1	Toxoplasma gondii infection in the peritoneal macrophages
2	of rats treated with glucocorticoids
3	
4	Tao Wang · Jiang-Mei Gao · Si-Qi Yi · Guo-Qing Geng · Xiao-Jie Gao · Ji-Long Shen ·
5	Fang-Li Lu · Yan-Zi Wen · Geoff Hide · Zhao-Rong Lun
6	
7	T. Wang · JM. Gao · SQ. Yi · G-Q. Geng · XJ. Gao · YZ. Wen · ZR. Lun (∞)
8	Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life
9	Sciences and Key Laboratory of Tropical Disease Control of the Ministry of
10	Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou
11	510275, China
12	e-mail: lsslzr@mail.sysu.edu.cn
13	
14	JL. Shen
15	Department of Parasitology and The Key Laboratories of Pathogen Biology and
16	Zoonoses, Anhui, Anhui Medical University, Hefei 230032, China
17	
18	FL. Lu
19	Department of Parasitology and Key Laboratory of Tropical Disease Control of the
20	Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University,
21	Guangzhou 510080, China
22	

- 23 G. Hide · Z.-R. Lun
- 24 Ecosystems and Environment Research Centre and Biomedical Research Centre,
- 25 School of Environment and Life Sciences, University of Salford, Salford, M5 4WT,
- 26 UK
- 27
- 28 T. Wang
- 29 Department of Parasitology, School of Basic Medical Sciences, Jiujiang University,
- 30 Jiujiang 332000, China
- 31

32	Abstract It is well known that toxoplasmosis can be life-threatening to
33	immunocompromised individuals such as AIDS and organ transplantation patients.
34	Glucocorticoids (GCs) are widely used in the clinic for the treatment of autoimmune
35	diseases and organ transplantation resulting in acute toxoplasmosis in these patients.
36	However, the interaction and mechanism between the development of acute
37	toxoplasmosis and GC therapy are still unknown. The aims of this study were to
38	investigate the infection of T. gondii in the peritoneal macrophages of rats treated with
39	glucocorticoids. Our results showed that the growth rate of T. gondii RH strain was
40	significantly increased in the peritoneal macrophages of rats treated with
41	glucocorticoids in vivo. For instance, 242 (±16) tachyzoites were found in 100
42	macrophages from the rats treated with methylprednisolone (MP), while only 16 (\pm 4)
43	tachyzoites were counted in the macrophages from the non-treated control rats 24
44	hrs after infection ($P < 0.01$). We also demonstrated that a significant inhibition of
45	nitric oxide (NO) production was detected in the macrophages collected from the rats
46	post-treated with GCs with 12.90 μM (±0.99 $\mu M) of nitrite production from the rats$
47	treated with MP, while 30.85 μ M (±1.62 μ M) was found in the non-treated control rats
48	36 hrs after incubation ($P < 0.01$). Furthermore, glucocorticoids could significantly
49	inhibit the expression of inducible nitric oxide synthase mRNA and its protein in the
50	rat peritoneal macrophages. Our results strongly indicate that the decrease of NO in
51	the rat peritoneal macrophages is closely linked to the cause of acute toxoplasmosis in
52	the host. Additionally, there was a significant increase in the number of cysts
53	produced by the naturally cyst forming, T. gondii Prugniaud strain with an average of

54	2795 (\pm 422) cysts of the parasite being detected in the brains of the rats treated with
55	dexamethasone, while only 1356 (±490) cysts were found in the non-treated control
56	animals (P<0.01). As rats and humans are both naturally resistant to T. gondii
57	infection, these novel data could lead to a better understanding of the development of
58	acute toxoplasmosis during glucocorticoid therapy in humans.
59	
60	Introduction
61	As one of the most severe opportunistic infectious diseases, toxoplasmosis caused by
62	Toxoplasma gondii is life-threatening to immunocompromised patients with AIDS,
63	cancer and those who are under immunosuppressant treatment following
64	transplantation. A high mortality rate has been documented in immunocompromised
65	patients due to severe toxoplasmosis (caused by the re-activation of chronic infection)
66	(Montoya and Liesenfeld, 2004). However, the association between
67	immunosuppression using glucocorticoids and the occurrence of severe toxoplasmosis
68	is not well understood (Chandrasekar and Momin, 2003; De-Medeiros et al. 2001).
69	Glucocorticoids (GCs) are important modulators of immune cell functions
70	(Sternberg, 2006). Due to their well-known immunosuppressive and
71	anti-inflammatory properties, synthetic GCs are widely used in clinical practice and
72	are effective in the treatment of autoimmune disease (Sathasivam, 2008),
73	immunological rejection (Everson et al. 2003), atopic inflammatory disease
74	(Tarpataki, 2006) and acute critical illness (Minneci et al. 2004; Rady et al. 2006).
75	It has also been well documented that GCs can mediate immune responses by

76	affecting viability and function of various important immune cells including
77	macrophages, B cells, monocytes and granulocytes (Chen et al. 2010; Tsianakas et al.
78	2012). Amongst these cells, macrophages are considered the most ubiquitous in
79	mammalian tissues and play a central role in both innate and acquired immune
80	responses.
81	Activated macrophages acquire competence for enhanced anti-microbial activity
82	including nitric oxide (NO) production (Cape and Hurst, 2009; Severin et al. 2010;
83	Silva, 2010). NO is recognized as a major regulatory molecule of the immune system
84	and a principal cytotoxic mediator of activated immune effector cells which plays a
85	critical role against pathogen infections (Adams et al. 1990; Li et al. 2012)
86	However, what is still not clear is the relationship between the effects of GCs on
87	the function of macrophages and the development of acute toxoplasmosis from
88	chronic infections. Infection of humans, with T. gondii, usually shows a chronic
89	profile which is similar to that found in rats (Sumyuen et al. 1996; Da-Silva et al.
90	2010; Dubey, 2011; Li et al. 2012). Therefore, the rat model has been suggested to be
91	an ideal model to study the development of acute toxoplasmosis from chronic
92	infection in humans. The aims of this study were to understand the effect of GCs on
93	the infection of rat peritoneal macrophages with the T. gondii RH strain and the effect
94	on cyst formation of the naturally cyst forming T. gondii Prugniaud strain in the brains
95	of rats treated with GCs. Results from this work will provide useful data to better
96	understand human toxoplasmosis from the individuals who were treated with GCs.
97	

98 Materials and methods

- 99 Animals and parasites
- 100 Special pathogen free Sprague Dawley (SD) rats weighing from 180 to 220 g were
- 101 used for the source of peritoneal macrophages and BALB/c mice used for the
- 102 maintenance of the *T. gondii* RH were purchased from the experimental animal center
- 103 of Guangdong province, China. Special pathogen free F344 rats were purchased from
- 104 Vital River Laboratories (Beijing, China). BALB/c mice were intraperitoneally (i.p.)
- 105 inoculated with 1×10^6 tachyzoites of *T. gondii* RH-GFP (Nishikawa et al. 2003).
- 106 Tachyzoites were harvested and isolated from the infected animals and were
- 107 resuspended in RPMI-1640 medium supplemented with 10% FBS. T. gondii
- 108 Prugniaud strain was maintained in NIH mice. Cysts were isolated from the brains of
- 109 infected animal when they were required. Protocols for the use of animals were
- 110 approved by the Institutional Review Board of Animal Care of Sun Yat-Sen
- 111 University (973 project, #2010CB530000).
- 112
- 113 Peritoneal macrophage isolation and cultivation
- 114 Methods for isolation of macrophages from GC treated and non-treated rats were used
- as previously described (Li et al. 2012; El-Mahmoudy et al. 2002). The pelleted
- 116 peritoneal macrophages were resuspended in RPMI-1640 medium containing 10%
- 117 fetal bovine serum (FBS) and penicillin (100 U/ml) after washing. Final
- 118 concentrations of 2×10^5 cells in 200 µl and of 5×10^6 cells in 2.5 ml were seeded
- 119 into each well in 96-and 6-well tissue culture plates (Corning, USA) respectively and

120	were incubated at 37°C, 5% CO ₂ , 95% air for 2 hrs. The macrophages were then
121	carefully washed three times with FBS free RPMI-1640 medium to remove the
122	non-adherent cells and incubated with the test compounds indicated in the results.
123	
124	Animal treatments
125	For the experimental treatment with GCs, 8 rats in each of four groups were used in
126	this study. In the control group, each rat was intramuscularly (i.m.) injected with 0.2
127	ml saline solution, while in the other three groups, each animal was intramuscularly
128	injected with dexamethasone (DXM), hydrocortisone sodium succinate (HSS) and
129	methylprednisolone (MP) at 1.5 mg/kg/d, 20 mg/kg/d and 20 mg/kg/d respectively for
130	7 days (Da-Silva et al. 2010; Dimitriu et al. 2008).
131	
132	T. gondii infection in macrophages collected from rats treated with GC
133	The macrophages harvested from the rats treated with GCs mentioned above, were
134	challenged with tachyzoites at a ratio of tachyzoite/macrophage of 1:1 at 12 hrs post
135	incubation. Extracellular tachyzoites were then washed out after 1 hr of contact with
136	macrophages and the time was then defined as 1 hr. The macrophages were
137	continuously cultured in RPMI-1640 contained FBS and penicillin. Macrophages
138	were observed under an inverted fluorescent microscope at 1, 12 and 24 hrs and the
139	numbers of cells infected with T. gondii as well as the number of parasites per 100
140	macrophages were counted. Controls were carried out using the macrophages
141	collected from the non-GC treated rats using an identical protocol.

143 Measurement of nitrite concentration

164 analyzed by agarose gel electrophoresis.

Expression analysis of iNOS by western blotting

165

166

167	Cells were lysed in SDS loading buffer, fractionated in SDS-PAGE and transferred
168	onto the immunoblot polyvinylidene difluoride membrane (Pall, USA). The
169	membrane was probed using the rabbit polyclonal iNOS antibody (Thermo, USA)
170	(Santa Cruz, USA). β -tubulin was detected with anti- β -tubulin antibody (NOVUS,
171	USA) as a control. Horseradish peroxidase-labeled secondary antibodies (Cell
172	Signaling, USA) and a DAB (3,3',5,5'-tetramethylbenzidine) Detection Kit (Tiangen,
173	China) were used for antibody detection.
174	

175 Infection of *T. gondii* Prugniaud strain in F344 rats treated with or without GC

176 Twenty F344 rats were used in this experiment. Each animal was infected by feeding

177 300 cysts of the *T. gondii* Prugniaud strain. They were randomly divided into two

178 groups. Animals in Group I were treated with DXM (2 mg/kg/every two days), while

179 rats in Group II (control) were treated with PBS only. Animals in the groups were

180 treated with DXM or PBS for 4 weeks starting after infection. All animals were

181 sacrificed two months after infection and cysts were counted from the homogenized

182 brain tissue of each rat. The reason that DXM was chosen for this work was this

183 compound is more commonly used in the clinic than other compounds.

184

185 Statistical analysis

186	All data were obtained from the experiments repeated at least three times and were
187	shown as the mean \pm S.D. Statistical analysis of the data for multiple comparisons was
188	performed by one-way ANOVA. P<0.05 was considered statistically significant and
189	<i>P</i> <0.01 was considered highly significant.
190	
191	Results
192	Replication of T. gondii RH strain in the peritoneal macrophages of rats treated with
193	GCs
194	Table 1 shows the replication of <i>T. gondii</i> RH strains tachyzoites in the peritoneal
195	macrophages isolated from the rats injected intramuscularly with GCs
196	(dexamethasone, DXM; hydrocortisone sodium succinate, HSS and
197	methylprednisolone, MP). A difference in infection rate was not found across all 4
198	groups at 1 hr post infection. However, significant differences were observed between
199	the GC treated and non-GC treated group at 12 and 24 hrs post infection (P <0.01).
200	An example fluorescent micrograph demonstrating the presence of more
201	tachyzoites in the macrophages of rats treated with DMX than in those from the
202	non-treated control rats is shown in Figure 1B and 1D (at 1 and 24hrs). Similar results
203	were also observed in the macrophages collected from rats treated with HSS and MP
204	respectively (data not shown).
205	
206	Nitrite production in the peritoneal macrophages of rats treated with GCs

207 The effect of GCs on NO production by peritoneal macrophages from rats was

208	determined by the measurement of nitrite concentration in cell culture supernatants as
209	a reliable marker for NO production. As shown in Table 2, by comparison to the
210	non-treated control, a significantly lower NO production was detected in the
211	peritoneal macrophages collected from the rats treated with GCs for 7 days (P <0.01).
212	
213	Synergistic effects of T. gondii infection and GC treatment on NO production in rat
214	peritoneal macrophages
215	Table 3 shows the synergistic effect on the production of NO by rat peritoneal
216	macrophages when they were treated with GCs in vivo and infected with T. gondii in
217	vitro. Significantly less NO production was detected in the peritoneal macrophages of
218	rats treated with GCs and infected with <i>T. gondii</i> than that found in GC treatment or <i>T</i> .
219	gondii infection only (P <0.01). These results indicate that GC treatment and T. gondii
220	infection may have a synergistic effect on inhibiting NO production in the rat
221	peritoneal macrophages.
222	
223	The mRNA expression and protein levels of iNOS in the peritoneal macrophages of
224	rats treated with GCs
225	Figure 2(A) shows the analysis of iNOS mRNA levels of the peritoneal macrophages
226	of rats treated with GCs by RT-PCR. The size of PCR products was estimated at the
227	correct size of 442 bp. Band intensities show lower levels of iNOS expression in the
228	peritoneal macrophages of rats treated with GCs. Figure 2(B) displays the analysis of
229	iNOS protein levels in the peritoneal macrophages of rats treated with GCs as

230	determined by Western blotting. Lower expression levels of iNOS were detected in
231	the peritoneal macrophages treated with GCs. Down-regulation of iNOS expression
232	by GC treatment was consistent with the reduction in nitrite level in the culture
233	supernatants from these macrophages.
234	
235	Effects of DXM on cyst burden of the T. gondii Prugniaud strain in the brains of F344
236	rats
237	The Prugniaud strain of <i>T. gondii</i> is a type II strain and more readily forms cysts in
238	rodent brains than the type I RH strain. Figure 3 shows the number of cysts found in
239	the brains of F344 rats infected with the T. gondii Prugniaud strain and treated with
240	DXM. An average of 2795±422 cysts was found in the brain tissues from the rats
241	treated with DXM, while only 1356±490 cysts were detected from the control rats.
242	This result clearly indicated that DXM could significantly increase the number of
243	cysts in the brains of rats treated with this GC ($P < 0.01$). Although obvious differences
244	in clinical signs were not observed between these two groups of rats, the significant
245	increase in cysts found in the brain of the rats treated with DXM clearly demonstrates
246	the effect of DXM on <i>T. gondii</i> cysts in F344 rats.
247	
248	Discussion
249	Human infection with T. gondii can be obtained by ingestion of oocysts from

250 contaminated food and water, by eating undercooked or raw meat containing cysts

and by congenital transmission (Dubey, 2011). After the acute stage of disease

252	(tachyzoites), the parasite develops cysts (bradyzoites, latent stage) in a variety of
253	organs, but mainly in the brain and skeletal muscle cells, and establishes a chronic
254	infection (Lang et al. 2007). Immunosuppression found in AIDS, cancer and organ
255	transplantation patients can cause the reactivation of a latent infection resulting in
256	acute infection (Sibley, 1993; Skariah et al. 2010). Additionally, it has been suggested
257	that natural immunosuppression associated with pregnancy may also result in
258	reactivation of maternal infection followed by congenital transmission (Hide et al.
259	2009; Thomasson et al. 2011). However, little is known about the mechanism of the
260	reactivation of chronic infection of T. gondii within mammalian hosts although
261	weaker immunity has been suggested to be linked to such reactivation (Chandrasekar
262	and Momin, 2003; De-Medeiros et al. 2001).
263	It is reported that the peritoneal macrophages of rat are naturally resistant to T.
264	gondii infection (Dubey, 2011) and recent studies have demonstrated that the
265	mechanism of such resistance is strongly linked to higher expression of inducible
266	nitric oxide synthase (iNOS) in the rat peritoneal macrophage (Li et al. 2012).
267	Interestingly, however, lower expression of iNOS was found in alveolar macrophages
268	of rat and they were demonstrated to be more sensitive, than those from the peritoneal
269	cavity, to infection with T. gondii RH strain (Zhao et al. 2013). GCs are known to
270	regulate the immunological reactions, mediate many aspects of homeostasis and play
271	a critical role in the systemic stress response. The powerful anti-inflammatory and
272	immunosuppressive properties of GCs have also made them an extremely valuable
273	therapy in patients with severe inflammatory and autoimmune disorders (Everson et al.

2003). Therefore, we proposed that GCs might decrease NO production in rat
peritoneal macrophages since it has been shown that the long term use of GCs in
mammalian hosts (rodents and humans) can result in the development of acute
toxoplasmosis from chronic infection (Montoya and Liesenfeld, 2004; De-Medeiros et
al. 2011). Understanding these mechanisms will greatly improve our knowledge of the
reasons why and how long term use of GCs in mammalian hosts including humans,
can cause acute toxoplasmosis.

281 In this study, we have adopted three GC agents that are all widely used in the 282 clinic and each has a physiological half-life and pharmacodynamic action. Our results 283 further support previous studies (Li et al. 2012) that T. gondii cannot multiply 284 efficiently in the normal rat peritoneal macrophages, but surprisingly we found that it 285 could grow well in the peritoneal macrophages of rats treated with GCs. Furthermore, 286 our results showed that the growth of T. gondii in the rat peritoneal macrophages was 287 linked to the reduction of NO production in macrophages treated with GCs. These 288 results are consistent with the results by Li and colleagues (Li et al. 2012) that they 289 demonstrated that a lower concentration of NO in the rodent peritoneal macrophages 290 is strongly linked to their susceptibility to T. gondii infection. 291 Some studies demonstrated that T. gondii infection could decrease NO 292 production in the peritoneal macrophages (Nishikawa et al. 2007) and it was 293 suggested as one of the reasons for the development of acute toxoplasmosis from 294 chronic infection. Our results also showed that T. gondii infection could partially 295 decrease NO production in the infected cells which was suggested as one of the

296	pathways used by the parasite to enable to escape the immune reaction in the host
297	(Seabra et al. 2002). However, we consider that it may not be the key reason for the
298	development of acute toxoplasmosis from chronic infection. Our data showed that the
299	synergistic interaction between Toxoplasma infection and GC treatment may be an
300	important driver for this transition. Based on the above analysis, it is reasonable to
301	propose that the down-regulation of NO could be a shared and generic mechanism
302	that could explain why macrophage resistance to T. gondii infection or control of
303	Toxoplasma activation is impaired during GC treatment.
304	Furthermore, we demonstrated that GCs could inhibit the expression of iNOS
305	mRNA and protein in rat peritoneal macrophages by RT-PCR and western-blotting
306	analysis. These data are supported by the results from previous studies which
307	demonstrated that DXM could inhibit the expression of iNOS in human hepatocytes
308	and alveolar macrophages (Geller et al. 1993; Xiang et al. 2000). Because of the
309	tremendous differences in iNOS activity between the peritoneal macrophages from
310	mice and rats (Li et al. 2012), the bias towards studies in mouse models needs to be
311	augmented with further studies on rats.
312	A key question that needs to be addressed is: what is the mechanism of NO
313	action that drives the transition from acute toxoplasmosis to the chronic infection? NO
314	is beneficial in minimizing pathogenesis in the host during chronic toxoplasmosis
315	(Hayashi et al. 1996; Scharton-Kersten et al. 1997). In the absence of NO, chronically

- 316 infected rats and mice could develop lethal disease with increased *T. gondii* burden
- 317 and severe inflammation in the places where the parasites were located (Bohne et al.

318	1994; Scharton-Kersten et al. 1997). Some studies have shown that NO may serve as
319	a molecular trigger for stage conversion of T. gondii tachyzoites to bradyzoites
320	leading to a state of chronic infection in the host (Bohne et al. 1994). In most cases, T.
321	gondii causes asymptomatic infection in healthy individuals. However, GCs as
322	immunosuppressive agents could change the immune status of the host resulting in the
323	development of acute toxoplasmosis from a chronic infection (Djurkovic-Djakvoic
324	and Milenkovic, 2001). Our work demonstrated that GCs significantly reduced the
325	synthesis of NO in rat peritoneal macrophages which is similar to the effect of these
326	compounds on the hepatocytes of rats (Geller et al. 1993) and alveolar macrophages
327	of humans (Xiang et al. 2000). Furthermore, these studies provide novel data which
328	could enable a better understanding of the generation of acute toxoplasmosis.
329	Rats have long been considered the species of choice as a model for human
330	toxoplasmosis on account of the similarity of their resistance to T. gondii infection
331	with that found in humans (Derouin et al. 1995; Freyre et al. 2003; Dubey, 2011),
332	although much less work has been done than in the mouse model. It has been
333	demonstrated that activated rat peritoneal macrophages can markedly inhibit the
334	multiplication of <i>T. gondii in vitro</i> (Zhao et al. 2009). Cellular immunity appears to be
335	crucial in the control of Toxoplasma infection in mammalian hosts and, in particular,
336	the role of activated macrophages has been emphasized (Suzuki et al. 1988). Our
337	results showed that GCs have an enhancing effect on the growth of T. gondii in rat
338	peritoneal macrophages which further demonstrates the important role of NO in
339	macrophages in causing the host to be naturally resistant to T. gondii infection.

340	Interestingly, a recent study has revealed that acute toxoplasma infection also
341	increases endogenous production of GCs (Kugler et al. 2013). From the parasite
342	perspective and based on our observations, this mechanism this may serve to promote
343	further parasite growth. From the host perspective, Kugler et al (2013) show that this
344	endogenous GC production serves to invoke a CD4+ T cell response which they
345	propose limits collateral tissue damage and improves host survival. Our data would
346	support the role of GC dependent NO reduction in the parasite side of this
347	host-parasite evolutionary arms race.
348	In addition, our results demonstrated that significantly more T. gondii cysts
349	(Prugniaud strain) were found in the brains of rats treated with the glucocorticoid
350	dexamethasone (DXM). This result was consistent with our expectation. We consider
351	that the treatment of rat peritoneal macrophages with GCs causes changes in some
352	important physiological functions, for instance, a lower concentration of NO which
353	provides a suitable environment for the growth and multiplication of T. gondii. This
354	also potentially explains why acute infection of T. gondii is frequently found in human
355	patients treated with GCs.
356	In conclusion, we have analyzed possible mechanisms of the effect of GCs on
357	the resistance of rat peritoneal macrophages to T. gondii infection. These results not
358	only provide useful novel data for better understanding the protective mechanisms of
359	the host against this parasite but also reveal, indirectly, that patients who have been
360	administered with GCs following organ transplantation could potentially provide T.
361	gondii with a good opportunity to generate a new infection.

363	Acknowledgments The authors are thankful to Dr. X.N. Xuan for providing
364	Toxoplasma gondii RH-GFP strain. The work was supported by National Basic
365	Research Program of China (973 Program) (No. 2010CB530000),
366	http://www.973.gov.cn/English/Index.aspx.
367	
368	References
369	Adams LB, Hibbs RR, Krahenbuhl JL (1990) Microbiostatic effect of
370	murine-activated macrophages for Toxoplasma gondii. Role for synthesis of
371	inorganic nitrogen oxides from L-arginine. J Immunol 144(7): 2725-2729
372	Bohne W, Heesemann J, Gross U (1994) Reduced replication of Toxoplasma gondii is
373	necessary for induction of bradyzoite-specific antigens, a possible role for nitric
374	oxide in triggering stage conversion. Infect Immun 62(5): 1761-1767
375	Cape JL, Hurst JK (2009) The role of nitrite ion in phagocyte function-perspectives
376	and puzzles. Arch Biochem Biophys 484(2): 190-196
377	Chandrasekar PH, Momin F (1997) Disseminated toxoplasmosis in marrow recipients,
378	a report of three cases and a review of the literature. Bone Marrow Transplant
379	19(7): 685-689
380	Chen X, Chen S, Li C, Zhu Y, Peng B (2011) Skewed T-cell subsets and enhanced
381	macrophages phagocytosis in the spleen of patients with immune
382	thrombocytopenia failing glucocorticoids. Int J Hematol 94(3): 248-254
383	Da-Silva RC, Da-Silva AV, Langoni H (2010) Recrudescence of Toxoplasma gondii

384 infection in chronically infected rats (*Rattus norvegicus*). Exp Parasitol 125(4):

385 409-412

- 386 De-Medeiros BC, De-Medeiros CR, Werner B, Loddo G, Pasquini R, Bleggi-Torres
- 387 LF (2001) Disseminated toxoplasmosis after bone marrow transplantation, report
- 388 of 9 cases. Transpl Infect Dis 3(1): 24-28
- 389 Derouin F, Lacroix C, Sumyuen MH, Romand S, Garin YJ, (1995) Experimental
- 390 models of toxoplasmosis. Pharmacological applications. Parasite 2(3): 243-256
- 391 Dimitriu C, Bacb M, Lagreze WA, Jeble M (2008) Methylprednisolone fails to
- 392 preserve retinal ganglion cells and visual function after ocular ischemia in rats.
- 393 Invest Ophthalmol Vis Sci 49(11): 5003-5007
- 394 Djurkovic-Djakvoic O, Milenkovic V (2001) Murine model of drug-induced

395 reactivation of *Toxoplasma gondii*. Acta Protozool 40(6): 99-106

- 396 Dubey JP (2011) *Toxoplasma gondii* of Animals and Humans. CRC Press.
- 397 El-Mahmoudy M, Matsuyama H, Borgan MA, Shimizu Y, El-Sayed MG, Minamoto N,
- 398 Takewaki T (2002) Thymoquinone suppresses expression of inducible nitric
- 399 oxide synthase in rat macrophages. Int Immunopharmacol 2(11): 1603-1611
- 400 Everson GT, Trotter JF, Kugelmas M, Forman L (2003) Immunosuppression in liver
- 401 transplantation. Minerva Chir 58(5): 725-740
- 402 Freyre A, Falcón J, Mendez J, González M, Venzal JM, Morgades D (2003) Fetal
- 403 *Toxoplasma* infection after oocyst inoculation of pregnant rats. <u>Parasitol Res</u>
 404 89(5): 352-353
- 405 Geller DA, Nussler AK, Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons

406	RL, Billiar TR (1993) Cytokines, endotoxin, and glucocorticoids regulate the
407	expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci
408	USA 90(2): 522-526
409	Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR(1982)
410	Analysis of nitrate, nitrite, and [¹⁵ N] nitrate in biological fluids. Anal Biochem
411	126(1): 131-138
412	Hayashi S, Chan CC, Gazzinelli R, Roberge FG (1996) Contribution of nitric oxide to
413	the host parasite equilibrium in toxoplasmosis. J Immunol 156(4): 1476-1481
414	Hide G, Morley EK, Hughes JM, Gerwash O, Elmahaishi MS, Thomasson D, Wright
415	EA, Williams RH, Murphy RG, Smith JE (2009) Evidence for high levels of
416	vertical transmission in Toxoplasma gondii. Parasitology 136(14): 1877-1886.
417	Kugler DG, Mittelstadt PR, Ashwell JD, Sher A, Jankovic D (2013) CD4+ T cells are
418	trigger and target of the glucocorticoid response that prevents lethal
419	immunopathology in toxoplasma infection. J Exp Med 210(10): 1919-1927
420	Lang C, Gross U, Lüder CG (2007) Subversion of innate and adaptive immune
421	responses by Toxoplasma gondii. Parasitol Res 100(2): 191-203
422	Li Z, Zhao ZJ, Zhu XQ, Ren QS, Nie FF, Gao JM, Gao XJ, Yang TB, Zhou WL, Shen
423	JL, Wang Y, Lu FL, Chen XG, Hide G, Ayala FJ, Lun ZR (2012) Differences in
424	iNOS and arginase expression and activity in the macrophages of rats are
425	responsible for the resistance against T. gondii infection. PLoS One 7(4): e35834
426	Minneci PC, Deans KJ, Banks SM, Eichacker PQ, Natanson C (2004) Meta-analysis,
427	the effect of steroids on survival and shock during sepsis depends on the dose.

Ann Intern Med 141(1): 47-56

-27 Montoya 30, Elesenteta 0 (200+). Toxopiasinosis. Eancet $305(7+25).1705$ 17	425):1965-1976	cet 363(9425	Lancet	.Toxoplasmosis.	O (2004)	Montoya JG, Liesenfeld	429 M
---	----------------	--------------	--------	-----------------	----------	------------------------	-------

- 430 Nishikawa, Y., Kawase, O., Vielemeyer, O., Suzuki, H., Joiner, K.A., Xuan, X. and
- 431 Nagasawa, H. (2007). *Toxoplasma gondii* infection induces apoptosis in
- 432 noninfected macrophages, role of nitric oxide and other soluble factors. Parasite
- 433 Immunol 29(7): 375-85
- 434 Nishikawa Y, Xuan X, Makala L, Vielemeyer O, Joiner KA, Nagasawa H (2003)

435 Characterisation of *Toxoplasma gondii* engineered to express mouse

436 interferon-gamma. Int J Parasitol 33(13): 1525-1535

- 437 Rady MY, Johnson DJ, Patel B, Larson J, Helmers R (2006) Corticosteroids influence
- the mortality and morbidity of acute critical illness. Crit Care 10(4): R 101
- 439 Sathasivam S (2008) Steroids and immunosuppressant drugs in myasthenia gravis.
- 440 Nat Clin Pract Neurol 4(6): 317-327
- 441 Scharton-Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is
- 442 essential for host control of persistent but not acute infection with the

443 intracellular pathogen *Toxoplasma gondii*. J Exp Med 185(7): 1261-1273

- 444 Seabra SH, Da-Souza W, Da-Matta RA (2002) Toxoplasma gondii partially inhibits
- 445 nitric oxide production of activated murine macrophages. Exp Parasitol 100(1)
- 446 62-70
- 447 Severin VI, Soliman H, El-Matbouli M (2010) Expression of immune-regulatory
- 448 genes, arginase-2 and inducible nitric oxide synthase (iNOS), in two rainbow
- 449 trout (Oncorhynchus mykiss) strains following exposure to Myxobolus cerebralis.

- 450 Parasitol Res 106(2): 325-334
- 451 Sibley LD (1993) Interactions between *Toxoplasma gondii* and its mammalian host
- 452 cells. Semin Cell Biol 4(5): 335-344
- 453 Silva MT (2010) When two is better than one, macrophages and neutrophils work in
- 454 concert in innate immunity as complementary and cooperative partners of a

455 myeloid phagocyte system. J Leukoc Biol 87(1): 93-106

456 Skariah S, McIntyre MK, Mordue DG (2010) Toxoplasma gondii: determinants of

457 tachyzoite to bradyzoite conversion. <u>Parasitol Res</u> 107(2): 253-260

- 458 Sternberg EM (2006) Neural regulation of innate immunity, a coordinated
- 459 non-specific host response to pathogens. Nat RevImmunol 6(4): 318-328
- 460 Sumyuen MH, Garin YJ, Derouin F (1996) Effect of immunosuppressive drug
- 461 regimens on acute and chronic murine toxoplasmosis. <u>Parasitol Res</u> 82(8):
- 462 681-686
- 463 Suzuki Y, Orellana MA, Schreiber RD, Remington JS (1988) Interferon gamma, the
- 464 major mediator of resistance against *Toxoplasma gondii*. Science 240(4851):
- 465 516-518
- 466 Tarpataki N (2006) Recent developments in canine atopic dermatitis, a review. Acta
- 467 Vet Hung. 54(4): 473-484
- 468 Thomasson D, Wright EA, Hughes JM, Dodd NS, Cox AP, Boyce K, Gerwash O,
- 469 Abushahma M, Lun ZR, Murphy RG, Rogan MT, Hide G (2011) Prevalence and
- 470 coinfection of *Toxoplasma gondii* and *Neospora caninum* in *Apodemus sylvaticus*
- 471 in an area relatively free of cats. Parasitology 138(9): 1117-1123

472	Tsianakas A, Varga G, Barczyk K, Bode G, Nippe N, Kran N, Roth J, Luger TA,
473	Ehrchen J, Sunderkoetter C (2012) Induction of an anti-inflammatory human
474	monocyte subtype is a unique property of glucocorticoids, but can be modified
475	by IL-6 and IL-10. Immunobiology 217(3): 329-335
476	Xiang XD, Zhou HY, Chen P (2000) Effects of nitroglycerin and dexamethasone on
477	nitric oxide and endothelin derived from alveolar macrophages in patients with
478	mild and middle asthma. Hunan Yi Ke Da Xue Xue Bao 25(4): 363-366
479	Zhao YL, Ferguson DJ, Wilson DC, Howard JC, Sibley LD, Yap GS (2009) Virulent
480	Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole
481	disruption within primed macrophages. J Immunol 182(6): 3775-3781.
482	Zhao ZJ, Zhang J, Wei J, Li Z, Wang T, Yi SQ, Shen JL, Yang TB, Hide G, Lun ZR
483	(2013) Lower expression of inducible nitric oxide synthase and higher
484	expression of arginase in rat alveolar macrophages are linked to their
485	susceptibility to Toxoplasma gondii infection. PLoS One, 8(5):e63650.
486	
487	

- 488 Tables and Figure legends
- **Table 1** Proliferation of *T. gondii* in peritoneal macrophages of rats treated with GCs.

	Number of <i>T. gondii</i> /100 cells			
GCs	1 h	12 hrs	24 hrs	
DXM	35±3	55±8*	176±15 [#]	
HSS	39±5	81±12*	227±14 [#]	
MP	37±6	85±14*	242±16 [#]	
Control	39±5	23±4	16±4	

SD rats were injected intramuscularly with a dose of GCs for 7 days, macrophages were harvested and cultured for 12 hrs and then incubated with T. gondii at the ratio of 1:1 (parasites/macrophages = 1:1). The extracellular *T. gondii* were washed from the medium after 1 hr contact and the time was defined as 1 hr and the number of parasites per 100 macrophages was counted at 1, 12 and 24 hrs after infection. * and #: P < 0.01 vs. control analyzed by one-way ANOVA. All values are expressed as the mean \pm S.D of each infected group mice (X \pm SD, n=3). Abbreviations: dexamethasone (DXM), hydrocortisone sodium succinate (HSS) and methylprednisolone (MP).

Table 2 Nitrite production by peritoneal macrophages from rats treated with GCs.

	Nitrite production (µM)		
GCs	12 h	24 hrs	36 hrs
DXM	9.78±0.37*	14.31±1.22*	17.99±1.08*
HSS	8.19±0.32*	11.05±0.74*	13.51±1.45*
MP	7.86±0.46*	10.65±0.98*	12.90±0.99*
Control	14.44±1.04	25.41±1.44	30.85±1.62

508 Peritoneal macrophages isolated from rats treated with GCs for 7 days were incubated

for 12, 24 and 36 hrs. NO_2^{-1} production in the supernatant of the cell culture medium, a

510 reflection of NO production, was measured by the Griess reaction. *: P < 0.01 vs.

511 control analyzed by one-way ANOVA (X±SD, n=3).

516 **Table 3** Nitrite production by peritoneal macrophages isolated from rats injected

- 517 intramuscularly with GCs and subsequent infection with *Toxoplasma gondii*.
- 518

	Nitrite production (µM)	
Groups	12 h	24 h
DXM+T. gondii	7.70±0.79*	9.03±1.17*
HSS+T. gondii	6.37±0.97*	7.01±0.85*
MP+T. gondii	6.7±0.99*	7.22±0.85*
Control+T. gondii	12.02±1.12 [#]	19.28±1.38 [#]
Control	15.97±1.41	27.71±1.04

519

SD rats were injected intramuscularly with a dose of GCs for 7 days (see details in the Materials and Methods). Peritoneal macrophages collected from the treated rats, were cultured for 12 hrs and were then challenged with *T. gondii in vitro*. At 12 hrs and 24 hrs after infection, NO_2^- production in the supernatants was measured by the Griess reaction.*: *P*<0.01 vs. control+*T. gondii*;[#]: *P*<0.05; the comparison between control+*T. gondii* and control was analyzed by one-way ANOVA. All values are expressed as the mean ± S.D of each infected group mice (X±SD, n=3).

528

- 531 Figure legends:
- 532 **Fig. 1** Fluorescent micrographs of *Toxoplasma gondii* proliferation in the
- 533 macrophages of rats treated with DXM.
- 534 Macrophages collected from SD rats treated with DXM for 7 days and were cultured
- 535 *in vitro* for 12 hrs before challenge with *T. gondii* tachyzoites at a ratio of *T. gondii*/
- 536 macrophage of 1:1. A and B: *T. gondii* in the normal control SD rat macrophages; and
- 537 C and D: *T. gondii* infection in the peritoneal macrophages of SD rats treated with
- 538 DXM. Similar results were also found in the macrophages of rats treated with HSS
- and MP (Data not shown) (Scale is $50 \ \mu m$)

548 Fig. 2 Comparison of iNOS expression levels from the peritoneal macrophages of rats549 treated with GCs.

550 Macrophages collected from SD rats treated with GCs for 7 days and were cultured *in*

551 vitro for 12 hrs. (A) RT-PCR analysis for the expression of iNOS mRNA. (B) Western

552 blotting analysis for the expression of iNOS protein.

553	A DXM HSS MP Control
554	iNOS
555	GAPDH — — —
556	B DXM HSS MP Control
557	iNOS
558	β-tubulin — — —
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	

571 Fig. 3 Effect of DXM on the cyst burden of the *T. gondii* Prugniaud strain in the brain
572 of F344 rats.

573 Cyst burden from the brains of F344 rats infected with the Prugniaud (Pru) strain of *T*.

574 gondii and treated (B) and non-treated (A) with DXM. * indicates a significance value

575 of *P*< 0.05.

576

