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Abstract. The photoisomerization of relatively non-toxic E-combretastatins to clinically active Z-isomers is shown 

to occur in solution through both one- and two-photon excitations at 340 and 625 nm respectively. The 

photoisomerization is also demonstrated to induce mammalian cell death by a two-photon absorption process at 625 

nm. Unlike conventional photodynamic therapy (PDT), the mechanism of photoisomerization is oxygen-

independent and active in hypoxic environments such as in tumors. The use of red or near-infrared light for two-

photon excitation allows greater tissue penetration than conventional UV one-photon excitation. The results provide 

a baseline for the development of a novel phototherapy that overcomes non-discriminative systemic toxicity of 

Z-combretastatins and the limitations of PDT drugs that require the presence of oxygen to promote their activity, 

with the added benefits of 2-photon red or near-infrared (NIR) excitation for deeper tissue penetration.  
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1 Introduction 

Photodynamic therapy (PDT) for the treatment of solid tumours combines the use of a 

photosensitizing drug and light in the presence of oxygen.
1
 PDT involves reaction of a photo-

excited (usually triplet) state of the sensitizer drug with oxygen either by transfer of excitation 

energy forming singlet oxygen (type II) or by electron/hydrogen atom transfer forming reactive 

free radical species such as superoxide (type I). The reactive oxygen species are then capable of 

damaging critical cellular targets. We have recently suggested an alternative combination of light 

and pro-drug that relies on oxygen-independent photoisomerization of a combretastatin.
2-4

 

Combretastatin drugs are based on natural products from an African bush willow that are stilbene 

derivatives,
5
 and which may therefore exist either in E- (trans) or Z- (cis) configurations (Figure 

1). Z-Combretastatins such as combretastatin A4 (Z-CA4, Figure 1) target microtubule assembly 
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and ultimately tumour vasculature,
6
 and the pro-drug Z-combretastatin A4 phosphate (CA4P) has 

recently been evaluated in clinical trials.
7,8

 The Z-isomer of CA4 is highly cytotoxic having a 

nanomolar LD50 in the MTT assay whilst the corresponding E- isomers of combretastatins are 

usually less toxic by 2 or 3 orders of magnitude.
9
 As with most stilbenes,

10
 photoisomerization of 

combretastatins occurs on illumination within their UV absorption band (ca 320-340 nm)
11

 and 

offers a route to photoactivation via E ⇌ Z isomerization that is independent of oxygen and 

therefore potentially useful in a wide range of tissues including hypoxic tumours. Whilst the 

optical transmission of tissues prevents the use of UV activation via usual one-photon 

absorption, an optical “window” in the spectra of tissues lies in the range of 600 – 900 nm,
12

 

equivalent to red or near-infrared wavelengths, permitting 2- or 3-photon absorption and 

activation of the E-combretastatin at approximately 640 nm or 960 nm respectively. Although 

such multiphoton absorption requires high light intensities, these are now readily achieved with 

femtosecond or picosecond pulsed lasers that are widely used in multiphoton microscopy.
13

 

Because multiphoton excitation of phototherapeutic drugs widens the choice of chromophore, 

considerable effort is now underway to develop new sensitizers with suitably high 2-photon 

cross-sections in the red/NIR tissue window.
14,15

 

 

We have previously used fluorescence lifetime imaging microscopy (FLIM) with 2-photon 

excitation (2PE) at 625 nm to study uptake and intracellular accumulation of E-combretastatins 

including CA4 and a fluorinated derivative (CA4F) in live mammalian cells using the native UV 

fluorescence of the E-isomers.
3,4

 Due to their hydrophobic nature, E-combretastatins accumulate 

to intracellular concentrations 2-3 orders of magnitude higher than in solution and are mainly 
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located in lipidic droplets and membranes. It is now shown that following uptake of 

E-combretastatins into mammalian cells, 2PE is capable of converting the low activity E-isomer 

to the highly cytotoxic Z-isomer to induce cell death. 

2 Materials and Methods  

2.1 Synthesis of combretastatin derivatives 

E- and Z- isomers of CA4 (CA4, 1-(3’,4’,5’-Trimethoxyphenyl)-2-(4’’-methoxy-3”-hydroxy- 

phenyl)ethene) and CA4F (1-(3’,4’,5’-trimethoxyphenyl)-2-(3”-fluoro-4”-

methoxyphenyl)ethene) were synthesized as previously described.
9,16

 Structures and purity were 

determined by TLC and 
1
H- and 

13
C-NMR.  

2.2 Confocal and multiphoton fluorescence lifetime imaging microscopy (FLIM) 

Confocal images, two-photon excited FLIM images and two-photon emission spectra used a 

combined laser scanning confocal multiphoton FLIM and spectral detection apparatus based on a 

Nikon TE2000-U inverted fluorescence microscope
3,17

 with a x60 water immersion objective 

(N.A. 1.2) . For lifetime and FLIM measurements with E-CA4 and E-CA4F, BG3 (Comar) and a 

narrowband interference (400IU25) filters were used to isolate the light transmitted to the 

photomultiplier. Excitation for 2PE at 625 nm was provided by a titanium-sapphire laser (Mira, 

Coherent Ltd (180 fs laser pulses at 76 MHz) pumping an optical parametric oscillator (Coherent 

Ltd). Samples were irradiated on the motorized and temperature controlled (Peltier heater/cooler) 

microscope stage. Confocal imaging using 488 and 543 nm excitation was carried out using 

Nikon eC1-Si or eC2 confocal laser scanning accessories mounted on the same Nikon 

microscope. 
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2.3 One- photon photoisomerization quantum yield measurements 

Spectroscopic grade solvents (Sigma Aldrich and Alfa Aesar) were used as supplied. 

Aberchrome 540 was used for actinometry.
18

 UV-visible spectra were measured using a 

PerkinElmer Lambda 25. Steady state fluorescence emission measurements were recorded using 

a Horiba FluoroMax-3 using the manufacturer supplied spectral correction curves. Irradiations 

were carried out within the fluorimeter sample cell with a 5 nm excitation slit width. 

Combretastatin solutions in a 1 cm quartz cuvette were de-aerated by nitrogen bubbling inside an 

AtmosBag (Sigma Aldrich) to minimize phenanthrene formation. Quantum yields (Φ) for the 

E⇌Z isomerization of the different combretastatins were determined from the photon flux and 

the initial changes in absorbance.
19

 The concentrations of E- and Z-isomers (c
E
 and c

Z
) at the 

photostationary state were calculated using extinction coefficients (ε
E
 and ε

Z
) and quantum yields 

derived from the kinetic measurements (equation 1) and found to be consistent with experimental 

measurements at the establishment of the photostationary state.
10

 

 

(
  

  
)   

  

  
  
    

    
                                               Equation 1 

2.4 Cell culture 

Chinese Hamster Ovary (CHO) cells were obtained from the European Collection of Cell 

Cultures and were grown and maintained in phenol-red free DMEM (Gibco) and MEM (Gibco) 

respectively supplemented with foetal calf serum FCS (10 %), penicillin (100 units/ml), 

streptomycin (100 μg/ml) and L-glutamine (2 mM). Cells were seeded at densities of 2 x 10
5 

cells/dish on MatTek glass-bottom culture dishes (35 mm ø, No. 1.5, uncoated, γ-irradiated) 
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(MatTek Corporation) and placed in an incubator under a humidified atmosphere (37 °C, 5 % 

CO2) for 24 hrs to adhere. 

2.5 Combretastatin induced apoptosis monitored by confocal imaging of Annexin V 

AlexaFluor488 conjugate and propidium iodide staining on live cells 

Combretastatin induced apoptosis on CHO cell monolayers was determined using Annexin V 

AlexaFluor 488 conjugate (Invitrogen) as an indicator for the loss of phospholipid asymmetry in 

the plasma membrane of apoptotic cells in the presence of Ca
2+

(2.5 mM),  and propidium iodide 

(PI) as a DNA intercalating fluorescent dye that is permeable to membranes of apoptotic or 

necrotic cells.  The cytotoxicity of Z-combretastatins in the CHO cell monolayers was induced 

by addition of aliquots of a stock solution in DMSO (≤ 5%). Following incubation for 48 hrs the 

tissue culture medium was aspirated and replaced with CaCl2 and HEPES supplemented 

medium. The Annexin V conjugate was added at 0.5 % final concentration (5 μl/ml medium). A 

PI stock solution (1.6 μl/ml) was added and the samples incubated for 15 min in the dark and 

imaged using confocal laser scanning microscopy (excitation at 543 nm for PI and 488 nm for 

Annexin V conjugate). For irradiations in the presence of E-combretastatins, a 100 x 100 μm 

field was exposed to 625 nm light by raster-scanning the multiphoton beam for 10 min allowing 

a total of 20 scans with a pixel dwell time of 2 ms. Samples were incubated for 24 hrs and 

examined for apoptosis as described above.  
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3 Results  

3.1  Photoisomerization induced by one- and two-photon excitation in vitro 

E ⇌ Z Photoisomerization of E-combretastatin A4 (E-CA4) (1 mM) in de-aerated methanol on 

irradiation at 340 nm is illustrated in Figure 2 through changes in absorption spectra.  As the 

irradiation progresses absorbance of the E-isomer at λmax (329 nm) decreases and is replaced by 

that of the Z-isomer with λmax 287 nm with a lower extinction coefficient. The spectra show good 

isosbestic points showing that only the two species are involved and that phenanthrene formation 

was effectively suppressed by de-aeration. A plot of A(340 nm) (inset to Fig 2) indicates 

progression to the stationary state mixture of E- and Z- isomers. Quantum yields for 

photoisomerization were calculated from both the initial rate of absorbance change and the 

absorbance at the stationary state as detailed in the Materials and Methods and are shown in 

Table 1 for CA4 and CA4F in methanol solution. The values show that photoisomerization is 

relatively efficient with quantum yields in the range of 0.27 - 0.48 and are comparable with 

published data for a wide range of other stilbenes in fluid solution at room temperature.
10 

 

Table 1  Quantum yields for photoisomerization of E- and Z- isomers of CA4 and CA4F in 

methanol solution. The E/Z ratios at the photostationary state were measured 

experimentally based on the extinction coefficients and compared with those 

calculated according to equation (1). 

Irradiation E-formation E-loss E/Z meaured at E/Z calculated at

Wavelength (nm) Z → E E → Z
photostationary 

state

photostationary 

state

E-CA4F 340 0.38

Z-CA4F 290 0.27

E-CA4 340 0.48 0.11 0.14

Z-CA4 290 0.41 0.66 0.64

Compound
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Photoisomerization of combretastatins by 2PE was inferred from measurements of fluorescence 

intensity versus laser power on irradiation at 624 nm in the microscope system using 

femtosecond laser pulses. Under these conditions 2PE excitation takes place within the femtolitre 

focal volume, from which the product diffuses into bulk solution, away from the detectable zone, 

resulting in an equilibrium concentration balancing formation and diffusion. The fluorescence 

intensity (F) from a solution of E-CA4F versus laser power (P) (inset to Figure 3) shows the 

expected quadratic relationship (F  Pn
 with n = 2.07 ± 0.05) at low laser powers up to about 1.5 

mW. However a plot of F/P (Figure 3) shows deviation from the expected linear behaviour due 

to saturation at higher laser powers that is indicative of depletion of the ground state E-CA4F 

molecules as a result of photoisomerization. The saturation threshold of  2 mW laser power is 

less than that expected (~ 30 mW) from simple excitation and fluorescence decay
20

 and strongly 

suggests that the observed saturation results from conversion of the fluorescent E-isomer to the 

non-fluorescent Z-isomer by photoisomerization. For the non-fluorescent Z-combretastatins, 

fluorescence was observed as the laser power was increased and is interpreted as arising from 

photoisomerization to the fluorescent E-isomer. Through a series of calibrations using solutions 

of increasing concentrations of E-combretastatin, the photoisomerization could be quantified and 

shown to produce up to 25% conversion within the focal volume at an average laser power of 4.5 

mW (Figure 4). These measurements probe only the focal volume, from which photochemical 

products will rapidly diffuse, and it is concluded that in solution sufficient amounts of 

Z-combretastatins are formed by 2PE photoisomerization of E-combretastatins to exert a 

cytotoxic effect. 
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3.2 Cell death induced by combretastatin 2-photon isomerization 

Z-CA4 induced apoptosis has been reported in human endothelial cells.
21

 Staining for cell death 

(propidium iodide (PI), red fluorescence) and apoptosis (annexin V AlexaFluor488 conjugate, 

green fluorescence) in cultured Chinese Hamster Ovarian (CHO) cells following exposure to 

Z-CA4F (Figure 5A) shows significant apoptosis at 1 M drug. The combined effects of laser 

irradiation at 625 nm and exposure to E-CA4 on live cell CHO monolayers are shown in Figure 

5B. The central 100 μm
2
 area of each filed was illuminated by raster scanning a focused laser 

beam (625 nm). PI and annexin V staining reveal the effects of increasing laser power and 

E-CA4 concentration. Control cells (no E-CA4, Fig. 5B, panels a1-e1) show only occasional 

staining for cell damage at low laser powers (< 6 mW), but at the higher powers (> 6 mW) there 

are signs of light-induced cell damage in the central illuminated region. Cells subjected to 

combined incubation with E-CA4 and laser illumination display positive staining for cell death 

within the laser exposed central regions of the fields shown, whereas the un-exposed peripheral 

areas remain largely unaffected. These unirradiated border regions represent the control of cells 

in the presence of drug without light. At E-CA4 concentrations of 25 M and below these 

peripheral areas show little cell damage, emphasizing the difference in toxicity between the E-

isomer (Figure 5B) and the Z-isomer (Figure 5A). Optimal induction of cell damage by 

combined effects of light and E-CA4 appears at 4.7 mW laser power and 10 μM E-CA4 (panel 

c2). It is noticeable that even in the presence of higher concentrations of E-CA4, the highest laser 

power damages the cells to such an extent that they show less overall staining with both labels 

(e1-e4). Similar results were obtained with E-CA4F. 
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4 Discussion 

The low saturation threshold value of  2 mW observed for the multiphoton-induced 

fluorescence of E-CA4F described in section 3.1 suggests considerable EZ isomerization 

conversion in fluid solution at higher laser powers. The efficiency of similar isomerization of 

E-CA4 in the cellular experiment may be estimated from an appropriate calculation taking into 

account the 2PE cross section (σ2 2 x 10
-50

 cm
4
 s photon

-1
 at 625 nm,

3
 the pulse parameters (76 

MHz repetition, 180 fs pulse duration), the focal area (1 m diameter) and a typical overall 

power (5 mW). With these values the peak photon fluence within the pulse (Fp) is  10
29 

photons 

cm
-2

 s
-1

.  

  

At a concentration c of solute, equation 2 gives the rate of excitation per cm
3
 (Nex) as 6 x 10

25
 

molecules cm
-3

 s
-1

 in a 1 mM solution. The concentration of E-CA4 within cells is not uniform, 

but may readily exceed 1 mM locally within lipid droplets and other hydrophobic regions 

according to our FLIM data.
3
  

 

2........
2

1)( 2

2 EquationFc
dt

Nd
p

ex   

 

The number of excitations per molecule within a single 200 fs laser pulse is 2 x 10
-5

. In our cell 

experiments each voxel was exposed to the laser for 40 ms (2 ms dwell time and 20 scans) 

equivalent to 32 x 10
5
 laser pulses. Therefore the total number of excitations per molecule in the 

experiment was 64. Allowing for the quantum yield for photoisomerization (ca 0.4) this shows 
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sufficient energy is deposited at each voxel to convert a significant fraction of E-CA4 to the 

active Z isomer, although at present we do not know the composition of the photostationary state 

since σ2 for the non-fluorescent Z-isomer is unknown, but is expected to be slightly less than that 

of the E-isomer based on the one-photon absorption cross section in the UV (section 3.1). Since 

the laser beam was scanned in the XY plane with a step size of 0.8 m, this resulted in 

deposition of a fairly uniform plane of converted drug with a depth of about 1.25 m (twice the 

wavelength) within the cell monolayer. 

 

The results demonstrate that using a combination of E-CA4 and red light leads to effective cell 

killing attributable to two-photon induced isomerization of E-CA4 to Z-CA4. The findings 

provide evidence for the development of a new form of phototherapy based on light-induced 

oxygen independent pro-drug activation. Activation of the E-combretastatins occurs via a singlet 

excited state with sub-nanosecond lifetime; it is oxygen-independent as demonstrated for one-

photon isomerization and therefore goes beyond current PDT limitations to treat hypoxic 

cancerous tissue. Recently Z-CA4 has been studied in clinical trials
8
 and whilst proven to have 

good anticancer activity it has indiscriminate systemic toxicity that limits wide clinical 

application.
22

 Locally targeted two-photon pro-drug activation is a promising route to 

overcoming this problem: drug activation is limited to the area of illumination (i.e. tumour 

targeted to the single cell level) which can be precisely controlled using well established features 

of two-photon illumination. The use of 2PE overcomes the problem of competitive background 

absorption of UV light by other cellular/tissue constituents that would naturally prevent 

sufficient light penetration to activate the drug. The extent of penetration of focused light for 

effective two-photon activation depends on the extent of scattering and wavelength,
1
 but there 
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are several reports in the literature of effective tumour and vascular control using two-photon 

PDT.
15,23-26

 Starkey et al.
15

 show that effective PDT might be attained at up to 4 cm depth in 

tissue models with unfocussed lasers. Development of more effective combretastatins for the 

purpose described here would benefit from being able to use longer wavelengths (> 700 nm) to 

activate the isomerization process and take advantage of reduced scattering and greater 

transmission than at the wavelength presently used (625 nm) with thee-photon activation (at 

~960 nm) being a further option. E-Combretastatins with higher two-photon absorption cross-

sections are also seen as desirable and we are currently investigating new molecules with this in 

mind.
27
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Caption List 

 

Fig 1 Structures of combretastatins referred to in the text showing photo-reversible 

isomerization between E- (trans, upper) and Z- (cis, lower) isomers.  

Fig 2 Changes in the absorption spectrum of E-CA4 (67 M) in N2-saturated methanol on 

irradiation at 340 nm. The inset shows the change in absorbance at 340 nm with 

irradiation time. 

Fig 3 Effect of average laser power (P) on fluorescence intensity (F, at 390 nm) from a solution 

of E-CA4F (0.5 mM) in ethanol on illumination with the femtosecond laser beam at 624 

nm. The main figure shows a plot of F/P versus P with the solid line showing the 

expected linear plot for two-photon excitation. The inset shows a direct plot of F versus P 

data showing the expected quadratic relation at low laser powers confirming the 2PE 

process under these conditions. 
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Fig 4 Percentage conversions to the E-isomers deduced from fluorescence intensities produced 

by a focused laser beam excitation at 590 nm in 1 mM DMSO solutions of Z-CA4 (■) 

and Z-CA4F (□). 

Fig 5 Apoptosis and cell permeability induced in CHO cell monolayers by combretastatins 

assessed by staining with Annexin V AlexaFluor488 conjugate (green) and 

propidium iodide (red) respectively. A: effect of increasing concentration of Z-CA4F 

(0, 0.1 and 1 M) after 48 h. B: effects of E-CA4 (0, 10, 25 and 50 μM) added 2 h 

before irradiation of a 100  100 μm field for 10 min at 625 nm with increasing laser 

powers at the sample (1.6, 3.1, 4.7, 6.3 and 9.4 mW).  


