what degrees of intervention are required to establish equivalence175

between the MTTF of a system whose reliability is improved according to one of the duplication meth-
ods and a system whose reliability is improved according to the reduction method.
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That is, to derive the MREFs, we have to solve the following set of equations:

MTTF(A) = MTTF(H), H = B, C, D (9)

for the appropriate reduction factor ρ. The system of equations in (9) also has no closed-form solutions
and can be solved using a mathematical package. We used Matlab and Mathcad to derive and compare180

both sets of results for SREFs and MREFs.

5. Numerical analysis and results

Suppose that we have a series–parallel system consisting of two subsystems connected in parallel as
shown in Fig. 2. It is easy to imagine systems that display this structure. For example, one of the authors
travels to work by train on one of two routes, which comprise two and three stages, respectively, each of185

which is vulnerable to random failures. The first subsystem that we consider here has two components
connected in series and the second subsystem has three components connected in series. This means that
n = 2, m1 = 2, m2 = 3 and the total number of components is m = 5. All of the system’s components
are assumed to be independent and identically distributed, with lifetimes that behave according to an
exponentiated Weibull distribution with parameters α = 1, β = 2 and θ = 3. We define:190

1. A(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent a reduction method that requires us to

reduce the failure rate of i components from the first subsystem and j from the second subsystem;

2. B(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent hot duplication methods when i compo-

nents are added to the first subsystem and j to the second subsystem;

3. C(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent cold duplication methods with perfect195

switch when i components are added to the first subsystem and j components are added to the
second subsystem;

4. D(i,j)
k , i = 0, 1, 2, j = 0, 1, 2, 3 and k = i + j, to represent cold duplication methods with imperfect

switch when i components are added to the first subsystem and j components are added to the
second subsystem.200

For this scenario, in Tables 1–3 the SREFs for hot and cold (perfect and imperfect) duplication
are calculated using Matlab according to the above formulae where ω is chosen to be 0.1, 0.5, 0.9 and
the imperfect switch has a constant failure rate λ = 0.05. For more discussions based on the results
presented in Tables 1–3, the following conditions may be observed:

• Reducing the failure rate of one component in the second subsystem (which we denote as A(0,1)
1 ) by205

setting ρ = 0.7238 improves the reliability of the system like adding one component to the second Q9
subsystem (which we denote as B(0,1)

1 ) according to a hot duplication method where the reliability
function of the system is chosen to be ω = 0.1; see Table 1.

• Reducing the failure rate of each component belonging to the set A(2,3)
5 of the system components by

setting ρ = 0.9040 improves the reliability of the system like adding a set C(0,1)
1 of components to210

the system according to a cold duplication method with perfect switch where the reliability function
of the system is chosen to be ω = 0.5; see Table 2.

aqs251
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1 2

1 2 3

Fig. 2. Series–parallel system consisting of two subsystems connected in parallel.

• Reducing the failure rate of each component belonging to the set A(2,3)
5 of the system compo-

nents by setting factor ρ = 0.2177 improves the reliability of the system like adding a set D(2,3)
5

of components to the system according to a cold duplication method with perfect switch where the215

reliability function of the system is chosen to be ω = 0.9; see Table 3.

• Missing values of the SREFs mean that it is not possible to reduce the failure rate for the set A of
components in order to improve the system reliability to be equivalent with the system reliability
that can be obtained by improving the sets B, C, D of components according to duplication methods.

• In the same manner, one can interpret the other results presented in Tables 1–3.220

Tables 4–6 present the MREFs for hot and cold (perfect and imperfect) duplication. Based on the
results presented in those tables, we see that the following conditions hold:

• The modified system that can be obtained by improving the set H (0,1)
1 , where H = B, C, D of the sys-

tem components, according to hot and cold (perfect and imperfect) duplication has the same MTTF
of that system which can be obtained by reducing the failure rate of each component belonging to225

the set A(0,1)
1 by factors ρ = 0.614, 0.134, 0.226, respectively.

• Empty cells of MREFs mean that it is not possible to reduce the failure rate of the set A components
in order to improve the MTTF of the system to be equivalent with the MTTF of the system that can
be obtained by improving the sets B, C, D of components according to the duplication methods.

• In the same manner, one can interpret the other results presented in Tables 4–6,230

Table 7 presents the MTTF of the modified systems assuming hot and cold duplication methods, the
latter with perfect and imperfect switch, assuming a constant failure rate λ = 0.05. The MTTF of the
original system is 1.172. From this table, one can conclude that

MTTF < MTTF(B) < MTTF(D) < MTTF(C).

Figure 3 explains the improvement strategies to calculate the SREFs. Figure 4 presents reliability func-
tions of the original and some modified systems. From these figures, one may observe that, for this235

scenario:
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Table 1 Hot SREFs

ω B(0,1)
1 B(0,2)

2 B(0,3)
3 B(1,0)

1 B(1,1)
2 B(1,2)

3 B(1,3)
4 B(2,0)

2 B(2,1)
3 B(2,2)

4 B(2,3)
5

0.1 0.7238 0.4111 — — — — — — — — —
A(0,1)

1 0.5 0.6009 — — — — — — — — — —
0.9 0.4519 — — — — — — — — — —

0.1 0.8657 0.7330 0.6047 0.6482 0.6108 0.5591 0.4930 0.4250 0.4134 0.3944 0.3648
A(0,2)

2 0.5 0.8173 0.6203 0.4006 0.6483 0.5501 0.4239 0.2429 0.2666 0.1961 — —
0.9 0.7803 0.4800 — 0.6188 0.4345 — — — — — —

0.1 0.9111 0.8251 0.7445 0.7714 0.7482 0.7167 0.6774 0.6384 0.6320 0.6216 0.6057
A(0,3)

3 0.5 0.8807 0.7603 0.6444 0.7767 0.7206 0.6554 0.5836 0.5910 0.5712 0.5444 0.5096
0.9 0.8597 0.6998 0.5234 0.7675 0.6807 0.5790 0.4623 0.5035 0.4720 0.4312 0.3783

0.1 0.9182 0.8163 0.6981 0.7403 0.7042 0.6517 0.5804 0.5022 0.4884 0.4654 0.4290
A(1,0)

1 0.5 0.8111 0.5830 0.2579 0.6173 0.4929 0.3029 — — — — —
0.9 0.7162 — — 0.4671 — — — — — — —

0.1 0.9336 0.8459 0.7381 0.7773 0.7438 0.6943 0.6255 0.5487 0.5350 0.5122 0.4760
A(1,1)

2 0.5 0.8677 0.6963 0.4697 0.7226 0.6279 0.4953 0.2879 0.3159 0.2322 — —
0.9 0.8204 0.5318 — 0.6713 0.4839 — — — — — —

0.1 0.9451 0.8730 0.7848 0.8167 0.7894 0.7491 0.6937 0.6327 0.6219 0.6041 0.5762
A(1,2)

3 0.5 0.9013 0.7773 0.6259 0.7959 0.7295 0.6419 0.5283 0.5410 0.5062 0.4552 0.3808
0.9 0.8732 0.6922 0.3914 0.7749 0.6667 0.5078 0.1574 0.3384 0.2208 — —

0.1 0.9537 0.8945 0.8248 0.8497 0.8284 0.7976 0.7565 0.7129 0.7055 0.6932 0.6744
A(1,3)

4 0.5 0.9222 0.8286 0.7224 0.8423 0.7940 0.7331 0.6600 0.6679 0.6467 0.6173 0.5780
0.9 0.9030 0.7753 0.6084 0.8318 0.7587 0.6643 0.5433 0.5876 0.5539 0.5086 0.4473

0.1 0.9594 0.9095 0.8532 0.8731 0.8560 0.8315 0.7991 0.7647 0.7588 0.7491 0.7341
A(2,0)

2 0.5 0.9085 0.8090 0.7070 0.8230 0.7747 0.7169 0.6511 0.6580 0.6395 0.6141 0.5807
0.9 0.8697 0.7185 0.5488 0.7828 0.7003 0.6026 0.4894 0.5295 0.4988 0.4590 0.4071

(continued).
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Table 1 Continued.

ω B(0,1)
1 B(0,2)

2 B(0,3)
3 B(1,0)

1 B(1,1)
2 B(1,2)

3 B(1,3)
4 B(2,0)

2 B(2,1)
3 B(2,2)

4 B(2,3)
5

0.1 0.9634 0.9167 0.8617 0.8813 0.8645 0.8401 0.8073 0.7722 0.7661 0.7562 0.7407
A(2,1)

3 0.5 0.9235 0.8332 0.7333 0.8463 0.8004 0.7433 0.6757 0.6829 0.6635 0.6366 0.6009
0.9 0.8954 0.7612 0.5929 0.8201 0.7441 0.6483 0.5297 0.5726 0.5399 0.4966 0.4390

0.1 0.9669 0.9239 0.8720 0.8907 0.8747 0.8512 0.8193 0.7846 0.7785 0.7685 0.7530
A(2,2)

4 0.5 0.9352 0.8563 0.7649 0.8679 0.8268 0.7742 0.7099 0.7169 0.6980 0.6715 0.6355
0.9 0.9144 0.8008 0.6489 0.8513 0.7859 0.7004 0.5879 0.6296 0.5979 0.5548 0.4952

0.1 0.9700 0.9308 0.8831 0.9004 0.8856 0.8640 0.8344 0.8020 0.7963 0.7869 0.7723
A(2,3)

5 0.5 0.9443 0.8762 0.7968 0.8863 0.8507 0.8050 0.7486 0.7548 0.7381 0.7147 0.6826
0.9 0.9283 0.8336 0.7071 0.8756 0.8211 0.7500 0.6559 0.6909 0.6644 0.6280 0.5771



�

�

“dpv001”
—

2015/1/12
—

8:56
—

page
11

—
#11

�

�

�

�

�

�

R
E

L
IA

B
IL

IT
Y

E
Q

U
IV

A
L

E
N

C
E

FA
C

T
O

R
S

FO
R

A
SE

R
IE

S–PA
R

A
L

L
E

L
SY

ST
E

M
O

F
C

O
M

PO
N

E
N

T
S11

of
21

Table 2 Cold SREFs with perfect switch

ω C(0,1)
1 C(0,2)

2 C(0,3)
3 C(1,0)

1 C(1,1)
2 C(1,2)

3 C(1,3)
4 C(2,0)

2 C(2,1)
3 C(2,2)

4 C(2,3)
5

0.1 0.1409 — — — — — — — — — —
A(0,1)

1 0.5 0.1208 — — — — — — — — — —
0.9 0.0774 — — — — — — — — — —

0.1 0.6631 0.1749 — 0.1809 0.1370 — — — — — —
A(0,2)

2 0.5 0.6984 0.1207 — 0.3541 0.1095 — — — — — —
0.9 0.7302 0.0917 — 0.5010 0.0917 — — — — — —

0.1 0.7808 0.5209 0.2476 0.5230 0.5097 0.4413 0.2470 0.2087 0.2087 0.2085 0.2000
A(0,3)

3 0.5 0.8067 0.5580 0.2036 0.6240 0.5568 0.4380 0.2011 0.1779 0.1779 0.1771 0.1550
0.9 0.8298 0.6054 0.1534 0.7092 0.6054 0.4576 0.1468 0.1388 0.1379 0.1334 0.1015

0.1 0.7543 0.1654 — 0.1756 0.0853 — — — — — —
A(1,0)

1 0.5 0.6771 — — 0.1194 — — — — — — —
0.9 0.6450 — — 0.0622 — — — — — — —

0.1 0.7901 0.2274 — 0.2355 0.1766 — — — — — —
A(1,1)

2 0.5 0.7680 0.1421 — 0.4174 0.1288 — — — — — —
0.9 0.7756 0.1000 — 0.5535 0.1000 — — — — — —

0.1 0.8272 0.4051 — 0.4097 0.3792 0.1904 — — — — —
A(1,2)

3 0.5 0.8285 0.4817 — 0.5948 0.4794 0.1396 — — — — —
0.9 0.8428 0.5539 — 0.7043 0.5539 0.1000 — — — — —

0.1 0.8579 0.5689 0.2485 0.5715 0.5546 0.4679 0.2479 0.2089 0.2089 0.2088 0.2001
A(1,3)

4 0.5 0.8666 0.6324 0.2076 0.7019 0.6310 0.4928 0.2049 0.1797 0.1797 0.1789 0.1558
0.9 0.8806 0.6898 0.1654 0.7834 0.6898 0.5380 0.1573 0.1475 0.1464 0.1410 0.1040

0.1 0.8797 0.6473 0.3151 0.6495 0.6351 0.5567 0.3144 0.2656 0.2656 0.2654 0.2545
A(2,0)

2 0.5 0.8482 0.6271 0.2483 0.6884 0.6259 0.5097 0.2453 0.2170 0.2170 0.2161 0.1892
0.9 0.8416 0.6281 0.1783 0.7275 0.6281 0.4848 0.1711 0.1622 0.1612 0.1562 0.1196

(continued).
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Table 2 Continued.

ω C(0,1)
1 C(0,2)

2 C(0,3)
3 C(1,0)

1 C(1,1)
2 C(1,2)

3 C(1,3)
4 C(2,0)

2 C(2,1)
3 C(2,2)

4 C(2,3)
5

0.1 0.8879 0.6511 0.3151 0.6533 0.6384 0.5581 0.3144 0.2656 0.2656 0.2654 0.2545
A(2,1)

3 0.5 0.8696 0.6504 0.2485 0.7143 0.6492 0.5239 0.2454 0.2171 0.2171 0.2161 0.1893
0.9 0.8716 0.6739 0.1808 0.7696 0.6739 0.5247 0.1731 0.1637 0.1626 0.1573 0.1198

0.1 0.8969 0.6614 0.3154 0.6638 0.6483 0.5647 0.3146 0.2656 0.2656 0.2655 0.2545
A(2,2)

4 0.5 0.8885 0.6851 0.2517 0.7469 0.6839 0.5553 0.2484 0.2186 0.2186 0.2176 0.1899
0.9 0.8946 0.7237 0.1939 0.8080 0.7237 0.5829 0.1845 0.1732 0.1720 0.1657 0.1225

0.1 0.9060 0.6850 0.3344 0.6872 0.6723 0.5904 0.3337 0.2819 0.2819 0.2817 0.2701
A(2,3)

5 0.5 0.9040 0.7267 0.3033 0.7811 0.7257 0.6099 0.2995 0.2651 0.2651 0.2639 0.2311
0.9 0.9117 0.7694 0.2843 0.8396 0.7694 0.6518 0.2731 0.2591 0.2575 0.2495 0.1914
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Table 3 Cold SREFs with imperfect switch (λ = 0.05)

ω D(0,1)
1 D(0,2)

2 D(0,3)
3 D(1,0)

1 D(1,1)
2 D(1,2)

3 D(1,3)
4 D(2,0)

2 D(2,1)
3 D(2,2)

4 D(2,3)
5

0.1 0.2157 — — — — — — — — — —
A(0,1)

1 0.5 0.2401 — — — — — — — — — —
0.9 0.2494 — — — — — — — — — —

0.1 0.6755 0.2153 — 0.2060 0.1666 — — — — — —
A(0,2)

2 0.5 0.7113 0.2246 — 0.3866 0.1876 — — — — — —
0.9 0.7425 0.2460 — 0.5255 0.2218 — — — — — —

0.1 0.7886 0.5356 0.2578 0.5320 0.5182 0.4506 0.2570 0.2153 0.2153 0.2153 0.2059
A(0,3)

3 0.5 0.8146 0.5784 0.2241 0.6381 0.5693 0.4530 0.2192 0.1910 0.1910 0.1895 0.1637
0.9 0.8370 0.6233 0.2206 0.7205 0.6187 0.4761 0.1945 0.1893 0.1834 0.1679 0.1158

0.1 0.7657 0.2287 — 0.2149 0.1508 — — — — — —
A(1,0)

1 0.5 0.6920 — — 0.2269 — — — — — — —
0.9 0.6628 — — 0.2439 — — — — — — —

0.1 0.8006 0.2816 — 0.2692 0.2162 — — — — — —
A(1,1)

2 0.5 0.7793 0.2661 — 0.4541 0.2221 — — — — — —
0.9 0.7867 0.2772 — 0.5786 0.2502 — — — — — —

0.1 0.8358 0.4375 — 0.4297 0.3990 0.2217 — — — — —
A(1,2)

3 0.5 0.8367 0.5191 — 0.6164 0.5027 0.2159 — — — — —
0.9 0.8503 0.5827 — 0.7187 0.5756 0.2410 — — — — —

0.1 0.8647 0.5875 0.2590 0.5829 0.5655 0.4797 0.2582 0.2156 0.2156 0.2156 0.2061
A(1,3)

4 0.5 0.8727 0.6545 0.2306 0.7161 0.6447 0.5110 0.2250 0.1938 0.1938 0.1923 0.1648
0.9 0.8861 0.7066 0.2508 0.7930 0.7023 0.5584 0.2173 0.2106 0.2032 0.1836 0.1202

(continued).
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Table 3 Continued.

ω D(0,1)
1 D(0,2)

2 D(0,3)
3 D(1,0)

1 D(1,1)
2 D(1,2)

3 D(1,3)
4 D(2,0)

2 D(2,1)
3 D(2,2)

4 D(2,3)
5

0.1 0.8852 0.6631 0.3281 0.6593 0.6444 0.5678 0.3271 0.2740 0.2740 0.2740 0.2621
A(2,0)

2 0.5 0.8547 0.6462 0.2730 0.7013 0.6377 0.5248 0.2671 0.2330 0.2330 0.2313 0.1998
0.9 0.8484 0.6452 0.2494 0.7383 0.6409 0.5029 0.2223 0.2168 0.2107 0.1942 0.1361

0.1 0.8932 0.6673 0.3281 0.6634 0.6481 0.5694 0.3271 0.2740 0.2740 0.2740 0.2621
A(2,1)

3 0.5 0.8755 0.6706 0.2734 0.7275 0.6616 0.5403 0.2674 0.2331 0.2331 0.2313 0.1998
0.9 0.8774 0.6908 0.2596 0.7796 0.6865 0.5442 0.2291 0.2229 0.2161 0.1979 0.1366

0.1 0.9019 0.6782 0.3285 0.6741 0.6583 0.5765 0.3274 0.2741 0.2741 0.2741 0.2621
A(2,2)

4 0.5 0.8937 0.7049 0.2784 0.7594 0.6961 0.5728 0.2720 0.2353 0.2353 0.2335 0.2007
0.9 0.8994 0.7389 0.2902 0.8167 0.7350 0.6022 0.2529 0.2454 0.2370 0.2147 0.1414

0.1 0.9106 0.7011 0.3482 0.6972 0.6820 0.6021 0.3471 0.2908 0.2908 0.2908 0.2781
A(2,3)

5 0.5 0.9085 0.7442 0.3334 0.7920 0.7365 0.6259 0.3262 0.2845 0.2845 0.2824 0.2440
0.9 0.9158 0.7820 0.3892 0.8467 0.7788 0.6679 0.3507 0.3426 0.3335 0.3086 0.2177
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Table 4 Hot mean equivalence factors

B(0,1)
1 B(0,2)

2 B(0,3)
3 B(1,0)

1 B(1,1)
2 B(1,2)

3 B(1,3)
4 B(2,0)

2 B(2,1)
3 B(2,2)

4 B(2,3)
5

A(0,1)
1 0.614 — — — — — — — — — —

A(0,2)
2 0.825 0.634 0.421 0.643 0.555 0.441 0.286 0.289 0.241 0.150 —

A(0,3)
3 0.885 0.768 0.651 0.773 0.722 0.661 0.590 0.591 0.573 0.548 0.515

A(1,0)
1 0.843 0.647 0.387 0.657 0.556 0.415 0.115 0.117 0.066 — —

A(1,1)
2 0.883 0.728 0.513 0.736 0.653 0.536 0.357 0.360 0.301 0.188 —

A(1,2)
3 0.910 0.793 0.640 0.799 0.738 0.655 0.540 0.542 0.510 0.462 0.390

A(1,3)
4 0.928 0.838 0.728 0.843 0.797 0.739 0.664 0.665 0.645 0.618 0.58

A(2,0)
2 0.923 0.834 0.733 0.838 0.796 0.742 0.676 0.677 0.660 0.635 0.602

A(2,1)
3 0.934 0.852 0.753 0.856 0.815 0.763 0.696 0.697 0.679 0.654 0.619

A(2,2)
4 0.943 0.870 0.779 0.873 0.836 0.788 0.723 0.724 0.707 0.682 0.647

A(2,3)
5 0.950 0.886 0.805 0.889 0.856 0.813 0.756 0.757 0.742 0.719 0.687

Table 5 Cold mean equivalence factors with perfect switch

C(0,1)
1 C(0,2)

2 C(0,3)
3 C(1,0)

1 C(1,1)
2 C(1,2)

3 C(1,3)
4 C(2,0)

2 C(2,1)
3 C(2,2)

4 C(2,3)
5

A(0,1)
1 0.134 — — — — — — — — — —

A(0,2)
2 0.692 0.162 — 0.288 0.129 — — — — — —

A(0,3)
3 0.802 0.549 0.208 0.590 0.543 0.442 0.205 0.181 0.180 0.179 0.157

A(1,0)
1 0.710 — — 0.163 — — — — — — —

A(1,1)
2 0.780 0.202 — 0.359 0.162 — — — — — —

A(1,2)
3 0.832 0.464 — 0.541 0.450 0.167 — — — — —

A(1,3)
4 0.867 0.619 0.214 0.665 0.611 0.490 0.211 0.184 0.184 0.182 0.159

A(2,0)
2 0.862 0.636 0.256 0.676 0.630 0.525 0.252 0.222 0.222 0.220 0.193

A(2,1)
3 0.878 0.655 0.257 0.696 0.648 0.538 0.253 0.223 0.223 0.221 0.193

A(2,2)
4 0.894 0.683 0.263 0.724 0.676 0.564 0.259 0.227 0.227 0.225 0.196

A(2,3)
5 0.907 0.720 0.310 0.757 0.714 0.611 0.306 0.270 0.270 0.267 0.234

• improving the reliability of all components according to cold duplication with perfect switch gives
the best system;

• for the same number of components R(t) < R(B)(t) < R(D)(t) < R(C)(t) where λ = 0.05;

Figures 5 and 6 present the behaviour of MTTF against the appropriate reduction factor ρ. It seems240

from these two figures that the following conditions holds:

• MTTFs non-decreasing with decreasing ρ for all possible sets A.

aqs251
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Table 6 Cold mean equivalence factors with imperfect switch

D(0,1)
1 D(0,2)

2 D(0,3)
3 D(1,0)

1 D(1,1)
2 D(1,2)

3 D(1,3)
4 D(2,0)

2 D(2,1)
3 D(2,2)

4 D(2,3)
5

A(0,1)
1 0.226 — — — — — — — — — —

A(0,2)
2 0.704 0.223 — 0.316 0.179 — — — — — —

A(0,3)
3 0.810 0.567 0.236 0.602 0.554 0.456 0.229 0.199 0.198 0.195 0.167

A(1,0)
1 0.723 — — 0.224 — — — — — — —

A(1,1)
2 0.790 0.280 — 0.393 0.224 — — — — — —

A(1,2)
3 0.840 0.498 — 0.562 0.473 0.223 — — — — —

A(1,3)
4 0.873 0.639 0.244 0.677 0.624 0.507 0.236 0.204 0.203 0.200 0.170

A(2,0)
2 0.867 0.654 0.288 0.688 0.641 0.539 0.280 0.245 0.244 0.240 0.205

A(2,1)
3 0.884 0.673 0.291 0.708 0.660 0.553 0.282 0.246 0.245 0.241 0.206

A(2,2)
4 0.898 0.701 0.299 0.735 0.688 0.580 0.290 0.251 0.250 0.246 0.209

A(2,3)
5 0.911 0.736 0.349 0.767 0.724 0.626 0.339 0.297 0.296 0.291 0.250

• Reducing the failure rate of one or two components from the first subsystem gives a better system
than that obtained by reducing the failure rate of one or two components in the second subsystem;
see Fig. 5. This means that improving a component from the subsystem with the smaller number245

of components is better than improving a component from the subsystem with the larger number of
components.

• Reducing the failure rates of all components in the system gives the best system; see Fig. 6.

• It is not possible to reduce the failure rate of the sets A(1,1)
2 or A(0,2)

2 of the system components to
reach the MTTF which we can achieve by improving the sets B(2,3)

5 or C(1,2)
3 of the system com-250

ponents according to hot duplication and cold duplication with perfect switch, respectively, see
Fig. 5.

• Reducing the failure rate of three components in the second subsystem (which we denote as A(0,3)
3 )

by setting ρ = 0.236 improves the MTTF of the system like adding three components to the second
subsystem (which we denote as D(0,3)

3 ) according to the cold duplication method with imperfect255

switch; see Fig. 6 and compare with Table 6.

• Reducing the failure rate of one components in the first subsystem and two components in the second
subsystem (which we denote as A(1,2)

3 ) by setting ρ = 0.390 improves the MTTF of the system
like adding two components in the first subsystem and three components in the second subsystem
(which we denote as B(2,3)

5 ) according to the hot duplication method; see Fig. 6 and compare with260

Table 4.

• Improving a number of components selected from two subsystems, with equal numbers if they
are even, gives a better system than that obtained by improving the number of components
selected from the same subsystem or selected from the two subsystems with unequal numbers; see
Fig. 6.265
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Table 7 Mean times to failure of the modified systems

{01, 12} {01, 22} {01, 32} {11, 02} {11, 12} {11, 22} {11, 32} {21, 02} {21, 12} {21, 22} {21, 32}
Hot 1.202 1.244 1.305 1.242 1.266 1.299 1.347 1.346 1.360 1.381 1.413
Cold perfect 1.230 1.381 2.104 1.347 1.387 1.499 2.120 2.255 2.257 2.266 2.420
Cold imperfect (λ = 0.05) 1.228 1.366 1.984 1.338 1.377 1.481 2.013 2.150 2.155 2.173 2.343
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Fig. 3. Use of SREFs to recommend system improvement strategies.
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Fig. 4. Reliability function of the original and some modified systems.

This numerical example clearly generates interesting conclusions for this particular system and

Q12

distributional assumptions. More importantly though, it demonstrates the potential for applying these
methods to other system structures. It also illustrates how to address specific questions that arise when
attempting to improve the reliability of simple systems or simple configurations of possibly complex
subsystems in many diverse applications.270
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Fig. 5. The behaviour of MTTF against ρ, when |A| �2.
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Fig. 6. The behaviour of MTTF against ρ, when |A| > 2.

6. Conclusions

In this paper, we evaluate both the system reliability function and the system MTTF in order to study
the reliability equivalence factors for series–parallel systems. These system structures arise often in
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business and industry and the methodology adapts readily for other forms including parallel–series
systems and more complex networks. All the system components are assumed to be independent and275

identically distributed, according to an exponentiated Weibull distribution, on account of its flexibility
and tractability for practical purposes. We discuss four different methods to improve such a system:
reduction, hot duplication and cold duplication with perfect or imperfect switch.

We derive analytical results for both survival and MREFs of these systems. Some numerical results
are then presented for a representative system in order to illustrate how one can apply the theoretical280

results obtained and to compare the various approaches in this context. Accordingly, detailed recom-
mendations are discussed for improving the system considered in this paper. Although it would be
inappropriate to extrapolate these results to other system structures from only this numerical example,
we make some interesting observations which suggest patterns that might arise more generally.

We have also identified several extensions of this study that might be worthy of future exploration,285

including comparisons with parallel–series formats and analysis of other important system structures,
equivalent systems with non-identical components and simpler systems with dependent components.
The methods described in this paper adapt readily to deal with all these other scenarios.

Perhaps in conjunction with a meta-analysis of the growing literature on reliability equivalence, we
also plan to perform a sensitivity analysis to assess how robust these results are to mis-specifications of290

lifetime distributions. Another aspect of cold duplication also has practical benefits. This is when the
standby component deteriorates during storage with a constant failure rate, so that it may not function Q10
correctly when replacing the original failed component. We are currently investigating practical evi-
dence to motivate and justify such an analysis of random switch operation times and variations of this
scenario and hope to publish our results in due course.295
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