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Abstract— Generating classification rules from data often 

leads to large sets of rules that need to be pruned. A new 

pre-pruning technique for rule induction is presented which 

applies instance reduction before rule induction.  Training three 

rule classifiers on datasets that have been reduced earlier with 

instance reduction methods leads to a statistically significant 

lower number of generated rules, without adversely affecting 

the predictive performance. The search strategies used by the 

three algorithms vary in terms of both type (depth-first or beam 

search) and direction (general-to-specific or 

specific-to-general).  

 
Index Terms—Rule Induction, Noise Filtering, Instance 

Reduction.  

 

I. INTRODUCTION 

Our work is concerned with reducing the complexity of the 

rule-set by reducing the number of generated rules without 

adversely affecting the predictive accuracy. 

We will consider rule induction methods that learn a set of 

propositional rules where the target concept is represented as 

a set of “if  ... then  ...” rules. Each rule consists of an 

antecedent (or body of rule) and a consequent. The 

consequent represents the predicted class; the antecedent part 

is composed of a conjunction of conditions, each involving 

one attribute. We focus on rule induction methods which 

produce an unordered set of rules because we are interested in 

rule-sets where each rule can be understood independently. 

Most rule based systems tend to induce quite a large 

number of rules, making the solution obtained difficult to 

understand. The aim of our work is to investigate whether the 

number of generated rules can be reduced by preceding rule 

induction with instance reduction. We focus on instance 

reduction methods which have proved capable of reducing the 

size of training set and resulted in the smallest reduction in 

predictive accuracy [1], [2]. More specifically, we will apply 

algorithms that try to remove the border instances, which tend 

to be noisy instances or hard-to-learn, untypical instances. 

The paper is organized as follows. Section 2 gives a short 

description of typical methods for rule induction. Section 3 

reviews the instance reduction techniques we use in this work. 

In Section 4, we discuss the results of applying instance 
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reduction before rule induction using CN2, PRISM and RISE 

in terms of predictive accuracy and number of generated 

rules. Section 5 presents our conclusions. 

 

II. RULE INDUCTION 

Mitchell introduced the Candidate-Elimination algorithm, 

which served as the basis to develop the rule induction 

method. The rule induction method is to establish a 

hypothesis rule space which is based on a given example set 

and then to refine (search through) the hypothesis rule space 

to find more general rules [3]. 

There are many rule induction algorithms. Among them are 

AQ [4], CN2 [5] [6] and RIPPER [7]. All these algorithms 

employ the same general method that was used for the 

Candidate-Elimination algorithm. On other hand there are 

rule induction methods inspired by ideas from other methods 

like RULES (RULE Extraction System) which is a family of 

simple inductive learning algorithm inspired by ideas from 

both AQ and CN2. The RULES family is different from the 

other algorithms in that it does not induce rules on a 

class-per-class basis but instead considers the class of the 

selected seed example as the target class [8]. It then attempts 

to induce rules that cover as many examples of the target class 

as possible using the rule evaluation function. 

Another approach of learning is to combine two or more 

different paradigms of learning in a single algorithm. RISE 

(Rule Induction from Set of Examples) [9] tries to combine 

the best characteristics of rule induction and instance based 

learning [10] in a single algorithm. 

Other rule induction methods apply pruning methods 

during rule generations [11]. Fürnkranz and Widmer 

proposed a novel learning algorithm called IREP 

(Incremental Reduced Error Pruning) [12]. 

Some rule induction methods try to solve drawbacks of 

other induction methods. The PRISM [13] algorithm was 

proposed as an improvement to the ID3 [14] algorithm 

changing its principal induction strategy. ID3 produces its 

output in the form of decision tree. In [13], Cendrowska 

argues that decision trees can be incomprehensible, difficult 

to maintain and complicates the provision of explanation. 

Table I compares some important characteristics of the 

afore-mentioned rule induction methods. This will guide us 

on selecting the algorithm that will be used in our experiments 

with pre pruning process. 

We think that pre pruning process can achieve good results 

with rule induction algorithms which do not use pre-pruning 

such as CN2(modified),  RISE, PRISM, AQ family, RULEs 

family and IREP. Also we can choose methods that have 

different type of search and different direction of search. 
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Accordingly we choose to investigate pruning on CN2 

(modified), PRISM and RISE as it they have different type of 

search and direction of search. 

 

TABLE I: COMPARING RULE INDUCTION METHODS 

 

Rule Induction 

Method 

Type of 

pruning 

Direction of search Type of search  

AQ family Post pruning Hybrid Beam search 

CN2 (modified) During rule 

generation 

General to specific Beam search 

RIPPER Pre and post 

pruning 

integration.  

General to specific Depth first 

IREP During rule 

generation 

General to specific Depth first 

RULEs family Post pruning General to specific Beam search 

RISE No Specific to general Depth first 

PRISM No General to specific Depth first 

 

III. INSTANCE REDUCTION METHODS 

Instance pruning tries to prune the original training set to 

get a smaller subset of it. Searching for a subset S of instances 

to keep instead of the original training set T can proceed in 

variety of directions, including: incremental, decremental and 

batch [2]. 

Incremental methods begin with empty subset S, and add 

instances (from training set T) to subset S if it fulfills some 

criteria. Thus if new instances are made available later (after 

training is completed) they can continue to be added to S 

according to the same criteria. Incremental methods are 

sensitive to the order of presentation of the instances. 

Condensed Nearest Neighbor (CNN) [15] and Selective 

Nearest Neighbor (SNN) [16] are examples of Incremental 

methods. On the other hand, decremental methods begin with 

all the instances in the training set (i.e., T=S), and search for 

instances to remove; they are often computationally more 

expensive than incremental methods. Reduced Nearest 

Neighbor (RNN) [17] and Decremental Reduction 

Optimization Procedure (DROP1-5) [1] represent examples 

of decremental methods. Finally, batch methods, as 

decremental methods, begin with all instances in training set, 

but before they remove any, they find all of the instances that 

meet the removal criteria and then they remove them all at 

once [18]. Batch methods also suffer from increased time 

complexity compared with incremental methods. In our 

experiments, we will use decremental and batch methods 

because, in comparison to incremental methods, they have 

been shown to give rise to higher predictive accuracies [1]. 

Instance reduction methods can be categorized as retaining 

either internal or border instances: 

- Border instances: the intuition for retaining border instances 

is that internal instances do not affect the decision boundaries 

and thus can be removed with relatively little effect on 

classification. 

- Internal instances: the intuition for retaining internal 

instances is that removing border instances will hopefully 

removes instances that are noisy. 

In our experiments, we focus on three reduction algorithms 

that performed well in reducing the number of instances [2], 

and provided good results before applying Neural Network 

learning [19]. These algorithms eliminate border instances 

which tend to be noisy instances or hard to learn untypical 

instances. 

A. The Edited nearest neighbor algorithm 

Edited Nearest Neighbor ENN [20] is a decremental 

algorithm which removes an instance if it does not agree with 

the majority of its k nearest neighbors (with k= 3). This 

removes noisy instances as well as near border instances and 

retains all internal instances. Figure 1 shows the pseudo code 

for ENN algorithm. 

B. AllKnn 

AllKnn [2] is a batch algorithm which makes k iterations, at 

the ith iteration; it flags as bad any instance that is not 

classified correctly by its i nearest neighbors. After 

completing all iterations, the algorithm removes all instances 

flagged as bad. Figure 2 shows the pseudo code for AllKnn 

algorithm. 

        

 
Fig. 1. Pseudo-code for ENN algorithm. 

 
Fig. 2. Pseudo-code for AllKnn algorithm. 

 

 
Fig.3. Pseudo-code for DROP5 algorithm. 

C. DROP5 

DROP5 [1] is a decremental algorithm which removes the 

instance "S" if at least as many of its associates (i.e., instances 

which have "S" on their nearest neighbor list) are classified 

correctly without it. It considers removing first the instances 

that are nearest to their nearest enemy (i.e., instance from 

different class), and proceeding outward. By removing points 

near the decision boundary first, the decision boundary is 

smoothed. Figure 3 shows the pseudo code for DROP5 

algorithm. 

IV. EMPIRICAL RESULTS FOR RULE INDUCTION METHODS 

USING THE REDUCED SET 

Our objective is to apply some instance reduction methods 



  

before applying the different rule induction algorithms and 

compare the results with and without applying the reduction. 

A. Methods 

We applied the three methods for instance reduction 

(AllKnn, ENN and DROP5) that are intended to remove the 

border and noisy instances before using the CN2, PRISM and 

RISE. We also apply DROP5 [1] method on instances flagged 

by AllKnn to be removed and we call this method as 

AllKnnDROP5 method. 

To test if these methods will affect the accuracy of the CN2, 

PRISM and RISE algorithms, we conducted experiment on a 

collection of Machine Learning data sets available from the 

repository at University of California at Irvine [21]. 

Predictive accuracy was estimated using 10-fold 

cross-validation [22] and we used the same folds for each rule 

induction method. Instance-removal was performed 

separately for each fold of the cross-validation. Results were 

compared using statistical paired t-test with confidence 0.05. 

For each pre prune method, we counted the number of 

datasets where the predictive accuracy has been statistically 

improved (win) or statistically reduced (loss). 

B. Results 

We investigate the effect of preceding instance reduction 

methods on the complexity of rule set (roughly represented 

here by the number of generated rules). Figure 4 shows that 

for all rule induction methods, the number of generated rule 

has been reduced after applying different instance reduction 

methods. It is clear that applying DROP5 achieved the largest 

reduction in number of generated rules. 

 

 
Fig. 4. Comparing the average number of generated rules before and after 

applying instance reduction methods for different rule induction. 

 

Table II shows the results obtained for CN2 and applying 

the four prepruning methods with respect to the predictive 

accuracy.  Our experiments show that there is no statistically 

significant effect on predictive accuracy after applying ENN, 

AllKnn and AllKnnDrop5 on 19, 19 and 20 datasets 

respectively. There is a statistically significant increase in 

predictive accuracy for 2 datasets. We can conclude that 

preceding CN2 with these instance reduction methods does 

not adversely affect the predictive accuracy on most datasets 

and, for two datasets, it enhances the predictive accuracy. 

However, when using DROP5, there is no statistically 

significant increase in predictive accuracy for any of the 

datasets. Furthermore, for 15 of the 22 datasets, using DROP5 

leads to statistically significant decrease. 

Table III summarizes the effect of instance selection 

(pruning training data) on the generalization of RISE 

algorithm. Our experiments show that the predictive accuracy 

is not statistically affected after applying ENN, AllKnn, 

DROP5 and AllKnnDrop5 on 17, 16, 8 and 17 datasets 

respectively. Applying ENN, AllKnn, and AllKnnDrop5 gave 

statistically significant increases in predictive accuracy on 3, 

4 and 3 datasets respectively. But applying DROP5 produced 

the worst results and it is not recommended as pre pruning 

method for RISE rule induction. 

Table IV clearly shows that applying ENN, AllKnn, 

DROP5 and AllKnnDrop5 before PRISM [23] does not 

statistically affect the predictive accuracy on 11, 14, 9 and 15 

datasets respectively. The results reveal that applying ENN, 

AllKnn and AllKnnDrop5 gave statistically significant 

increase on 9, 7 and 6 datasets respectively. Applying DROP5 

produced the worst results and it is not recommended to be 

used as pre pruning method for PRISM rule induction. 

 
TABLE II: EMPIRICAL RESULTS COMPARING PREDICTIVE ACCURACY USING 

ALLKNN ENN, DROP5 AND ALLKNNDROP5 PREPRUNING WITH CN2. 

V. RELATED WORK 

Using the noise filtering methods to reduce the border 

instances before applying the induction method can remove 

the noisy instances and smooth the decision boundaries. This 

may improve the predictive accuracy for the induction 

method. El Hindi and Alakhras [19] showed that filtering out 

border instances before training an artificial neural network 

will improve the predictive accuracy and speed up the training 

process by reducing the training epochs. Gamberger et al. 

investigated the effect of a new noisy instance detection 

method before induction on a specific dataset (i.e., early 

diagnosis of rheumatic diseases) [24]; this method is suitable 

for datasets with just two classes. Grudzinski concentrated on 

the EkP system [25] as an instance reduction method before 

rule induction, and they illustrated it is possible to extract 

Data Sets Without 

pruning 

ENN AllKnn DROP5 AllKnnDrop5 

Iris 89.98 92.00 92.67 80.67 93.34 

Voting 95.34 95.10 95.33 85.35 95.57 

Vowels 67.11 65.97 66.75 85.07 67.31 

Heart Cleveland 80.66 76.66 77.33 71.66 79.34 

Glass 64.76 58.05 61.98 51.92 66.22 

Liver disorders 66.77 64.11 65.64 60.3 66.52 

Wine 91.77 94.11 93.52 70 95.28 

Pima Indians 

Diabetes  70.3 73.16 74.7 73.4 72.1 

Promoters 85.00 81.00 80.00 63 80.00 

Hepatitis 78.65 80.00 80.00 52.67 79.34 

Vehicle 57.85 60.10 60.71 54.99 60.10 

pole-and-cart 61.68 63.88 66.24 62.56 63.51 

Blood Transfusion 

Service  75.68 76.61 76.35 73.11 75.96 

Ecoli 79.10 83.31 80.91 73.34 80.90 

Soybean 86.32 82.67 83.01 63 83.32 

ZOO 92.00 87.00 90.00 81 89.00 

Yeast 48.98 55.47 56.43 51.82 56.56 

Led Creator 72.30 72.30 71.30 68.9 71.90 

vertebral_column 80.96 83.21 81.28 81.28 82.24 

Ionosphere 89.43 85.71 86.56 53.71 85.71 

Wave 69.70 70.38 70.74 67.96 71.38 

Balance Scale 75.30 74.70 74.34 67.1 74.34 

Average 76.35 76.16 76.63 67.86 76.82 

Win/tie/loss  2/19/1 2/19/1 0/7/15 2/20/0 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center


  

simpler sets of rules from reduced datasets. 

VI. CONCLUSION 

In this paper, we extended our previous work [26] by 

investigating preceding three different types of rule induction 

with instances reduction methods. The search strategies used 

by the three algorithms vary in terms of both type (depth-first 

or beam search) and direction (general-to-specific or 

specific-to-general). Our results show that applying instance 

reduction techniques as a pre-pruning process for rule 

induction will reduce the number of generated rules without 

adversely affecting the predictive accuracy and may improve 

it in some cases. For future work, we recommend 

investigating whether it would be beneficial to use other 

instance reduction methods that conduct instance pruning 

more carefully such as c-pruner [27]. We also highly 

recommend investigating the effect of preceding the instance 

reduction methods with rule induction on noisy datasets. 

 
TABLE III: EMPIRICAL RESULTS COMPARING PREDICTIVE ACCURACY USING 

ALLKNN ENN, DROP5 AND ALLKNNDROP5 PREPRUNING WITH RISE. 
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Vehicle 58.70 57.60 59.30 50.00 59.30 

pole-and-cart 52. 50 56.20 56.60 48.70 55.00 

Blood Transfusion 

Service  71.70 76.4 72.70 69.20 73.20 

Ecoli 73.30 79.00 78.40 69.60 78.40 

Soybean 79.50 73.90 73.40 56.30 74.20 

ZOO 92.00 84.00 88.00 85.00 87.00 
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