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Abstract

There is currently a push to increase the proportion of freight traffic that is trans-

ported by rail, which is argued to be a safer, more sustainable and more climate

friendly means of freight transportation when compared with road or air trans-

portation. This will result in increased noise and vibration from freight railway

traffic, the potential impacts of which are not well known. The aim of this re-

search, therefore, is to further the understanding of the human response to freight

railway noise and vibration.

Data for this research comes from a field study comprising interviews with re-

spondents and measurements of their vibration exposure. A logistic regression

model was created and optimised, and is able to accurately classify 96% of these

measured railway vibration signals as freight or passenger signals based on two

signal properties that quantify the duration and low frequency content of each

signal. Exposure-response relationships are then determined using ordinal probit

modelling with fixed thresholds and cumulative ordinal logit models. The results

indicate that people are able to distinguish between freight and passenger rail-

way vibration, and that the annoyance response due to freight railway vibration

is significantly higher than that due to passenger railway vibration, even for equal

levels of exposure.

To further investigate this disparity in response, a laboratory study was performed

in which subjects were exposed to combined noise and vibration from freight and

passenger railway traffic. Through the technique of multidimensional scaling, the

subjective responses to these stimuli were analysed to investigate the specific at-

tributes of the stimuli that may lead to the difference in human response. The
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Abstract xxviii

results of this study suggest that the perception of combined railway noise and

vibration takes into account not only the exposure magnitude of the noise and

vibration stimuli, but also signal properties such as duration, spectral distribution

and envelope modulation. These parameters, and in particular the duration pa-

rameter, appear to account for the difference in the human response to freight and

passenger railway vibration.
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1.1 General introduction

Railway transport is generally argued to be a safer, more sustainable and more

climate friendly mode of freight transportation when compared with road and air

transport (Wiebe et al., 2011). This, in combination with a need to decrease

road congestion by addressing the imbalance between transportation modes, has

influenced European policy to direct movement of freight transport from the roads

and onto the rails (Wiebe et al., 2011). Specifically, the International Union of

Railways (UIC), the Community of European Railways (CER), the International

Union of Public Transport (IUPT) and the Union of European Railway Industries

(UNIFE) have all agreed, within the White Paper for European Transport, to

attempt an increase in the market share of goods traffic on rail from 8% in 2001

to 15% in 2020 (Commission of the European Communities, 2001). Indeed, an

increase in freight railway transportation has already been observed in Germany,

amongst other places, where the amount of freight transported by rail has increased

by 25% between 2002 and 2010 (Elmenhorst et al., 2012). This increase in freight

railway transport will lead to an increase in the resulting noise and vibration and

the potential effects that this may have on residents living in the vicinity of railway

lines needs to be understood. Research has shown that increasing levels of noise

and vibration can lead to negative human response in the form of annoyance and

sleep disturbance (Klæboe et al., 2003b; Miedema and Vos, 1998). In addition,

it has been shown that annoyance due to vibration and annoyance reactions due

to noise are higher during evenings and night-time, when freight railway traffic

tends to be more prevalent (Öhrström, 1997; Peris et al., 2012). Due to the

planned increase in freight traffic, and the potential adverse effect that the resulting

increase in noise and vibration may have on local residents, the human response

to railway noise and vibration, and specifically that created by freight railway

traffic, should be better understood. The human response to environmental noise

is well researched, but the response to environmental vibration, and particularly

the response to freight railway vibration, has been less documented. With greater

knowledge of the human response to freight railway vibration, measures to ensure
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acceptable combined levels of noise and vibration can be developed, minimising

the degree of annoyance and sleep disturbance experienced by residents living in

the vicinity of freight railway lines.

The primary aim of this research therefore, is to further the understanding of

the human response to noise and vibration from freight railway traffic. In order to

achieve this, an existing database of railway vibration measurements, and resulting

human responses, collected during the field study of Waddington et al. (2014) are

analysed. Firstly, a logistic regression machine learning algorithm is developed

in order to classify unknown railway vibration events within this measurement

database as freight or passenger vibration events. With these vibration events

classified, it is then possible to determine exposure data for these two sources of

environmental vibration. These exposures can then be paired with the annoy-

ance responses collected during the field study in order to investigate the human

response to vibration from freight and passenger railway traffic.

The analysis of the exposure-response relationships for annoyance due to expo-

sure to freight and passenger railway traffic reveals that the human response to

these two sources is significantly different, with the annoyance response to freight

vibration being higher than that due to passenger vibration, even for equal lev-

els of vibration exposure magnitude. This suggests that the human response to

these two sources of vibration takes into account more than just the vibration ex-

posure magnitude, quantified using existing vibration exposure descriptors. The

remainder of the research, therefore, focuses on an investigation into the percep-

tion of freight and passenger railway noise and vibration. This is achieved through

the means of a subjective test with subjects exposed to combined railway noise

and vibration. The perceptual results of the subjective tests are analysed using

multidimensional scaling, in the hopes of determining other aspects of the vibra-

tion signals, and accompanying noise, that may lead to the increased annoyance

response due to freight railway vibration.
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1.2 Scope of thesis

Following a general introduction in Chapter 1, Chapter 2 contains a summary of

the current knowledge and literature concerning the human response to railway

noise and vibration. This chapter highlights the relative dearth of research that has

focussed on the human response to railway vibration, and freight railway vibration

in particular, providing the motivation for the current research.

Chapter 3 contains a description of the methods used to classify unknown rail-

way vibration signals within the measurement database from the field study of

Waddington et al. (2014). A logistic regression model is created and the methods

used to optimise and test the classification accuracy of the model are described.

Chapter 4 details how exposure-response relationships are derived for annoyance

due to exposure to freight and passenger railway vibration, utilising the signals

classified using the logistic regression model as described in Chapter 3. The dif-

ference in the annoyance response is investigated via several methods, including

creating grouped models with a source type dummy variable, and models de-

rived for freight and passenger exposures and responses separately. The regression

models used to develop these relationships are described in detail and the resulting

exposure-response relationships are presented and discussed.

In order to further investigate the differences in human response to freight and

passenger railway traffic, a subjective test on the human response to railway noise

and vibration is performed. The development and methodology of this subjective

test is detailed in Chapter 5. Annoyance responses due to the noise and vibra-

tion stimuli, a mixture of freight and passenger noise and vibration events, are

computed from paired comparison annoyance data collected during the subjective

test.

In Chapter 6, the results of the subjective test are analysed using the technique

of multidimensional scaling. This allows the perception of railway noise and vi-

bration to be analysed as a multidimensional phenomenon, helping to further the
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understanding of the human response to railway noise and vibration, and poten-

tially revealing aspects of the noise and vibration signals that lead to an increase

in the annoyance response due to freight railway vibration.

Finally, overall conclusions are drawn in Chapter 7, and potential avenues of fur-

ther work are suggested.

1.3 Novel aspects of work

The following outcomes, which are presented throughout the thesis, are considered

by the author to be novel contributions to the field of human response to noise

and vibration:

• A logistic regression classification model has been developed and optimised,

and is capable of classifying unknown railway vibration signals as freight or

passenger railway signals with an accuracy of 96%.

• Grouped regression analyses with dummy variables for source type have

shown that there is a difference in the human response to freight and pas-

senger railway vibration, and that it is valid to derive separate exposure-

response relationships for these two sources of environmental vibration.

• Exposure-response relationships for annoyance due to exposure to freight and

passenger railway vibration in residential environments have been derived,

demonstrating that freight railway vibration is significantly more annoying

than passenger railway vibration, even for equal levels of vibration exposure.

• The perception of railway noise and vibration has been shown to be a mul-

tidimensional phenomenon which can be quantified using a small number of

objective parameters of the noise and vibration signals.

• The results of the multidimensional analysis have been used to derive a new

model for the prediction of annoyance due to railway noise and vibration, as

a function of objective parameters of the noise and vibration signals.
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2.1 Introduction

This section contains a summary of the current knowledge and literature concern-

ing the human response to environmental noise and vibration, as well as more

specific research into the human response to noise and vibration from freight

and passenger railway traffic. Firstly, laboratory studies on the perception of

whole-body vibration will be presented, with information on the physiological

mechanisms of vibration perception, as well as the perceptual effects of vibration

magnitude, frequency and duration. Following this is a summary of the mecha-

nisms of groundborne vibration as well as recommendations on the measurement

and assessment of groundborne vibration in residential environments. A summary

of relevant field studies on the community response to environmental noise and

vibration is then presented, as well as a summary of laboratory studies on the

effects of combined railway noise and vibration. Finally, a discussion of a small

number of studies investigating the differences in the human response to freight

and passenger railway traffic is presented.

2.2 The perception of whole-body vibration

Although much work has been performed on the human response to noise in the

ambient environment, the relative amount of research on the human response

to environmental vibration has fallen somewhat behind. This is perhaps due to

the absence of perceivable vibration in the everyday lives of most people. How-

ever, there are many avenues through which one can be exposed to whole-body

vibration, ranging from experiencing vibration in a moving vehicle to vibration ex-

perienced from operating industrial equipment to vibration exposure in the home

from external or internal sources. Vibration exposure can be extremely compli-

cated and may exist in combination with airborne noise from the vibration source

or other sources, vibration induced low frequency noise and rattling noise from

loose objects in the immediate surroundings. The potential effects of vibration

exposure depend on many factors including the characteristics of the motion, the
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characteristics of the exposed person, the activities of the exposed person and

other aspects of the environment. These factors can come together to influence

how the vibration is perceived and whether it may cause annoyance, discomfort,

activity disturbance, impaired health or motion sickness (Griffin, 1996). This re-

search focuses primarily on vibration that is experience as whole-body vibration,

defined by Griffin (1996) as vibration which occurs “when the body is supported

on a surface which is vibrating”.

In order to further the understanding of the human response to vibration, and to

predict the effects that these vibrations may have on humans, it is necessary to

form an understanding of the measurable objective characteristics of vibrations

and how these characteristics are perceived by humans. This section, therefore,

provides a summary of psychophysical studies on the human response to vibration.

2.2.1 Physiological mechanisms of vibration perception

Physiologically, vibration perception is primarily perceived through three mecha-

nisms: cutaneous, kinaesthetic and visceral (Mansfield, 2005). Cutaneous percep-

tion is determined by mechanoreceptors in the skin which respond to vibratory

excitations as well as sensations of touch and pressure. These mechanoreceptors

respond to vibration by producing a pulse train of action potentials, the density

of which are linearly related to the amplitude of the excitation. The four major

mechanoreceptors, and the frequency range to which they are sensitive, are pre-

sented in Table 2.1. These mechanoreceptors are often collectively referred to as

“low-threshold”, since even weak mechanical stimulation of the skin causes them

to produce action potentials (Purves et al., 2001).

Kinaesthetic perception of whole-body vibration is perceived via forces and move-

ments within the body; information of the position and forces in joints, muscles

and tendons are picked up by proprioceptors and sent to the brain. Visceral per-

ception occurs via receptors in the abdomen (Mansfield, 2005). Vibration can also
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Mechanoreceptor Frequency Range (Hz)

Merkel Disk Receptors 5 - 15

Meissner’s Corpuscles 20 - 50

Pacinian Corpuscles 60 - 400

Ruffian Endings 100 - 500

Table 2.1: Summary of the four main mechanoreceptors in the skin and

the vibratory frequency range to which they are sensitive (Kandel et al.,

2000)

be perceived via the auditory system above 20 Hz, via airborne pathways and bone

conduction.

Several studies have demonstrated that the whole-body response to vibration is

non-linear. Studies by Fairley and Griffin (1990), Matsumoto and Griffin (2002)

and Nawayseh and Griffin (2003) all show a lowering of the resonant frequency of

the human body in the seated position with increasing magnitude of vertical vi-

bratory excitation. Non-linearities have also been demonstrated for the horizontal

vibratory excitations (Nawayseh and Griffin, 2005) and for the human body in the

standing position (Matsumoto and Griffin, 1998).

2.2.2 Perceptual effects of vibration magnitude

An increase in perceived intensity and discomfort is usually associated with an

increase of vibration magnitude. Many studies have attempted to quantify this

increase in perceived intensity or discomfort using Steven’s power law (Stevens,

1975), which suggests that the psychological magnitude, ψ of a stimulus is related

to its physical magnitude, ϕ by the following expression:
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ψ = kϕn (2.1)

where k is a constant and the growth in sensation is determined by the exponent

n. A study by Miwa (1968a) was one of the earliest to try and estimate the

growth constant n. Using the corrected ratio method, subjects were presented

with pairs of vibration stimuli and the magnitude of the second stimulus was

adjusted until the subject perceived it to have half the magnitude of the first

reference stimulus. This procedure was repeated for sinusoidal vibration at three

frequencies (5 Hz, 20 Hz and 60 Hz) and at six magnitudes of reference stimuli in

the vertical and horizontal directions. Their results suggested the growth constant

n did not differ significantly with frequency, however they reported a reduction

in the constant with an increase in vibration magnitude. For magnitudes below

1 m s−2 they reported a growth constant of 0.60 and for magnitudes above 1 m s−2

they reported a growth constant of 0.46.

In the years following this work, several studies attempted to investigate the re-

lationship between stimulus magnitude and perceived intensity and discomfort.

Leatherwood and Dempsey (1976) provide a summary of these studies, the results

of which show much variability and contradiction. It is suggested that these in-

consistent results may be due to poor experimental design, unrealistic laboratory

experiments, use of inadequate rating scales or adjectives, small subject samples

and lack of information regarding the nature of the relationship between subjective

ratings and vibration stimuli. Two exceptions are noted, however, in the work of

Shoenberger and Harris (1971) and Jones and Saunders (1974) who presented data

to support the hypothesis that magnitude estimates of subjective intensity obey a

power law with respect to the physical magnitude of the vibration stimulus. These

two studies suggested growth constant exponents ranging between 0.86 and 1.04

depending on the frequency of the vibration stimulus. The result that the growth

constant was found to be close to unity led Leatherwood and Dempsey (1976)

to question whether the power law is really the best way to represent the data,

or whether other relationships such as linear, logarithmic or exponential might be
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more appropriate. A growth constant of unity corresponds to a linear function (i.e.

perceived intensity or discomfort doubles if the vibration magnitude doubles).

To investigate the functional form of the psychophysical relationship, Leatherwood

and Dempsey (1976) performed their own study with subjective tests of perceived

intensity and discomfort. The method applied was that of magnitude estimation,

whereby a subject is exposed to a reference vibration stimulus with a pre-assigned

numerical value. The subject is then exposed to a comparison stimulus and asked

to evaluate this stimulus relative to the reference stimulus, in terms of intensity

in one test and discomfort in another, by assigning it a numerical value. Vertical

sinusoidal exposures were assessed at frequencies ranging between 2 and 28 Hz

and at reference magnitudes ranging between 0.49 and 4.41 m s−2. Four potential

relationships to describe the resulting relationship were investigated: power, expo-

nential, logarithmic and linear. No significant differences were found between the

correlation coefficients for these relationships, leading Leatherwood and Dempsey

(1976) to suggest that a linear psychophysical relationship be adopted (Equation

2.2) since there appeared to be no scientific basis for adopting the more compli-

cated power law relationship (Equation 2.1).

ψ = k + nϕ (2.2)

Subsequent studies have also shown growth constants close to unity, for certain

vibratory stimuli, further suggesting that the psychophysical relationship can be

described by a linear model (Hiramatsu and Griffin, 1984; Howarth and Griffin,

1988b). Several studies, however, have demonstrated that the growth constant

is not equal for all frequencies and vibratory excitation directions. Shoenberger

and Harris (1971) found the growth constant to be greater than unity (1.04) for

the vibration stimuli of 5 Hz, but found it to be less than unity (0.86 to 0.98)

for vibration stimuli of 3.5, 7, 9, 11, 15 and 20 Hz. Howarth and Griffin (1988b)

found the growth constant to also change for the direction of excitation, with the

growth constant being higher for excitation in the vertical direction than in the

horizontal direction for frequencies of 8 Hz and lower, whilst the opposite is true
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for frequencies of 11.3 Hz and higher. In more recent studies it has been shown

that the rate of growth of discomfort is greater at lower frequencies than it is at

higher frequencies (Morioka and Griffin, 2006, 2010; Wyllie and Griffin, 2007)

2.2.3 Perceptual effects of vibration frequency

Since the early days of research into the human response to vibration, perception

of vibration has been shown to be frequency dependent (Miwa, 1967a). Investi-

gations into the effects of vibration frequency have typically sought to quantify

equal levels of comfort, or the perception threshold of vibration, as a function of

frequency. Griffin (1996) describes the effects of vibration frequency as follows: at

low frequencies (below 1 or 2 Hz depending on the vibration direction and body

orientation) the forces acting on the body are approximately proportional to the

input acceleration and this movement is transmitted throughout the entire body.

At slightly higher frequencies body resonances begin to amplify this motion and

overall discomfort is influenced by sensations in different parts of the body. At even

higher frequencies, the body provides increasing attenuation of vibration, eventu-

ally reducing the perceived location of discomfort to that in close proximity to the

vibration input position (Whitham and Griffin, 1978). These general observations

imply that at low frequencies, with the body acting as a virtually rigid system,

discomfort tends to be proportional to vibration acceleration (Griffin, 1996).

A wide variety of curves showing the effects of vibration frequency on (dis)comfort

can be found in the literature. A summary of these equivalent comfort contours

is presented by Griffin (1996) and reproduced here in Figure 2.1. Though there is

some degree of variability in the curves, most contours fall, showing an increase

to sensitivity with acceleration, with an increase of frequency from about 2 or 3

Hz to about 5 or 6 Hz, where the greatest sensitivity is observed in most studies.

At higher frequencies the contours generally rise, though the rate of rise and the

frequency at which the rise begins varies between studies.
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Figure 2.1: Equivalent comfort contours for vertical vibration of seated

persons (Source: Griffin, 1996). −·− (Miwa, 1967a), −×− (Shoenberger

and Harris, 1971), - - - (Yonekawa and Miwa, 1972), − | − (Dupuis et al.,

1972a,b,c), − ‖ − (Jones and Saunders, 1972), − × ×− (Shoenberger,

1975), −− ·−− (Griffin, 1976), − (Griffin et al., 1982), − · · · − (Parsons

et al., 1982), −−− (Oborne and Boarer, 1982), · · · (Donati et al., 1983),

- - ·· - - (Corbridge and Griffin, 1986), −· ·− (Howarth and Griffin, 1988b)

The perception threshold of vibration as a function of frequency has also been

investigated in several studies. A summary of these perception thresholds is pre-

sented by Griffin (1996) and reproduced here in Figure 2.2. Again, though there

is some variability in the perception threshold curves across the studies, likely due

to variations in posture, characteristics and imperfections of the vibration stimuli

and inter-subject variability, some general trends can be observed. For perception

thresholds, similarly to equal comfort contours, the greatest sensitivity for vertical

vibratory excitation is generally observed in the 5 to 6 Hz region. For horizontal

vibration, the greatest sensitivity is generally observed in a lower frequency region
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of 1 to 2 Hz. More recent studies have suggested that the threshold of perception

in the vertical direction is relatively flat with vibration acceleration above 10 Hz

(Bellmann, 2002; Morioka and Griffin, 2006).

Figure 2.2: Perception thresholds for vertical axis whole-body vibration

of seated and standing persons (Source: Griffin, 1996). SEATED: −××−

(Miwa, 1967a,b,c), −×−× (McKay, 1971), −− (Benson and Dilnot, 1981),

− ·− · − (Parsons and Griffin, 1988), − · · · − (Parsons and Griffin, 1988).

STANDING: · · · (Reiher and Meister, 1931), −−− (Miwa, 1967a,b,c), −

(Landström et al., 1983a,b), − · ·− (Parsons and Griffin, 1988)

2.2.4 Perceptual effects of vibration duration

It is perhaps intuitive that a vibration stimulus of longer duration will elicit a

higher level of discomfort. However, relatively few studies have attempted to
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quantify this perceptual effect of vibration duration. In some of the earliest ex-

perimental studies, subjects were exposed to a few seconds of a vibration stimulus

and asked to predict the time after which they would expect the vibration to

become uncomfortable (Magid et al., 1960; Miwa et al., 1973; Simic, 1974). In

other early studies where limits are suggested for vibration environments, lower

limits are suggested for longer durations (Eldick Thieme, 1961; Magid et al., 1960;

Notess, 1963).

In an experiment performed by Miwa (1968b), subjects were asked to judge the

relative discomfort produced by short periods of sinusoidal vibration and pulsed

sinusoidal vibrations with various pulse shapes and durations up to 6 s. He re-

ported that discomfort increases with duration up to a certain limit and that for

increasing duration beyond approximately 2 s for vibration in the range 2 to 60 Hz,

and beyond approximately 0.8 s for vibration in the range 60 to 200 Hz, there may

be no further increase in sensation, suggesting there may be a “time constant” for

the evaluation of response.

However, studies conducted by Griffin and Whitham (1980a,b) failed to find sub-

stantial evidence of a time constant. They reported that subjects’ judgements

indicated increasing discomfort with duration from 0.03 to 32 s. They also found

some evidence that the relation between discomfort and duration may be frequency

dependent. Relationships obtained between duration and discomfort for 4, 8, 16

and 32 Hz vibrations up to 4 s are shown in Figure 2.3. For all frequencies studied,

the magnitude of a fixed duration vibration stimulus which produced equivalent

discomfort to the various reference stimuli was found to change at a lower rate

than would be expected from a squared relationship between acceleration and

time (i.e. a2t = constant) which is implied by root mean square measures of vi-

bration magnitude averaging. Instead, Griffin and Whitham (1980a,b) proposed

the alternative of root mean quad averaging (i.e. a4t = constant). This averaging

method approximately reflects the reduced slopes found during their experiments

and captures more accurately the greater effect of high magnitude peaks occur-

ring in irregular vibration stimuli and impulses. Results close to the fourth power
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relationship were also found by Howarth and Griffin (1988a) in a study investi-

gating the change in annoyance due to variations in the rate at which simulated

railway-induced building vibrations occurred. This fourth power relationship was

later used as the basis for the development of the vibration dose value metric (see

Section 2.3.3).

Figure 2.3: Effect of vibration duration on vibration discomfort for 4,

8, 16 and 32 Hz (Source: Griffin and Whitham, 1980a). × median values

for 20 subjects, • 10th and 90th percentiles.

In a recent study, Huang and Griffin (2014) investigated the effects of stimulus

duration on the relative discomfort of noise and vibration. In their study, the sub-

jective equivalence of noise and vibration was investigated with all 49 combinations

of 7 levels of noise and 7 levels of whole-body vertical vibration magnitudes for

five different durations (2, 4, 8, 16 and 32 s). They found the rate of increasing

discomfort with increasing duration to be similar for noise and vibration. As stim-

uli duration increased from 2 to 32 seconds, they found the influence of vibration
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on the judgement of noise discomfort to decrease, whereas the influence of noise

on the judgement of vibration discomfort was unchanging with duration.

2.2.5 Multidimensional perception of vibration

In a subjective study, Woodcock et al. (2014a) investigated the perception and

annoyance caused by railway induced vibration as a multidimensional phenomena,

using the technique of multidimensional scaling. In their laboratory test, twenty

one subjects were exposed to 14 railway vibration stimuli, measured during the

field study performed by Waddington et al. (2014). For more details on the field

study, see Section 2.5.1. Through multidimensional scaling analysis, Woodcock

et al. (2014a) demonstrated that the perception of railway induced vibration is

dependent on up to four perceptual dimensions. These dimensions were found to

relate to root mean square acceleration in the 16 Hz and 32 Hz 1/3rd octave bands

(rms16Hz and rms32Hz respectively), the duration of the train passby defined by

the 10 dB downpoints of the signal (T10dB) and the modulation frequency of the

vibration envelope (fmod). They developed a relationship for predicted single figure

annoyance (Ap) as a function of these perceptual dimensions using the following

relationship:

Ap = −0.40 + 4.57rms16Hz + 3.18rms32Hz + 0.02T10dB + 0.02fmod (2.3)

This relationship was able to successfully predict single figure annoyance as deter-

mined from paired comparison ratings of annoyance in the subjective test. The

multidimensional perceptual relationship takes into account properties of the vi-

bration signal, such as spectral content and duration, that have been shown to

have an influence on the perception of whole-body vibration, as described in the

previous sections. It should be noted, however, that a stepwise regression on the

above model resulted in a reduced model containing only the rms16Hz and rms32Hz

terms, leading Woodcock et al. (2014a) to suggest that further work is needed to
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find objective correlates which better describe the third and fourth perceptual

dimensions.

2.3 Groundborne vibration: mechanisms, mea-

surement and assessment

Environmental whole-body vibration from railways is experienced as groundborne

vibration which is transmitted from the source to the receiver (the body). This

section aims to provide an overview of the mechanisms of vibration transmission,

as well as the current knowledge and guidance related to the measurement and

assessment of groundborne vibration.

2.3.1 Mechanisms of groundborne vibration transmission

Vibration travels through the ground with three types of wave motion:

1. Longitudinal (often referred to as compressive waves or P waves)

2. Transverse (often referred to as shear waves or S waves)

3. Rayleigh

The motion of the longitudinal wave is in the direction of travel of the wave,

whereas the motion of the transverse wave is normal to the propagation direc-

tion. Rayleigh waves are more complex, with a component in the direction of

propagation and a component normal to the surface, resulting in elliptical particle

acceleration in the vertical plane through the direction of propagation. Rayleigh

and transverse waves propagate at lower velocities, for example around 200 m s−1,

than compressive waves which can travel at around 1000 m s−1 (Griffin, 1996;

Thompson, 2009). The wave magnitudes decrease with increasing propagation

distance, though the Rayleigh waves have the least reduction with distance and
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tend to be the dominant motion at further distances from the vibration source.

Since the work in this thesis is primarily concerned with propagation distances of

up to 100 m, i.e. the distances from railway lines to houses located close to the

railway, Rayleigh waves are likely to dominate in the vibration transmission.

The transmission of groundborne vibration is extremely complex, and generally

outside the scope of this thesis, varying significantly according to numerous vari-

ables, such as the nature and location of the source, ground type, the horizontal

and vertical ground continuity, the water table and the presence of any frozen

material in the ground (Griffin, 1996). This makes the modelling of ground-

borne vibration difficult, resulting in inherently large uncertainties. Considering

these uncertainties, measurement of groundborne vibration is generally preferred

to modelling, especially if the propagation path also includes transmission through

buildings, which provides a further means of uncertainty.

2.3.2 Measurement of groundborne vibration

When considering human response, the objective of vibration measurements is to

quantify vibration exposure as close as possible to the point of entry to the human

body. However, this is often not practical and guidance suggests that measure-

ments should be made at a location that would expect to give rise to the highest

levels of vibration to which the persons would be exposed (BS 6472-1:2008). There

is general agreement among various guidance documents and standards that this

can be achieved by measuring vibration at the mid-span of the floor of the room

which is the most exposed to the source of vibration (Association of Noise Con-

sultants, 2012). The standard BS EN ISO 8041:2005 provides guidance on instru-

mentation requirements for the measurement of building vibration with respect

to human response, suggesting many recommended design features, including the

minimum requirements that the instrumentation shall record the following:

1. Time-averaged weighted vibration acceleration value of the measurement

duration
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2. Band-limited time-averaged vibration acceleration value over the measure-

ment duration

3. Measurement duration

Two standards which are referred to extensively in this thesis, BS 6472-1:2008

and BS ISO 2631-1:1997, require the measurement of vibration acceleration time

histories in three orthogonal directions in the frequency range 0.5 to 80 Hz. The

orthogonal directions are defined differently between the two standards, with BS

6472-1:2008 defining the directions using a geo-centric coordinate system (i.e. the

principal axes are earth centred) and BS ISO 2631-1:1997 defining the directions

using a basi-centric coordinate system (i.e. the principle axes are defined with

respect to the position of the human body).

When measurements are made on the floor, the nature of the floor covering can

create uncertainties in the measurement, meaning that the mounting of the mea-

surement instrumentation is an important consideration. Ideally, accelerometers

should be coupled to the vibrating medium such that they faithfully record the

motion relative to the focus of the investigation (Association of Noise Consultants,

2012). This can be achieved when floor covering such as carpet is either removed

or penetrated by spikes on the base of the transducer mount. However, this is

often not practical. Alternative solutions up to at least 50 Hz have been demon-

strated either by mounting accelerometers on thin plates approximately 150 mm

square or by supporting accelerometers on a three-legged mount with a mass of

approximately 0.5 kg (Griffin, 1996).

2.3.3 Vibration exposure metrics

Several national and international standards provide guidance on metrics which

can be used to quantify the human exposure to vibration. Guidance typically

takes the form of single figure exposure metrics which are functions of frequency

dependent weightings. The standard BS 6472-1:2008 recommends two frequency
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weighting curves, Wb for the vibration acceleration in the vertical direction and

Wd for the horizontal direction. This weighting curve, as well as others presented

in this section, intend to reflect the sensitivity of the human body to vibration as a

function of frequency (see Section 2.2.3). The Wb weighting curve shows maximum

sensitivity to vertical vibration in the frequency range 4 to 12.5 Hz and the Wd

weighting curve shows maximum sensitivity to horizontal vibration in the range 1

to 2 Hz.

Other frequency weighting curves include the Wk weighting curve for vertical vi-

bration acceleration as recommended by BS ISO 2631-1:1997, which also recom-

mends the use of the Wd weighting curve for horizontal vibration. The Wb and

the Wk weighting curves, which are utilised extensively throughout the thesis, are

presented in Figure 2.4. The two weighting curves differ slightly, though the dif-

ference is less than the inter-subject variability recorded in the laboratory studies

from which the weighting curves were developed (see Section 2.2.3). A further

weighting curve, Wm, which applies for vibration acceleration in any direction,

is recommended in ISO 2631-1:2003. The Wm weighting curve is derived from

a combination of the Wk and Wd curves. The German national standard, DIN

4150-2 (1999), which is used as the basis for guidance in many parts of continental

Europe, recommends the use of the Kb weighting curve for vibration velocity, as

opposed to acceleration. The Kb weighting curve is similar to the Wb weighting

curve when transformed and applied to acceleration (Woodcock, 2013).

The vibration metric that is perhaps most commonly used throughout the United

Kingdom to quantify human exposure to vibration is the vibration dose value

(VDV) as recommended by BS 6472-1:2008. VDV is defined using either the Wb

weighting curve for vertical vibration or the Wd weighting curve for horizontal

vibration and can be derived over a 16 hour daytime period (07:00 to 23:00) and

an 8 hour night-time period (23:00 to 07:00). VDV is a fourth power integration

of vibration acceleration and is defined as follows:

VDV =
4

√∫ T

0

a(t)4dt (2.4)
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Figure 2.4: Wb and Wk frequency weighting curves for vertical vibration

acceleration

where a(t) is vibration acceleration varying with time t and total duration T .

Due to the fourth power integration, VDV has unconventional units of m s−1.75.

The fourth power relationship, which accounts more accurately for the greater

perceptual effect of high magnitude peaks in a vibration signal, is based in part

upon the laboratory studies of Griffin and Whitham (1980a,b) and Howarth and

Griffin (1988a) as described in Section 2.2.4.

Another commonly utilised vibration metric, particularly in the United States, is

the frequency weighted root mean square (rms) acceleration as recommended by

BS ISO 2631-1:1997. The recommended weightings are Wk for vertical acceleration

and Wd for horizontal acceleration. The rms acceleration is analogous to rms

pressure that is widely used in the measurement of noise signals and is defined as

follows:

rms =

√
1

T

∫ T

0

a(t)2dt (2.5)

The recommendation of BS ISO 2631-1:1997 is that the rms acceleration should

only be used to quantify signals with a relatively low crest factor. The crest
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factor of an acceleration signal is the ratio of the peak acceleration to the rms

acceleration. A higher crest factor indicates the signal may be dominated by peaks.

For signals with a crest factor greater than 9, BS ISO 2631-1:1997 recommends

the use of VDV or the maximum transient vibration value (MTVV), defined as

the maximum value of the slow weighted running rms over the evaluation period.

The Norwegian standard NS 817 (2005) recommends the use of a statistical 95

percentile weighted velocity (vw,95) derived from 1 second averages of the velocity

signals. This metric is calculated as follows:

vw,95 = v̄w,max + 1.8σv (2.6)

where v̄w,max is the mean value of the maximum weighted velocity for all train

passbys and and σv is the standard deviation of the maximum 1 second average

weighted velocity for all passbys.

The German national standard DIN 4150-2 (1999), used as the basis for guidance

in much of continental Europe, suggests an evaluation procedure based on two

vibration exposure descriptors. The first step of the procedure is to evaluate the

metric KBFmax which is a 0.125 s running exponential rms Kb weighted velocity

value of the evaluation period. This metric is then compared to context sensitive

thresholds, taking into account time of day, the vibration source and location of the

building, and if the thresholds are exceeded, a second metric, KBFTr is calculated:

KBFTr =

√
1

Tr

∑
j

Te,jKB2
FTM,j (2.7)

where Tr is the evaluation period (16 hours for daytime, 8 hours for night-time),

Te,j is the exposure period of the jth event and KB2
FTM,j is the average of the

maximum 0.125 s running exponential rms velocity for each 30 second period of

an event.
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There are several other national standard which provide guidance for the evalua-

tion of vibration exposure. A summary of these standards and their key features

is provided by the Railway-Induced Vibration Abatement Solutions Collaborative

Project (RIVAS, 2011). Many of the guidelines, including the Netherlands stan-

dard SBR Richtlijn - Deel B (2006), the United States FTA guidelines (2006),

the Swedish standard SS 460 48 61 (1992), the Spanish standard Real Decreto

1367/2007, the Italian standard UNI 9614:1990, the Japanese Vibration Regula-

tion Law and the Austrian standard ÖENORM S 9012:2010 recommend the use

of some variation of the maximum running average rms velocity or acceleration.

In a guidance document produced for the CargoVibes project, Woodcock et al.

(2014b) state that there is insufficient evidence to recommend any one vibration

exposure metric over another. They suggest that guidance should be provided,

where possible, in terms of three metrics that can be easily related to other metrics

found in national and international standards. These three metrics are Vdir,max

which is the maximum Wk weighted fast exponentially filtered rms velocity over

the entire assessment period, and the Wk weighted rms acceleration and VDV

which are defined above. They also recommend retaining raw acceleration time

histories of measurements for future analysis.

2.3.4 Guidance for assessment of vibration exposure

As well as the guidance on suitable metrics for measurement of vibration exposure,

some of the standards previously mentioned provide guidance as to the probable

annoyance caused by a given vibration exposure. BS 6472-1:2008 provides the

“probability of adverse comment” for different ranges of VDV, which are repro-

duced here in Table 2.2. The standard also states that the levels in Table 2.2

should be multiplied by factors of 2 and 4 for offices and workshops respectively.

Note that the levels in the table are halved for the 8 hour night-time period, sug-

gesting a doubling in sensitivity to vibration during the night. However, there is

no indication as to how these values were derived and no definition provided for

“adverse comment”.
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Location
And Time

Low Probability
of Adverse
Comment

Adverse
Comment
Possible

Adverse
Comment
Probable

Residential
Buildings
16 Hour Day

0.2 to 0.4 0.4 to 0.8 0.8 to 1.6

Residential
Buildings
8 Hour Night

0.1 to 0.4 0.2 to 0.4 0.4 to 0.8

Table 2.2: Vibration dose value ranges (m s−1.75) which may result in var-

ious probabilities of adverse comment within residential buildings (Source:

BS 6472-1:2008)

BS ISO 2631-1:1997 does not provide any specific rms ranges which are likely to

incite annoyance, but does state that “occupants of residential buildings are likely

to complain if the vibration magnitudes are only slightly above the perception

threshold”.

The Norwegian standard 8176 (2005) defines four classes of comfort for dwellings

with respect to vibration exposures expressed using the metric vw,95 (Equation 2.6)

and a similar metric aw,95 which is an equivalent metric using vibration acceleration

rather than velocity. The guidance levels for these dwelling classes are based on

the results of a socio-vibrational survey which is described in further detail in

Section 2.5.1. The guidance levels are reproduced here in Table 2.3. A Class A

dwelling is one in which it is expected that no occupants will notice vibration, a

Class B dwelling is one in which it is expected that occupants will be disturbed to

some extent by vibration, a Class C dwelling is one in which it is expected that

15% of occupants will be disturbed by vibration and a Class D dwelling is one in

which it is expected that at least 25% of occupants will be disturbed by vibration.
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Vibration Metric Class A Class B Class C Class D

vw,95 (mm s−1) 0.10 0.15 0.30 0.60

aw,95 (mm s−2) 3.6 5.4 11.0 21.0

Table 2.3: Guidance classification of dwellings with the upper limits for

the statistical maximum value for weighted velocity, vw,95, or acceleration,

aw,95 (Source: Turunen-Rise et al., 2003)

2.4 Community response to environmental noise

The effects of environmental noise on the community has been extensively re-

searched in a number of studies. Some of the key studies of the human response

to environmental noise will be discussed in this section, with a particular focus

on exposure-response relationships developed for annoyance due to transportation

noise.

2.4.1 The concept of quantifiable annoyance

When quantifying the negative effects of an environmental stimulus such as noise

or vibration, it is necessary to define a measure by which the negative effects

are quantified. However, since the human response is inherently subjective, much

care must be taken when choosing and defining the measure that will be used to

quantify the response. Response data in field studies into the community response

to noise and vibration is generally recorded in terms of “annoyance”.

Annoyance is the most commonly reported problem as a result of exposure to

transportation noise and it is most often the factor used to determine a commu-

nity response to noise exposure (Clark and Stansfeld, 2007). The World Health

Organisation refers to noise annoyance as a “global phenomenon” and considers it
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to be an important health effect of noise (World Health Organization, 2000). Guski

et al. (1999) states that annoyance is a diverse concept that is associated with dis-

turbance, aggravation, dissatisfaction, concern, bother, displeasure, harassment,

irritation, nuisance, vexation, exasperation, discomfort, uneasiness, distress and

hate.

As well as annoyance, studies have demonstrated a moderate effect of trans-

portation noise on sleep disturbance, hypertension, cardiovascular disease, cate-

cholamine secretion and an impairment of cognitive performance in schoolchildren

(Basner et al., 2014; Clark and Stansfeld, 2007). Although these effects may be

relatively modest, they are becoming increasingly more important as more peo-

ple are being exposed to higher levels of environmental noise. There are several

variables that can influence an individual’s response to a particular noise source.

Source-specific variables such as source type, exposure level and time of day are

certainly important, but so are many receiver-specific factors such as the extent

of interference experienced, ability to cope, expectation, fear associated with the

source, visibility of the source, sensitivity, anger and beliefs about whether the

noise could be reduced by responsible parties (Job, 1988; World Health Organiza-

tion, 2000).

Measurements of noise exposure have been standardised (e.g. ISO/TS 15666:2003

(2003b)) and typically take the form of socio-acoustic questionnaires. Fields et al.

(2001) recommend standardised general questions that take the form of asking

a respondent how bothered, annoyed or disturbed they are by a particular noise

source. The degree to which the respondents are annoyed is typically recorded on

a five point semantic scale (“not at all”, “slightly”, “moderately”, “very” or “ex-

tremely”) and an 11 point numeric scale (0 to 10). An important breakthrough in

exposure-response relationships occurred when Schultz (1978) performed a meta-

analysis on existing socio-economic noise annoyance surveys and suggested the

use of a “highly annoyed” threshold for a community’s subjective response. Per-

centage highly annoyed (%HA) is a percentile-based metric which describes the

proportion of respondents who express levels of annoyance within the upper 28% of

the annoyance scale. Investigating only the highly annoyed responses ensures that
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the respondents have indicated a specific and conscious identification and subse-

quent reaction to a noise source and reduces the impact of non-acoustic variables,

resulting in a high correlation between exposure and response.

2.4.2 Exposure-response relationships for the human re-

sponse to environmental noise

Schultz’s (1978) work was an attempt to collate and summarise the world literature

on community response to transportation noise at the time. The exposure-response

relationship developed by Schultz was an informal fit to 161 data points taken

from five aircraft and six rail and road noise surveys. The original Schultz curve

used percentage highly annoyed (%HA) as the dependent variable to represent the

response, and the day-night average sound pressure level (Ldn) as the descriptor

used to quantify noise exposure (see Figure 2.5).

Figure 2.5: Exposure-response relationship for percentage highly an-

noyed persons, derived from 11 noise surveys (Source: Schultz, 1978)



Chapter 2. Literature review 29

Following the publication of Schultz’s 1978 paper, a public discussion began be-

tween Schultz and Kryter (Kryter, 1982, 1983; Schultz, 1982). Kryter (1982)

cast doubt over the adequacy of using a single curve to describe the exposure-

response for road, railway and air traffic noise sources together. He argued that

using separate curves for ground (road and railway) transportation and air trans-

portation gives a better representation of the data originally presented by Schultz

(1978) and that, by fitting a single curve to all three noise sources, Schultz’s

exposure-response relationship significantly underestimates the annoyance associ-

ated with aircraft noise and significantly overestimates the annoyance associated

with ground transportation noise. Fidell et al. (1991) continued Schultz’s work

by developing a new least squares quadratic fit to the original 161 data points

considered by Schultz, combined with an additional 292 data points from air,

road and railway traffic noise studies, published after Schultz’s original analysis

(%HA = 0.036L2
dn − 3.26Ldn + 79.92). Although the new model was derived us-

ing almost triple the amount of data points used, Schultz’s original 1978 curve

still provided a reasonable fit to the data. However, Miedema and Vos (1998)

argue that the additional data of Fidell et al. (1991) appears to support Kryter’s

argument that, at the same exposure level, aircraft noise is more annoying than

ground transportation noise. In recent papers, Fidell, writing with other authors,

has produced separate exposure-response relationships for aircraft noise and road

and railway noise (Fidell et al., 2011; Schomer et al., 2012).

Miedema and Vos (1998) derived exposure-response relationships for transporta-

tion noise using all 21 datasets used by Schultz (1978) and Fidell et al. (1991), for

which acceptable Ldn and %HA measures could be derived, augmented with an

additional 34 datasets. They produced separate exposure-response relationships

for aircraft, road and railway traffic, stating that there is a “systematic and sub-

stantial difference” between these three noise sources and concluding that different

relationships should be used for different transportation sources. They found that

the rate of increase of %HA as a function of noise exposure was higher for aircraft

noise than for road transport noise, and higher for road transport noise than for
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railway transport noise (see Figure 2.6). For a given noise exposure, %HA is high-

est for aircraft noise, followed by road traffic noise and then railway traffic noise.

They found a difference between sources for all studies combined and for studies

in which respondents evaluated two separate sources, giving confidence that the

different exposure-response relationships for each source are a result of differences

in the source type, rather than differences in study methodology.

Figure 2.6: Percentage highly annoyed persons (%HA) as a function of

Ldn for air, road and rail traffic (Source: Miedema and Vos, 1998)

Miedema and Oudshoorn (2001) used the same datasets as Miedema and Vos

(1998), but derived a new improved model using grouped regression. Using this

model, they were able to model the entire annoyance distribution, providing better

estimates of the confidence intervals and allowing different annoyance measures to

be calculated. In particular, they introduced specific cut-offs for “percentage little

annoyed” (cut-off at 28 on a 0 to 100 scale) and “percentage annoyed” (cut-off at

50 on a 0 to 100 scale), as well as the “percentage highly annoyed” (cut-off at 72 on

a 0 to 100 scale) as previously defined by Schultz (1978). These exposure-response

relationships are reproduced here in Figure 2.7.
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Figure 2.7: Percentage little annoyed persons (%LA), percentage an-

noyed persons (%A) and percentage highly annoyed persons (%HA) as a

function of Ldn for air, road and rail traffic (Source: Miedema and Oud-

shoorn, 2001)

2.4.3 The community tolerance level

Fidell et al. (2011) developed a different approach to the traditional curve-fitting

methods described above, based on the findings of 43 studies of annoyance due

to aircraft noise. They found that the rate of change of annoyance with Ldn

closely resembled the rate of change of loudness with sound level. Their models

agreed with findings of curve fitting exercises, such as those derived by Miedema

and Vos (1998), despite the differences in analytical methods and the disparate

data sets. As with previous curve fitting methods, they discovered that, although

annoyance prevalence rates within communities increase consistently in proportion

with duration-adjusted loudness, annoyance rates across communities still vary
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greatly. To account for this variance, they introduced a model in terms of a single

parameter expressed in Ldn units, the “community tolerance level” (CTL), which

accounts for the aggregate influence of non Ldn related factors (i.e. non acoustic

factors) on annoyance prevalence rates in different communities. The CTL is

defined by the midpoint of the effective loudness function, i.e. the Ldn exposure

which corresponds to 50% highly annoyed persons. Figure 2.8 shows an example

of this process applied to six aircraft noise surveys, showing a range of community

tolerance levels of approximately 30 dB.

Figure 2.8: Community tolerance levels computed from the findings of

six aircraft noise surveys (Source: Fidell et al., 2011)

Fidell et al. (2011) conclude that CTL values appear to be little influenced by

airport size, but may be influenced by airport type (i.e. regional/major airports).

In addition, they appear to be unrelated to climate variables, but economic factors,

such as median housing values and household incomes may be influential. Schomer

et al. (2012) applied the same model to predict the prevalence of noise-induced

annoyance of road and railway traffic noise. They found that the model applies

well for road traffic noise, with the loudness function and a CTL of 78.3 dB closely

resembling the results presented by Miedema and Vos (1998). They also found
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that the prevalence of annoyance due to railway noise is more accurately predicted

when sites are separated into those with and without high levels of vibration

and/or rattle, suggesting that the annoyance of railway noise is strongly related to

the presence or absence of vibration and/or vibration induced rattle. According

to their results, noise from conventional trains without appreciable vibration are

approximately 9 to 10 dB less annoying than road traffic noise, and noise from

conventional trains accompanied by appreciable vibration are approximately 2 to

3 dB more annoying than road traffic noise.

2.5 Community response to environmental vi-

bration

Compared to the community response to environmental noise, the community re-

sponse to environmental vibration has been less studied. However, there have

been several key field studies which have investigated the human response to en-

vironmental vibration. These studies, with a particular focus on studies looking

at railway vibration, are summarised in this section.

2.5.1 Field studies investigating the human response to

environmental vibration

A significant portion of literature focusing on the human response to environmental

vibration concerns research on annoyance due to railway vibration. Fields (1979)

summarised some early work on the human response to vibration in residential

environments, based on the results of the 1975 British railway noise study. The

results of this study indicated that railway vibration is an important source of

annoyance. Although it was deemed infeasible to measure physical vibration data

within the study, an effort was made to extract as much information as possible

from the survey respondents’ reports of experiencing vibration. To this end, four

different measures of vibration were collected: perception of vibration, extent
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bothered by it, judgement as to whether it is a “problem”, and belief about whether

any damage is caused by vibration. In the absence of vibration measurement

data, these vibration measures were represented as a function of distance from the

railway. From this relationship it was determined that all four vibration measures

decrease with distance from the railway, presumably as vibration exposure also

decreases. They also found some influence of other factors on vibration reactions,

such as the speed of trains and the visibility of the railway. In terms of the type of

trains which especially cause vibration, freight trains were mentioned more often

by respondents than passenger trains.

In another early field study on this topic, Woodruff and Griffin (1987) collected

responses to railway vibration from 459 residents in Scotland, and measured vi-

bration exposures in 52 of the dwellings in which respondents claimed to perceive

vibration. Analysis of their questionnaire data revealed that 34.8% of respondents

living within 100 m of a railway line noticed railway-induced building vibration.

After correlating several different measures of vibration exposure with reported

annoyance, it was found that the most appropriate vibration exposure descriptor

for predicting annoyance in this study was the number of train passbys occurring

within a 24-hour period, where annoyance was found to increase with the number

of train passbys. This increase in annoyance, represented by a decrease of the

percentage of persons “not at all” annoyed, is reproduced here in Figure 2.9.

The Transport and Road Research Laboratory conducted a field study in which

approximately 30 residents at each of 50 sites in the United Kingdom were in-

terviewed about nuisance related to road traffic induced vibrations and airborne

noise (Watts, 1984, 1987, 1990). As well as the subjective response data collected

by the interviews, measurements of airborne noise were conducted to quantify the

noise exposure for each of the respondents. Although questions were asked about

vibration, no vibration measurements were conducted. A relationships was de-

rived between these noise measurements, expressed as the noise level exceeded for

10% of the evaluation period, L10, and the percentage of respondents that were

bothered by traffic-induced noise and vibration. This relationships is reproduced
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Figure 2.9: Relationship between number of trains passing a site in 24

hours and the percentage of respondents who are “not at all” annoyed by

vibration (Source: Woodruff and Griffin, 1987)

here in Figure 2.10 and suggests that noise exposure correlates reasonably well

with bother caused by traffic-induced vibration.

Figure 2.10: Percentage of respondents bothered by noise and vibration

caused by traffic (Source: Watts, 1990)

In field studies conducted by Öhrström and Sk̊anberg (1996), the effects of ex-

posure to noise and vibration from railway traffic were investigated. The study
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took place over fifteen sites located near railway lines in Sweden, covering areas

with different number of trains in a 24 hour period and areas with strong vibra-

tion levels (exceeding 2 mm s−1), low vibration levels (below 2 mm s−1) and no

measurable vibration. Effects on annoyance, sleep disturbance, psychosocial well-

being and activity disturbance were evaluated via a postal questionnaire with 2833

participants. Noise exposure was determined according to the Nordic calculation

model for railway noise, with some control measurements made at different dis-

tances from the railway line. Minimal vibration measurements were conducted

to identify areas with strong vibration. The results of the study indicated that

railway noise is perceived as more annoying in areas in which there is simultane-

ous exposure to vibration from railway traffic. This is illustrated in Figure 2.11,

which shows the percentage of “rather” and “very” annoyed respondents in two

areas which have approximately equal number of trains in 24 hours, but differ-

ent vibration levels. In this figure, noise exposure is quantified by the maximum

A-weighted sound pressure level, LAmax. In areas with vibration, the annoyance

levels due to railway noise are consistently higher (by up to 35%) than in areas

without vibration. In further analysis of the field data, Öhrström (1997) states

that in areas with simultaneous exposure to noise and strong vibration, to ensure

acceptable environmental quality, action against vibration, or a longer distance

between houses and the railway line is needed.

In a German field study, summarised by Knall (1996), the effect of vibration lev-

els, frequency of train passbys and noise levels on humans were investigated. The

subjective effects were determined using a standardised questionnaire, with noise

and vibration exposures determined by measurements. A total of 1056 question-

naires were completed from 565 households. Railway noise was considered to be

more annoying in the studied households, with 76% of respondents stating that

railway noise is “more annoying” or “much more annoying” than railway vibra-

tion. However, though respondents were less annoyed by vibration, there was a

greater feeling that respondents could not avoid or protect themselves from vibra-

tion, though they could with noise. They also found that the proportion of events
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Figure 2.11: The relationship between annoyance and noise exposure

from railway traffic in areas with vibration (shaded bars) and without

vibration (white bars) (Source: Öhrström and Sk̊anberg, 1996)

exceeding the vibration perception threshold appeared to be more important than

the absolute number of train passbys.

Turunen-Rise et al. (2003) and Klæboe et al. (2003a,b) derived exposure-response

relationships using the 1998 Norwegian Socio-Vibrational Survey datasets. In this

survey, telephone interviews were conducted with 1503 individuals spread amongst

14 survey sites in order to determine people’s reactions to vibrations in dwellings

from a variety of sources including road and railway traffic. Vibration exposures

quantified by statistical maximum weighted vibration velocity (see Equation 2.6)

were estimated within 1427 of the dwellings using a semi-empirical vibration pre-

diction model (Madshus et al., 1996). Logistic and ordinal logit regression mod-

els were then used to develop exposure-response relationships for annoyance as

a function of exposure to railway and road traffic induced vibration, reproduced

here in Figure 2.12. They observed the general trend that the proportion of peo-

ple expressing certain levels of annoyance increases as the vibration exposure in-

creases. They also found no significant difference in people’s responses to vibration

from different sources, concluding that, with appropriate frequency weightings, an

exposure-response relationship can be derived without considering whether the
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vibration source is railway or road traffic. However, they made no attempt to

distinguish between different sources of railway vibration. They conclude with

the recommendation that further work is needed to determine whether or not the

vibration exposure metric should take into account the number and duration of

vibration events, as recommended by Griffin (1996).

Figure 2.12: Estimated cumulative percentages of people reporting dif-

ferent degrees of annoyance as a function of vibration exposure (Source:

Klæboe et al., 2003b)

Another field study was performed by the American Transit Cooperative Research

Program (Zapfe et al., 2009). The study took place in five North American cities

with 1306 interviews conducted via telephone about annoyance from vibration in-

duced by railway systems, along with measurements of external vibration. With

these measurements and responses, and using a logistic regression model, the au-

thors were able to derive exposure-response relationships predicting the percentage

of annoyed people as a function of vibration exposure. Many different descriptors

were considered to quantify the measured vibration exposure, all of which were

highly correlated with each other, leading Zapfe et al. (2009) to conclude that any

of the metrics could be used as a good predictor of annoyance. The exposure-

response relationship reproduced here in Figure 2.13 uses the passby maximum
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vibration rms vibration velocity level as a measure of vibration exposure, show-

ing the proportion of people expressing annoyance to increase monotonically with

vibration exposure.

Figure 2.13: Probability of annoyance based on passby maximum rms

vibration velocity level (Source: Zapfe et al., 2009)

The Swedish research project Train Vibration and Noise Effects (TVANE), sum-

marised by Gidlöf-Gunnarsson et al. (2012), studied the effects of railway noise

and vibration in residential environments, focusing on the effects of number of

trains, the presence or absence of groundborne vibration and building situational

factors such as orientation. A field study was performed in which questionnaires

were conducted with 1695 respondents living within 451 m of a railway line. The

respondents were spread across areas which were classified as having no vibration

(521 respondents), some vibration (459 respondents) and a high frequency of train

passbys (715 respondents). The questionnaires collected annoyance responses due

to noise and vibration from the railway, and estimates of noise and vibration

exposures were predicted for each respondent using combined measurement and

prediction methods. For the same magnitudes of noise exposure, it was found that

a higher proportion of respondents expressed high annoyance in areas classified as

having vibration than those who were in areas without vibration. They derived an
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exposure-response relationship for the respondents living in areas with vibration,

reproduced here in Figure 2.14, with the vibration exposure quantified as vibration

velocity.

Figure 2.14: Estimated exposure-response relationship for annoyance

due to railway-induced vibration quantified by vibration velocity at two

sites (Source: Gidlöf-Gunnarsson et al., 2012)

Another recent large scale field study focusing on the human response to rail-

way and construction vibration was carried out in the United Kingdom and is

summarised by Waddington et al. (2014). In this study, annoyance data was

collected using questionnaires conducted face-to-face with residents in their own

homes for those exposed to railway induced vibration (931 respondents) and for

those exposed to vibration from the construction of a light rail system (350 re-

spondents). Sources of internal vibration (e.g. neighbour activity, door slams and

domestic machinery) were also considered, though exposure-response relationships

could not be developed for these sources, with the authors suggesting that annoy-

ance from internal sources is better considered on a case-by-case basis than as a

community response. For railway vibration exposure, measurements of vibration

were conducted at internal and external positions, allowing the estimates of 24
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hour vibration exposures to be derived for 1073 of the case studies. Sixty differ-

ent vibration descriptors were considered to quantify the vibration exposure and,

though none were found to be a better predictor of annoyance than any other,

it was found that the use of relevant frequency weightings improved the corre-

lation between vibration exposure and annoyance response. Exposure-response

relationships for annoyance due to exposure to railway vibration and exposure

to construction vibration were successfully derived, with the vibration exposure

quantified using either the 24 hour Wb weighted VDV or the 24 hour Wm weighted

rms acceleration. An exposure-response relationship for different degrees of an-

noyance due to exposure to railway vibration, quantified by Wb weighted VDV, is

reproduced here in Figure 2.15. The data collected during this field study is used

extensively in the research presented throughout this thesis.

Figure 2.15: Exposure-response relationship showing the proportion of

people reporting different degrees of annoyance for a given vibration ex-

posure from railway. Dashed lines indicate the 95% confidence intervals

(Source: Waddington et al., 2014)

In a follow up study using the data from the field study of Waddington et al.

(2014), Peris et al. (2012) investigated the effects of time of day on the annoyance

response due to railway vibration. They found that the annoyance response to
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Figure 2.16: Exposure-response relationships for day (07:00 to 19:00),

evening (19:00 to 23:00) and night (23:00 to 07:00), showing the percentage

of people reporting high annoyance for a given vibration exposure. Curves

are shown with their 95% confidence intervals (Source: Peris et al., 2012)

vibration exposure is higher during the night-time (23:00 to 07:00) than during

the evening time (19:00 to 23:00), and higher during the evening time than during

the daytime (07:00 to 19:00). The exposure-response relationships showing this

difference in response for different times of the day is reproduced here in Figure

2.16.

In another follow up study using the same data, Peris et al. (2014) investigated

the effects of situational, attitudinal and demographic factors on annoyance due

to railway vibration. They found that annoyance scores were strongly influenced

by concern of property damage and expectations about future levels of vibration,

i.e. respondents were more likely to report a higher level of annoyance if they

also felt concerned that their property was being damaged due to the vibration

levels, or if they thought that the vibration levels were going to get worse in the

future. They also found the type of residential area to have an effect, with the

same vibration exposure level leading to more than twice as many respondents
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being highly annoyed by railway vibration in rural areas, such as small towns or

villages, than those in urban areas. Respondent age was also shown to have an

effect on annoyance, with respondents in the middle age range of around 45 years

old showing the highest levels of annoyance for a given vibration exposure. Other

factors with a significant but small influence on the annoyance response were the

respondent’s visibility of the railway and time spent at home, with respondents

reporting higher levels of annoyance when the railway is visible from their residence

or when the respondent spends less than 10 hours at home during a weekday.

Several field studies, mostly in Japan, have investigated the effects on the commu-

nity of noise and vibration from high speed railway traffic but these sources are

quite different from conventional railways and are generally outside the scope of

this thesis. For more information on these studies see, for example, Yano et al.

(2005), Yokoshima and Tamura (2005) and Yokoshima et al. (2011). Some key

results of these studies showed that high speed train noise was more annoying than

conventional railway noise (Yano et al., 2005) and that the presence of vibration

from high speed trains led to greater noise annoyance (Yokoshima et al., 2011;

Yokoshima and Tamura, 2005).

2.5.2 Sleep disturbance due to vibration exposure

A small number of studies have also investigated the effects of vibration on sleep

disturbance. A laboratory study by Arnberg et al. (1990) looked at the effects on

sleep of whole-body vibration and noise caused by heavy road traffic. During the

study, nine participants slept in a specially designed room and were subjected to

140 vibration exposures with a dominant frequency of approximately 12 Hz and

a duration of 2 s in both the vertical (peak levels of 0.24 m s−2) and horizontal

(peak levels of 0.17 m s−2) directions simultaneously. Five of these participants

were exposed to different vibration levels and the other four were exposed to a

combination of noise (peak levels 50 dB(A)) and vibration. Their results suggested

that when traffic noise is accompanied by vibration, sleep is more disturbed than

when the noise is presented in the absence of vibration. They also found that the
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duration of rapid eye movement (REM) sleep, the subjectively rated sleep quality

and morning performance was negatively affected by higher vibration levels.

More recent studies with a higher number of participants were performed as part

of the Swedish Train Vibration and Noise Effects (TVANE) project (Ögren et al.,

2009; Öhrström et al., 2009). These studies also involved subjects sleeping in spe-

cially designed rooms whilst being exposed to railway noise and vibration through-

out the night. The results of these studies suggested that self-reported sleep dis-

turbance was higher for increased vibration amplitude, irrespective of the noise

level. A decrease in subjective sleep quality was observed when vibration ampli-

tudes were increased from 0.4 to 1.4 mm s−2. Limitations of this study, however,

were identified by Smith et al. (2013) as the use of only two vibration amplitudes,

with no intermediate levels, and the reliance on subjectively reported data.

Partly due to these limitations, further laboratory tests were performed by Smith

et al. (2013) focusing specifically on variations arising from different vibration

amplitudes, and incorporating physiological measurements of sleep disturbance

as well as self-reported data. Again, subjects slept in a specially designed room

and were exposed to a range of vibration exposures and fixed noise exposures

from freight railway traffic. Cardiac accelerations of the subjects were assessed

throughout the night using a combination of polysomnography and electrocardio-

gram (ECG) recordings and sleep was assessed subjectively using questionnaires.

The results of the study indicated that nocturnal vibration has a negative impact

on sleep and that the impact increases with vibration amplitude. With increasing

vibration amplitude the authors found a decrease in latency and an increase in

amplitude of heart rate as well as a reduction in sleep quality and increase in sleep

disturbance.
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2.6 Laboratory studies on the effects of com-

bined railway noise and vibration

Vibration often exists alongside airborne noise and this is certainly the case for

the vibration that is experienced in residential environments due to railway traffic.

Many of the field studies described in the previous sections have shown that per-

ceivable levels of vibration in combination with noise from railways can have an

effect on the overall annoyance response (Fields, 1979; Gidlöf-Gunnarsson et al.,

2012; Schomer et al., 2012; Waddington et al., 2014). Indeed, Schomer et al. (2012)

suggest the need to develop separate predictions for annoyance due to railway noise

for railway sources that produce perceivable vibrations and for those that do not.

They demonstrate that, even though railway noise is generally believed to be less

annoying than road traffic noise (Miedema and Vos, 1998; Moehler, 1988; Moehler

et al., 2000), when perceivable vibration is present, railway noise can actually

cause more annoyance than road traffic noise.

The first laboratory studies on the subjective response to noise and vibration from

railway traffic were performed by Howarth and Griffin (1990). In these studies,

subjects were presented with stimuli composed of different combinations of six

magnitudes of railway noise and vibration. Twenty four subjects took part in

the three part magnitude estimation study. In the first session, the assessment

of vibration in the presence of noise was investigated. In the second session, the

assessment of noise in the presence of vibration was investigated. In the third

session, the combined effects of noise and vibration was investigated. The results

of these tests indicated that, within the range of stimuli magnitudes investigated,

vibration does not significantly influence the judgement of noise, but the judgement

of vibration may be affected by the presence of noise, depending on the magnitudes

of the stimuli. They discovered that a reasonable approximation of the total

annoyance caused by combined noise and vibration stimuli can be determined from

a summation of the effects of the individual stimuli, using the following relations:
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ψ = 15.9 + 260ϕ1.04
v + 0.167ϕ0.039

n (2.8)

ϕv = VDVb (2.9)

10 log10 ϕn = SELA (2.10)

where ψ is the annoyance response, VDVb is the Wb weighted vibration dose value

and SELA is the A-weighted sound exposure level. In a follow up study, Howarth

and Griffin (1991) investigated the effects of duration, magnitude and frequency

of vibration stimuli in combination with noise. This was achieved by exposing

subjects to combinations of noise and vibration stimuli with different magnitudes,

duration and vibration frequency. Their results suggested that an annoyance rela-

tion involving a summation of the individual magnitudes of the noise and vibration

stimuli provides a more accurate means of prediction of overall annoyance due to

combined noise and vibration than relations based on either the noise or vibration

stimuli alone. They derived a new relationship for predicting overall annoyance,

which is similar to Equation 2.8 and is shown below:

ψ = 22.7 + 243ϕ1.18
v + 0.265ϕ0.036

n (2.11)

where ϕv and ϕn are defined by Equations 2.9 and 2.10 respectively. Although the

relationship shown in Equation 2.11 was derived for stimuli with varying durations,

the maximum duration was 29 s, and Howarth and Griffin (1991) state that the

relationship may not be appropriate for predicting annoyance for combined noise

and vibration stimuli with durations longer than this.

In another laboratory study, Paulsen and Kastka (1995) investigated the effects of

combined noise and vibration, from a passing tram and a hammermill, on rated

intensity and annoyance. Four levels of noise and vibration levels were presented to

subjects in every possible combination. The results indicated that the presence of

vibration influences the evaluation of noise annoyance and has a greater influence
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on the evaluation of total annoyance. They developed a predictive relationship

for total annoyance caused by combined tram noise and vibration exposure, which

takes the same form as those developed Howarth and Griffin (1990, 1991), and is

shown below:

ψ = −0.15 + 1.58 log10(vrms) + 0.11LAeq (2.12)

where vrms is the rms vibration velocity and LAeq is the A-weighted continuous

sound pressure level.

More recently, Jik Lee and Griffin (2013) performed a laboratory study looking

at the combined effects of noise and vibration produced by high speed trains on

annoyance. In this test, subjects were exposed to six levels of noise and six levels

of vibration exposure, for both windows open and windows closed scenarios. The

experiment was divided into four sessions:

1. Evaluation of noise annoyance in the absence of vibration

2. Evaluation of total annoyance from simultaneous noise and vibration

3. Evaluation of noise annoyance in the presence of vibration

4. Evaluation of vibration annoyance in the presence of noise

The results indicated that vibration did not influence ratings of noise annoyance,

but that total annoyance for combined noise and vibration was significantly greater

than that due to noise alone. The authors developed predictive models of the total

annoyance resulting from combined noise and vibration based on two classical

models: the dominance model (Rice and Izumi, 1984) and the independent effect

model (Taylor, 1982). In the dominance model, the total annoyance is a function

of the maximum of the single source (noise or vibration) annoyance, whereas the

independence model is a function of of the annoyance of both sources, assuming

that the separate sources make independent contributions to the total annoyance.
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Jik Lee and Griffin (2013) found that both models provided useful predictions of

the total annoyance caused by simultaneous noise and vibration from high speed

trains.

2.7 Differences in response to freight and pas-

senger railway traffic

Although the results of several field and laboratory studies indicate that respon-

dents rate freight railway noise as more annoying than passenger railway noise

(Andersen et al., 1983; Fields, 1979; Fields and Walker, 1982), a relatively small

number of studies have addressed this difference in human response directly. De

Jong and Miedema (1996) performed an investigation into whether freight traffic

noise is more annoying than passenger traffic noise as a direct result of concern

over a new freight only railway route, the “Betuweroute”, that was planned to

carry freight traffic between Rotterdam and Germany. They concluded that, al-

though residents are more likely to report annoyance with freight traffic generally,

after the effects of differing noise levels are removed, no consistent differences were

found between routes with small or high proportions of freight traffic trains. Other

relevant issues, such as the effects of vibration and late night freight traffic on sleep

disturbance, were not considered.

Saremi et al. (2008) performed a study looking at how different types of train in-

fluence the effects of railway noise on sleep fragmentation, citing the general rule

that noise disturbances vary according to the physical characteristics of the noise

events. It is therefore possible that different train types, which produce different

noise and vibration signals, would result in similar differences. Using different

train type signals, they discovered that the type of train had a significant effect on

awakenings (arousals lasting longer than 10 s), with freight trains causing a much

higher awakening rate when compared to passenger or automotive trains. Despite

this significance difference, no difference on induced micro-arousals (arousals last-

ing between 3 and 10 s) was found between the train types. The type of train also
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had an effect on the arousal onset latency, with arousal reactions occurring much

later after the passby of freight trains when compared to the passby of passenger

or automotive trains.

Saremi et al. (2008) theorise that the greater degree of nocturnal disturbance

caused by freight trains could be due to the duration of the noise signal, as it

has been shown that stimuli of longer duration elicit more physiological responses

with greater amplitude in waking subjects (Blumenthal, 1988; Blumenthal et al.,

2005; Putnam and Roth, 1990). The increased duration of freight train noise

signals could therefore cause the increased awakening rate observed by Saremi et al.

(2008). It has been theorised that humans respond to stimuli of increased duration

using temporal summation, responding to a greater extent to stimuli of longer

duration which contain more energy (Blumenthal and Berg, 1986; Blumenthal and

Goode, 1991). This temporal summation could cause humans to respond more to

freight train passbys of longer duration, leading to sleep disturbance during the

night and increased annoyance during the day. A further physical property that

Saremi et al. (2008) observed to be different for freight and passenger train signals

was that of rise time. Their results in terms of rise time were in agreement with

Blumenthal (1988) who discovered that auditory stimuli with longer rise times,

i.e. freight trains, elicit responses with greater onset latency. It is likely that

these physical characteristics combine together to influence sleep disturbance and

annoyance.

In a German field study, Pennig et al. (2012) investigated annoyance and self-

reported sleep disturbance due to night-time railway noise, with specific attention

made to differences in response to freight and passenger railway sources. They

found that annoyance was primarily determined by freight trains, with annoyance

ratings increasing significantly with the total number of trains and freight trains

per night, but non-significantly with increasing numbers of passenger trains. The

total number of trains and freight trains were also found to significantly affect the

frequency of self-reported awakenings. In providing some possible explanations

for the difference in annoyance response, they cite the typically longer durations
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of freight train passbys, higher maximum sounds levels, their increased occur-

rence during night-time hours and the potential for the presence of groundborne

vibrations and accompanying low frequency noise. As part of the same study,

Elmenhorst et al. (2012) investigated the difference in response between nocturnal

railway noise and air traffic noise using polysomnography. It was found that noc-

turnal freight railway noise accounted for more awakenings than passenger railway

noise and aircraft noise.

2.8 Summary

To summarize, a great deal of field and laboratory studies have focused on the

human response to railway noise, yet the human response to railway vibration has

been somewhat less examined. In particular, the differences in human response to

freight and passenger railway noise has been studied relatively little and studies

on the difference in human response to freight and passenger railway vibration are

almost non-existent. In light of the fact that freight railway traffic is increasing,

it is important that the human response to freight railway noise and vibration

be better understood. The aim of this research, therefore, is to develop separate

exposure-response relationships for annoyance caused by exposure to vibration

from freight and passenger railway vibration, allowing the difference in response

to these two sources of railway vibration to be better understood.

Following this is an investigation into the human response to combined noise and

vibration from railway traffic, in the hopes of revealing characteristics of the freight

and passenger stimuli which lead to a difference in the human response to these

two sources of environmental noise and vibration. The results of this analysis are

used to develop models that are able to predict annoyance due to railway noise

and vibration, regardless of the whether the source is freight or passenger trains.
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3.1 Introduction

The literature review in Chapter 2 has highlighted that relatively little work has

been performed on the human response to railway vibration, and in particular

the differences in the human response to freight and passenger railway vibration.

With the proposed increases in freight traffic outlined in the European Union

White Paper (2001), it is important to understand the potential impacts that

the resulting increase in vibration may have on residents living in the vicinity of

railway lines. The aim of this research, therefore, is to develop exposure-response

relationships for annoyance caused by exposure to freight and passenger railway

vibration. In order to develop these exposure-response relationships, it is necessary

to first determine freight and passenger vibration exposures from a database of

measurements recorded as part of a field study on the human response to vibration,

performed by Waddington et al. (2014), a brief summary of which is provided in

Section 2.5.1.

This chapter begins by providing the motivation for developing separate exposure-

response relationships for freight and passenger railway vibration, then goes on to

detail the methods that will be used to achieve this. The main focus of this chapter

is to describe the creation, optimisation and utilisation of a logistic regression

classification model that is used to classify unknown railway vibration signals

within the database of measurements. The features of the model are optimised

using a combination of correlation testing, univariate and multivariate likelihood

ratio testing and accuracy testing. The final optimised model is a function of

only two parameters quantifying the vibration signal’s duration and low frequency

content and is able to correctly classify, on average, 96% of unknown signals which

are introduced to the model independently of the training, fitting and optimisation

of the model. This is a promising result and suggests that the model can be

successfully used to classify the unknown signals in the measurement database, in

order to determine separate exposure-response relationships for annoyance caused

by passenger and freight railway vibration.
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3.2 Motivation for developing separate exposure-

response relationships for freight and pas-

senger railway vibration

Though little work has focussed on the difference in the human response to freight

and passenger railway traffic directly, several laboratory and field studies have

indicated that respondents rate freight railway noise and vibration as more annoy-

ing than passenger railway noise and vibration (see Section 2.7). A preliminary

analysis can be performed on the responses collected during the field study by

Waddington et al. (2014) to see if this is also true for this field study.

In the field study, respondents were asked, via face-to-face questionnaires, how

bothered, annoyed or disturbed they were by freight and passenger railway vibra-

tion (the questionnaire and method of response collection is described in further

detail in Section 4.3). The percentage of respondents reporting annoyance cate-

gories of being slightly annoyed and above due to freight and passenger railway

vibration is shown in Figure 3.1. Clearly, a higher number of respondents re-

ported that they found freight railway vibration to be “moderately”, “very” or

“extremely” annoying than those reporting the same annoyance levels for passen-

ger railway vibration. The percentage of respondents who reported freight railway

vibration to be very or extremely annoying is approximately 14%, compared to

only 4% of respondents who report the same levels of annoyance due to passenger

railway vibration.

The difference in the human response to freight and passenger railway vibration

can be tested by performing a Kruskal-Wallis test, a non-parametric one-way anal-

ysis of variance which tests the the null hypothesis that independent samples from

the two response groups come from distributions with equal medians. The re-

sults of the test indicate that the null hypothesis can be rejected and that the

annoyance response due to freight railway vibration is significantly higher than

that due to passenger railway vibration (χ2 = 16.3, p < 0.001). The mean rank

of annoyance scores for freight and passenger railway vibration, as determined by
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Figure 3.1: Percentage of respondents reporting different levels of an-

noyance for freight and passenger railway vibration

the Kruskal-Wallis test, are presented in Figure 3.2. The different mean ranks,

and their non-overlapping standard errors, indicate a significant difference in an-

noyance responses for these to sources of railway vibration.

The response data collected during the field study, and the results of the Kruskal-

Wallis statistical tests give confidence that different relationships may exist for the

human response to freight and passenger railway vibration, providing motivation

to investigate these relationships separately. Though separate responses data were

collected for freight and passenger vibration, measurements were made for all rail-

way traffic in a 24 hour period, meaning that separate exposure data for these two

sources cannot be directly determined. In order to determine separate exposure

data, and subsequent exposure-response relationships, the railway vibration sig-

nals captured during the measurements need to be accurately classified as either

freight or passenger signals. The topic of this chapter is the development of a su-

pervised machine learning algorithm that is capable of achieving this classification

of unknown railway vibration signals.
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Figure 3.2: Comparison of mean rank annoyance for exposure to freight

and passenger railway vibration

3.3 Source classification using supervised machine

learning

The method used to classify unknown railway vibration signals as either freight or

passenger signals in this research is that of supervised machine learning. Super-

vised machine learning is a powerful tool whereby known data is used to develop

an algorithm capable of classifying unknown data based on several properties, or

features, of the data. In this case, the known data is a set of freight and passenger

vibration signals, the unknown data is vibration signals in the database of field

study measurements and the features are objective parameters of the vibration

signals. In essence, the model “learns” typical values of features for known exam-

ples of the classes to be identified, then makes a comparison between these values

and values of the same features for unclassified data, before making a decision of

in which class the unclassified data best belongs.

Within the field of acoustics, machine learning, both supervised and unsupervised,

has been used to accomplish many varied tasks. For example, Brown (1999)
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performed a k-means clustering algorithm for the classification of musical oboe and

saxophone sounds. The resulting algorithm, which uses cepstral coefficients of the

sounds as the model features, was found to be better than humans at identifying

oboe sounds, and as good as humans at identifying saxophone sounds. For more

information on the k-means clustering algorithm, and many other machine learning

methods, see Alpaydin (2010) or any other introductory machine learning text.

An example of the varied potential applications of machine learning can be seen in

a series of papers involving the same author as the paper on classification of musical

sounds, in which machine learning is used to identify killer whales, based on the

cepstral coefficients of their calls (Brown and Smaragdis, 2009; Brown et al., 2010).

The method of classification used in these papers were hidden Markov models and

Gaussian mixture models. In a more recent paper, Shamir et al. (2014) also

used machine learning, in combination with crowd sourcing from an online citizen

science project, to classify whale calls.

3.4 Classification using logistic regression

There are many methods of machine learning for classification of unknown data,

but due to the dichotomous nature of the classification required for this research,

the method of logistic regression shall be employed. Logistic regression models

have been used for many years and gained increased popularity after Truett et al.

(1967) successfully used the model to provide a multivariate analysis of the Fram-

ingham heart study data. Since this work, logistic regression has become a stan-

dard method for regression analysis of dichotomous data in many fields (Hosmer

and Lemeshow, 1989). This section presents the details of the logistic regression

model, as well as methods for testing the goodness of fit, significance and accuracy

of the model.
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3.4.1 The logistic regression model

The logistic regression model makes its predictions based on the logistic function

(Equation 3.1, Figure 3.3). As Z tends towards positive infinity, the probability

P (X) tends towards 1 and as Z tends towards negative infinity, P (X) tends to-

wards 0. The logistic function, therefore, is a useful model as it can be used to

predict a probability between 0 and 1 that an object belongs to a certain class

from two possible choices. In this case the logistic function predicts the probability

that a vibration event signal belongs in the freight railway class, rather than the

passenger railway class. The logistic function is a function of the model Z, which

in turn is a function of several properties or “features” of an object. In Equation

3.2, xn refers to the numerical value of the independent feature n, and βn refers to

initially unknown regression coefficients corresponding to the same feature. Since

x0 is the intercept term, β0 is always equal to 1. β and X are vectors containing

all values of β and x.

P (X) =
1

1 + e−Z
(3.1)

Z = β0x0 + β1x1 + +β2x2 + ... = βX (3.2)

3.4.2 Fitting the logistic regression model

With the logistic model defined, it is necessary to fit the predictions of the model

to known or “observed” data, by estimating the coefficient β which result in the

best fit of the model to the observed data. In linear regression, the most com-

monly used method of regression coefficient estimation is that of least squares.

This method determines the values of β that minimise the sum of the squared de-

viations of the observed values from the values predicted by the model. However,

when this method is applied to models with dichotomous outcomes, it results in

coefficients with undesirable statistical properties (Hosmer and Lemeshow, 1989).
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Figure 3.3: The logistic function

The preferred method for fitting the logistic regression model is that of maximum

likelihood which determines values for the regression coefficients that maximise the

probability of obtaining the observed data set. This method is based on maximis-

ing the likelihood function, which expresses the probability of the observed data

as a function of the estimated coefficients β. The likelihood function for logistic

regression is shown in Equation 3.3, where m is the number of observations and

Ym is the observed class (0 or 1) of the mth observation (Alpaydin, 2010).

L(β) =
∏
m

P (Xm)Ym [1− P (Xm)]1−Ym (3.3)

Mathematically, it is preferable to convert the likelihood function into an error

function to be minimised, where LL = − lnL. This function is known as the log

likelihood or cross-entropy and is shown in Equation 3.4.

LL(β) = −
∑
m

Ym ln [P (Xm)] + [1− Ym] ln[1− P (Xm)] (3.4)
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Due to the non-linearity of the logistic function, it is not possible to solve Equation

3.4 directly. Instead, the method of gradient descent is used to minimise the

log likelihood, which is mathematically equivalent to maximising the likelihood.

Gradient descent is an iterative optimisation method which utilises both the value

of the log likelihood function, and its derivative, or gradient (Equation 3.5), to

iteratively step in the direction of the gradient by changing the values of β until

the derivative is equal to zero and a minimum has been reached. This method

can be problematic for models with local minima, but since logistic regression has

only one minimum, gradient descent is a suitable optimisation method (Alpaydin,

2010).

∆LL =
∑
m

[Ym − P (Xm)]Xm (3.5)

3.4.3 Goodness of fit and significance of regression coeffi-

cients

For ordinary least squares regression, the goodness of fit is generally assessed using

the R2 value, which is commonly interpreted as a description of the proportion of

variance in the variable explained by the model. However, since logistic regression

is determined using maximum likelihood, rather than minimisation of variance, the

R2 value is not an appropriate descriptor for the goodness of fit of the model. In-

stead, many descriptors similar to the R2 value have been developed in an attempt

to assess the goodness of fit of a regression model determined using maximum like-

lihood (Long, 1997). In this work, McFadden’s R2
pseudo value (Equation 3.6) will

be used to assess the goodness of fit of the regression model. This R2
pseudo value

considers the log likelihood of the full model with all its coefficients, β, (LLfull)

and the log likelihood of the model with only the intercept term, β0, considered

(LLint). If all the coefficients β remain zero after the fitting of the model, then

LLfull = LLint and R2
pseudo = 0 (i.e. the model is very poorly fit). As the fit of

the model improves, the difference between LLfull and LLint increases and R2
pseudo

approaches 1 (though it can never exactly equal 1).
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R2
pseudo = 1− LLfull

LLint
(3.6)

As well as testing the goodness of fit of the model, the significance of the coeffi-

cients, β, can be examined. The results of these tests can be used to determine

which features contribute significantly to the model, using a likelihood ratio test.

For this test, an unconstrained model with log likelihood LLuncon is defined con-

taining the intercept term and a single feature x and corresponding coefficient

β. A constraint is then imposed on this model in which β = 0 and the model is

reduced to the intercept only model with log likelihood LLcon (this is equivalent

to LLint). The null hypothesis is then that the constraint is valid, and the feature

does not significantly contribute to the model. The likelihood ratio test statistic

for this test is defined as follows (Hosmer and Lemeshow, 1989; Long, 1997):

χ2 = 2

(
LLuncon
LLcon

)
(3.7)

If the null hypothesis is true, then χ2 is asymptotically distributed as chi-square

with degrees of freedom equal to the number of independent constraints. The

significance of this hypothesis can then be tested and rejected if p < 0.01. If the

null hypothesis is rejected, then it can be assumed that the feature being tested

does indeed significantly contribute to the model. The likelihood ratio test can

also be used to determine the significance of adding a new feature to an existing

multivariate model by defining the constrained model as the existing model and

the unconstrained model defined as the existing model with the addition of the

new feature. Finally, the likelihood ratio test can also be used to determine the

combined significance of the coefficients of a full model, by defining the uncon-

strained model as the full model with all features X and coefficients β included

(this is equivalent to LLfull) and defining the constrained model as the intercept

only model (this is equivalent to LLint).

Once the model has been optimised, the standard error and significance of the

coefficients can be determined. The standard error is calculated from the diagonals
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of the covariance matrix, σ2(xn), where n represents the nth parameter, as follows:

SE(xn) =
√
σ2(xn) (3.8)

The univariate Wald test statistic can then be used to test the hypothesis that

each of the coefficients in the optimised model are non-zero and significant. The

Wald test statistic of the nth coefficient is defined as:

Wn =
xn

SE(xn)
(3.9)

The Wald test statistic can then be tested against a standard normal distribution

for an indication of the significance of each coefficient.

3.4.4 Classification accuracy of the model

Since the logistic regression model is used to classify unknown signals, it is also

necessary to test the ability of the model to accurately achieve this purpose. Theo-

retically, a model could be perfectly fit to a set of training data, but if it is unable

to generalise to classify new unknown signals that it has not seen before, then

it will perform very poorly at classifying unknown signals correctly, a situation

referred to as “over-fitting”. It is necessary therefore, to also test the accuracy

of classification that the fitted model achieves. In order to test this, the set of

known vibration signals is split into three data subsets: training, cross validation

and test. First, the model is fit to the labelled training data set by maximum

likelihood. Next, the model with the maximum likelihood estimated coefficients is

applied to the cross validation data set and the probability that each event signal

belongs to the freight class is predicted. All signals with a predicted probability

greater than 0.5 are sorted into the freight class. Since the cross validation data

set is also labelled, the accuracy of classification can be calculated. Investigations

can then be performed to find the optimal conditions of the model, such as the
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selection of features that make up the model, that results in the greatest predic-

tion accuracy. Finally, the optimised model is applied to the test set, which until

that point has not been introduced to the model in any way, making this data set

entirely independent of the fitting or optimising of the model. The accuracy is

then reported based on the success of classification of the test data set.

There are several ways to determine the accuracy of the model, either on the

cross validation or test set. The simplest is to calculate the classification accuracy,

defined as the proportion of total signals tested that are correctly classified. How-

ever, this can be misleading for cases of skewed classes, where there are many more

examples of one class than the other in the test set. This is the case for this work,

where approximately 80% of the signals belong to the passenger class. The model

could therefore achieve a classification accuracy of 80% simply by predicting that

every signal belongs to the passenger class, regardless of its features. It is more

appropriate therefore, especially for skewed classes, to determine accuracy based

on true positives, true negatives, false positives and false negatives. These terms

are defined by the confusion matrix as shown in Table 3.1.

Predicted Class

Freight Passenger

Actual Class

Freight
True Positive

(TP)
False Negative

(FN)

Passenger
False Positive

(FP)
True Negative

(TN)

Table 3.1: Confusion matrix

Determining the true and false positives and negatives allows the calculation of

precision and recall. Precision is defined as the proportion of predicted freight

signals that truly belong to the freight class (Equation 3.10) and recall is defined as
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the proportion of true freight signals that are correctly classified as such (Equation

3.11). Accuracies of binary classification algorithms are often reported using the

F1 score (Equation 3.12), which is the harmonic mean of precision and recall, and

ranges from 0 to 1, with 1 representing perfect classification. The F1 score can

change depending on which class is defined as the “positive” class and it does not

take into account true negatives. Another descriptor, the Matthews Correlation

Coefficient (MCC) (Equation 3.13), does take into account true negatives and

is independent of which class is defined as the positive class. Its values range

from −1 to 1 with 1 representing perfect classification. Both the F1 score and the

Matthews Correlation Coefficient will be considered when assessing the accuracy

of the logistic regression model.

Precision =
TP

TP + FP
(3.10)

Recall =
TP

TP + FN
(3.11)

F1 = 2

(
Precision× Recall

Precision + Recall

)
(3.12)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.13)

3.5 Building the logistic regression model

In the previous section, the theory behind the logistic regression machine learning

model is outlined, along with methods used to fit the model and to determine

the significance of its regression coefficients and the classification accuracy of the

model. In this section, these methods will be used to build and optimise a logistic

regression model for the classification of unknown railway vibration signals in the

database of field measurements performed by Waddington et al. (2014).
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3.5.1 Data extraction and labelling

Machine learning using logistic regression relies on labelled input data in order to

“train” the model so that it can subsequently make predictions about the class of

unknown and unlabelled data. Therefore, it is necessary to extract and label known

vibration signals from the field study measurement database. This was made

possible since those who performed the field study noted the details of passbys

that occurred during certain periods of vibration measurements. In many cases,

the operators noted the type of train and the time of the passby, allowing the

resulting vibration signals to be identified within the acceleration time histories,

and then extracted and labelled as either freight or passenger signals. As there

were several inconsistencies in the handwritten logs from which the signal labels

were determined, only logs that contained examples of freight trains were used,

as this indicates that the operator was able and willing to distinguish between

freight and passenger trains. For example, logs which had all passbys marked

simply “train” were ignored as it is unclear whether all the passbys that occurred

during this measurement periods were passenger trains, or if the operator did not,

or was unable to, determine whether the passbys were freight or passenger trains.

In total, 194 passenger and 44 freight railway vibration signals were extracted and

labelled. These vibration signals were taken from 27 separate external control

position measurements spread over 7 sites along the West Coast Main Line in

the North West and Midlands regions of England. Figure 3.4 shows examples of

known freight and passenger railway vibration signals identified using the above

methods.

3.5.2 Initial feature selection

One of the most important aspects of classification model design is the selection

of features that will make up the model. Finding features that can be used to

effectively differentiate between two classes not only results in a highly accurate

classification model, but also provides information about the differences in the two
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Figure 3.4: Examples of known signals of freight and passenger railway

vibration

classes. When optimising the features used in the logistic regression model for this

work, over 130 features were initially introduced to the model. Through a com-

bination of univariate and multivariate significance testing, testing of correlation

between features and accuracy testing, the number of features was reduced to only

2. To avoid the model being over-fitted to a certain set of signals, each test was

performed over 1000 randomised splits of training, cross-validation and test sets

and decisions were made based on the mean value of these repeated tests. The

process of selecting these features is described in this section.

As was demonstrated in Section 3.2, the annoyance responses collected in the

field study by Waddington et al. (2014) indicate that the annoyance response

to freight railway vibration is different than that to passenger railway vibration.

A sensible starting point for feature selection therefore is to consider vibration

magnitude descriptors that have previously been shown by Waddington et al.

(2014) to correlate well with annoyance . One such descriptor is the vibration dose

value, recommended as a quantifier of vibration exposure by the British Standard

BS 6472-1:2008. For more information on this metric, and the relevant British
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Standard, see Section 2.3.3. Vibration dose value is calculated as follows:

VDV =
4

√∫ T

0

a(t)4dt (3.14)

where a(t) is the vibration acceleration time history with total duration T . An-

other vibration magnitude descriptor that was shown to correlate with annoyance

is the rms acceleration as recommended by the standard BS ISO 2631-1:1997.

Again, for more information on this metric, and the standard which recommends

it, see Section 2.3.3. The rms acceleration is calculated as follows:

rms =

√
1

T

∫ T

0

a(t)2dt (3.15)

Other vibration magnitude descriptors include the equivalent continuous vibration

level, which is analogous to the equivalent continuous sound pressure level, Leq and

is calculated as follows:

Veq = 20 log10

(
rms

1× 10−6

)
(3.16)

The vibration exposure level is analogous to the sound exposure level, SEL, and is

the vibration level of duration 1 second that would have the same energy content

as the whole event. The vibration exposure level is calculated using the following

equation:

V EL = Veq + 10 log10(Ts) (3.17)

The above descriptors should sufficiently quantify any differences between freight

and passenger vibration signals that may exist in exposure magnitude. As well as

differences in exposure magnitude between these sources, there may be differences

in the spectral content which could lead to differences in the annoyance response,

since the perception of whole-body vibration has been shown to be influenced by
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vibration frequency (see Section 2.2.3). Therefore, it would be sensible to include

some descriptors which are measures of the frequency content of the vibration sig-

nals in the initial feature selection. One such feature is the spectral centroid, which

is a weighted mean of the frequency content in the signal, with the magnitudes of

the Fourier transform coefficients as weights, defined as follows:

fsc =

∑
f(n)cmf (n)∑
cmf (n)

(3.18)

where f(n) is the central frequency of the nth spectral bin and cmf (n) is the mag-

nitude Fourier coefficient of the nth spectral bin. As well as the spectral centroid,

spectral energy is quantified by determining the proportional rms acceleration con-

tained within all 1/3rd octave bands between 0.5 and 80 Hz. This proportional

rms acceleration is defined as the rms acceleration within a particular 1/3rd oc-

tave band divided by the rms acceleration in the entire signal. Different spectral

distributions may also be captured by the Wb and Wk frequency weightings that

can be applied to calculations of VDV and rms respectively.

Freight railway passbys are typically longer in duration than passenger railway

passbys, which may account for differences in the annoyance response, since the

perception of whole-body vibration has also been shown to be influenced by du-

ration (see Section 2.2.4). Descriptors of the duration of the signal will therefore

also be included in the initial feature selection. These descriptors include the du-

ration defined by the 3 dB downpoints of the signal (T3dB), the duration defined

by the 10 dB downpoints of the signal (T10dB) and the “event signal duration”

(Te) defined here as the duration of the signal that exceeds the top 1/3rd of the

signal’s dynamic range. All downpoints are defined as the “first” and “last” points

of the signal which exceed the specified threshold, in order to avoid capturing only

strong peaks in the signal. The event signal duration was defined to capture the

duration of signals regardless of their dynamic range, since the T3dB and T10dB de-

scriptors can under-estimate or over-estimate the duration of signals with high or

low dynamic ranges respectively. This is important to consider, since the dynamic

range of vibration signals will be affected by the propagation distance from the
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railway to the residence. Other temporal descriptors include the rise time, defined

as the duration between the first 10 dB and 3 dB downpoints, and the fall time,

defined as the duration between the last 3 dB and 10 dB downpoints.

Some statistical parameters that are included in the initial feature selection include

the crest factor, which is a function of the peak vibration acceleration, and is a

measure of the “peakiness” of the vibration signal:

Cr =
amax
rms

(3.19)

where amax is the peak vibration acceleration. Another descriptor which quantifies

the peakiness of the vibration signal is the kurtosis, Kt, which is defined as follows:

Kt =
1

Tσ4

T∑
t=0

[a(t)− ā]4 (3.20)

where σ is the standard deviation of the vibration acceleration (equivalent to the

rms acceleration when the mean of the acceleration signal, ā, is zero). Another

statistical descriptor considered by Waddington et al. (2014) as a potential metric

to quantify exposure is the skewness, Sk, which is a measure of the temporal

distribution of the acceleration signal envelope and is calculated as follows:

Sk =
1

Tσ3

T∑
t=0

|a(t)− ā|3 (3.21)

All the above descriptors cover the exposure magnitude, spectral and temporal

characteristics of the vibration signal and the use of these descriptors in the build-

ing of the logistic regression model should allow any potential differences in freight

and passenger vibration signals to be determined, and subsequently utilised in a

classification algorithm for unknown vibration signals. Since features in a regres-

sion model may have vastly different magnitudes, it is often recommended that

the features be normalised in order to make computation easier, and the regression

coefficients more interpretable. Due to potential differences in ground conditions
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and source to receiver distances between measurement positions, each signal fea-

ture was normalised against the mean value of the same feature of all event signals

recorded at the same control position, with the same ground conditions and source

to receiver distances.

3.5.3 Optimising the feature selection

All these features combined, calculated over the measured vibration signals in three

orthogonal directions (vertical, North/South and East/West), results in over 100

features being calculated. There is likely to be a great deal of redundancy in this

data. As an initial investigation of redundancy, correlation coefficients were de-

termined from the covariance matrix between all pairs of features. Unsurprisingly,

the highest and most significant correlations (p < 0.01) exist between the three

orthogonal directions of each feature. For this reason, and since vibration mag-

nitude is greater in the vertical direction, only features calculated in the vertical

direction will be considered, reducing the number of features to 76. The signifi-

cance of each of these features was then tested using a univariate likelihood ratio

test (Equation 3.7). Disregarding features that do not significantly contribute to

the model (p < 0.01) results in a reduction of the number of features to 17. The

features that were retained are: event signal duration, 3 dB envelope duration,

10 dB envelope duration, rise time, fall time and proportional rms acceleration

(both Wk weighted and un-weighted) in all 1/3rd octave bands between 2.5 and 8

Hz. A likelihood ratio test of this reduced model against the model of 76 features

suggests that that the null hypothesis can be accepted and that the reduced model

has no significant reduction in goodness of fit (p ≈ 1).

Although these 17 features have all been found to significantly contribute to the

model when compared with the intercept only model, it is possible that there is

further redundancy between the features when considered in a model in combina-

tion. A multivariate likelihood ratio test can be performed between a constrained

and unconstrained model when adding features to the model. To test this, fea-

tures are added one by one to the intercept only model, in order of ascending
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p-value determined by the univariate significance test, calculating the likelihood

ratio between the model with and without each new feature. The results of this

test suggests that only the addition of the event signal duration, 10 dB envelope

duration and proportional rms acceleration in the un-weighted 5 Hz 1/3rd octave

band are significant. A likelihood ratio test of this further reduced model against

the previous model of 17 features suggests that the null hypothesis can be ac-

cepted and that the reduced model has no significant reduction in goodness of fit

(p = 0.91).

However, although the addition of the event signal duration and 10 dB envelope

duration increases the significance of the fit to the training data, the accuracy of

the model, in terms of the F1 score and the MCC, does not change, suggesting that

the model with these features included may be better fit to the training data set but

is not any better at classifying new unseen data (i.e. the model may be have been

over-fitted). In addition, the correlation between the three duration descriptors is

significant (p < 0.01), suggesting that multiple descriptors of signal duration may

be redundant. Of the three duration descriptors, the event signal duration provides

the most significant contribution according to the univariate likelihood ratio test.

Therefore, the number of features was reduced to a final number of 2: the event

signal duration (Te) and the proportional energy in terms of the rms acceleration

of the 5 Hz 1/3 octave band (rms5Hz). A likelihood ratio test of this fully reduced

model against the model of 3 features again suggests that the fully reduced model

has no significant reduction in goodness of fit (p = 0.09). In addition, this model

of two features results in the highest, or at least comparative, accuracy when

compared with all other tested models, suggesting that the selection of features

for the logistic regression model has been optimised. Reducing the model further,

i.e. considering only Te or rms5Hz on their own, results in a decrease of the

model’s accuracy and significance. The likelihood ratio p-value and accuracies of

each version of the model are summarised in Table 3.2.
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Model Initial
Univariate
Significant

Multivariate
Significant

Optimised

Number
of Features

76 17 3 2

p-value 0.033 < 0.001 < 0.001 < 0.001

R2
pseudo 0.94 0.92 0.86 0.81

Classification
Accuracy

0.92 0.93 0.96 0.96

Precision 0.81 0.85 0.91 0.91

Recall 0.77 0.81 0.88 0.88

F1 0.79 0.83 0.89 0.89

MCC 0.74 0.79 0.87 0.87

Table 3.2: Goodness of fit and measures of accuracy for four tested

logistic regression models with different features

3.6 The optimised logistic regression model

The feature optimised logistic regression model is a function of only two features,

one of which quantifies the duration of the vibration event, (Te), with the other

quantifying the proportion of the signal’s rms acceleration contained within the

5 Hz 1/3rd octave band (rms5Hz). Both these features are normalised against

the mean feature value for all signals recorded at the same measurement position

using the same instrument, accounting for distance attenuation and other potential

differences in ground conditions between measurement positions. Using only these

two features, the logistic regression model is able to correctly classify, on average,

96% of all signals tested. The mean precision of the model is 0.91, meaning that

91% of the signals that are classified as freight railway signals truly are freight

railway signals and the mean recall of the model is 0.88, meaning that 88% of

all the freight railway signals are correctly classified as such. When considering
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passenger as the positive class, the precision and recall are both equal to 0.98.

With the parameters of the model defined, the logistic regression was performed

using all 238 known examples of freight and passenger vibration signals, in order to

determine the regression coefficients. The result of this logistic regression is shown

in Equation 3.22, where P (Y = 1) is the predicted probability that a vibration

signal with normalised event signal duration, Te, and normalised proportional 5 Hz

rms acceleration, rms5Hz, is a freight railway vibration signal, i.e. its class, Y , is

equal to 1. Further details of the logistic regression model are presented in Table

3.3, where standard errors are calculated using Equation 3.8 and the parameter

p-values are determined from the Wald test statistic (Equation 3.9).

P (Y = 1) =
1

1 + exp(10.7− 5.01Te − 2.25rms5Hz)
(3.22)

Parameter
β

Estimate
Standard

Error
p-value Overall Model

Intercept -10.73 1.76 < 0.001 N 238
Te 5.01 0.89 < 0.001 p-value < 0.001
rms5Hz 2.25 0.70 < 0.010 R2

pseudo 0.79

Table 3.3: Parameter estimates and other details of the optimised logistic

regression model

Figure 3.5 shows all of the 238 known examples of freight and passenger vibration

signals plotted in the two-dimensional feature space of Te and rms5Hz. Also shown

is the decision boundary for which P (Y = 1) = 0.5 and above which signals are

classified as freight vibration signals by the logistic regression model. With this

fit of the regression model to the data, 4 passenger railway signals and 4 freight

railway signals exist in the wrong prediction regions and would be incorrectly

classified if introduced to the model as unlabelled signals. However, the remaining

190 passenger railway signals and 40 freight railway signals exist in the correct
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region and would be correctly classified if introduced to the model as unlabelled

signals. This is commensurate with the reported 96% accuracy of the model when

tested on unlabelled data completely independent to that used for the training,

fitting and optimizing of the model. Most passenger railway vibration signals are

clustered together in a region of low event signal duration and low proportional

5 Hz 1/3rd octave band energy. The freight railway vibration signals show more

variation, but tend to have longer event signal durations and greater proportional

rms acceleration in the 5 Hz 1/3rd octave band, allowing these signals to be

classified with confidence using only these two signal properties.
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Figure 3.5: Decision boundary of logistic regression model as a function

of the normalized event signal duration (Te) and normalized proportional

5 Hz 1/3rd octave band rms acceleration (rms5Hz)

As a final check of the model accuracy, 500 vibration signals were randomly se-

lected from the field study measurements of Waddington et al. (2014) and their

class was predicted using the logistic regression model. These vibration signatures

were visually inspected by the author who judged their class, based on previous

experience, and made the same class judgements as the logistic regression model

for 94% of the vibration signals inspected.
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The optimised logistic regression model has been shown to be able to correctly

classify, on average, 96% of unknown railway vibration signals that are completely

independent of the training, fitting and optimising of the model. In addition, both

features of the optimised logistic regression model are normalised to other signals

recorded at the same position using the same instrument. This allows the model to

be more applicable to other sets of data in the measurement database than if abso-

lute properties were used. For example, it avoids the problem of misclassification

occurring because all railway traffic moves slowly close to a measurement position,

perhaps due to a proximity to a station or tight bend, resulting in longer passbys

relative to signals measured at other measurement positions. However, the model

would not be applicable to freight only railway lines, as this would significantly

skew the normalised values of Te and rms5Hz. This is not a cause for concern in

this work as no measurements were made near freight only railway lines. In the

extreme case where there are no freight pass bys in a 24 hour measurement period,

each signal property will be of similar magnitude to the mean properties of the

passenger passbys (since all passbys will be passenger traffic) and all the signals

will cluster around Te = rms5Hz = 1 and should mostly be correctly classified.

The high level of classification accuracy and the normalised nature of the features

of the model suggests that the model can be confidently applied to the remain-

ing data from the field study by Waddington et al. (2014) in order to classify

the unknown signals and determine exposure-response relationships for annoyance

caused by exposure to freight and passenger railway vibration separately. This

will be useful in furthering the understanding of the human response to freight

railway vibration in light of current proposals to increase the proportion of freight

traffic on rail.
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3.7 Validation of model with new measurement

data

During this research, new measurements of railway vibration were performed as

part of a laboratory study on the perception of combined railway noise and vi-

bration (see Chapters 5 and 6 for more detail on these measurements and the

laboratory study). As these were observed measurements, they resulted in a set of

known freight and passenger vibration signals which can be used to validate the

logistic regression model derived in this chapter. During these new measurements,

53 passenger and 9 freight vibration signals were recorded. Applying the logistic

regression model (Equation 3.22) to these measurements resulted in 98% of the

signals being correctly classified, with a precision of 90% and a recall of 100%. The

two dimensional feature space of the new measurements, along with the decision

boundary of the logistic regression model, is shown in Figure 3.6.
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Figure 3.6: New measurement data plotted in the two dimensional fea-

ture space of the logistic regression model

Once again, Figure 3.6 shows the passenger vibration signals mostly clustered in

a region of low event signal duration and low proportional 5 Hz rms acceleration.

Again the freight vibration signals exhibit more variation, but tend to have higher
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than average durations and 5 Hz rms energy, allowing all of these signals to be

correctly classified in this case. The only signal that is incorrectly classified is a

passenger train signal that lies almost exactly on the decision boundary (P (Y ) =

0.507), meaning that it is only just incorrectly classified. This is due to its high

normalised proportional 5 Hz rms acceleration. Its rms5Hz value of 4.10 is higher

than that of all the new measurements, including the freight signals, and higher

than that of all the passenger signals used to build the logistic regression model

(see Figure 3.5), suggesting that this signal may in fact be an outlier.

Regardless of the incorrectly classified signal, the predictions of the logistic regres-

sion model on these new measurements is still extremely high, with a classification

accuracy of 98% and a precision and recall of 90% and 100% respectively. This is

a very encouraging result as it gives further confidence that the logistic regression

model can be successfully applied to unknown railway vibration signals.

3.8 Summary

In this chapter, it has been demonstrated that the annoyance response to freight

and passenger railway vibration, collected during the field study of Waddington

et al. (2014), is significantly different. In order to investigate these differences,

it is necessary to determine separate exposures for freight and passenger railway

vibration to pair with the separate responses collected during the field study. This

can be achieved through the use of logistic regression model for classification of

unknown railway vibration signals in the measurement database.

The logistic regression model has been developed using a number of known exam-

ples of freight and passenger railway vibration signals measured during the field

study. Using a combination of univariate and multivariate significance testing,

testing of correlation between features and analysis of classification accuracy, the

model has been optimised to contain only two features. The two features quantify

the duration and low frequency energy content of each railway vibration signal

and the optimised model is able to classify, on average, 96% of known railway
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vibration signals from the field study measurements. A validation of the model on

new measurements showed an even higher classification accuracy of 98%.

The high classification accuracy of the logistic regression model gives confidence

that it can be applied to unknown vibration signals in the database of field study

measurements, in order to classify each measured railway vibration signal as either

freight or passenger. This allows the determination of separate source exposures,

which in turn allows the development of exposure-response relationships for annoy-

ance caused by exposure to freight and passenger railway vibration in residential

environments. The development of these separate source exposure-response rela-

tionships is presented in Chapter 4.
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4.1 Introduction

In Chapter 3, it is demonstrated that in the field study of Waddington et al.

(2014), the annoyance response due to freight and passenger railway exposure was

significantly different. In order to further investigate this difference, exposure-

response relationships are developed for the annoyance due to freight and passenger

railway vibration in residential environments. This is made possible by applying

the logistic regression classification model, the development of which is detailed in

Chapter 3, to unknown railway vibration signals in the field study measurement

database. With the unknown railway signals classified as freight or passenger

signals using this method, it is possible to determine separate freight and passenger

vibration exposures for each case study in the database. These exposures can then

be paired to the responses collected in the field study in order to develop exposure-

response relationships. The development of these exposure-response relationships

is described in this chapter.

4.2 Determining freight and passenger railway

vibration exposure

The data used to develop the separate exposure-response relationships comes from

vibration exposure measurements and questionnaire responses collected during the

field study of Waddington et al. (2014). In this section, the measurement protocol

applied during this field study is summarised, and the methods used to determine

separate exposures for freight and passenger railway vibration is presented.

4.2.1 Field study measurement protocol

In the field study performed by Waddington et al. (2014), vibration exposure was

determined by measurement. The vibration measurement protocol for the field

study involved long term vibration monitoring at external control positions, for a
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period of at least 24 hours. Where possible, the instruments for the control position

measurements were placed were they were unlikely to be interfered with, such as

in a shed or a garage. Whilst these long term measurements were taking place,

short term, time synchronised, internal measurements were conducted within the

properties of residents who had agreed to take part in the study. A diagram

illustrating this measurement setup is reproduced here in Figure 4.1.

Figure 4.1: Schematic of measurement approach, showing control posi-

tion and internal measurements (Source: Waddington et al., 2014)

The short term measurements were typically around 30 minutes in duration, or for

a period covering approximately 5 to 10 train passes. For the internal measure-

ments, the measurement was taken as close as possible to the centre of the room

in which the resident stated that they could feel the strongest magnitude of vibra-

tion from the railway, as recommended by the Association of Noise Consultants

(2012). The transmissibility between the paired control position and internal mea-

surements were used to estimate 24-hour vibration time histories within dwellings.

In cases where a measurement of internal vibration was either not conducted or

unavailable due to data corruption, the internal vibration exposure was assumed

to be equivalent to that which had been successfully determined for a similar prop-

erty type in the same measurement area and at a similar distance from the railway.

Using this process, it was possible to estimate 24 hour internal vibration exposures

for 752 properties, 497 of which were based on the transmissibility method with
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the remaining 255 exposures based on estimations of internal vibration in a simi-

lar property type. Sica et al. (2014) estimate that the uncertainty associated with

this method is ±2.2 dB when internal and external measurements were performed

and ±11.4 dB when only external measurements were performed. The equipment

used for the vibration measurements were Guralp CMG-5TD strong motion ac-

celerometers with a sampling rate of 200 Hz and a 100 Hz low pass filter, capable

of measuring vibration in three orthogonal directions (vertical, North/South and

East/West). For more detailed information on the measurement protocol, and the

methods used to estimate the vibration exposures, see Sica et al. (2014).

4.2.2 Railway vibration event identification

Railway vibration events (i.e. train passes) were identified by Waddington et al.

(2014) from the 24 hour control position time histories using a process based on

a short time average/long time average (STA/LTA) algorithm. The STA/LTA

algorithm is an event identification process commonly used in seismology and is

based on the ratio, RS/L, between short term averaging and long term averaging

of a vibration acceleration time history:

RS/L =
1
TS

∑TS
t=0 a(t)2

1
TL

∑TL
t=0 a(t)2

(4.1)

where TS and TL are the widths of the short term and long term averaging win-

dows respectively and a(t) is the acceleration time history. Waddington et al.

(2014) found that window lengths of TS = 1 s and TL = 15 s, and a triggering

threshold of RS/L = 0.80 were effective parameter values for correctly identifying

train passes. They also employed the use of the crest factor (Equation 3.19) to

analyse triggered signal identifications, rejecting events with a crest factor greater

than 10, as these tended to be clusters of short term vibration transients (such as

several seconds of footfalls). The STA/LTA algorithm, combined with the crest

factor analysis and an integrity check, in which triggered events were manually

inspected and rejected if the data was deemed to be contaminated, resulted in a
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highly accurate automated event identification system. For more information on

this event identification process, see Sica et al. (2011).

Applying this identification system across all the 24 hour acceleration time his-

tories for the 752 case studies allowed the identification of 99 997 railway passby

events. It is this database of unknown railway vibration events that must be clas-

sified as either freight or passenger events in order to determine separate exposures

and hence separate exposure-response relationships for these two sources.

4.2.3 Classification of freight and passenger vibration sig-

nals

99 997 railway passbys were identified by Waddington et al. (2014) using the meth-

ods outlined above. In order to classify each of these unknown railway events as

either freight or passenger railway passbys, the logistic regression classification al-

gorithm, the development of which is outlined in Chapter 3, was applied to each

event. The logistic regression classification model has a reported classification

accuracy of 96% and is defined as follows:

P (Y = 1) =
1

1 + exp(10.7− 5.01Te − 2.25rms5Hz)
(4.2)

where Te is the normalised event signal duration and rms5Hz is the normalised pro-

portional rms acceleration contained within the 5 Hz 1/3rd octave band. These

two features were calculated for each of the unknown railway event signals, and

then substituted into Equation 4.2 in order to determine a predicted probabil-

ity that the event is a freight railway passby (as opposed to a passenger railway

passby). All signals with a predicted probability greater than 0.5 were subse-

quently classified as freight railway passbys, with the remaining signals classified

as passenger railway passbys. This resulted in 14 874 signals being classified as

freight with the remaining 85 103 signals classified as passenger. Figure 4.2 shows
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an example of two signals that have been classified as freight and passenger vibra-

tion signals. Visually, these examples show a great deal of similarity to examples

of known freight and passenger vibration signals, as shown in Figure 3.4, once

again providing confidence that the logistic regression classification model is able

to correctly identify freight and passenger vibration signals.
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Figure 4.2: Examples of unknown signals that have been classified as

freight and passenger using the logistic regression classification model

4.2.4 Determining separate freight and passenger railway

vibration exposures

With all the railway vibration signals in the measurement database classified as

either freight or passenger vibration signals, it is possible to determine 24 hour

vibration exposures for these two sources, for each of the 752 case studies. In

terms of quantifying the 24-hour vibration exposures, several different vibration

descriptors were investigated during the field study by Waddington et al. (2014).

Descriptors investigated included the root mean square acceleration, the vibra-

tion dose value, the equivalent continuous vibration level, the vibration exposure

level, the standard deviation, the skewness, the kurtosis and the peak particle



Chapter 4. Exposure-response relationships for exposure to railway vibration 84

acceleration, all of which are summarised in Section 3.5.2. In investigating these

parameters, Waddington et al. (2014) found similar magnitudes of correlation to

exist between all descriptors and the self reported annoyance (the only exceptions

being the skewness and the kurtosis). They concluded that, for their dataset of

exposures and responses, the single figure descriptors that they investigated were

equally effective predictors of annoyance, a conclusion that is consistent with the

findings of Zapfe et al. (2009) in their field study. However, Waddington et al.

(2014) did find a marginal improvement in the magnitude and significance of cor-

relation when applying appropriate frequency weightings to the root mean square

acceleration and vibration dose value descriptors. These findings led them to re-

port their exposures using both the weighted root mean square acceleration and

weighted vibration dose value. Similar correlations with different descriptors were

found in this research for separate freight and passenger vibration exposures and

responses.

Though vibration exposure in the field study was measured in three orthogonal

directions, the vibration magnitude dominates in the vertical direction. British

Standard BS 6472-1:2008 suggests that when the magnitude of vibration is dom-

inant in one axis, only the direction with the highest magnitude need be consid-

ered when quantifying the exposure. For this reason, and those outlined above,

24 hour vibration exposures will be quantified in this research using the vertical

vibration, Wk weighted for root mean square acceleration (as recommended by BS

ISO 2631-1:1997) and Wb weighted for vibration dose value (as recommended by

BS 6472-1:2008). The 24 hour Wk weighted root mean square (rms) acceleration

is defined as follows:

rmsk,24hr =

√
1

T

∫ T

0

ak,24hr(t)2dt (4.3)

where ak,24hr(t) is a Wk weighted acceleration time history of duration T , composed

of all passbys in a 24 hour period. The 24 hour Wb weighted vibration dose value

(VDV) is defined as follows:
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VDVb,24hr =
4

√∫ T

0

ab,24hr(t)4dt (4.4)

where ab,24hr(t) is a Wb weighted acceleration time history of duration T , composed

of all passbys in a 24 hour period. For more information on these descriptors, and

the standards which recommend their use, see Section 2.3.3. Using Equations

4.3 and 4.4, and the signals classified as freight and passenger by the logistic

regression classification model (Equation 4.2) it is possible to determine separate

24 hour vibration exposures for freight and passenger railway vibration, in terms

of weighted rms and VDV, for each case study.

4.3 Determining the annoyance response to freight

and passenger railway vibration

In Section 4.2, the methods used to determine separate exposure data for 24 hour

exposure to freight and passenger railway vibration is presented. In order to de-

termine exposure-response relationships for these two sources of railway vibration,

the annoyance response due to the two sources must also be determined. In this

section, the methods used to determine the annoyance response to freight and

passenger railway vibration is presented.

4.3.1 Field study social survey questionnaire

In the field study of Waddington et al. (2014), the human response to various

environmental factors were collected via means of a social survey questionnaire,

conducted face-to-face with residents in their own homes, usually whilst the short

term measurements of internal vibration were being conducted. To avoid biasing

response to questions on noise and vibration, the social survey was presented as a

neighbourhood satisfaction survey, collecting data not only on noise and vibration

but also on general satisfaction with the home and neighbourhood. The survey
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was also designed to measure a variety of factors which may affect the response

to noise and vibration, such as self-reported sensitivity to noise and vibration as

well as situational, attitudinal and demographic factors. For a brief summary of

the effects of these non-exposure factors, see Section 2.5.1.

The social survey questionnaire was developed by a team of social scientists and

is based on a pilot questionnaire developed for the project (TRL et al., 2007),

the Nordtest method for the development of socio-vibration surveys (Nordtest

Tekniikantie, 2001), best practice guidelines for the measurement of annoyance due

to noise provided by Team 6 of the International Commission on the Biological

Effects of Noise (ICBEN) (Fields et al., 2001) and guidance from the International

Standard ISO/TS 15666:2003. A summary of considerations in the development

of the social survey is provided by Whittle et al. (2015).

For field studies on the community response to environmental noise and vibration,

the response is usually measured in terms of annoyance, with this type of response

seen as an overall concept for the negative evaluations of environmental conditions

(Guski et al., 1999). Therefore, the primary aim of the survey was to measure self-

reported annoyance due to various environmental conditions, including railway

noise and vibration. It is this measurement of annoyance response due to railway

vibration that is relevant to this research. For more information on the use of

annoyance as a quantifiable measurement of response, see Section 2.4.1.

4.3.2 Determining response to freight and passenger rail-

way vibration

For this research, the response measure of interest is the annoyance caused by

vibration from freight and passenger railway traffic. As part of the social survey,

respondents were asked the following question:

“Thinking about the last 12 months or so, when indoors at home, how bothered,

annoyed or disturbed have you been by feeling vibration or shaking or hearing or

seeing things rattle, vibrate or shake caused by [source]?”
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The above question was asked four times, with the source term being replaced

by “passing passenger trains”, “passing freight trains”, “railway maintenance” or

“other railway activity”. Following the guidance of ICBEN (Fields et al., 2001) and

ISO/TS 15666:2003, the answer to the above question was recorded on a five point

semantic scale (“not at all”, “slightly”, “moderately”, “very” or “extremely”) and

an 11 point numeric scale (0 to 10). Respondents who reported that they had not

felt any vibration that they thought was caused by the railway had their annoyance

responses recorded as the lowest category on the semantic and numeric scales.

For the exposure-response relationships developed in this chapter, the response

of the above question, where the source is either “passing passenger trains” or

“passing freight trains” and the response is recorded using the semantic scale, was

collected for each case of the 752 case studies in order to quantify the annoyance

response to freight and passenger railway vibration.

4.4 Exposure-response relationships derived from

an ordinal probit grouped regression model

Sections 4.2 and 4.3 show how separate exposures and separate responses can be

determined for freight and passenger railway vibration. Using these methods, sep-

arate exposures and responses for freight and passenger vibration were determined

for all 752 case studies in the field study of Waddington et al. (2014). Exposure-

response relationships can then be determined for these separate sources using

a statistical grouped regression model presented by Groothuis-Oudshoorn and

Miedema (2006) and adapted by Waddington et al. (2014). This section presents

the details of the grouped regression model, as well as the methods used to test

the goodness of fit and significance of the model. Exposure-response relationships

are then determined for both sources combined, with the use of a dummy source

variable, and for separate sources.
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4.4.1 The ordinal probit grouped regression model

The ordinal probit grouped regression model takes the form of a curve indicating

the percentage of respondents expressing annoyance above a certain threshold,

in a similar manner to many of the exposure-response relationships presented in

the literature for exposure to noise and vibration and summarised in Sections

2.4 and 2.5 respectively. The model is derived from vibration exposure data and

self reported annoyance recorded on a scale ranging from 0 to 100. Annoyance

response scales with a certain number of categories, either semantic or numeric,

are re-scaled to this range using the following relation:

τj = 100j/m (4.5)

where τj are the category cut-points, j is the rank number of each category (the

lowest category is assigned a value of 0) and m is the total number of categories.

The annoyance data, A can then be centred on the midpoints of these categories.

For the data utilised in this work, self reported annoyance, A was recorded on an

ordinal semantic scale with J = 5 categories. It can be assumed that a latent

variable A∗, a linear combination of vibration exposure (V) and a random error

component ε, underlies the categorical annoyance variable as follows:

A∗ = βV + ε (4.6)

where β is a vector of regression parameters. The latent variable A∗ is then linked

to the observed variable A, with boundaries of 0 and 100, using the following

relationship:

A =


0 if A∗ < 0

A∗ if A∗ ∈ [0, 100]

100 if A∗ > 100

(4.7)
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Community responses of annoyance are often represented as the proportion of a

population that is likely to respond above a certain level of annoyance, C. Three

commonly used values of C are C = 28 (percent slightly annoyed), C = 50 (per-

cent annoyed) and C = 72 (percent highly annoyed) (Miedema and Oudshoorn,

2001). The probability of an individual exposed to a certain magnitude of vibra-

tion exposure (V ) responding with an annoyance level above a cut-off C can be

expressed using the following relations:

P (V ) = Prob(A∗ > C)

= Prob(βV + ε ≥ C)

= Prob(ε ≥ C − βV) (4.8)

Assuming that the error term ε is normally distributed, Equation 4.8 becomes:

P (V ) =

(
1− Φ

[
C − βV

σSE

])
(4.9)

where Φ represents the cumulative normal distribution function and σSE represents

the standard error. The distribution of responses at different annoyance levels can

be expressed by varying the cut-off, C. The regression coefficients of this model

can be estimated using maximum likelihood with the following likelihood equation:

L(β) =
J∏
j=1

∏
yi=j

[Φ(τj −Viβ)− Φ(τj−1 −Viβ)] (4.10)

where Vi is a vector of exposures that result in response yi. The upper and lower

95% confidence intervals as a function of exposure are determined as:

C95(V ) = βV ± Z
√

VEbVT (4.11)
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where Eb is the covariance matrix of the β parameters, VT is the transpose of the

exposure vector V combined with an intercept term and Z = 1.96 for a standard

normal distribution. The confidence limits for the exposure-response relationship

can then be represented as:

P95(V ) =

(
1− Φ

[
C − C95

σ

])
(4.12)

4.4.2 Goodness of fit and significance of the grouped re-

gression model

For an indication of how well the exposure-response model fits the data, the good-

ness of fit and significance of the model can be tested, in a similar manner to that

of testing the goodness of fit and significance of the logistic regression classifica-

tion model (see Section 3.4.3). Once again, the R2 value, commonly used to assess

the goodness of fit for ordinary least squares regression, is not appropriate for

models that are determined using maximum likelihood rather than minimisation

of variance. Instead, many similar indicators have been developed in an attempt

to describe the goodness of fit of a regression model estimated with maximum

likelihood. Similarly to the logistic regression model, Mcfadden’s R2
pseudo value

(Equation 3.6) will be used to assess the goodness of fit of the grouped regression

model. The overall significance of the model can be calculated using the likelihood

ratio test statistic (Equation 3.7), the standard error of individual parameters can

be calculated from the covariance matrix (Equation 3.8) and the significance of in-

dividual parameters can be calculated using the Wald ratio test statistic (Equation

3.9).
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4.4.3 Exposure-response relationship with a dummy vari-

able for source type

Before deriving separate exposure-response relationships for exposure to freight

and passenger railway vibration, the applicability of using separate exposure-

response relationships can be investigated by introducing a dummy variable to

the exposure-response model. This method of introducing a dummy variable to

the exposure-response relationship has previously been used by Klæboe et al.

(2003b) to investigate different vibration sources, differences in study regions and

different distances from the vibration source. Waddington et al. (2014) also used

the dummy variable method to investigate different vibration sources, concluding

that different exposure-response relationships should be derived for vibration due

to construction and for vibration due to the railway.

For the dummy variable analysis, separate exposures and responses to freight and

passenger railway vibration from all 752 case studies were pooled and a dummy

variable for source type was created (passenger = 0, freight = 1). An exposure

response relationship was created, using the five point semantic annoyance scale

as the dependent variable and vibration exposure and the source type dummy

variable as the independent variables. For both exposure quantified as 24 hour

weighted rms acceleration and VDV, the fitting of this exposure-response rela-

tionship resulted in a highly significant parameter estimate for the source dummy

variable (p < 0.001) and a significant increase in the likelihood (p < 0.001) when

compared to models fitted without the dummy variable. Figure 4.3 shows plots

of the exposure-response relationships with the dummy variable, for both freight

railway exposure (source type = 1) and passenger railway exposure (source type =

0), whilst parameter estimates and other details of the pooled exposure-response

relationships with the dummy variables are presented in Table 4.1.

The positive parameter value for the source type dummy variable has the effect

of shifting the freight annoyance response along the vibration exposure axis, sug-

gesting that freight vibration exposure results in higher annoyance responses when

compared with the same magnitude of passenger vibration exposure. This result
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gives confidence that the difference in the response to these two sources is not just

due to differences in the magnitude of vibration exposure, and that it is justifi-

able to derive separate exposure-response relationships for freight and passenger

sources.

Parameter
β

Estimate
Standard

Error
p-value Overall Model

Intercept 41.22 12.15 < 0.001 N 1504
10 log10(rmsk,24hr) 2.47 0.46 < 0.001 p-value < 0.001
Source Type 15.81 3.57 < 0.001 R2

pseudo 0.02
σSE 52.24 2.28 < 0.001

Intercept 11.37 7.03 n.s. N 1504
10 log10(VDVb,24hr) 2.36 0.44 < 0.001 p-value < 0.001
Source Type 19.24 3.62 < 0.001 R2

pseudo 0.02
σSE 52.28 2.27 < 0.001

Table 4.1: Parameter estimates and other details of the pooled ordinal

probit grouped regression model with a dummy source variable

4.4.4 Exposure-response relationships for separate sources

The positive and significant regression coefficient for the dummy source variable

gives confidence that separate exposure response relationships can be determined

for exposure to freight and passenger railway traffic. Therefore, separate exposure-

response relationships are derived for these two sources of railway vibration. These

separate exposure response relationships, for freight and passenger railway vibra-

tion, and for vibration quantified as 24 hour rms acceleration and VDV, are shown

in Figure 4.4. Parameter estimates and other model details are presented in Ta-

ble 4.2 for models derived for freight and passenger vibration, and for exposures

quantified as rms acceleration and VDV.
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Figure 4.3: Exposure-response relationship derived using the ordinal

probit grouped regression model, with a dummy source type variable for

freight exposure (source type = 1) and passenger exposure (source type =

0). Broken lines indicate the 95% confidence intervals.
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Figure 4.4: Exposure-response relationships derived using separate or-

dinal probit grouped regression models for annoyance due to exposure to

freight and passenger railway traffic. Broken lines indicate the 95% confi-

dence intervals.
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Parameter
β

Estimate
Standard

Error
p-value Overall Model

F
re

ig
h
t Intercept 63.06 18.29 < 0.001 N 752

10 log10(rmsk,24hr) 2.90 0.70 < 0.001 p-value < 0.001
σSE 58.90 3.19 < 0.001 R2

pseudo 0.01

F
re

ig
h
t Intercept 29.07 10.47 < 0.010 N 752

10 log10(VDVb,24hr) 2.59 0.63 < 0.001 p-value < 0.001
σSE 58.97 3.19 < 0.001 R2

pseudo 0.01

P
as

se
n
ge

r Intercept 36.52 14.37 < 0.050 N 752
10 log10(rmsk,24hr) 1.93 0.56 < 0.001 p-value < 0.010
σSE 42.66 3.09 < 0.001 R2

pseudo 0.01

P
as

se
n
ge

r Intercept 15.62 8.68 n.s. N 752
10 log10(VDVb,24hr) 2.00 0.57 < 0.001 p-value < 0.010
σSE 42.68 3.07 < 0.001 R2

pseudo 0.01

Table 4.2: Parameter estimates and other details of the ordinal probit

grouped regression models for annoyance due to exposure to freight and

passenger railway vibration

For comparison, the exposure-response relationships for percentage highly annoyed

due to both freight and passenger railway vibration exposure are presented to-

gether in Figure 4.5. The exposure-response relationships show that freight railway

vibration results in a greater annoyance response, even for equal levels of vibration

exposure. For example, given a 24 hour rmsk vibration exposure of 0.01 m s−2,

approximately 4% of the studied population is likely to be highly annoyed if the

source is passenger railway vibration, whereas approximately 13% of the studied

population is likely to be highly annoyed if the source is freight railway vibration.

In terms of equal annoyance response, 0.0100 m s−2 of passenger railway vibration

exposure is equivalent to only 0.0006 m s−2 of freight railway vibration.
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Figure 4.5: Exposure-response relationships derived separately for

freight and passenger exposure using the ordinal probit grouped regres-

sion model, showing the percentage of high annoyance caused by exposure

to freight and passenger railway vibration. Broken lines indicate the 95%

confidence intervals.

Fidell et al. (2011) provide a method of quantifying differences in community

response to different noise sources using a community tolerance level (CTL). For

more information on the CTL, and its use in quantifying community responses to

different sources, see Section 2.4.3. Fidell et al. (2011) define the CTL as the noise

level at which 50% of a community population is likely to be highly annoyed.

Applying this method to vibration and to the population studied results in a

CTL level of 78 dB for passenger railway vibration and 63 dB for freight railway

vibration (re 10−6 m s−2). In other words, the population studied appears to be

15 dB more tolerant to passenger railway vibration than they are to freight railway

vibration.
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4.5 Exposure-response relationships derived with

a cumulative ordinal logit model

The exposure-response relationships derived in the previous sections have shown

that the human response to freight and passenger railway vibration is significantly

different. This has been demonstrated with the use of a dummy source variable

in a grouped regression model, showing a significant shift along the exposure axis

to account for the difference in the response to these two sources of environmental

vibration (see Section 4.4.3). The difference in response is further demonstrated

by developing separate exposure response relationships for exposure to freight and

passenger railway vibration (see Section 4.4.4). An additional method to investi-

gate the difference in response is to develop exposure-response relationships using

a cumulative ordinal logit model with a source dummy variable. The parameter

estimate of the source dummy variable can then be interpreted as an odds ratio,

showing the likelihood of a higher degree of annoyance being experienced due to

freight railway vibration when compared to passenger railway vibration. The de-

velopment of this model, and an analysis of the odds ratio, is presented in this

section.

4.5.1 The cumulative ordinal logit model

The ordinal logit regression model is based on the inverse of the logistic function

used to classify unknown railway vibration signals in this work (see Chapter 3).

The ordinal logit model is particularly suited to the analysis of ordinal variables

(Long, 1997), such as the ordinal response variables that were collected during the

field study of Waddington et al. (2014) and analysed in this work. For an ordinal

response variable yi that can fall into j = 1, ..., J categories, yi follows a multino-

mial distribution where pij represents the probability that the ith observation falls

into response category j. The cumulative probability Pij that the ith observation

falls into category j or lower can then be defined:
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Pij = P (yi ≤ j) = pi1 + pi2 + ...+ pij (4.13)

The link function used in ordinal logit regression is the logit function:

logit(P ) = ln

(
P

1− P

)
(4.14)

Combining Equations 4.13 and 4.14 gives the cumulative logit:

logit(Pij) = ln

(
P (yi ≤ j)

1− P (yi ≤ j)

)
(4.15)

The cumulative logit model can then take the form of a regression model as follows:

logit(Pij) = βj − βX (4.16)

where βj is the threshold coefficient for the jth category, X is a vector of indepen-

dent predictor variables and β is a vector of corresponding regression coefficients

to be estimated by maximum likelihood. The goodness of fit and significance of

the model, and the significance of the regression parameters can be determined

using the same methods as for the ordinal probit grouped regression model (see

Section 4.4.2).

4.5.2 Exposure-response relationships with the cumulative

ordinal logit model

The ordinal logit model was used to develop an exposure response relationship

with a source dummy variable, similarly to the method that was employed with

the grouped regression model with a source dummy variable in Section 4.4.3.

Exposures and responses for both freight and passenger railway vibration were

pooled together and a dummy variable for source type was created (passenger =
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0, freight = 1). An exposure-response relationship was then determined using

the ordinal logit model, with the regression coefficients estimated via maximum

likelihood. These exposure response relationships are presented in Figure 4.6. As

the model is of a cumulative form, the exposure-response curves represent the

probability of a respondent expressing annoyance in the given category or higher.

Parameter estimates and other details of the cumulative ordinal logit model are

presented in Table 4.3. For reasons of clarity, the 95% confidence intervals are

omitted from Figure 4.6 and are instead presented in Table 4.4.

Parameter
β

Estimate
Standard

Error
p-value Overall Model

Threshold N 1504
Not at All/Slightly -0.86 0.42 < 0.050 p-value < 0.001
Slightly/Moderately -0.38 0.42 n.s. R2

pseudo 0.02
Moderately/Very 0.35 0.42 n.s.
Very/Extremely 1.60 0.44 < 0.001

Location
10 log10(rmsk,24hr) 0.09 0.02 < 0.001
Source Type 0.48 0.12 < 0.001

Threshold N 1504
Not at All/Slightly 0.18 0.24 n.s. p-value < 0.001
Slightly/Moderately 0.66 0.24 < 0.010 R2

pseudo 0.02
Moderately/Very 1.38 0.24 < 0.001
Very/Extremely 2.64 0.27 < 0.001

Location
10 log10(VDVb,24hr) 0.08 0.02 < 0.001
Source Type 0.59 0.12 < 0.001

Table 4.3: Parameter estimates and other details of the cumulative or-

dinal logit models for annoyance due to exposure to freight and passenger

railway vibration
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Figure 4.6: Exposure-response relationships derived using the cumula-

tive ordinal logit model, with a dummy source type variable for source

type for freight exposure (source type = 1) and passenger exposure

(source type = 0)
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Parameter
β

Estimate

95% Confidence Intervals

Lower Bound Upper Bound

Threshold
Not at All/Slightly -0.86 -1.68 -0.05
Slightly/Moderately -0.38 -1.19 0.44
Moderately/Very 0.35 -0.47 1.16
Very/Extremely 1.60 0.75 2.46

Location
10 log10(rmsk,24hr) 0.09 0.06 0.12
Source Type 0.48 0.24 0.71

Threshold
Not at All/Slightly 0.18 -0.29 0.64
Slightly/Moderately 0.66 0.20 1.13
Moderately/Very 1.38 0.91 1.86
Very/Extremely 2.64 2.11 3.18

Location
10 log10(VDVb,24hr) 0.08 0.05 0.11
Source Type 0.59 0.35 0.83

Table 4.4: Parameter estimates and their 95% confidence intervals for

the cumulative ordinal logit models for annoyance due to exposure to

freight and passenger railway vibration

The dummy source type variable is positive and significant, for both models derived

with rms acceleration and VDV exposure, once again giving confidence that the

annoyance response to freight and passenger railway vibration is different, and that

it is therefore viable to derive separate exposure-response relationships for these

two vibration sources. Setting the source type to 1 and 0 allows the determination

of exposure-response relationships for exposure to freight and passenger railway

vibration exposure respectively, showing that the annoyance response for the pop-

ulation studied is consistently higher for exposure to freight vibration across the
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range of exposure studied. One of the main benefits in using the ordinal logit

model, is that its regression coefficients can be interpreted as odds ratios, which

is further detailed in the next section.

4.5.3 Interpreting the source type as an odds ratio

The advantage of using an ordinal logit model is that its regression coefficients can

be intuitively interpreted as odds ratios, which is not the case for the ordinal probit

grouped regression model derived in Section 4.4. The odds ratios are particularity

useful in examining the influence of dummy variables, such as the source type

dummy variable used in the ordinal logit model in this section. Examining the

odds ratio for the source type variable allows the influence of a change in conditions

on an outcome to be determined, i.e. the influence of changing the source from

passenger to freight on the exposure-response relationship. For the ordinal logit

model, the odds ratio associated with a particular variable can be computed as

the exponential of its regression coefficient, as follows (Agresti, 2002):

Odds Ratio = eβn (4.17)

where βn is the regression coefficient of the nth variable. When all other variables

are held constant, the odds ratio computed using Equation 4.17 represents the rel-

ative odds of the modelled outcome occurring, given the condition represented by

the nth variable. Since the ordinal logit model used in this section is cumulative,

the odds ratio is also cumulative, representing the odds of respondents report-

ing annoyance of a higher category (Agresti, 2002). Substituting the source type

regression coefficients shown in Table 4.3 into Equation 4.17 allows the determina-

tion of the odds ratio associated with the source type variable. The results indicate

that, all other variables being held equal, for the same 24 hour rms acceleration

exposure, respondents are 1.6 times more likely to express annoyance in a higher

annoyance category due to freight railway vibration than for passenger vibration.

Likewise, for the same 24 hour VDV exposure, respondents are 1.8 times more
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likely to express annoyance in a higher annoyance category due to freight railway

vibration than due to passenger railway vibration. Once again, this shows that

the annoyance response due to freight railway vibration is significantly higher than

that due to passenger railway vibration, even for equal magnitudes of vibration

exposure.

4.6 Differences in the human response to freight

and passenger railway vibration

Exposure-response relationships presented in this chapter suggest that the human

response to freight railway vibration is significantly different than that due to pas-

senger railway vibration, even for equal levels of vibration exposure. Exposure-

response relationships for these two sources of environmental vibration show that

the annoyance response increases monotonically with vibration exposure magni-

tude, but the rate of increase of annoyance is much higher for freight vibration

than for passenger vibration. This difference in the responses suggest that people

are able to differentiate between these two sources of railway vibration, and that

freight railway vibration is significantly more annoying than passenger railway

vibration, even for equal levels of vibration magnitude.

Though no previous research has specifically investigated the differences in human

response to different sources of railway vibration, previous field studies have re-

ported differences in response to different sources of railway noise. In Fields and

Walker’s 1982 field study, freight trains were mentioned as being most bothersome

approximately three times more often than passenger trains. Similarly, more than

half of the interviewees from a field study by Andersen et al. (1983) mentioned

freight trains as being particularly disturbing. In their field study, Pennig et al.

(2012) found that the annoyance response due to railway noise increased signifi-

cantly with increasing total number of trains and number of freight trains but not

with increasing number of passenger trains. Freight railway noise has also been

shown to have a greater effect on sleep disturbance than passenger railway noise
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(Saremi et al., 2008) and even aircraft noise in some cases (Elmenhorst et al., 2012).

These studies suggest a difference in the human response to different sources of

railway noise, so it is not a surprising result that differences also exist between

sources of railway vibration. In terms of both noise and vibration, it appears

that freight railway traffic is more annoying than passenger railway traffic. Al-

though exposure-response relationships derived in this chapter have demonstrated

that this is true even for equal levels of vibration exposure, previous research has

shown that the same may not be true for equal levels of noise exposure (De Jong

and Miedema, 1996).

Differences in response to freight and passenger railway noise are often attributed

to the increased duration of freight passbys and the greater proportion of low

frequency noise (Pennig et al., 2012). Similar conclusions can be drawn for dif-

ferences between freight and passenger railway vibration. Indeed, it has been

shown that the logistic regression model can accurately distinguish between freight

and passenger railway vibration signals based only on their duration and low

frequency energy content. In this work, the mean duration of freight vibration

events is 23.8 s (σ = 5.4) and the mean duration of passenger vibration events is

16.1 s (σ = 6.4). As well as being longer in duration, freight trains are typically

heavier and can more easily elicit groundborne vibrations (De Jong, 1979). BS

6472-1:2008 defines a region of high sensitivity for humans for vertical vibration

from 4 to 12.5 Hz. For this study, the mean proportion of a signal’s rms acceler-

ation that is contained within this region is 18.4% (σ = 12.4) for freight signals

and 14.4% (σ = 9.5) for passenger signals.

An additional factor may be found in the tendency of freight railway traffic to

be more frequent during evening and night-time hours. In this work, the mean

proportion of freight traffic during day time hours (07:00 to 19:00) evening time

hours (19:00 to 23:00) and night-time hours (23:00 to 07:00) is 10.1%, 18.2%

and 21.5% respectively (SD = 4.7, 12.0, 11.6). Peris et al. (2012) demonstrated

that annoyance due to equal levels of railway vibration exposure is greater during

night-time than during evening time, and greater during evening time than during

day time. The fact that freight traffic is more prevalent during periods in which
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sensitivity to railway vibration is higher is therefore likely to affect the annoyance

response to freight railway vibration.

4.7 Summary

In this chapter, exposure-response relationships have been developed for annoy-

ance due to exposure to freight and passenger railway traffic, in order to investigate

whether there are any differences in the human response to these two sources of

environmental vibration. Firstly, exposure-response relationships with a dummy

source type variable were developed using an ordinal probit grouped regression

analysis. The regression resulted in a significant and positive source type vari-

able, giving confidence that it is necessary to develop separate exposure-response

relationships for freight and passenger railway vibration.

Separate exposure-response relationships were then developed, showing that the

annoyance response to freight railway vibration is significantly higher than that

due to passenger railway vibration, even for equal levels of vibration exposure

magnitude. In terms of a community tolerance level, the population studied ap-

pears to be 15 dB (re 10−6 m s−2) more tolerant to passenger railway vibration

than to freight railway vibration.

The difference in response was further investigated by developing exposure-response

relationships using a cumulative ordinal logit model. This model allowed the inves-

tigation of the odds ratio associated with the source type, showing that for equal

24 hour exposures of rms acceleration, respondents are 1.6 more likely to express

annoyance in a higher annoyance category for freight vibration than they are for

passenger vibration. Likewise, for equal 24 hour exposures of VDV, respondents

are 1.8 times more likely to express annoyance in a higher annoyance category due

to freight vibration than they are due to passenger vibration.

The indication that the human response to freight and passenger railway vibra-

tion is different for equal vibration magnitudes, suggests that respondents are
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perceiving more than just the vibration exposure magnitude when making their

annoyance judgements. There may be other factors that contribute to the annoy-

ance response (for example, event duration and simultaneous noise exposure) that

are not sufficiently quantified in the exposure metrics studied in this chapter. In an

attempt to investigate these contributing factors, a subjective test was designed

to further investigate the human response to railway noise and vibration. The

subjective test is described in detail in Chapter 5, and the analysis of the human

response to noise and vibration as a multidimensional phenomenon is presented

in Chapter 6.
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5.1 Introduction

The exposure-response relationships derived in Chapter 4 demonstrate that there

is a disparity in the human response to freight and passenger railway vibration.

Different relationships, or a source type penalty for freight signals, are required

to estimate the human response to freight and passenger railway vibration when

the independent variable is a measure of the vibration exposure magnitude alone

(i.e. rms acceleration or VDV). It is possible that other objective features of the

vibration signals from freight and passenger trains contribute to the overall human

response to these sources, and identifying these features could help to explain the

difference in the response relationship. Identifying these factors, and subsequently

including them in a relationship to describe the human response to vibration from

freight and passenger railway traffic, could allow the prediction of the human

response to railway vibration, without the need to identify the vibration source or

apply a source penalty to freight railway vibration exposure.

In addition, environmental vibration very often exists in concert with environ-

mental noise from the same source. When investigating the response relationship

to environmental vibration, therefore, it is also important to give consideration

to the effects of combined noise and vibration. The perception of noise or sound

has widely been accepted as a complex and multidimensional phenomenon. That

is, the perception of noise is a function of several perceptual dimensions which

relate to objective parameters of the noise. This has also been shown to be the

case for environmental railway vibration (Woodcock et al., 2014a). Several labo-

ratory studies have shown that the perception of combined noise and vibration is

a complex one, and that annoyance due to noise is affected by the presence of vi-

bration and vice versa (Howarth and Griffin, 1990, 1991; Jik Lee and Griffin, 2013;

Paulsen and Kastka, 1995) however, no attempt has yet been made to investigate

the perception of combined noise and vibration as a multidimensional phenomena.

Considering the perception of combined railway noise and vibration as a multi-

dimensional phenomena may allow the identification of objective features of the

noise and vibration signals that can be used to predict the human response with a
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greater degree of accuracy than those which only take into account the magnitude

of noise and vibration exposure.

In order to investigate the perception of combined railway noise and vibration

a subjective laboratory test was designed. The design and methodology of the

subjective test will be presented in this chapter, followed by an analysis of the

perceptual results as a multidimensional phenomena in Chapter 6.

5.2 Measurement methodology

The subjective test involved exposing subjects to combined railway noise and vi-

bration signals in a controlled setting. Since the test required stimuli of noise and

vibration in combination, and the database of measurements utilised in previous

chapters contains only vibration measurements, it was necessary to perform new

field measurements. These field measurements of noise and vibration were per-

formed over a period of two days in June 2014 at a location that had previously

been identified as a good location for measurements due to the lack of other noise

and vibration sources in the area. The measurement location was on the West

Coast Mainline, between the Leyland and Preston stations. Noise was recorded

using two AKG C214 microphones, with a sensitivity of 20 mV/Pa and a signal to

noise ratio of 81 dB(A), paired in an X-Y stereo configuration. These microphones

have a cardioid polar pattern. Vibration was recorded using a Guralp CMG-5TD

tri-axial strong motion accelerometer with a sampling rate of 200 Hz and a 100

Hz low pass filter. Both the stereo microphone configuration and the Guralp were

positioned 10 m from the near-side rail and 20 m from the far-side rail. Noise and

vibration was recorded continuously for several hours, with a note taken of the

time and details of each train passby so that the signals could later be identified,

extracted and labelled from the recordings.
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5.3 Selection of noise and vibration stimuli

Across the two days of recordings, 9 freight train and 53 passenger train passbys

were recorded. Due to the nature of the subjective test, the selection of the stimuli

had to be quite strict. The subjective test took the form of a paired comparison

test, which can result in extremely long tests when the number of stimuli is large,

or the stimuli are of long duration. Since the nature of the research requires

that some of the stimuli will be freight train passbys, which typically are of longer

duration than passenger trains, it was necessary to significantly reduce the number

of stimuli.

Firstly, the 9 freight passby noise recordings were inspected for contamination by

wind noise or other noise sources since these passbys were of significantly longer

duration and hence had a greater chance of being contaminated. Audible inspec-

tion of the freight passby noise recordings revealed that 6 of the 9 recordings had

some noise contamination and so were discarded. Since the nature of the research

is focuses on the difference in response to freight and passenger noise and vibration,

it was deemed important to include as many freight passbys as feasibly possible, so

the 3 remaining freight passbys were included in the subjective test. The remain-

ing signals in the test are made up of passenger passbys and the selection criteria

was to include as many as possible, without the test being prohibitively long. For

a complete paired comparison test, the subject is required to make judgements

on N(N−1)
2

pairs of stimuli, where N is the number of stimuli included in the test.

A selection of 10 stimuli, comprised of 7 passenger and 3 freight passbys, would

therefore result in 45 pairs in the subjective test. With the duration of the sig-

nals known, the duration of a test containing these 45 pairs was estimated to be

approximately 25-35 minutes depending on how quickly the subjects were able

to make their judgements. Adding an extra passenger signal to the stimuli set

would increase the number of pairs to 55 and the estimate of the test duration to

approximately 30-40 minutes. To avoid fatigue due to a higher number of paired

judgements and an increased test duration, the stimuli set with 7 passenger and

3 freight passbys was chosen.
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The 7 passenger signals selected for the subjective test were taken from the set

of 53 recorded passbys. In order to obtain a varied stimulus set, signals were se-

lected based on the results of a principle component analysis on various calculated

objective properties of the vibration signals. The calculated properties included

the rms acceleration and the VDV. The spectral centroid was calculated as a

measure of the signal’s spectral distribution. Temporal factors of the signal were

quantified by the kurtosis, the skewness, the crest factor and the duration defined

by the 3 dB and 10 dB downpoints of the signal. For further details on these vi-

bration descriptors, see Section 3.5.2. Further aspects of the signal envelope were

quantified by the modulation depth and modulation frequency. The modulation

depth is defined as the average difference between the maxima and minima of the

signal envelope, and the modulation frequency is the inverse of the average period

between the maxima of the signal envelope. The scree plot of the principal compo-

nent analysis on these descriptors, showing the percentage of variance explained

by each of the recovered principle components, is shown in Figure 5.1. A four

dimensional principal component solution, accounting for approximately 94% of

the explained variance in the descriptor space, was chosen for examination.
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Figure 5.1: Scree plot of the percentage of variation explained by each

of the recovered principal components
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Figures 5.2 to 5.4 show the positions of the 53 passenger vibration signals on the

first four principal components, along with the weighting of each of the calculated

descriptors on the components, indicated by the projections in the figures. Since

the solution is of more than two dimensions, some of the projections are shorter

than others, indicating that they are partially projecting into other dimensions

not represented in the two-dimensional figures.

Though it can be hard to visually interpret the weightings of the descriptors on

each principal component, and the interpretation is something of a subjective

nature, some judgements can be made about which principal components could

be related to which descriptors. For example, the first principal component could

be related to the duration of the signal, the second component could be related to

exposure magnitude and peaks in the signal, the third component could be related

to envelope modulation and the fourth component could be related to envelope

modulation and peaks in the signal. To select a varied passenger signal stimulus

set, each principal component was equally divided into two portions and a signal

was randomly selected from each half, resulting in a set of 8 passenger signals. One

signal was then randomly removed, resulting in the desired selection of 7 passenger

train signals. The noise pressure time histories and the vibration acceleration time

histories of the 10 selected stimuli are presented in Figures 5.5 and 5.6 respectively.

Note that the time axes are extended for the three freight train signals: stimuli 8,

9 and 10.

5.4 Subjective test design

The subjective test involved exposing 30 subjects to pairs of combined noise and

vibration stimuli in an acoustically controlled setting and asking them to make

paired comparison judgements on the annoyance and similarity of the stimulus

pair, as well as judgements of categorical annoyance of each individual stimulus.

The design of the subjective test is presented in this section.
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Figure 5.2: Position of the 53 passenger vibration signals on the first

and second principal components as well as the weighting each descriptor

has on the components
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Figure 5.3: Position of the 53 passenger vibration signals on the second

and third principal components as well as the weighting each descriptor

has on the components
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Figure 5.4: Position of the 53 passenger vibration signals on the third

and fourth principal components as well as the weighting each descriptor

has on the components

5.4.1 Reproduction of combined noise and vibration stim-

uli

The subjective test took place in the University of Salford’s Listening Room, a

room specifically designed for subjective testing. It meets the stringent require-

ments for the subjective assessment of small impairments in audio systems laid

out in ITU-R BS 1116-2 (2014), as well as the requirements for listening tests on

loudspeakers specified by BS 6840-13 IEC 60268-13 (1998). The room dimensions

are 6.6 m× 5.8 m× 2.8 m and the background noise level is 5.7 dB(A).

The noise and vibration reproduction and the user interface for the subjective

test were controlled using the Max visual programming language (Cycling ’74,

2013). Stimuli were reproduced as three data channels - stereo audio plus a third

channel for the vibration signal. Channel data was passed from a Macbook Pro

to an RME ADI-8 DS ADAT/TDIF AD/DA converter via an M-Audio Profire

Lightbridge interface. Stereo audio was passed directly from the ADAT converter

to a pair of bi-amplified loudspeakers (Genelec 8030A). Vibration data was passed
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Figure 5.5: Pressure time histories of the 10 noise stimuli selected for

the subjective test
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Figure 5.6: Acceleration time histories of the 10 vibration stimuli se-

lected for the subjective test
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to a tactile transducer (BK-LFE-KIT) rigidly mounted to the underside of a chair

via a 1000 W amplifier (BKA1000-N).

The listener and loudspeakers were positioned to comply with ITU-R Recom-

mendation BS 1116-1 (2014) and EBU 3276 (1998) as shown in Figure 5.7. The

loudspeakers and listener formed an equilateral triangle with the distance between

the two speakers and the distance between the listener and each speaker equal to

2 m. The loudspeakers were placed at a height of 1.2 m and the distance between

each loudspeaker and the closest wall was 1.3 m. A photograph of the setup, with

a subject sitting in the listener position, is shown in Figure 5.8.

Figure 5.7: Recommended stereophonic listener and speaker locations

adapted from ITU-R Recommendation BS 1116-1 (2014) by Bech and

Zacharov (2006). Shaded region represents the recommended listening

area.

The reproduced noise was recorded using a 01 dB Symphonie measurement system

combined with an MCE212 microphone with a sensitivity of 50 mV/Pa and a

frequency range of 6.3 Hz to 20 kHz. The reproduced vibration was measured
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Figure 5.8: Photograph of the subjective test setup, showing a subject

sitting in the recommended listener position

using a Svantek SV38 seat pad accelerometer with a sensitivity of 100 mV/(m s−2)

and a frequency range of 0.1 to 100 Hz, paired with a Svantek SVAN 957 sound and

vibration analyser. Objective descriptors of the 10 noise and vibration stimuli, as

reproduced and measured using the subjective test setup, are presented in Table

5.1. The noise and vibration stimuli were reproduced at levels that are comfortable

for the subject, realistic for levels experienced at residential environments within

100 m of a railway line, and commensurate with levels used in previous subjective

tests of combined railway noise and vibration (Howarth and Griffin, 1990, 1991;

Paulsen and Kastka, 1995).

5.4.2 Limitations of the noise and vibration reproduction

There are some limitations of the noise and vibration reproduction that are worth

discussing. Though the transducer used in the experiment has a relatively flat

response in the region of 10 to 80 Hz, it is highly non-linear and can generate a

high degree of harmonic distortion (Abercrombie and Braasch, 2009; Woodcock,

2013). Woodcock (2013), noting the limitations of this particular transducer, built

a new test rig, consisting of a chair mounted on an electrodynamic shaker, which
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Stimulus
LAeq

(dBA)
SELA
(dBA)

VDVb

(m s−1.75)
rmsk

(m s−2)
Duration

(s)

1 51.6 62.6 0.0843 0.0305 11.3
2 50.7 59.8 0.0522 0.0217 10.1
3 57.6 68.3 0.0514 0.0219 8.8
4 52.8 62.9 0.0694 0.0288 6.2
5 60.0 70.6 0.0611 0.0258 9.6
6 53.2 64.4 0.0511 0.0202 7.2
7 57.1 68.0 0.0664 0.0258 12.4
8 58.7 72.4 0.0954 0.0226 53.3
9 58.2 74.2 0.0685 0.0140 38.7
10 62.5 75.0 0.0723 0.0230 22.1

Mean 56.2 67.8 0.0672 0.0234 18.0
Standard Deviation 3.9 5.3 0.0145 0.0047 15.8

Table 5.1: Objective descriptors of the noise and vibration stimuli as

reproduced and measured in the subjective test

was designed to be more capable of faithful reproduction of vibration signals. An

initial study was performed to determine if this shaker could be used for the tests in

this research, however, the shaker and its 6000W amplifier produced an excessive

amount of noise, making it impossible to use this piece of equipment for multi

modal tests. It was decided therefore, to use the tactile transducer combined with a

seat pad accelerometer. This meant that, though the vibration signals may not be

accurately reproduced, the vibration experienced by the subject is being accurately

measured, and any analysis of the test results uses the measured data from the seat

pad accelerometer. Therefore, any models of the perception of combined noise and

vibration derived from these results are representative of the vibration experienced

by the subject, even if that vibration is not necessarily highly representative of

railway vibration. Similarly, the reproduction of the noise as stereo audio could

be perceived as a limitation. Ambisonic reproduction may have result in a more

realistic experience for the subject. For future experiments, more robust means
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of reproducing the noise and vibration should be considered, however, the set up

used for these experiments, though limited, should still allow an investigation into

the perception of combined noise and vibration, and in particular should allow

an investigation into the applicability of using multidimensional scaling to analyse

the perception of combined noise and vibration.

5.4.3 Subject training

Thirty subjects participated in the subjective tests described in this chapter. The

majority of subjects were members of the Acoustics Research Centre at the Uni-

versity of Salford, and had experience in taking part in various subjective tests.

However, though many of the subjects had taken part in subjective tests to do with

noise, few had experience with subjective tests involving vibration, and so would

perhaps respond more like the general population for this experiment. Prior to the

start of the test, each subject was provided with written and verbal instructions

of how the test would proceed, and were asked to sign a consent form agreeing to

take part in the test. The subjects were encouraged to imagine that they were

at home, living in the vicinity of a railway line, and that the noise and vibration

stimuli would be something that they would experience on a day to day basis.

An opportunity was provided for the subjects to ask any questions that they may

have and they were then asked to sit comfortably on the chair on top of the seat

pad accelerometer. Once the subjects had made themselves comfortable, they

were encouraged to keep their posture consistent as much as possible throughout

the test. The 10 noise and vibration stimuli were then played in order to allow

the subjects to familiarise themselves to the stimuli playback and to give them

a feel for the levels that they would experience throughout the test. During this

process, the vibration from the transducer was measured using the seat pad ac-

celerometer in order to check the variability of the vibration transmitted to each

subject according to differences in their posture and body mass. Subjects were

then allowed to familiarise themselves with the test user interface presented in

the following section with two trial pairs of noise and vibration stimuli. Following
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these processes of familiarisation and practice, the subjects then embarked on the

paired comparison test of 45 pairs.

5.4.4 Paired comparison judgements of annoyance and sim-

ilarity

The test user interface used in the paired comparison test is shown in Figure 5.9.

The user interface was presented on an iPad held by the subject and paired to the

Macbook Pro using a local wireless network. This allowed the subject to control

the test using an intuitive touch screen interface which was a preferred option to

requiring the subject to sit holding a laptop, potentially causing discomfort. A

photograph of a subject using the touch screen interface is shown in Figure 5.10.

The subjects were allowed to play stimulus A or B by touching the respective but-

tons, and control playback using a play/stop button. Subjects were encouraged to

play each stimulus as many times as they liked in order to make their judgements,

though they were encouraged to make their judgements based on their initial reac-

tions as far as possible. The ordering of the pairs was randomised for each subject

according to a Ross series (Ross, 1934) which ensures the greatest separation of

pairs with common stimuli (David, 1988). For each pair, subjects were asked to

make two paired comparison judgements:

1. Which of the pair would bother, annoy or disturb you most if you experienced

them in your own home?

2. How similar do you perceive the pair to be?

Each subject marked their response to both of these questions via continuous 101

point sliders, which were coded between -0.5 to 0.5 for question 1 and 0 to 100

for question 2. Subjects were encouraged to use the entire scale. Each slider was

initially blank to avoid biasing results, and the black marker line only appeared

on the slider when the subject touched the scale at any point. The instance of the

interface shown in Figure 5.9 represents a situation in which the subject has last
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played stimulus A (hence the button for stimulus A is highlighted) and has marked

their judgements on both scales. Once the subject had made their judgements,

they were required to touch the box marked “Confirm your choice” before the

button to move to the next pair was activated, in order to prevent this button

being accidentally pressed before the subject had finished with their judgements.

Figure 5.9: Graphical user interface used in the paired comparison test

5.4.5 Judgements of categorical annoyance

After completing the paired comparison section of the subjective test, the subjects

were provided with an opportunity to take a break before moving on to the second

and final part of the test, which required the subjects to make judgements of

annoyance on a categorical scale. The paired comparisons in the first part of

the subjective test result in single figure annoyance scores of an arbitrary scale

and relate only to the set of stimuli upon which the judgements were made. In

order to measure annoyance on an absolute scale and to allow the results of this
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Figure 5.10: Photograph showing a subject using the touch screen

graphical interface

subjective test to be comparable to the results of the field study by Waddington

et al. (2014), it was necessary to determine absolute annoyance ratings for each

stimulus. The graphical user interface for this part of the subjective test is shown

in Figure 5.11. Each subject was allowed to play each of the 10 stimuli in a

randomised order, and then asked to indicate on a five point semantic scale how

bothered, annoyed or disturbed they would be by each stimulus. The five point

scale ranged from “not at all” to “extremely” and is the same scale used in the

field study of Waddington et al. (2014) and utilised in Chapter 4 to derive the

exposure-response relationships for freight and passenger railway vibration. Once

again, after making their judgements, the subjects were required to touch a box

confirming their choice before being able to move on to the next stimulus.

5.5 Subjective test results

The data collected during the subjective test allows several forms of analyses to

be performed. The paired comparison annoyance data can be used to determine

single figure perceived annoyance ratings for each railway stimulus and the results
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Figure 5.11: Graphical test interface used in the categorical annoyance

test

of the categorical annoyance test can be used to determine absolute ratings of

annoyance for each stimulus. This part of the analysis is presented in this chap-

ter. In addition, the dissimilarity ratings can be used, through multidimensional

scaling, to determine the perceptual dimensions associated with combined noise

and vibration. A perceived annoyance model can then be determined by relating

the perceived annoyance ratings to the positioning of each stimulus within the

perceptual dimensions. This part of the analysis is presented in Chapter 6.

5.5.1 Circular error rates

An important measure of intra-subject consistency is the circular error rate. When

presented with each possible pairing of three stimuli, i.e. (A,B), (A,C) and (B,C),

it is possible for a subject to make an inconsistent judgement. This occurs when,

for example, a subject judges stimulus A to be more annoying than stimulus B,

stimulus B more annoying than stimulus C and stimulus C more annoying than
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stimulus A. Though the mechanism by which these inconsistencies can occur is

not well defined, Weber (1999) suggests they can occur due to:

• An inaccuracy caused by the subject not paying attention during the test

• An alteration of assessment criteria during the test

• A misjudgement caused by stimuli being very perceptually similar, making

the task of the subject more difficult

In the case of stimuli that are very perceptually similar, circular error rates can be

reduced by allowing the subject the option of choosing “neither” when being asked

which stimulus is more annoying (Parizet, 2002). A “neither” option was provided

in the middle of the annoyance scale for this reason. Since the paired comparison

user interface has a relatively high resolution (101 points on a sliding scale), it is

difficult for a user to input the result that they find neither stimulus i or j more

annoying (i.e. the stimuli are equally annoying, Aij = 0) as this would require a

very precise input on the touch screen interface. In reality, users attempting to

input this result are likely to land slightly on either side of the exact middle of the

scale, resulting in either i or j being randomly interpreted as more annoying by the

count matrix. Not only can this lead to a misinterpretation of the results, but it

can cause an increase in the circular error rates when small perceptual differences

exist between stimuli (Parizet, 2002). To avoid this issue, an extended “neither

zone” was created in the middle of the scale in which any paired comparison score

within this range is recoded to Aij = 0. The user interface with the neither zone

highlighted in grey is shown in Figure 5.12. Note that the neither zone was not

visible to the subjects and is only highlighted here for illustrative purposes. The

neither zone is approximately equal in width to the text above stating “Neither”

and covers the middle 10% of the scale leaving the remaining 90% available for

the subjects to indicate a conscious preference of one stimulus over another.

Figure 5.13 shows the circular error rates calculated for each subject with and

without the extended neither zone allowing easier selection of a “neither” response.
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Figure 5.12: Paired comparison user interface with “neither zone” indi-

cated in grey

In all but two cases, circular error rates are reduced with the inclusion of the neither

zone and circular error rates are low across all subjects (the maximum circular

error rate with the extended neither zone was 6.7% by subject 25). Overall,

the circular error rates appear generally lower than those presented for similar

paired comparison tests involving noise (Parizet, 2002) and vibration (Woodcock

et al., 2014a), giving confidence that the subjective test was a relatively simple

task to complete resulting in all subjects making relatively consistent judgements

throughout the test. For this reason, no subject data was omitted from further

analysis based on their circular error rates.
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Figure 5.13: Circular error rates for each subject calculated with and

without the extended “neither zone” allowing easier selection of a “neither”

response
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5.5.2 Averaged single figure annoyance score

Single figure perceived annoyance ratings can be obtained from paired compari-

son data. Each subject provided a paired comparison annoyance score for every

possible pairing of the 10 combined noise and vibration stimuli they were exposed

to. These annoyance scores can be summed across the subject group and linearly

averaged to provide an average single figure annoyance score:

Aav =
1

N

∑
i 6=j

Aij (5.1)

where Aav is the averaged single figure annoyance score for stimulus i, N is the

number of subjects and Aij is the paired annoyance score for stimuli i and j

summed across the subject group. This model was utilised by Parizet et al. (2008)

to estimate a single figure metric for comparing the sound quality of car door

closures and by Woodcock et al. (2014a) to estimate a single figure annoyance

metric for comparing annoyance due to railway vibration. The validity of this

model can be tested by measuring the correlation coefficient between the paired

annoyance scores, Aij, and paired annoyance scores estimated from the averaged

single figure annoyance scores, Ãij:

Ãij = Aav,i − Aav,j (5.2)

The correlation coefficient between the calculated and estimated paired annoyance

scores is 0.98, suggesting that the paired annoyance scores are well represented by

the single figure annoyance scores, Aav.

5.5.3 Thurstone’s Case V Model

Another widely used model for the estimation of paired comparison single fig-

ure scores is Thurstone’s Case V model. Thurstone’s model (1927) pioneered

psychometrics by utilising Gaussian distributions to analyse paired comparisons.
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Assuming that an option’s annoyance distribution is a Gaussian random variable,

their probability density functions can be represented:

P (i) = 1
σi
φ
(
i−µi
σi

)
P (j) = 1

σj
φ
(
j−µj
σj

) (5.3)

where µi and σi are the mean and standard deviation of stimulus i’s annoyance

distribution and φ is the standard normal probability density function with zero

mean and unit variance:

φ(x) =
1√
2π
e−

1
2
x2 (5.4)

The model states that when a subject makes a paired comparison judgement

between stimulus i and stimulus j, they draw a perception from i’s annoyance

distribution and j’s annoyance distribution and subsequently make a judgement

of which stimulus they perceive to have a higher annoyance. This is equivalent to

choosing stimulus i over stimulus j if their draw from the random variable i − j

exceeds 0:

P (i > j) = P ((i− j) > 0) (5.5)

Since i and j are Gaussian distributions, i − j can be represented by a Gaussian

random variable with the following properties:

µij = µi − µj
σ2
ij = σ2

i + σ2
j − 2ρijσiσj

(5.6)

where ρij is the correlation between i and j. Equation 5.5, the probability of

stimulus i being chosen over stimulus j then becomes:
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P (i > j) = P ((i− j) > 0)

=

∫ ∞
0

1√
2πσ2

ij

e
−

(x−µij)
2

2σ2
ij dx

=

∫ ∞
−µij

1√
2πσ2

ij

e
− x2

2σ2
ij dx

=

∫ µij

−∞

1√
2πσ2

ij

e
− x2

2σ2
ij dx

=

∫ µij

−∞

1

σij
φ

(
x

σij

)
dx

= Φ

(
µij
σij

)
(5.7)

where Φ is the standard normal cumulative distribution function:

Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt

=

∫ z

−∞
φ(t)dt (5.8)

Equation 5.7 can be rearranged to obtain the annoyance difference µij:

µij = σijΦ
−1(P (i > j)) (5.9)

where Φ−1 is the inverse cumulative distribution function of the standard normal,

also referred to as the z-score. Thurstone (1927) proposed estimating the proba-

bility P (i > j) by the empirical proportion of subjects choosing i over j. A count

matrix, Cij, quantifying the number of times that each stimulus was preferred over

each other stimulus can be defined:
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Cij =

No. of times option i preferred over option j if i 6= j

0 if i = j

(5.10)

By utilising the count matrix to estimate the probability P (i > j), the annoyance

difference estimate then becomes what is known as Thurstone’s Law of Compar-

ative Judgement:

µ̂ij = σijΦ
−1
(

Cij
Cij + Cji

)
(5.11)

The use of Equation 5.11 requires that σij be known or estimated, which in turn

requires σi and σj to be known, as well as the correlation between i and j, ρij,

as shown in Equation 5.6. To avoid this, Thurstone (1927) provided a number

of model simplifications, the simplest and most popular of which is known as the

Case V model (Mosteller, 1951). This adaptation of the model assumes that all

stimuli have equal variance and zero (or equal) correlations (σ2
i = σ2

j and ρij = 0).

Without loss of generality, the variances are set to one half so that the variance of

i− j is equal to 1 (σ2
ij = σ2

i + σ2
j = 1

2
+ 1

2
= 1). Thurstone’s law given in Equation

5.11 is then simplified to Thurstone’s Case V model:

µ̂ij = Φ−1
(

Cij
Cij + Cji

)
(5.12)

5.5.4 The Bradley-Terry-Luce model

Another popular paired comparison model is the Bradley-Terry-Luce (BTL) model

(Bradley, 1954, 1955; Bradley and Terry, 1952). The BTL model was developed

by giving each stimulus a rating πi which satisfies the following:

P (i > j) = P ((i− j) > 0 =
πi

πi + πj
(5.13)
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Substituting πi = exp(µi/s), where s is a scale parameter:

P ((i− j) > 0) =
exp(µi/s)

exp(µi/s) + exp(µj/s)

=
1

1 + exp
(µi−µj

s

) (5.14)

Since Equation 5.14 takes the form of a logistic function, it can be assumed that

i− j is a logistic random variable with mean µi − µj and scale parameter s. The

BTL model is similar to Thurstone’s model except that it assumes the random

annoyance difference i− j has a logistic distribution whereas the Thurstone model

assumes the random annoyance difference is Gaussian. Two proofs demonstrated

by Block and Marshchak (1959) and Holman and Marley (presented in Luce and

Suppes (1965)) show that if i and j have Gumbel distributions of annoyance then

i− j is indeed logistic.

The BTL model annoyance difference estimate µ̂ij can be determined by inverting

Equation 5.14 and substituting the empirical count proportion Cij/(Cij +Cji) for

the probability P (i > j), a substitution that was also applied in the development

of the Thurstone model:

µ̂ij = s

(
ln

(
Cij

Cij + Cji

)
− ln

(
1− Cij

Cij + Cji

))
(5.15)

The inverse logistic cumulative distribution function shown in Equation 5.15 is

also commonly known as the logit function. The BTL model scale differences can

be compared with the Thurstone’s Case V model scale differences by equating the

variance using s =
√

3/π (Tsukida and Gupta, 2011). Empirically, the logistic

cumulative distribution function is very similar to the Gaussian cumulative distri-

bution function, so Thurstone’s model and the BTL model produce very similar

results. However, the logistic cumulative distribution function has a fatter tail

and has a slightly greater slope at the inflexion point than an equivalent Gaus-

sian. This results in the BTL model estimating slightly smaller scale differences
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for proportions near 0.5 and slightly larger scale difference for proportions near 0

or 1 when compared with Thurstone’s model. Historically, the BTL model was

generally preferred for its reduced computation requirements as there is no need

to compute the inverse Gaussian cumulative distribution function, though with

modern computers this is no longer a significant issue (Tsukida and Gupta, 2011).

5.5.5 Single figure annoyance model fitting

Thurstone’s Case V model provides a method for estimating the scale difference

for a single pair of stimuli. Tsukida and Gupta (2011) have demonstrated that

the Case V model, as shown in Equation 5.12, is the maximum likelihood solution

for two stimuli. However, for several stimuli and hence multiple pairs there is no

closed solution and instead a convex optimisation problem must be solved. The

log likelihood function to be optimised is as follows (Tsukida and Gupta, 2011):

LL(µ|C) , lnP (µ|C) =
∑
i,j

Cij ln(Φ(µi − µj)) (5.16)

To determine the maximum likelihood annoyance scales, µ, the right hand side

of Equation 5.16 must be maximised subject to
∑

i µi = 0. The BTL model can

likewise be extended to estimate the annoyance scales for multiple stimuli. A

method to achieve this, proposed by Thurstone, was shown to be the solution of a

least squares optimisation problem (Mosteller, 1951). The least squares estimate

for the annoyance scores, µ, minimises the squared error between the annoyance

scores and the BTL pairwise estimates:

µ̂ = arg min
µ

∑
i,j

(µ̂ij − (µi − µj))2 (5.17)

where µ̂ij is calculated using Equation 5.15. Assuming the mean of the annoyance

scores is zero, the closed form solution of the least squares estimate is as follows

(Tsukida and Gupta, 2011):
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µi =
m∑
j=1

µ̂ij
m

(5.18)

where m is the number of stimuli. When estimating annoyance differences using

the least squares method, a problem arises when Cij is equal to 0 or the number

of subjects, since this results in the empirical count proportion equalling 0 or 1.

This will result in annoyance score estimates of −∞ or 0 since ln(0) = −∞ and

ln(1) = 0. One solution to this problem is to ignore the 0/1 entries and use an

incomplete matrix solution (Engeldrum, 2000; Gulliksen, 1956; Morrissey, 1955).

However, Tsukida and Gupta (2011) argue that this is a heavy-handed solution and

ignores important information that one stimulus is deemed as more annoying than

another by all subjects. They therefore propose another solution which involves

adding or subtracting a fractional count to the Cij = 0 or 1 proportions. The

modified count matrix then becomes:

Ĉij =


0.5 if Cij = 0 and i 6= j

Cij − 0.5 if Cij = N and i 6= j

Cij otherwise

(5.19)

where N is the number of subjects. The above solution changes the count matrix,

though Tsukida and Gupta (2011) argue that it alters the data in a conservative

way that biases the count towards less confidence, and that this solution is still

preferable to ignoring the Cij = 0 or 1 entries. However, they still recommend the

use of maximum likelihood model fitting with Thurstone’s Case V model (Equation

5.16) as it does not require ignoring or altering data.

Figure 5.14 shows the single figure perceived annoyance scores as determined by

fitting Thurstone’s Case V model using maximum likelihood. Figure 5.15 shows

the averaged single figure annoyance scores (Equation 5.1) and the annoyance

scores as determined by fitting the BTL model using the least squares method.

Though the magnitudes of the annoyance scales are different, the three models

of determining single figure annoyance scores show consistency in the ordering
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of the stimuli in terms of their annoyance and the relative difference between

stimulus annoyance scores. The differences in magnitude between the models is

not a significant issue as the point of interest is the relative differences between

stimulus annoyance scores. Although a high annoyance score denotes a relatively

high degree of annoyance, the overall magnitude of annoyance of each stimulus

cannot be known. However, it can be stated that, for example, stimulus 8 is more

annoying than stimulus 2.
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Figure 5.14: Single figure perceived annoyance scores for the 10 com-

bined noise and vibration stimuli as determined by Thurstone’s Case V

model

Referring to Table 5.1, some preliminary judgements can be made about which

types of trains cause relatively higher annoyance. Clearly, the freight trains (stim-

uli 8, 9 and 10) cause significantly higher annoyance than the passenger train

stimuli. This may be due to their extended duration and their above average

noise levels (in terms of LAeq and SELA) and vibration levels (in terms of VDVb).

This is in line with the exposure-response relationships developed in Chapter 4,

which showed that the annoyance response due to exposure to freight railway

vibration is higher than that due to exposure to passenger railway vibration.
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Figure 5.15: Single figure perceived annoyance scores for the 10 com-

bined noise and vibration stimuli as determined by the BTL model and

the averaged single figure annoyance score

5.5.6 Categorical annoyance model

The perceived single figure annoyance scores derived in Section 5.5.5 from the

paired comparison subjective test are relative to the set of stimuli upon which the

judgements are made, and are of an arbitrary scale. Though a higher single figure

annoyance score denotes a greater level of annoyance, it is unknown how that

annoyance may relate to an absolute scale of annoyance. In order to be able to

relate the single figure annoyance scales to absolute categorical annoyance scales

commonly used in field studies (for example, the field study by Waddington et al.

(2014)), subjects were asked during the subjective test to rate the annoyance of

each stimulus on a categorical scale (see Section 5.4.5). Figure 5.16 shows the

proportion of subjects rating each of the combined noise and vibration stimuli

in a given annoyance category during the categorical annoyance section of the

subjective test. The figure shows a general trend of stimuli with higher single

figure annoyance scores being rated in the higher annoyance categories more often.
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Figure 5.16: Proportion of respondents rating each stimulus in a certain

annoyance category. Stimuli are ranked according to their Thurstone’s

Case V single figure annoyance scores.

Despite the clear general trend shown in Figure 5.16, there is still a degree of

variance in the categorical ratings, with the ratings attributed to each stimulus

spanning at least three, and sometimes four, annoyance categories. This illustrates

an advantage of using paired comparison tests to determine annoyance ratings

for a set of stimuli. In a paired comparison test, there is always a reference

stimulus, resulting in relatively consistent inter-subject judgements. However,

when judgements are made upon a single stimulus on an absolute scale, there is

no common reference point, and the judgements are likely to be more affected by

the subject’s personal experience. As experience and perception varies a great

deal between subjects, the subjective responses of absolute judgements vary also.

This variance can also be seen in the exposure-response relationships derived in

Chapter 4, since the responses used to develop the relationships were recorded on

an absolute categorical scale.

However, the categorical annoyance scores can still be used to anchor the single
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figure annoyance scores, determined using paired comparison methods, to an ab-

solute scale. This is a beneficial process, since the single figure annoyance scores

are of an arbitrary scale. Though it can be said that a stimulus with a single figure

annoyance score of 2 is perceived as more annoying than a stimulus with a single

figure annoyance score of 1, it difficult to interpret what exactly an annoyance

score of 1 or 2 represents without anchoring the scores to an absolute categorical

scale. From the categorical annoyance ratings presented in Figure 5.16, a single

figure categorical annoyance rating for each stimulus was calculated by taking the

mode of the annoyance ratings for each stimulus and coding them as follows: 1 =

not at all, 2 = slightly, 3 = moderately, 4 = very and 5 = extremely. These single

figure categorical annoyance ratings are compared to the Thurstone’s Case V sin-

gle figure annoyance scores in Figure 5.17. Note that determining the single figure

categorical annoyance ratings using the mean and the median of the categorical

annoyance ratings gives the same result. The Spearman’s correlation coefficient

between the single figure categorical annoyance ratings and the Thurstone’s Case

V single figure annoyance scores is 0.87 (p < 0.001).
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Figure 5.17: Relationship between measured Thurstone’s Case V single

figure annoyance and categorical annoyance ratings
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A predictive relationship can be defined by relating the single figure annoyance

scores to categorical annoyance ratings through ordinal regression. Ordinal re-

gression is preferred to linear regression techniques in this case, due to the ordinal

nature of the categorical annoyance scale. Ordinal regression can be computed

with the continuous Thurstone’s Case V single figure annoyance scores as the

independent variable and the categorical single figure annoyance scores as the

dependent variable using the the following equation:

ln(− ln(1− pij)) = βtj + βAT (5.20)

where pij is the probability that stimulus i falls into the jth category, βtj is the

threshold coefficient for the jth category, β is a regression coefficient and AT is

the Thurstone’s Case V single figure annoyance. The threshold coefficient and the

regression coefficient are determined using maximum likelihood. The left hand side

of Equation 5.20 is known as the link function and the particular link function in

this equation is commonly referred to as the complementary log-log link function.

Other link functions were investigated (logit, negative log-log, probit and cauchit),

but the complementary log-log link function provided the best model fit. This is

likely due to the fact that the this link function provides more successful predictions

when stimuli are more likely to fall in higher categories, which is the case for the

data set in question (McCullagh and Nelder, 1989). The result of the ordinal

regression is presented in Figure 5.18 and details of the ordinal regression model

are presented in Table 5.2. Note that, since the categorical single figure annoyance

scores only fell in the categories of “Slightly”, “Moderately” and “Very” annoying,

the relationship shown in Figure 5.18 can only be used to predict the probability

of a stimulus being rated within this range of annoyance categories. The p-value

of the “Moderately/Very” threshold is not significant, meaning that the threshold

value is not significantly different from zero. This could cast doubt over the model

if the independent variable took only positive values. However, the independent

variable, the single figure annoyance score, can be positive, negative or zero, so a

threshold coefficient close to zero still has relevance.
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Figure 5.18: Probability of a combined noise and vibration stimulus with

a given single figure annoyance score being rated in a certain category of

absolute annoyance

Parameter
β

Estimate
Standard

Error
p-value Overall Model

Threshold N 10
Slightly/Moderately -3.40 1.56 < 0.050 p-value < 0.001
Moderately/Very 0.52 0.59 n.s. R2

pseudo 1.00

Location
AT 2.02 0.84 < 0.050

Table 5.2: Parameter estimates and other details of the ordinal regres-

sion model with the continuous Thurstone’s Case V single figure annoy-

ance scores as the independent variable and the categorical single figure

annoyance scores as the dependent variable
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5.6 Regression models for predicting annoyance

due to combined noise and vibration

Several previous studies have looked at the effects of combined railway noise and

vibration on annoyance. In two studies, Howarth and Griffin (1990; 1991) investi-

gated the effects of combined railway noise and vibration, finding that the overall

annoyance response depends on the magnitude of both stimuli, and that a rea-

sonable approximation of the total annoyance caused can be determined from a

summation of the effects of the individual stimuli. A study by Paulsen and Kastka

(1995) found that, though assessment of combined noise and vibration stimuli from

a passing tram and a hammermill was dominated by noise, it was also influenced

by simultaneously perceivable vibration.

To investigate the effects of combined noise and vibration on overall annoyance,

a multiple linear regression analysis was performed, firstly for noise and vibration

alone, and then for noise and vibration combined, in a similar manner to that

employed in the studies mentioned above. Multiple linear regression is a technique

which can derive a model whereby several predictor variables are used to model a

single response variable (Weisberg, 2005). The regression model takes the following

form:

Y = Xβ (5.21)

where Y is a vector of responses, X is a matrix of predictor variables and β is

a vector of parameters to be estimated by the regression model. The parameters

are estimated through the means of a least squares regression, by minimising the

following function:

RSS(β) =
∑
i

(yi − xTi β)2 (5.22)
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where RSS is the residual sum of squares, yi is the ith response, and xTi is the

transpose of the ith row of X.

Regression analyses were performed with the Thurstone’s Case V single figure

annoyance as the dependent variable, and the magnitude of noise alone, the mag-

nitude of vibration alone and the magnitude of noise and vibration in combination

as the independent variables. The vibration magnitude is quantified by the Wb

weighted vibration dose value (VDVb) and noise magnitude is quantified by the

A-weighted equivalent continuous sound pressure level (LAeq). The results of these

regression analyses are presented in Table 5.3. Though the relationship between

noise magnitude and annoyance has a reasonable correlation, the correlation for

the regression model with vibration magnitude alone is poor and the correlation is

substantially higher for the regression model with noise and vibration magnitude

combined.

Model Regression Equation R2 p-value

Noise Only 0.21LAeq − 12.0 0.665 < 0.010
Vibration Only 41.1VDVb − 2.76 0.333 n.s
Noise & Vibration 0.19LAeq + 30.7VDVb − 12.8 0.843 < 0.010

Table 5.3: Regression models for annoyance predictions based on noise

magnitude alone, vibration magnitude alone and combined noise and vi-

bration magnitudes

The relationship between the measured single figure annoyance and the single fig-

ure annoyance predicted by the regression model with combined noise and vibra-

tion magnitudes is shown in Figure 5.19. Further details of this regression model

are presented in Table 5.4. Though some scatter is apparent, the relationship

shown in Figure 5.19 shows that a reasonable approximation of total annoyance

caused by combined noise and vibration can be determined from a linear summa-

tion of the magnitudes of the individual stimuli. The standardised β coefficients

in Table 5.4 give an indication of the relative weighting applied by subjects to the
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stimuli in this subjective test showing that, for this set of stimuli, variations in

noise magnitude have a stronger effect on the total annoyance than variations in

vibration magnitude.
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Figure 5.19: Comparison of single figure annoyance scores measured

during the subjective test and those predicted using the regression model

with combined noise and vibration magnitudes (R2 = 0.843, p < 0.010)

Parameter
β

Estimate
Standard

Error

Standardised
β

Estimate
p-value Overall Model

Intercept -12.8 2.23 < 0.010 N 10

LAeq 0.19 0.04 0.73 < 0.050 p-value < 0.010

VDVb 30.7 10.87 0.43 < 0.010 R2 0.843

Table 5.4: Parameter estimates and other details of the multiple linear

regression model with combined noise and vibration magnitudes
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5.7 Summary

This chapter has presented the design and implementation of a subjective test on

the perception of combined noise and vibration. In the subjective test, 30 subjects

were asked to make a paired comparison judgement and a judgement of pairwise

dissimilarity of all possible pairs of 10 stimuli composed of combined noise and

vibration from railway passbys. An analysis of circular error rates of the subjects

participating in the study suggests that the subjective test was a relatively simple

task to complete resulting in all subjects making relatively consistent judgements

throughout the test.

The results of the paired comparison judgements were used to model single figure

annoyance scores using Thurstone’s Case V model, the Bradley-Terry-Luce model

and the averaged single figure annoyance scores. The freight train noise and vibra-

tion stimuli gave consistently higher perceived single figure annoyance scores. The

single figure annoyance scores were also related to categorical annoyance ratings,

with the highest recorded mode of category annoyance being “very” annoying,

with only the freight train stimuli being assigned to this category.

Multiple linear regression models were derived for the prediction of single figure

annoyance as a function of noise magnitude only, vibration magnitude only and

noise and vibration magnitudes combined. The correlation coefficient for the re-

gression model with combined noise and vibration magnitudes was higher than

that for both regression models with noise magnitude alone and vibration magni-

tude alone, suggesting that overall annoyance due to combined railway noise and

vibration stimuli is based on a summation of the effects of the individual stimuli.

Though a reasonable approximation of the total annoyance caused by combined

railway noise and vibration can be determined from classic models of annoyance

prediction involving summations of the noise and vibration magnitudes, there

is still a substantial amount of scatter when comparing measured and predicted

single figure annoyance scores (see Figure 5.19). Several studies have shown that

the perception of noise is a multidimensional phenomenon that can be explained by
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multiple objective parameters that make up a perceptual space, using a technique

known as multidimensional scaling (Grey, 1977; McAdams et al., 1995; Parizet

et al., 2008; Schroeder et al., 1974; Trollé et al., 2014). Likewise, a study by

Woodcock et al. (2014a) found that the perception of vibration can be explained by

a multidimensional perceptual space using multidimensional scaling. However, no

research has yet been performed on the perception of combined noise and vibration

as a multidimensional phenomenon. Therefore, in Chapter 6, a multidimensional

scaling analysis is performed on the results of the subjective test presented in this

chapter, in the hope of determining the perceptual dimensions that underlay the

perception of combined noise and vibration. This knowledge can then be used to

develop models that are able to predict overall annoyance as a function of these

perceptual dimensions, potentially with a greater degree of accuracy than models

based on a summation of the magnitudes of the noise and vibration stimuli alone.
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6.1 Introduction

Chapter 5 details a laboratory study focussing on the subjective response to com-

bined railway noise and vibration. During the test, as well as the subjects com-

paring each pair of stimulus in terms of their annoyance, each subject was asked

to make a judgement on the dissimilarity of each pair of stimuli. This information

can be used, in a method known as multidimensional scaling, to determine a mul-

tidimensional perceptual space upon which subjects make their judgements about

a set of stimuli. These dimensions can then be related to objective parameters of

the stimuli, allowing a perceptual annoyance model to be determined as a function

of these objective parameters.

This chapter details the theory behind multidimensional scaling and the methods

used to determine the perceptual dimensions used by the subjects in the laboratory

test to make their dissimilarity judgements. An investigation into each perceptual

dimension, and which objective parameters they may represent, is then presented.

Finally, new models of annoyance due to combined railway noise and vibration, as

determined by the perceptual dimension analysis, are presented.

6.2 Multidimensional scaling: theory and appli-

cation

Multidimensional scaling (MDS) is a method by which measurements of similarity

(or dissimilarity) among pairs of objects are represented as distances between

coordinates on a multidimensional space. Borg and Groenen (2005) describe the

main purposes of MDS as follows:

1. A method that represents (dis)similarity data as distances in a low-dimensional

space in order to make these data accessible to visual inspection and explo-

ration
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2. A technique that allows one to test if and how certain criteria by which one

can distinguish between different objects of interest are mirrored in corre-

sponding empirical differences of these objects

3. A data-analytic approach that allows one to discover the dimensions that

underlie judgements of (dis)similarity

4. A psychological model that explains judgements of (dis)similarity in terms

of a rule that mimics a particular type of distance function

In this work, MDS will be used as a tool to determine the perceptual dimensions

upon which subjects make their judgements of similarity for combined noise and

vibration stimuli. These dimensions will then be related to objective properties

of the noise and vibration stimuli and utilised to develop a perceptual model that

explains judgements of dissimilarity and perceived annoyance.

6.2.1 Similarity judgements and multidimensional scaling

The methods of MDS rely on the related concepts of psychological similarities and

psychological distances which are widely used in the field of cognitive psychology.

Coombs’ theory of data (Coombs, 1960) suggests that when subjects are presented

with pairs of stimuli and asked to judge how similar they perceive the pair to be,

the resulting judgement will take the form of a proximity relation. The quantity

of similarity therefore represents a “distance” between two sets of coordinates in a

psychological space. When judgements are made between all possible pairings of a

set of stimuli, the resulting proximities between stimuli relate to coordinates in a

multidimensional psychological space which describes the response of a subject to

a set of stimuli. Analysing this multidimensional psychological space can therefore

allow the understanding of the structure and dimensions of the psychological space

on which perceptual judgements are made.

MDS is an exploratory technique that can be used to investigate these psycho-

logical dimensions that underlie the perception of a set of stimuli. It develops a
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configuration of a set of stimuli in an m-dimensional space to provide a repre-

sentation of pairwise (dis)similarities and hence psychological distances between

the stimuli. A commonly used example that is presented in many texts (Borg and

Groenen, 2005; Cox and Cox, 2001; Mardia et al., 1979) is the use of MDS to anal-

yse pairwise distances between cities. Figure 6.1 shows a two dimensional solution

of such analysis of distances between cities in the United States, showing remark-

able similarity to the same data represented on a geographical map, as shown in

Figure 6.2 for comparison. Other historical uses of MDS, representing the great

variety in its potential applications, include determining groups of similar whiskies

(Lapointe and Legendre, 1994), investigating the proximity structure in a colony

of Japanese monkeys (Corradino, 1990) and analysing the perceptual parameters

used by bees to distinguish colour (Backhaus et al., 1987).
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Figure 6.1: Two dimensional MDS solution of pairwise distances be-

tween cities in the United States

In a paired comparison subjective test, where subjects are presented with every

possible pairing (i, j) of n stimuli and asked to judge how dissimilar they per-

ceive the pair to be, a matrix of pairwise dissimilarities, δij, can be constructed.

This dissimilarity matrix can then be analysed using MDS methods to find the

optimum representation of the stimuli in an m-dimensional space, with a large dis-

tance, dij, between stimuli in this space representing a large judged dissimilarity,

δij. Studying the configuration of the stimulus coordinates in the space, and the

dimensions along which they lie, allows the identification of perceptual attributes

used by subjects to make their judgements.
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Figure 6.2: Geographical representation of distances between cities in

the United States, created using Google Maps

Within the field of acoustics, MDS has been used in several studies to analyse the

perception of noise and vibration. Grey (1977) studied the perception of musical

timbres, discovering that the perception of timbre is related to: spectral energy dis-

tribution, the presence of synchronicity in the transients of the higher harmonics,

spectral fluctuation and the presence of low amplitude high frequency energy in

the initial attack sections of the musical tones. A similar study by McAdams et al.

(1995) found the perception of musical timbre to be related to log-rise time, spec-

tral centroid and the degree of spectral variation. Schroeder et al. (1974) studied

the perception of concert hall sound quality, reporting correlations of the pref-

erence with objective parameters of the concert halls, including: volume, width,

reverberation time, initial time-delay gap, “definition” and “internal coherence”.

Parizet et al. (2008) studied the perceived sound quality of car door closure sounds

using MDS, discovering the particular importance of two timbral parameters which

quantify the frequency balance of the sound and its “cleanness” (a clean sound

is one in which only one temporal event is audible). Notably, the importance of

the timbral parameters were found both when judgements were made in terms of

similarity and when judgements were made in terms of preference, suggesting that

the dimensional spaces for similarity and preference may be related. A study by

Trollé et al. (2014) analysed the short term annoyance due to tram noise, deter-

mining that the perception of tram noise is related to the A-weighted equivalent

sound pressure level, the variance of time-varying A-weighted pressure normalised

by root mean square A-weighted pressure and a new index, the total energy of



Chapter 6. Multidimensional perception of railway noise and vibration 150

the tonal components within critical bands from 12 to 24 barks, which they term

TETC. A precursor to this study, performed by Woodcock et al. (2014a), studied

the perception of railway vibration using MDS, relating the perception of vibration

to root mean square acceleration in the 16 Hz and 32 Hz octave bands, the duration

defined by the 10 dB downpoints of the vibration envelope and the modulation

frequency of the vibration envelope.

6.2.2 Metric and non-metric methods of scaling

In general, MDS attempts to represent perceptual similarities by distances between

coordinates of an m-dimensional Euclidean configuration, E, termed the MDS

space. The optimal configuration is one such that the distances between points

in the multidimensional space, dij are approximately equal to f(δij), where f

is a transformation function whose parameters are to be estimated, and δij are

measured pairwise distances. A common method to achieve this is fitting the

matrix of distances, dij, to the matrix of f(δij) by least squares regression or

eigendecomposition. A squared error of representation between the distances in

the MDS space, dij(E) and the function f(δij) is defined as follows (Borg and

Groenen, 2005):

eij = (f(δij)− dij(E))2 (6.1)

Summing eij over all pairs (i, j) yields a measure of fit for the entire MDS repre-

sentation, termed the raw stress:

σr =
∑
(i,j)

(f(δij)− dij(E))2 (6.2)

The raw stress, however, is not very informative as its value depends on the metric

used to measure pairwise distances. Using the example of distances between cities

(see Figure 6.1), measuring the distances in metres would give rise to a higher
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raw stress due to differences between f(δij) and dij(E) being greater in terms of

metres than in terms of kilometres. To avoid this dependency on scale, the stress

is commonly normalised as follows:

σ2
1 =

σr∑
d2ij(E)

=

∑
(f(δij)− dij(E))2∑

d2ij(E)
(6.3)

Taking the square root of σ2
1 (as in Equation 6.4) results in a value commonly

known as “Stress-1” (Kruskal, 1964). The square root is taken since σ2
1 values are

almost always extremely small in practice and hence σ1 values tend to be easier

to discriminate. This is analogous to taking the standard deviation in place of the

variance.

Stress-1 = σ1 =

√∑
(f(δij)− dij(E))2∑

d2ij(E)
(6.4)

The MDS model can then be optimised by minimising Stress-1, estimating the pa-

rameters of f and finding an optimal configuration E for a given dimensionality, m.

The form taken by the transformation function f is largely dependent on the form

of the measured distances δij. If the data to be analysed are of an interval or ratio

scale, metric multidimensional scaling can be used. For this method of scaling, a

constraint is imposed such that the function f must be continuous and monotonic.

For the ratio transformation, the transformed proximities are proportional to the

original proximities. For the interval transformation the transformed proximities

are proportional to the original proximities, plus an intercept term. For data of an

ordinal or spline scale, however, non-metric multidimensional scaling is considered

more appropriate (Borg and Groenen, 2005). In non-metric MDS, f may take

the form of a non-parametric monotonic function. For the ordinal transforma-

tion, the rank order of the distances, dij, is preserved. For spline transformation,

the transformed proximities are a smooth non-decreasing piecewise polynomial

transformation of the original proximities. A summary of metric and non-metric

transformations is presented in Table 6.1.



Chapter 6. Multidimensional perception of railway noise and vibration 152

Transformation Model

Absolute f(δij) = δij

Ratio f(δij) = βδij, β > 0

Interval f(δij) = β0 + βδij, β0 ≥ 0 and β ≥ 0

Spline A sum of polynomials of δij

Ordinal Preserve the rank order of δij in f(δij)

Table 6.1: Forms of the transformation function f for metric and non-

metric MDS models (Borg and Groenen, 2005)

6.2.3 Individual difference scaling

Returning once again to the example of pairwise distances between cities in the

United States: scaling this dataset requires minimising the stress function in Equa-

tion 6.4 using one of the metric or non-metric parameter models summarised in

Table 6.1 to transform the measured distances. In this case, there is only one

matrix of measured pairwise distances, δij, since the distance between cities is a

fixed value and should, in theory, be the same no matter how many times it is

measured and regardless of the methods used for the measurement. This is not

the case when considering paired comparison data from multiple subjects. Each

subject will have a unique matrix of dissimilarity judgements and it is important

to consider how such data should be aggregated. A simple method of aggregation

would be to average responses across the subject group but this would lose im-

portant information about inter-subject variability. To retain information on the

inter-subject variability, a method of MDS that retains individual subject differ-

ences was introduced by Horan (1969) and developed into an algorithm known as

INDSCAL (Individual Difference Scaling) by Carroll and Chang (1970).

The INDSCAL algorithm preserves inter-subject differences by defining a “group

space” MDS configuration that is common to all subjects and a “subject space”
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which represents the relative weightings that each subject attributes to each di-

mension that makes up the group space. A “private space” can therefore be defined

for each subject which represents the group space MDS configuration modified by

that subjects dimension weightings. A simple example of a subject space derived

from an arbitrary data set with 3 stimuli, 2 dimensions and 4 subjects is shown in

Figure 6.3. This subject space indicates the relative weightings that each of the 4

subjects attributes to the 2 dimensions, as well as an indication of how well each

subject’s data is represented by the group space. The angle between the subject

vectors and each dimension in the subject space relates to the relative weighting

that the subject attributes to each of the dimensions. The magnitude of each

vector from the origin relates to how well the subject’s data is represented by

the aggregate group space. For example, subjects 1 and 2 place equal weighting

on each dimension in the group space, represented by the equal angle between

the subject vectors and each dimension. However, the dissimilarity judgements

of subject 2 are better reproduced by the configuration of the group space than

those of subject 1, represented by the vector of subject 2 having a greater magni-

tude than that of subject 1. In contrast, though the dissimilarity judgements of

subject 3 and 4 appear well represented by the group space (represented by the

equal magnitude of their vectors from the origin), they place greater weighting on

dimensions 2 and 1 respectively.

The private space of each subject can be derived by scaling the dimensions of the

group space with respect to the square root of the weightings as shown in the

subject space:

ynjm =
√
wnmxjm (6.5)

where ynjm is the coordinate of the jth stimulus on the mth dimension in the

private space of subject n, wnm is the weighting attributed by subject n on the mth

dimension and xjm is the coordinate of the jth stimulus on the mth dimension

in the group space. The distance between stimuli i and j in the private space of

subject n is therefore:
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Figure 6.3: Example subject space of an arbitrary data set with two

dimensions and 4 subjects

dnij =

√∑
m

wnm(xjm − xim)2 (6.6)

The concept of private spaces and weightings is illustrated in Figure 6.4, which

shows the aggregated group space shared by all subjects and the private spaces

of subjects 3 and 4 from the same data set as represented in the subject space

shown in Figure 6.3. The stimulus coordinates in the private space for subject 3

is comparable to those of the group space in the 2nd dimension, due to the high

weighting that the subject places on this dimension. The coordinates in the 1st

dimension, however, have been scaled down a great deal due to the low weighting

that the subject places on this dimension. The exact opposite is true for subject

4.
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Figure 6.4: Example group space and private space of two subjects with

different dimensional weightings

6.3 Multidimensional scaling of the dissimilarity

judgements from the laboratory study

In Section 6.2, the theory of MDS, and its varied applications are discussed. In

this section, the theory of MDS will be applied to the results of the laboratory

study as described in Chapter 5. In the laboratory study, as well as being asked to

make annoyance comparisons, subjects were asked for each pair of stimuli: “How

similar do you perceive the pair to be?” (see the user interface in Figure 5.9).

The subject’s responses were recorded on a 101 point scale ranging from 0, “very

similar”, to 100, “very different”. The subjects were encouraged to make use of

the full scale when making their judgements. These similarity judgements can be

used to determine the perceptual dimensions used by the subject group to make

their similarity judgements using the methods of MDS as described in Section 6.2.
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6.3.1 Multidimensional scaling with PROXSCAL

The MDS models considered in this chapter were built and analysed using the

PROXSCAL program in SPSS (IBM, 2011). PROXSCAL builds on the majoriza-

tion algorithm developed by De Leeuw and Heiser (1980), which guarantees con-

vergence of stress. PROXSCAL allows a great deal of customisation of the MDS

model, with options for identity, weighted Euclidean, generalised Euclidean and

reduced rank models. For the identity model, all subjects have the same config-

uration and no individual scaling is applied. The weighted Euclidean model is

the individual difference scaled model (INDSCAL) as described in Section 6.2.3,

where each subject has their own private space in which every dimension of the

group space is weighted differently. The generalised Euclidean model is another

form of individual scaling, where each subject has a private space that is equal

to a rotation of the common space, combined with a differential weighting of the

dimensions. The reduced rank model is a generalized Euclidean model for which

the rank of the individual space can be specified. Proximity transformations of

the function f(δij) can be of the ratio, interval, ordinal or spline form (see Table

6.1). Regardless of the model used, the PROXSCAL program derives its MDS

configuration by minimising the normalised raw stress function (Equation 6.3),

which represents the mean squared error between the transformed proximities and

the pairwise measured distances of stimuli across all subjects. For the MDS anal-

yses presented in this study, the weighted Euclidean individual scaling model will

be used to preserve inter-subject variability. Ordinal proximity transformations

will be applied. This could be interpreted as over cautious, since the responses

could be interpreted on an interval scale, however, it was decided to use ordinal

transformations in order to preserve the rank order of the dissimilarity judgements

in the multidimensional space.
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6.3.2 Considering dimensionality

When building an MDS model it is important to consider the number of dimen-

sions that will make up the MDS configuration. Increasing the dimensionality of

an MDS configuration reduces its stress at the cost of increased complexity. A

convenient way to determine a reasonable number of dimensions is to create a

visual representation of stress as a function of dimensionality in what is known as

a “scree” plot. Figure 6.5 shows such a relationship. Kruskal (1964) suggests a

reasonable choice of dimensionality is one such that the stress is acceptably small

and for which a further increase in dimensionality does not significantly reduce

stress. In some cases, an “elbow” in the data representing such a phenomenon can

be visually identified. Such an elbow can possibly be identified in Figure 6.5 when

the dimensionality is 4. Certainly the criteria that the stress is acceptably small

is met with 4 dimensions, with a stress of 0.020, a value of fit which is quantified

by Kruskal (1964) as “excellent” (see Table 6.2). In addition, previous research

on the multidimensional perception of noise and vibration have utilised models

with dimensionality of 3 (Grey, 1977; McAdams et al., 1995) and 4 (Schroeder

et al., 1974; Woodcock et al., 2014a), giving further confidence that 4 perceptual

dimensions is a sensible choice for the MDS configuration.

Stress Goodness of Fit

0.200 Poor
0.100 Fair
0.050 Good
0.025 Excellent
0.000 Perfect

Table 6.2: Measures of goodness of fit as suggested by Kruskal (1964)
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Figure 6.5: Normalised raw stress as a function of dimensionality

6.3.3 The four dimensional perceptual space

Figure 6.6 shows the aggregated group space for the 4 dimensional weighted Eu-

clidean individual scaling MDS solution and Figure 6.7 shows the subject space

solution. Each point in the group space represents one of the 10 combined noise

and vibration stimuli and each point in the subject space represents one of the

30 subjects to take part in the study. The group space shows the stimuli are well

distributed across all dimensions, suggesting that subjects are utilising the full

continuum of each perceptual dimension in their dissimilarity judgements rather

than simply categorising the stimuli. The subject vectors in the subject space are

all clustered very close together (the subject labels are not shown for this reason)

with approximately equal magnitude and angle, showing that the subjects are very

consistent in their judgements, since the dissimilarity judgements of each subject

are well represented by the group space, and each subject places approximately

equal weighting on each perceptual dimension. Note that the data point in the

bottom left of each panel in Figure 6.7 represents the origin of the subject space,

and not a subject.
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Figure 6.6: Aggregated group space for the 4 dimensional MDS solution
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Figure 6.7: Subject space for the four dimensional MDS solution showing

the relative weights attributed by each subject to each dimension

6.3.4 Relative annoyance model as a function of the per-

ceptual dimensions

With the perceptual dimensions now defined, an annoyance model representing the

relative annoyance scores (calculated in Section 5.5) as a function of the percep-

tual dimensions can be derived using multiple linear regression. The result of the

multiple linear regression with Thurstone’s Case V single figure annoyance scores

as the response variable and the coordinates of the combined noise and vibration

stimuli on the perceptual dimensions revealed through the multidimensional scal-

ing as the predictor variables is shown in Equation 6.7, where Ap is the predicted

single figure annoyance score and Dm is the position of the combined noise and

vibration stimulus on the mth dimension. Figure 6.8 shows the relationship be-

tween the Thurstone Case V single figure annoyance scores measured through the

subjective test and the predicted single figure annoyance scores calculated using

Equation 6.7. Details of the regression model are presented in Table 6.3. Note
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that regression with the BTL annoyance score, and the averaged single figure an-

noyance score (see Section 5.5) provides models with commensurate R2 values and

significance (R2 = 0.848, p < 0.050 and R2 = 0.857, p < 0.050 respectively).

Ap = 0.56D1 + 0.10D2 − 0.56D3 + 0.29D4 (6.7)
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Figure 6.8: Comparison of single figure annoyance scores measured dur-

ing the subjective test and those predicted using Equation 6.7 (R2 =

0.831, p < 0.050)

Figure 6.8 shows a good agreement (R2 = 0.831, p < 0.050) between the measured

single figure annoyance scores and those predicted using the perceptual dimensions

derived from the multidimensional scaling model. This is an important result of the

MDS analysis as it shows that the perceptual dimensions of noise and vibration can

be related to the overall annoyance caused by these stimuli. With the perception

of noise and vibration described by this small number of perceptual dimensions,

it should be possible to find objective parameters of noise and vibration that

relate to these perceptual dimensions. If objective parameters can be found which

correlate with these perceptual dimensions, a model can then be derived to predict
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Parameter
β

Estimate
Standard

Error
p-value Overall Model

Intercept 0.000 0.180 n.s. N 10

D1 0.564 0.183 < 0.050 p-value < 0.050

D2 0.098 0.188 n.s. R2 0.831

D3 -0.559 0.181 < 0.050

D4 0.294 0.189 n.s.

Table 6.3: Parameter estimates and other details of the multiple linear

regression model for single figure annoyance as a function of the perceptual

dimensions

self reported annoyance due to noise and whole-body vibration exposure based on

objective features of the noise and vibration stimuli.

6.4 Interpretations of the perceptual space

In Section 6.3, it was demonstrated that a multidimensional scaling configura-

tion can be derived from the dissimilarity judgements from the laboratory study

described in Chapter 5, and that self reported annoyance due to the noise and

vibration stimuli presented in the laboratory study can be modelled using the

perceptual dimensions derived from the MDS configuration. An investigation into

correlations between objective descriptors of the noise and vibration stimuli and

the perceptual dimensions used to predict self reported annoyance should therefore

allow the development of a model that can predict annoyance due to objective pa-

rameters of the noise and vibration stimuli. The first step into such an investigation

is to calculate objective features of each stimulus. Since MDS is an exploratory

technique, no restriction was imposed on the objective features to be calculated

and as such a wide range of features which quantify magnitude, frequency content,

duration and envelope modulation are considered.
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6.4.1 Correlations with objective parameters of noise

Objective parameters of noise were calculated from pressure time histories recorded

using a 01dB Symphonie measurement system with an MCE212 free field micro-

phone (frequency range = 3.15 Hz to 20 kHz, dynamic range = 15 to 146 dB,

sensitivity = 50 mV/Pa). Calculated measures of the magnitude of the noise

signal include the peak level (Lmax), the root mean square pressure (rms), the

equivalent continuous sound pressure level (Leq), the sound exposure level (SEL)

and the sound pressure level exceeded for 10% of the signal duration (L10). These

properties were calculated on both the un-weighted and A-weighted noise signal.

Calculated psychoacoustic parameters include the overall specific loudness, the

peak specific loudness, the overall sharpness, the peak sharpness, the fluctuation

strength, and the roughness. For more information on these psychoacoustic pa-

rameters and how they are calculated, see Fastl and Zwicker (2007). The psychoa-

coustic parameters that are found to correlate with the perceptual dimensions,

namely the loudness, the sharpness and the roughness, are discussed in further

detail in the following sections.

Statistical parameters of the noise signal include the skewness, the kurtosis and

the crest factor. Spectral parameters of the signal include the spectral centroid

and the dominant frequency of the power spectral density (fmax). Parameters

relating to the duration of the signal include the duration defined by the 3 dB

and 10 dB downpoints of the signal, and the duration exceeded by the top 1/5th,

2/5ths, 3/5ths and 4/5ths of the signal’s dynamic range.

Additionally, two parameters which were found by Trollé et al. (2014) to correlate

with instantaneous annoyance of tram noise were calculated, namely the variance

of time-varying A-weighted pressure normalised by root mean square A-weighted

pressure (V AP ) and a new psychoacoustic index, the total energy of the tonal

components within critical bands from 12 to 24 barks (TETC).

All of these parameters combined cover the magnitude, psychoacoustic, statistical,

spectral and temporal characteristics of the stimuli in terms of noise and should
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therefore sufficiently cover potential perceptual dimensions upon which subjects

in the test make their dissimilarity judgements. Table 6.4 shows the Pearson’s

correlation coefficient, and its significance, between the above mentioned noise

parameters and the four perceptual dimensions revealed through the multidimen-

sional scaling analysis. Only parameters that have a significant correlation with

at least one dimension are shown, any parameters not appearing in the table have

been found to have no significant correlation with any of the perceptual dimen-

sions. Only the roughness parameter has a significant correlation with more than

one dimension, giving confidence that each dimension represents an independent

component of an overall psychological perception. These correlations will be dis-

cussed further in the following sections.

6.4.2 Correlations with objective parameters of vibration

As well as objective parameters of the noise signals of the combined stimuli, ob-

jective parameters of the vibration signals were calculated in a similar fashion.

Objective parameters of vibration were calculated from acceleration time histories

measured at the interface between a 70 kg subject and the seat cushion with a

Svantek SV38 seat pad accelerometer (frequency range = 0.1 to 100 Hz, dynamic

range = 0.01 to 50 m s−2, sensitivity = 100 mV/(m s−2)). All parameters were

calculated for vibration in the vertical axis, and parameters were calculated on

un-weighted signals as well as Wb weighted and Wk weighted signals where ap-

propriate. Parameters which quantify the magnitude of the signal include the

vibration dose value (VDV), the root mean square acceleration (rms), the equiv-

alent continuous vibration level (Veq), the vibration exposure level (V EL) and

the peak acceleration (amax). The modulation depth is defined as the average

difference between the maxima and minima of the signal envelope.

Statistical parameters of the vibration signals include the skewness, the kurtosis

and the crest factor. Spectral parameters of the vibration signals include spectral

centroid and the dominant frequency of the power spectral density (fmax) and the

rms acceleration in the 4 Hz, 8 Hz, 16 Hz, 32 Hz and 64 Hz octave bands, expressed
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Parameter Dim 1 Dim 2 Dim 3 Dim 4

rmsA 0.952** – – –
LAeq 0.933** – – –
SELA 0.836** – – –
L10 – – -0.759* –
LA10 0.908** – – –
Lmax 0.853** – – –
Overall Loudness 0.727* – – –
Peak Loudness 0.945** – – –
Overall Sharpness – -0.799** – –
Roughness – 0.671* – 0.650*
Kurtosis 0.754* – – –
Crest Factor 0.836** – – –
Spectral Centroid – -0.680* – –
fmax – – 0.713* –
3 dB Downpoints Duration – – -0.640* –
10 dB Downpoints Duration – 0.806** – –
1/5th Dynamic Range Duration – – -0.649* –
2/5th Dynamic Range Duration – 0.792** – –
3/5th Dynamic Range Duration – 0.792** – –
4/5th Dynamic Range Duration – 0.801** – –
V AP -0.663* – – –
TETC 0.778** – – –

Table 6.4: Pearson’s correlation coefficients between objective parame-

ters of the noise signals and the perceptual dimensions. – not significant,

* p < 0.05, ** p < 0.01

both as an absolute value and as a proportion of the overall rms acceleration in the

signal. The modulation frequency is defined as the inverse of the average period

between the maxima of the signal envelope. Temporal parameters of the vibration

signals include the duration defined by the 3 dB and 10 dB downpoints of the

signal and the duration exceeded by the top 1/5th, 2/5ths, 3/5ths and 4/5ths of

the signal’s dynamic range.

As is the case with the objective noise parameters, these vibration parameters
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cover the magnitude, statistical, spectral and temporal characteristics of the vibra-

tion signals and should therefore sufficiently cover potential perceptual dimensions

upon which subjects in the laboratory test make their dissimilarity judgements.

Table 6.5 shows the Pearson’s correlation coefficient, and its significance, between

the above mentioned vibration parameters and the four perceptual dimensions

revealed through the multidimensional scaling analysis. As with Table 6.4, only

parameters that have a significant correlation with at least one perceptual dimen-

sion are shown, and any parameters not appearing in the table have been found to

have no significant correlation with any of the perceptual dimensions. Note that

no vibration parameters have been found to correlate with the first perceptual

dimension, suggesting that this dimension is related to the noise component of the

combined exposure. The correlations of objective parameters with each dimension

in turn will be discussed in detail in the following sections.

6.4.3 Dimension 1

The correlations presented in Tables 6.4 and 6.5 suggest that the first perceptual

dimension is related to objective parameters of the noise signal, since no vibration

parameters show a significant correlation with this dimension. Figure 6.9 shows

the relationship between the 1st perceptual dimension and the five parameters

that exhibit the strongest correlation with this dimension. Though some degree of

scatter is apparent, the figure gives confidence that the 1st perceptual dimension

can be related to these objective parameters of noise.

Many of the strongest correlations with the 1st perceptual dimension exist with

parameters that quantify the magnitude of the signal: the A-weighted rms pres-

sure, the A-weighted equivalent continuous sound pressure level, the A-weighted

sound pressure level exceeded for 10% of the time, the peak sound pressure level,

and the sound exposure level. The A-weighted rms pressure, rmsA, is calculated

as follows:
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Figure 6.9: Relationship between the 1st perceptual dimension and the

five parameters that exhibit the strongest correlation with this dimension
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Parameter Dim 1 Dim 2 Dim 3 Dim 4

VDV – – – 0.699*
VDVb – – – 0.865**
rms – -0.773** – –
rmsk – -0.858** – –
Veq – -0.807** – –
V EL – – -0.634* 0.679*
Peak Acceleration – – – 0.858**
Kurtosis – – – 0.725*
Crest Factor – – – 0.784**
64 Hz rms – -0.719* – –
4 Hz rms (proportional) – 0.748* – –
8 Hz rms (proportional) – 0.814** – –
3 dB Downpoints Duration – 0.784** – –
10 dB Downpoints Duration – 0.786** – –
1/5th Dynamic Range Duration – – – 0.676*
2/5th Dynamic Range Duration – 0.788** – –
3/5th Dynamic Range Duration – 0.782** – –
4/5th Dynamic Range Duration – 0.782** – –
Modulation Frequency – -0.636* – -0.641*

Table 6.5: Pearson’s correlation coefficients between objective parame-

ters of the vibration signals and the perceptual dimensions. – not signifi-

cant, * p < 0.05, ** p < 0.01

rmsA =

√√√√ 1

T

T∑
t=0

pA(t)2 (6.8)

where p(t) is a pressure time history of T seconds. The A-weighted continuous

sound pressure level, LAeq, is calculated as follows:

LAeq = 10 log10

(
1

T

∫ T

0

10LpA(t)/10dt

)
(6.9)

where LpA(t) is the time-varying A-weighted sound pressure level. The A-weighted

sound exposure level, SELA, is calculated as follows:
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SELA = LAeq + 10 log(T ) (6.10)

The sound exposure level is the sound level of duration 1 second that would have

the same energy content as the whole event. It is therefore a function of not only

the energy of the signal but its duration. The sound exposure level is used in the

measurement and assessment of railway noise (Department of Transport, 1995).

Correlations also exist with the measures of overall loudness, and the peak loudness

of the pressure-time signal. Loudness is a psychoacoustic metric used to quantify

the intensity of a signal as perceived by the ear (Fastl and Zwicker, 2007). Loudness

is expressed in sones, where 1 sone is the level given by a pure 1 kHz tone at

40 dB. The quantities of loudness and peak loudness of the time varying signal

were calculated using the dBFA32 software of the 01 dB Symphonie measurement

system.

Strong correlations also exist with the statistical measures of kurtosis and the crest

factor, both of which quantify the “peakiness” of the noise signal. Kurtosis of the

noise signal is calculated as follows:

Kt =
1

Tσ4

T∑
t=0

[p(t)− p̄]4 (6.11)

where σ is the standard deviation of a time-pressure signal with mean pressure p̄.

The crest factor is calculated as follows:

Cr =
pmax
rms

(6.12)

where pmax is the peak pressure of the noise signal. Finally the 1st perceptual

dimension has a significant correlation with two parameters found by Trollé et al.

(2014) to relate to annoyance due to tram noise: V AP and TETC. V AP is the

variance of of the time-varying A-weighted pressure signal, pA, normalised by the

A-weighted rms pressure as follows:
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V AP =
var(pA)

rmsA
(6.13)

where var is the finite sample variance operator. Trollé et al. (2014) suggest that

V AP may quantify the irregular/continuous character, or the overall pressure rise,

of a noise signal. TETC is defined by Trollé et al. (2014) as follows:

TETC = 10 log10

(∫ 24

12

10L(z)/10dz

)
(6.14)

where L(z) represents the maximal (across time) level of the tonal components as

a function of the critical-band rate, z. TETC was specifically proposed by Trollé

et al. (2014) to capture squeal noise in trams, and hence emphasises tonal compo-

nents at high frequencies. They found that TETC, combined with the equivalent

continuous A-weighted sound pressure level, LAeq, provides a satisfactory model

for predicting short-term annoyance due to tram noise.

In summary, all of the parameters that show a significant correlation with the 1st

dimension are descriptors of the noise component of the combined stimuli. The

correlating parameters quantify the magnitude, loudness and “peakiness” of the

signal, as well as the psychoacoustic parameters of V AP , which quantifies the

irregular/continuous character of the signal, and TETC which emphasises high

frequency components, such as wheel squeal, of a noise signal.

6.4.4 Dimension 2

The correlations presented in Tables 6.4 and 6.5 suggest the second perceptual

dimension could be related to objective characteristics of either the noise or the

vibration signal signal. Figure 6.10 shows the relationship between the second

perceptual dimension and the five parameters which have the strongest significant

correlation with this dimension. As with relationships with the 1st dimension,

though some scatter is apparent, the figure gives confidence that the 2nd percep-

tual dimension can be related to these objective parameters.



Chapter 6. Multidimensional perception of railway noise and vibration 171

0.01 0.02 0.03

−2

−1

0

1

2

 1

 2

 3

 4
 5

 6

 7

 8

 9

10

Vibration rms
k
 Acceleration (m s−2)

D
im

en
si

on
 2

0.03 0.04 0.05 0.06 0.07

−2

−1

0

1

2

 1

 2

 3

 4
 5

 6

 7

 8

 9

10

Vibration Proportional 8 Hz rms Acceleration

D
im

en
si

on
 2

90 95 100 105

−2

−1

0

1

2

 1

 2

 3

 4
 5

 6

 7

 8

 9

10

Vibration V
eq

 (dB)

D
im

en
si

on
 2

10 20 30 40

−2

−1

0

1

2

 1

 2

 3

 4
 5

 6

 7

 8

 9

10

Noise 10 dB Duration (s)

D
im

en
si

on
 2

10 20 30 40

−2

−1

0

1

2

 1

 2

 3

 4
 5

 6

 7

 8

 9

10

Noise 4/5th Dynamic Range Duration (s)

D
im

en
si

on
 2

Figure 6.10: Relationship between the 2nd perceptual dimension and the

five parameters that exhibit the strongest correlation with this dimension
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Many of the strongest correlations exist with parameters that quantify the vibra-

tion exposure: the un-weighted and Wk weighted rms acceleration (see Equation

3.15), the rms acceleration contained within the 64 Hz octave band, the propor-

tional rms acceleration contained within the 4 and 8 Hz octave bands and the

equivalent vibration level (see Equation 3.16). Strong correlations also exist with

parameters that quantify the duration of the noise signal: the duration defined

by the 10 dB downpoints of the noise signal and the duration defined by 2/5ths,

3/5ths and 4/5ths of the dynamic range of the noise signal. Similarly, correlations

exist with parameters that quantify the duration of the vibration signal: the du-

ration defined by the 3 dB and 10 dB downpoints of the signal and the duration

defined by 2/5ths, 3/5ths and 4/5ths of the dynamic range of the vibration signal.

Correlations also exist with two psychoacoustic parameters of the noise signal:

sharpness and roughness. Fastl and Zwicker (2007) provide the following model

for calculating sharpness, in the form of a weighted function of the specific loudness

(N ′):

S = 0.11

∫ 24

0
N ′g(z)zdz∫ 24

0
N ′dz

(6.15)

where g(z) is a weighting function that increases with the critical band rate z.

The denominator in Equation 6.15 is the total loudness. Sharpness is a measure

of the high frequency content of a sound and can also be related to the timbral

brightness and the sensory pleasantness of a sound (Fastl and Zwicker, 2007; Von

Bismarck, 1974). A significant correlation also exists with roughness. Roughness

is a metric which quantifies the perception of rapid (15 to 300 Hz, with maximum

roughness at around 70 Hz) amplitude modulation of a sound. Roughness, as well

as sharpness, is related to the sensory pleasantness of a sound. Fastl and Zwicker

(2007) provide an approximation for determining roughness based on the product

of the perceived temporal masking depth,4L and the modulation frequency, fmod:

R ≈ fmod4L (6.16)
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Further correlation exists with the spectral centroid of the noise signal, which is

defined as the weighted mean of the spectral energy in the signal:

fsc =

∑
f(n)cmf (n)∑
cmf (n)

(6.17)

where f(n) is the central frequency of the nth spectral bin and cmf (n) is the

magnitude Fourier coefficient of the nth spectral bin. The spectral centroid has

been found to influence the perception of the timbral brightness of a particular

sound (Grey and Gordon, 1978; Schubert and Wolfe, 2006). Finally, a correlation

exists between the 2nd perceptual dimension and the modulation frequency of the

vibration signal, defined as the inverse of the average period between peaks of

the vibration signal envelope. In a similar MDS study looking at the perception

of railway vibration, Woodcock et al. (2014a) found that one of the perceptual

dimensions upon which subjects were making their judgements of dissimilarity

was related to the modulation frequency of the vibration envelope.

In summary, descriptors of both the noise and vibration components of the com-

bined stimuli show a significant correlation with the second perceptual dimension.

Many of the correlating descriptors relate to the duration of either the noise or

vibration signal, with other correlations existing with descriptors of the magni-

tude of the vibration signal and the modulation frequency of its envelope. Other

correlations exist with the psychoacoustic parameters of roughness, sharpness and

the spectral centroid of the noise signal.

6.4.5 Dimension 3

The correlations shown in Tables 6.4 and 6.5 suggest that the 3rd perceptual

dimension could be related to objective parameters of either the noise or the

vibration signal. Figure 6.11 shows the relationship between the 3rd perceptual

dimension and all five objective parameters of noise and vibration which exhibit

a correlation with this dimension. Once again, though some scatter is apparent,
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this figure gives confidence that there is a relationship between these parameters

and the 3rd perceptual dimension.

The strongest correlation exists with the sound pressure level exceeded for 10%

of the time, L10, a property that quantifies the magnitude of the signal and that

is used in the measurement and assessment of road traffic noise (Department

of Transport, 1988). The next strongest correlation exists with the dominant

frequency of the noise signal’s power spectral density, fmax.

The next two strongest correlations exist with duration descriptors of the noise

signal: the duration defined by 1/5th of the dynamic range, and the duration de-

fined by the 3 dB downpoints. Note that these duration descriptors are somewhat

different than the noise duration descriptors which were found to correlate with

the 2nd perceptual dimension. Whilst the 10 dB downpoints duration, and the

2/5ths, 3/5ths and 4/5ths dynamic range duration tend to represent the duration

of the whole signal, the 3 dB downpoints and 1/5th dynamic range duration only

capture the duration of the loudest part of the signal, which may not correlate

with the overall duration of the signal, particularly if the signal has a significant

peak. For example, the freight train stimulus 9 has the longest duration in terms

of the 10 dB downpoints (see Figure 6.10), yet has one of the shortest durations

in terms of the 3 dB downpoints (see Figure 6.11). This is due to a large peak

near the beginning of the signal, which can clearly be identified in Figure 5.5. To

investigate the independence of these duration descriptors for the studied stimulus

set, Pearson’s correlation coefficients were calculated between all noise duration

descriptors which have been shown to correlate with the 2nd and 3rd perceptual

dimensions. These correlations are presented in Table 6.6. Though strong cor-

relations exist between duration parameters that correlate with the 2nd and 3rd

perceptual dimensions respectively, there are no correlations between these two

groups. The fact that there is no correlations between these groups, and that

the two groups of duration descriptors correlate with two different perceptual pa-

rameters, suggests that subjects perceive these two sets of duration descriptors

differently in the stimuli used in this test.
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Figure 6.11: Relationship between the 3rd perceptual dimension and

the five parameters that have a significant correlation with this dimension
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Dimension 2 Dimension 3

10 dB 2/5ths 3/5ths 4/5ths 3 dB 1/5th
D

im
2

10 dB 1.000** 0.992** 0.991** 0.995** – –
2/5ths 0.992** 1.000** 0.998** 0.998** – –
3/5ths 0.991** 0.998** 1.000** 0.998** – –
4/5ths 0.994** 0.998** 0.998** 1.000** – –

D
im

3 3 dB – – – – 1.000** 0.999**
1/5th – – – – 0.999** 1.000**

Table 6.6: Pearson’s correlation coefficients between duration descriptors

of the noise signal that have been shown to correlate with the 2nd and 3rd

perceptual dimensions. – not significant, * p < 0.05, ** p < 0.01

The only vibration parameter which shows a significant correlation with the 3rd

perceptual dimension is the vibration exposure level, V EL (see Equation 3.17).

The vibration exposure level is analogous to the sound exposure level and is a

function of the energy of the signal as well as its duration. It is defined as the

vibration level of a signal of duration 1 second that would contain the same energy

content as the whole signal in question.

In summary, the third perceptual dimension appears to correlate mainly with

descriptors of the noise signal, with only one vibration descriptor, the vibration

exposure level, showing a significant, but also the weakest, correlation with this

dimension. Correlating parameters of the noise signal include those which quantify

the magnitude, duration and dominant frequency of the signal.
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6.4.6 Dimension 4

The correlations presented in Tables 6.4 and 6.5 suggest that the 4th perceptual

dimension could be related to objective descriptors of either the noise or the vi-

bration signals. Figure 6.12 shows the relationship between the 4th perceptual

dimensions and the 5 parameters that exhibit the strongest correlation with this

dimension.

Eight out of the nine parameters that exhibit a significant correlation with the 4th

perceptual dimension relate to the vibration signal, with the only noise parameter

that shows a significant correlation being the psychoacoustic measure of roughness.

Several of the correlating parameters relate to the magnitude of the vibration

signal: the un-weighted and Wb weighted vibration dose value, VDV (see Equation

3.14), the peak acceleration, and the vibration exposure level, V EL (see Equation

3.17), which is also a function of the vibration signal duration.

Other significant correlations exist with the kurtosis (see Equation 3.20) and crest

factor (see Equation 3.19) of the vibration signal, two parameters which quantify

the “peakiness” of a signal, and the modulation frequency, which quantifies the

frequency at which peaks occur in the signal.

A correlation also exists with the duration defined by 1/5th of the dynamic range

of the vibrations signal. As was demonstrated for the noise duration descriptors,

this duration descriptor quantifies a different property of the vibration signal than

other duration descriptors, since it captures the duration of the “loudest” part of

the signal. However, unlike for the noise duration descriptors, the duration defined

by the 3 dB downpoints does correlate with other duration descriptors that tend

to capture the whole event duration, since the dB levels scale differently for vibra-

tion and noise due to the different units involved. To demonstrate the difference in

the vibration duration descriptors that correlate with the 2nd and 4th dimensions,

correlations between these descriptors are shown in Table 6.7. Although strong

correlations exist between vibration duration descriptors that correlate with the

2nd perceptual dimension, no significant correlation exists between the duration
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Figure 6.12: Relationship between the 4th perceptual dimension and the

five parameters that exhibit the strongest correlation with this dimension
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descriptor which correlates with the 4th perceptual dimension, the duration de-

fined by the top 1/5th of the vibration dynamic range, and any of the vibration

duration descriptors which correlate with the 2nd perceptual dimension. As is the

case with the noise duration descriptors, this gives confidence that these two sets

of duration descriptors quantify difference aspects of the vibration signal, which

are perceived differently by subjects in the test.

Dimension 2 Dimension 4

3 dB 10 dB 2/5ths 3/5ths 4/5ths 1/5th

D
im

2

3 dB 1.000** 0.995** 0.990** 0.994** 0.995** –
10 dB 0.995** 1.000** 0.998** 0.999** 0.999** –
2/5ths 0.990** 0.998** 1.000** 0.998** 0.997** –
3/5ths 0.994** 0.999** 0.997** 1.000** 0.999** –
4/5ths 0.995** 0.999** 0.997** 0.999** 1.000** –

D
im

4

1/5th – – – – – 1.000**

Table 6.7: Pearson’s correlation coefficients between duration descriptors

of the vibration signal that have been shown to correlate with the 2nd and

4th perceptual dimensions. – not significant, * p < 0.05, ** p < 0.01

In summary, the 4th perceptual dimension appears to mainly correlate with ob-

jective parameters of the vibration component of the combined stimuli, with the

only noise parameter which shows a significant correlation being the psychoacous-

tic roughness. Correlations with objective descriptors of vibration include those

which quantify the magnitude of the signal, the duration of the signal, the “peak-

iness” of the signal and the frequency at which peaks occur in the signal.
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6.5 New models for predicting annoyance due to

combined noise and vibration

In the previous sections, for each perceptual dimension in turn, the correlations

between the dimensions and objective parameters of the noise and vibration stimuli

are examined. Based on these correlations, the following hypothesis is introduced:

1. The first perceptual dimension is related to aspects of the noise signal: its

magnitude, loudness, “peakiness” and psychoacoustic properties of its irreg-

ular/continuous character and high frequency content.

2. The second perceptual dimension is related to the duration of the combined

stimulus, the magnitude and modulation frequency of the vibration signal as

well as psychoacoustic parameters of roughness, sharpness and the spectral

centroid of the noise signal.

3. The third perceptual dimension is related to aspects of the noise signal: its

magnitude, duration and dominant frequency.

4. The fourth perceptual dimension is related to aspects of the vibration signal:

its magnitude, duration, “peakiness” and the frequency at which peaks occur

This hypothesis suggests that subjects make their dissimilarity judgements based

on separate aspects of the combined noise and vibration stimuli, and in particular

that they make their judgements based not only on the magnitude of the stimuli

but also on spectral and temporal characteristics of the stimuli.

In order to develop new annoyance models for combined railway noise and vi-

bration, multiple linear regression models can be created based on the above hy-

pothesis. One method to achieve this is to derive a regression model with the

Thurstone’s Case V annoyance scores as the dependent variables, and the param-

eters which exhibit the strongest correlation with each perceptual dimension as the

independent variables. The result of this regression is described in the following

equation:
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Ap = −20.3 + 53.0rmsA − 91.8rmsk + 0.3L10 + 32.2VDVb (6.18)

where Ap is the predicted single figure annoyance score, rmsA is the A-weighted

rms noise pressure, rmsk is the Wk weighted rms vibration acceleration, L10

is the noise level exceeded for 10% of the signal duration and VDVb is the Wb

weighted vibration dose value. A comparison between the Thurstone’s Case V

single figure annoyance scores measured during the subjective test and the single

figure annoyance scores predicted using Equation 6.18 is shown in Figure 6.13.

Details of the multiple linear regression are presented in Table 6.8.
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Figure 6.13: Comparison of single figure annoyance scores measured

during the subjective test and those predicted using Equation 6.18 (R2 =

0.934, p < 0.010)

Figure 6.13 shows a good agreement between measured single figure annoyance

scores and those predicted using Equation 6.18 (R2 = 0.934, p < 0.010). However,

this model is based entirely on the energy magnitudes of the combined noise and

vibration stimuli and neglects aspects of the combined stimuli which have shown to

correlate significantly with the perceptual dimensions such as duration, frequency

content and aspects of the peaks of the signals. It is perhaps not surprising,
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Parameter
β

Estimate
Standard

Error

Standardised
β

Estimate
p-value Overall Model

Intercept -20.3 6.28 < 0.050 N 10

rmsA 53.0 25.1 0.322 n.s. p-value < 0.010

rmsk -91.8 29.8 -0.415 < 0.050 R2 0.934

L10 0.284 0.099 0.450 < 0.050

VDVb 32.2 9.26 0.452 < 0.050

Table 6.8: Parameter estimates and other details of the multiple linear

regression model for single figure annoyance as a function of the objective

parameters that have the highest correlation with the perceptual dimen-

sions

therefore, that the model shows only a slight improvement on the model derived

in Chapter 5 as a linear summation of the magnitudes of the noise and vibration

stimuli (see Figure 5.19).

Though choosing the parameters that have the highest correlation with the percep-

tual dimensions as the independent variables for the multiple linear regression is a

sensible choice, it is worth considering regressions with other parameters that have

shown significant correlation with the dimensions, since many of the parameters

quantify the same property of the signal (i.e. there are several different quantifies

of duration). Additionally, though the parameters in Equation 6.18 individually

exhibit the highest correlations with each perceptual dimension, they may not

necessarily provide the best model in combination. Therefore, multiple linear re-

gressions were computed with all possible combination of parameters that have a

significant correlation with the perceptual dimensions in an attempt to find the

optimal model for predicting single figure annoyance. All possible combinations

that result in a significant regression model (p < 0.050) have R2 values ranging

between 0.806 and 0.993. The model with the highest R2 value is presented in the

following equation:
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Ap = −69.7 + 4.16TETC + 0.054T4/5,v + 0.316L10 − 0.273fmod (6.19)

where TETC is the total energy of the tonal components within critical bands

from 12 to 24 barks, T4/5,v is the stimulus duration defined by the duration for

which the vibration signal exceeds the top 4/5ths of its dynamic range, L10 is the

sound pressure level exceeded for 10% of the stimulus duration and fmod is the

vibration modulation frequency. This model captures a greater degree of com-

plexity of the combined stimulus than the model presented in Equation 6.18, since

it takes into account the duration of the stimulus (T4/5,v), the spectral distribu-

tion of the noise signal (TETC) and the frequency at which peaks occur in the

vibration signal (fmod) as well as a measure of the pressure magnitude of the noise

signal (L10). A previous MDS analysis of the perception of railway vibration by

Woodcock et al. (2014a) found two parameters in common with this model, the

vibration duration and vibration modulation frequency, to correlate with the per-

ceptual dimensions discovered in their perceptual test. They also found these two

parameters, combined with the rms acceleration in the 16 Hz and 32 Hz octave

bands, to provide a successful annoyance prediction model. Though Woodcock

et al. (2014a) defined the duration by the 10 dB downpoints of the vibration sig-

nal, this duration descriptor is very highly correlated with the duration defined by

4/5ths of the dynamic range (see Table 6.7).

A comparison between the Thurstone’s Case V single figure annoyance scores

measured during the subjective test and those predicted using Equation 6.19 is

shown in Figure 6.14. Details of the multiple linear regression model are presented

in Table 6.9.

Comparing Figures 6.13 and 6.14 it can be seen that the optimal multiple linear

regression model (Equation 6.19) provides a better agreement between the mea-

sured and predicted single figure annoyance scores. The R2 value is higher, the

model is significant to a higher level and each regression parameter is significant to

a higher level. Regression models with the single figure annoyance scores predicted

by the BTL model and the averaged single figure annoyance scores also provide
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Figure 6.14: Comparison of single figure annoyance scores measured

during the subjective test and those predicted using Equation 6.19 (R2 =

0.993, p < 0.001)

Parameter
β

Estimate
Standard

Error

Standardised
β

Estimate
p-value Overall Model

Intercept -69.7 4.36 < 0.001 N 10

TETC 4.16 0.464 0.427 < 0.001 p-value < 0.001

T4/5,v 0.054 0.006 0.490 < 0.001 R2 0.993

L10 0.316 0.032 0.501 < 0.001

fmod -0.273 0.064 -0.221 < 0.010

Table 6.9: Parameter estimates and other details of the multiple linear

regression model for single figure annoyance as a function of the objective

parameters that give the optimal multiple linear regression
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good agreement with the measured annoyance scores, with similar R2 values and

significance (R2 = 0.991, p < 0.001 and R2 = 0.989, p < 0.001 respectively).

The standardised β coefficients in Table 6.9 give an indication of the relative

weight carried by each parameter, with the sound pressure level exceeded for 10%

of the signal duration providing the greatest influence on the annoyance response,

followed by the stimulus duration, then the measure of the high frequency content

of the noise signal and finally the vibration modulation frequency.

To test the trade off between the number of predictor variables included in the

annoyance model and the amount of variance explained by the model, a stepwise

linear regression was conducted, with a constraint implied that for a predictor

variable to be included in the regression model it must have an estimated β coef-

ficient with a p-value of less than 0.05. The steps taken by the stepwise regression

are shown below and the results of this stepwise regression are presented in Ta-

ble 6.10. The fact that all predictor variables are included in the model by the

stepwise regression gives confidence that an optimal model has been found and

that the perception of combined noise and vibration is well represented by four

perceptual dimensions.

• Initial predictors included: none

• Step 1: added L10 (R2 = 0.633, p < 0.050)

• Step 2: added T4/5,v (R2 = 0.927, p < 0.010)

• Step 3: added TETC (R2 = 0.968, p < 0.010)

• Step 4: added fmod (R2 = 0.993, p < 0.010)

• Final predictors included: L10, T4/5,v, TETC and fmod

The relationship described in Equation 6.19 and shown in Figure 6.14 is a key result

of the multidimensional scaling analysis. Comparing the annoyance predictions

described by the multidimensional model (Figure 6.14) and the regression model
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Parameter β Coefficient Status p-value

Intercept -8.44 In < 0.001
L10 0.046 In < 0.010
T4/5,v 0.008 In < 0.010
TETC 4.63 In < 0.010
fmod -0.57 In < 0.050

Table 6.10: Stepwise regression results

where annoyance is predicted by magnitudes of noise and vibration (Figure 5.19)

shows that the new multidimensional model provides a substantial improvement in

the accuracy of the prediction of overall annoyance, accounting for approximately

15% more variance in annoyance scores. Equation 6.19, and the high accuracy of

annoyance prediction, suggests that the perception of combined noise and vibration

is a complex multidimensional phenomenon that takes into account not only the

energy magnitude of the stimuli but also the duration, frequency content and

envelope modulation of the combined stimulus.

6.6 The multidimensional perception of freight

and passenger railway noise and vibration

In the subjective test presented in Chapter 5, the three freight train stimuli were

shown to be perceived as more annoying than the passenger train stimuli. This can

be seen in Figures 5.14 and 5.15, where the freight train stimuli (stimuli number

8, 9 and 10) have higher single figure annoyance scores than the passenger train

stimuli, and in Figure 5.17, where the freight train stimuli are the only stimuli with

the categorical annoyance rating of “very” annoying, with the passenger trains

have lower ratings of either “slightly” or “moderately” annoying. In this section,

the differences in the response to freight and passenger trains will be investigated

in terms of multidimensional perceptual models.
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6.6.1 Multidimensional analysis of freight and passenger

noise and vibration stimuli

The annoyance model derived in this chapter predicts the freight train stimuli

to have a higher single figure annoyance rating (see stimuli 8,9 and 10 in Figure

6.14) based on the high frequency content of the noise signal, the duration of the

stimulus, the sound pressure level exceeded for 10% of the signal duration and

the frequency modulation of the vibration envelope (see Equation 6.19). To test

whether these parameters are significantly different for the freight and passenger

train signals used in the subjective test, a Kruskal-Wallis one-way analysis of

variance test was performed for each of the four parameters in the annoyance

model. According to this test, the only parameter that has significantly different

distributions (p < 0.05) for the freight and passenger train stimuli is the duration

descriptive parameter, T4/5,v. Though it is difficult to make strong conclusions

based on the very small sample size of stimuli (7 passenger and 3 freight trains),

these tests suggest that the reason for the increased annoyance response from

freight trains may be primarily due to their increased duration.

6.6.2 Multidimensional analysis of field study freight and

passenger vibration signals

Though the stimuli set of freight and passenger trains used in the subjective test

is small, there is a large set of freight and passenger vibration stimuli (14 874

freight trains and 85 103 passenger trains) extracted from the field study data of

Waddington et al. (2014) using the machine learning methods described in Chapter

3. The annoyance model derived in this chapter cannot be applied to this data

set, as it is a model based on combined noise and vibration, and no measurements

of noise were made during the field study of Waddington et al. (2014). However,

Woodcock et al. (2014a) developed a multidimensional annoyance model based on

the vibration signals of the field study database, using a similar methodology as
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that applied in the subjective test for this research. Their annoyance model takes

the following form:

Ap = −0.40 + 4.57rms16Hz + 3.18rms32Hz + 0.02T10dB + 0.02fmod (6.20)

where rms16Hz and rms32Hz is the rms acceleration contained in the 16 Hz and 32

Hz octave bands respectively, T10dB is the duration defined by the 10 dB down-

points of the vibration signal and fmod is the modulation frequency of the vibration

envelope. Note that two of the parameters in Equation 6.20 are equivalent to those

in the annoyance model derived in this chapter (Equation 6.19), namely the dura-

tion defined by the 10 dB downpoints of the vibration signal and the modulation

frequency of the vibration signal. It should also be noted, however, that these

two parameters were removed from a model in a stepwise regression performed by

Woodcock et al. (2014a), who stated that further work should be performed to de-

termine objective correlates which better describe the third and fourth perceptual

dimensions in Equation 6.20. Although Equation 6.19 cannot be successfully ap-

plied to the separated freight and passenger vibration signals from the field study

since it was derived from a subjective test involving combined noise and vibration,

Equation 6.20 can be, since it was derived from vibration stimuli obtained from

the field study measurements.

To test whether the parameters in Equation 6.20 are significantly different for the

freight and passenger signals measured during the field study, these parameters

were calculated for all freight and passenger vibration signals extracted from the

database of field study measurements, a substantially larger data set than the

noise and vibration signals used in the subjective test.

A Kruskal-Wallis one way analysis of variance test was performed for each pa-

rameter in Equation 6.20 calculated for both the freight and passenger vibration

signals. The results of this test indicates that each parameter has a significantly

different distribution (p < 0.01) for freight and passenger vibration signals. How-

ever, a visual representation of the distributions of these parameters revealed some
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differences in the parameter distributions for these two sources. Figure 6.15 shows

the probability density estimates of the parameter distributions for freight and

passenger vibration signals. There is a significant degree of overlap and similar-

ity between the distributions, especially for the rms16Hz and rms32Hz parameters.

The T10dB parameter, however, shows quite a different distribution for freight and

passenger vibration signals, with the freight signals tending to have a significantly

higher duration. Again this suggests that freight trains may be perceived as more

annoying because of their greater passby duration. Note that the tail of the proba-

bility density curve going below zero in some cases is due to the smoothing function

of the probability density estimate; none of the parameters have a negative value.
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Figure 6.15: Probability density estimates of the four parameters in

the annoyance model of Woodcock et al. (2014a) for freight and passenger

vibration signals
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6.6.3 Perceived annoyance of field study freight and pas-

senger vibration signals

Predicted perceived annoyance scores were calculated for each of the freight and

passenger vibration signals using Equation 6.20. Once again, a Kruskal-Wallis one

way analysis of variance test was performed on the resulting distributions of freight

and passenger perceived annoyance scores, the result of which indicates that the

distributions of perceived annoyance are significantly different for these two sources

(p < 0.01). The probability density estimate of the distributions of perceived an-

noyance scores for freight and passenger vibration signals is shown in Figure 6.16.

This figure shows a significantly different distributions for the perceived annoyance

of these two sources, with freight trains being consistently perceived as more an-

noying than passenger trains. The mean single figure annoyance scores for freight

and passenger vibration signals are 0.11 and -0.04 respectively. Note that these

annoyance scores are on a different scale to others presented in this chapter, since

the annoyance models derived in this chapter were based on the Thurstone’s Case

V annoyance, whereas the model derived by Woodcock et al. (2014a) was derived

using the average single figure annoyance score (see Equation 5.1). Notably, the

distributions of perceived annoyance due to freight and passenger vibration signals

are very similar to the distributions of the duration parameter T10dB for these two

sources, as shown in Figure 6.15, giving further confidence that the increased an-

noyance due to freight trains may be primarily attributed to their greater passby

duration.

6.6.4 Categorical annoyance of field study freight and pas-

senger vibration signals

Although the distributions shown in Figure 6.16 provide the information that

freight train vibration signals tend to be perceived as more annoying than pas-

senger train vibration signals, it is difficult to relate the single figure annoyance
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Figure 6.16: Probability density estimates of perceived single figure

annoyance of freight and passenger vibration signals

scores to absolute levels of annoyance without anchoring the single figure annoy-

ance scale to categorical ratings of annoyance. Woodcock et al. (2014a) related

their average single figure annoyance scores to categorical annoyance scores using

the same methods described in Section 5.5.6. They also used ordinal regression

for their relationship, but used the logit link function, which is more appropriate

for their evenly distributed data. The ordinal regression model with the logit link

function is as follows:

ln

(
pij

1− pij

)
= βtj + βAav (6.21)

where Aav is the average single figure annoyance (see Equation 5.1). The parame-

ters of the ordinal regression model derived by Woodcock et al. (2014a) were kindly

supplied by the authors for the purpose of further analysis in this research and

are presented in Table 6.11. The ordinal regression model with these parameters

is presented in Figure 6.17.

Categorical annoyance ratings can be determined for all the freight and passenger
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Parameter
β

Estimate
Standard

Error
p-value Overall Model

Threshold N 14
Slightly/Moderately -12.8 7.53 n.s. p-value < 0.001
Moderately/Very -1.75 1.62 n.s. R2

pseudo 0.823
Very/Extremely 12.6 8.50 n.s.

Location
Aav 76.3 43.3 n.s.

Table 6.11: Parameter estimates and other details of the ordinal regres-

sion model derived by Woodcock et al. (2014a)
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Figure 6.17: Probability of a vibration signal with a given perceived

annoyance rating being rated in a certain category of absolute annoyance
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vibration signals measured in the field study of Waddington et al. (2014), by

first calculating their predicted perceived annoyance rating using Equation 6.20

and then assigning their categorical annoyance to the category with the highest

probability for that perceived annoyance rating, according to the model presented

in Figure 6.17. The results of this procedure is presented in Figure 6.18, which

shows the percentage of all freight and passenger vibration signals that are assigned

to each category of annoyance. A clear trend can be seen for freight vibration

signals, with a greater proportion of signals being assigned to higher annoyance

categories. A significant majority, approximately 75%, of all vibration signals

measured in the field study have been predicted to fall in the “extremely” annoying

category. In contrast, the majority of passenger vibration signals are assigned to

the category of “moderately” annoying or lower.
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Figure 6.18: Proportion of freight and passenger signals that have been

assigned to each annoyance category

Note that the categorical annoyance model was derived from a dataset with no

stimuli assigned to the “not at all” annoyed category. The model therefore only

predicts the probability of signals being placed in the range of annoyance categories

from “slightly” to “extremely” and will therefore over emphasise the proportion

of signals assigned to these categories.
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6.7 Summary

This chapter presents further analysis of the results of the subjective test described

in Chapter 5. Using the methods of multidimensional scaling, a multidimensional

perceptual model was created from the perceived dissimilarity, measured during

the subjective test, of a set of noise and vibration railway stimuli. This multidi-

mensional scaling model revealed four perceptual dimensions upon which subjects

made their judgements of dissimilarity, and which can be used to successfully

predict the perceived single figure annoyance of the noise and vibration stimuli.

These perceptual dimensions can be related to several objective properties of the

noise and vibration stimuli which quantify the magnitude of the noise or vibration

signals, the duration of the signals, the spectral distribution of the signal, aspects

of the “peakiness” of the signals and psychoacoustic properties of the noise signal.

Multiple linear regression was used to model the predicted single figure annoyance

as a function of the objective parameters of the noise and vibration signals that

have been shown to correlate with the perceptual dimensions of the multidimen-

sional scaling model. The model with the greatest accuracy of prediction of the

perceived single figure annoyance was a function of the spectral distribution of

the noise signal, the duration of the stimulus, the magnitude of the noise signal

and the modulation frequency of the vibration signal envelope. Considering the

parameters of this model, an analysis of the freight and passenger noise and vibra-

tion stimuli suggests that the freight train stimuli in the subjective test may have

been perceived as more annoying based primarily on their increased duration.

The freight and passenger vibration signals measured during the field study of

Waddington et al. (2014) were analysed using a model of perceived annoyance de-

rived by Woodcock et al. (2014a) using similar methods to those outlined in this

chapter, but for vibration stimuli in the absence of noise. Using this model, and

the freight and passenger vibration signals identified using the methods outlined

in Chapter 3, single figure annoyance scores and categorical annoyance ratings

were calculated for each of the vibration signals. Analysis of these signals shows

that the annoyance distributions of the freight and passenger vibration signals are
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significantly different, with freight trains having consistently higher estimated an-

noyance ratings than passenger trains. In terms of categorical annoyance ratings,

a significant majority of freight trains were assigned to the highest category of

“extremely” annoying, whereas the majority of passenger trains were assigned to

the category of “moderately” annoying or lower. Once again, an analysis of the

distribution of the parameters in the annoyance model derived by Woodcock et al.

(2014a) suggests that freight trains may be perceived as more annoying primarily

due to their increased duration.
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7.1 Summary and conclusions

With the proposed increase in freight transport carried by rail, there will be an

associated increase in noise and vibration from freight railway traffic. Though

the human response to railway noise is well documented, the human response

to railway vibration has been less researched, and in particular studies into the

human response to freight railway noise and vibration are scarce. The primary aim

of this research, therefore, is to further the understanding of the human response

to freight railway noise and vibration, in an attempt to understand the potential

impacts that an increase in freight railway traffic may have on residents living

close to railway lines. In this chapter, the main outcomes and conclusions of the

research are summarised, and potential avenues of further research are presented.

7.1.1 Classification of unknown railway vibration signals

Waddington et al. (2014) performed one of the few field studies that have been

carried out worldwide on the human response to railway vibration in residential

environments. They were successful in developing exposure-response relationships

for annoyance due to exposure to railway vibration in residential environments.

However, these exposure-response relationships were derived for all railway traffic,

and no attempt was made to distinguish between freight and passenger railway

vibration. In this research, a machine learning logistic regression algorithm was

developed in order to classify unknown railway vibration signals in the database

of measurements collected by Waddington et al. (2014) as freight or passenger

vibration events, for further analysis. The logistic regression model was optimised

using a combination of univariate and multivariate significance testing and clas-

sification accuracy testing. The optimised logistic regression model is a function

of only two objective vibration parameters: the event signal duration, defined as

the normalised duration for which the vibration signal exceeds the top third of

its dynamic range, and the proportional rms acceleration contained within the 5

Hz 1/3rd octave band. The logistic regression model is able to classify unknown
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railway vibration signals as freight or passenger vibration signals with an accu-

racy of 96%, and a validation of the model on new measurements resulted in an

even higher classification accuracy of 98%. The high classification accuracy of this

model gives confidence that it can be used to classify unknown signals measured

during the field study of Waddington et al. (2014), allowing further analysis of

vibration exposure resulting from freight and passenger railway traffic.

7.1.2 Exposure-response relationships for annoyance due

to exposure to freight and passenger railway vibra-

tion

With the logistic regression model applied to the measurement database, it was

possible to determine 24 hour exposures of freight and passenger railway vibration

for all of the 752 case studies collected during the field study. These exposures

were then paired with the annoyance responses to freight and passenger railway

vibration which were also collected during the field study, in order to investigate

the exposure-response relationships for these two sources of environmental vibra-

tion. Initially, a pooled exposure-response relationship with a dummy variable

for source type was developed, using an ordinal probit grouped regression model.

The regression coefficient for the source type dummy variable was positive and

significant, giving confidence that it is valid to derived separate exposure-response

relationships for freight and passenger railway vibration.

Separate exposure-response relationships were then developed, showing the an-

noyance response due to exposure to freight railway vibration, and the annoyance

response due to exposure to passenger railway vibration. These exposure-response

relationships show that the annoyance response to freight railway vibration is sig-

nificantly higher than that due to passenger railway vibration, even for equal levels

of vibration exposure magnitude. This difference in response can be quantified in

several ways. For example, for a 24 hour vibration exposure of 0.01 m s−2, 4%

of the population studied is likely to be highly annoyed if the source is passenger
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railway vibration, whereas 13% of the studied population is likely to be highly

annoyed if the source is freight railway vibration.

The difference in response is further quantified by deriving exposure-response re-

lationships with a source type dummy variable using an ordinal logit model. The

regression coefficient for the source type dummy variable can then be used to com-

pute the odds ratio of a respondent responding in a higher annoyance category

for a given magnitude of vibration exposure for freight railway vibration rather

than passenger railway vibration. The odds ratio suggests that respondents, for a

given 24 hour rms acceleration, are 1.6 times more likely to respond in a higher

annoyance category due to freight railway vibration than they are due to passenger

railway vibration. For a given 24 hour VDV, the odds ratio of responding in a

higher annoyance category increases to 1.8.

7.1.3 A subjective test on the perception of combined rail-

way noise and vibration

The disparate annoyance responses to freight and passenger railway vibration,

even for equal levels of vibration exposure magnitude, suggest that current met-

rics for quantifying vibration exposure may not accurately represent the human

perception of railway vibration. In addition, railway vibration very often exists

in concert with noise. Therefore, a subjective test was designed in order to inves-

tigate the human response to railway noise and vibration as a multidimensional

phenomenon, in the hopes of identifying objective parameters of the vibration sig-

nals, and accompanying noise, that may lead to the increased annoyance response

due to freight railway vibration.

The subjective test took the form of a paired comparison test, with subjects making

judgements on pairwise annoyance and dissimilarity across all possible pairings of

10 freight and passenger combined noise and vibration stimuli. The results of

the paired comparison judgements of annoyance were used to model single figure

annoyance scores. The freight railway noise and vibration stimuli gave consistently
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higher perceived single figure scores than the passenger train stimuli. When related

to categorical annoyance ratings, freight trains were the only stimuli assigned to

the highest recorded categorical rating of “very” annoying.

Multiple linear regression models were derived for the prediction of single figure

annoyance as a function of noise magnitude, vibration magnitude and combined

noise and vibration magnitudes. The single figure annoyance predicted by the

regression model with combined noise and vibration magnitudes showed the high-

est correlation coefficient with measured single figure annoyance, suggesting that

overall annoyance due to combined railway noise and vibration stimuli is based on

a summation of the effects of the individual stimuli.

Though a reasonable approximation of the total annoyance caused by combined

railway noise and vibration can be determined from classic models of annoyance

predictions, involving summations of the noise and vibration magnitudes, there is

still a substantial degree of scatter when comparing measured single figure annoy-

ance scores and those predicted by the magnitude summation model. This scatter,

and the disparity in the exposure-response relationships derived from vibration ex-

posure magnitude, suggests that the human response to vibration and combined

noise is not sufficiently quantified by existing exposure metrics. Therefore, multi-

dimensional scaling analysis was performed on the results of the subjective test,

in the hopes of determining the perceptual dimensions that underlay the percep-

tion of combined noise and vibration. This may reveal aspects of the noise and

vibration signals that account for the difference in the human response, even for

equal levels of noise and vibration magnitude.

7.1.4 The multidimensional perception of railway noise and

vibration

The multidimensional scaling of the paired comparison judgements of dissimilar-

ity revealed a four dimensional perceptual space upon which subjects made their

judgements of dissimilarity, and which can be used to successfully predict the
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perceived single figure annoyance of the noise and vibration stimuli. The percep-

tual dimensions can be related to several objective properties of the noise and

vibration stimuli which quantify the magnitude of the noise and vibration signals,

the duration of the signals, the spectral distribution of the signals, aspects of the

“peakiness” of the signals and psychoacoustic properties of the noise signal.

Multiple linear regression models were used to predict single figure annoyance

scores as a function of the parameters of the noise and vibration signals that were

shown to have a significant correlation with the perceptual dimensions revealed by

the multidimensional scaling. The model with the greatest accuracy of prediction

of the single figure annoyance scores is a function of the spectral distribution of

the noise signal, the duration of the combined stimulus, the magnitude of the noise

signal and the modulation frequency of the vibration envelope. This model has

a greater prediction accuracy than classic models of annoyance prediction based

only on the combined magnitudes of the noise and vibration stimuli. Considering

the parameters of the model, an analysis of the noise and vibration stimuli used in

the subjective test suggests that the freight train stimuli may have been perceived

as more annoying based primarily on their increased duration.

The freight and passenger vibration signals measured during the field study of

Waddington et al. (2014) could not be analysed with the newly derived model,

since only measurements of vibration were made. Instead, a multidimensional

model previously derived by Woodcock et al. (2014a) was used to analyse the

freight and passenger vibration signals measured during the field study. Using this

model, single figure annoyance scores and categorical annoyance ratings were calcu-

lated for each of the vibration signals. The annoyance distributions of the freight

and passenger vibration signals were significantly different, with freight trains

having consistently higher perceived annoyance ratings than passenger trains. A

significant majority of freight trains were assigned to the highest categorical an-

noyance category of “extremely” annoying, whereas the majority of passenger

trains were assigned to the category of “moderately” annoying or lower. Again,

an analysis of the distributions of the parameters in the annoyance model derived

by Woodcock et al. (2014a) for freight and passenger train signals, suggests that
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freight trains may be perceived as more annoying primarily due to their increased

duration.

7.2 Further Work

The work in this thesis has demonstrated that there is a significant difference

in the human response to freight and passenger railway vibration. It has been

suggested that the difference in response is not well quantified by currently used

metrics of vibration exposure, leading to higher annoyance responses due to freight

railway vibration, even for equal levels of vibration exposure magnitude. A mul-

tidimensional analysis of the perception of railway noise and vibration has helped

to highlight some of the aspects of the noise and vibration signals that may lead

to this difference in the annoyance response, and a new model of annoyance pre-

diction has been presented. However, there is a great deal of further work that can

be performed in order to further understand the differences in the human response

to different sources of environmental vibration, and how these differences can be

used to understand potential impacts that increases in railway noise and vibration

may have on residents living close to railways. Some potential avenues of further

research are suggested in this section.

7.2.1 Relating individual annoyance ratings to overall an-

noyance response

The multidimensional annoyance model developed by Woodcock et al. (2014a) has

been applied to all of the freight and passenger vibration events in the measure-

ment database of the field study of Waddington et al. (2014). This has resulted in

each vibration event being assigned a single figure annoyance score and a categori-

cal annoyance rating. However, it is unclear how these individual event annoyance

ratings are related to an overall annoyance response. With further work, an in-

vestigation could be performed on how these individual event annoyance ratings
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can be related to the overall annoyance response for each of the 752 case stud-

ies in the field study, allowing new and perhaps more accurate predictions of

exposure-response relationships for annoyance due to exposure to freight and pas-

senger railway vibration. Exposure-response relationships developed in this work

have either needed to be developed separately for freight and passenger railway

vibration, or with a source type penalty for freight railway vibration. If the mul-

tidimensional models of vibration perception can be utilised in the development

of new exposure-response relationships, then it should be possible to take into ac-

count aspects of the vibration signals that cause the increased annoyance response

to freight vibration, such as the increased duration. This could allow the develop-

ment of robust exposure-response relationships that are able to more accurately

predict the human response to all railway vibration.

7.2.2 Development of new vibration exposure metrics

Related to the above avenue of further work is the possibility of developing a

new metric for quantifying human exposure to vibration. The multidimensional

scaling analyses presented in this research, and in the work of Woodcock et al.

(2014a), have shown that the perception of vibration, and vibration and noise

in combination, is a multidimensional phenomenon, and can be modelled using

not only the magnitude of the vibration exposure, but also the duration, spectral

distribution and envelope modulation of the signal. With further work, it may be

possible to develop new vibration exposure metrics which take these aspects of the

vibration signal into account and which are perhaps better quantifiers of vibration

exposure in terms of potential human response. These new metrics could then be

used to accurately predict annoyance responses due to environmental vibration,

or to set limits and guidance for appropriate levels of vibration.
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7.2.3 Time of day analysis

Previous research by Peris et al. (2012) has shown that the annoyance response due

to vibration is higher during the night-time (23:00 to 07:00) than during evening

time (19:00 to 23:00) and higher during evening time than during daytime (07:00

to 19:00). Freight railway traffic is generally more prevalent evening and night-

time hours. For example, for the 752 case studies analysed in this research, the

proportion of freight traffic during the daytime, evening time and night-time is

10%, 18% and 22% respectively. The increased annoyance response due to freight

railway vibration, therefore, may be partially due to the prevalence of freight

traffic to occur more frequently during the evening time and during the night-

time, where sleep disturbance also becomes an issue. The time of day analysis

performed by Peris et al. (2012) utilised response data collected during the field

study of Waddington et al. (2014), in which questions were asked of respondents

about how annoyed they were by railway vibration at different times of the day.

However, these time of day responses were only collected for all railway traffic,

and not freight and passenger railway traffic separately. This means that it is not

possible to derive exposure-response relationships for annoyance due to freight

and passenger railway traffic at different times of day. With further work, and

possibly further field studies, it may be possible to develop these relationships and

investigate how freight traffic during the night relates to overall annoyance due to

freight railway vibration.

7.2.4 Situational, attitudinal and demographic factors

In exposure-response relationships, there is always a significant degree of scatter,

due to inherent differences in the population studied. Some of the variation is due

to different sensitivities to noise and vibration, whilst other differences may not be

necessarily associated with the vibration or noise exposure but with situational,

attitudinal and demographic factors. Peris et al. (2014) studied the effects of these
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situational, attitudinal and demographic factors on annoyance due to railway vi-

bration, using data collected during the field study of Waddington et al. (2014). In

particular, they found that annoyance responses were strongly influenced by two

attitudinal factors: concern of property damage and expectations about future lev-

els of vibration. It is possible that these two attitudinal factors are also related to

the increased annoyance response due to freight railway vibration. Freight trains,

with their longer duration and greater low frequency vibration energy could be

perceived by respondents as more likely to damage their property. In addition,

the fact that freight railway transportation is increasing could be related to in-

creased annoyance, due to expectations about future levels of vibration increasing.

Further work could focus on investigating how these non exposure factors may re-

late to freight railway traffic in particular, perhaps helping to further explain the

differences in the annoyance response to freight and passenger railway vibration.

7.3 Final summary

This research has demonstrated that the human response to freight and passenger

railway vibration is significantly different, and in particular that the annoyance

response due to freight railway vibration is higher than that due to passenger rail-

way vibration, even for equal levels of vibration exposure magnitude. This sug-

gests that current vibration exposure metrics do not sufficiently quantify aspects

of freight vibration signals that may account for the higher annoyance response,

such as their increased duration. Indeed, a subjective study has shown that the

human response to railway noise and vibration is not simply a function of the

combined noise and vibration magnitudes, but also takes into account spectral

distributions of the noise signal, the duration of the stimulus and the modulation

frequency of the vibration envelope. Further work is required to utilise these re-

sults in the development of new exposure-response relationships and new metrics

to quantify vibration exposure that can more accurately account for the difference

in the response to these sources of environmental vibration. Further work may also

help to determine other factors that may account for the difference in response to
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freight and passenger railway vibration, such as time of day effects and the effects

of situational, attitudinal and demographic factors.

The findings that the human response to freight and passenger railway vibration

is significantly different, and that the human response to combined railway noise

and vibration is a complex multidimensional phenomenon, are important results,

particularly in light of increasing freight transportation on rail. These results may

have important implications for the expansion of freight traffic on rail, or for policy

that aims to promote passenger railway traffic.
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Öhrström, E. and Sk̊anberg, A. B. (1996). A field survey on effects of exposure to

noise and vibration from railway traffic, part I: annoyance and activity distur-

bance effects. Journal of Sound and Vibration, 193(1):39–47.

Parizet, E. (2002). Paired comparison listening tests and circular error rates. Acta

Acustica United with Acustica, 88:594–598.



References 220

Parizet, E., Guyader, E., and Nosulenko, V. (2008). Analysis of car door closing

sound quality. Applied Acoustics, 69(1):12–22.

Parsons, K. C. and Griffin, M. J. (1988). Whole-body vibration perception thresh-

olds. Journal of Sound and Vibration, 121:237–258.

Parsons, K. C., Griffin, M. J., and Whitham, E. M. (1982). Vibration and comfort.

III. Translational vibration of the feet and back. Ergonomics, 25:705–719.

Paulsen, R. and Kastka, J. (1995). Effects of combined noise and vibration on

annoyance. Journal of Sound and Vibration, 181(2):295–314.

Pennig, S., Quehl, J., Mueller, U., Rolny, V., Maass, H., Basner, M., and El-

menhorst, E.-M. (2012). Annoyance and self-reported sleep disturbance due to

night-time railway noise examined in the field. The Journal of the Acoustical

Society of America, 132(5):3109–3117.

Peris, E., Woodcock, J., Sica, G., Moorhouse, A. T., and Waddington, D. C.

(2012). Annoyance due to railway vibration at different times of the day. The

Journal of the Acoustical Society of America, 131(2):EL191–EL196.

Peris, E., Woodcock, J., Sica, G., Sharp, C., Moorhouse, A. T., and Waddington,

D. C. (2014). Effect of situational, attitudinal and demographic factors on

railway vibration annoyance in residential areas. The Journal of the Acoustical

Society of America, 135(1):194–204.

Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S., Mc-

Namara, J. O., and Williams, S. M., editors (2001). Neuroscience. Sinauer

Associates, Sunderland, MA, 2nd edition.

Putnam, L. E. and Roth, W. T. (1990). Effects of stimulus repetition, duration,

and rise time on startle blink and automatically elicited P300. Psychophysiology,

27(3):275–97.

Real Decreto (2007). Real Decreto 1367/2007 de 19 de octubre, por el que se

desarrolla la Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a
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Saremi, M., Grenèche, J., Bonnefond, A., Rohmer, O., Eschenlauer, A., and Tassi,

P. (2008). Effects of nocturnal railway noise on sleep fragmentation in young and

middle-aged subjects as a function of type of train and sound level. International

Journal of Psychophysiology, 70:184–191.

SBR (2006). SBR Richtlijn – Deel B: Hinder voor personen in gebouwen.

Schomer, P., Mestre, V., Fidell, S., Berry, B., Gjestland, T., Vallet, M., and Reid,

T. (2012). Role of community tolerance level (CTL) in predicting the prevalence

of the annoyance of road and rail noise. The Journal of the Acoustical Society

of America, 131(4):2772–2786.

Schroeder, M. R., Gottlob, D., and Siebrasse, K. F. (1974). Comparative study

of European concert halls: correlation of subjective preference with geometric

and acoustic parameters. The Journal of the Acoustical Society of America,

56(4):1195–1201.

Schubert, E. and Wolfe, J. (2006). Does timbral brightness scale with frequency

and spectral centroid? Acta Acustica United with Acustica, 92:820–825.

Schultz, T. J. (1978). Synthesis of social surveys on noise annoyance. The Journal

of the Acoustical Society of America, 64(2):377–405.



References 222

Schultz, T. J. (1982). Comments on K. D. Kryter’s paper, “Community annoyance

from aircraft and ground vehicle noise”. The Journal of the Acoustical Society

of America, 72(4):1243–1252.

Shamir, L., Yerby, C., Simpson, R., von Benda-Beckmann, A. M., Tyack, P.,

Samarra, F., Miller, P., and Wallin, J. (2014). Classification of large acoustic

datasets using machine learning and crowdsourcing: application to whale calls.

The Journal of the Acoustical Society of America, 135(2):953–962.

Shoenberger, R. W. (1975). Subjective response to very low frequency vibration.

Aviation, Space and Environmental Medicine, 46:785–790.

Shoenberger, R. W. and Harris, C. S. (1971). Psychophysical assessment of whole-

body vibration. Human Factors, 13:41–50.

Sica, G., Peris, E., Woodcock, J. S., Moorhouse, A. T., and Waddington, D. C.

(2014). Design of measurement methodology for the evaluation of human expo-

sure to vibration in residential environments. Science of the Total Environment,

482-483:461–471.

Sica, G., Woodcock, J., Peris, E., Koziel, Z., Moorhouse, A. T., and Wadding-

ton, D. C. (2011). Human response to vibration in residential environments

(NANR209), technical report 3: calculation of vibration exposure.

Simic, D. (1974). Contributions to the optimisation of the oscillatory properties

of a vehicle: physiological foundations of comfort during oscillations. Library

Translation No. 1707. Royal Aircraft Establishment, Farnborough, UK.
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