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Wind can induce noise on microphones, causing problems for users of hearing aids and for those

making recordings outdoors. Perceptual tests in the laboratory and via the Internet were carried out

to understand what features of wind noise are important to the perceived audio quality of speech

recordings. The average A-weighted sound pressure level of the wind noise was found to dominate

the perceived degradation of quality, while gustiness was mostly unimportant. Large degradations

in quality were observed when the signal to noise ratio was lower than about 15 dB. A model to

allow an estimation of wind noise level was developed using an ensemble of decision trees. The

model was designed to work with a single microphone in the presence of a variety of foreground

sounds. The model outputted four classes of wind noise: none, low, medium, and high. Wind free

examples were accurately identified in 79% of cases. For the three classes with noise present, on

average 93% of samples were correctly assigned. A second ensemble of decision trees was used to

estimate the signal to noise ratio and thereby infer the perceived degradation caused by wind noise.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4892772]
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I. INTRODUCTION

Noise created by air flow over a microphone can cause

problems when making sound recordings outdoors. It also

degrades the sound heard via hearing aids.1 Our study first

examined how wind-induced microphone noise (henceforth

referred to as wind noise) is perceived on recordings. Then it

explored how the perceived quality of the degraded audio

could be estimated from a microphone signal using machine

learning algorithms. The study is concerned with sound

recordings made by both amateurs and professionals. The

prevalence of portable consumer devices, such as mobile

phones, has led to a large increase in user-generated content.

While inexpensive technologies have liberated amateurs to

make recordings, many are made in challenging conditions.

Coupled with a lack of awareness of recording techniques,

challenging recording conditions can cause audio quality to

be poor. Consequently, the study considered a wide range of

audio qualities, along with a wide range of recording devices

from smart phones to separate microphones plugged into

digital recorders.

Before developing algorithms to detect the quality of

recordings in the presence of wind noise, it was necessary to

understand how the presence of the noise degrades perceived

audio quality. The effect of wind noise on the perceived

quality of particular products or environments has been

explored previously, such as the effect of wind noise in mov-

ing vehicles.2 However, little was known about how the

presence of wind noise in audio recordings affects the per-

ceived quality. Therefore, a key research issue was to deter-

mine what features of the noise make it noticeable and affect

perceptions of quality. For example, how do the gusts of

wind that make the noise time-variant affect quality? To

develop this understanding, a set of perceptual tests were

carried out as detailed in Sec. III.

A wind noise meter was then developed that estimated

the perceived quality of recordings contaminated with wind

noise. There are a number of published methods for detect-

ing wind noise, although none of them were suitable for the

broad range of recording applications our study considered.

Hearing aids can use two microphones to detect wind noise.

As wind has a much lower velocity than sound waves, low

correlation between the two microphone signals indicates

the presence of wind noise.3 Our interest was in user gener-

ated content, much of which is gathered from a single mono

microphone, and this meant that methods using two micro-

phones were not suitable.

Single channel techniques to detect wind noise in hear-

ing aids often compare long term averages of the signal and

wind noise spectra, exploiting the distinctive low frequency

spectrum typical of wind noise.4 Unfortunately, the low fre-

quency sensitivity of some consumer recording devices pre-

cludes such a method. Indeed, some consumer devices

automatically apply high pass filters as a method to stop the

low frequencies in wind noise overloading the preamplifier.

Therefore, our detector could not simply rely on the exami-

nation of low frequencies.

A number of detection methods have been proposed to

allow subsequent wind noise reduction. Nemer5 used a deci-

sion tree to identify wind noise frames in the presence of

speech using a combination of features from a linear predic-

tion analysis and harmonic analysis. This method will fail

with sounds other than speech and relies on the existence of

a resonance in the wind noise, which is only present for a

subset of wind-noise cases.6 Xiaoqiang et al.7 and Schmidt

et al.8 built up a dictionary of wind noise signatures using

examples where only wind noise was present in the audio.
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As the system was trained using noise free cases, the detec-

tion is likely to be less effective in the presence of the fore-

ground sound that is the target of the recording.

A model to estimate the perceived degradation caused

by wind noise has to overcome a considerable number of

factors: There are a number of different generating mecha-

nisms which can alter the character of the wind noise;9

recording devices have different frequency responses, and

there are a vast number of possible foreground sounds that

recordists might be trying to capture. This makes a machine

learning approach, where an algorithm is trained to predict

wind noise from salient features, a promising choice for this

problem. The development of the wind noise meter, and the

results achieved with it, are given in Sec. IV.

To allow the perceptual measurements and to develop

the wind noise meter, a dataset of audio examples was

required. Therefore, a wind noise simulator was developed

to be capable of rendering an audio stream based on real me-

teorological data, as described in Sec. II. In addition, field

measurements were taken to allow robust validation of the

machine learning algorithm used to model the perceived

degradation caused by wind noise.

II. DATABASE GENERATION

An algorithm was developed to allow simulated wind

noise to be generated. It permitted the sound pressure level

of the wind noise to be known for every sample, because the

noise was generated in isolation from other sounds. The

wind noise could then be readily combined with other fore-

ground sounds to simulate a diverse range of recording sce-

narios. The algorithm used airflow data from anemometer

measurements as the generating function. This allowed data-

bases of pre-existing wind velocity histories to be used to

simulate a wide range of wind conditions.

To produce an algorithm to simulate wind noise, it is

necessary to understand some of the key characteristics of

the noise. The natural atmosphere contains turbulent fluctua-

tions in temperature, velocity, density, and humidity. Wind

noise is created when the wind advects turbulent fluctuations

over a microphone. There are two dominant components to

wind noise in the audible range.6,9 The first component

comes from naturally occurring turbulent fluctuations in the

atmosphere that are recorded as pressure variations at the

microphone. This component is predominantly caused by ve-

locity turbulence inducing stagnation pressure fluctuations at

the microphone. The spectra of the atmospheric pressure and

velocity fluctuations both exhibit a relationship where the

power is proportional to k�5/3, where k is the wave number.

This component often dominates the overall wind noise.9

The second component causing audible noise arises from

interactions between the wind and the microphone. It

includes resonant behavior such as vortex shedding and

boundary layer turbulence around the object. The eddy inter-

action exhibits a k�7/3 power law, while interaction of the

eddies with the vertical wind shear has a k�11/3 power rela-

tionship in the inertial region.

Two simulators have been developed to generate wind

noise, accounting for microphones with and without

windshields. One model was based on real wind noise

recordings from an unshielded microphone in a wind tunnel,

the other used a stochastic simulation of a shielded micro-

phone based on a model by Van den Berg.10 These two mod-

els produce noise samples at a known, static wind speed. To

simulate time-varying wind conditions over a range of met-

rological conditions, these were combined with anemometer

time histories as described at the end of this section.

Wind noise for an unshielded microphone needs to

include resonant behavior due to vortex shedding. The data-

base of unshielded microphone wind noise was based

on audio recorded at known constant wind speeds at the exit

of a silenced wind tunnel. The audio was recorded on

an unshielded, calibrated 1
4

in. measurement microphone.

Simultaneously, a sonic anemometer (Metek USA-1) meas-

ured the wind speed. The fan speed was systematically

adjusted and 1 min of audio was recorded for 43 different

airflow speeds ranging from 0.5 to 15 ms�1. A second refer-

ence microphone was placed just outside the tunnel but not

in the air flow. The purpose of this was to capture the fan

noise and so enable the removal of this from the wind noise

recording using a Wiener filter.11 The power spectra from

these measurements indicated a mixture of the power-law

relationships; an example is shown in Fig. 1.

A stochastic simulation was used to generate wind noise

for a shielded microphone. A simulation was preferred over

measurements because this allowed the windshield diameter

to be easily varied. Van den Berg showed both theoretically

and experimentally that the sound power level Lw for the

one-third octave centered at frequency f, for a shielded

microphone, is given by10

LwðfÞ ¼ 40 log10ðvÞ � 6:67 log10ðfD=VÞ

� 10 log10ð1þ ð3dfD=VÞ2Þ þ 42; (1)

where V is wind speed and D is wind screen diameter.

The one-third octave power spectrum generated by

Eq. (1) was converted to a linear frequency scale by linear

interpolation of the sound power level spectrum over the log

of the frequency. The 0 Hz value was set to 0. A time domain

signal was generated by assigning a random phase to each

FIG. 1. (Color online) Example of a sound pressure level measurement

using wind tunnel versus wave number (solid line). Also shown are the two

power laws: k�5/3 (short dashes); k�7/3 (long dashes).
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bin in the spectrum and applying an inverse Fourier

transform.

Time-varying wind noise was generated by combining

the outputs from the above models with wind speed time his-

tories taken from anemometer data. This enabled wind noise

samples to be generated with arbitrary wind speed time his-

tories. The noise samples were processed in 100 ms windows

with 50% overlap. In each 100 ms window, a noise sample

from one of the above models was chosen that has the

desired wind speed for that time in the anemometer time his-

tory. A Hanning window was applied to each of the 100 ms

noise samples before they were mixed together into the final

wind noise simulation.

The anemometer time histories were taken from the

CASES-99 database.12 This has measurements from eight

sonic anemometers on five towers, three at 5 m and five at

2 m. Eight days of diurnal data were used, representing a

wide range of wind conditions. The input parameters to the

shielded model were; a wind speed time history and a wind

shield diameter, the diameter for the wind meter example

database was randomly varied between 2 cm and 20 cm, for

the perceptual testing it was fixed at 5 cm. For the unshielded

model the only input was a wind speed time history. Then,

12 000 examples, each 10 s long were generated using both

models, i.e., with and without a windshield. Random sam-

pling was used to select each time history from the CASES-

99 wind speed database.

The resulting database of wind noise examples was used

for both the perceptual tests and the development of the

wind noise meter. Evidence of the validity of the models is

demonstrated by testing the trained wind noise meter using

examples of real field recordings of wind noise which were

not used to train the algorithm.

III. PERCEPTUAL TESTS

To explore the relationship between wind noise and qual-

ity, a speech-in-noise task was used. Speech was selected as

the foreground signal because of the prevalence of speech in

audio recordings. Naive participants rated the quality of audio

clips with controlled wind noise degradation. The experiments

were carried out both in laboratory conditions and also across

the Internet. The experiment was run in this way to allow

comparison of the results from controlled laboratory condi-

tions with data from more ecologically valid conditions where

listeners auditioned sounds in everyday environments using a

wide variety of consumer audio systems.

A. Laboratory test

Two key characteristics of wind noise were identified

from the recordings: The level and the temporal variability

or gustiness. Level is analyzed using the mean A-weighted

sound pressure level, LAeq, which scales with wind speed.

Research into wind noise inside vehicles have produced a

measure for gustiness based on the ratio of the level of iden-

tified transients verses the background level.13 In our work,

however, it was felt that having a process to identify transi-

ents was an unnecessary complication. In metrology, the

gust factor is defined as the ratio of the maximum velocity

over a short window (for example, between 1 s and 5 s) to

the hourly average.14 As our interest is in the perception of

gustiness, the gust factor definition has been refined to work

with sound level rather than wind speed. The temporal vari-

ability was computed as the mean absolute difference

between the LAeq over the whole 5 s sample and the LAeq in a

moving 1 s window.

This measure of temporal variability was then converted

into three classes representing low, medium, and high gusti-

ness. Examples from the wind noise database with the same

LAeq were grouped together, and the temporal variability pa-

rameter evaluated for all these samples. Samples with the

lowest, the mean and the highest temporal variability values

were selected to represent low, medium, and high levels of

gustiness. (The standard deviation may seem like an obvious

initial choice to quantify gustiness; however, standard devia-

tion takes no account of the rate of change of the sound.

Neither slow nor sudden changes in the average level would

be perceived as gusts.)

The A-weighted wind noise levels were divided into

eight equally sized adjacent groups, from 30 to 82 dB (at

6.5 dB intervals). The A-weighted speech level was set rela-

tive to the wind noise at 57 dB as this is the level of normal

speech at 1 m.15 For the gustiness, each of the eight wind

level groups was evaluated separately and the range of tem-

poral variability determined. Three examples closest to the

minimum, mean, and maximum temporal variability were

selected as the low, medium, and high levels of gustiness.

Audio samples for the psychoacoustic experiments were

created from factorial combinations of wind level and gusti-

ness, thus the test set consisted of 24 permutations of wind

noise (three levels of gustiness and eight levels of wind

noise), plus one additional sample with no wind noise pres-

ent. The speech level for each sample was set to have an

LAeq of 57 dB and then the wind noise added. Additionally,

to prevent the possibility of participants recognizing particu-

lar signature patterns of gustiness across different samples,

three variations were created for each level differing only in

the temporal pattern. Which variant was heard by partici-

pants on each trial was randomized.

Each wind noise sample was paired with one of 25 spo-

ken nonsense sentences from a subset of the corpus used by

Picheny, Durlach, and Braida.16 These sentences are gram-

matically correct but free of any meaningful semantic con-

tent. For example, “His quick world must pass in a flag.”

Each sentence contained four target words, unknown to the

subjects. A measure of correctly identified words was

obtained using the method from Picheny et al. Words were

marked as incorrect if a single phoneme was omitted or misi-

dentified. However, the incorrect addition or omission of suf-

fixes “s,” “ed,” and “d” were not considered sufficient to

count as an incorrectly identified word. Typos and misspell-

ings were accepted as correctly identified words if the

attempt was clear and unambiguous. Homophones of the tar-

get word (e.g., there, their, they are) were also accepted as

correctly identified. Scoring of participants’ submitted sen-

tences was blind to the test condition they came from.

Thirty participants completed the test (mean¼ 28.3 yr,

SD¼ 7.2 yr). None reported any known hearing impairment.

1178 J. Acoust. Soc. Am., Vol. 136, No. 3, September 2014 Jackson et al.: Wind-induced microphone noise

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  146.87.136.26 On: Mon, 20 Oct 2014 12:41:25



The experiment was conducted in a large anechoic chamber.

It was run on a laptop using a GUI written specifically for

the task. An M-Audio MobilePre external soundcard con-

nected the output of the computer to two powered loud-

speakers, a Genelec 1029A loudspeaker paired with a

Genelec 1091A subwoofer. The loudspeakers were posi-

tioned directly in front of the seated participants, 1.5 m

away, with the 1029A positioned at head height and the sub-

woofer directly below on the floor. All samples were pre-

sented in mono, the playback level was set to 57 dBA at the

listener position using a clean speech sentence.

Participants were informed that they were to be pre-

sented with spoken nonsense sentences but were given no

information about the presence of wind noise on the samples.

All responses were provided by participants on the test lap-

top using the keyboard and mouse. Playback of the samples

and the rate of progression through the test were determined

by participants. They were instructed to listen to each clip

once and type the sentence they heard. They then had to rate

both the difficulty of the task and the overall quality of each

clip. For this rating task they could replay the sample if they

desired. Difficulty and quality ratings were taken via user-

controlled sliders which output values ranging from 0 to 100

for analysis.

The presentation order of sentences and order of wind

noise permutations was fully randomized, as were the pair-

ings of sentence and wind noise permutation in each sample.

Before the test began, participants were presented with two

practice trials. Participants were informed that the audio

sample in one of these practice trials represented an example

of the best quality of audio they would hear in the test (sam-

ple contained no wind noise) and that the other was an exam-

ple of the worst quality they would hear (an example with

the highest level of wind noise). The whole experiment took

approximately 15 min to complete. Participants were paid

for the time spent completing the experiment.

B. Web test

The web version followed the same format as the labo-

ratory test. Participants were initially presented with an

example of a spoken sentence to check their audio setup and

instructing them to set their own comfortable level for play-

back. The interface for the web test had minor visual differ-

ences to that used in the lab, but the overall layout, function,

and instructions were the same. An incentive for participants

to complete the experiment was provided in the form of a

prize draw for £10 vouchers. Responses gathered on the web

were screened prior to analyses for non-serious participation.

Any participants who progressed through three or more trials

without entering text and/or moving the rating sliders for

quality and difficulty were removed from the final sample.

The final web test sample consisted of 5104 trials (mean-

¼ 4.26 trials per participant).

C. Results

Figures 2(a) and 2(b) present ratings for quality as a

function of wind level in the laboratory and on the web,

respectively. Curves represent each level of the gustiness

variable. Figure 3 shows the difficulty ratings and the number

of words typed by the participants that were correct versus

wind level. Effect sizes for all significant main effects and

interactions are summarized in Table I. The effect size is a

measure of the magnitude of an effect, reflecting the propor-

tion of variance explained by it. Higher values indicate stron-

ger effects (typically, for this measure, effect sizes >0.01 are

considered small, >0.06 medium, and >0.14 large).17

1. Laboratory

An 8 (wind noise level)� 3 (gustiness) repeated-

measures analysis of variance (ANOVA) was performed on

ratings of audio quality from the laboratory test. Mauchly’s

test indicated that the assumption of sphericity had been

violated (i.e., the data do not support the assumption that

variances are equal across conditions) for the effect of wind

level [v2(27)¼ 46.62, p¼ 0.01] and for the interaction of

FIG. 2. Participants’ ratings of audio quality by level of gustiness for (a)

laboratory and (b) web. Values given for signal to wind noise ratio represent

the mid-points of each of the eight windows the samples were drawn from.

Lines represent: low gustiness (solid line); medium gustiness (dotted

dashes), and high gustiness (short dashes). Error bars represent 95% confi-

dence intervals.
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wind level and gustiness [v2(104)¼ 173.55, p< 0.001].

Subsequently, Greenhouse-Geisser correction estimates for

degrees of freedom were used for these analyses.18 A very

strong significant linear trend is observed in the data for

wind level (p¼<0.001, partial g2¼ 0.91), reflecting a con-

sistent relationship between impairment of quality with each

increase in level of wind noise.

A significant main effect of wind level was observed

(p< 0.001, partial g2¼ 0.77). Gustiness was not found to

have a significant effect on quality ratings (p¼ 0.10, partial

g2¼ 0.07) and no interaction between wind level and gusti-

ness was found (p¼ 0.13, partial g2¼ 0.05).

As Fig. 2(a) shows, overall, increases in wind level were

associated with significant decreases in quality ratings inde-

pendent of levels of gustiness. The significant main effect of

the wind level variable was broken down by repeated con-

trasts for each successive level of the variable. Each succes-

sive increase in level of wind noise was associated with a

significant decrease in quality ratings (all ps< 0.01, all par-

tial g2> 0.25), with the exception of ratings at level 2 and 3,

and levels 5 and 6, which were not found to significantly dif-

fer (ps> 0.14). This finding may be of relevance to future

research as it implies that the just-noticeable difference for

change in wind noise (or at least its effect on quality) will be

below 6.5 dB.

A paired samples t-test showed that the condition with

the lowest level of wind noise (the highest quality rating of

any of the wind noise conditions, M¼ 76.28, SE¼ 2.92) had

a significantly lower quality rating than the noise-free condi-

tion [M¼ 87.40, SE¼ 4.00, t(29)¼ 2.76, p¼ 0.01], demon-

strating the sensitivity of perceptions of quality to the

presence of wind noise. Indeed, this finding suggests the

threshold at which wind noise begins to affect perceptions of

quality is above a signal to noise ratio of 25 dB.

Figure 3(a) shows participants’ mean ratings for the dif-

ficulty of the task of identifying the words versus wind noise

level. The difficulty results are very similar to those for qual-

ity. Ratings were analyzed with the same procedure as the

quality ratings. An 8 (wind noise level)� 3 (gustiness)

repeated-measures ANOVA was performed, with difficulty

ratings as the dependent variable. Mauchly’s test indicated

that the assumption of sphericity had been violated for the

effect of wind level [v2(27)¼ 66.41, p< 0.001] and for the

interaction of wind level and gustiness [v2(104)¼ 202.78,

p< 0.001]. Greenhouse-Geisser correction estimates for

degrees of freedom were used as necessary.

Significant main effects were observed for both the gusti-

ness variable (p¼ 0.01, partial g2¼ 0.16) and for the wind

level variable (p< 0.001, partial g2¼ 0.83), and also for the

interaction of these two variables (p< 0.01, partial g2¼ 0.11).

The relative effect sizes of these factors however suggest wind

level is by far the most important influence on task difficulty.

Breaking down the interaction with repeated contrasts

of wind level, by levels of gustiness, suggests the interaction

occurs due to differences in perceived difficulty which

emerge at higher levels of wind noise. For signal to noise

ratios equal to or better than �1 dB, we do not observe any

significant change in difficulty ratings across successive lev-

els of wind noise (all ps> 0.06, all partial g2< 0.12). The

FIG. 3. Laboratory results for (a) listener’s perception of task difficulty and

(b) number of words correctly entered vs signal to wind noise ratio. Lines

represent: low gustiness (solid line); medium gustiness (dotted dashes); and

high gustiness (dashes). Error bars represent 95% confidence intervals.

TABLE I. Summary of effect sizes (partial g2 squared) for the ratings of

audio quality, difficulty of task and number of words correctly typed. Table

shows main effects and interactions of the two experimental variables, wind

level and level of gustiness. “NS” indicates the absence of a significant

effect.

Dependent

Variable

Independent Variable

Wind

Level

Gustiness

Level

Interaction

(Wind Level�Gustiness)

Quality

Lab 0.77 NS NS

Web 0.30 <0.01 <0.01

Difficulty

Lab 0.83 0.16 0.11

Web 0.35 <0.01 0.02

Word Scores

Lab 0.61 NS 0.19
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emerging interaction between gustiness and wind level is

most easily understood with reference to Fig. 3(a), where it

is clear that the rate of change in the curves for gustiness dif-

fer as wind level increases above a signal to noise ratio of

�1 dB. Most notable in this respect, is the difference in rat-

ings at the highest level of wind noise, where the task diffi-

culty is perceived to increase considerably as gustiness

moves from high (M¼ 70.41, SE¼ 3.29), to medium

(M¼ 82.25, SE¼ 3.91), to low (M¼ 96.66, SE¼ 1.19).

Mean word scores for the number of words correctly

typed are presented in Fig. 3(b). Each curve represents a

different level of gustiness. Participants’ word scores for

each condition were analyzed in an 8 (wind noise level)� 3

(gustiness) repeated-measures ANOVA. Greenhouse-Geisser

correction estimates were used where the assumption of

sphericity had been violated for the effect of wind level

[v2(27)¼ 43.15, p¼ 0.027] and the interaction of wind level

and gustiness [v2(104)¼ 183.88, p¼<0.001].

Significant effects were observed for wind level

(p< 0.001, partial g2¼ 0.61) and for the interaction of wind

level and gustiness (p< 0.001, partial g2¼ 0.19).

The word scores results are different from both the per-

ceived quality and difficulty scales, with performance only

decreasing rapidly for low signal to noise ratios. Contrasts of

successive levels of wind noise show that participants’ per-

formance was not affected as wind level increased, apart

from a significant decrease in word scores between �14 dB

(M¼ 3.09, SE¼ 0.14) and �21 dB signal to noise ratio

(M¼ 1.93, SE¼ 0.12, p< 0.001, partial g2¼ 0.70). The sig-

nificant interaction between wind level and gustiness on

word scores arises from differences in the relative impact of

the highest wind levels at different levels of gustiness. Wind

noise which is more consistent has a significantly greater

impact on performance than wind which is gusty. This effect

is most clearly seen in differences in word scores at the high-

est level of wind, �21 dB signal to noise ratio, for low

(M¼ 1.00, SE¼ 0.22), medium (M¼ 1.77, SE¼ 0.18), and

high (M¼ 3.03, SE¼ 0.21) levels of gustiness.

2. Web

A similar analysis was carried out for the web results for

quality. An 8 (wind noise level)� 3 (gustiness) ANOVA

was performed on the web test data, with quality rating as

the dependent variable. Significant main effects were found

for both variables and for their interaction, every F> 2.21,

every p< 0.01. While gustiness was found to have a statisti-

cally significant effect, the size of this effect (see Table I) is

considered trivial relative to that for wind noise.

Post hoc comparisons (Bonferroni corrected) of the lev-

els in each variable participants’ ratings indicate no reduc-

tion in quality is perceived until the sample at 12 dB signal

to noise ratio, suggesting the threshold for quality degrada-

tion due to wind noise is between 18 and 12 dB SNR.

Successive increases in wind noise beyond this threshold

were each associated with significantly worsening ratings of

quality. Overall, quality was found to significantly decrease

as wind level increased, but marginally less so in gustier

samples.

Prior to starting the web test, participants were asked

about themselves and the environment within which they

were completing the test. The four questions asked about:

The sound reproduction equipment; how noisy the place

where the experiment was being carried out was; the partici-

pant’s age, and whether the participant considered them-

selves to be an audio expert. While significant differences

were observed for many of the categories of participant

information19 it is notable that effect sizes were small across

the board (all effect sizes< 0.017, partial g2), relative to the

effect size of the experimental wind level variable across the

group (partial g2¼ 0.30).

D. Discussion

Overall, different levels of gustiness were not found to

influence perceptions of audio quality (other than very mar-

ginally at very high levels of wind noise). Increases in wind

level, however, were found to have a very large negative

effect on perceptions of quality once above the detection

threshold. Consequently, the development of the wind noise

meter focused on the wind noise level as a measure of qua-

lity, and did not consider gustiness.

The signal to noise ratio below which wind noise levels

significantly decreased the number of words correctly identi-

fied, is much lower than the signal to noise ratio below

which quality and difficulty of task were perceived to be dif-

ferent from the noise-free case. The self-reported difficulty

of the task is different from the actual measured perform-

ance. Consequently, speech intelligibility has some inde-

pendence from quality, which appears more closely related

to subjective perceptions of difficulty. The differences in the

number of words correctly identified by gustiness at the

highest levels of wind noise, also reveals some insight as to

why there are only differences in quality ratings between

gustiness at the worst signal to noise ratios. The word score

results suggest it is slightly easier to hear words when there

is gusting than when the wind is more constant.

This study allows some insight into the viability of

internet-based tests for the collection of subjective ratings of

quality. Despite the sacrifice of experimental control and

non-optimal playback conditions via the web, the results

from the web-based test generally mirrored those obtained in

the lab. Many studies of web versus lab experimentation

have found results replicate (for example, see review in

Ref. 20) but these studies have tended to be investigations of

universal cognitive processes, such as short-term memory or

reaction times, for instance. Few existing studies have com-

pared web and laboratory data in subjective judgments of

quality. Our findings suggest that the efficiency gains of test-

ing on the web (in terms of mass participation) ensure that

similar results to laboratory testing can be achieved despite

the non-optimal, non-controlled test conditions. The smaller

effect sizes found for the effect of wind level on the web are

a predictable consequence of the diversity of sources of vari-

ability and error compared to the laboratory (environment,

background noise, playback equipment, playback mode,

etc). This finding suggests that Web-based experiments

would likely be less successful for quality judgments where
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degradations are small or differences between stimuli are

marginal (such as codec comparisons, for example).

However, for experiments such as the current study, where

the worst degradations were very large, the diversity of test-

ing conditions experienced by Web participants arguably

also serves to increase the ecological validity of tests, as a

wider, more representative pool of participants can be

reached and, importantly, participants are likely to complete

the quality assessments on the same equipment and in the

same environments within which they typically listen to

audio.

IV. WIND NOISE METER

Figure 4 shows a schematic of the model used to esti-

mate the perceived quality of audio degraded by wind noise.

It follows a common approach in audio signal processing by

first extracting Mel Frequency Cepstrum Coefficients

(MFCCs) in short time frames, then classifying each frame

according to the level on wind noise using a machine learn-

ing approach, before aggregating the results over a longer

window. This results in a simple algorithm. First, the algo-

rithm works on short 23 ms frames (1024 samples to allow a

fast Fourier Transform to be used) overlapping by 50%. It

attempts to classify the wind noise level into four categories

denoted ClassL:

(a) ClassL¼ 0: LAeq< 30 dB (no wind);

(b) ClassL¼ 1: 30<LAeq� 50 dB (low wind);

(c) ClassL¼ 2: 50<LAeq� 70 dB (moderate wind);

(d) ClassL¼ 3: LAeq> 70 dB (high wind).

The lowest class boundary was derived from the percep-

tual measurements. These indicated that when the wind noise

level was around 20 dB lower than the speech, there was lit-

tle effect on quality. As hushed speech has an A-weighted

level of about 50 dB at 1 m,15 this implies that 30 dB is an

appropriate boundary for the “no wind” threshold. Loud

speech at 1 m has an A-weighted level of about 70 dB,15

therefore wind noise at or above this level was considered

“high wind.” The other class boundary was placed at an

equal level distance between the other two.

While the absolute level of wind noise can be used to

indicate the presence or lack of wind noise, the perceptual

measurements showed the signal level of wind noise ratio

correlates with perceived quality. Therefore, a separate deci-

sion tree was trained to classify frames according to the

A-weighted signal to noise ratio (SNR). Six categories of sig-

nal to noise ratio are defined, denoted ClassSNR:

(a) ClassSNR¼ 0: SNR<�20 dB;

(b) ClassSNR¼ 1: �20<SNR��10 dB;

(c) ClassSNR¼ 2: �10<SNR� 0 dB;

(d) ClassSNR¼ 3: 0< SNR� 10 dB;

(e) ClassSNR¼ 4: 10<SNR� 20 dB;

(f) ClassSNR¼ 5: SNR> 20 dB.

The SNR class divisions were informed by the percep-

tual test results. These indicated that over the SNR range

from �20 to þ20 dB, the quality score changed from about

90% to 10%.

The training data used calibrated models where the time

history represented the pressure in Pascals induced at the

microphone due to the wind. Therefore, recordings need to

be scaled so that they were representative of the pressure

recorded by the device. As recording devices are normally

un-calibrated, the sound pressure level of any recorded audio

may not be known exactly. In these cases, the signal can be

calibrated by scaling the audio according to some known ref-

erence within the recording. For example, a rough calibra-

tion can be carried out by reciting a sentence at a normal

speaking level into the device from one meter away in a

quiet environment. The average normal speaking sound pres-

sure level, without specifying gender, is about 57 dBA.15

Two ensembles of decision trees were trained to classify

ClassSNR and ClassL using bagging.21 Initial results showed

that it is difficult to classify ClassL when it is masked by the

foreground sound being recorded. Consequently, samples

where the wind noise is quieter than the foreground sound are

identified using ClassSNR, and this information is used to

improve the accuracy of the meter when aggregating over a

number of frames.

MFCCs are used as acoustic features to input to the de-

cision trees as they have been shown to work well for other

audio classification tasks.22 A Hanning window is applied to

each frame and 50% overlap used. The power spectrum for

each frame is computed via Fourier transform, and then the

Mel power spectrum computed using a triangular filter bank

with 16 bands between 0 Hz and 8 kHz spaced evenly over

the Mel scale,

fmelðf Þ ¼ 2595 log10ð1þ f=700Þ: (2)

The MFCCs are the DCT (discrete cosine transform) of

the log Mel power spectra; the first 12 of 16 coefficients are

selected for each frame. The first MFCC is replaced by the

A-weighted decibel value for the frame to indicate the sound

pressure level. Features from the current and the next two

frames are used as inputs to the decision trees. The addition

of the next two frames provides the classification algorithm

with information regarding the evolution of the sound over

time. ClassL and ClassSNR are determined from the firstFIG. 4. Schematic of the wind noise meter.
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frame in this sequence. The same set of 36 features was used

for both trees.

The MATLAB function “treebagger” was used for the

ensemble supervised training of the decision trees.23 One

hundred decision trees were trained on 100 subsets of the

whole training dataset selected by randomly sampling with

replacement, so that the size of the subsets was the same as

the original dataset. For every class decision, 6 out of 36 fea-

tures were randomly selected to ensure instability in the

trained trees, and the trees were not pruned. This approach is

equivalent to the random forest method.24 The resulting en-

semble uses winner-takes-all voting to determine the class.

Bagging has been shown to reduce the chance that a model

will be overly simple. While optimization of the random for-

est’s meta-parameters was not investigated, it is likely that

this will be required for real-time implementation.

The aggregation stage outputs an estimation of the wind

noise level category for a one second interval. An average of

the estimated ClassL for the wind noise level for each frame

is taken. The average is computed only using frames tagged

by the second decision tree as containing wind noise at a

level greater than the foreground audio. When no suitable

frames are available within the 1 s interval, it is assumed the

sample is free of wind noise. The average wind noise class is

rounded to the nearest integer so that wind noise level over

one second can be classified as none, low, moderate or high.

A second aggregation is carried out to estimate the signal to

noise ratio, where ClassSNR is averaged over 1 s then

rounded to the nearest integer so that the signal to noise ra-

tio, and by association, degradation of quality can be

classified.

A. Training and testing databases

Two databases were created, one for training the wind

noise meter the other for testing the performance. The data-

bases consist of foreground audio examples of speech,

music, and other everyday sounds and soundscapes, some of

which were corrupted with different levels of wind noise.

The foreground audio in the training and testing sets were

from different sources. Additionally, different sources of

wind noise were used for training and testing. The algo-

rithms were trained using only simulated wind noises,

whereas the test set consisted of only real wind noises

recorded on a range of devices. This was to prevent overly

optimistic performance indicators being reported and ensures

that reported performance is generalizable to wind noise

generated from other devices and foreground audio sources.

In total, 633 samples of different foreground sounds that

were the target of the simulated recording were used. This

included 211 samples of male and female speech; 211 sam-

ples of music from a diverse variety of different genres; and

211 samples of everyday sounds such as animal vocaliza-

tions, traffic noise and crowd sounds. From each of the 633

sounds, a 10-s segment was selected at random to train or

test the algorithms. In total there were 105 min of foreground

sounds. The A-weighted sound pressure level of the fore-

ground sounds were scaled so that they varied from 30 to

130 dB.

The foreground audio was corrupted with wind noise

and training and test databases were segmented using tenfold

cross validation. Folds were made according to the source of

the foreground audio so that a particular 10-s audio sample

used in training was never used in testing. For each fold, 570

examples were used in training and 63 in testing.

For the training data, unique examples of wind noise

were generated using the methods described in Sec. II and

added to each of the foreground sounds. Data was generated

using average wind speeds over the 10-s samples ranging

from 0 to 20 ms�1 spaced at 2 ms�1 intervals. The same

number of samples was made for each wind speed. The

simulated A-weighted wind noise level varied from 0 to

120 dB. A 4th order Butterworth high pass filter with a

�3 dB point randomly chosen between 30 to 130 Hz was

applied to the samples to simulate the different frequency

responses of consumer recording devices and microphones.

A sample with no wind noise was also used in the training.

Hence, the training database consisted of the wind-free case,

plus simulations for microphones with and without wind-

shields, both with and without foreground audio.

As training is computationally costly, the size of the

training database was reduced to 400 000 frames. This was

achieved by undersampling the dataset where one-third of

the data is wind noise free, one-third of the data contains

only noise and one-third contains a mixture of both whose

signal to noise ratios are uniformly distributed between 50

and �50 dBA and with an equal number of examples gener-

ated by each model.

A set of wind noises not present in the training was used

for testing. Field measurements were made outdoors in

windy conditions using a variety of audio devices. The wind

noise was measured for 120 min on a small but broad range

of microphone and device types: an unshielded microphone

(B&K 1
4

in.); the same microphone with a windshield; a port-

able recorder with electret condenser capsules (a Zoom H2

recorder set at its lowest input gain with automatic gain con-

trol turned off); a dynamic microphone (Shure SM58), and a

mobile phone (iPhone 4). The effects of dynamic range con-

trol on the detection and perception of quality are beyond

the scope of this study and will be investigated in further

work.

An exposed, quiet spot, high up on the West Pennine

Moors near Manchester, UK, was used. First, both measure-

ment microphones were calibrated using a calibrator which

produced 93.6 dB at 1 kHz. To calibrate the other devices, a

1 kHz tone was played over a loudspeaker at about 1 m and

recorded over all devices. After applying a bandpass filter

with a width of 200 Hz and center frequency of 1 kHz, the

rms values were then used to calibrate the sensitivity of each

device relative to one of the measurement microphones.

Table II gives a statistical description of the sound pres-

sure levels of the wind noise. In the case of the iPhone and

the shielded microphones, the distribution of levels is asym-

metrical. For the iPhone this is due to the automatic gain

control which is always active. For the shielded microphone,

this is due to the background noise level at the site. The

background noise level was less than 37 dBA (the wind

noise levels were so high it was impossible to get an audio
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sample free from wind noise even with windshields on the

microphones, so the exact background noise level is

unknown).

For each device, from the 120 min of recorded wind

noise, 10 s of wind noise was selected at random and added

to the foreground audio. Wind noise samples both with and

without the foreground audio were included in the testing

database. This produced a database where for each 10 s of

foreground audio there were 15 variations, the wind-free

case plus the following cases both with and without the fore-

ground audio: Unshielded measurement microphone;

shielded measurement microphone; Zoom H2; Shure sm58;

and iPhone. The performance was evaluated for each device

separately.

B. Validation tests

Performance was evaluated using the Matthews

Correlation Coefficient (MCC).25 Figure 5 shows the wind

level classification performance over a range of devices. The

classification performance was better for the event sounds

than either music or speech. This is because the event sounds

contain less low frequency content than the other sounds.

Wind noise is dominated by lower frequencies; therefore,

detection is more successful when the foreground audio is

free of low frequencies. The shielded microphone perform-

ance was lower because of the background noise at the re-

cording site, which meant that some cases in the test set with

no wind noise present were mislabeled as containing low

levels of wind noise.

Figure 6 shows the performance of the SNR classifier.

Performance was poor for the iPhone and shielded micro-

phone cases, whereas the correlation coefficient is about 0.7

for the other three devices. For the shielded microphone, this

is because the signal to noise ratio value used to classify the

frames is inaccurate, due to the presence of sound at the re-

cording site at a comparable level to the lowest levels of

wind noise. For the iPhone, as the wind noise levels were

much higher than the background noise, an alternative expla-

nation is required. Investigations indicated that is not the

limited frequency response of the device that is causing this,

and therefore, there is some aspect of the iPhone wind noise

that is not captured by the model. This is either the presence

of an automatic gain control system, not present on any other

device or in the training data, or some unique feature of the

wind noise, for example, a particular vortex shedding reso-

nance not captured by the model.

Table III shows the confusion matrix for the aggregated

wind noise level classifier over all devices averaged over all

folds. The sensitivity is the percentage of correctly identified

wind noise cases. This was significantly lower for the iPhone

than the other devices, being 92% for the iPhone; 77% for

the shielded case; 98% for the others; and 93% overall. The

specificity is the percentage of the correctly identified wind-

free cases. This was found to be the similar for all devices at

79%. As the shielded case’s inaccuracy is due to the faulty

assumption of no background noise at the measurement site,

the detector identifies at least 92% of the true wind cases.

Identification of wind noise free cases is lower at 79% and is

TABLE II. Statistics for wind noise measurements used to test wind detector

performance and models used for training.

LA90 LA50 LA10 LAeq

Unshielded 63.6 74.3 83.6 80.1

Shielded 36.3 42.2 50.2 47.5

Zoom 62.3 74.4 84.2 80.1

SM58 60.4 71.6 81.6 78.4

iPhone 66 81.8 90.4 85.8

Training models 30.5 80.8 113.6 107.9

FIG. 5. Wind noise detection performance gauged by MCC for each of the

five devices, error bars represent the 95% confidence limits over all ten

folds. Foreground sounds: speech (gray); music (white); event sounds (cross

hatch); and all (dots).

FIG. 6. Signal to noise ratio classification performance gauged by MCC for

each of the five devices, error bars represent the 95% confidence limits over

all ten folds. Foreground sounds: speech (gray); music (white); event sounds

(cross hatch); and all (dots).

TABLE III. Confusion matrix, wind noise level classification for all

devices.

None

detected

Low

detected

Medium

detected

High

detected

No wind noise in sample 3413 159 217 443

Low wind noise in sample 85 683 23 1

Medium wind noise in sample 74 26 986 33

High wind noise in sample 300 2 276 2779
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device independent. This error is due to how well the train-

ing database of foreground sounds represents the test data-

base. To decrease the false negative rate, the database of

sounds would need to be expanded further.

Table IV shows two confusion matrices for the SNR clas-

sification, one excluding the iPhone and shielded data and one

showing just the iPhone and shielded data. This allows us to

examine the poor performance of the iPhone and shielded

microphone results; there is a bias toward the overestimation

of the signal to noise ratio. To account for this error, the final

wind noise meter will combine the training and test sets to

improve the generalizability of the resulting algorithm.

V. CONCLUSIONS

Perceptual tests were carried out to examine how wind

noise affects the perceived quality of recorded speech. Tests

were carried out both in controlled laboratory conditions and

also across the Internet. The pattern of results for both

experiments was similar. The trade-off between lack of ex-

perimental control and access to a very large, more represen-

tative sample via the Internet is reflected in a smaller effect

size for the effect of wind level on quality ratings alongside

additional significant effects (albeit of very small magnitude)

not observed in the laboratory.

Increases in wind level were found to have a large

negative effect on perceptions of audio quality below an

A-weighted signal to noise ratio of approximately 15 dB.

Changes in the level of gustiness, in contrast, were not found

to influence quality perceptions (other than very marginally at

very high levels of wind noise). Consequently, wind noise

level can be considered sufficient to predict degradations in

audio quality. Participants were also asked to type the words

they heard during the test. The number of words typed cor-

rectly significantly decreased when the A-weighted signal to

noise ratio was �18 dB. For many signal to noise ratios, the

wind noise has a greater effect on perceived quality than it

does on the ability of the subjects to correctly identify the

words being spoken. Additionally, it was observed that partici-

pants’ ratings of the difficulty of the task more closely

reflected quality ratings than actual task performance. This

finding may have implications for similar work where task per-

formance is commonly used to assess or predict audio quality.

A meter to predict the perceived quality of recordings in

the presence of wind noise was developed using a machine

learning algorithm that had MFCCs as input features for

bagged decision trees. The algorithm was designed to work

with a single microphone and also to detect wind noise when

there is limited low frequency information as some common

consumer devices automatically filter out the prominent low

frequencies present in wind noise. The algorithm was

designed to work with a wide variety of foreground sounds:

music, speech and quotidian sounds.

The algorithm worked in short 23 ms frames, with these

results then being aggregated over 1-s intervals. The algo-

rithm was designed to produce an estimation of wind noise

in four classes: none, low, medium, and high. The decision

trees were trained using two models that simulate devices

with and without windshields. The performance of the windT
A

B
L

E
IV

.
C

o
n
fu

si
o
n

m
at

ri
x
,
si

g
n
al

to
n
o
is

e
ra

ti
o

cl
as

si
fi

ca
ti

o
n
,
iP

h
o
n
e

an
d

th
e

sh
ie

ld
ed

m
ic

ro
p
h
o
n
e

d
at

a
se

p
ar

at
ed

fr
o
m

th
e

re
st

.

P
re

d
ic

te
d

S
N

R
cl

as
s

(e
x
cl

u
d
in

g
iP

h
o
n
e

an
d

sh
ie

ld
ed

m
ic

ro
p
h
o
n
e)

P
re

d
ic

te
d

S
N

R
cl

as
s

(j
u
st

iP
h
o
n
e

an
d

sh
ie

ld
ed

m
ic

ro
p
h
o
n
e

d
at

a)

S
N

R
<
�

2
0
�

2
0
<

S
N

R
<
�

1
0
�

1
0
<

S
N

R
<

0
0
<

S
N

R
<

1
0

1
0
<

S
N

R
<

2
0

2
0
<

S
N

R
S

N
R
<
�

2
0
�

2
0
<

S
N

R
<
�

1
0
�

1
0
<

S
N

R
<

0
0
<

S
N

R
<

1
0

1
0
<

S
N

R
<

2
0

2
0
<

S
N

R

A
ct

u
al

S
N

R

C
la

ss

S
N

R
<
�

2
0

7
8
4

5
0

1
1

3
1

2
1
0

6
5

1
7
5

2
1
0

1
5
4

1
6
9

�
2
0
<

S
N

R
<
�

1
0

7
2
9

3
0

1
2

4
1

0
1

6
1
3

2
7

2
9

�
1
0
<

S
N

R
<

0
2

3
1
9

3
1

1
4

3
0

1
2

6
1
5

5
3

0
<

S
N

R
<

1
0

0
0

2
1
2

3
8

1
9

0
0

0
1

9
5
7

1
0
<

S
N

R
<

2
0

0
0

0
1

1
3

6
2

0
0

1
1

7
7
0

2
0
<

S
N

R
1

2
3

7
3
1

7
0
3

1
2

4
8

3
5

7
7
6

J. Acoust. Soc. Am., Vol. 136, No. 3, September 2014 Jackson et al.: Wind-induced microphone noise 1185

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  146.87.136.26 On: Mon, 20 Oct 2014 12:41:25



noise meter was tested using a set of field measurements on

five different devices. The wind noise detector accurately

identified wind free examples in 79% of cases. For the three

classes with noise present, on average 93% were correctly

assigned to the appropriate category. A second decision tree

was trained to estimate the signal to noise ratio, from which

the perceived degradation to quality can be inferred. This

achieved a Matthew’s correlation coefficient of 0.7 for three

of the devices. Poor performance for the shielded micro-

phone was due to background noise at the recording site,

while the poor performance with the iPhone is probably due

to some aspect of the wind noise not captured in the model.

A version of the wind noise meter trained with both the

training and test data sets is available as an open source

Cþþ program at http://www.goodrecording.net/wind-noise-

detection-open-source-program/.
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