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Running title: Campylobacter survival in the environment 26 

Abstract 27 

Campylobacter species are the most common cause of bacterial gastroenteritis, with C. jejuni 28 

responsible for the majority of these cases.  Although it is clear that livestock, and 29 

particularly poultry, are the most common source, it is likely that the natural environment 30 

(soil, water) plays a key role in transmission, either directly to humans or indirectly via farm 31 

animals.   It has been shown using multilocus sequence typing that some clonal complexes 32 

(such as ST-45) are more frequently isolated from environmental sources such as water, 33 

suggesting that strains vary in their ability to survive in the environment.  Although C. jejuni 34 

are fastidious microaerophiles generally unable to grow in atmospheric levels of oxygen, C. 35 

jejuni can adapt to survival in the environment, exhibiting aerotolerance and starvation 36 

survival.  Biofilm formation, the viable but non-culturable state, and interactions with other 37 

microorganisms can all contribute to survival outside the host.  By exploiting high throughput 38 

technologies such as genome sequencing and RNA Seq, we are well placed to decipher the 39 

mechanisms underlying the variations in survival between strains in environments such as 40 

soil and water, and to better understand the role of environmental persistence in the 41 

transmission of C. jejuni directly or indirectly to humans.  42 

 43 

  44 
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Introduction 45 

Campylobacter is the most common cause of acute bacterial gastroenteritis worldwide.  In the 46 

UK alone it causes an estimated 700,000 infections each year (Tam et al., 2012) and presents 47 

an economic burden of over £1 billion per annum (Humphrey et al., 2007). 48 

Campylobacteriosis, typically lasting for about a week, is characterised by often bloody 49 

diarrhoea, cramping, abdominal pain and fever, and may be accompanied by nausea and 50 

vomiting.  Occasionally, in immunocompromised patients, the pathogen can spread 51 

systemically, leading to more severe sequelae, and it is also a major predisposing cause of the 52 

peripheral nervous system disorder, Guillain-Barré Syndrome (Nachamkin et al., 1998). 53 

Campylobacter are spiral members of the Epsilonproteobacteria with small, AT-rich 54 

genomes (typically 1.5 – 2 Mb).  They are often considered fragile because of the difficulty in 55 

growing and maintaining the bacteria in laboratory culture.  Campylobacter grow optimally 56 

at 37-42°C but cannot tolerate drying and are unable to grow in atmospheric levels of 57 

oxygen, requiring instead  conditions with  reduced oxygen levels (5-10% v/v) but raised 58 

carbon dioxide levels (5-10% v/v).   59 

Although most human infections (approximately 90%) are associated with 60 

Campylobacter jejuni, around 10% are caused by C. coli, with other species also occasionally 61 

causing disease.  However, for the purposes of this review, we focus on the most common 62 

pathogenic species, C. jejuni. 63 

Here, we review the potential role of environments such as soil or water in the 64 

transmission of C. jejuni, outlining current knowledge about the strategies adopted by C. 65 

jejuni to persist in such environments, and discussing the evidence that such environments 66 

contribute directly or indirectly to the burden of human disease.  We use the term 67 

“environment” throughout to refer to natural and farmland environments such as soil or 68 
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water.  We further highlight the key issue of inter-strain variability, emphasising the need to 69 

use multiple strains before drawing species-wide conclusions about C. jejuni.  70 

 71 

Genotyping of Campylobacter 72 

There have been a number of genetic approaches used to sub-divide species of 73 

Campylobacter, especially C. jejuni and C. coli, including pulsed-field gel electrophoresis 74 

(PFGE) (Wassenaar & Newell, 2000), flagellin genotyping (Clark et al., 2005), random 75 

amplified polymorphic DNA (RAPD) typing (Nielsen et al., 2000) and ribotyping (Ahmed et 76 

al., 2012).  However, the development of a multilocus sequence typing (MLST) scheme for 77 

Campylobacter was a significant step forward in the study of diversity amongst 78 

Campylobacter populations and the relationships between species within the genus (Dingle et 79 

al., 2001).  MLST enables unequivocal data to be compared between laboratories world-wide 80 

through the use of a readily accessible database (pubmlst.org/campylobacter) containing data 81 

for > 28000 isolates (last accessed May 2014) (Jolley & Maiden, 2010). 82 

The initial MLST scheme was based on the analysis of sequences from seven 83 

housekeeping genes (aspA, glnA, gltA, glyA, pgm, tkt and uncA) and allows the assignment of 84 

isolates to clonal complexes (clusters of closely-related sequence types).  Using this 85 

approach, it was possible to identify the most abundant common clonal complexes (such as 86 

ST-21), though it is also evident that the C. jejuni population overall is highly diverse (Dingle 87 

et al., 2001, Dingle et al., 2005).  Others have extended the MLST scheme for improved 88 

applicability to other Campylobacter species (Dingle et al., 2008) (Miller et al., 2005).  89 

However, the advent of affordable whole genome sequencing (WGS) technologies means that 90 

a scheme based on much wider genomic comparisons is likely to supersede MLST.  Since the 91 

first genome sequence (of strain NCTC11168) was published in 2000 (Parkhill et al., 2000), 92 

numerous other Campylobacter genomes have been sequenced, revealing extensive within-93 



5 
 

species diversity (Fouts et al., 2005, Hofreuter et al., 2006, Hepworth et al., 2011). Since 94 

MLST profiles can be readily extracted from WGS data, the widespread adoption of WGS 95 

would not preclude comparison with previous datasets.   96 

 97 

Use of genotyping to attribute routes of infection  98 

Most cases of campylobacteriosis occur as isolated, sporadic cases, rather than as part of 99 

larger outbreaks, as typically seen with other bacterial pathogens associated with diarrhoea.  100 

It is believed that zoonotic transmission of Campylobacter spp. to humans occurs primarily 101 

through the consumption and handling of livestock, with poultry being the most common 102 

source.   However, it is clear that other infection routes, including the natural environment, 103 

may also contribute.   104 

C. jejuni has been isolated from diverse animal, human and environmental sources 105 

and the isolates obtained subjected to genotyping.  Although traditional typing schemes have 106 

been of limited use with respect to identification of infection sources, using molecular typing 107 

coupled with epidemiological analysis, we are now in a better position to identify and track 108 

specific strain types of C. jejuni and C. coli.  Several studies have sought to determine the 109 

prevalence of specific clones amongst C. jejuni isolates from diverse sources by applying 110 

MLST (Colles et al., 2003, Manning et al., 2003, Sails et al., 2003, Dingle et al., 2005, 111 

French et al., 2005, Karenlampi et al., 2007, McCarthy et al., 2007, Taboada et al., 2008, 112 

Wilson et al., 2008, Sheppard et al., 2009).  These studies show that whilst some MLST 113 

clonal complexes, such as the ST-21 complex, are widespread, others, such as the ST-61 114 

complex, have a more restricted distribution.  Although generally considered to be poor 115 

survivors outside of their animal hosts, some C. jejuni appear to be more able to survive and 116 

persist in environmental niches (French et al., 2005, Sopwith et al., 2008).  For example, a 117 

study of C. jejuni in a specific area of cattle farmland in the UK found that environmental 118 
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water isolates clustered within the ST-45 clonal complex much more frequently  than other 119 

common clonal complexes (Biggs et al., 2011). The prevalence of specific strain types 120 

amongst isolates from multiple sources, including animals and the natural environment, can 121 

be compared with similar data from isolates associated with infections in humans.  This 122 

enables us to model the relative contributions of particular sources to transmission (Wilson et 123 

al., 2008, Sheppard et al., 2009, Strachan et al., 2009). 124 

 125 

The natural and farmland environment as a reservoir or source of infection 126 

There have been a number of reports implicating environmental water as the source of an 127 

outbreak of campylobacteriosis (Lind et al., 1996, Clark et al., 2003, Auld et al., 2004, Kuusi 128 

et al., 2004, O'Reilly et al., 2007).  Studies in many countries have shown that drinking water 129 

can be a direct source of human infection (Abe et al., 2008, Uhlmann et al., 2009, 130 

Karagiannis et al., 2010, Gubbels et al., 2012). Perhaps, more importantly, the environment is 131 

also an important source for the primary and secondary colonisation of food animals, 132 

particularly chickens (Pearson et al., 1993, Ogden et al., 2007, Perez-Boto et al., 2010).  It is 133 

likely that routes of transmission flowing through the environment, farm animals and wild 134 

animals through to humans interact in complex ways (Figure 1).  These interactions would be 135 

driven by factors such as the defecation of wild birds or farm animals, water flow due to 136 

climatic conditions, spread by flies and other complex ecological parameters.  An as yet 137 

unexplained phenomenon of seasonality has been reported, with Campylobacter infection 138 

peaks in late spring (McCarthy et al., 2012, Nichols et al., 2012, Spencer et al., 2012, Taylor 139 

et al., 2013).  It has been postulated that the natural environment plays a role in this 140 

reproducible seasonality, though there is much work to be done before this link is fully 141 

established and understood. 142 

 143 
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Campylobacter sub-types associated with non-livestock sources 144 

In addition to the reported link between the ST-45 clonal complex and water sources (French 145 

et al., 2005, Sopwith et al., 2008), a number of novel MLST types absent from human 146 

isolates have been identified from both environmental water and wild-life, such as wild birds 147 

and rabbits (French et al., 2005, Levesque et al., 2008, Hepworth et al., 2011).  Members of 148 

the ST-45 complex have a widespread distribution but are more frequently encountered in 149 

environmental samples than some other “generalists” (French et al., 2005).  However, these 150 

unusual MLST types are rarely identified amongst isolates from human or farm animal 151 

sources.  One example of this apparent niche specialisation is ST-3704, which has a specific 152 

association with the bank vole (Williams et al., 2010, Hepworth et al., 2011).  Comparative 153 

genome hybridisation and genome sequence analysis has shown that such strains often lack 154 

many of the genes previously associated with the ability to colonise chickens and form a 155 

novel clade distinct from the C. jejuni strains that are commonly associated with human 156 

infections (Hepworth et al., 2011). 157 

Although C. jejuni has a relatively small genome, it carries significant levels of 158 

variation, potentially indicative of evolution leading to niche specialisation.  Comparative 159 

genome analyses using microarrays indicate high levels of genome diversity but low levels of 160 

genome plasticity in C. jejuni (Dorrell et al., 2001, Leonard et al., 2003, Pearson et al., 2003, 161 

Champion et al., 2005, On et al., 2006)(Dorrell et al., 2005).  These studies have identified 162 

discrete regions of diversity within the C. jejuni pangenome, called plasticity regions PR1-163 

PR7 (Pearson et al., 2003) or hypervariable regions 1-16 (Taboada et al., 2004, Hofreuter et 164 

al., 2006, Parker et al., 2006).  This approach was used to sub-divide C. jejuni into 165 

“livestock” and “non-livestock” clades (Champion et al., 2005, Stabler et al., 2013) and has 166 

led to the development of multiplex PCR assays as predictive tests for whether human 167 

infection cases were attributable to water and wildlife or domesticated sources (Stabler et al., 168 
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2013).  The development of new sequencing technologies has made it feasible to carry out 169 

much larger and more detailed Campylobacter comparative genomics in order to better 170 

identify genes or genomic regions associated with isolates from particular sources (Sheppard 171 

et al., 2013). 172 

 173 

Oxygen tolerance and survival in low nutrient environments 174 

In order to survive in natural environments C. jejuni must cope with a number of 175 

stresses (Figure 2).  Despite the absence of many classic stress response mechanisms, C. 176 

jejuni strains can survive in a wide range of environments (Kassem & Rajashekara, 2011). In 177 

particular, the organism needs to defend itself against atmospheric levels of oxygen and 178 

reactive oxygen species (ROS).  If the cell is unable to neutralise these toxic compounds, they 179 

can lead to protein, nucleic acid and membrane damage.  Exposure of Campylobacter to 180 

oxygen induces catalase, not superoxide dismutase (SOD), the major defence against 181 

oxidative stress in most bacteria (Garenaux et al., 2008), though basal activity of SOD may 182 

be important (Pesci et al., 1994). The best described catalase in C. jejuni is encoded for by 183 

katA (Cj1385 in C. jejuni NCTC11168)  (Day et al., 2000, Atack & Kelly, 2009). However, 184 

recently another protein (Cj1386) implicated in defence against ROS has been described, 185 

encoded by a gene located immediately downstream of katA .  Cj1386 is an ankyrin-186 

containing protein  involved in the same detxoxification pathway as catalase  (Flint et al., 187 

2012). Unlike most bacteria, which contain two distinct types of SOD, SodA and SodB, only 188 

SodB is present in C. jejuni. sodB mutants show elevated sensitivity to oxidative stress 189 

(Purdy et al., 1999). Alkyl hydroperoxide reductase (Ahp), consisting of an AhpC catalytic 190 

and an AhpF flavoprotein subunit, can also play a role in aerotolerance (Baillon et al., 1999, 191 

Poole et al., 2000, Atack & Kelly, 2009). C. jejuni appear to lack the flavoprotein domain and 192 

only contain the ahpC gene. The thioredoxin reductase TrxB is a possible candidate for 193 



9 
 

reducing oxidised AhpC (Parkhill et al., 2000, Palyada et al., 2004)..  The methionine 194 

sulfoxide reductases MsrA and MsrB counteract the formation of Met-SO in C. jejuni, 195 

preventing oxidative damage caused by conformational changes and inactivation of proteins 196 

(Moskovitz, 2005, Atack & Kelly, 2008).  It has been demonstrated that the heat-shock 197 

related proteins HtrA and HspR can promote short-term survival in oxygen (Andersen et al., 198 

2005, Brondsted et al., 2005), which may be important in terms of transmission. C. jejuni 199 

also differs in its choice of regulatory genes from other enteropathogenic bacteria; KatA and 200 

AhpC are regulated by PerR and not OxyR, which is lacking (Cabiscol et al., 2000). The 201 

OmpR-type response regulator  CosR also plays a role in regulation of the oxidative stress 202 

response (Hwang et al., 2011). Fur (ferric uptake regulator) controls expression of a range of 203 

oxidative stress genes, preventing the build up of toxic levels of iron within the cell (Stintzi et 204 

al., 2008). Other regulatory systems important in C. jejuni oxidative stress response are the 205 

global transcriptional regulator CsrA, and the two-component regulatory systems CprRS and 206 

RacRS (Fields & Thompson, 2008, Svensson et al., 2009, Gundogdu et al., 2014). Different 207 

strains of C. jejuni can vary with respect to the carriage of genes implicated in aerotolerance.  208 

For example, Cj1556, encoding a MarR family transcriptional regulator with a role in 209 

oxidative stress response (Gundogdu et al., 2011), is found at much higher prevalence 210 

amongst livestock-associated strains than non-livestock associated strains (Champion et al., 211 

2005), suggesting subtle variations in aerotolerance that may contribute to the higher 212 

prevalence of some strain genotypes in environmental samples. 213 

 In nutrient poor environments, such as water, C. jejuni must cope with starvation.  C. 214 

jejuni, in contrast to other bacteria, is generally unable to utilize sugars and relies on amino 215 

acids (mainly aspartate, glutamate, serine and proline) and organic acids for energy and 216 

growth (Velayudhan et al., 2004, Guccione et al., 2008, Hofreuter et al., 2008). It is likely 217 

that  in vivo peptides provide amino acid sources for C. jejuni. Cj0917, a homologue of 218 
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carbon starvation protein A (CstA) in E. coli, is involved in peptide utlisation and is the most 219 

upregulated C. jejuni  gene during starvation (Rasmussen et al., 2013). 220 

C. jejuni lacks the RpoS-mediated stress resistance system associated with the 221 

stringent response in many Gram-negative bacteria (Parkhill et al., 2000).  Generally Gram-222 

negative bacteria rely on relA and spoT to control the stringent response, but there are 223 

exceptions, including C. jejuni, which relies on spoT only (Wells & Long, 2002, Gaynor et 224 

al., 2005).   It has also been shown that Ppk1-dependent increases in poly-P inside the C. 225 

jejuni cell are important in low-nutrient-stress survival, osmotic stress survival and biofilm 226 

formation (Candon et al., 2007). 227 

 228 

Biofilm formation 229 

Biofilm formation is another common strategy for bacterial survival in harsh 230 

environmental conditions.  C. jejuni can form biofilms in water systems and on a variety of 231 

abiotic surfaces commonly used in such systems as well as in natural aquatic environments 232 

(Lehtola et al., 2006, Maal-Bared et al., 2012).  It has been demonstrated that low nutrient 233 

conditions (Reeser et al., 2007) and aerobic environments (Reuter et al., 2010) can promote 234 

C. jejuni biofilm formation, and that this species can survive within polymicrobial biofilms 235 

(Ica et al., 2012).  Molecular understanding of the mechanisms underlying Campylobacter 236 

biofilm formation is still in its infancy. Mutational studies have revealed that surface proteins, 237 

flagella and quorum sensing appear to be required for maximal biofilm formation (Asakura et 238 

al., 2007, Reeser et al., 2007).  Transcriptomic and proteomic studies indicate that there is a 239 

shift in expression levels of proteins synthesized by biofilm-grown cells, towards iron uptake, 240 

oxidative stress defence and membrane transport (Kalmokoff et al., 2006, Sampathkumar et 241 

al., 2006).   242 
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 However, it has been noted that different strains of C. jejuni can vary in their ability 243 

to form biofilms (Buswell et al., 1998, Joshua et al., 2006).  Again, this could be due to 244 

subtle differences in gene content between different strains of C. jejuni, with potential 245 

implications for survival in the natural environment and transmission.  For example, the 246 

quorum sensing system of C. jejuni has been implicated in biofilm formation (Plummer, 247 

2012), yet some strains lack luxS, including some strains more associated with water/wild-life 248 

sources (Hepworth et al., 2011). 249 

 250 

The viable but non-culturable (VBNC) state 251 

It has been reported that C. jejuni can respond to unfavourable conditions, including 252 

low nutrient environments, by entering a viable but non-culturable (VBNC) state (Rollins & 253 

Colwell, 1986, Pearson et al., 1993, Murphy et al., 2006), and that oxygen can accelerate this 254 

transition to VBNC (Klancnik et al., 2006). In the VBNC state, bacteria lose the ability to 255 

form colonies on normal growth media and reduce their metabolic activity but retain viability 256 

and the potential to recover, and even cause infections (Barer & Harwood, 1999).  Some 257 

evidence suggests that VBNC state formation may be impacted by proteins involved in 258 

inorganic polyphosphate (poly-P) metabolism, such as Ppk1, Ppk2 and SpoT (Gaynor et al., 259 

2005, Gangaiah et al., 2009, Gangaiah et al., 2010, Kassem & Rajashekara, 2011).  260 

During the VBNC state, gene expression can be detected for extended periods of time; 261 

for instance, the gene cadF, encoding a fibronectin-binding protein involved in adhesion and 262 

invasion, was expressed at high levels for 3 weeks in C. jejuni cells that had entered the 263 

VBNC state (Patrone et al., 2013).  Furthermore, it has been demonstrated that C. jejuni in 264 

the VBNC state can adhere to chicken carcasses (Jang et al., 2007) as well as intestinal cells 265 

in vivo (Patrone et al., 2013). 266 
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In this dormant state, C. jejuni cells often undergo morphological changes, such as a 267 

switch to coccoid form and a reduction in size. Despite the presence of flagella, coccoid 268 

forms are non-motile; it has been suggested that the cells simply do not have the energy to 269 

maintain motility (Moran & Upton, 1986, Moore, 2001). However, similar changes can be 270 

observed when the organism is cultured in the laboratory, suggesting that this may merely 271 

represent degeneration of the organism (Moran & Upton, 1986, Moran & Upton, 1987).  It 272 

has been suggested that different types of coccoid cell forms exhibiting different 273 

characteristics exist (Hazeleger et al., 1995).  Hence, coccoid cells could be either viable or 274 

non-viable. 275 

It has been shown that Campylobacter can survive for as long as seven months in 276 

phosphate buffered saline at 4
o
C, with cellular integrity and respiratory activity being 277 

maintained for much longer than culturability (Lazaro et al., 1999). Interestingly, the ability 278 

to enter the VBNC state varies between strains of C. jejuni (Medema et al., 1992, Lazaro et 279 

al., 1999, Tholozan et al., 1999, Cools et al., 2003), potentially explaining why certain sub-280 

types of C. jejuni are more often found associated with environmental sources.  The ability to 281 

recover from such a state and retain the ability to cause infections can also vary.  Some 282 

studies suggest that C. jejuni cannot revert from a VBNC state to a form capable of 283 

colonisation of chicks (Beumer et al., 1992, Medema et al., 1992, Hazeleger et al., 1995, 284 

Hald et al., 2001, Ziprin et al., 2003, Ziprin & Harvey, 2004), whereas others report 285 

successful reversion after passage through animals (Saha et al., 1991, Talibart et al., 2000, 286 

Baffone et al., 2006).  Therefore, this area of research remains controversial and 287 

inconclusive.   288 

 289 

Interactions with other microorganisms in the environment 290 
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The relatively small genome of C. jejuni, encoding limited biosynthesis pathways (Kelly, 291 

2001) but multiple transport systems (Dorrell & Wren, 2007), suggests the possibility of 292 

reliance on uptake of resources produced by surrounding microbiota. Diverse 293 

microorganisms within polymicrobial biofilm communities present a wealth of nutrients, 294 

secondary metabolites and iron-bound siderophores that Campylobacter could exploit 295 

(Pickett et al., 1992, Xavier & Foster, 2007). In addition, secretion of viscous exopolymers 296 

by other species can contribute to protection from stresses such as desiccation and killing by 297 

disinfectants. It has been suggested that C. jejuni are secondary colonisers of pre-existing 298 

biofilms sampled from poultry farm environments (Hanning et al., 2008). 299 

Pseudomonas species are ubiquitous in the natural environment and commonly 300 

isolated from poultry farms (Arnaut-Rollier et al., 1999). These robust bacteria can grow in 301 

mono-species biofilms on a wide range of carbon sources and produce viscous exopolymers 302 

that not only capture secondary colonisers (Sasahara & Zottola, 1993) but also protect other 303 

species in the biofilm from harsh conditions, antimicrobials and predatory bacteriophages 304 

(Rainey et al., 2007, Hanning et al., 2008). Pseudomonas have been identified in mixed 305 

species communities sampled from chickens and poultry farm environments and have been 306 

suggested as primary colonisers that recruit food-borne pathogens into stable mixed biofilm 307 

communities (Sasahara & Zottola, 1993, Trachoo et al., 2002, Sanders et al., 2007, Ica et al., 308 

2012).  309 

C. jejuni in biofilms exhibited enhanced attachment and survival when co-cultured 310 

with Pseudomonas isolated from a meat processing plant (Trachoo et al., 2002).  In addition, 311 

mixed species communities that include Pseudomonas promote C. jejuni biofilm growth 312 

(Sanders et al., 2007, Teh et al., 2010). Live/dead staining shows that C. jejuni is able to 313 

maintain a culturable physiological state in biofilms formed with P. aeruginosa that are 314 

significantly more robust than those formed in monoculture (Ica et al., 2012). In addition, co-315 
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culture with different Pseudomonas spp. isolated from poultry meat prolonged the survival of 316 

over 100 C. jejuni field isolates at atmospheric O2 levels for >48 h. Scanning electron 317 

microscopy of these co-cultures demonstrated a close proximity between the different species 318 

surrounded by fibre-like structures (Hilbert et al., 2010). These observations indicate inter-319 

species interaction on several levels, affecting metabolic, structural and morphological 320 

phenotypes. In addition, strain-specific interactions have been observed between a range of 321 

Pseudomonas and C. jejuni isolates (Hilbert et al., 2010). These observations suggest that 322 

Pseudomonas biofilms could provide an environmental refuge allowing the survival of C. 323 

jejuni outside the host.  324 

 It has been proposed that survival within water-borne protozoa, such as 325 

Acanthamoeba polyphaga, may also enable C. jejuni to persist in the environment   326 

(Axelsson-Olsson et al., 2005, Snelling et al., 2006).  However, compelling evidence that 327 

protozoa represent a potential reservoir for C. jejuni in natural environments is lacking (Bare 328 

et al., 2011). In contrast, it has been suggested that predation, such as grazing by the 329 

freshwater crustacean Daphnia carinata, might control the abundance of C. jejuni in natural 330 

waters (Schallenberg et al., 2005). 331 

 332 

Experiments to analyse survival of Campylobacter in water 333 

There have been a number of studies aimed at determining the survival of Campylobacter in 334 

laboratory model systems representing environmental niches.  For example, it has been 335 

shown that different Campylobacter isolates vary in their ability to survive in water 336 

microcosms (Buswell et al., 1998).  Survival in water was temperature dependent, with 337 

Campylobacter generally surviving much better at low temperatures (10 to 16
o
C) compared 338 

to room temperature.  Similarly, different C. jejuni strains from various origins exhibited 339 

origin-dependent ability to survive in sterilised drinking water (Cools et al., 2003).  C. jejuni 340 
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strains can also survive for long periods in well water (Gonzalez & Hanninen, 2012). 341 

Although these studies did not include any isolate genotyping, they are consistent with the 342 

notion that C. jejuni can be sub-divided on the basis of survival in water, and this may reflect 343 

the observation that some sub-types are more commonly recovered from natural 344 

environments.  It is certainly clear that some strains of C. jejuni survive in aquatic 345 

environments sufficiently well to pose a risk to humans directly through the consumption of 346 

untreated water, as well as to promote their chances of transmission via alternative routes. 347 

 348 

Conclusion 349 

Campylobacter employs a number of strategies enabling it to survive in the environment and 350 

genomics and molecular studies are helping us to better understand the mechanisms involved.  351 

There have been considerable efforts to employ genotyping, and more recently genome 352 

sequencing, in order to characterise the genetic variation within the species C. jejuni.  In 353 

parallel, epidemiological surveys and phenotypic analyses have revealed differences between 354 

C. jejuni strain types with respect to prevalence in environmental samples or the ability to 355 

survive environmental conditions.  The challenge now is to make the link between the 356 

genotypic and phenotypic data in order to understand better the mechanisms influencing C. 357 

jejuni persistence in natural environments such as soil and water, and the role that this might 358 

play in transmission of this important pathogen.  The reported variations between different 359 

strain types of C. jejuni also emphasise the limitations of drawing species-wide conclusions 360 

based on single strain studies.  Only by combining these different strands will we be able to 361 

fully understand the role played by environmental survival in the transmission of this 362 

important pathogen. 363 

 364 
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Figure 1.  Routes of transmission for C. jejuni. 
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Figure 2.  Summary of C. jejuni responses to stresses. 

The chromosome of C. jejuni NCTC11168 is represented by a black circle on which the 

location of genes, involved in stress responses, are shown as coloured lines. Genes are 

coloured according to their role; gene names shaded in grey are involved in multiple stress 

responses. VBNC; viable but non-culturable state. 
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