
I 
 

 Contents          pages 

           

 Title page         I 

 Contents         II 

 List of tables         V 

 List of figures         VI 

 Acknowledgments        VIII 

 Declaration        IX 

 List of abbreviations        X 

 Abstract          XI 

Chapter 1                       General introduction  
 

   

1.1 Staphylococcus aureus  2 

1.1.2 Clinical important of S. aureus  2 

1.1.3 S. aureus virulence factors 5 

1.1.3.1 Cell surface proteins 5  
Clumping factor 6  
Protein A 6 

1.1.3.2 Exotoxins 7 

1.1.3.2.1 Superantigens  7 

  Toxic shock syndrome toxin TSST-1 7 

  Enterotoxins 9 

  Exfoliative toxins 10 

1.1.3.2.2 cytotoxins 11  
Alpha-haemolysin  11  
β-Haemolysin  11  
Delta-Haemolysin  12  
Gamma-haemolysin and PV-Leukocidin 12 

1.1.3.3  Extracellular enzymes 13  
Proteases 13  
Staphylocoagulase 14  
Lipase 14  
Catalase 15  
Nuclease 15 

1.1.3.4  Biofilms 16 

1.1.4 Brief review of DNA replication and gene expression in bacteria 16 

1.1.4.1  DNA replication 17 

1.1.4.2  Transcription 19 

1.1.4.3   Translation 20 

1.1.4.4  Regulation of transcription 22 

1.1.4.5  Translation control 24 

1.1.5  Regulation of virulence factors expression in S.aureus 26 

1.1.5.1  Accessory gene regulator system (agr) 26 



II 
 

 

 

1.1.5.2  Staphylococcal accessory element (sae) 29 

1.1.5.3  Staphylococcal respiratory response (srrAB) 29 

1.1.5.4                                                                                                              Sar family regulatory proteins    30 

1.1.5.5  Effects of metabolic alterations on virulence factor expression 31  
(A) Catabolite control protein A (CcpA) 31  
(B) CodY  32    

1.2 Mupirocin 36 

1.2.1 Mechanism of action of mupirocin 37 

1.2.2 Medical importance of mupirocin and resistance 39 

1.2.3  The effects of mupirocin on S. aureus virulence factors 40    

1.3 Introduction to the stringent response 42 

1.3.1  (p)ppGpp synthesis 44 

1.3.2  (p)ppGpp role in the stringent response 44 

1.3.3  Effects of (p)ppGpp on cell functions 46 

1.3.3.1  Effects of (p)ppGpp on transcription 46 

1.3.3.2  Effects of (p)ppGpp on translation 49 

1.3.3.3  Effects of (p)ppGpp on DNA replication 50    

1.4 (p)ppGpp in Gram-positive bacteria  52 

1.4.1  (p)ppGpp synthesis in Gram-positive bacteria 52 

1.4.2                                    Mechanisms of action of (p)ppGpp in Gram-positive bacteria   52 

1.4.3  (p)ppGpp and pathogenicity in Gram-positive bacteria 55 

1.4.4  Stringent response in S. aureus            57 

1.4.5  (p)ppGpp synthesis in S. aureus via mupirocin treatment 57 

1.4.6                                                                   Global alteration during stringent response 59 

1.4.7  Effects of the stringent response on amino acid pools and mupirocin 

susceptibility  

60 

1.4.8  Regulation of virulence factor expression by the stringent response 61 

1.4.9  Transcritomic technologies to observe the global alteration of genes 

expression during stringent  response    

63 

1.4.10 Summary  64 

   

1.5 Aims and objectives 66 



III 
 

 

Chapter 3 Mupirocin susceptibility 
 

   

3.1 Introduction 81 

3.2 Results  82 

3.3 Discussion  89    

Chapter 4  Stringent response induction   

 

4.1 Introduction 94 

4.2 Results 95 

4.2.1  Effects of Sub-inhibitory concentration of mupirocin effect on cell growth 95 

4.2.2 Standards calibration for ppGpp and other nuclesides 96 

4.2.3  ppGpp detection   99 

4.2.4  Effect of ppGpp production on nucleotides pools   103 

4.2.5  Extended observing of mupirocin effect on growth and ppGpp production 104 

4.3 Discussion 106    

  
 

 

 

 

 

 

Chapter 2          

 

 

 

 

 

Material and Methods   

 

2.1 Sample collection and sources 69 

2.2 Staphylococcus aureus identity verification 69 

2.3 Determination of samples MICs for mupirocin 69 

2.4 Disc diffusion assay 70 

2.5 Induction of stringent response by mupirocin and observation of its effects  71 

2.5.1  Stringent response induction   71 

2.5.2  Mupirocin effect on growth  72 

2.5.3 ppGpp and other nucleoside extraction and detection    72 

2.5.4 Nucleotide fractionation  72 

2.5.5  Standards nucleotides calibration curves 72 

2.5.6  Measuring Cell Dry Weight 73 

2.6 Observing the effect of sun-inhibitory concentration of mupirocin on tst gene 

transcription and TSST-1 production  

73 

   

2.6.1  Effect of mupirocin treatment on cell growth 73 

2.6.2 Influence of mupirocin on TSST-1 production 73 

2.6.3  Total RNA extraction and Real Time PCR 74 

   

2.7 observation of sub-inhibitory concentration of mupirocin effect on the global     

transcription for S. aureus 8325-4 via next generation sequencing technique 

(RNA-seq) 

77 

2.7.1  Mupirocin treatment and RNA extraction 77 

2.7.2  RNA sequencing 77 

   

2.8 Statistical analysis 79 



IV 
 

Chapter 5 Effect of sub-inhibitory concentration of mupirocin on the 

TSST-1expression and production  

  

5.1 Introduction 110 

5.2 Results 111 

5.2.1 Effect of sub-lethal concentration of mupirocin on  cell growth 111 

5.2.2  Toxin production 112 

5.2.3  Transcription observation 115 

5.2.4  Protease inhibition 116 

5.3.  Discussion 117    

Chapter 6 Observing the global transcription alterations after sub-

inhibitory concentration of mupirocin treatment    

 

  

6.1 Introduction 126 

6.2 Results 127 

6.2.1  Effect of mupirocin and ppGpp on the growth of S. aureus 8325-4 127 

6.2.2  Comparison between gene expression in test and controls at different times 128 

6.2.3  Functions of unique and overlapping genes expression  132 

6.2.4  Regulation of virulence factor genes 139 

6.2.5 Effect of sublethal concentration of mupirocin on the gene expression 

throughout time points in the treated cultures 

145  

6.2.6  Unique and overlapped genes expression  146 

6.2.7  Functions of unique and overlapping genes expression 147 

6.3 Discussion 157 

6.3.1 Differentially expressed genes relative to control 154 

6.3.1.1 Differentially expressed genes at 1 h 157 

6.3.1.2  Differentially expressed genes at 12 h 156 

6.3.1.3  Differentially expressed genes at 24 h 158 

6.3.2  Gene expression overlapping 158 

6.3.4  Regulation of virulence factors genes 160 

6.3.5  Differentially expressed genes for test cells 163 

6.3.6  Stringent response tolerance and recovery 167    

Chapter 7   General discussion and conclusion  
 

7.1 Summary of the key finding in stringent response effects 173 

7.1.2 Effect on cell growth  173 

7.1.2  Effect on gene transcription 174 

7.1.3  Effect on gene translation  174 

7.2 Recovery from stringent response 175 

7.3 Sub-inhibitory concentration influence on TSST-1 production 176 

7.4 Future work  177 

7.5 General conclusion 177    

References     178 

 

 
   

 



V 
 

List of TABLES  

 

 

 

 

Table No Title of table   Page 

  

1 Antibiotics list used in the disc diffusion assay. 71 

2 Real time PCR reagents mix 75 

3 Program cycle for the real time PCR 75 

4 Primers and probes used in the real time PCR  76 

5 RNAs samples details        78 

6  Mupirocin MICs of recent UK isolates of Staphylococcus aureus 84 

7  Mupirocin MICs of early UK isolates of Staphylococcus aureus 85 

8  Mupirocin MICs for recent Libyan isolates of Staphylococcus aureus 86 

9 Antibiotics profile for mupirocin resistant isolates from group C (Libya isolates) 88 

10 ATP values and peak area in HPLC 96 

11 GDP values and peak area in HPLC 97 

12 GTP values and peak area in HPLC 98 

13 ppGpp values and peak area in HPLC 99 

14 Optical density protease addition (1mM)and TSST-1 titre for mupirocin treated 

S.aureus with and without  

117 
 

15 Transcription alteration of genes involved in important functions following 

exposure to sub-lethal concentrations of mupirocin 

136-137 

16 Overlapping up-regulated genes throughout 1, 12 and 24 h 138 

17 Group A virulence factors genes regulation   141 

18 Group B virulence factors gene regulation 142 

19 Group C virulence factors genes regulation 143 

20 Group D virulence factors genes regulation 144 

21 Down-regulated genes with overlapping expression between1, 12 and 24 h in cells 

treated with mupirocin 

151 -152 

22 Up-regulated genes with overlapping expression between 1, 12 and 24 h  in cells 

treated with mupirocin 

153 
 



VI 
 

 

List of Figures   
 

 

 

Figure No  

 

                  

    Title of figure   

page  

1  Regulation of tst transcription in S.aureus 9 

2 The central dogma of molecular biology   17 

3 The involvement of GTP in the translation processes  25 

4 Quorum-sensing system (two-component system) agr in S. aureus 28 

5 Effect of the two metabolic responsive proteins CcpA and CodY on different 

molecular functions 
35 

6 Mupirocin chemical structure 36 

7 Aminoacylation process  37 

8 Similarity of the hydrophobic-binding domains in the monic acid terminus of 

mupirocin 
38 

9 Chemical structure for pppGpp and ppGpp  43 

10 (p)ppGpp synthesis, hydrolysis and its influences on regulation of gene 

expression in E.coli 
45  

11 The mechanism of ppGpp regulation of  the expression of his and rrn promoters 48 

12 Effects of (p)ppGpp on translation 49 

13 Effects of (p)ppGpp on DNA replication  50 

14 Summary of various proposed effects of (p)ppGpp effects on E.coli as a 

prokaryote model  
51  

15 Effect of (p)ppGpp on the GTP synthesis pathway  54 

16 Summary of (p)ppGpp mechanism effects in Gram positive bacteria  55 

17 Stringent response induction by mupirocin in S. aureus  58 

18 RNA-seq flow work 79 

19  Mupirocin susceptibility for the three different groups of Staphylococcus 

aureus clinical isolates 
82 

20 Percentages of MICs for Staphylococcus aureus isolates in the different groups 83 

21 Reported mechanisms of mupirocin resistance in Staphylococcus aureus 92 

22 Effect of the sub-lethal concentration of mupirocin on Staphylococcus aureus 

8325-4 growth 
95 



VII 
 

23 ATP calibration curve 96 

24 GDP calibration curve 97 

25 GTP calibration curve 98 

26 ppGpp calibration curve 98 

27 Detection of metabolic nucleosides for Staphylococcus aureus 8325-4 100 

28 Detection of ppGpp and metabolic nucleotides for Staphylococcus aureus 

8325-4 treated with 0.5xMIC of mupirocin at 2, 3 and 4 h 
100 

29 Effect of sub-inhibitory concentration of mupirocin on ppGpp production in for 

Staphylococcus aureus 8325-4 
101 

30 Reciprocal results of growth and (p)ppGpp production in S.aureus 8325-4 after 

sub-inhibitory concentration of mupirocin treatment 
102 

31 Negative correlation between growth and ppGpp production in S. aureus 8325-

4 after sub-inhibitory concentration of mupirocin treatment 
102 

32 Alterations on nucleosides and  ppGpp intracellular pool concentration in S. 

aureus 8325-4 after sub-lethal concentration of mupirocin treatment 
104 

33 Effect of the sub-lethal concentration of mupirocin on Staphylococcus aureus 

8325-4 growth up to 72 h 
105 

34 Effect of the sub-lethal concentration of mupirocin on Staphylococcus aureus 

(clinical isolate) growth 
111 

35 Effect of sub-lethal concentration of mupirocin on bacterial growth throughout 

36 h 
112 

36 Growth and toxin production in control condition 114 

37 Effect of sub-lethal concentration of mupirocin on bacterial growth and TSST-1 

production 
114 

38 Expression ratios for tst and RNAIII transcription after sub-lethal concentration 

of mupirocin 
116 

39 Effect of CodY on genes regulation in exponential growth at normal condition 

and at inhibited growth at stringent response state.  
120 

40 Proposed mechanisms that can result in impeded TSST-1 synthesis after 

treatment with sub-lethal concentrations of mupirocin  
122 



VIII 
 

41 Effects of the sub-lethal concentration of mupirocin on the growth and ppGpp 

production by Staphylococcus aureus 8325-4  
128 

42 Total differentially expressed genes percentage based in contrast between 

mupirocin treated and control cells of S. aureus 8325-4 
129 

43 Differentially expressed genes of S.aureus 8325-4 treated with sub-lethal 

concentration of mupirocin  
130 

44 Smple correlation heatmap based on fold change in gene expression of  

S.aureus 8325-4 treated with sub-lethal concentration of mupirocin  
132 

45 Dfferentially expressed genes of S. aureus 8325-4 strains treated with sub-

lethal MIC of mupirocin for 1, 12 and 24 h compared with control  
135 

46 Total differentially expressed genes in mupirocin treated cells  145 

47 Differentially expressed genes of S. aureus 8325-4 strains treated with sub-

lethal concentration of mupirocin  
147 

48 Differentially expressed genes of S.aureus 8325-4 strains treated with sub-

lethal concentration of mupirocin  
150 

49 Proposed model for effects of CodY on S. aureus gene expression 165 

50 Proposed mechanisms that can result in tolerance and recovery processes from 

the stringent response after treatment with sub-lethal concentrations of 

mupirocin 

170 

 

 

 

 

 

ACKNOWLEDGMENTS 

Thank should go first to Allah whose mercy and blessing helped me and gave me the strength 

to complete this thesis. 



IX 
 

I would like also to thank Professor Howard Foster for his kind supervision, advice and 

encouragement during my research and for his attention to details in the preparation of this 

thesis.  

I am grateful to the academic staff in the department and the technicians as well as my colleagues 

in the department and all the staff of the school for their kindness and support.  

 

Special thanks for my parents, wife, brothers and sisters and all my relatives as well as friends 

back home for their encouragements and prayers. I would like also to thank all the staff of the 

Saudi Cultural Bureau in London who smoothed the progress of my PhD study. Also, I would 

thank Dr. Muneer kashoqugi for his unlimited support and encouragements during my different 

levels of study and I would never forget to pray for him. My thanks also extended to Professor 

Idrees alturk who guided me to the microbiology world and will never forget his inspiring words 

and performance in my future career. Special thanks for Dr. Ali Kheyami for his unforgettable 

supports, advices and unlimited ambition that he gave it to me through my postgraduate studies in 

the UK. Last but not least, I would like to thanks the staff of the Community college in Al 

Madinah and the staff of training and scholarship in Taibah University for smoothing the 

processes during my PhD study.     

 

 

 

 

DECLARATION 



X 
 

No portion of this work referred to in this report has been submitted in support of an 

application for another degree or qualification of this or any other university or other institute 

of learning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of abbreviations 

  



XI 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Abstract 

ASD Anti- Shine Dalgarno sequence 

CcpA carbon catabolite control protein A 

CDW Cell Dray Weight 

cre-sites catabolite-responsive element site 

CTD C-terminal regulatory domain   

FAD flavin adenine dinucleotide 

FBP fructose‑1,6-bisphosphate   

Fur ferric uptake regulator 

Gmk guanylate kinase  

HPr histidine containing protein 

HprT hypoxanthine phosphoribosyltransferase 

iGTP Initiating GTP (initiation of promotors transcription via GTP) 

IMP inosine monophosphate 

kDa Kilo Dalton  

NTD N-terminal enzymatic domain 

PVL Panton-Valentine leukocidin 

SCC staphylococcal cassette chromosome 

SD Shine-Dalgarno sequence 

TCA tricarboxylic acid 



XII 
 

Staphylococcus aureus is a major pathogen in both hospital and community settings and it 

causes infections ranging from mild skin and wound infections to life-threatening systemic 

illness and, together with the emergence of antibiotic resistance, has been a major cause of 

morbidity and mortality worldwide.  

The stringent response, is a stress response that bacteria display to avoid death when subjected to 

amino-acid starvation. This phenomenon has been observed in different species among Gram 

positive and Gram negative bacteria but relatively few studies have observed the stress response 

in Staphylococcus aureus. The stringent response can be triggered by treatment with mupirocin, 

an antibiotic that mimics amino-acid starvation by inhibiting isoleucyl tRNA synthetase. 

In this project S. aureus 8325-4 was exposed to sub-inhibitory concentrations of mupirocin (0.5 

MIC = 0.25µg/ml-1) to investigate the ability of this concentration to trigger the stringent 

response. The treatment with mupirocin was continued up to 24 h as previous studies only 

examined short periods of treatment. Growth was inhibited and the stringent response nucleotide 

ppGpp was detected 1 h after treatment which slowly decreased in concentration for up to 4 h 

combined with significant growth inhibition. However, ppGpp could not be detected at 12 or 24 

h whereas growth resumed. 

In addition, the effect of sub-inhibitory concentrations of mupirocin was observed on the TSST-1 

producing S. aureus clinical strain (B49). Q-PCR showed up-regulation of tst gene, codes for 

TSST-1, and its regulator RNAIII transcription up to 8 h of exposure relative to controls, the 

toxin was not detected by Reverse Passive Latex Assay. 

Further, RNA-seq analysis was used to observe the global transcriptional alterations caused by 

the stringent response in S. aureus at 1, 12 and 24 h. From the whole transcriptome profile, 

differentially expressed genes relative to control as well as from comparisons between treated 

cell time points were observed concentrating on 60 virulence genes and stress related genes that 
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were significantly increased through stringent response status (1 h). Although ppGpp was not 

detected at 12 h, cells were still under the influence of the stringent response. However, cell 

growth had resumed by 24 h which indicates recovery after exposure to sub-lethal concentrations 

of mupirocin.  

The effect of the sub-inhibitory concentration of mupirocin on global gene expression in S. 

aureus is discussed in relation to global control of gene expression and clinical use. In addition, a 

scenario for S. aureus recovery from stringent response has been suggested here which might 

open doors for drug target determination in the future.  
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1.1 Staphylococcus aureus 

1.1.1 Microbiology background; 

Staphylococcus aureus is a member of the family Staphylococcaceae and it is considered one 

of the most pathogenic organisms in the community and within hospitals. It is a Gram-

positive coccus sized between 0.5-1 µm. The organism has several virulence factors that 

contribute in its survival and pathogenicity (Greenwood et al., 2002).  

1.1.2 Clinical importance of S. aureus 

Staphylococcus aureus is one of the most medically important pathogens as it can cause a 

wide spectrum of infections ranging from mild skin infections to life-threatening diseases 

including septicaemia, endocarditis, necrotizing pneumonia, cellulitis, impetigo, septic 

arthritis, septic shock and toxic shock syndrome. The bacterium is also found to be one of the 

most common causes of bloodstream, skin and soft tissue, lower respiratory tract infections 

and hospital acquired infection in different countries (Diekema et al., 2001, Archer, 1998).  

S. aureus can be often acquired from the hospital environment causing hospital acquired 

infections (nosocomial infections) as well as from the community initiating community 

acquired infections. From 26% to 32% of the health individuals carry S. aureus in their 

internal nares (nasal carriage) and although they are not infected seriously with the bacterium, 

this carriage facilitates the spread of the organism in the community (Sivaraman et al., 2009). 

However, in hospital acquired infections the increasing threat of S. aureus comes from the 

increasing acquisition and evolution of antibiotic resistance (Sivaraman et al., 2009). 

Many strains of S. aureus have become resistant to the most commonly used antibiotics. For 

instance, the organism became resistant to penicillin shortly after its introduction into clinical 

use and currently >80% of  both hospital and community isolates are penicillin resistant 

(Lowy, 2003). In order to treat these infections β-lactam antibiotics such as methicillin and 
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oxacillin were introduced but resistance to them also occurred and those strains were termed 

methicillin resistant Staphylococcus aureus (MRSA). These strains possess the mecA gene 

that encod PBP2A which has low affinity to B-lactam antibiotics and promote resistance 

(Fuda et al., 2004) then limited choices such as vancomycin, inhibits cell wall synthesis via 

binding to the D-alaon on the peptide end, is applied to treat infections caused by these strains 

(Lowy, 2003). Strains with reduced vancomycin susceptibility have been reported and  the 

van operon found to contain the genes responsible for this resistance by replacing 

vancomycin’s target end of  the pentapeptides (Showsh et al., 2001).  

This capability of S. aureus to acquire antibiotic resistance and the rising incidence of hospital 

and community acquired infections has increased the medical importance of the bacterium. 

For example, S. aureus was found to be the most frequently isolated pathogen from 

bloodstream infections skin and soft tissue infections, and pneumonia in the United States, 

Canada, Latin America, Europe, and the western pacific region between 1997- 1999 and 

notable increase in the methicillin resistance among hospital and community acquired S. 

aureus strains in the United States has been reported (Diekema et al., 2001). Recent European 

surveillance indicates that MRSA pose a real challenge for the public health in England and 

Europe (Johnson, 2011).  

Nasal carriage of S. aureus plays a crucial role in the development of S. aureus infections. For 

example, Lina and colleagues claimed that S. aureus nasal carriage can increase the risk factor 

for the surgical site infection and they suggested a direct link between nasal carriage and the 

development of staphylococcal infections (Lina et al., 1999).  

In addition, Staphylococcus aureus is one of the most common bacteria that can cause either 

superficial or deep wound infection which might lead to either delay in wound healing or 

deterioration of wounds (Giacometti et al., 2000). An infected wound may be characterized 

by increased or sustained pain, redness or swelling, pus discharge, unpleasant odour or non-
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healing of the wound. Also, wound infection can occur as increasing erythema, oedema and 

continuous pain around the surgical site a few days after surgery (Janda et al., 1997). Post-

surgical infection is quite common and it is an important cause of morbidity and mortality 

(Heinzelmann et al., 2002). It is also influenced by different factors such as disruption of 

tissue perfusion during the surgical operation, the state of hydration, nutrition and the patient 

medical conditions such as immune system condition and the presence of chronic diseases 

such as diabetes and the infecting organism’s virulence properties (Heinzelmann et al., 2002) 

There are different factors that  can influence on the wound infection such as the wound 

depth, location and the organism that infects the wound (Bowler et al., 2001). In addition, 

different factors can increase the possibility of S. aureus and other bacteria in general to gain 

access to a wound such as via airborne dispersal, direct contact with medical staff and 

equipment as well as endogenous transmission of the bacteria or self-contamination from 

patient’s skin (Collier, 2004). In addition, toxic shock syndrome (TSS) disease can be 

associated with wound infections as a result of S. aureus toxin production. More details are 

discussed below.  

S. aureus possesses a wide variety of virulence factors that are expressed at certain growth 

phases. For example, during the exponential phase where cells are dividing and growing at a 

constant rate (depending upon the composition of the growth medium as well as the 

conditions of incubation), virulence factors such as cell surface proteins are expressed. On the 

other hand, during the stationary phase where the population growth is reduced, because of 

either nutrient limitation or the effect of inhibitory metabolites, production of a range of 

virulence factors can be promoted, including toxins and lytic enzymes (Bronner et al. 2004). 

The major S. aureus virulence factors are described below (section 1.1.3) and details of their 

regulation are given in section 1.1.5.                                                                                                                                                     
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1.1.3 S.aureus virulence factors 

1.1.3.1 Cell surface proteins  

Staphylococcus aureus can cause diseases through different mechanisms such as invasion and 

inflammation which are achieved via synthesis of extracellular molecules that facilitate 

bacterial adherence as well as promoting the bacterial evasion from host defense system  

(Kubica et al., 2008, Archer, 1998).  Cell wall associated virulence factors such as adhesion 

proteins and exopolysaccharides (adhesins) play a crucial role in this mechanism. S. aureus 

produces two groups of protein adhesins; the first group contains proteins that are covalently 

bound to the peptidoglycan, such as clumping factor (ClfA-B), protein A (Spa), fibronectin-

binding proteins (FnBPs) and collagen adhesin (Cna) and their function is to assist the 

bacteria to adhere to different host extracellular matrices such as collagen, fibrinogen and 

fibronectin, as well as to promote evasion from host immune response (Götz, 2002, Foster and 

Höök, 1998, Kubica et al., 2008). 

The second group of adhesion proteins are secreted and partially bound to the cell wall, such 

as extracellular fibrinogen-binding protein (Efb), extracellular matrix protein (Emp) and 

extracellular adhesive protein (Eap). These adhesion proteins contribute in cell adhesion to 

host cell as well as modulating host immune defense (Foster and McDevitt, 1994, Kubica et 

al., 2008). Expression of the surface binding proteins in S. aureus is tightly regulated in a 

growth-dependent manner and they are up-regulated in the exponential phase and repressed in 

the stationary phase of the cell growth. RNAIII which is a major virulence regulator in S. 

aureus seems to be responsible for the repression of many cell surface proteins during the l 

stationary phase either at transcriptional or translational levels (Novick et al., 1993, Novick, 

2003). For example, Otten and his colleagues claimed that, transcription of fnb and spa genes 
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is negatively controlled via RNAIII and the fnb seems more sensitive for RNAIII than spa 

gene (Saravia-Otten et al., 1997). 

 a) Clumping factor 

Clumping factor is a member of the S. aureus cell-wall binding proteins. It is a protein with a 

molecular weight of 21 kDa that cause cell aggregation in the presence of appropriate animal 

plasma (Hawiger et al., 1982). This protein promotes cell binding to fibrinogen and it can be 

used to detect S. aureus (Kerrigan et al., 2002) The cell aggregation that clumping factor 

causes seem to be an important factors to initiate S. aureus infections and it has been 

suggested that clumping factor can facilitate cell evasion from phagocytosis(Higgins et al., 

2006). The capability of clumping factor to bind to plasma and  human platelets enhances S. 

aureus infections such as endocarditis and wound infection where the plasma and platelets are 

abundantly available for example, Moreillon and colleagues showed that  in a rat endocarditis 

model, a clumping factor deficient strain of S. aureus ( ClfA2 mutant) was significantly less 

virulent than the wild-type strain (Moreillon et al., 1995). Another study showed that ClfA 

promotes direct binding of S. aureus to specific platelet membrane receptor in human platelets 

(Siboo et al., 2001). The ClfA and Clf-B genes encoder this protein and they are expressed in 

the early growth phase (McDevitt et al., 1994, Ní Eidhin et al., 1998). 

b)  Protein A 

Protein A is one of the most important adhesin proteins. This 50 kDa protein covently binds 

to the peptidoglycan and comprises around 7% of the cell wall proteins and is responsible for 

non-specific agglutination in S. aureus (Romagnani et al., 1982). Many strains of S. aureus 

produce protein A which makes it a reliable target for an identification test for S. aureus. In 

addition, protein A  has the capability to attach to the Fc receptor of immunoglobulins IgG1, 

IgG2 and IgG4 (Lindmark et al., 1983) which makes the attachment to specific receptors on 

the phagocytic cell membrane impossible which promotes the S. aureus evading the host 
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immune defenses (Romagnani et al., 1982). The coding gene for protein A is spa and it is 

transcribed in the early exponential phase and suppressed by RNAIII during the stationary  

phase (Novick et al., 1993, Novick, 2003) 

1.1.3.2 Exotoxins; 

Staphylococcus aureus produces wide range of exotoxins that can cause tissue damage and 

promote dissemination in the host’s body and increases S. aureus virulence properties. These 

toxins include superantigens and cytotoxins. Most of these toxins produced at the stationary 

phase and seem to be tightly regulated in growth-dependent manner. 

1.1.3.2.1 Superantigens                                                                                                                  

Superantigens are classes of toxins that can cause nonspecific T-cell activation, and a massive 

cytokine release which can lead to a life-threating condition. These toxins includes TSST-1 

that causes Toxic Shock Syndrome (TSS) S. aureus enterotoxins (SEs) responsible for food 

poisoning, exfoliative toxins (ETs) that can cause tissue degradation and exfoliation during 

Staphylococcal Scalded Skin Syndrome(SSSS) (Proft and Fraser, 2003, Fraser and Proft, 

2008) 

a) Toxic shock syndrome toxin (TSST-1)  

The toxic shock syndrome toxin produced by S. aureus can cause potentially fatal disease, 

toxic shock syndrome (TSS), with clinical features such as skin rash, fever and hypotension. 

This illness was originally described as a tampon-related infection in young healthy women 

(Shands et al., 1980, McCormick et al., 2001). Currently, non-menstrual TSS cases are 

frequently reported as hospital and community acquired infection (Durand et al., 2006). In 

addition, the toxin has the capability to increase the cytokine expression that might results in 

organ dysfunction, tissue damage and disseminated intravascular coagulation (McCormick et 

al., 2001) The toxin is a single polypeptide with a molecular weight of 22 kDa that contains a 
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high percentage of hydrophobic amino acids. Predictive amino acid composition from the 

toxin nucleotides sequence shows that isoleucine is present in 8.7% of the total amino acids 

composition (Blomster-Hautamaa et al., 1986). The gene that encodes TSST-1 is tst which is 

present in the bacterial chromosome and is carried on mobile pathogenicity islands SAP1, 

SAP2 or SAP3 that exist in 20% of S. aureus strains(Lindsay et al., 1998). Although these 

strains have the genetic ability to produce this toxin, fortunately TSS is quite rarely reported 

due to TSST-1 antibody expression in most individual bodies (Lindsay et al., 1998, 

McCormick et al., 2001).  

The expression of the tst occurs in the stationary growth phase and the expression at this 

phase is attributed to the effect of a network of global regulators such as the accessory gene 

regulator (agr) locus and Staphylococcal accessory regulator (sarA) locus. For example, the 

tst gene is positively regulated at the transcription level by the agr effector molecule RNAIII 

(Novick, 2003). RNAIII expression is tightly controlled in a growth-dependent manner, and 

the transcription of its promoter P3 is activated by AgrA which is a responsive factor for the 

quorum sensing two components system in S. aureus (Novick, 2003, Arvidson and Tegmark, 

2001). Also RNAIII transcription is decreased when the CodY protein is activated during the 

early exponential phase (Majerczyk et al., 2008). In addition, the SarA DNA-binding protein 

regulates tst transcription directly by binding tst promoter and indirectly by positively 

regulating the  RNAIII promoter P3 which activates the tst transcription (Andrey et al., 2010). 

Furthermore, the two-component system SrrAB (staphylococcal respiratory response) down 

regulates tst transcription and its effector RNAIII in low-oxygen level conditions. Also, 

SrrAB was reported to enhance the TSST-1 production in an aerobic environment (Yarwood 

et al., 2001, Pragman et al., 2004, Pragman et al., 2007). Vojtov and colleagues (2002) have 

shown that TSST-1 exhibits repressive activity on exoprotein production, as well as its own 

gene tst at the transcription level (Vojtov et al., 2002). Moreover, carbon catabolite control 
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protein A (CcpA), which is a transcription regulator that binds to a catabolite-responsive 

element site (cre-sites), has been found to repress tst transcription via binding the cre-site of 

the tst gene, leading to the negative transcription of the gene and the deletion of CcpA de-

repressesd tst transcription and surprisingly down-regulates the RNAIII (Seidl et al., 2008a, 

Miller and Bassler, 2001) which makes the tst regulation system quite complicated. Figure 

1summarises some of the tst regulation network.  

 

 

 

  

 

 

 

Figure 1 Regulation of tst transcription in S.aureus.  

Transcription of tst is influenced by several regulatory factors. TSST-1 (toxic shock syndrome 

toxin-1), CcpA (Catabolite control protein A), SarA (Staphylococcal accessory regulator 

protein), SrrAB (Staphylococcal respiratory response protein). Arrows represent up-

regulation, bars represent down-regulation. 

b) Enterotoxins  

Enterotoxins are a group of toxins that are produced by some staphylococci species including 

S. aureus. These toxins have a similar fundamental structure composed of single polypeptide 

chains with molecular weight from 27 to 34 kDa (Bhatia and Zahoor, 2007). S. aureus 

produces more than 21 different types of enterotoxin which are classified to groups on the 
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base of their antigenicity including enterotoxins A (SEA), B (SEB), C1 (SEC1), C2 (SEC2), 

C3 (SEC3), D (SED), E (SEE), G (SEG), H (SEH), I (SEI), J (SElJ), K (SElK), L (SElL), M 

(SElM), N (SElN), O (SElO), P (SElP), Q (SElQ), R (SER), S (SES), T (SET), U (SElU), 

U2(SElU2) and V(SElV) (Argudín et al., 2010). These toxins are heat stable and responsible 

for two thirds of the food-borne disease outbreaks which occurs as histological abnormalities 

in the gastrointestinal tract (Bhatia and Zahoor, 2007). In addition, these toxins can cause 

immunosuppression by reducing B and T cells and the coding genes for these toxins are 

located  on accessory genetic elements, such as plasmids, pathogenicity islands (SaPIs), 

prophages, S. aureus genomic island vSa, or next to the staphylococcal cassette chromosome 

(SCC) elements (Marrack and Kappler, 1990, Schelin et al., 2011). The maximum level of  

toxin’s production can occur at the stationary phase of the cell growth and the agr locus as 

well as SarA seem to activate the transcription of some enterotoxin genes such as seb, sec and 

sed (Schelin et al., 2011) 

c) Exfoliative toxins 

Exfoliative toxin is one of the S. aureus exotoxins, protein 30 kDa, that associated with 

Staphylococcal Scalded Skin Syndrome (SSSS) or Ritter’s disease which a disease affecting 

infants and characterized by the loss of superficial skin layer (Kapral and Miller, 1971, 

Bukowski et al., 2010). The toxin(serine proteases) works by causing intra-epidermal splitting 

via cleaving the protein that is responsible for the cell-cell adhesion (Bukowski et al., 2010). 

There are four different serotypes of the toxin (ETA, ETB, ETC and ETD) and the toxin 

present in 3-4% of S. aureus isolates (Bukowski et al., 2010, Lina et al., 1997). The ETs 

encoding genes are eta for ETA carried on phage, etb codes ETB located on plasmid and etc 

that responsible for ETC production and located on pathogenic island therefore these gene can 

potentially be transmitted to other cells (Lina et al., 1997). Exfoliative toxins are produced 

through the late exponential phase or early stationary phase of cell growth and they  tend to be 
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controlled in a growth –dependent manner as agr system showed positive regulation on eta 

and etb genes (Sheehan et al., 1992)  

1.1.3.2.2  Cytotoxins                                                                                                                                 

S. aureus produces number of membrane damaging toxins and they can be classified into two 

groups; haemolysins includes (alpha, beta, delta, and gamma) and Panton-Valentine 

leukocidin.  

Alpha-haemolysin (Alpha-toxin) 

Many strains of S. aureus secrete an alpha toxin which shows toxic effects on a wide range of 

mammalian cells (Bernheimer and Schwartz, 1963). It has a single polypeptide chain with a 

33 kDa molecular weight. The mature protein contains 293 residues and the toxin is capable 

of  lysing rabbit erythrocytes with a high affinity, at least 100 times more so than other 

mammals and 1,000 times more than human erythrocytes (Bhakdi et al., 1984). This toxin is 

one of the most potent membrane damaging toxins that S. aureus secretes as it can attach to 

its target cells and form pores leading to cellular contents leaking (Valeva et al., 1997). The 

toxin is expressed at the late exponential phase or early stationary phase and its coding gene, 

hla, seems to positively regulate via agr also this gene was temperature-dependent as its 

maximum expression occurred at 42oC and its transcription was detected in mid-exponential 

phase suggesting that agr was not the only regulator for this gene (Ohlsen et al., 1997).   

β-Haemolysin (Sphingomyelinase C) 

β-haemolysin is secreted by S. aureus into the culture medium as a 330-amino-acid 

polypeptide with a predicted molecular weight of 39 kDa (Huseby et al., 2007). β-haemolysin 

is produced in a high percentage of S. aureus strains particularly from animal isolates from 

bovine mastitis (Matsunaga et al., 1993). The toxin is also named Sphingomyelinase C as it 

degrades sphingomyelin, a phospholipid that is abundant in mammalian cell membranes 

(Doery et al., 1963, Low and Freer, 1977). In addition, its known as the hot-cold toxin 
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because of its unique activity on sheep blood agar plates as the toxin  interacts with sheep red 

blood cells but does not lyse them at 37°C but if  the red cells are then placed at 4°C the 

haemolytic activity of the toxin appears (Low and Freer, 1977). During Staphylococcus 

infections beta toxin seems to be involved in tissue damage and abscess formation and the 

toxin is encoded on hlb gene which is expressed in a growth-dependent manner as it’s 

transcription occurs during the stationary phase and the Sar locus has been shown to   

positively regulates the transcription of this toxin (Cheung and Ying, 1994).    

Delta-Haemolysin (Delta-Lysin, Delta-Toxin)  

Delta haemolysin is an extracellular product composed of a 26 amino acid peptide with a 

molecular weight of around  3 kDa and is produced from many strains of S. aureus (Kantor et 

al., 1972). Delta hemolysin is a potential exotoxin that exhibits cytotoxicity on wide range of 

different mammalian cells causing membrane damage. The coding gene for this toxin is hld 

and it is expressed in the stationary phase and the agr locus showed positive activation on this 

gene transcription (Recsei et al., 1986).  

Gamma-haemolysin and PV-Leukocidin 

These toxins are composed of two non-associated secreted proteins, S and F. Gamma toxin is 

produced from most S. aureus strains whereas PV-Leukocidin has only been detected in 2-3% 

of isolates (Kuehnert et al., 2006). These toxins can influences of the neutrophils and 

macrophages but gamma haemolysin is additionally capable to lyse a wide range of 

mammalian cells (Prevost et al., 1995). Gamma toxin is transcribed from a single locus which 

contains three genes hlgA, hlgB and hlgC which has high similarities to locus lukR that 

encodes leukocidinR (Kamio et al., 1993). The PV-Leukocidin is a crucial virulence factor in 

necrotizing diseases that might cause life threating infection in few days  (Lina et al., 1999). 

The toxin induces pores formation in the membranes of the susceptible cells leading to leak of 
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the cell content and causing skin and soft tissue infections such as necrotic lesions and 

necrotic haemorrhagic pneumonia (Kaneko and Kamio, 2004, Gillet et al., 2002). PV-

Leukocidin is encoded on a prophage (Φ-PVL) which is a genetic material from a 

bacteriophage that infects Staphylococcus aureus and makes it highly virulent (Melles et al., 

2006).  

1.1.3.3 Extracellular enzymes 

In addition to the exotoxin S. aureus shows the ability to produce a wide range of extracellular 

enzymes that can enhance different infections. Most of the extracellular enzymes are 

produced in the post-exponential phase such as protease, lipase and others.  

a) Proteases 

S. aureus can secrete 10 different types of proteolytic enzymes including metalloprotease, V8 

or SspA serine protease, two cysteine proteases (staphopain A (SspA) and staphopain B 

(SspB)), and six serine-like proteases that are SspA homologues (SplA- F). The spl operon is 

transcribed at the stationary phase of cell growth and has been shown to be positively 

regulated via the agr system and its present in 64% of isolated S. aureus and deletion mutant 

of this operon showed attenuated virulence in comparison to the parent cell (Reed et al., 

2001). For example, sspABC and sspBC mutations showed reduced virulence in a murine skin 

abscess model (Shaw et al., 2004) and metalloprotease has been shown to promote the cell 

survival in phagocytes during infection (Kubica et al., 2008). In addition, Dunman and 

colleagues suggested a link between the proteoolytic activity and amino acid limitation 

through the stringent responses (Anderson et al., 2006). 
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b) Staphylocoagulase 

Coagulase production can be used to distinguish between pathogenic and nonpathogenic 

strains of S. aureus. Coagulase is an enzyme that promotes the conversion of fibrinogen to 

fibrin clots which can form a protective coating against phagocytosis around cells in the 

infected area in the host body. S. aureus produces coagulase as an extracellular product or it 

can be bound to the cell wall and growth condition of the cell can influence the production 

level of this enzyme (McDevitt et al., 1992, Engels et al., 1978).  In addition, coagulase is 

expressed in the exponential growth phase in contrast to other extracellular proteins in S. 

aureus that are produced during the stationary phase and it seems to be down-regulated via 

the agr system effector regulator RNAIII during stationary growth phase. For example, in 

wild type cells coagulase has been expressed at the exponential growth phase whereas in the 

agr deletion mutant coagulase was expressed constantly during stationary growth phase which 

indicated the negative regulation of agr locus on the coagulase production (Lebeau et al., 

1994). 

c) Lipase 

Lipase (glycerol ester hydrolase) is an enzyme that catalyses the hydrolyse of lipids. Early 

observation showed that 99% of human strains of staphylococci and 75% of staphylococcal 

strains derived from animals exhibited lipolytic activity (Elek, 1959). Lipase is one of the 

extracellular enzymes that S. aureus produces either to establish colonization or to facilitate 

the cell survival from host defenses (Hu et al., 2012). High level of lipase production was 

exhibited by S. aureus strains that caused deep infections such as septicaemia and 

pyomyositis (Rollof et al., 1987). Also, lipase has been suggested to promote S. aureus 

survival during the host defense response by inactivating the bactericidal lipids and to 

promote S. aureus persistence in mammalian skin and thus increase the pathogenic potential 



15 
 

of the organism(Shryock et al., 1992, Rosenstein and Götz, 2000).  In addition, lipase in S. 

aureus is produced at the stationary growth phase and seems to be expressed positively under 

the agr locus regulation and its coding genes found to be up-regulated during the stringent 

response in S. aureus. (Bronner et al., 2004, Anderson et al., 2006).    

d) Catalase 

Catalase is an enzyme that promotes the decomposition of toxic hydrogen peroxide (H2O2) to 

oxygen and water (Hampton et al., 1996). All Staphylococcus species produce this enzyme 

and it can be used to differentiate between Staphylococci and Streptococci as the latter are 

unable to produce catalase. The coding gene for catalase is katA in S. aureus and it is under 

the positive regulation of ferric uptake regulator (Fur), a central regulator of iron homeostasis, 

and the transcription of this gene is induced at increasing level of iron during growth in S. 

aureus (Cosgrove et al., 2007). This enzyme is important to protect the cells from the 

accumulated toxic hydrogen peroxide during growth or following phagocytosis, which can 

enhance S. aureus pathogenicity (Imlay, 2003, Hampton et al., 1996)   

e) Nuclease 

Nuclease is one of the S. aureus enzymatic productions which shows capability to cleave   

either double or single stranded DNA or RNA generating 3′-nucleotides dinucleotide and 

thermo stable phosphates (Anfinsen, 1968). Nuclease was first discovered by Cunningham et 

al in 1956 and its production is a unique marker that can be used directly to detect S. aureus in 

clinical and food specimens (Cunningham et al., 1956, Alarcon et al., 2006). The enzyme has 

different forms nuclease I, II and III and is heat-stable and is sometimes referred to as 

thermonuclease (Tucker et al., 1978). Nuclease is an important virulence factors in S. aureus 

as it plays a role in hydrolysing the DNA and RNA in the host cells causing tissue destruction. 

Also the enzyme is found to promote the evasion from the host immune response during lung 
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infection (Foster, 2005). Nuclease is secreted during stationary growth phase and thought to 

be under agr positive regulation (Smeltzer et al., 1993). However, recent work by Olson and 

colleagues (2013) showed that nuc, the coding gene for nuclease, is under the control of the 

SaeRS two-component system and they claimed that nuclease is a conserved virulence factor 

among Gram positive cocci (Olson et al., 2013).  

1.1.3.4 Biofilms 

Forming a biofilm is one of the important mechanisms that S. aureus uses for causing disease. 

Biofilm is a complex aggregation of bacteria encapsulated by an extracellular matrix attached 

to a surface and exhibiting increased resistance to antimicrobial agents, environment stress 

and immunological defense (Götz, 2002). In the biofilm, bacteria change their lifestyle from a 

unicellular state to an adherent multicellular state by secreting binding molecules such as 

polysaccharide intercellular adhesin (PIA) (Götz, 2002) This microbial community range 

from a monolayer of single cells to a multilayered thick mucoid structure of cells. S. aureus is 

able to form biofilms on biotic and abiotic surfaces and biofilms protect the cells from the 

host immune response, and also from antimicrobial agents which make such infections 

difficult to treat (Götz, 2002, Stewart and William Costerton, 2001)   

In general, S. aureus possesses a wide range of virulence factors that are encoded by different 

genes and their regulation is influenced by several factors either at transcriptional level or at 

post-transcriptional level. In the following section the mechanism of gene expression and 

DNA replication are briefly highlighted.   

 1.1.4 Brief review of DNA replication and gene expression in bacteria 

The central dogma of molecular biology describes the flow of the genetic information to 

produce nucleic acids and proteins that are needed to maintain the living activities throughout 
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DNA replication, gene transcription and protein synthesis as summarised in figure 2. The 

mechanisms of these processes are briefly described below. 

 

 

 

 

 

 

 

 

 

 

Figure 2 The central dogma of molecular biology.    

 

1.1.4.1 DNA replication 

The genetic information contained in a bacterial cell is found in one or more circular or linear 

chromosomes (a single circular chromosome in S. aureus) which comprise a double strand of 

deoxyribonucleic acid (DNA). Each strand contains nucleotides that are composed of nitrogen 

bases of guanine (G), adenine (A), thymine (T), or cytosine (C) and a phosphate group as well 

as the sugar deoxyribose. These nucleotides are joined together in a chain via covalent bonds 

between the sugar and the phosphate of the adjacent nucleotide. The nitrogen base in the first 

strand attaches to other bases in the second strand via hydrogen bonds according to the base 

pairing rules of A with T (or U in RNA) and C with G. The two strand are antiparallel to one 
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another, and one strand runs from the 5` end in the direction of the 3' end whereas the other 

runs from  the 3' end  to the 5' end direction (Marinas, 1992). 

DNA replication is a process that allows a bacterial cell to pass an identical copy of its 

genome to a daughter cell. The replication is achieved through three steps: initiation, 

elongation and termination. In the bacterial chromosome, DNA replication starts at a specific 

sequence of nucleotides called the origin. The initiation protein (DnaA) and ATP bind to this 

sequence to create what is called a replication bubble by breaking the hydrogen bonds 

between adenine (A) and thymine (T) (Messer, 2002). 

The replication bubble attracts the enzyme helicase which unwinds the two strands while it 

moves down the DNA molecule using ATP as an energy source to break the hydrogenbonds 

between the nitrogen bases (LeBowitz and McMacken, 1986). In addition, single strand 

binding proteins bind to the separate strands to prevent them from re-annealing (Meyer and 

Laine, 1990).  

The elongation step begins when the helicase recruits DNA primase which is an enzyme that 

synthesises an RNA primer which contains a 3` hydroxyl group on the DNA template, The 

DNA polymerase III then commences to synthesise the new strand by adding complementary 

bases to the template strand bases one by one in the 5` to 3` direction (Baker and Bell, 1998).  

The new complementary strand that is synthesised in the same direction of the replication fork 

is named the leading strand. The other new strand is named the lagging strand and it is 

synthesised in fragments (Okazaki fragments) as it elongates in the opposite direction to the 

replication fork. Then the RNA primer at the one end of the fragment is cleaved by RNase H, 

and another enzyme, polymerase I,  fills the gaps between the Okazaki fragments by adding 

DNA nucleotides after that DNA ligase closes the remaining nick on the strand to make it one 

continuous DNA strand (Baker and Bell, 1998). 
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Replication termination is achieved by inhibition of the replication fork when a protein called 

Tus binds to the terminus region which contains several DNA replication terminator sites that 

subsequently fuse the replication fork and terminates the replication process (Bussiere and 

Bastia, 1999).   

1.1.4.2 Transcription 

Transcription is a process where the information content of DNA is transferred to a specific 

nucleotides sequence, messenger RNA (mRNA), to be used for protein synthesis in the 

translation phase. The transcription is achieved in three steps: initiation, elongation and 

termination.  

Initiation takes place when RNA polymerase and sigma factors, specific proteins which bind to 

gene to initiate transcription by binding to the promoter, a specific sequence that does not code 

for protein in the DNA (Gross et al., 1998, Reznikoff et al., 1985). After that, this initiation 

complex melts the DNA double strand by breaking the hydrogen bounds between G-C and A-T 

to make the template strand accessible for the RNA polymerase to begin the elongation. In the 

elongation step, the RNA polymerase moves along the template DNA strand to synthesise a 

complementary RNA sequence (mRNA) from the 5’ toward the 3’ until a terminator sequence is 

reached (Borukhov et al., 2005). Two mechanisms of the termination event are known. The first, 

self-termination, is the most common mechanism. This occurs when the RNA polymerase 

encounters a particular sequence of bases, inverted repeats, such as CCGGGGAAAA in the 

transcribed DNA strand that forms a hairpin loop which is the destabilising structure for the 

RNA polymerase. The second termination mechanism depends on the termination enzyme which 

binds to the newly synthesised mRNA at the 5’, and when the RNA polymerase encounters the 

termination sequence, the enzyme moves towards the 3’of the mRNA to bind RNA polymerase 

which results in dissociating the RNA polymerase from the DNA template (Nudler and 

Gottesman, 2002). After completing the transcription process, the newly synthesised mRNA and 
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the RNA polymerase are released. However, not all the base sequence in the mRNA will be 

translated, as the translation initiation might begin many nucleotides downstream of the 5’ of the 

mRNA.  

1.1.4.3 Translation  

Translation in bacteria is the process by which the messenger RNA (mRNA) is translated into 

protein. Translation is achieved through three different phases: initiation, elongation and 

termination, using different components that are necessary for this operation namely mRNA, 

tRNA, small 30S ribosomal  subunit, and large 50S ribosomal subunit, aminoacyl tRNA 

synthetases and initiation, elongation and termination factors and GTP as a source of energy 

(Gualerzi and Pon, 1990).   

Translation is initiated when mRNA binds to a free 30S ribosomal subunit. This binding is 

facilitated by hydrogen bonding between the 16S RNA component of the 30S subunit and the 

ribosome binding site of the mRNA. Initiation factors (IF-1, IF-2 and IF-3) are involved as IF-

3 binds to the 30S subunit and prevents premature association of 30S and 50S subunits, IF2 

binds with special initiator tRNA charged with formylmethionine (tRNAfMet ) and IF-1 

stimulates the activity of IF-2 and IF-3 (Antoun et al., 2003, Malys and McCarthy, 2011, 

Kozak, 1999).   

There are three sites in the ribosome (A, P and E). Each of these is accommodated to a 

specific process during translation. The A-site is the point of entry for the charged tRNA 

(except for the first aminoacyl tRNAfMet that enters at the P site). The P-site is the central site 

where the peptidyl tRNA is formed in the ribosome. The E-site is where uncharged tRNA 

exits the ribosome after it donates its amino acid to the growing peptide chain (Ramakrishnan, 

2002). 

http://en.wikipedia.org/wiki/Active_site
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The selection of an initiation site relies on the interaction between the 30S subunit and the 

mRNA template, as the 30S subunit binds to the mRNA template at a purine-rich region (the 

Shine-Dalgarno sequence) upstream of the AUG initiation codon. The Shine-Dalgarno 

sequence is complementary to a pyrimidine rich region on the 16S rRNA component on the 

30S subunit (anti Shine-Dalgarno sequence). As a result, a double stranded RNA structure 

binds the mRNA to the ribosome which places tRNAfMet  in the P site of the ribosome (Malys 

and McCarthy, 2011, Shine and Dalgarno, 1974)  

This is followed by translation elongation by which amino acids are added to the carboxyl end of 

a growing chain of amino acids to form a nascent peptide. There are three main processes in 

translation elongation. The first step is bringing new aminoacylated tRNA into line as well as 

releasing uncharged tRNA from the E-site in the ribosome. This step is facilitated by EF-Tu that 

binds with GTP to convey the next aminoacylated tRNA into the A-site of the 50S ribosome. As 

a result, GTP is hydrolysed to GDP which subsequently reduces the affinity of the EF-Tu for the 

ribosome which diffuses away, leaving room for EF-G-GTP (Ramakrishnan, 2002).   

The second step is forming a new peptide bond to elongate the polypeptide. After A-site filling, 

peptidyl transferease catalyses bond formation between the amino acid in the P-site with the new 

amino acid that is carried in the A-site, to form the first peptide bond (Rodnina and 

Wintermeyer, 2003).    

The final step of elongation is shifting the tRNAs from the P and A sites to E and P sites 

respectively, as well as the translocation which moves the 30S ribosome subunit to the next 

codon on the mRNA. This process is catalysed by elongation factor EF-G which hydrolyses 

GTP to yield the energy needed for this step. The ribosome continues to synthesise the 

peptide coded in the mRNA until it reaches one of the stop codons UAG, UGA and UAA that 
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begins the translation termination phase (Ramakrishnan, 2002, Dinos et al., 2005, Rodnina et 

al., 1997).  

When the ribosome reaches a stop codon, no tRNA can enter the A-site of the ribosome and 

the tRNA that carries the polypeptide is hold in the P-site. Release factors (RF1, RF2 and 

RF3) act at this stage to cleave the polypeptide from the tRNA, as well as to dissociate the 

70S ribosome from the mRNA.  Ribosomal subunits 30S and 50S are recycled to initiate the 

translation of another mRNA (Ramakrishnan, 2002, Nakamura and Ito, 2003).  

1.1.4.4 Regulation of transcription 

There are several mechanisms for the control of transcription for instance, a group of small 

proteins called sigma factors facilitate the initiation of transcription. The functions of sigma 

factors are to recognize the promoter sequence, to position the RNAP on the target promoter 

and to promote the unwinding of the DNA duplex near the transcription start point (Browning 

and Busby, 2004). An example for sigma factor is sig70 (σ70) in E.coli which promotes RNAP 

to bind to genes that are involved in functions that facilitate cell growth. In S. aureus sigB 

(σB) activates more than 200 genes that involved in different functions include signalling 

pathways, cell envelope biosynthesis and S. aureus pathogenesis (Bischoff et al., 2004).  

Repressor proteins also can affect gene transcription by binding to a non-coding sequence in 

the operon, the operator, and prevent the RNA polymerase from proceeding through the 

functional genes in the operon leading to impeded transcription of these genes. An example of 

this mechanism is the repression of the tryptophan (Trp) operon in E.coli during the abundant 

availability of tryptophan in the environment (Shimizu et al., 1973, Zubay et al., 1972). 

In addition, inducer molecules can promote gene transcription via binding then deactivating 

specific repressor proteins that are responsible for the impeded transcription of the operon. 

For instance, allolactose deactivates repressor protein for the lactose operon (lac operon) by 
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binding to it and changing the protein shape in a way that prevents the repressor protein 

binding to its target sequence on the operon, thus in the presence of lactose, the RNAP can 

bind to the promoter and transcribe the genes that E.coli cell needs to synthesise enzymes that 

responsible for lactose metabolism (Eron and Block, 1971).  

Small non-coding RNAs are also involved in transcription regulation in bacteria (Storz et al., 

2006). For example, in E.coli, a 6S RNA is found to inhibits the transcription of sig70 (σ70)-

dependent promoters via obstructing promoter recognition and activation of the sigma (S)-

dependent promoter during nutrient deprivation (Storz et al., 2006, Trotochaud and 

Wassarman, 2004).  

Furthermore, forming secondary structure via base pairing binding between small RNAs and 

its target mRNA results in transcription termination which is another mechanism that small 

RNAs exhibits to regulate transcription (Storz et al., 2006). A model for this mechanism is 

shown in staphylococcal plasmid pT181 which contains replication genes that encode 

replication protein C, essential for the plasmid replication, and the small noncoding RNAs 

either of RNAI or RNAII  bind to the replication protein C mRNA and form secondary 

structures that lead to transcription termination (Brantl and Wagner, 2000, Storz et al., 2006). 

In addition, cell density can regulate transcription in bacteria through two component systems 

or quorum-sensing systems. This is a mechanism whereby many bacteria can coordinate 

particular gene expression in response to their population density in the environment. The 

system often consists of a membrane sensor (histidine kinase) and a cytoplasmic response 

regulator. The histidine kinase senses and responds to external stimuli (autoinducer), even if 

the stimuli do not penetrate the cytoplasm. In response to the stimuli, the conserved histidine 

is autophosphorylated. The phosphorous group is then transferred to the response regulator, 

which either activates or represses the transcription of the target gene (Dziejman and 
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Mekalanos, 1995). The two-component system plays a crucial role in controlling the 

metabolism, and regulating the virulence factors in a wide range of Gram negative bacterial 

species such as E.coli, Salmonella typhimurium, and Haemophilus influenzae,  as well as  

Gram positive bacteria such as Streptococcus pyogenes, Enterococcus faecalis, Streptococcus 

mutans, Clostridium perfringens and  Staphylococcus aureus (Miller and Bassler, 2001). 

Moreover, small nucleotides such as ppGpp can show another mechanism that alters 

transcription in response to environmental conditions particularly nutrient limitation. For 

example, in E.coli ppGpp is synthesised during amino acid limitation and this nucleotide 

binds directly to the RNAP with cofactors, DksA, to regulate the transcription of some genes 

by destabilizing open complexes at their promoters (Chatterji and Kumar Ojha, 2001).  This 

mechanism is described in detail in section 1.3 

1.1.4.5 Translation control 

Several factors can contribute and affect the translation processes in bacteria. One of these 

factors is mRNA sequence and structure which plays essential role in its interaction efficiency 

with the translation machinery (Laalami et al., 1996). For instance, in E.coli different 

elements in the mRNA such as the cognate initiation codon for the interaction with fMet-

tRNA and the complementary sequence of SD to the ASD in 16S rRNA might lead to 

increasing expression of the mRNA(Shine and Dalgarno, 1974).  

In addition, forming a secondary structure in the ribosome binding site (RBS) of the mRNA 

via cis-acting elements reduces the efficiency of translation as it sequesters the formation of 

the translation complexes (mRNA, 30S and  fMet-tRNA (Schlax and Worhunsky, 2003). 

Similarly, temperature changes might cause secondary structures for the mRNA and effect its 

translation) (Schlax and Worhunsky, 2003).   
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Furthermore, the intracellular level of the GTP pool can a play a substantial role in translation 

regulation as it contributes in each step of translation. For example, translation initiation 

factor IF2 is important to form the 30S initiation complex and IF2 activation relies on the 

GTP abundance, also hydrolyse of the GTP promotes this initiation factor to release from the 

70S complex which permits elongation and IF2 recycling (Luchin et al., 1999). Additionally, 

EF-Tu-GTP binding facilitates transporting the next charged tRNA into the A-site of the 30S 

subunit and GTP is the energy source for the movement of the 30S subunit along the mRNA 

(translocation) as well as shifting the tRNA in the P and A site of the 30S subunit to E and P 

sites (Laalami et al., 1996). GTPs contributions in the translation processes is summarised in 

figure 3.   

  

 

 

 

 

Figure 3 The involvement of GTP in the translation processes  

In general, many factors can effect gene expression in bacteria such as growth phase, 

metabolic composition, cell density as well as the environmental conditions surrounding the 

cells. In S. aureus the effect mechanisms of these factors are achieved through different 

regulatory response systems like accessory gene regulators (agr) and global transcriptional 

regulators such as Staphylococcal accessory regulator (sar) and others. These regulators 

systems play a crucial role in S. aureus pathogenicity, by either up-regulating or down-

regulating these genes as will be highlighted below. 
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1.1.5 Regulation of virulence factors expression in S.aureus 

1.1.5.1 Accessory gene regulator system (agr) 

S.aureus regulates some of its virulence genes by a well characterized two-component system, 

Agr, a quorum sensing system that plays a fundamental role in virulence factor synthesis 

during growth. This system was thought to be responsible for regulating the production of a 

few pathogenic enzymes and toxins, but subsequent studies revealed that the agr system 

regulates more than 28 genes that encode pathogenicity enzymes and toxins in S.aureus. For 

instance, agr system seems to exert a repressive effect on cell surface proteins such as protein 

A, fibronectin binding proteins A-B during the post-exponential phase of growth. Conversely, 

agr induces  transcription of exotoxins including enterotoxin A, B, C and E as well as range 

of different enzymes including lipase, staphylokinase and V8 serine protease (Ji et al., 1995). 

The agr system consists of two adjacent promoters, promoter P2 and P3. P2 control four 

genes, agrABCD (Figure 4). AgrB and agrD together constitute a quorum-sensing system. 

The two-component system contains agrA which is a response regulator, and agrC, a 

transmembrane protein that is phosphorylated upon binding of autoinducing peptides (AIP). 

AgrB and agrD are involved in modifying and exporting AIP which binds to agrC (for 

autophosphorylation) in order to transfer a phosphate group to AgrA. The phosphorylation of 

AgrA leads to transcription activation for P2 and P3, and the synthesis of RNAII and RNAIII 

respectively (Ji et al., 1995, Arvidson and Tegmark, 2001). The functioning of the agr system 

is illustrated in Figure 4. RNAII regulates  the agrABCD structural proteins, whereas RNAIII 

is an effector regulator for the agr system.  This occurs in the post-exponential phase of the 

growth as a result of the accumulation of AIP (Arvidson and Tegmark, 2001, Novick et al., 

1995a).  
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RNAIII, which is one of the largest regulatory RNAs, up-regulates the transcription of 

secreted protein genes such as tst (TSST-1), hla (α-toxin), hld (δ-toxin) (Novick, 2003, 

Morfeldt et al., 1995) and down-regulates genes that are involved in cell surface protein 

production such as spa (protein A) and  fnbA, fnbB (fibronectin binding protein A, B) via agr 

system (Novick et al., 1993, Huntzinger et al., 2005). 

In addition, the RNAIII regulatory effect can occur at both the transcriptional and post-

transcriptional levels. For instance, base pairing between RNAIII and spa mRNA can occur 

and prevent the formation of the ribosomal initiation complex which consequently inhibits the 

translation of the protein. In addition RNAIII can work as an antisense RNA by pairing to the 

staphylocoagulase (coa) mRNA which promotes the endoribonuclease III to recognize the 

repressed mRNA, and initiate degradation activity on the mRNA (Huntzinger et al., 2005, 

Chevalier et al., 2010).     

In general, the two-component system agr plays an important role in the infection processes. 

For instance, in some conditions such as the presence of bacteria in the blood stream, where 

bacterial numbers are inadequate to establish an infection, the agr system seems to be 

repressed (low level of RNAIII). This enables a high expression of cell surface proteins and 

the adhesive phenotype of the bacterial cells occurs. However, in other infections such as 

abscesses, where the density of the bacteria is high, the agr system is activated and abundant 

RNAIII exists, resulting in increasing levels of toxins and enzyme production leading to tissue 

damage(Arvidson and Tegmark, 2001). 
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Figure 4 Quorum-sensing system (two-component system) agr in S. aureus.  

AgrBC modify and export Autouinducing peptide (AIP). AgrAC are responsive molecules that involved in P2 and P3 transcription activation 

resulting in RNAII and RNA III synthesis. Modified from (Bronner et al. 2004).   

_ 
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1.1.5.2 Staphylococcal accessory element (sae) 

In addition to the agr regulation system, the staphylococcus accessory element (sae) is another 

two-component system that contributes to S.aureus virulence factor regulation. It consists of 

two transcribed genes SaeR and SaeS (Bronner et al., 2004).   

This regulatory system affects the expression of many virulence factors in S.aureus that are 

involved in adhesion and immune evasion such as protein A and coagulase as well as alpha 

and beta haemolysin genes (hla, hlb). For example, SaeR is found to be a positive regulator 

for haemolysin toxins ( α, β, and γ) and a negative regulator for spa. The Sae regulation 

system seems to work independently of other regulation systems such as agr and SarA 

(Dziejman and Mekalanos, 1995). 

1.1.5.3 Staphylococcal respiratory response (srrAB) 

The locus of the two-component system SrrAB consists of two genes that overlap in 20 

nucleotides srrA and srrB.  This encodes the responsive regulator protein and srrAB, that 

encodes the histidine kinase (Bronner et al., 2004). SrrAB is a pleiotropic virulence factor 

regulator in S.aureus that can link between the respiratory metabolism, toxin production and 

environmental signals. The transcription of this regulator is more evident in anaerobic and 

microaerobic conditions than in aerobic conditions. This two-component system affects the 

transcription of several virulence factors and regulators such as RNAIII, protein A and TSST-

1 through direct binding to their promoters. For example, ssrAB shows a negative effect on 

RNAIII and protein a transcription in aerobic conditions. Interestingly, ssrAB promotes 

TSST-1 production in aerobic conditions but not in anaerobic or microaerobic conditions and 

functions independently from the agr system (Pragman and Schlievert, 2004).  
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 1.1.5.4 Sar family regulatory proteins     

Beside two-component signal transduction systems, the global transcriptional regulator 

Staphylococcal accessory regulator (sar) also regulates the virulence factors in S. aureus. 

SarA was described in 1992 and later found to be essential for the transcription of agr RNAII 

and RNAIII, as it can bind agrP2 and agrP3 in the agr system (Arvidson and Tegmark, 2001). 

Expression of the SarA gene is growth phase dependent, and its product is a DNA-binding 

protein which is expressed from three promoters (sarP1, sarP2 and sarP3). sarP1 and sarP2 

expression occurs during the early exponential phase of the growth, and are sigma A (sigma 

factor that directs the transcription of RNA during the growth phase) dependent, while sarP3 

is expressed in the post-exponential phase and is sigma B (sigma factor produced during the 

stationary phase) dependent (Bronner et al., 2004).  

SarA contributes to the regulation of several virulence factors in S.aureus, such as up-

regulation of TSST-1 and α-toxin and down-regulation of expression of collagen binding 

protein and proteases. SarA regulation activity can be either by direct binding to the DNA, or 

indirectly via other regulatory systems such as agr. In addition, mutations of the SarA have 

been shown to attenuate the S. aureus virulence significantly (Bronner et al., 2004, Rechtin et 

al., 1999, Cheung et al., 2008).  

A subsequent study on the Sar locus has revealed another virulence factor regulator called 

sarS or sarH1. This regulator can bind to P3 in agr and has homology to sarA (Cheung et al., 

2001). Moreover, another regulator, sarR which has been found to show ability to repress the 

expression of sarA promoters and additional regulators have been discovered such as sarT that 

seems to repress its adjacent promoter sarU as well as contribute with SarA to repress hla 

transcription and sarU which is a positive regulator for RNAIII.  Although abundant 
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information has been obtained from different studies of this regulatory system, many points 

remain unclear and require further study (Pragman and Schlievert, 2004). 

1.1.5.5 Effects of metabolic alterations on virulence factor expression 

Bacteria can select the preferred source of carbon from the surrounding environment in order 

to facilitate its rapid growth. This selection is associated with shifting the metabolic processes 

in accordance with nutrient availability (Görke and Stülke, 2008). For example, most bacteria 

prefer glucose as a carbon source for quick growth, and they can metabolize glucose either by 

glycolysis and the citric acid cycle (tricarboxylic acid TCA, Krebs cycle) (Görke and Stülke, 

2008). For the quick growth of S. aureus, the glycolysis processes are used to produce ATP 

and other molecules such as pyruvate and NADH. After that, pyruvate is converted to acetyl-

coenzyme A then to acetylphosphate and acetate. The acetylphosphate is used to produce 

more ATP, whereas the acetate is accumulated in the media during the growth.  

After the exponential growth phase and the complete consumption of the glucose, the bacteria 

encounter nutrient limitation conditions and begin to consume the accumulated acetate as a 

carbon source.  This requires a fully functional TCA cycle. The TCA cycle produces ATP 

with more NADH and FADH2 that are used in the electron transport chain in the aerobic 

condition, to produce more quantities of ATP (Görke and Stülke, 2008, Somerville et al., 

2002). Genes that encode enzymes that are involved in the metabolism shifting and activity 

are controlled by regulatory proteins such as CcpA and CodY.  These can sense the nutritional 

status of the cell (Sonenshein, 2007).    

(A) Catabolite control protein A (CcpA) 

CcpA is a global regulator of carbon-metabolism pathways in many Gram-positive bacteria.  

It has been shown to contribute to the regulation of more than 100 genes involved in carbon 
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acquisition, transport and metabolism in B. subtilis (Sonenshein, 2007). CcpA can be either a 

positive or negative transcriptional regulator. For instance, this regulatory protein can activate 

genes that are involved in the synthesis of pyruvate and acetylA, and repress genes that are 

involved in the TCA cycle such as citB and citZ (Sonenshein, 2007). CcpA binds to a specific 

site in the targeted gene promoter entitled the catabolite responsive element (cre-site), and its 

activity is promoted via HPr (histidine containing protein) which is activated by ATP and 

fructose‑1,6-bisphosphate (FBP) (Görke and Stülke, 2008). The abundant availability of ATP 

and the FBP, as well as the HPr, is important for the CcpA with regard to its targeted genes 

(Sonenshein, 2007).  

In addition to the CcpA role in metabolism regulation, this protein has been found to play a 

role in virulence factor regulation. For example, in S.aureus, the CcpA binding site (cre) has 

been identified in the TSST-1 gene (tst), and CcpA has been found to be a transcription 

inhibitor for tst. In addition, inactivation of the CcpA increases the transcription of tst, which 

suggests a direct effect of the CcpA on tst (Görke and Stülke, 2008, Seidl et al., 2008a). 

Moreover, biofilm formation in S.aureus is promoted via CcpA as it increases icaA expression 

and PIA production (Seidl et al., 2008b).  Also, the CcpA protein seems to promote antibiotic 

resistance as its inactivation remarkably reduces the resistance levels for methicillin and 

teicoplanin in two different resistant strains of S. aureus and the mechanism of this effect is 

not fully understood (Seidl et al., 2006). Additionally, CcpA positively regulate the ilv operon 

which is involved in branched chain amino acid biosynthesis that plays animportant role to 

activate another regulatory protein called CodY.  

(B) CodY                                                                                                                                

CodY is a metabolic responsive protein that regulates a number of genes which are involved 
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in nitrogen and carbon metabolism. The first report of this regulatory protein was in B.subtilis 

as a nutrient limitation and stress condition responsive protein (Sonenshein, 2005).  

This regulatory protein activates genes encoding enzymes that are involved in glucose 

metabolism to produce energy. For example, in B. subtilis during glucose abundance, CodY 

positively regulates genes that are coding for acetate kinase (ackA) enzyme that contributes to 

the conversion of pyruvate to acetate in order to produce ATP via glycolysis during the 

exponential growth phase (Shivers et al., 2006). Additionally, CodY  in cooperation with 

CcpA represses expression of genes that involved in TCA cycle in the glucose rich 

environment (Shivers et al., 2006). Also, CodY represses amino acid synthesis and 

transportation, post-exponential virulence factors and nitrogen component metabolism during 

the exponential  phase (Sonenshein, 2005).  

CodY binds to its targeted DNA at the A/T rich region. This regulator possesses the ability to 

sense nutrient availability in the environment via two effector molecules, guanosine 

triphosphate (GTP) and branched-chain amino acids (BCAA), in particular isoleucine or 

valine (Ratnayake-Lecamwasam et al., 2001). Intracellular pool concentration of these two 

ligands affects both independently and additively, the affinity of CodY to bind its targeted 

genes and regulate its transcription. For instance, when bacterial cells encounter nutrition 

limitations, these two effectors are not available in abundance, and consequently the affinity 

of CodY to bind DNA is reduced and de-repression of CodY-repressed genes occurs 

(Ratnayake-Lecamwasam et al., 2001, Sonenshein, 2007).   

CodY homologues have been reported in many other Gram positive bacteria such as 

Streptococcus pneumoniae, Clostridium difficile and S. aureus. In S. aureus, more than 200 

genes that are involved in different functions, including amino acid biosynthesis and 
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transportation, nitrogen compound metabolism and virulence factors have been found to be 

down-regulated via CodY, either directly or indirectly (Majerczyk et al., 2010).    

Recently, Majerczyk and colleagues (2008), conducted a comparative study of clinical 

isolates of S. aureus and a codY mutant, and reported that CodY has an obvious influence on 

the phenotypic and genotypic characteristics of S. aureus. For example, a S. aureus codY 

mutant showed a significant increase in the hemolysin and protease gene transcription in the 

exponential and stationary phases. Moreover, they claimed that RNAII and RNAIII transcript 

molecules from the agr locus were de-repressed during the exponential phase. This shows an 

obvious alteration in virulence factors regulation (Majerczyk et al., 2008).  

The up-regulation of haemolysin and protease genes can play a role in providing peptides or 

amino acids to the bacteria during the nutrient limitation (Anderson et al., 2006). CodY 

appears to play a crucial role in linking metabolism with virulence factors in S. aureus, in 

particular during the stationary phase and in nutrient limitation or stress conditions.   

In general, the regulatory effect of CcpA and CodY proteins is initiated in the presence of 

their metabolic component activators (HPr, FBP and ATP for the CcpA, and GTP, isoleucine 

for CodY protein). In addition, both CcpA and CodY are DNA-binding proteins that can 

directly or indirectly affect some of the virulence factors genes transcription, whether in a 

positive or a negative manner, by sensing their metabolic activators which forms a link 

between the metabolic status of the cell and regulation of its virulence factors. 

Furthermore, these proteins enhance the carbohydrate metabolism which facilitates rapid 

growth through the exponential phase. This might affect the expression of some virulence 

factors genes that are controlled in a growth-dependent manner. Figure 5 illustrates some of 

the regulatory effects of CcpA and CodY.      
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 Figure 5 Effect of the two metabolic responsive proteins CcpA and CodY on different molecular functions 

A) CodY regulation is promoted by GTP and isoleucine (Ile) during exponential growth, B) the CcpA regulatory effect is enhanced via histidine 

containing protein (HPr) that is activated by fructose-1,6-bisphosphate (FBP) and ATP during exponential growth in carbohydrate abundance. 

Arrows represent promotional effect; bars represent inhibitory effect.
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1.2 Mupirocin 

Mupirocin (pseudomonic acid) is an antibacterial agent produced by the Gram-negative 

bacterium Pseudomonas fluorescens. This antimicrobial agent displays a broad spectrum of 

inhibitory activity against Gram-negative bacteria such as E.coli and Gram-positive bacteria, 

including the staphylococci and streptococci. However, it is much less active against the 

majority of Gram-negative bacilli and anaerobes (Sutherland et al., 1985, Gurney and 

Thomas, 2011). 

The first reported research of mupirocin was in 1971then investigations discovered a mixture 

of pseudomonic acids (A-D) that was collectively named mupirocin. This antibacterial agent 

consists of highly unusual polyketide metabolites and the highest proportion ( 95%) 

consisting of pseudomonic acid A(Chain and Mellows, 1974). The structure of mupirocin is 

composed of monic acid containing a pyran ring, attached to 9-hydroxy-nonanoic acid via an 

ester linkage (Figure 6) (Chain and Mellows, 1974, Chain and Mellows, 1977). 

 

Figure 6 mupirocin chemical structure (drawn using ChemoDraw)  
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1.2.1. Mechanism of action of mupirocin 

Mupirocin uniquely affects bacterial protein synthesis by inhibiting aminoacyl-tRNA 

synthetase enzyme which plays a crucial role in pairing the tRNAile to its cognate amino acid 

isoleucine (Hughes and Mellows, 1978b, Hughes and Mellows, 1980). Normally, the 

aminoacyl-tRNA synthetase enzyme binds its amino acid and ATP at a specific site to form 

an aminoacyl-adenylate and release inorganic pyrophosphate (PPi). Then the adenylate- 

aminoacyl-tRNA synthetase complex binds its cognate tRNA molecule to transfer/charge the 

amino acid onto its tRNA to be ready for the translation processes (Figure 7) (Woese et al., 

2000).  

 

Figure 7 Lodging t-RNA with its cognate amino acid process.  

1) ATP and amino acid occupy the active site of the catalyzing enzyme, 2) Amino acid is 

activated by AMP and pyrophosphate are released, 3) AMP is displaced with compatible 

cognate tRNA, 4) Aminoacylated tRNA is released from the aminoacyl-tRNA synthetase 

enzyme.(Anon. 2012).  
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Mupirocin binds to isoleucyl transfer-RNA synthetase in a specific and reversible way and 

inhibits the formation of the adenylate- aminoacyl-tRNA synthetase complex as a competitive 

inhibitor but not the amino acid transfer to the tRNA step (Hughes and Mellows, 1978a). The 

monic acid terminus resembles the side-chain structure of isoleucine (Figure 8) which enables 

it to compete with isoleucine for the binding site in the enzyme. Competitive inhibition was 

shown because increasing the isoleucine pool after mupirocin treatment at low concentrations 

reversed the inhibition in E.coli (Hughes and Mellows, 1978a).    

 

Figure 8 Similarity of the hydrophobic-binding domains in the monic acid terminus of 

mupirocin(A) and the carbon skeleton of L-isoleucine(B) (Hughes and Mellows, 1978a) 

 

1.2.2 Medical applications and resistance 

Mupirocin has been used as a treatment for staphylococual infections since 1985. Topical 

treatment is the only possible way of use since mupirocin shows a high affinity for serum 

A) Mupirocin  

B) Isoleucine  
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proteins, thus it not used systematically and it is applied against skin infections. In addition, 

preventing nasal carriage of S. aureus including MRSA strains was used to tackle infection 

transmission in hospitals and nursing homes (Sutherland et al., 1985, Hetem and Bonten, 

2013). A combination of mupirocin nasal decolonization and chlorhexidine body washing 

showed 37% reduction of MRSA carriage among nursing home residents (McDanel et al., 

2013).   

Mupirocin is useful in decolonization regimes in the inpatient setting for limited periods of 

time. For instance, short term use of intranasal mupirocin was used as a preoperative 

treatment for elective surgical patients to prevent S. aureus post-surgical infections. This has 

been associated with a 58% reduction in post-surgical S. aureus infections and incidence of 

mupirocin resistance occurred only rarely with this regimen in the Netherlands (Bode et al., 

2010). In addition, nasal decolonization of MRSA regime using mupirocin showed effective 

results to eradicate nasal carriage of MRSA in intensive care unit (ICU) patients and inclusion 

of mipirocin in an oral paste and intranasally reduced MRSA lung infections (Coates et al., 

2009, Nardi et al., 2001). Moreover, mupirocin prophylaxis showed effective results for 

dialysis patients as the antimicrobial had reduced the risk of developing S. aureus infections 

by 60% among those patients (Evelina et al.,2007).  

Furthermore, mupirocin can be used to eradicate community- associated MRSA infections in 

selected communities. For example, mupirocin showed effective results to prevent 

community-associated MRSA infections among military trainees after single 5 days course of 

nasal mupirocin, where S. aureus skin infection is highly endemic, (Ellis et al.,2007).    

However, mupirocin resistance appeared two years after it was first introduced (Rahman et 

al., 1987). The resistance is characterized in two distinctive levels, low level resistance 

(between 8-256 µg/ml), which occurs as a result of spontaneous mutation in the antibiotic 

target (IleS), and high level resistance (>500 µg/ml), which is displayed by the production of a 
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plasmid-encoded gene, mupA, is responsible for the production of a novel isoleucyl-tRNA 

synthetase that is insensitive to mupirocin. In other words, when the organism possesses this 

novel (IleS), the mupirocin mechanism of action is deactivated and a high level of mupirocin 

resistance occur (Gilbart et al., 1993).  

Prolonged usage of mupirocin or routine application to control S. aureus endemics for 

inpatients can lead to the emergence of resistance, particularly with unrestricted policies that 

allow widespread mupirocin usage for prolonged periods (Patel et al., 2009). Restricted  

mupirocin use to only those patients who had no skin lesion or previous staphylococcal 

infection is been applied in some countries and showed mupirocin resistance decline (Patel et 

al., 2009). In the UK 888 MRSA isolates, from nursing homes in England, were screened for 

antimicrobial susceptibility and mupirocin resistant isolates presents 5% of them. (McDanel et 

al., 2013, Horner et al., 2013). Recent screening for antimicrobial susceptibility in Libya 

showed that mupirocin resistance occurred in 15% of MRSA isolates(86) used in the study  

where restricted policy for mupirocin prescription is not applied (Mohamed et al., 2010). 

More details of mupirocin resistance and its prescription policy are discussed in chapter 3.      

1.2.3 The effects of mupirocin on S. aureus virulence factors 

Several antibacterial agents such as gentamicin, clindamycin and others have displayed 

inhibitory activity on protein synthesis which leads to inhibition of toxin synthesis without 

affecting cell growth (Schlievert and Kelly, 1984). A previous study by Edwards-Jones and 

Foster (1994) reported that  toxic shock syndrome toxin (TSST-1) synthesis was inhibited 

under the effect of a sub-inhibitory concentration of Bactroban, a cream for treatment of burns 

and other infections in which the active ingredient was mupirocin (Edwards-Jones and Foster, 

1994). In addition, mupirocin exhibits an inhibitory activity on other virulence factors in 

S.aureus such as enterotoxin and haemolysin production and the effects of mupirocin on S. 

aureus varied from one strain to another (Edwards-Jones thesis, 1997). 
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The mechanism of action of mupirocin  mimics amino acid limitation thus, it has been applied 

to induce a bacterial stringent response in vitro in Gram negative bacteria such as E. coli and 

Gram positive bacteria including B. subtilis and S. aureus, also its influence on nucleosides 

intracellular pool has been observed (Cassels et al., 1995, Crosse et al., 2000b). These effects 

are discussed in details below. 

 

1.3 Introduction to the stringent response 

The stringent response is a physiological state that bacteria exhibit to survive when they 

encounter extreme conditions, such as nutrient limitation. In this circumstance, bacteria can 

economise their nutrient consumption by reducing metabolic activities to a minimal rate until 

the surrounding environment is improved. This stress adaption is achieved by alterations in 

bacterial gene regulation, in which the bacteria up-regulate specific genes and simultaneously 

down-regulate others (Chatterji and Kumar Ojha, 2001, Takahashi et al., 2004). 

In 1960's Marchel Cashel observed two spots on thin-layer chromatography plates called 

”magic spots” 1 and 2 subsequently identified as the two nucleotides guanosine 

tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (Figure 9) which 

accumulated rapidly in E.coli after nutrient limitation  by amino acid starvation, that triggered 

a stringent response state (Cashel and Gallant, 1969). Subsequent studies have shown that 

(p)ppGpp is accumulated not only in E. coli, but in other species of bacteria and also fungi 

and plants. However, until the present time, there has been no evidence for the existence of 

(p)ppGpp in mammals (Braeken et al., 2006, Takahashi et al., 2004). 

After much of research, it has become evident that the hallmark of the stringent response is 

(p)ppGpp, which acts as  an alarmone responsible for regulating global intracellular changes 
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including transcription, translation, replication, virulence induction in pathogenic bacteria, 

differentiation and latency through various mechanisms (Wu and Xie, 2009). 
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Figure 9 chemical structure for pppGpp (A) and ppGpp (B) (drawn by ChemoDraw)
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1.3.1 (p)ppGpp synthesis 

Haseltine and Block (1973) showed that (p)ppGpp synthesis in E.coli is triggered when an 

uncharged tRNA attaches to the A-site of the 50S ribosome. This, blocks protein synthesis on the 

ribosome, which consequently, triggers an idling reaction whereby RelA (the first known 

(p)ppGpp synthase) catalyses the enzymatic phosphorylation of GDP and GTP to ppGpp and 

pppGpp respectively, by using ATP as a phosphate donor (Haseltine and Block, 1973). 

Further studies have revealed that E.coli shows two different pathways to produce (p)ppGpp, 

RelA and SpoT pathways. The relaxed gene or relA that codes for the RelA enzyme which is a 

(p)ppGpp synthase is activated in response to amino acid starvation through the mechanism 

described above. SpoT, in contrast to the RelA enzyme, is a bifunctional enzyme that has the 

ability to affect (p)ppGpp in two ways : synthetic activity and hydrolytic activity by hydrolysing, 

pppGpp and ppGpp, to GTP/GDP + PPi (Figure 10) (Chatterji and Kumar Ojha, 2001, Wu and 

Xie, 2009).  

Moreover, the SpoT enzyme seems to produce ppGpp in most stress and nutrient limitation 

conditions other than from amino acid deprivation, such as phosphorous, iron and carbon 

starvation (Murray and Bremer, 1996). However, less is known about the mechanism behind 

SpoT-dependent production but inactivation of spoT and  relA genes in E.coli by mutation 

made the cell entirely unable to produce (p)ppGpp and, consequently, unable to display the 

stringent response (Magnusson et al., 2003). 

1.3.2 (p)ppGpp role in the stringent response 

 Many studies have reached the consensus that (p)ppGpp displays many of its effects on gene 

regulation in the stationary phase, which enables it  to play a crucial role in bacterial survival 
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during growth arrest by controlling the expression of a number of genes (Wu and Xie, 2009, 

Nyström, 2004). 

 

 

 

 

 

 

 

 

 

Figure 10 (p)ppGpp synthesis, hydrolysis and its influences on regulation of gene 

expression in E.coli 

Binding of the uncharged tRNA to A-site of 50S subunit activates relA enzyme to catalyse 

(p)ppGpp synthesis. SpoT enzyme also synthesises and hydrolyses (p)ppGpp. ppGpp attach to 

RNAP to regulate different genes functions transcription. (Auther drawing). 

 

This alteration of gene expression has been observed by comparing bacterial cells that are 

capable of producing (p)ppGpp (wild type cell) and mutants that lacked the ability to produce 

(p)ppGpp (p)ppGpp0. Both cell types were exposed to carbon starvation in the same growing 

conditions. As these cells entered the stationary phase, their proteomic profiles indicated that 

(p)ppGpp0 cells exhibited proteomic profiles similar to those observed during growth, 
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the alteration of gene expression for these cells was investigated by a DNA microarray 

technique and the results supported the proteomic data(Magnusson et al., 2003) (Chang et al., 

2002). These observations suggested an obvious correlation between (p)ppGpp production 

and  gene expression alterations that result in the stationary phase proteomic profile which 

might enable bacteria to adapt to stress conditions in the surrounding environment and 

survive. Conversely, the proteomic profile that has been shown by the(p) ppGpp0 cells 

(growth state profile) explains their failure to survive, since the cells display no response (no 

gene expression alteration) to the stress condition, carbon deprivation, which leads to cell 

death (Chang et al., 2002, Magnusson et al., 2003). These results have provided sufficient 

explanation for the (p)ppGpp influence on gene expression, when bacterial cells encounter 

stressful conditions, and have encouraged researchers to further observe and understand the 

roles and influences of (p)ppGpp.  

1.3.3 Effects of (p)ppGpp on cell functions 

The accumulation of (p)ppGpp inhibits the synthesis of ribosomal and transfer RNA, and thus 

profoundly affects  translation as well as other cellular processes. In addition to its repressive 

activity, (p)ppGpp exhibits a positive effect on genes that are involved in the stress response 

such as, stress resistance and starvation survival genes(Magnusson et al., 2005) as illustrated in 

figure 10. In E.coli (p)ppGpp effects on different cellular processes such as transcription, 

translation and DNA replication  have been studied in detail and are described below.  

1.3.3.1 Effects of (p)ppGpp on transcription 

The effect of (p)ppGpp in the transcriptional process is described as an interaction between 

different elements, (p)ppGpp, RNA polymerase (RNAP), promoters of the  ribosomal RNA 

and amino acid biosynthesis genes, sigma factors and other cofactors. Most transcriptional 

regulatory factors bind to the DNA’s promoter to recruit or exclude RNAP whereas, 



 
 

47 

(p)ppGpp seems to bind directly to the RNAP in order to regulate the promoter and   ppGpp 

tends to binds to the β, β' and σ70 subunits on the RNAP (Magnusson et al., 2005, Chatterji 

and Kumar Ojha, 2001). However, Artsimovitch and colleagues (2004) claimed that ppGpp 

binds to the near active site of the RNAP where it can interact with both β, β' subunits 

(Artsimovitch et al., 2004)  

In addition, (p)ppGpp shows a strong effect on transcription initiation for amino acid 

biosynthesis promoters in vivo, but this effect was undetectable in vitro until the discovery of 

the cofactor DksA which  is considered as a crucial element for (p)ppGpp in E.coli to initiate 

transcription for amino acid synthesis and to inhibit rRNA expression either  in vivo or  in 

vitro (Paul et al., 2005).  

For example, in the amino acid histidine gene transcription, (p)ppGpp and DksA bind to the 

RNAP and redirect it to attach to the discriminator sequence, transcriptional site of the 

histidine operon (an AT-richregion), which increases the formation rate of the open 

complexes to trigger the transcriptional initiation of the histidine operon, stimulating 

transcription (Paul et al., 2005). Conversely, in the case of rRNA deactivation, (p)ppGpp and 

DksA reduce the stability of the open complexes which inhibits the transcription initiation and 

deactivate the rrn operon transcription by binding to a GC rich region (Figure 11B;)(Barker et 

al., 2001). 
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Figure11 The mechanism of ppGpp regulation of  the expression of his and rrn 

promoters 

A; ppGpp and DksA bind to the RNAP and redirect it to attach to the discriminator sequence 

site of the histidine operon (AT-rich), which leads promoter transcription activation. B; 

ppGpp and DksA reduce the stability of the open complexes, which inhibit the transcription 

initiation and deactivates the rrn operon (Dalebroux et al., 2010) 

 

Another mechanism by which (p)ppGpp can inhibit the transcription is via freeing RNAP from 

σ70-dependant genes (most growth genes) that allows competition amongst other sigma factors 

and increases the possibility of RNAP attaching to other sigma factors, such as sigma S, 32 and 

54 (Srivatsan and Wang, 2008). For example, specialized sigma factors bind the promoters of 

genes that are appropriate for the environmental conditions and consequently initiate the 

transcription for those sigma factor dependent genes. In particular (p)ppGpp can activate sigma S 

factor, which plays a crucial role in transcription initiation under stress conditions and at the 
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stationary phase in E.coli . Moreover, sigma S-dependent promoters require (p)ppGpp for their 

activation. In other words, ppGpp is involved in the production and activation of sigma S factor, 

which indicates its indirect effect on transcription (Gentry et al., 1993, Kvint et al., 2000).  

 

1.3.3.2 Effects of (p)ppGpp on translation 

The repression activity that (p)ppGpp shows on the synthesis of the stable RNA (tRNA and 

rRNA) is a crucial early effect that leads to inhibition of  the initiation of the translation 

process. Another way that (p)ppGpp can affect the  translation process is by reducing and 

inhibiting the activity of the translation elongation factors EF-Tu and EF-G, which results in 

major disruption of the translation process (Figure 12) (Srivatsan and Wang, 2008). In 

addition, a recent paper by Milon and his colleagues revealed that (p)ppGpp interacts with IF2 

(initiation factor responsible for the translation initiation) and consequently, translation is 

inhibited as (p)ppGpp binds the same site of IF2 that is targeted by GTP in normal translation 

processes. In other words, (p)ppGpp competes with GTP to attach to the IF2 factor (Figure 

12) (Milon et al., 2006). 
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Figure 12 Effects of (p)ppGpp on translation 

(p)ppGpp inactivates translation by interrupting the IF2  function and also via inhibition of 

elongation factors(IFG, IF-Tu), bars represent inhibitory effect. (Auther drawing)  

1.3.3.3 Effects of (p)ppGpp on DNA replication 

Glaser et al (1995) have claimed that, (p)ppGpp plays a role in affecting growth of E.coli by 

inhibiting the initiation of DNA replication which is a crucial point in DNA replication (see 

section 1.1.4.1). They also reported that the concentration of  (p)ppGpp was inversely 

correlated with the initiation of new DNA replication(Figure13) (Schreiber et al., 1995b). 

However, another way in which(p)ppGpp affects DNA replication is by inhibition of  the 

replication elongation irrespective of the replication fork position on the chromosome 

(Figure13) (Levine et al., 1991). 

 

Figure13 Effects of (p)ppGpp on DNA replication  

(p)ppGpp impedes DNA replication by inhibiting replication initiation and by stalling 

replication elongation. Modified from (Srivatsan and Wang, 2008). 

A summary of the proposed effects of (p)ppGpp on the cells molecular activity is shown in 

Figure 14. 
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Figure 14 Summary of various proposed effects of (p)ppGpp effects on E.coli as a prokaryote model  
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  1.4 (p)ppGpp in Gram-positive bacteria  

A wide range of Gram-positive bacteria display the ability to produce (p)ppGpp under 

stress conditions including B.subtilis, Listeria monocytogenes, streptococci and 

staphylococci. (Lemos et al., 2008, Nanamiya et al., 2008, Taylor et al., 2002, Cassels et 

al., 1995). The mechanism and effect of (p)ppGpp produced in Gram-positive bacteria was  

thought to be similar to that of Gram-negative bacteria, but there is growing evidence that 

there are fundamental differences between these two groups of bacteria in their (p)ppGpp 

synthesis, influences and functions (Wolz et al., 2010). 

1.4.1 (p)ppGpp synthesis in Gram-positive bacteria 

RelA and SpoT are the enzymes responsible for synthesis of (p)ppGpp in Gram-negative 

bacteria. A homologous enzyme named RSH (RelA/SpoT Homologue) is responsible for 

(p)ppGpp synthesis in Gram-positive bacteria although the (p)ppGpp alarmone is derived 

from GTP/GDP by phosphorylation by ATP as in E. coli (Wolz et al., 2010, Potrykus and 

Cashel, 2008). RSH displays bifunctional activity as it synthesises and hydrolyses 

(p)ppGpp and  similar to RelA and SpoT, RSH is composed of a C-terminal regulatory 

domain (CTD) as well as a N-terminal enzymatic domain (NTD) (Hogg et al., 2004). The 

CTD is assumed to be involved in the reciprocal regulation activity states (p)ppGpp 

hydrolyse OFF/synthesis ON and (p)ppGpp hydrolyse ON/synthesis OFF (Hogg et al., 

2004, Mechold et al., 2002).  Interestingly, RSH has demonstrated no (p)ppGpp synthesis 

activity when expressed in E. coli and exposed to amino acid starvation, which suggests 

that its activity is limited to its native genetic background (Mechold et al., 2002). 

1.4.2 Mechanisms of action of (p)ppGpp in Gram-positive bacteria                                    

The mechanisms of action that (p)ppGpp shows in Gram positive bacteria differs from 

Gram negative bacteria in several ways. For example, (p)ppGpp and DksA show direct 
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effects on amino acid synthesis when these two elements bind to RNA polymerase in order 

to either up-regulate or down-regulate promoters in E. coli (section1.3.4.1) By contrast, the 

DksA cofactor is not present in Gram-positive bacteria (Wolz et al., 2010, Krásný and 

Gourse, 2004).  

Another example of the variations is that (p)ppGpp affects DNA replication at a  different 

stage in Gram-positive bacteria. For instance, in E. coli, (p)ppGpp affects the DNA 

replication at an earlier stage as it blocks DNA replication initiation at  the oriC site which 

consequently prevents the DNA replication. In contrast, (p)ppGpp in  B. subtilis exhibits 

inhibitory activity against primase, which leads to  interruption of the elongation stage, 

subsequently, DNA replication is stalled (Levine et al., 1991).  

Furthermore, the decreased concentrations of GTP in the intracellular pool in B. subtilis 

and S.aureus seem to play an important role in the stringent response effects. For instance, 

the decreased level of GTP pool can repress genes that use this nucleotide as a 

transcriptional initiator. In B. subtilis rRNA gene promoter (rrn) activity is correlated with 

the GTP intracellular concentration as it tends to be up-regulated in the abundance of the 

nucleotide and repressed in the low concentrations of GTP (Krásný and Gourse, 2004, 

Tojo et al., 2010). 

In addition, GTP plays an important role in the translation initiation and translocation 

(section 1.1.4.5). A further important consequence that might occur in low concentrations 

of GTP is the reactivation of CodY-repressed genes. GTP enhances affinity of CodY to its 

target genes and decrease in GTP intracellular concentration would affect the repressive 

activity of this global regulatory protein and lead to huge transcriptional alterations, in 

particular for genes that are involved in nitrogen and amino acid metabolism as well as 

those encoding virulence factors (Sonenshein, 2005). During the stringent response the 
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GTP pool is rapidly decreased as a result of its consumption through (p)ppGpp synthesis 

(Geiger et al., 2010a). In addition Kriel  and colleagues (2012) claimed that (p)ppGpp is a 

posttranscriptional inhibitor for the GTP synthesis pathway in B.subtilis as it inhibits the 

activity of  three enzymes, guanylate kinase (Gmk), hypoxanthine 

phosphoribosyltransferase (HprT) and  IMP dehydrogenase (GuaB), that are involved in 

the GTP synthesis pathway (Figure15). It’s worth noting that, IMP accumulates during the 

stringent response as a result of (p)ppGpp inhibitory effect, subsequently the IMP , as it is 

a precursor for ATP synthesis, may be recruited in the ATP synthesis pathway leading to 

increased ATP pools during the stringent response (Kriel et al., 2012).   

 

 

 

 

 

 

 

 

Figure15 Effect of (p)ppGpp on the GTP synthesis pathway  

During the stringent response (p)ppGpp directly inhibits GuaB (IMP-Dehydrogenase), 

Gmk (guanylate kinase) and  HprT (hypoxanthine phosphoribosyltransferase) enzymes that 

are involved in GTP de novo biosynthesis which results in declined GTP and increased 

ATP pools. Arrows represent positive effect, bars represent inhibition. (Auther drawing) 
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A summary of (p)ppGpp mechanisms of action during the stringent response in Gram-

positive bacteria is shown in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Summary of (p)ppGpp mechanism effects in Gram positive bacteria  

DNA replication, GTP synthesis and pool are directly affected by (p)ppGpp. Decreased 

levels of GTP affects transcription initiation for some genes and would also trigger large 

alterations in metabolism and virulence factors expression through deactivating CodY 

repressive effect.  

 

1.4.3 (p)ppGpp and pathogenicity in Gram-positive bacteria 

After much research on Gram-positive (p)ppGpp, a consensus has been arrived at that there 
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production, and the pathogenicity of these bacteria. For example, inactivation of relA gene 

in Streptococcus pyogenes results in expression of several virulence factors such as  

streptolysin S, streptolysin O, streptodornase, and  streptokinase which are involved in the 

Streptococcus pyogenes pathogenicity (Steiner and Malke, 2001). In addition, in B.subtilis 

a Rel mutant lacked detectable (p)ppGpp and failed to form spores and survive under stress 

conditions (Wendrich and Marahiel, 1997).  

In contrast with other bacteria, an early studies on (p)ppGpp in S. aureus revealed that the 

rel gene in S. aureus is essential for the organisms viability as the rel mutant was not able 

to remain viable (Gentry et al., 2000). Recent work by Wolz and his research group 

showed that, rshsyn mutant cell stayed viable and they attributed the essentiality of the rel 

gene in cell viability to the hydrolase activity domain of RSH enzyme which seems 

responsible to prevent toxic level of (p)ppGpp that can be produced from other enzymes 

such as RelQ and RelP (Geiger et al., 2010a). The stringent responses influence on 

pathogenicity has been explained by a series of intracellular actions. As mentioned 

previously, (p)ppGpp synthesis is accompanied by a significant decrease in the GTP 

intracellular pool. GTP has a crucial role on CodY function, CodY is a regulatory protein 

that is involved in carbon and nitrogen metabolism and is responsible for repression of 

virulence genes in some Gram-positive bacteria,(see section 1.1.5.5.B ).The decrease in 

GTP concentration inactivates the repressive function of CodY and subsequently 

expression of virulence genes is increased which might increase the virulence properties of 

the bacteria (Handke et al., 2008, Majerczyk et al., 2010).  

In recent years, the obvious correlation between (p)ppGpp production and pathogenicity in 

Gram-positive bacteria has opened doors to study this phenomenon closely and especially 

in Staphylococcus aureus. 
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1.4.4 Stringent response in S. aureus                                                                                                

Like many Gram-positive bacteria, S. aureus exhibits a stringent response after exposure to 

stressful conditions such as amino acid starvation and has the ability to produce (p)ppGpp. 

This was reported by Cassels and colleagues(1995), who observed (p)ppGpp accumulation 

in 28 different strains from six species of staphylococci including S. aureus (15 strains),  S. 

saprophyticus (2 strains), S. warneri (1strain), S. epidermidis (7 strains), S. hominis (1 

strain) and S. haemolyticus (2 strains) after inducing the stringent response in vitro by 

adding mupirocin (Cassels et al., 1995) 

Subsequent studies by Crosse and his team (2000) showed that the accumulation of 

(p)ppGpp in S. aureus could be induced by different types of nutrient deprivation such as, 

total amino acids, glucose, carbon and isoleucine (via mupirocin treatment). In addition, 

they showed that the Rel/SpoT enzyme exhibited dual functions (synthesis and hydrolysis 

of (p)ppGpp) which was earliest observation about the mechanism of effect for this 

enzyme in S.aureus (Crosse et al., 2000b). 

1.4.5 (p)ppGpp synthesis in S. aureus via mupirocin treatment 

 The mechanism of (p)ppGpp accumulation in S.aureus after mupirocin treatment occurs 

when this antibacterial agent inhibits the bacterial isoleucyl tRNA synthetase, which leads 

to uncharged tRNA binding to the A-site of the 50 S ribosome unit (Figure 17). Uncharged   

tRNA in the ribosome is sensed by the C-terminal domain in the RSH then the N-terminal 

enzymatic domain is shifted towards synthesis activity and begin to catalyse (p)ppGpp 

synthesis from GTP/GDP using ATP (Geiger et al., 2010a). In contrast to E.coli which 

produces ppGpp dominantly, S. aureus showed ability to produce both ppGpp and pppGpp 

after mupirocin treatment. For example, pppGpp and ppGpp have been detected after  

mupirocin treatment  (3 x MIC) and pppGpp appeared to be produced in higher 
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concentrations than ppGpp (Reiß et al., 2011). However, other researchers detect ppGpp as 

well as pGpp and they claimed no pppGpp was present after stringent response induction 

by mupirocin (Crosse et al., 2000b). Hydrolysis of pppGpp to form ppGpp and technical 

variations in detection methods for these nucleotides leads to these contrary results. This 

point is discussed in more detail in Chapter 4.  

   

 

 

 

 

 

 

 

 

 

 

 

                                  

Figure 17 Stringent response induction by mupirocin in S. aureus  

Mupirocin inhibits isoleucyl-tRNA synthase (IleS) activity which leads to accumulation of 

uncharged tRNA and free amino acid, isolecine (Ile). The C-terminal regulatory domain 

(CTD) in RSH (RelA/SpoT homologue), senses the uncharged tRNA accumulation then        

N-terminal enzymatic domain shifts toward synthesis formation function in order to 

synthesise (p)ppGpp by deriving it from GTP and GDP using ATP as energy source and 

phosphate donor. Dotted line indicates inhibited activity of IleS enzyme. (Auther drawing) 
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1.4.6 Global alteration during stringent response                                                                 

Recent work by Reib and colleagues (2011) have used transcriptomic and proteomic 

techniques to observe the effect of mupirocin (at 3 x MIC) on S. aureus COL strain. They 

reported that most of the repressed genes during the stringent response were those involved 

in the regulation, structure and function of the cell transcription, translation and replication 

machineries (Reiß et al., 2011). In addition, remarkable repression had occurred on genes 

that encoded products that were essential in rapid growth as well as for genes that were 

involved in RNA and DNA synthesis pathways. Also, they observed a significant reduction 

(50%) in protein synthesis rate relative to control cells after 10 min of mupirocin addition 

(Reiß et al., 2011). 

Anderson and colleagues (2006) observed the stress responses in S. aureus that were 

induced in different ways such as, heat shock, cold shock and nutrient limitation and they 

reported significant increases in mRNA stability (89 to 100%) of stress-induced transcripts 

after stringent response induction compared to control cells and they suggested that might 

be related to the inhibition of protein synthesis during the stringent response (Anderson et 

al., 2006). In addition, groups of stress response genes are induced during the stringent 

response including the, universal stress proteins family (Usp) that is involved in different 

functions such as oxidative-stress resistance, stationary-phase survival and adhesion (Kvint 

et al., 2003).  

Production of toxin-antitoxin systems is another of the stringent response features that 

occurrs in E.coli, B subtilis and S. aureus (Fu et al., 2007, Gerdes et al., 2005). Most toxin-

antitoxin loci contain two genes that encode a stable toxin and an unstable antitoxin that 

seizes the toxins by direct protein–protein interaction and they are degraded by cellular 

proteases (Gerdes et al., 2005, Hayes and Van Melderen, 2011). Chromosomally encoded 

toxin antitoxin systems contribute to stringent response by inhibiting important cellular 
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processes such as translation. For example, in S. aureus MazEFSa is a toxin-antitoxin 

sequence-specific endoribonuclease which cleaves mRNA and inhibits translation during 

the stringent response (Fu et al., 2007). Recent work has suggested an important role of the 

toxin antitoxin system in the S. aureus fitness following mupirocin exposure (Reiß et al., 

2012a). 

Global transcriptional alterations occurred through the stringent response. Spx is a global 

transcriptional regulator that can activate or repress transcription of wide range of genes 

involved in growth and stress responses in S. aureus (Pamp et al., 2006). However, Most 

of the up-regulated genes during the stringent response in S.aureus were found to encode 

hypothetical proteins of yet undetermined functions that might be related to cell adaption 

during the stress response (Anderson et al., 2006, Reiß et al., 2011).    

  1.4.7 Effects of the stringent response on amino acid pools and mupirocin 

susceptibility  

During the stringent response induced by mupirocin, Reib  and colleagues claimed that 

isoleucyl tRNA synthetase IleS gene (ileS) and genes that were involved in branched-chain 

amino acid (BCAA) biosynthesis such as ilv-leu were transcribed at high levels and their 

expression was associated with slight increase in the intracellular concentrations of these 

amino acids in comparison to control cells which might reflect their important role during 

stringent response in S. aureus (Reiß et al., 2011). This finding is in agreement with other 

observations that  amino acid biosynthesis and transport genes transcription increased after 

stringent response induction by mupirocin (60µg/ml-1 ) (Anderson et al., 2006). In addition, 

it was suggested that up-regulation of genes encoding proteases may increase digestion of 

extracellular proteins within the bacteria milieu in order to recover from the amino acid 

deficit caused by the stringent response (Anderson et al., 2006).  
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In another study, two different strains of S. aureus (Newman and HG001) rshsyn mutant 

exhibited lower MIC (up to 4 fold) toward mupirocin than the wild type strain which led to 

speculation that (p)ppGpp can up-regulate genes involved in isoleucine biosynthesis in 

wild type strains which might elevate isoleucine level to antagonise the activity of 

mupirocin, thereby reducing mupirocin influence in the wild type cells (Geiger et al., 

2010a).  

1.4.8 Regulation of virulence factor expression by the stringent response 

S. aureus virulence factor genes are mostly regulated in a growth-dependent manner. For 

example cell surface components that facilitate host tissue attachment are expressed within 

the exponential growth phase whereas exoproteins and toxins are preferentially expressed 

in the post-exponential growth phase (Cheung et al., 2004).  

During the stringent response a number of genes that encode adhesin proteins such as 

intercellular adhesion protein A-B (ica A-B), fibrinogen-binding protein (fbp) and 

fibronectin-binding proteins A and B (fnbA, B) were up-regulated (Anderson et al., 2006, 

Reiß et al., 2011). In addition, genes that encoded toxins such as TSST-1 (tst), 

staphylococcus enterotoxin B (seb), and proteases (sspA, sspB and sspC) genes were also 

transcribed during the stringent response. Further, genes that encoded two components 

regulatory systems which contribute to virulence genes regulation were up-regulated 

during the stringent response. These regulatory systems include the quorum sensing agr 

locus and its effector regulator RNAIII, Sar family and Sae systems (Anderson et al., 2006, 

Reiß et al., 2011, Geiger et al., 2010a).  

The stringent response in S. aureus also exhibits clear effects on the pathogenicity of the 

organism through decreasing the level of GTP which influences on the regulatory protein 

CodY repressive activity on number of virulence factors genes (see section 1.1.5.5.B) 
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(Majerczyk et al., 2008). Recent work by Wolz and colleagues (2010) used a rsh syn 

mutant strain of S. aureus and they found that it was attenuated in an animal model of 

infection. Then they introduced a codY mutation into the rshsyn mutant strain and they 

observed an increased level of virulence in this strain and they attributed this to the loss of 

CodY protein repressive activity on virulence factor gene expression (Geiger et al., 2010a). 

In addition, codY gene has been reported to be repressed at both transcription and 

translation levels during the stringent response induced via mupirocin (3 x MIC) (Reiß et 

al., 2011)  

Furthermore, Wolz and his research group (2012) have observed the effect of the stringent 

response on virulence factors in vivo and they claimed that induction of the stringent 

response in S. aureus was also important for the cell survival after phagocytosis (Geiger et 

al., 2012). They found that, uptake of wild type S. aureus in neutrophils could trigger the 

stringent response and cytotoxic phenol-soluble modulins (PSMs), peptides that promote 

neutrophil lysis after phagocytosis, were found to be expressed and produced which 

enabled S. aureus to survive from phagocytosis in contrast to  psm mutant, rsh mutant, rsh 

and codY double mutant strains (Geiger et al., 2012).   

Another mechanism that has been shown to increase pathogenicity of S. aureus during the 

stringent response is via stabilization of mRNA for those genes encoding important 

virulence regulators such as RNAIII, SarA and SaeRS (Geiger et al., 2010a). The 

obstructed ribosome with uncharged tRNA was assumed to increase the lifetime of the 

bacterial mRNA as the ribosome can protect mRNA from the RNase degradation activity 

(Anderson et al., 2006). However, it is not clear if the increased stabilization of mRNA 

during mupirocin treatment is paralleled by increased protein synthesis in S. aureus.  
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On the other hand, during the stringent response the organism’s pathogenicity can be 

reduced in different aspects. For instance, repression of genes encoded for products that 

contribute in the translation machinery such as rRNA, obstruction of ribosomes by 

uncharged tRNA and lack of essential nutrient components such as amino acids would 

affect the virulence product synthesis for the bacteria such as exo-proteins and enzymes. In 

S. aureus, a reduction (50%) in protein synthesis during stringent response triggered via 

mupirocin had been reported (Reiß et al., 2011). In addition, the associated growth 

inhibition through the stringent response may affect the pathogenicity of invasive 

infections that S. aureus might exhibit.   

1.4.9 transcritomic technologies to observe the global alteration of gene expression 

during the stringent  response   

The majority of previous studies that have observed the effect of the stringent response on 

gene expression in S. aureus have used microarray techniques (Anderson et al., 2006, 

Geiger et al., 2010, Reiß et al., 2011). Microarray (hybridization-based technology) was 

the most advanced tool that could be used for transcriptomic study in the last few years. 

However, the advent of next generation sequencing (high throughput sequencing 

technology) in particular RNA-seq has changed the way in which transcriptomes are 

observed (Nagalakshmi et al., 2010, Wang et al.,2009).  

RNA-seq, also called "Whole Transcriptome Shotgun Sequencing", is a technology that 

applies sequencing to a library of cDNA, obtained from RNA, utilizing the capabilities of 

next-generation sequencing (high-throughput DNA sequencing technologies). This is 

followed by mapping the sequencing reads to a reference genome to provide precise 

quantification of global gene transcription (Wang et al., 2009). 

There is some kind of similarity between microarray and RNA-seq methods. For example, 

both of them can be conducted using the same work flow starting from experimental 
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design; data acquisition, and finally analysis and interpretation. However, key differences 

between these technologies make the RNA-seq advantagous over microarray. For instance, 

using microarray technology, transcript detection is limited as specific oligonucleotides 

probes are hybridized with their corresponding genes; while in the RNA-seq known 

transcript as well as unknown can be detected which makes RNA-seq technology also ideal 

for discovery-based experiments (Wang et al.,2009, Arnoud and  Vliet., 2010). 

In addition, microarrays can measure the relative level of RNA only whereas; absolute 

rather than relative values can be quantified by RNA-seq with a large dynamic range of 

expression levels. Also, de novo transcriptome assembly and differential expression 

analysis can be performed for organisms lacking a reference genome by RNA-seq 

technology (Arnoud and  Vliet., 2010). Another advantage of RNA-seq over microarray is 

that mismatches affect the hybridization efficiency which lead to high signal background in 

the microarray technology while RNA-seq delivers low background signal as cDNA 

sequences can be mapped unambiguously to unique regions of the genome which enable 

easy elimination of the noise during analysis (Wang et al.,2009).                                                                                                         

In this study, the RNA-seq technology was performed to observe the global alteration on 

gene expression after exposure to a sublethal concentration of mupirocin which has not 

been used in previous observations.  

1.4.10 Summary 

An increasing number of observations on the stringent response in S. aureus have only 

been reported recently despite of the clinical importance of this pathogen. Most of these 

studies used multiples of MIC to induce the stringent response in S. aureus using 

mupirocin which lead to cell death after few hours (Cassels et al., 1995, Crosse et al., 

2000b, Anderson et al., 2006). During the stringent response, global phonotypic and 
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genotypic alterations occur such as inhibited growth and global gene expression alterations 

(Reiß et al., 2011) (Geiger et al., 2010a).However, similar alterations have been reported 

in different strains of S. aureus in several studies after exposure to sub-inhibitory 

concentration of antibiotics. For instance, early production of TSST-1 after sub-inhibitory 

concentration of silver sulphadizine and prolonged lag phase with reduced TSST-1 

production after mupirocin treatment was reported early by  Edwards-Jones and Foster 

(Edwards-Jones and Foster, 1994). Subsequent work observed increasing toxins production 

of S. aureus (TSST-1, PVL alpha haemolysin) after exposure to sub-inhibitory 

concentration of non-protein targeting agents in particular nafcillin (Stevens et al., 2007). 

Conversely reduced toxin production but not transcription following treatment with sub-

inhibitory concentration of protein synthesis inhibitor such as clindamycin and linezolid 

was reported (Stevens et al., 2007). Suppression of toxin production in pathogenic 

organisms is important particularly during infections caused via toxins such as necrotizing 

infections (Zimbelman et al., 1999, Stevens et al., 1987). Reduced toxins production and 

growth inhibition that occurred  after sub-inhibitory concentration of proteins synthesis 

inhibitor agents in particular mupirocin can be related to the stringent response as these 

feature were also exhibited after stringent response induction via high inhibitory 

concentrations (Reiß et al., 2011).  

Here, the effect of sub-inhibitory concentration of mupirocin on S. aureus global 

transcription has been studied including the influence of this concentration on the bacterial 

virulence factors. Linking the stringent response that S. aureus shows and its regulation of 

virulence factors might improve our understanding for the organism pathogenicity and can 

help to draw up new treatment approaches that can consider the response of the organism 

during different conditions and its effects on pathogenicity.  
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1.5 Aims and objectives 

This project aimed to carry out a comprehensive investigation of the effect of 

Mupirocin on S. aureus when used at sub-inhibitory concentration. A particular focus 

of the study was the stringent response and the expression of virulence factors.  

Specific Aims: 

1. To investigate the susceptibility of recent and previous clinical isolates (147) of S. 

aureus to Mupirocin in order to assess the usefulness of this antibacterial in clinical 

use.   

2. To verify the hypothesis that sub-inhibitory concentrations of mupirocin are 

capable of triggering the stringent response in S. aureus using strain 8325-4 as a 

model organism. 

3. To quantify the influence of the sub-inhibitory concentration of mupirocin on tst  

gene transcription and TSST-1 synthesis and  link that with the stringent response 

effect on virulence in  a TSST-1 producing clinical isolate of S. aureus (B49).  

4. To observe the effects of the stringent response (if it was indeed induced) on the 

global gene transcription in general, with particular focus on genes that encode 

virulence factors. 

Objectives;  

The project objective was to determine the influence of a sub-inhibitory concentration of 

mupirocin on metabolic activity, gene expression and toxin synthesis in relation to 

induction of the stringent response and that would include; 
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1. Determination of minimum inhibitory concentration, MIC, of mupirocin for    S. 

aureus 8325-4, B49 and 147 clinical isolates via micro-dilution methods to 

determine their susceptibility to mupirocin.  

2. Detection of the effect of sub-inhibitory concentration of mupirocin on the 

guanosine nucleotides pool and stringent response nucleotide (p)ppGpp production 

via High Performance Liquid Chromatography (HPLC). 

3. Investigation of the effect of sub-inhibitory concentrations of mupirocin on   

expression of particular virulence genes in S. aureus including TSST-1 and RNAIII by 

real time reverse transcription (RT)-PCR and the influence on toxin synthesis via 

Reverse Passive Latex Assay (RPLA). 

4. Observation of  the global transcriptional alterations that sub-inhibitory 

concentration of mupirocin influence at different time points during the stringent 

response, tolerance and recovery periods using RNA- sequencing technology.   
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Chapter 2 

 

Material and methods 
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2.1 Sample collection and sources 

 

Staphylococcus aureus 8325-4 is a useful model strain that been used in previous works 

(Cassels et al., 1995, Crosse et al., 2000) to observe the stringent response induction. S. 

aureus (B49) is a TSST-1 producer clinical isolate from burn unite in Booth Hall hospital 

isolated in 1992 (Edwards-Jones 1997) and used to study the effect of sublethal 

concentration of mupirocin on TSST-1 production. These S. aureus strains (8325-4 and 

B49) are mupirocin sensitive and they been provided by Professor Howard Foster for use 

in this study. In addition, 147clinical isolates of MSSA and MRSA were used in this study 

to determine their mupirocin susceptibility regardless to their caused infections. These 

clinical isolates were divided to three groups according to their isolation year and source. 

Group A included 44 clinical isolates (2011) of S. aureus from the Health Protection 

Agency in the UK. Group B includes 43 samples of S. aureus isolated from Bury General 

Hospital in 1999 in the UK. The third group C included 60 samples isolated in Libya 

(2009-2010), kindly donated by Saeed Waerg and Professor Howard Foster.  

2.2  Staphylococcus aureus identity verification 

 All the samples were grown over night at 37
◦
C on nutrient agar then their identification 

was confirmed by Gram stain and Staphaurex*(Remel) latex kit according to the 

manufacturer’s instructions. All isolates were then preserved on beads in tryptone glycerol 

buffer and stored at -80
◦
C until they were needed.    

2.3. Determination of samples MICs for mupirocin (chapter3) 

A microtiter plate assay was conducted to determine the MIC (Minimum Inhibitory 

Concentration) of mupirocin (supplied by Glaxo Smith Kline) for each isolate. Single and 

double strength Iso-sensitest broth medium (Oxoid) was prepared according to the 

manufacturer’s instructions. One hundred microliters of the double strength Iso-sensitest 
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broth was added to the first well in each row in the microtiter plate. The remaining wells 

were loaded with 100 µl single strength Iso-sensitest broth. Then 100µl of mupirocin (1 mg 

ml-1) was added to the first well of each row then mixed. After that, the tip was replaced 

with a new one, and 100 µl was transferred to the next well and so on in order to set up the 

serial dilution of mupirocin as follows: 1, 0.5, 0.25, 0.125, 0.0625, 0.0312, 0.0161, 0.008, 

0.004, 0.002, 0.001, 0.0005, 0.00025, 0.00012 mg ml-1. The final 100 µl taken from the last 

dilution was discarded. From 14 -16 h incubated culture 1ml was diluted to OD= 2 ( 6.1 x 

108 cfu/ ml-1 ) then each well in the plate was inoculated with 10 µl of the diluted stock  to 

reach OD ≈ 0.5 at 600nm (1.3x 107 cfu ml-1). Each well in the plate presented different 

dilutions of the mupirocin against the same bacterial sample through the column. Two 

columns were considered as controls. One was a broth containing the inoculum and the 

other was not inoculated broth in order to check for contamination (negative control).  

The plate was incubated for 24 h at 37
◦
C. After that digital reading was taken by using a 

microtiter plate reader (MultiskanFC, Thermo scientific) at 570 nm was obtained. The MIC 

was determined as the last well showing no growth. These procedures were applied in 

three independent triplicates whenever the test had been performed.  

2.4. Disc diffusion assay  

From overnight culture grown on Nutrient Agar, a few colonies were taken using a sterile 

loop and inoculated into 1ml of sterile distilled water to reach OD = 0.15 – 0.2 at 600nm 

(108 cfu/ml) which is approximate to 0.5 McFarland standard. Then using a sterilized 

cotton swab, the bacterial cells were spread onto a Nutrient Agar (NA) plate. After that 

different antibiotic discs, listed in table 1  (provided by OXOID LTD UK), were dispensed 

on the surface of the plate and incubated for 24 h at 37◦C, zones diameter surrounding  

each antibiotic discs were measured , and the state of susceptibility was determined 
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according to National Committee for Clinical Laboratory Standards NCCLS. Three replicated 

were performed for each clinical isolates.  

Table (1) antibiotics list used in the disc diffusion assay.  

Antibiotics discs and concentrations 

Vancomycin   30µg Cefoxitin        30 µg Gentamycin    10µg 

Fusidic acid     10µg Erythromycin  15µg Streptomycin   10µg 

Chloramphenicol   30µg Clindamycin    2µg Ciprofloxacin   5µg 

 

2.5. Induction of stringent response by mupirocin and observation of its effects (Chapter 4) 

The purpose of this experiment was to verify whether the sub-inhibitory concentration of 

mupirocin is capable of triggering the stringent response in S.aureus 8325-4. The experiment 

was divided into three stages; 1) triggering stringent response by adding sublethal 

concentration of mupirocin to cultures, 2) observation of the effect of mupirocin on cell 

growth OD600nm, 3) observation of the effect of mupirocin on ppGpp production and related 

nucleosides, GTP and ATP, intracellular pools. The detection was performed for 1, 2, 3 and 4 

h samples after mupirocin addition then at 12 and 24 h time points.      

2.5.1. Stringent response induction Three-hundred millilitres of Iso-sensitest broth was 

inoculated with one bead of S.aureus 8325-4 in a 500 ml flask, and incubated in a rotary 

incubator for 18 hours at 37◦C and 200 r.p.m. Then, 40 ml of the broth culture adjusted to 

OD600nm = 0.5 (1.3x 107cfu ml-1) by spectrophotometer (CAMSPEC M330) was prepared then 

mupirocin was added to a final concentration 0.25µg/ml (0.5 MIC) to the bacterial broth. 

Flasks were incubated in the rotary incubator for the intervals needed and negative control 

broth cultures were placed in parallel with treated cultures with mupirocin. In addition,        

OD600nm reading was taken for each time pointes for control and test cultures whenever the 

test had been performed.  
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 2.5.2. Mupirocin effect on growth influence of the sub-inhibitory concentration of 

mupirocin on cell growth was observed at the desired time points. One hundred microliter of 

the cell culture was added to 900 µl of the same non inoculated medium into 1 ml cuvette and 

placed into spectrophotometer. Three different reading of the OD600nm were taken and mean of 

them was multiplied by the dilution factor. Similar processes were followed to measure 

OD600nm for the control cell culture.   

2.5.3. ppGpp and other nucleoside extraction and detection Cells were harvested at the 

determined time points and nucleotides extraction was performed following the protocol of 

(Greenway and England, 1999) with slight alterations. Bacterial broth (40ml) was filtered 

through filter paper (Millipore 0.45µm pore size). Then 5 ml of 2M ice cold formic acid 

was added to the culture and incubated on ice for 1 h. Cell debris was removed by 

centrifugation for 10 min at 6000 x g, and the supernatant was filtered through a 

nitrocellulose membrane (Whatman 0.45µm pore size). The filtrates were then frozen 

using liquid nitrogen, dried by lyophilisation (Coolsafe TM, SCANVAC) for 48 h and then 

kept at 4◦C.  

2.5.4. Nucleotide fractionation the lyophilised extract was dissolved in 3 ml of highly 

purified de-ionised distilled water. One millilitre was then injected into High Performance 

Liquid Chromatography (HPLC) (Polaris,VARIAN) using a Partisil 10 SAX column, 

anion exchanger (Whatman) and eluted with a with gradient of 7mM K2HPO4, pH 4.0 to 

0.5 M KH2PO4/0.5 M Na2SO4, pH 5.4 at a flow rate of 1 ml min-1. The detection 

wavelength (UV) was 254nm. Nucleotide concentrations were expressed relatively to the 

cell dry weight.  

2.5.5 Standards nucleotides calibration curves 

Standard nucleotides, AMP, ADP, ATP, GMP, GDP, GTP (Sigma-Aldrich,UK) and 

ppGpp (TrilinK,USA) were used as controls in the HPLC technique to determine their 
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retention time and calculated the nucleotide concentration in the intracellular pool of the 

cells. Different concentrations of each standard was prepared in the range of 1.1-0.010 

Nano mole (concentration for each standard are illustrated in chapter 4). Then standards 

were injected in the HPLC instrument, using the same conditions mentioned above, and 

retention times determined for each standard. Different concentrations of each standard 

were also fractionated in order to allow quantitative determination.  

2.5.6 Measuring Cell Dry Weight 

Forty ml of the broth culture adjusted to OD= 0.5 was centrifuged for 5 min at 10,000g. a 

washing step with 99% ethanol was conducted then the cell suspension was transferred 

into glass vials and dried at 60
◦
C until a constant weight was achieved. The weight  

difference between dried vials with and without cells was used for CDW determination.   

2.6 Observing the effect of sub-inhibitory concentration of mupirocin on tst gene 

transcription and TSST-1 production (Chapter 5 experiment) 

In this experiment a sub-inhibitory concentration of the mupirocin was added to exponentially 

growing cell of S.aureus B49 (TSST-1 producer) and mupirocin effect on these cells was 

observed in three aspects; 1- effect on cell growth,  2- influence on the TSST-1 production 

and 3- Effect on tst gene transcription. All these observations were conducted at 5 different 

time points 0, 1, 8, 16 and 24 h for the treated cell with sub-inhibitory concentration of 

mupirocin in parallel with control cell culture in three independent triplicates.  

 2.6.1 Effect of mupirocin treatment on cell growth 

 Similar processes described above in section (2.5.2) were applied for exposed cells and 

untreated cultures.  

 2.6.2 Influence of mupirocin on TSST-1 production 

 Production of TSST-1 was investigated in test cells and compared with control cells to 

observe mupirocin effect on the toxin production. Briefly, S. aureus B49 was grown in 5 
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ml of Brain Heart Infusion Broth overnight in a rotary incubator at 37◦C.  Cell were 

washed with PBS then inoculated into 20 ml BHI and OD adjusted to 0.5 at 600nm and 

mupirocin was added to a final concentration 0.12µg/ml-1(0.5 MIC) in the test culture and 

this step was omitted in control culture. Cultures were incubated for the desired time points 

then TSST-1 was detected using a reverse passive latex assay RPLA (OXOID, TD0940, 

LTD UK), according to the manufacturer's instructions. In this assay latex particles are 

sensitised with purified antiserum from rabbits immunised with purified TSST-1 and the 

agglutination occurs in the presence of TSST-1. Three millilitres of culture were 

centrifuged for 15 minutes at 10,000 r.p.m and the supernatant was transferred to new tube 

and used as a sample. Using V-bottomed microtiter plate (Sterilin, Fisher Scientific) each 

sample occupied two rows. 25μl of Phosphate buffered saline (PBS) was dispensed in each 

well of the first two rows except the first well in each row. Then 25 μl of the sample was 

added into the first and second well of each row. Doubling dilution was made by 

transferring 25μl from the first well to the second and so on up to well number 7. After that 

25μl sensitized latex added to each well in the first row and 25μl of the control latex was 

added to each well in the second row. Then the plate was rotated in the micromixer for 1 

min and left at room temperature overnight. After that the agglutination reaction was 

observed and recorded. The titre was taken as the last dilution that showed agglutination. 

The assay sensitivity was 2ng /μl-1. Positive and negative controls provided with the kit 

were setup whenever the test was performed. Each reading was taken after 18-24h as 

recommended and the experiment was carried out in independent triplicates. 

2.6.3 Total RNA extraction and Real Time PCR 

Cell aliquots from cultures exposed to sunlethal concentration of mupirocin for (0, 1, 8, 16 

and 24h) were harvested (3ml) and stored in -80◦C until use. RNA extraction was 

performed following the instructions of RNAprotect® Bacteria Reagent and RNeasy® 
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Mini Kit (Qiagen). DNase I (Qiagen) was included in the RNA extraction procedures as 

instructed to avoid DNA contamination. Purity and concentration of RNA were verified 

using a Nanodrop spectrophotometer 2000 (Thermo Scientific). Then cDNA were obtained 

using QuantiTect®Reverse transcription two steps (Qiagen). After that primers and probes 

for tst, RNAIII and 16S reference gene (Vaudaux et al., 2002, Fosheim et al., 2011) listed in 

table 3, were checked for efficiency replication with S. aureus B49 and used in the real 

time PCR in this work. PCR reagents, primers and probes concentration as well as the real 

time PCR cycling program is illustrated in table 2 and 3 respectively. The expression ratio 

for each gene was relatively calculated using 16S as a reference gene by 2-ΔΔCT for RNAIII 

and Pfaffl for tst gene appropriately to their replication efficiency (Livak and Schmittgen, 

2001 and Pfaffi, 2001). Ct values were collected for a minimum of three independent 

experiments. 

 

Table 3 program cycle for the real time PCR.  

Step Time Temperature 

PCR initial activation step 15  min 95°C 

2-step cycling   

Denaturation 15s 95°C 

Annealing/ extension 60s 60°C 

Number of cycles 35-45  

Table 2 real time PCR reagents 

mix.Component 
Volume Final concentration 

2x  Quanti Tech PCR master mix 12.5µl 1 x 
Primer forward 1µl 0.4µM 
Primer reverse 1µl 0.4µM 

Probe 5µl 0.2 µM 
Template cDNA 2µl 4 ng 

DNase RNase free water 3.5µl  
   

Total reaction volume 25µl  
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Table 4 Primers and probes used in the real time PCR . 

 

a 5’FAM and 3’TAMRA labelled.

Gene Primer forward Primer reverse Probe 

16S 
551F- 

GGCAAGCGTTATCCGGAATT 

651R- 

GTTTCCAATGACCCTCCACG 

573T- 

CCTACGCGCGCTTTACGCCCAa 

 

tst 

 

STSTQF 

CCCTTTGTTGCTTGCGACA 

 

STSTQR 

GCTTTTGCAGTTTTGATTATT 

 

STSTQT 

TCGCTACAGATTTTCACCCCT GTT 

CCCTTATCATa 

 

RNAIII 

 

367F- 

TTCACTGTGTCGATAATCCA 

 

436R- 

TGATTTCAATGGCACAAGAT 

 

388T-

TTTACTAAGTCACCGATTGTTGAAATGAa 
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2.7 Observation the effect of sub-inhibitory concentration of mupirocin on the global     

transcription for S.aureus 8325-4 via Next generation sequencing technique (RNA-seq) 

(chapter 6) 

RNA-sequencing was carried out by the Centre for Genomic Rresearch (CGR) at the University 

of Liverpool to observe the effect on the global transcription of S.aureus 8325-4 after treatment 

with sub-inhibitory concentration of mupirocin treatment. By RNA sequencing technology  wide 

view of the transcription alterations that mupirocin might cause it obtained. The technique and 

the analysis of the results were performed at Centre for Genomic Rresearch (CGR). The whole 

genome sequence of S.aureus 8325-4 was not available and for that reason S.aureus 8325 whole 

genome sequence was used as reference in this test as S.aureus 8325-4 is derivative from 

S.aureus 8325, two differences between these strains first, sigB is defective in 8325-4 second, 

8325-4 is cured from prophages ɸ11, ɸ12 and ɸ13(O’Neill 2010). However, the compatibility of 

this with this transcriptomic analysis was checked with different expertise in the department, 

University of Leeds (Dr,O’Neill) and the CGR staff. Then the experimental design was 

approved.  

2.7.1 Mupirocin treatment and RNA extraction  

Sub-inhibitory concentration of mupirocin was added to exponentially growing cells (OD 0.5) in 

Iso-sensitest broth and cells were harvested at three different time points 1, 12 and 24h in parallel 

with control cells and their OD were recorded. After that, normalization for the cell was applied 

by adjusting all the cultures to OD = 0.5 at 600nm. RNA was extracted as described above. This 

was carried out for treated and control cells in independent triplicates of each time point, (table 

5), RNAs were sent to the CGR for RNA-seq.  

2.7.2 RNA sequencing  

Verification of RNA integrity was conducted via Bioanalyzer 2100(Agilent technology) at the CGR 

then non-coding RNA was depleted from the samples via RiboZero Magnetic kit (Bacteria) 

(Catalogue No. MRZB12424)  from Epicentre using 2μg of starting material. RNA–Seq libraries 
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were prepared from 20-25 ng of the enriched material using the Epicentre ScriptSeq v2 RNA-Seq 

Library Preparation Kit (Catalogue No. SSV21106). Following 13 cycles of amplification, libraries 

were purified using AMPure XP beads. Each library was quantified using Qubit and the size 

distribution assessed using the Agilent 2100 Bioanalyser. These final libraries were pooled in 

equimolar amounts using the Qubit and Bioanalyzer data. The quantity and quality of each pool was 

assessed by Bioanalyzer and subsequently by qPCR using the Illumina Library Quantification Kit 

from Kapa (KK4854) on a Roche Light Cycler LC480II according to manufacturer's instructions. 

The resultant pools were sequenced on 3 lanes of the HiSeq 2000 using 2x100 bp paired-end 

sequencing with v3 chemistry. The mapping tool was Mapper Bowtie 2.1.0 using paired-end 

mapping mode. Analysis software was R version 3.0.1 and edgeR package version 3.0.4.  

Differentially expressed genes were identified based on FDR (False Discovery Rate) values and 

fold change, the cut-off is at FDR ≤ 0.05 PLUS 2-fold change. After obtaining the data from the 

CGR genes were grouped based on their function using the DAVID server 

(http://david.abcc.ncifcrf.gov/home.jsp). Figure 18 summaries the processes for this experiment. 

Table 5, RNAs samples details        

Sample No Condition Time point Replication Group 

1 C 1h A N_1h 
2 T 1h A P_1h 
3 C 12h A N_12h 
4 T 12h A P_12h 
5 C 24h A N_24h 
6 T 24h A P_24h 
7 C 1h B N_1h 
8 T 1h B P_1h 
9 C 12h B N_12h 

10 T 12h B P_12h 
11 C 24h B N_24h 
12 T 24h B P_24h 
13 C 1h C N_1h 
14 T 1h C P_1h 
15 C 12h C N_12h 
16 T 12h C P_12h 
17 C 24h C N_24h 
18 T 24h C P_24h 

         Control cells either C/N,    treated cells either T/P 

http://david.abcc.ncifcrf.gov/home.jsp
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Figure 18 flow work for observing the transcriptional alteration in S.aureus 8325-4 

after sub-inhibitory concentration of mupirocin treatment via RNA sequencing 

technique. Dotted box indicates the part of RNA-seq processes that carried out at the 

CGR. 

 

2.8 Statistical analysis 

Where possible experiments where performed in triplicate and the results were analyzed 

statistically using the student t-test on Excel program particularly in chapters 3-5. For 

chapter 6 (RNA-seq) false discovery rate (FDR) was used to obtain p-value multiple 

testing and was carried out by the CGR group.   

 

 

 

 

S.aureus 8325-4  

18 samples in total from 3 independent 

experiment (A,B and C) of the treated and 

control cells. 

RNA extraction  

 RNA libraries then Paired-end 

sequencing (2x 100bp) on the 

Illumina HiSeq2000 platform 

Bioinformatics analysis (mapping and 

identification of differentially expressed genes) 

 CGR RNA Quality control 

and non-coding RNA 
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Chapter 3 

 

Mupirocin susceptibility  
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3.1 Introduction 

Mupirocin is widely used to treat superficial wound infections, for decolonization of nasal    

S. aureus carriage and controlling outbreaks of methicillin-resistant S. aureus (MRSA) 

(Hetem and Bonten, 2013). Mupirocin impairs protein synthesis by inhibiting the bacterial 

isoleucyl tRNA synthetase leading to a block in isoleucyl tRNA formation (chapter 1section 

1.2.1 ).  

The frequency of using mupirocin in hospitals has increased as it been use for eliminating 

nasal carriage of MRSA before elective operations see ( 1.1.2). Therefore, resistance to 

mupirocin may be expected to rise in recent clinical isolates due to its increased usage.  

In this work, three groups of S. aureus isolates including MSSAs and MRSAs were subjected 

to MIC measurements via micro-dilution methods to determine their susceptibility to 

mupirocin. Forty three of these S. aureus strains were isolated in the UK in the early nineteen-

nineties and 44 obtained in 2011.  Another 60 samples isolated in Libya in 2009-2010 were 

also investigated for their susceptibility to mupirocin. 
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3.2 Results  

One hundred and forty seven clinical isolates were screened for their mupirocin susceptibility 

by determining their MICs as the cutoff is 4µg ml-1(≤ 4µg ml-1 sensitive and  ˃ 4µg ml-1 

resistant). These isolates were categorised in three groups; group A 44 recent UK isolates, 

group B 43 early UK isolates and group C contains 60 recent isolates from Libya. Mupirocin 

MICs for these groups were determined and are shown in table 3, 4, 5 and Figures 19 and 20. 

Figure 19 shows a summary of the results. Mupirocin resistant strains were only present in the 

isolates from Libya, all the older and recent UK isolates were sensitive. Examining the results 

more closely results revealed that S. aureus in group A (recent UK isolates) were all 

susceptible to mupirocin as their MICs were ≤ 4 µg ml-1. However, 3 isolates of this group 

exhibited MICs 2 fold less than the resistance threshold (Table 6 and Figure 20). Group B 

(UK early isolates) were all susceptible to mupirocin and half of them had MICs that were 3 

fold less than the resistance threshold (Table 7 and Figure 20). In contrast, mupirocin 

resistance was detected in group C (Libya isolates) and 30 % (n=18) of the clinical isolates 

showed MIC > 4µg ml-1 Table 6 and Figure 20). In addition, another 5 isolates had MICs at 

the resistance threshold.  

 

Figure 19 Mupirocin susceptibility for the three different groups of Staphylococcus 

aureus clinical isolates.
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 Figure 20 percentages of MICs for Staphylococcus aureus isolates in the different groups. The value cutoff values for resistant or     

sensitive(4 µg ml
-1 ) is according to BSAC. 
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Table 6 Mupirocin MICs of recent UK isolates of Staphylococcus aureus .  

Sample No 
MIC 

µg /ml 
Sample No 

MIC 
µg /ml 

Sample No 
MIC 

µg /ml 

1 0.25 16 0.25 31 0.12 

2 0.25 17 0.25 32 0.25 

3 0.5 18 0.25 33 0.12 

4 0.031 19 0.25 34 0.25 

5 0.5 20 0.25 35 0.12 

6 0.5 21 0.12 36 0.12 

7 2 22 0.5 37 0.12 

8 2 23 0.12 38 0.25 

9 0.5 24 0.12 39 0.12 

10 2 25 0.12 40 0.12 

11 0.5 26 1 41 0.12 

12 0.25 27 0.25 42 0.12 

13 0.12 28 0.25 43 0.06 

14 0.12 29 0.12 44 0.06 

15 0.25 30 0.12   
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Table 7 Mupirocin MICs of early UK isolates of Staphylococcus aureus. 

Sample No 
MIC 

µg /ml 
Sample No 

MIC 
µg /ml 

Sample No 
MIC 

µg /ml 

1 0.12 16 0.5 31 0.5 

2 0.25 17 0.5 32 0.5 

3 0.5 18 0.5 33 0.25 

4 0.12 19 0.5 34 0.5 

5 0.06 20 0.5 35 0.5 

6 0.12 21 0.5 36 0.25 

7 0.12 22 1 37 0.25 

8 0.5 23 0.5 38 0.5 

9 0.25 24 0.25 39 0.5 

10 0.5 25 0.25 40 0.5 

11 0.5 26 0.25 41 0.25 

12 0.5 27 0.25 42 0.5 

13 0.5 28 0.25 43 0.25 

14 0.25 29 0.25   

15 0.25 30 0.5   
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Table 8 Mupirocin MICs for recent Libyan isolates of Staphylococcus aureus. 

Sample No 
MIC 

µg /ml 
Sample No 

MIC 
µg /ml 

Sample No 
MIC 

µg /ml 

1 0.12 21 0.5 41 0.12 

2 0.06 22 0.25 42 2 

3 0.12 23 1 43 16 LLR 

4 > 256  HLR 24 0.5 44 16 LLR 

5 0.25 25 1 45 4 

6 31 LLR 26 64 LLR 46 64 LLR 

7 0.5 27 0.5 47 8 LLR 

8 4 28 4 48 0.5 

9 4 29 > 256  HLR 49 0.5 

10 1 30 1 50 0.12 

11 > 256  HLR 31 64 LLR 51 > 256  HLR 

12 0.5 32 1 52 0.5 

13 0.5 33 > 256  HLR 53 0.12 

14 0.5 34 2 54 0.5 

15 1 35 250 LLR 55 0.5 

16 0.5 36 2 56 1 

17 0.25 37 4 57 1 

18 1 38 250 LLR 58 8 LLR 

19 1 39 31 LLR 59 2 

20 31 LLR 40 > 256  HLR 60 0.12 

HLR, high level of resistance .  LLR, low level of resistance
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Of the 18 resistant isolates in group C, 12 had a low level of resistance as their MICs were 

and the remaining 6 showed high level of resistance as their MICs  1-256 µg ml-between 8

  1-were >256 µg ml 

Furthermore, antibiotic resistance profiles for the resistant strains were obtained. Their 

susceptibility to vancomycin, chloramphenicol, gentamicin, fusidic acid, erythromycin, 

streptomycin, cefoxitin, clindamycin and ciprofloxacin was investigated and the results are 

shown in Table 9. The results revealed that, among mupirocin resistant isolates, 16, were 

MRSA as they showed resistance to Cefoxitin and only 2 were MSSA with low level of 

mupirocin resistance. In addition, 6 MRSAs showed high level of mupirocin resistance and 

they exhibited MDR (multi drugs resistance) results as they were resistance to several 

antibiotics such as clindamycin, erythromycin and fusidic acid (Table 9).    
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 Table 9 Antibiotics profile for mupirocin resistant isolates from group C (Libya isolates). 

Sample No 
Mupirocin 

MIC 
Vancomycin 

30µg 
Cefoxitin        

30 µg 
Gentamycin 

10µg 
Fusidic acid     

10µg 
Erythromycin 

15µg 
Streptomycin 

10µg 
Chloramphenicol 

30µg 
Clindamycin 

2µg 
Ciprofloxacin   

5µg 

50 LLR R R S R R S S R R 

64 LLR R R S R S S S R S 

70 LLR R R R R S S S R S 

75 LLR S S S R S S S S S 

79 LLR S S S R R R S S S 

82 LLR S R S R R R R R S 

83 LLR R R R R R R R S R 

87 LLR R R S R R S R R S 

88 LLR R R R R R R R R S 

90 LLR R R S R R R R R R 

91 LLR R R R R R R R S R 

102 LLR R R R R S S S R S 

           

48 HLR R R S R R R R R S 

55 HLR R R S R R R R R S 

73 HLR S R R R R S S R S 

77 HLR S R R R R R R R R 

84 HLR R R S R R R R R R 

95 HLR R R R R R R R R S 

R, resistant.   S, sensitive.  HLR, high level of resistance .  LLR, low level of resistance.
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3.3 Discussion 

In this part of the study the susceptibility to mupirocin was determined for three different 

groups of isolates, early and recent isolates from the UK as well as isolates of S.aureus from 

hospitals in Libya collected in 2010-11.  

In the UK mupirocin can be prescribed to treat soft tissue lesion infections or to reduce S. 

aureus carriage including mupirocin-susceptible MRSA strains. Systemic use of mupirocin is 

not recommended by UK Guidelines as it is not effective. Using systemically active agents 

beside mupirocin is suggested as it can improve clearance rates (Gould et al., 2009). In 

addition, mupirocin prophylaxis for elective surgical patients and in outbreak situations, is 

only performed under strict infection control team advice.  The UK guidelines restrict the use 

of mupirocin to 2%, applied to the inner surface of each nostril three times daily for five days 

only. The use of 4% chlorhexidine gluconate aqueous solution is recommended in addition to 

mupirocin (Coia et al., 2006, Gould et al., 2009). There is no evidence that these restrictions 

are in place in Libia. 

 In this work early isolates from the UK (n=43) were all sensitive to mupirocin as well as the 

recent UK isolates (n=44) which could be a result of the successful guidelines for mupirocin 

prescription and application despite of its increased usage in hospital for nasal decolonization 

and in controlling nosocomial infections.   

However, that was not the case for the Libyan isolates as only 70% (n=42) of them showed 

sensitivity to mupirocin whereas 30 % (n=18) were mupirocin resistant (2 are MSSA and 16 

are MRSA). Twelve of the 18 isolates exhibited low level of resistance and 6 showed high 

level of resistance. In addition, 26 of 60 isolates (43.3%) were MRSA 10 of them were 

mupirocin sensitive and all the isolates with HLR to mupirocin were MRSA and multidrug 
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resistant strains which is in line with previous studies (Cadilla et al., 2011, Han et al., 2007) 

when significant rate of high level of mupirocin resistance occurred among MDR strains.  

Lack of restricted policy for mupirocin use in Libya might be a reason for the emergence of 

mupirocin resistance especially the over-the-counter availability of antibiotics in Libya and 

use by the general public that all can increase resistance to mupirocin and other antibiotics 

resistance in the country. Setting up restricted policy for mupirocin usage can reduce its 

resistance as had been reported in different countries for example, in New Zealand 1999 after 

8 years of mupirocin usage 28 % of S.aureus were resistant to mupirocin and that was 

attributed to the usage of mupirocin in the community without prescriptions (Upton et al., 

2003). In addition, in 1993 high levels of mupirocin resistance in Australia increased to 15% 

among medical isolates of MRSA. After that, guidance on limiting mupirocin use in the 

community was issued by the health department in the country which decreased the resistance 

rate to 0.3% in 4 years (Torvaldsen et al., 1999).  In addition, common use of mupirocin in 

hospitals to treat skin and soft tissue infections and to eradicate Staphylococcal carriage in 

health care worker and patients can increase the mupirocin resistance (Upton et al., 2003, 

Simor et al., 2007, McNeil et al., 2011) . Applying restriction on antibiotics prescriptions in 

hospitals and markets might help to reduce mupirocin resistance as the Australian trial above. 

Mupirocin susceptibility can be classified in three categories; Firstly, sensitive when the MIC 

is ≤ 4 µg ml-1 which was found for 87.7% (n=129) of the isolates used tested. Secondly, low 

level resistance when the MIC is between 8-256 µg ml-1, spontaneous mutation in the 

antibiotic target (IleS) can be responsible for this resistance level (Antonio et al., 2002). In 

addition, Ramsey and colleagues claimed that, mupA which encodes an additional modified 

isoleucyl-tRNA synthetase, can results in low level of resistance when it located in the 

chromosome of the low resistance strains (Ramsey et al., 1996). Interestingly, subsequent 

observation by Driscoll and others reported susceptible strain of S. aureus (MB1348) despite 
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of its positive results for mupA in PCR results. This finding was attributed to single base-pair 

deletion in the mupA gene that resulting in truncated mupA protein leading to mupirocin 

susceptible phenotype result (Driscoll et al., 2007). The third category is high level resistance 

when the MIC is >500 µg ml-1 due to a plasmid-mediated gene mupA, that is encoding 

alternate IleS2 which leads to mupirocin high resistance (Hodgson et al., 1994). In addition, 

recent work revealed that, a novel locus, mupB, was responsible for high level resistance to 

mupirocin in S. aureus and it has been assumed that the mupB is located on non-conjugative 

plasmid (Seah et al., 2012). Summary of mupirocin susceptibility models are shown in figure 

21.      

In conclusion, no S. aureus of UK early and recent isolates in this work showed resistance to 

mupirocin which indicates that mupirocin could be a good choice to eliminate S. aureus nasal 

carriage, treat wounds and soft tissue infections. The mupirocin resistance that occurred 

among 18 Libya isolates could be investigated via different molecular techniques such as PCR 

to detect the presence of either mupA or mupB genes. Furthermore, sequencing of these genes 

as well as verifying their location whether on conjugative, non-conjugative plasmid or on 

chromosome of positive PCR isolates alongside pulsed-field gel electrophoresis (PFGE) 

typing can give clearer picture of mupirocin resistance mechanism for these isolates. 
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Figure 21 reported mechanisms of mupirocin resistance in Staphylococcus aureus. 

Mupirocin  

Susceptible 
Resistance 

Low level                    

MIC 8-256 µg ml-1 

 

 

 

Mup A locates in the chromosome 

(Ramsey et al., 1996) 

 

High level 

MIC >500 µg ml-1  

Point mutation (Antonio et 

al., 2002). 

 

 

MupA positive strain with 

frameshift  mutation 

(Driscoll et al., 2007). 

MIC ≤ 4 µg ml-1 

Mup B positive ( non-conjugative 

plasmid) (Seah et al., 2012) 

 

Mup A positive (conjugative 

plasmid) (Hodgson et al., 1994) 
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Stringent response induction  
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4.1 Introduction 

Stress responses such as the stringent response are physiological states that bacteria exhibit and 

which aid survival when they encounter extreme conditions such as nutrient limitation and heat 

or cold shock. ppGpp is a hallmark of the stringent response, which is a small 

nucleoside/alarmone responsible for regulating global intracellular changes including 

transcription, translation, replication and virulence induction in pathogenic bacteria (Wolz et 

al., 2010) (See Chapter 1 section 1.3).  

Like many bacteria, S. aureus exhibits a stringent response after exposure to stressful 

conditions and has the ability to produce the global regulator (p)ppGpp (Anderson et al., 2006, 

Cassels et al., 1995). Mupirocin has been used in several studies at bactericidal concentration 

that mimics amino acid limitation conditions to trigger the stringent response (Crosse et al., 

2000b, Cassels et al., 1995). Relatively little is known about the stringent response in S. aureus, 

in particular the effects of sub-inhibitory concentrations of mupirocin have not been studied 

either at short or long term of exposure.  

In this work, S. aureus strain 8325-4 treated with sub-inhibitory concentrations of mupirocin 

was observed for short (up to 4 h) and long periods (up to 72 h). Significant differences in 

growth rate occurred up to 24 h in tested cultures relative to controls. In addition, an 

intracellular concentration of ppGpp after exposure (determined by HPLC) reached a maximum 

after 1 h then decreased after 4 h but was not detectable at 12 h and later comaring to control 

cultures.  Detection of ppGpp after sub-lethal concentration of mupirocin treatment as well as 

significant growth inhibition in the first few hours of observation suggest the capability of this 

concentration to trigger the stringent response in S. aureus 8325-4 which has not been 

previously reported. 
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4.2 Results 

4.2.1 Effects of Sub-inhibitory concentration of mupirocin effect on cell growth 

The effects of the sub-inhibitory concentration of mupirocin (0.5 MIC = 0.25µg/ml-1) on       S. 

aureus 8325-4 growth was observed throughout 1, 2, 3 and 4 h in parallel with control cultures 

(Figure 22). Comparison between the optical density of control and test cultures revealed that there 

was a highly significant effect of the sublethal concentration of mupirocin on growth for these time 

points. For instance, at 1 h the control growth OD reached 1.2 while the treated cells OD was  0.5 (P 

value < 0.01). In addition, significant growth inhibition had occurred for 2 h samples when the OD 

of treated cell reached 1.6 and the test cells were at 0.57 OD (P value < 0.01).  After 3 h of sub-

inhibitory concentration of mupirocin treatment the cell OD showed slight increase 0.62 whereas 

the control culture OD was 2.2 making the P value < 0.01. Furthermore, significant inhibition for 

the treated cell was shown at 4 h where the control cells OD was 2.56 and the OD of  test cells was 

0.78 (P value < 0.01) Figure 22.    

 

Figure 22 Effect of the sublethal concentration of mupirocin on Staphylococcus aureus 8325-4 

growth. OD600 .         mupirocin treated, OD600        controls; Values are given as mean from 

three independent replicates and the error bars present standard error. Statistical significant 

differences (T-test: ** p-value ≤ 0.01). 
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4.2.2 Standards calibration for ppGpp and other nuclesides 

Nucleosides and ppGpp standards were prepared in different concentrations to plot a calibration 

curve for each component (in triplicate and their means are expressed in table 1-4 and figures 2-5. 

These calibration curves as well as response factors for each standard were used to calculate the 

unknown concentration of the components in each bacterial sample run. Response factor for 

components was calculated using the formula  

                                        Response factor =  
𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 
 

Following tables and graphs illustrate the experiment results for each standard. 

1- ATP  

Table 10 ATP values and peak area in HPLC. 

 

 

 

 

 

 

 
 

Figure 23 ATP calibration curve.  

Values are given as mean from triplicates and error bars present standard deviation. 
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2-GDP 

 
 

Table 11 GDP values and peak area in HPLC. 
 

 GDP 

Values 

 pmole  
225.6 451.2 667 902.5 1128 

Average of UV 

absorbance 
15 30.3 45.4 60.6 57.7 

 

 

 

 

 
 

 

Figure 24 GDP calibration curve.  

Values are given as mean from triplicates and error bars present standard deviation. 
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3- GTP   

 

Table 12 GTP values and peak area in HPLC. 

 

 GTP 

Values pmole 100 250 500 750 1000 

Average of 

UV 

absorbance  

2.4 6.1 12.2 18.37 24.3 

 

 

 

 

 

 

 

 
 

Figure 25  GTP calibration curve.  

Values are given as mean from triplicates and error bars present standard deviation. 
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ppGpp table 13 ppGpp values and peak area in HPLC. 

 

 ppGpp 

Values pmole 100 250 500 750 1000 

Average of 

UV 

absorbance  

2.4 6 12 18 24 

 

 

 

 

 

 
 

Figure 26 ppGpp calibration curve.  
Values are given as mean from triplicates and error bars present standard deviation. 
 
 

 

4.2.3 ppGpp detection   

Following the significant inhibition of cell growth that sub-inhibitory concentration of mupirocin 

had shown, ppGpp was detected via HPLC SAX10 column throughout 1, 2, 3 and 4 h samples to 

verify that this concentration of mupirocin was capable of triggering the stringent response in S. 

aureus 8325-4  (prescriptive figures 27 and 28). 
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Figure 27 Detection of metabolic nucleosides for Staphylococcus aureus 8325-4.  

Control (blue) and treated cells (red) with 0.5xMIC of mupirocin at 1 h. black chromatogram 

present standards.  

 

 

Figure 28 Detection of ppGpp and metabolic nucleosides for Staphylococcus aureus 8325-4 

treated with 0.5xMIC of mupirocin at 2, 3 and 4 h.  

Chromatograms; Standards in black, control(1 h) in blue, test for 2 h in red, test for 3 h in pink and 

test cells after 4 h in green.  
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 In addition, ppGpp concentration varies slightly through these time points after the sub-lethal 

concentration of mupirocin treatment. For example, ppGpp concentration at 1 h was 3.99 nmole/mg 

CDW which was the highest concentration through these samples. After 2 h of mupirocin exposure 

ppGpp concentration was 3.63 nmole/mg CDW and a slight decrease occurred to 3.46 nmole/mg 

CDW after 3 h. In addition, ppGpp concentration decreased in the 4 h sample to 2.4 nmole/mg 

CDW (Figure 29). 

 

Figure 29 Effect of sub-inhibitory concentration of mupirocin on ppGpp production in for 

Staphylococcus aureus 8325-4. 

Values are given as mean from three independent replicates and the error bars present standard 

deviation. 

 

A negative correlation occurred between the growth and ppGpp concentration in the treated cells 

results. For example, the OD of the treated cells at 1 h was 0.5 and the ppGpp concentration was 

3.99 nmole/mgCDW. In 2 h sample results slight increase in the OD occurred and slight decrease in 

ppGpp was observed. In addition, the OD for 4 h cells increased to 0.78 whereas the ppGpp 

concentration dropped to 2.4 nmole/mgCDW (Figures 30 and 31).    
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Figure 30 reciprocal results of growth and ppGpp production in S.aureus 8325-4 after sub-

inhibitory concentration of mupirocin treatment.  Values are given as mean from three 

independent replicates and the error bars present standard deviation.  Dotted line represents  

(p)ppGpp concentration, normal line represents mupirocin treated cell growth. 

 

 

Figure 31 negative correlation between growth and ppGpp production in S. aureus 8325-4 

after sub-inhibitory concentration of mupirocin treatment. 
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4.2.4 Effect of ppGpp production on pools of other nucleotides 

 

(p)ppGpp synthesis relies on the enzymatic phosphorylation of the GDP and GTP to produce ppGpp 

and pppGpp respectively using ATP as a phosphate donor. Thus the concentrations of these 

nucleotides were observed in the culture treated with sublethal concentrations of mupirocin. For 

instance, a significant decrease in the GDP intracellular pool had occurred in 1 h treated cell (0.83 

nmole/mgCDW) in contrast to control cells where GDP concentration was 4.3 nmole/mgCDW (P 

value < 0.01, t-test) . In addition, GDP concentrations remained at a low level through 2, 3 and 4 h 

after mupirocin treatment, 0.62, 0.56 and 0.38 nmole/mgCDW respectively (Figure 33). Moreover, 

GTP concentration was 6.8 nmole/mg-CDW in control cells at 1 h but a significant decrease had 

occurred when it dropped to 2.4 nmole/mgCDW in the treated cells (P value < 0.05). Notably, 

[GTP] was greatly decreased and it fell to undetectable levels at 3 and 4 h in test cells. Furthermore, 

a highly significant decrease in ATP concentration appeared in the treated cells, 0.5 

nmole/mgCDW, relatively to control cells 4.6 nmole/mgCDW, at 1 h (P value < 0.01) then 

increased in 4 h sample to 3.4 nmole/mgCDW.  

It important to note that the significant decrease in these nucleotides concentrations through 1, 2, 3 

and 4 h of mupirocin treatment was associated with the increased concentration of ppGpp (Figure 

32). 
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 Figure 32 alterations on nucleosides and  ppGpp intracellular pool concentration in S. aureus  

8325-4 after sublethal concentration of mupirocin treatment.                                                                      

Values are given as means from three independent replicates and the error bars present standard 

deviation.  GTP        , ppGpp        , GDP        , ATP        , 

 

4.2.5 Extended observing of mupirocin effect on growth and ppGpp production  

Observing the effect on growth and ppGpp production of the sublethal concentration of mupirocin  

was extended to 72 h for the test and control cells to obtain a complete picture of the mupirocin 

effect. ppGpp was not detected  through 12, 24, 48 and 72 h for control and test cells whereas an 

effect on growth had occurred on test cells OD. For instance,  At 12 h high significant effect of 

mupirocin on growth appeared as the control cells OD reached 6.7 and the test cells OD was 2.6 (P 

value < 0.01). Similarly, significant influence of mupirocin on growth was seen at 24 h samples 

when the OD of the test cells reached to 5.9 while the control cell OD was 10.4 making the P value 

< 0.01.  Both cultures reached stationary phase at 48 and 72 h and no significant difference on their 

OD occurred between test and control cells through these time points (Figure 33).   
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Figure 33 effect of the sublethal concentration of mupirocin on Staphylococcus aureus 8325-4 

growth up to 72 h. 

OD600 mupirocin treated        , OD600 controls        , ppGpp concentration       . Values are given as 

mean from three independent replicates and the error bars present standard error statistical 

significant differences (T-test: ** p-value ≤ 0.01). 
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4.3 Discussion 

In previous studies S. aureus showed the ability to produce (p)ppGpp during  the stringent 

response condition triggered  by bactericidal concentrations of mupirocin (Cassels et al., 

1995, Geiger et al., 2010a, Reiß et al., 2011). In this work, a sub-inhibitory concentration of 

mupirocin also showed the ability to trigger the stringent response in S. aureus strain 8325-4 

as ppGpp was detected by HPLC after mupirocin exposure. Using sub-inhibitory 

concentration of mupirocin to trigger the stringent response in S. aureus has not been 

conducted in previous work.  

A rapid synthesis of ppGpp has been reported by previous studies when S. aureus was 

exposed to bactericidal concentrations of mupirocin (Reiß et al., 2011, Geiger et al., 2010a, 

Crosse et al., 2000b) which is in agreement with the current work results as ppGpp was 

detected after 1 h of sub-inhibitory concentration of mupirocin. Also, ppGpp was detected up 

to 4 h. The production of ppGpp was associated with significant growth inhibition for the 

treated cells throughout these time points. Previous studies found ppGpp to be responsible for 

remarkable down-regulation of genes that are involved in replication, transcription and 

translation during the stringent response in S. aureus, B. subtilis and other bacteria (Geiger 

and Wolz, 2014, Wang et al., 2007). Furthermore, a recent investigation (Geiger et al., 2012) 

showed that ppGpp directly represses genes coding for ribosomal proteins, translation 

initiation, elongation factors and DNA replication in S. aureus during the stringent response. 

Non-transcription of these genes under (p)ppGpp regulation during the stringent response 

might explain the significant growth inhibition of  the test cells in this work. Although only a 

slight decrease of ppGpp had occurred between 3 and 4 h the OD of the treated cell showed a 

slight increase which may indicate a negative correlation between the stringent response and 

cell growth.  The negative effect of ppGpp on replication (Wang et al., 2007, Geiger et al., 

2012) might explain the reciprocal change in (p)ppGpp concentration and the bacterial growth 

rate. Indeed, extended observation on the sublethal concentration of mupirocin effect on 
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growth revealed that ppGpp was not detectable at 12, 24, 48 and 72 h in the treated cells while 

the cell growth had resumed (Figure 33). However, at these time points significant difference 

in cell growth had occurred in test cells relative to control up to 24 h results. In an earlier 

study by Edwards-Jones (thesis1997) and (Edwards-Jones and Foster, 1994b) a prolonged lag 

phase for S. aureus was seen after sublethal concentration of mupirocin treatment which is in 

agreement with the results obtained here as the OD of the treated culture were significantly 

inhibited at 1, 2, 3 and 4 h. The significant difference in growth rate between treated and 

control cells that was seen up to 24 h might be a consequence of prolonged lag that occurred 

in the first few hours (1, 2, 3 and 4 h) in the test cells which can be attributed to the negative 

effects of ppGpp on growth and replication.   

In addition, the resumed growth in the treated cell after few hours of sublethal concentration 

of mupirocin treatment reported here is in agreement with (Edwards-Jones and Foster, 

1994b). Further investigation and proposed model for S. aureus tolerance and recovery from 

stringent response is discussed in detail in Chapter 6.   

During the stringent response in S. aureus, large decreases in GDP and GTP intracellular 

pools have been reported in previous observations (Reiß et al., 2011, Geiger et al., 2010a). In 

this work, a drop in the GDP and GTP intracellular pool appeared throughout 1, 2, 3 and 4 h 

after mupirocin treatment. For example, in the treated cells GTP decreased greatly in contrast 

to 1 h untreated samples. Decreased level of GTP continued up to 2 h then GTP could not be 

detected at 3 and 4 h. This sharp drop in GTP pool might be a result of synthesizing pppGpp. 

Cassles and colleagues had claimed that pppGpp was produced in higher concentration (4.2 

fold) than ppGpp in S. aureus 8325-4 after mupirocin treatment and they showed increasing 

pppGpp spot densities in TLC in parallel with increasing mupirocin concentration (Cassels et 

al., 1995). Conversely, Cross and his research group have used the same strain and they 

detected ppGpp and pGpp but not pppGpp after mupirocin treatment which agrees with 
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current work results as pppGpp could not be detected (Crosse et al., 2000b). One reason for 

this contrary result might be the different techniques used to detect (p)ppGpp in these studies. 

For instance, in the present study and (Crosse et al., 2000b) work a HPLC SAX 10 column 

was used and the pppGpp was not detected whereas (Cassels et al., 1995) used TLC and was 

able to detect both pppGpp and ppGpp. However, recent work on the stringent response in S. 

aureus used Ion Paired Liquid Chromatography accompanied by Mass Spectrometry (IP-LC-

MS) to detect (p) ppGpp and both pppGppp and ppGpp were detectable after mupirocin 

treatment (Reiß et al., 2011, Geiger et al., 2010a).   

In addition, a significant decline in the ATP intracellular pool occurred through 1, 2 and 3 h 

while ppGpp concentration increased. The ATP decrease might be as a result of its use as a 

phosphate donor in (p) ppGpp synthesis. However, an increase in ATP intracellular pool had 

occurred by 4 h. In B.subtilis, GTP and ATP intracellular pool levels change reciprocally 

during amino acid deprivation (Lopez et al., 1981) which in agreement with their results here 

at 4 h where the GTP was not detectable and [ATP] increased (Figure 32). The alteration of 

these nucleosides is mediated by (p)ppGpp  inhibitory effect on three enzymes that are 

involved in GTP synthesis pathway which results in inosine monophosphate (IMP) 

dehydrogenase accumulation that recruited in ATP  synthesis processes which leads to its 

increased level (Kriel et al., 2012) (see Chapter 1 section 1.4.2).  

In conclusion, the detection of ppGpp in the intracellular pool and alteration of the 

nucleosides concentrations ATP, GDP and GTP as well as the significant growth inhibition of 

treated cell with sublethal concentration of mupirocin in this work imitates the effect of the 

stringent response triggered via bactericidal concentration of mupirocin on the same and 

different strains of  S. aureus in previous studies (Reiß et al., 2011, Geiger et al., 2010a, 

Cassels et al., 1995, Crosse et al., 2000a). This confirms the capability of sublethal 

concentrations of mupirocin to evoke the stringent response in S. aureus 8325-4. 
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Chapter 5 

 

Effect of sub-inhibitory concentration of mupirocin on the 

TSST-1expression and production 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

5.1 Introduction 

The wide range of virulence factors that S. aureus possesses and expresses during infection 

together with the emergence of antibiotic resistance have increased the incidence of morbidity 

and mortality caused by the organism worldwide.  S. aureus pathogenicity is attributed to the 

wide array of virulence factors that can be secreted extracellularly during the infection. 

Expression of most of the genes that encode virulence factors are tightly regulated to the growth 

stage of the cells.  

In this work, S. aureus B49, which is a clinical isolate from a burns patient that produces toxic 

shock syndrome toxin TSST-1 (Edwards-Jones 1997), was used to observe the effect of sub-

lethal concentration of mupirocin on the TSST-1 production. The effect of this concentration on 

cell growth, transcription of TSST-1 and RNAIII the global regulator for S. aureus virulence 

factors was determined throughout 1, 8, 16 and 24 h using relative quantitative RT-PCR. TSST-1 

production was measured using RPLA (Reverse Passive Latex Assay) to obtain a complete 

picture for the effects of mupirocin on toxin synthesis.  

Significant growth inhibition occurred in the first few hours of observation in mupirocin treated 

cells which was associated with remarkable early transcription for RNAIII and tst genes that are 

normally expressed post exponentially. Despite the up-regulation of tst and RNAIII, TSST-1 

synthesis was inhibited as it could not been detected during the early times of observation.  

Similar to chapter 4 results, significant growth inhibition for S. aureus (clinical isolates) had 

occurred after sub-inhibitory concentration of mupirocin treatment which suggests also induction 

of stringent response at least at 1 h of exposure. Early transcription of tst and RNAIII as well as 

the inhibited translation for TSST-1 might be attributed to stringent response effect. Explanation 

of the link between stringent response and transcription of these genes is discussed here. In 

addition, proposed mechanisms that might elucidate the inhibition of TSST-1 synthesis are 

suggested. 
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5.2 Results 

5.2.1 Effect of sub-lethal concentration of mupirocin  on cell growth 

The sublethal concentration of mupirocin was determined for S. aureus (B49) to be 0.12µg/ml-1 

(0.5 MIC). The effect on cell growth was observed throughout 24 h in parallel with control 

growth and the results are shown in Figure 34. A comparison between the optical density of 

control and test cultures revealed that there was a highly significant effect of the sublethal 

concentration of mupirocin on growth up to 8 h of incubation as the growth OD reached 7.1 for 

the control cell and 1.3 in the treated cell culture (P value < 0.01). Then treated cells with 

mupirocin started to show growth through 16 and 24 h, reaching OD 6.6 and 8.1 respectively. 

However, the sublethal concentration of mupirocin still showed a significant effect on the growth 

in comparison to control culture (OD 8.1, 9;.P =  0.05; Figure 34).  

 

Fig 34 Effect of the sublethal concentration of mupirocin on Staphylococcus aureus B49 

(clinical isolate) growth, mupirocin treated        , control       . 

Values are given as mean from three independent replicates and the error bars present standard 

error. Statistical significant differences (T-test: ** p-value ≤ 0.01). 
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reach OD= 8.5) after 28 h (Figure 35). After that the growth dropped slightly and remained 

constant, OD= 8, for 32 and 36 h of incubation. In contrast, the growth of control culture showed 

slight decrease and stayed constant OD = 8, up to 36 h (Figure 35).  

 

 

Figure 35 effect of sublethal concentration of mupirocin on bacterial growth throughout 36 

h.  

Values are given as mean from three independent replicates and the error bars present standards deviation 

from three independent triplicates. ○ Growth in control condition,  ∆ Growth with mupirocin.     

 

5.2.2 Toxin production 

To observe the influence of sublethal concentrations of mupirocin on TSST-1 synthesis, two sets 

of exponentially growing cells were prepared and sublethal concentration of mupirocin was 

added to one of them and the other was used as control broth. Supernatants from these cultures 

were harvested at different time points (0, 1, 8, 16, and 24 h) from both cultures.  

Production of TSST-1 was detectable in the control broth after the first hour of incubation 

with low titre 3.3 (the sensitivity of the test latex suspension is 2 ng/ml).as cells exponentially 

grown OD= 0.9, then toxin production increased more than 6 folds as titres were >256 for 8, 

16 and 24 h (Figure 36).  

However, that was not the case of the cell treated with sublethal concentrations of mupirocin as 

they showed an obvious delay in toxin production as shown in figure 37. TSST-1 was not 
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detectable in the supernatant of the 1 and 8 h broths, OD 0.5 and 1.3 respectively. Although the 

OD of the 1 h of control broth was 31% less than the OD of 8 h of treated cells, TSST-1 was 

detectable in the supernatant of 1 h control broth.  

Furthermore, after 16 h of incubation for the treated cells (OD=6.6) the TSST-1 started to be 

detectable (titre 16; Figure 37), which was at least 4 fold less than the control for the same time 

point (Figure 36). However, a large increase in the toxin produced occurred in 24 h supernatant 

(titre >256), Figure 37). 
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Figure 36 growth and toxin production in control condition. 

 

Values are given as mean from three independent replicates and the error bars present standards 

deviation from three independent triplicates. TSST-1 production is expressed as a titre. The 

sensitivity of the test latex suspension is 2 ng/ml.  

       Optical density of bacterial growth,       TSST-1 production titre.    
 

 

 

Figure 37 Effects of sublethal concentration of mupirocin on bacterial growth and TSST-1 

production.  

Values are given as mean from three independent replicates and the error bars present standards 

deviation from three independent triplicates. TSST-1 production is expressed as a titre. The 

sensitivity of the test latex suspension is 2 ng/ml. 

     Optical density of bacterial growth,       TSST-1 production titre.       
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5.2.3 Transcription observation 

Quantitative real time PCR was performed in order to detect expression of the genes for tst and 

RNAIII relative to the control cells in order to detect the effect of sublethal concentrations of 

mupirocin on the transcription of tst, which are the genes that encode TSST-1 and the global 

regulator of agr system in S. aureus RNAIII that plays essential role in tst regulation, 

respectively. Total RNA was harvested from control and treated cells after 1, 8, 16 and 24 h. The 

expression ratio for tst and RNAIII transcription was quantified relative to untreated cells and 

results are illustrated in Figure 38. Cycle threshold values for tst and RNAIII genes were 

normalized by 16S ct value and the expression ratio of them in the treated culture with sub-

blethal muopirocin was calculated relative to untreated cultures. Depending on the amplification 

efficiency (E) to RNAIII the ratio was calculated using the 2-ΔΔCt  equation  where ΔΔCt = 

ΔCt(treated ) – ΔCt(untreated ).   ΔCt(treated ) =  Ct(target gene,) – Ct(reference gene)  and  

ΔCt(untreated ) = Ct(target gene) – Ct(reference gene) (Livak and Schmittgen, 2001). Depending 

on the amplification efficiency (E) for tst gene the expression ratio was obtained using the Pffafi 

method (Pfaffi, 2001) where  

Ratio   =  
(E target)(ΔCt  target (untreated  – treated )

(E reference)(ΔCt  reference  (untreated  – treated )
        

 At the first time point of harvesting the expression ratio for both genes, tst and RNAIII, was 0.93 

compared to control cells which indicates no significant change in expression level (< 2 fold). 

Although not reaching the significant level of expression fold change, this expression was 

associated with inhibited bacterial growth (Figure 34), which indicates significant alteration on 

their regulation as they have been reported to be controlled in growth dependent manner 

(Arvidson and Tegmark, 2001). However, after 8 h of treatment with mupirocin tst and RNAIII 

showed a slight increase in expression relative to the control.Ratios decreased in comparison to 

the 1 h ratio (Figure 38), particularly for the tst gene. Notably, cells treated with sub-lethal 
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concentrations of mupirocin showed a gradual increase in density throughout 1 and 8 h as their 

OD increased from  0.5 to 1.3 respectively (Figure 34). 

RNA harvested from cells at 16 h showed a significant increase (p value <0.05) for tst and 

RNAIII transcriptions as their mRNA increases were 1.36 and 1.48 fold respectively. In addition, 

tst expression for 24 h had increased markedly, more than 5 fold (p value <0.01) and RNAIII 

increased slightly to 1.6 fold. The increased expression of these genes during 16 and 24 h were 

associated with exponential growth of treated cells (OD 1.3 to 8.1).   

 

Figure 38 Expression ratios for tst and RNAIII transcription after sublethal concentration 

of mupirocin. tst gene expression ratio        , RNAIII gene expression ratio       ,Values represent 

mean gene expression ratio calculated relative control condition after normalization by using 16S 

gene. Error bars represent standard deviation from independent triplicates.  

5.2.4 Protease inhibition 

Real time PCR results showed increased ratio of tst expression after 1 and 8 h of sublethal 

concentration treatment whereas TSST-1 was not detectable during these time points. These 

results raised an obvious question that needed to be answered which is, “if the tst gene was 

transcribed why it is not detected in the broth? One possible scenario (discussed in detail below) 

to answer this question was that the toxin might be synthesised and secreted outside of the cells 

but it was degraded by protease. To verify that, protease inhibitor (1mM) was added to treated 

with mupirocin. Results from both cultures (treated cells with mupirocin and treated cells with 
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mupirocin + protease inhibitor) showed identical RPLA results at same time points which 

suggests that there was no degradative activity of protease on TSST-1 during these time points (1 

and 8 h) Table 14.  

Table14 Optical density and TSST-1 titre for mupirocin treated S. aureus with and without protease 

addition (1mM).Values are from independent triplicates. 

 

 

 

 

 

 

 

 

 

5.3 Discussion 

In this part of the study the effects of sublethal concentrations of mupirocin on a clinical 

isolate of S. aureus showed significant growth inhibition the first few hours of mupirocin 

exposure from (1 to 8 h). In addition, up-regulation of tst and RNAIII genes occurred as they 

were detected by relative quantitative RT-PCR during this inhibited growth. Although, up-

regulation of tst and its activator RNAIII has appeared, TSST-1 synthesis seems to be 

inhibited as it not been detected during these time points (Figure 37).   

The inhibited growth and delayed toxin production here is in agreement with previous 

observation on different clinical isolate T4 when Edwards Jones  reported prolonged lag phase 

of growth and delayed TSST-1 production after sublethal concentration of mupirocin 

exposure (Edwards Jones 1997). Furthermore, Edwards Jones and Foster had spotted earlier 

and increasing TSST-1 production in this S. aureus clinical isolate after exposure to sublethal 

concentration of silver sulphadiazine (Edwards-Jones and Foster, 1994b)which is in contrast 

to the effects of mupirocin. 

Incubation time 
OD 600nm TSST titre 

Mup 
Mup + protease 

inhibitor 
Mup Mup + protease 

0 h 0.5 0.5 Negative Negative 

1 h 0.5 0.5 Negative Negative 

8 h 1.3 1.5 Negative Negative 

16 h 6.6 6.9 16 16 

24 h 8.1 7.9 256 256 
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As mentioned earlier in Chapter 4, the laboratory strain of S. aureus 8325-4 showed inhibited 

growth after sublethal concentration of mupirocin treatment and ppGpp was detected during 

growth inhibition up to 4 h from adding sublethal concentration of mupirocin to S. aureus 

8325-4 broth culture. In addition, in previous work 15 different strains of S. aureus were 

capable of producing (p)ppGpp after mupirocin treatment (Cassels et al., 1995). Recently, 

Wolz and colleagues have proven that inhibitory concentration of mupirocin (3 × MIC) is 

capable of triggering the stringent response in S. aureus strain COL and microarray results 

showed down-regulation of  nucleotide synthesis, translation and energy metabolism genes 

occurred after only 10 min of expose to inhibitory concentration of mupirocin (Reiß et al., 

2011). Furthermore, in B. subtilis (p)ppGpp directly inhibited primase, an essential 

component for replication, that consequently inhibited the replication machinery (Wang et al., 

2007).  Recent work has shown (p)ppGpp inhibits the DNA replication elongation as well as 

replication initiation in E.coli and B.subtilis (DeNapoli et al., 2013) leading to inhibited 

growth and one can assume  the same mechanism may occur in S. aureus which may accont 

for the significant growth inhibition in in the early stage (1- <8 h) observed in this study. 

Relative quantification for RT-PCR revealed that tst and RNAIII genes were up-regulated 

shortly after mupirocin addition particularly after 1 h. Early up-regulation of agr locus 

product and its positively affected target genes such as tst have been reported in different 

studies after exposure to sub inhibitory concentrations of protein synthesis targeting 

antibiotics such as clindamycin and linezolid (Stevens et al., 2007, Ohlsen et al., 1998). These 

virulence genes (tst and RNAIII) are tightly regulated in growth dependent manner and they 

are transcribed in post exponential phase of growth in normal condition under agr locus 

(Novick et al., 1995b, Novick et al., 1993). Despite the growth inhibition throughout 1 to 8 h, 

early transcription of tst and RNAIII has occurred indicating a remarkable alteration on 

virulence genes regulation. This finding raises a question which is how the regulation of these 

genes had been altered and why that happened? 
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An answer for the question might come from the growing evidence of CodY protein effects 

on S. aureus virulence factors and its crucial role in linking between metabolism and 

virulence factor regulation (Pohl et al., 2009, Majerczyk et al., 2010). CodY protein represses 

a wide range of virulence factors in S. aureus during exponential growth. The abundance of 

GTP in the intracellular pool plays a central role in increasing the affinity of CodY to bind its 

DNA target genes during exponential growth (Majerczyk et al., 2008, Majerczyk et al., 2010). 

Recently, early transcription of the agr locus and some exoproteins virulence genes in 

different strains of S. aureus has been reported after introducing codY mutations (Rivera et al., 

2012). This early transcription of agr in codY mutant strains is in agreement with qRT-PCR 

results in this work. Therefore, the results suggest that the stringent response affects CodY 

repressive activity indirectly as triggering the stringent response would commence (p)ppGpp 

synthesis which consumes GTP from the intracellular pool rapidly after mupirocin addition. 

This is reported in chapter 4 when the GTP intracellular concentration decreased markedly 

after 1 h of sublethal concentration of mupirocin and then was not detectable after 3 and 4 h. 

In addition, Wolze and colleagues have reported significant decrease in GTP pool after only 

10 min of exposure to inhibitory concentration of mupirocin. (Reiß et al., 2012b, Geiger et al., 

2010b). Hence, GTP consumption during (p)ppGpp synthesis and the inhibition of the GTP 

synthesis pathway that (p)ppGpp exhibit would obviously decreased the GTP pool and lead to 

de-repression of CodY target genes such as the agr locus and  activation of RNAIII transcript 

begin to occur in the early stage of growth which may up-regulate other virulence factors that 

are under agr regulation such as TSST-1 and other toxins. In other words CodY seems to 

shape and contribute to virulence gene regulation in S. aureus after mupirocin treatment 

through losing its repressive effect on some of them such as agr (Geiger et al., 2010b, Reiß et 

al., 2012b). This proposed mechanism and CodY role is illustrated in (Figure 39).  
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Figure 39 effect of CodY on genes regulation in exponential growth at untreated condition and at inhibited growth at stringent response 

state.  

(A) In nutrient rich conditions GTP increases CodY affinity to its target DNA resulting in repressed transcription. (B) In amino acid starvation, 

caused by mupirocin, stringent response is triggered by uncharged tRNA and intracellular GTP is utilized in (p)ppGpp synthesis which reduces 

CodY affinity to its target DNA particular post-exponential phase genes resulting in early transcription 
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 Interestingly, TSST-1 production was not detected during the early time of exposure to 

mupirocin (1-8 h) despite its mRNA transcription up-regulated at that time. This can be 

attributed to the mupirocin mechanism of action that would lead to attachment of de-

aminocylated tRNA to the A-site of the 50S ribosome unit which consequently obstructs 

the translation processes(Parenti et al., 1987). Shortage of charged isoleucyl-tRNA in the 

intracellular pool as results of mupirocin effect can be a cause for inhibition of translation 

of the tst mRNA particularly when isoleucine one of the main amino acids that comprise 

TSST-1 (Sunohara et al., 2004). In addition, ribosomes paused by uncharged tRNA have 

been reported to induce mRNA cleavage near the paused ribosome site in bacteria which 

would lead to inhibition of translation of  mRNA even though its transcript had been up-

regulated  (Sunohara et al., 2004).  

Furthermore, stalling ribosomes during amino acid starvation can induce the toxin and 

antitoxin system that decays mRNAs(Christensen et al., 2003). Recently, three toxin-

antitoxin systems in S. aureus that are involved in endoribonuclease activity and translation 

initiation inhibition have been shown to be up-regulated during mupirocin treatment which 

may result in preventing protein synthesis including that of TSST-1 (Reiß et al., 2012b, Fu 

et al., 2007, Yoshizumi et al., 2009) 

Another possible reason for the inhibited translation might be the decreased level of GTP 

which plays an important role in translation as energy source for, binding tRNA to the A-

site of the ribosome unite as well as its role in translocation of the ribosome toward the 5’ 

of the mRNA(Gualerzi and Pon, 1990). Moreover, insufficient ribosomes might lead to 

inhibited translation as recent observation reported down regulation for ribosomal genes 

under the effect of stringent response triggered by inhibitory concentration of mupirocin 

(Reiß et al., 2012b).  The following diagram summarises these proposed mechanisms for 

the absence of TSST-1 synthesis in this work. 
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Figure 40 proposed mechanisms that can result in impeded TSST-1 synthesis after treatment with sublethal concentrations of mupirocin 

Proposed mechanisms for impeded  

 TSST-1 synthesis 
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Obstructed translation 
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Extracellular TSST-1 degradation could be another reason for undetectable TSST-1 

production as different studies have  reported the up regulation of the HtrA gene during 

stress response in S. aureus which encodes serine protease and has the capability to digest 

TSST-1 (Bore et al., 2007, Lawellin et al., 1989). The degradation of TSST-1 by serine 

protease inhibitor is unlikely as there were no significant difference in the TSST-1 

production between broth supplemented with protease inhibitor and controls after 

mupirocin addition. A further but unlikely possibility is that TSST-1 was synthesised but 

not excreted. This was not investigated here but there are no reports of inhibition of protein 

secretion by (p)ppGpp. 

Regarding to 16 and 24 h results, sublethal concentration of mupirocin seemed to prolong 

the lag phase which consequently delayed the exponential and the stationary phases for 

treated cell in comparison to control cells. This variation in growth phases between the two 

cultures would simply explain the contrasts of their tst and RNAIII transcripts and TSST-1 

production as regulation of these genes tightly dependent on growth phase.   

 

The effects of inhibitory concentrations of different antibacterial agents have been 

observed in several studies. Antibiotic mode of action and regulation of virulence factors 

play important role in response to the treatment. Steven and colleagues have noticed 

increase transcription of exoprotein genes associated with inhibited translation when 

exposed to proteins synthesis inhibitors such as clindamycin and linezolid(Stevens et al., 

2007). Conversely, TSST-1 and exoproteins were produced at increasing levels in the early 

stage of growth after exposure to inhibitory concentration of non-protein targeting agent 

such as silver sulphadiazine, nafcillin and other β-lactam antibiotics(Edwards-Jones and 

Foster, 1994a, Edwards-Jones and Foster, 2002, Subrt et al., 2011, Ohlsen et al., 1998). 

Therefore, bactericidal and bacteriostatic effects for the antibacterial agent are not the only 
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strategy that should be considered for treatment. Effects of the antibiotic on virulence 

factor regulation and their production should be taken into consideration in particular 

during treating infection caused by exoprotein producing bacteria.  

In summary, despite the increased transcription of tst and RNAIII in early stage of growth 

by sublethal concentrations of mupirocin, TSST-1 production was inhibited. Mupirocin, 

similarly to clindamycin, appears to be able to inhibit TSST-1 production at sublethal 

concentrations which might make it suitable to treat wound infections caused by S. aureus 

toxin producing strains even if sublethal concentrations occur at some sites in the wound. 
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Chapter 6 

Observing the global transcription alterations after 

sub-inhibitory concentration of mupirocin treatment  
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6.1 Introduction 

Mupirocin has been used in different works to trigger the stringent response via inhibition of 

isoleucine aminoacylation leading to unchanged tRNA accumulation which trigger the 

stringent response in S. aureus and other bacteria. Observations of global alterations in gene 

transcription after mupirocin treatment have been conducted in previous studies via DNA 

microarray and most of these observations were at bactericidal concentrations of mupirocin 

for less than 10 h, as treated cells entered the death phase after a few hours of exposure (Reiß 

et al., 2011, Geiger et al., 2010a).   

In the present work, S. aureus 8325-4, a lab strain derived from S.aureus 8325 and it is   

sigB defective and cured from prophages ɸ11, ɸ12 and ɸ13 that present in 8325 (O’Neill 

2010), was exposed to sub-lethal concentrations of mupirocin, and transcriptional profiles 

were obtained via high throughput RNA-sequencing at three different time points, 1, 12 

and 24 h, for treated and control cells, to investigate the global effect of sub-lethal 

concentrations of mupirocin on gene expression. This observation also focused on 

differentially expressed genes in treated cultures and especially on the expression of 

virulence factor genes throughout these time points. In addition, genes whose expression 

overlapped for the different time points were identified to track the regulation alterations 

caused by mupirocin by comparison with the control cells and they were classified into 

groups according to their involvement in the different biological functions.   

S. aureus recovery from the stringent response has not been reported in previous studies 

which are related to the mupirocin concentration that leaded to cell death. In this work, the 

recovery from the stringent response after exposure to sub-lethal concentrations of 

mupirocin is discussed in phenotypic and genotypic aspects and a scenario of recovery is 

suggested.   
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6.2 Results 

6.2.1 Effect of mupirocin and ppGpp on the growth of S. aureus 8325-4 

The effect of a sublethal (0.5 MIC) concentration of mupirocin (0.12 µg/ml-1)  on growth 

of S. aureus 8325-4 was observed throughout the three time points 1, 12 and 24 h in 

parallel with growth of control cultures and the results are shown in Figure 41.  

Comparison between the optical density of the control and treated cultures showed that 

there was a significant effect of the sublethal concentration of mupirocin on growth up to 

24 h. The main effect was to prolong the lag phase for the treated cells. In the first time 

point the control cell OD reached 1.2 whereas the treated cells remained constant at 0.5, a 

significant difference (P= 0.02). Then mupirocin had a highly significant effect (P = 

0.0006) on 12 h cultures as the control cells OD reached 6.5 whereas the treated cells OD 

was only 2.6. In addition, after 24 h control cells OD reached 10.4 and the test cells rose to 

5.8, significantly lower than the controls (P = 0.002). In treated cells the optical density for 

24 h culture increased to OD 5.8 which is similar to the OD of 12 h control cells (Figure 

41). Furthermore, (p)ppGpp nucleotide was detected  after 1 h of sublethal concentration 

of mupirocin exposure but was not detectable after 12 or 24 h (Figure 41).  
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Figure 41 effects of the sublethal concentration of mupirocin on the growth and 

ppGpp production by Staphylococcus aureus 8325-4  

, OD600 mupirocin treated         , OD600 controls;       ,  ppGpp concentration        . Values 

are given as mean from three independent replicates and the error bars present standard 

error Statistical significant differences (T-test:*, p-value <0.05, ** p-value <0.01). 

 

RNA was extracted from cells treated with sublethal concentration of mupirocin and 

controls at the time points shown in Figure 42 and was analysed by high throughput 

sequencing technique (RNA sequencing)  to observe the global alterations in transcription 

for S. aureus 8325-4. Differentially expressed genes were defined by using a 2 fold change 

as the threshold for the criterion of a significant change and the False Discovery Rate 

(FDR) had to be ≤0.05.  

6.2.2 Comparison between gene expression in test and controls at different times 

Expression data was obtained for 2860 genes and of these 869 (30.3%) showed a 

significant change in their expression (Figure 2) and the remaining genes showed either no 

change or no significant alteration on their transcription after 1 h of sublethal concentration 
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of mupirocin treatment. Approximately half of the differentially expressed genes 55.12% 

(n=479) were up-regulated and 44.8% (n=390) genes were down-regulated.   

After 12 h of mupirocin exposure, the differentially expressed genes were 33.8% (n=967) 

approx. 3.5% more than after 1 h (Figure 42). Again more of the differentially expressed 

genes were up-regulated 52.9% (n= 512) whereas 47.1% (n=455) were down-regulated. 

The differentially expressed genes 39.3% (n=1125) after 24 h had increased 9% and 5.5% 

higher than at the 1 and 12 h time points respectively (Figure 42). Up-regulated genes were 

56.6% (n=637) and the down-regulated genes were 43.3% (n=488) of the differentially 

expressed genes. 

 

Figure 42 Total differentially expressed genes percentage based in contrast between 

mupirocin treated and control cells of S. aureus 8325-4 for each time point.  

 

Differentially expressed gene data is shown in (Figure 43) and genes that were differentially 

expressed only at one time were determined. For example, at the 1 h time point data showed 

that 146 genes were positively induced and 206 were negatively controlled. In addition, 279 

gens were up-regulated and 311 genes were down-regulated at 12 h. Moreover, 508 genes 

30.3%
33.8%

39.3%

0

20

40

60

80

100

T_1 / C_1h T_12 / C_12 h T_24/ C_24 h

P
e

rc
e

n
ta

ge
 o

f 
th

e
 d

if
fe

re
n

ti
al

ly
 e

xp
re

ss
e

d
ge

n
e

s

Time points 

Differentially expressed



130 
 

were shown to be activated and 443 were inhibited in 24 h data (Figure 43). However, genes 

that show overlap in gene expression between the different time points are reported.  For 

instance, gene expression overlap occurred between 1 and 12 h time points for 229 up-

regulated genes and 142 down-regulated genes. Gene expression overlap between 1 h and 24 

h occurred in transcription of 125 up-regulated genes and 43 down-regulated genes, 

respectively. Among positively regulated gene, gene expression overlap between 12 h and 24 

h were 25 genes and negatively regulated genes between them were 3. 

 

 

Figure 43 differentially expressed genes of S.aureus 8325-4 treated with sub-lethal 

concentration of mupirocin for 1, 12 and 24 h compared with control (non- treated ) 

samples for each time point. 

Key: Up-regulated orange, down-regulated in black. All genes were subjected to a twofold 

differential expression cut-off at FDR ≤0.05, DE =differentially expressed, T= mupirocin treated 

and C= controls.    
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In addition, based on fold changes for genes, transcription profiles were obtained and 

comparisons of these profiles were made between all samples irrespective of their time 

point and growth condition in order to observe correlation between their transcription 

profiles. In the following heatmap each square illustrates the level of correlation between 

the corresponding samples (Figure 44). Level of correlation expressed in colours as red 

colour means high correlation and dark blue for low correlation. For example, arrow (A)  

on the heatmap indicates high level of similarity (as the square appears in dark orange and 

red) of the transcriptional profile for control cell at 12 h and  the transcriptional profile for 

treated cells with mupirocin at 24 h. Furthermore, significant similarity of transcriptional 

profiles has occurred among treated cells with mupirocin for samples at 1 and 12 h arrow 

(B) which indicate similar expression regulation for their genes (Figure 44). 
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Figure 44 sample correlation heatmap based on fold change in gene expression of  

S.aureus 8325-4 treated with sub-lethal concentration of mupirocin (P) for 1, 12 and 

24 h compared with control samples (N) at the same time points.  

All genes were subjected to a twofold differential expression cut-off at FDR ≤0.05.  The 

diagonal (from bottom left to top right) shows self- correlation. Level of correlation from 

red (high) to dark blue (low). Samples are from independent triplicates.  

 

6.2.3 Functions of unique and overlapping genes expression 

Differentially expressed genes that showed unique regulation among the time points were 

classified for gene function using gene functional classification toll server (DAVID 
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Bioinformatics Resource). For example, at 1 h genes that were involved in different 

functions including cofactors binding, cellular amino acid biosynthetic process and 

carboxylic acid biosynthetic processes were positively induced and negative regulation had 

occurred for genes that contribute in energy production, coenzyme metabolic biosynthetic 

process and DNA replication Figure 46. In addition, at 12 h genes that were involved in 

ion and cofactors binding, coenzyme metabolic process, nucleotide biosynthetic processes 

and glycolysis were up-regulated whereas, those involved in cellular carbohydrates 

biosynthetic process, two component system, signal transduction and regulator response 

were down-regulated. Genes that contribute in phosphate metabolic process, two 

component systems, nucleotide binding, GTP binding, energy production and conversion 

were up-regulated at 24 h and those involved in transcription regulation, cellular response 

to stress, regulation of RNA metabolic process and DNA binding were down-regulated 

Figure 45. 

Genes which showed overlap in expression as shown in Figure 43 were studied in more 

detail by observing their up- or down-regulation and investigating their functions to obtain 

a clearer picture to more fully understand the effects of the stringent response (Figure 45), 

an annotated version of Figure 43. For instance, Comparing 1 and 12 h transcriptome 

results from treated and control cells showed overlapping occurred for up-regulated genes 

that contribute in branched chain amino acid (BCAAs) biosynthesis processes, carboxylic 

acid and nitrogen compound biosynthetic processes, transcription regulation and stress 

response (Table 15). On the other hand, there was overlapping of negatively controlled 

genes for those involved in variety of functions such as nucleoside and nucleotide 

biosynthetic processes and binding, phosphate metabolism processes, trans-membrane and 

phosphorylation (Figure 45).   
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In addition, up-regulated overlapped genes for 1 h and 24 h time points were involved in 

different functions including cellular amino acid biosynthesis, two component system, and 

pathogenesis. However, overlapping of down-regulated genes occurred for genes that are 

engaged in cellular functions including carbohydrate metabolic processes, nucleotide and 

coenzyme binding and lactose metabolism (Figure 45).  

Genes overlapping between 12 and 24 h occurred (Figure 45), among few positively 

induced genes that were involved in functions such as transmembrane, amine biosynthetic 

processes, cellular amino acid biosynthesis, virulence and two component systems.  

 Furthermore, overlapping of up-regulated genes throughout the three time point had 

occurred (n=21 genes) 10 of which coded  unknown function products whereas the 

remaining included genes that involved in cellular amino acid biosynthesis, virulence and 

two component systems (Table 16).
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Figur 45 differentially expressed genes of S. aureus 8325-4 strains treated with sub-lethal MIC of mupirocin for 1, 12 and 24 h compared with 

control (non- treated ) samples for each time points(up-regulated in orange, down-regulated in black.).  

All genes were subjected to a twofold differential expression cut-off at FDA ≤0.05. DE =differentially expressed, T= test sample and C= control condition. 
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Table 15 Transcription alteration of genes involved in important functions following exposure to sub-lethal concentrations of mupirocin. 

Locus tag log2FC.P_01h/N_01h log2FC.P_12h/N_12h log2FC.P_24h/N_24h 

 
 

Description  
  

 
Cellular amino acid biosynthesis and transport.   

SAOUHSC_02288 5.558383707 0.16090767 2.348077015 isopropylmalate isomerase small subunit LueD 

SAOUHSC_01396 4.634513538 1.615679676 1.761330946 dihydrodipicolinate synthase 

SAOUHSC_01395 4.272831445 1.718137546 1.38266185 aspartate semialdehyde dehydrogenase 

SAOUHSC_01322 4.116077558 1.321428234 -0.819926157 homoserine kinase 

SAOUHSC_01397 3.996076025 1.512043862 1.70815607 dihydrodipicolinate reductase 

SAOUHSC_01321 3.773442547 1.466197942 -0.452475385 threonine synthase 

SAOUHSC_01159           3.28512134 2.109141364 2.378937576 isoleucyl-tRNA synthetase 

SAOUHSC_01319 2.746277235 2.08075022 -0.685131176 aspartate kinase 

SAOUHSC_02741 1.981726437 1.644037233 0.500963974 amino acid ABC transporter permease 

SAOUHSC_02743 1.714682862 1.403793953 -0.337621794 amino acid ABC transporter permease 

SAOUHSC_02742 1.629843628 1.209543086 0.08294902 amino acid transporter 

SAOUHSC_00536 1.061068082 1.880059929 -0.649915225 branched-chain amino acid aminotransferase 

carboxylic acid biosynthesis process 

SAOUHSC_01398 4.387817621 1.069213935 1.164675724 tetrahydropyridine-2-carboxylate N-
succinyltransferase 

SAOUHSC_01395 4.272831445 1.718137546 1.38266185 aspartate semialdehyde dehydrogenase 

SAOUHSC_01319 2.746277235 2.08075022 -0.685131176 aspartate kinase 

SAOUHSC_02244 1.096630469 1.760287155 0.38189061 succinyl-diaminopimelate desuccinylase 

SAOUHSC_02716          1.057146 2.245993715 -4.083664854 dethiobiotin synthase 

SAOUHSC_01635 1.007339187 1.16215325 0.585340173 shikimate kinase 

 (FC) fold change a – means down-regulation, (p) Treated cells with mupirocin, N Control cells.   

Table 15, continue. 
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(FC) fold change, (p) Treated cells with mupirocin, N Control cells.   

 

Table 16 overlapping up-regulated genes throughout 1, 12 and 24 h. 

Locus tag  log2FC.P_01h/N_01h log2FC.P_12h/N_12h log2FC.P_24h/N_24h 
 

Description 
  

Stress response    
  

SAOUHSC_00715 4.524388932 1.501906714 2.20621774 response regulator 

SAOUHSC_02757 4.058647623 3.140527115 -3.376450823 Toxin/antitoxin system protein 

SAOUHSC_01819 3.779090714 1.454848755 -0.607804235 Universal stress  protein 

SAOUHSC_00992 3.155331132 3.254186318 -0.997848819 MarR family transcriptional regulator 

SAOUHSC_02692 3.058061862 2.49048462 -2.651989113 Toxin/antitoxin system protein 

SAOUHSC_00934 2.248105826 0.891111754 1.627478342 transcriptional regulator Spx 

SAOUHSC_01685 2.087166309 5.287314939 -5.928228587 heat-inducible transcription repressor HrcA 

SAOUHSC_01281 1.878196259 -0.500067106 0.509305484 host factor 1 protein 

SAOUHSC_02664 1.424576532 0.894209915 0.824786568 transcriptional regulator 

SAOUHSC_00505 1.339454735 5.23664769 -6.636074044 endopeptidase 

SAOUHSC_00935 1.316914929 3.309088494 -3.241761051 adaptor protein 

Nitrogen component biosynthetic processes  
  

SAOUHSC_01395 4.272831445 1.718137546 1.38266185 aspartate semialdehyde dehydrogenase 

SAOUHSC_01397 3.996076025 1.512043862 1.70815607 dihydrodipicolinate reductase 

SAOUHSC_01321 3.773442547 1.466197942 -0.452475385 threonine synthase 

SAOUHSC_02244 1.096630469 1.760287155 0.38189061 succinyl-diaminopimelate desuccinylase 

SAOUHSC_02716 1.057146 2.245993715 -4.083664854 dethiobiotin synthase 
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 (FC) fold change, (p) Treated cells with mupirocin, N Control cells

 
Locus tag  

 
Log2FC.P_01h/N_01h 

 
Log2FC.P_12h/N_12h 

 
Log2FC.P_24h/N_24h 

    
                    Description 
  

 
SAOUHSC_00401 

 
6.553871845 

 
2.630380209 

 
4.439239373 

 
hypothetical protein 

SAOUHSC_00717 6.162806261 3.028173651 2.153450097 hypothetical protein 

SAOUHSC_02160 5.698850429 1.698809391 2.224018723 hypothetical protein 

SAOUHSC_02161 5.42152956 1.219541744 2.462834269 MHC class II analog protein 

SAOUHSC_01114 5.261024517 1.593980386 3.040741108 fibrinogen-binding protein 

SAOUHSC_00716 5.183185291 1.666778008 2.45608222 hypothetical protein 

SAOUHSC_01396 4.634513538 1.615679676 1.761330946 dihydrodipicolinate synthase 

SAOUHSC_00715 4.524388932 1.501906714 2.20621774 response regulator 

SAOUHSC_01398 4.387817621 1.069213935 1.164675724 tetrahydropyridine-2-carboxylate N-succinyltransferase 

SAOUHSC_00714 4.253441498 1.127500378 2.158843762 sensor histidine kinase SaeS 

SAOUHSC_01397 3.996076025 1.512043862 1.70815607 dihydrodipicolinate reductase 

SAOUHSC_02773 3.643517026 1.442373114 2.285008828 transporter 

SAOUHSC_00367 3.473836595 1.61971871 2.77915483 hypothetical protein 

SAOUHSC_01159 3.28512134 2.109141364 2.378937576 isoleucyl-tRNA synthetase 

SAOUHSC_02112 2.921384751 2.274531859 1.475211248 hypothetical protein 

SAOUHSC_00961 2.753277716 1.898520437 2.364803055 hypothetical protein 

SAOUHSC_02566 2.524505653 1.902989861 1.207635927 hypothetical protein 

SAOUHSC_02334 2.33900609 1.223618318 2.131598941 bacteriophage L54a single-stranded DNA binding 
protein 

SAOUHSC_02731 2.248023772 1.371139687 1.0624403 hypothetical protein 

SAOUHSC_02012 1.67574536 1.258524884 1.433805033 glycosyltransferase 

SAOUHSC_01707 1.64945833 1.152647828 1.630139022 hypothetical protein 
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6.2.4 Regulation of virulence factor genes 

 In this study,  transcription of 60 virulence factor genes were examined at 1, 12 and 24 h after 

exposure to sub-inhibitory concentration of mupirocin via the RNA-seq analysis to observe  

their regulation relatively to normal conditions. Again, differentially expressed genes were 

defined by using a 2 fold change as the threshold for the criterion of a significant change and 

a False Discovery Rate (FDR) and P value had to be ≤ 0.05  

The effect of sub-inhibitory concentration of mupirocin showed  clear alteration to virulence 

factor gene regulation in S. aureus. For instance, some genes that are normally expressed 

during post-exponential /stationary phase in normal conditions were transcribed at 1 h of 

mupirocin exposure including agr locus and genes coding for lipase, capsular polysaccharide 

biosynthesis protein Cap5B, staphylocoagulase and alpha-hemolysin toxin. Conversely, genes 

that are normally tightly controlled in a growth dependent manner such as those coding for 

clumping factor, catalase and fibronectin-binding protein, up-regulated during exponential 

phase in normal condition, appear to be up-regulated while the cell growth was inhibited 

during stringent response.  However, genes were divided into four groups according to their 

regulation manner through the time points as follows;  

Group A genes that were up-regulated after 1 h then down-regulated after 12 h and up-

regulated again after 24 h (Table 17). These included genes such as the agr locus, lipase, 

serine protease SpIA and alpha-hemolysin. These genes are normally expressed in the late 

exponential phase or early of stationary phase. Interestingly, the up-regulation of these genes 

is associated with the stringent condition where the cell growth has been inhibited.  

Group B included genes that were up-regulated during 1 and 12 h then repressed at 24 h 

(Table 18). These genes encoded products that are involved in the stress response such as, 

heat shock protein GrpE and protein export protein PrsA and encoded proteins that are 
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involved mainly in cell binding such as fibronectin-binding protein, intercellular adhesion 

protein C,  extracellular matrix and plasma binding protein. TRAP gene which encoding for 

RNAIII activating protein that plays a crucial role in S. aureus toxin production was also 

regulated in this manner. 

Group C genes were up-regulated throughout all time points (Table 19). These genes encoded 

for binding proteins such as penicillin-binding protein 2 (SAOUHSC_01467) and fibrinogen-

binding protein-like protein (SAOUHSC_01110) or involved in response regulation and host 

immune cells evasion such as SAOUHSC 00715 and SAOUHSC 01115 respectively. Further, 

some of genes are expressed at 1 h much more than 12 and 24 such as genes that involved in  

immune evasion, formyl peptide receptor-like1 inhibitory protein, MHC class II analog 

protein, response regulator immunoglobulinG-binding protein Sbi.   

Furthermore, transcription results showed another virulence gene grouping (D) that was 

positively induced  at 1 h without reaching the cut off  threshold (2 fold) such as phenol-

soluble modulin 1-2 and serine protease genes SplB, C, D, E and F. Regulation for most of 

these genes was similar to group A.  However, some genes in this group were up-regulated at 

1 and 12 h such as clumping factor gene, enterotoxin family protein and then they were down-

regulated at 24 h similar to group B genes regulation (Table 20).   
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Table 17 Group A virulence factors genes regulation   

 
 

Locus tag 

 
1h 

 
FC p-value          FDR 

 
12h 

 
FC  p-value FDR 

 
24h 

 
FC p-value  FDR  

 
 

Description 

         
 

SAOUHSC_00300 16.9 6.28E-14 3.99E-12 -4.43 1.74E-05 0.0001 93.7 1.01E-26 1.16E-24 lipase 

SAOUHSC_00115 8.3 7.90E-12 3.12E-10 -4.85 1.20E-07 1.42E-06 9.8 2.40E-13 6.03E-12 capsular polysaccharide biosynthesis protein 
Cap5B 

SAOUHSC_00192 7.5 3.76E-05 0.0002 -1.35 0.49 0.65 2.4 0.05 0.11 staphylocoagulase 

SAOUHSC_00114 6.4 2.70E-09 5.95E-08 -2.6 0.0004 0.002 5.9 3.90E-09 4.43E-08 capsular polysaccharide biosynthesis protein 

SAOUHSC_01121 5.8 2.16E-06 2.36E-05 -1.93 0.063 0.13 70.5 3.36E-22 2.18E-20 alpha-hemolysin 

SAOUHSC_02709 5.3 1.29E-05 0.0001 -1 0.97 1 6.3 3.60E+06 2.18E-05 leukocidin s subunit 

SAOUHSC_01281 3.6 1.61E-06 1.84E-05 -1.4 0.188 0.319 1.5 0.181 0.27 host factor 1 protein 

SAOUHSC_02262 2.9 0.0008 0.004 -18.4 3.39E-16 2.11E-14 50.9 9.31E-25 8.33E-23 hypothetical protein/ AgrD 

SAOUHSC_02265 2.86 0.0001 0.001 -7.67 5.20E-12 1.62E-10 18.3 1.31E-20 7.86E-19 accessory gene regulator protein A 

SAOUHSC_01942 2.7 0.0001 0.0008 -2.1 0.004 0.015 1.6 0.05 0.1 serine protease SplA 

SAOUHSC_02264 2.6 0.0006 0.003 -10.9 3.53E-14 1.60E-12 29.8 2.97E-25 2.93E-23 accessory gene regulator protein C 

SAOUHSC_02261 2.3 0.005 0.018 -12.1 2.95E-14 1.36E-12 42.2 1.07E-25 1.18E-23 accessory gene regulator protein B 

SAOUHSC_00130 2.3 0.01 0.034 -1.1 0.77 0.86 1.3 0.37 0.48 heme-degrading monooxygenase IsdI 

SAOUHSC_02119 2.2 0.0015 0.0068 -1 0.88 0.94 3.5 5.31E-07 3.93E-06 high affinity proline permease 

SAOUHSC_02314 2.1 0.004 0.01 -5.27 1.44E-09 2.62E-08 10.2 4.54E-16 1.66E-14 sensor protein KdpD 

SAOUHSC_01953 2.1 0.004 0.0166 -1.55 0.079 0.16 1.5 0.09 0.16 gallidermin superfamily epiA protein 

 (FC) fold change.       ( FDR)  False Discovery  Rate.  (– ) Down regulated. 
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Table 18 Group B virulence factors gene regulation 

 
 

Locus tag 

 
1h 

 
FC p-value  FDR  

  

 
12h 

  
FC p-value     FDR  

 
24h 

  
FC  p-value     FDR 

 
 

Description 

             

SAOUHSC_02803 45.2 6.45E-19 1.08E-16 6.9 3.63E-07 3.77E-06 -1.2 0.55 0.65 fibronectin-binding protein 

SAOUHSC_00703 9 6.67E-08 1.08E-06 3 0.004 0.013 -1 0.69 0.78 quinolone resistance protein NorA 

SAOUHSC_00992 8.8 1.56E-16 1.79E-14 9.5 2.30E-17 1.73E-15 -2 0.005 0.01 MarR family transcriptional regulator 

SAOUHSC_01127 6.6 1.76E-11 6.38E-10 2.7 0.0001 0.0007 -1.52 0.11 0.18 superantigen-like protein 

SAOUHSC_01124 6.1 2.00E-10 5.20E-09 4.3 2.55E-07 2.74E-06 -1.1 0.72 0.8 superantigen-like protein 

SAOUHSC_01125 6.1 4.77E-11 1.47E-09 2.9 4.66E-05 0.0002 -1.55 0.084 0.15 superantigen-like protein 

SAOUHSC_00620 5.8 4.91E-06 4.84E-05 4.5 8.27E-05 0.0004 -6 1.95E-06 1.25E-05 accessory regulator A(SarA) 

SAOUHSC_03004 4.9 6.08E-05 0.0004 1.8 0.1 0.202 -1.2 0.5 0.61 intercellular adhesion protein B 

SAOUHSC_01964 3.7 0.01 0.05 2.6 0.0001 0.0006 -2.2 0.002 0.007 RNAIII-activating protein TRAP 

SAOUHSC_01684 3.2 0.0006 0.003 36.7 5.79 E19 5.92E-17 -55.7 4.96E-22 3.15E-20 heat shock protein GrpE/ thermosensor 

SAOUHSC_00816 3 0.0005 0.003 1.15 0.653 0.781 -1.1 0.67 0.76 extracellular matrix and plasma binding protein 
SAOUHSC_01327 2.8 0.004 0.01 5.3 8.52E-06 6.22E-05 -4 3.39E-05 0.0001 catalase 

SAOUHSC_03005 2.7 0.0005 0.002 2.1 0.01 0.03 -1.6 0.09 0.16 intercellular adhesion protein C 

SAOUHSC_00505 2.5 0.006 0.021 36.7 1.04E-19 1.36E-17 -97 4.24E-27 5.27E-25 endopeptidase 

SAOUHSC_01972 2.4 0.001 0.006 6.6 2.41E-10 5.22E-09 -1.7 0.83 0.88 protein export protein PrsA 

SAOUHSC_02696 2.1 0.001 0.005 2.3 0.0003 0.001 -2.2 0.0006 0.002 methicillin resistance determinant protein FmhA 

 (FC) fold change.       ( FDR)  False Discovery  Rate.  (– ) Down regulated.  
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Table 19 Group C virulence factors genes regulation 

Locus tag 

1h 12h 24h 

Description 
FC p-value FDR FC p-value FDR FC p-value 

 
FDR 

 

SAOUHSC_01115 55.7 2.64E-15 2.36E-13 2.6 0.02 0.05 8.5 1.78E-06 1.16E-05  immune evasion 

SAOUHSC_01112 51.2 5.68E-32 1.09E-28 2.2 0.003 0.012 1.4 0.16 0.25 
formyl peptide receptor-like 1 inhibitory 
protein 

SAOUHSC_02161 42.8 1.72E-25 6.18E-23 2.3 0.005 0.017 5.5 5.82E-08 5.17E-07 MHC class II analog protein 

SAOUHSC_00715 22.9 3.78E-18 5.70E-16 2.82 0.001 0.004 4.6 2.73E-06 1.69E-05 response regulator 

SAOUHSC_02706 19.2 4.79E-08 7.98E-07 1.8 0.20 0.33 5.2 0.0009 0.003 immunoglobulin G-binding protein Sbi 

SAOUHSC_00714 19 4.35E-15 3.55E-13 2.2 0.018 0.049 4.4 1.29E-05 6.85E-05 sensor histidine kinase SaeS 

SAOUHSC_01110 13.4 5.0E-06 4.91E-05 3 0.03 0.078 5.2 0.003 0.01 fibrinogen-binding protein-like protein 

SAOUHSC_02802 7.3 2.61E07 3.63E-06 1.7 0.13 0.25 1.3 0.47 0.58 fibronectin binding protein B 

SAOUHSC_02566 5.65 2.03E-06 2.23E-06 3.7 0.0002 0.003 2.3 0.017 0.041 SarR 

SAOUHSC_02710 5.1 1.98E-05 0.0001 1.1 0.69 0.81 4.6 6.41E-05 0.0002 leukocidin f subunit 

SAOUHSC_02333 4.8 0.0001 0.0008 1.6 0.20 0.33 2.6 0.01 0.03 transglycosylase SceD 

SAOUHSC_02171 3.2 0.28 0.44 -1.5 0.70 0.82 -12 0.0004 0.001 staphylokinase 

SAOUHSC_02708 2.8 0.001 0.005 1 0.88 0.95 -1.1 0.60 0.70 gamma-hemolysin h-gamma-II subunit 

SAOUHSC_01467 2.2 0.01 0.04 1 0.46 0.61 3.1 7.05E-05 0.0003 penicillin-binding protein 2 

           

 (FC) fold change.       ( FDR)  False Discovery  Rate.  (– ) Down regulated.   
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Table 20  Group D virulence factors genes regulation 

 
 

Locus tag 

 
1 h 

 
FC p-value       FDR 

 
12 h 

 
  FC         p-value        FDR 

 
24 h 

 
 FC    p-value           FDR  

  
 

Description 

             

SAOUHSC_01952 1.994 0.003 0.012 -2.1 0.001 0.005 1.05 0.87 0.81 lantibiotic epidermin biosynthesis 
protein EpiB 

SAOUHSC_01561 1.931  0.493 0.651 2 0.489 0.632 8 0.15 0.089 PVL orf 50-like protein 

SAOUHSC_00394 1.87 0.005 0.020 2.46 0.0005 0.002 -2.2 0.0004 0.001 superantigen-like protein 

SAOUHSC_00812 1.87 0.022 0.062 3 7.97e-05 0.0004 -7.1 4.57e-10 2.57e-11 clumping factor 

SAOUHSC_01135 1.5 0.156 0.286 -194 2.04e-42 2.92e-39 7.43 4.89e-38 5.13e-41  phenol-soluble modulin1 

SAOUHSC_01705 1.50 0.098 0.198 1.3 0.274 0.420 -1.98 0.0147 0.005 enterotoxin family protein 

SAOUHSC_01949 1.47 0.136 0.257 -1 0.993 1 1.18 0.61 0.506 intracellular serine protease 

SAOUHSC_01939 1.42 0.205 0.348 -1.7 0.062 0.132 1.8 0.07 0.036 serine protease SplC 

SAOUHSC_01938 1.24 0.449 0.610 -1.6 0.084 0.170 1.68 0.13 0.073 serine protease SplD 

SAOUHSC_01954 1.23 0.504 0.661 1.14 0.677 0.799 -1.36 0.43 0.32 leukotoxin LukD 

SAOUHSC_01136 1.23 0.438 0.599 -168.8 1.09e-50 2.88e-47 75.1 2.02e-37 2.82e-40  phenol-soluble modulin2 

SAOUHSC_01936 1.07 0.766 0.868 -1.52 0.12 0.22 1.53 0.19 0.11 serine protease SplE 

SAOUHSC_01941 1.06 0.842 0.916 -1.63 0.145 0.260 1.32 0.50 0.39 serine protease SplB 

SAOUHSC_01935 1.06 0.842 0.916 -1.3 0.416 0.574 1.32 0.46 0.35 serine protease SplF 

(FC) fold change.       ( FDR)  False  Discovery   Rate.  (– ) Down regulated.
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6.2.5 Effect of sublethal concentration of mupirocin on the gene expression 

throughout time points in the treated cultures 

Gene expression throughout the time points was recorded and comparisons made relative 

to each other in order to observe the effect of the sublethal concentration of mupirocin on 

gene expression.  

Firstly, comparison data set of differentially expressed genes was for 12 h transcriptome 

results relative to 1 h. Among 2784 genes, 526 (18.3%) showed a significant difference in 

expression which indicates high similarity between these two time points which also can 

be seen in the heatmap arrow (B; Figure 44). Up-regulated genes were 265 (50.3%) and 

261 (49.6%) were down-regulated.  

Comparison between 24 h and 1 h transcriptome data showed an increased number of the 

differentially expressed genes 897 (31.3%) where 374 genes (41.7%) were positively 

regulated and 523 genes (58.3%) were negatively regulated. The third measurement was 

between the transcript data for 24 h relative to 12 h and the differentially expressed genes 

were 1060 which was 37% of the total transcriptome data. It is worth noting that a high 

similarity between 12 h and 1 h is reflected clearly in the percentage of the differentially 

expressed genes among 24/1h and 24/12h data sets (Figure 46).      

 

Figure 46 total differentially expressed genes in mupirocin treated cells (T) of S. 

aureus 8325-4 at different times after exposure to mupirocin in the treated cultures  
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6.2.6 Unique and overlapped genes expression 

Overlapping and unique differentially expressed genes were determined and illustrated in 

Figure 47. Comparison between 12 / 1 h and 24 / 1 h data showed 43 overlapped expressions 

of up-regulated genes and 83 genes were down-regulated. In addition, overlapping of 

differentially expressed genes between 24/1 h and 24/12 h had occurred, 309 genes were 

down-regulated  and 259 up-regulated. Moreover, 35 genes expression showed overlap in all 

three sets of data (Figure 47). Among them, 28 genes were up-regulated and 7 were down-

regulated.  

However, unique differentially expressed genes were spotted in the three data sets. For 

example, 12/1 h results showed 215 up-regulated and 150 down-regulated genes. Also, 206 

and 65 genes where negatively and positively regulated respectively, in 24/ 1h comparison 

set. Highest number of unique gens occurred in 24h/12h data when 249 were positively 

induced and 208 were negatively controlled (Figure 47).  
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Figure 47 differentially expressed genes of S. aureus 8325-4 strains treated with sub-

lethal concentration of mupirocin for 1, 12 and 24 h. 

Key: Up-regulated red , down-regulated in black. All genes were subjected to a twofold 

differential expression cut-off at FDR ≤0.05 DE =differentially expressed, T= test sample. 
 

6.2.7 Functions of unique and overlapping genes 

Genes that showed overlapping and unique expression profiles were studied in more detail by 

investigating their functions to obtain a clearer picture of their expression throughout the three 

time points. For instance, overlap of differentially expressed genes between 12 / 1 h and 24 / 1 

h data revealed that 43 overlapping up-regulated genes were involved in different functions 

and molecular processes such as nucleotide and nucleoside binding, ATPase activity and 

DNA metabolic processes. Conversely, 83 negatively regulated genes were involved in 

carboxylic acid processes, cellular amino acid biosynthesis and regulation of transcription 

overlapped.  
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Furthermore, overlapping of 259 positively regulated genes had occurred between 24/1 h and 

24/12 h. Some of these genes were involved in nucleotide, nucleoside and nucleobase 

biosynthetic processes, transmembrane, phosphorylation, energy production and ATP 

synthesis and transport. On the other hand, 309 genes that were involved in DNA metabolism 

and binding, carbohydrate transport and galactose metabolism were down-regulated.  

Moreover, overlap of 28 down-regulated genes in all sets of data was observed Table 21. 

Several of these genes involved in amino acid biosynthesis, nitrogen compound processes and 

ABC transporter activities (Figure 48). In contrast, only 7 genes were positively controlled 

through these data groups some of them were involved in amine biosynthetic process and 

cellular amino acid derivative metabolic process (Figure 48) and three of them coding for 

hypothetical proteins (Table 21). It is important to note that genes that encoded for unknown 

function proteins represented the highest proportion of these genes with overlapping 

expression profiles among all data sets above.  

However, among differentially expressed gene groups of them showed no overlapping in the 

three comparisons sets. For example, 12/1 h results  showed 215 genes were positively 

transcribed and  some were involved in ion and metal binding, stress response and cellular 

carbohydrate metabolism also 150 negatively induced genes were reported in this set that 

involved in different function include nitrogen compound biosynthetic process, nucleotide 

biosynthetic process, phosphate metabolism and two component systems (Figure 48). Results 

of 24/1 displayed 65 positively activated genes contribute in DNA metabolic process and 

binding, signals, cell membrane activity and nucleotides binding. In addition, 206 genes were 

negatively expressed in this set and some of them  were involved in transcription regulation , 

DNA binding, carboxylic acid processes, cellular amino acid biosynthesis, Nitrogen 

compound biosynthetic process. Moreover, 249 genes that involved in energy production, 

hydrogen ion transport and phosphorylation and other functions were up-regulated in 24/12 
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cooperation set whereas, 208 genes contribute in different function such as   amino acid 

transport and metabolism, ion binding, glycolysis, cofactor and coenzyme catabolic process 

were down-regulated. 
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Fig 48 differentially expressed genes of S.aureus 8325-4 strains treated with sub-lethal concentration of mupirocin for 1, 12 and 24 h in 

contracts for each other(up-regulated in orange, down-regulated in black). 

All genes were subjected to a twofold differential expression cut-off at FDA ≤0.05, DE =differentially expressed, T= test sample.  
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Table 21 Down-regulated genes with overlapping expression between1, 12 and 24 h in cells treated with mupirocin 

 
Locus tag  

 
Log2FC.P_12h/P_01h 

 
Log2FC.P_24h/P_01h 

 
Log2FC.P_24h/P_12h 

 
Description  

     

SAOUHSC_02821 -3.977941175 -5.877848673 -1.899907498 membrane spanning protein 

SAOUHSC_02820 -3.428483047 -5.136049803 -1.707566756 hypothetical protein 

SAOUHSC_00069 -2.931446441 -5.552842891 -2.62139645 protein A 

SAOUHSC_00070 -2.148894144 -3.621500987 -1.472606844 accessory regulator-like protein 

SAOUHSC_00010 -2.131739265 -3.46063222 -1.328892955 hypothetical protein 

SAOUHSC_00012 -2.079906748 -3.204339165 -1.124432416 hypothetical protein 

SAOUHSC_00844 -2.021422707 -4.560196467 -2.53877376 hypothetical protein 

SAOUHSC_00354 -1.985741158 -3.655028707 -1.669287549 hypothetical protein 

SAOUHSC_02756 -1.979295444 -6.060329121 -4.081033677 hypothetical protein 

SAOUHSC_00842 -1.850067143 -4.484710613 -2.63464347 ABC transporter ATP-binding protein 

SAOUHSC_02757 -1.828043916 -5.96305768 -4.135013764 hypothetical protein 

SAOUHSC_01159 -1.732399582 -2.894024985 -1.161625403 isoleucyl-tRNA synthetase 

SAOUHSC_00167 -1.695239595 -4.825830101 -3.130590506 peptide ABC transporter ATP-binding protein 

(FC) fold change.(p) treated cell with mupirocin. 
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Table 21, (continued) Down-regulated genes with overlapping expression between 1, 12 and 24 h  in cells treated with mupirocin. 

 
Locus tag  

 
Log2FC.P_12h/P_01h 

 
Log2FC.P_24h/P_01h 

 
Log2FC.P_24h/P_12h 

 
Description  

     

SAOUHSC_00843 -1.681073287 -4.456045096 -2.774971809 hypothetical protein 

SAOUHSC_00424 -1.617393935 -5.542062461 -3.924668525 ABC transporter permease 

SAOUHSC_01396 -1.514932166 -3.826305602 -2.311373436 dihydrodipicolinate synthase 

SAOUHSC_00717 -1.502964184 -3.243040647 -1.740076463 hypothetical protein 

SAOUHSC_01398 -1.412403513 -3.33084284 -1.918439327 tetrahydropyridine-2-carboxylate N-succinyltransferase 

SAOUHSC_01322 -1.362524116 -3.632662051 -2.270137935 homoserine kinase 

SAOUHSC_02803 -1.356948563 -3.650587966 -2.293639403 fibronectin-binding protein 

SAOUHSC_02704 -1.341508438 -4.123448248 -2.781939811 hypothetical protein 

SAOUHSC_01835 -1.282238036 -2.805534286 -1.52329625 hypothetical protein 

SAOUHSC_00825 -1.274624343 -2.363821735 -1.089197392 hypothetical protein 

SAOUHSC_02922 -1.242271622 -2.973801478 -1.731529856 L-lactate dehydrogenase 

SAOUHSC_02755 -1.232184445 -3.631839405 -2.39965496 hypothetical protein 

SAOUHSC_02692 -1.157100186 -3.632861121 -2.475760935 hypothetical protein 

SAOUHSC_00989 -1.126055473 -3.121480569 -1.995425096 hypothetical protein 

SAOUHSC_01964 -1.044134361 -2.717998459 -1.673864099 hypothetical protein 

(FC) fold change.(p) treated cell with mupirocin. 
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Table 22 Up-regulated genes with overlapping expression between 1, 12 and 24 h in cells treated with mupirocin. 

 (FC) fold change.(p) treated cell with mupirocin. 

 

 
Locus tag  

 
Log2FC.P_12h/P_01h 

 
Log2FC.P_24h/P_01h 

 
Log2FC.P_24h/P_12h 

 
Description  

          

SAOUHSC_02933 1.723713716 4.35289399 2.629180274 betaine aldehyde dehydrogenase 

SAOUHSC_02932 1.381943964 4.824866303 3.442922339 choline dehydrogenase 

SAOUHSC_01255 1.279436349 2.800045076 1.520608727 hypothetical protein 

SAOUHSC_01257 1.256345315 2.775002766 1.51865745 hypothetical protein 

SAOUHSC_00120 1.242429351 3.89892197 2.656492619 UDP-N-acetylglucosamine 2-epimerase 

SAOUHSC_01256 1.158286253 3.014956836 1.856670583 hypothetical protein 

SAOUHSC_01611 1.088060446 2.186102915 1.098042469 2-oxoisovalerate dehydrogenase%2C E2 component%2C 
dihydrolipoamide acetyltransferase 
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6.3 Discussion 

6.3.1 Differentially expressed genes relative to control 

6.3.1.1 Differentially expressed genes at 1 h 

At the first time point (1 h), differentially expressed genes were 869 of the total of 2860 genes. 

More than half of these differentially expressed genes, 55.12%, were positively regulated and 

44.8% were negatively regulated. From the up-regulated genes, some of them were involved in 

amino acid biosynthesis process and genes encoding products that have the ability to degrade 

host tissue or digest extracellular proteins were observed with 2 fold changes Table 12. 

Induction of these genes during the stress response may be attributed to the deactivation of 

CodY repressive activity as a result of decreased level of the CodY ligand, GTP, during 

(p)ppGpp synthesis processes (Figure 50) (Geiger et al., 2012, Pohl et al., 2009). 

Up-regulation of amino acid biosynthesis and protease genes is in line with previous work that 

used mupirocin to trigger the stringent response (Reiß et al., 2011, Geiger et al., 2010). 

Positive induction of these genes might indicate how treated cells cope with amino acid 

limitation, mimicked by mupirocin treatment, by increasing free cellular amino acids levels 

through increasing their biosynthetic processes as well as providing them from the surrounding 

environment.    

Moreover, groups of stress adaption and regulation genes were up-regulated, such as spxA (4.5 

fold), which plays a role in transcription inhibition and SAOUHSC 01819 (13 fold) that 

encodes one of the universal stress proteins family which enhances cell survival rate when it 

exposed to prolonged stress conditions. This has been reported by Drumm to help to establish 

chronic persistent infection in M. tuberculosis (Drumm et al., 2009).Toxin antitoxin system 

genes, SAOUHSC 02692(8 fold) and SAOUHSC 02757 (16 fold) were also up-regulated, which 

is also a classical feature of stress response (Reiß et al., 2011). Furthermore, Hfq gene, which 
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encodes host factor 1 protein, that is involved in stress response and virulence factors in 

S.aureus was increased 3.6 fold. Most of these genes have been shown to be up-regulated 

during different stress response conditions, such as oxidative stress, nutrient deprivation, acidic 

and alkaline shocks, and their activation mechanism is not yet known (Anderson et al., 2006, 

Reiß et al., 2011). However, recent work has revealed that, during amino acid starvation, the 

universal stress protein gene SAOUHSC 01819 seems to be up-regulated independently from 

CodY in S. aureus (Geiger et al., 2012). Increasing transcription of these genes can obviously 

indicate the huge alteration in genes regulation that is needed to adjust the cell physiology and 

its molecular functions in order to allow the cell to survive in this condition.   

Nevertheless, the highest proportions of the positively expressed genes encoded hypothetical 

proteins (63.8%), which reflect the lack of knowledge of the stress response process. Rieb and 

his colleagues  have suggested that hypothetical proteins might play a role in adapting cell 

physiology to stress response (Reiß et al., 2011). Another possibility is that they might 

contribute in regulating gene transcription, translation and other biological processes that need 

to be tuned with the surrounding environmental conditions. 

On the other hand, there were 390 significantly differently down-regulated genes at the first 

time point. Among these genes 63.5% were known to be involved in essential biological 

activity, such as replication, transcription, translation machineries, RNA and DNA pathway 

precursors, metabolic pathways and transport systems, which is in agreement with previous 

authors (Geiger et al., 2012, Geiger et al., 2010a, Reiß et al., 2011) who have reported down-

regulation of replication, transcription, translation machinery genes after mupirocin treatment. 

In B.subtilis most of rRNA gene transcription starts with guanosine nucleotides, which can 

subsequently be influenced via GTP intracellular levels (Krásný and Gourse, 2004). 

Furthermore, the transcriptional start of two rRNA operons in S.aureus have been mapped and 

have confirmed GTP’s role in initiating their primary promoters, which can explain the GTP 
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effect on their expression (Geiger et al., 2012, Krásný et al., 2008). Down-regulation of these 

genes is highly conserved in Gram positive bacteria during the stringent response which can 

justify the stalled cell growth at this time point,1 h , for the treated cells. Furthermore, 

functions of 36.4% of the genes differentially down-regulated are unknown yet. One can 

speculate that these genes may either contribute in the molecular functions mentioned above, or 

may be involved in repressive activity on stress response genes during normal conditions.    

It is worth mentioning that Anderson and his colleagues claimed that inhibitory concentrations 

of mupirocin did not increase relA transcript titre appreciably (Anderson et al., 2006). In this 

work transcription of the gene that is responsible for ppGpp synthesis, RSH was increased 1.2 

relatively to control. Although this was not a significant increase according to the criteria used 

here, the hallmark of stringent response ppGpp was detected via direct detection using HPLC 

after 1 h of sublethal concentration of mupirocin treatment this low level of expression might 

be related to the level of the stringent response that caused by the sublethal mupirocin. 

Furthermore, up-regulation of genes that are involved in amino acid biosynthesis, transcription 

regulation, stress response, virulence factors  and the down-regulation of genes that contribute 

to transcription, translation and replication are in agreement with previous observations using 

bactericidal concentrations of mupirocin (Anderson et al., 2006, Geiger et al., 2012, Reiß et al., 

2011), which strongly supports the fact that the sublethal concentration of mupirocin used here 

was capable of triggering the stringent response during at least 1 h of treatment which has not 

been reported in previous studies and supports the  HPLC  results in chapter 4.     

6.3.1.2 Differentially expressed genes at 12 h 

Transcriptome analysis results for the second time point (12 h) showed some similarity to the 1 

h results where 47.8% (229 genes) of the significantly differentially up-regulated genes during 

1 h induction remained positively expressed at 12 h. Several up-regulated genes during this 
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time point were involved in amino acid biosynthesis and transport processes, universal stress 

proteins, toxin/antitoxin system, regulation genes and some virulence factors genes that reflect 

classical stringent response features. Positive regulation of these genes may indicate an 

extended effect of the stringent response on cell physiology that is particularly noticed on the 

slowly growing cells at 12 h. This finding is in line with Reib and colleagues (Reiß et al., 

2011), who speculated that secondary stress responses occurred when different genes that were  

involved in the stringent response in S. aureus such as IleS and adaption protein gene were 

induced at different times of stringent response state.  Notably, transcription of the RSH gene 

(SAOUHSC 1742), encoding the enzyme (RelA/SpoT) that is responsible for both 

synthetase/hydrolase activity for (p)ppGpp, was up-regulated 1.5 fold at 12 h which is slightly 

higher than 1 h transcript (1.2 fold), but (p)ppGpp was not detectable by the SAX 10 column at 

this time point. This can lead to the assumption that the Rel/SpoT enzyme might be switched to 

hydrolase activity ON/synthetase activity OFF at this time point, which may explain the 

deficiency of its detection at 12 h.  

In addition, a number of genes that were up-regulated only at 12 h were involved in different 

functions such as ion and cofactors binding, coenzyme metabolic process, nucleotide 

biosynthetic processes and glycolysis. Slow increasing OD at 12 h can be attributed to the  

induction of these genes. However, 66% (n=151 genes) of up-regulated genes during this time 

point encoded hypothetical proteins with unknown functions. One can speculate that some of 

these proteins may play a role in maintaining the cell physiology during the stringent response.  

455 genes were down-regulated genes at this time point. Clusters of them genes involved in 

cell membrane and trans-membrane activities, two components transduction system, and 

phosphorylation which are consistent with the stringent response state.   
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6.3.1.3 Differentially expressed genes at 24 h 

The effect of the sub-lethal concentration of mupirocin seemed to disappear after 24 h of 

exposure. Differentially expressed genes were 39.3% of the whole transcript: 637 genes were 

up-regulated and 488 down-regulated. Most of the positively expressed genes were involved in 

essential biological activity, such as replication, transcription, translation machineries, RNA 

and DNA pathway precursors, as the growth of the bacteria seems to be in the exponential 

phase. In addition, the heatmap for the transcription showed considerable similarity between 

transcriptome profile for the 12 h control and 24 h test cells which indicates that a treated cell 

with sublethal concentration of mupirocin after 24 h had recovered from the stringent response 

and resumed growth, This may explain previous observations by Edwards-Jones (thesis 1997) 

and Edwards-Jones and Foster  (1994) that sub-inhibitory concentrations of mupirocin had no 

effect on growth after 24 h (Edwards-Jones and Foster, 1994b). Furthermore, stress response 

genes that had been up-regulated at 1 and 12 h, such as universal stress proteins, heat-inducible 

transcription repressor HrcA, toxin antitoxin system and adaptor protein genes, were down-

regulated which may confirm cell recovery from the stress response. Restoring GTP levels 

might be one of the possibilities for cell recovery after stringent response particularly because 

genes such as HprT and GmK that contribute to GTP synthesis (Geiger and Wolz, 2014, Kriel 

et al., 2012) were up-regulated (1.2 fold) and (2.4 fold) respectively.    

6.3.2 Gene expression overlapping 

Transcriptional observation on the three time points revealed gene overlapping among them for 

instance, at 1 and 12 h overlapping of up-regulated genes occurred for those that contribute to 

branched chain amino acid (BCAAs) biosynthesis processes, carboxylic acid and nitrogen 

compound biosynthetic processes, transcription regulation and cofactors binding activities. On 

the other hand, there was overlapping of negatively controlled genes that involved in variety of 
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functions such as nucleoside and nucleotide biosynthetic processes and binding, phosphate 

metabolism processes, trans-membrane and phosphorylation. The regulation manner of these 

genes is reported in previous works as being characteristic of alterations for the stringent 

response (Anderson et al., 2006, Reiß et al., 2011). This overlapping might be attributed to the 

positive induction for genes that contribute in the stringent response in particular, those 

involved in transcription regulation such as adaptor protein and heat-inducible transcription 

repressor HrcA.  In addition, some genes showed constant level of transcription through these 

time points such as MarR family transcriptional regulator and genes involved in amino acid 

synthesis which can enhance the number of overlapping genes expression between these time 

points.  

Secondary stress response was claimed by Rieb and colleagues after mupirocin treatment when 

they noted IleS transcription increased more rapidly after 10 min than after 60 min whereas 

some genes that contribute in stress protection or adaptation where transcription after 60 min 

was higher than after 10 min (Reiß et al., 2011). In this work, adaptor protein and heat-

inducible transcription repressor HrcA regulation increased at 12 h more than 1 h which is in 

agreement with their finding and the secondary stress response might increase the number of 

genes with overlapping transcription patterns between these time points.  

In addition, among 1 and 24 h time point up-regulated genes, overlapping occurred for post-

exponential phase genes such as cellular amino acid biosynthesis, two component system and 

virulence factors. The effects of decreased intracellular levels of the [GTP] during the 

stationary phase of growth for 24 h control cells, and rapid decrease of this nucleotide after 1 h 

of mupirocin treatment, a result of (p)ppGpp synthesis (Geiger et al., 2010a, Reiß et al., 2011), 

may be a reason for this overlapping, particularly when most of these genes are under CodY  

regulation which has been shown to be influenced by intracellular abundance of [GTP] (Geiger 

et al., 2012). Moreover, negatively regulated overlapping genes expressions were reported for 
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exponential phase genes such as those engaged in carbohydrate metabolic processes, nucleotide 

and coenzyme binding and lactose metabolism. CodY loses its positive influence on carbon 

metabolism and pathway during the stress response and in the stationary phase, where the 

intracellular pool of GTP is decreased, which might affect carbohydrate metabolic processes 

(Sonenshein, 2005, Pohl et al., 2009). Furthermore, recent work has shown that (p)ppGpp 

negatively controls  genes that  involved in physiological processes such as coenzyme 

biosynthesis, nucleotide binding and DNA replication in S. aureus and B.subtilis (Geiger et al., 

2012, Wang et al., 2007) which may explain their down-regulation during the 1 h  time point 

results.   

6.3.4 Regulation of virulence factors genes 

During the stress response, GTP concentration in the intracellular pool is reduced considerably 

through the ppGpp synthesis process as shown in the current work (chapter 4) and in other 

previous studies (Geiger et al., 2010a, Reiß et al., 2011). Decreased levels of GTP caused by 

mupirocin treatment (see chapter 4) would decrease CodY affinity to bind its target DNA, 

resulting in de-repression for amino acid biosynthesis and transport genes as well as many 

virulence factor genes in S. aureus (Majerczyk et al., 2010). Quorum sensing, particularly the 

agr locus and other virulence genes, are clearly influenced during the stringent response as a 

result of CodY deactivation, which might explain the correlation between nutrient limitation 

and virulence factors activation during the stress response (Majerczyk et al., 2010) (Pohl et al., 

2009).   

In this work, 60 genes that coded for proteins involved in diverse S. aureus pathogenesis such 

as stationary phase virulence factors including agrBCDA, SarA, enterotoxins and capsular 

polysaccharide biosynthesis protein Cap5B genes were up-regulated which is in line with 

previous studies (Geiger et al., 2010a, Reiß et al., 2011). Most of these genes are regulated 
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dependently on CodY protein via agr locus product RNAIII (Majerczyk et al., 2010) and this 

finding is in line with the up-regulation of RNAIII genes in the clinical isolates of S. aureus 

(B49) in Chapter 5. However, all these genes were negatively transcribed after 12 h while cell 

OD begun to rise gradually. Intracellular levels of GTP may be increased at this point and thus 

CodY may have resumed its repressive activity on these genes. After that, at 24 h they were up-

regulated again and some of them, such as agrBCDA and alpha-hemolysin, displayed large 

changes. Negative regulation in slow growing cells (12 h) and up-regulation at mid exponential 

growth (24 h) for these genes simulates their regulation in a normal condition that is tightly 

controlled by the growth phase. This finding along with the heatmap results where there was a 

similar transcriptome profile between 12 h control cells and 24 h test cells, both indicate cell 

recovery from the stringent response effect. 

Exponential phase regulated virulence genes such as fibronectin-binding protein, fibrinogen-

binding protein and catalase, were up-regulated at 1 h which also reported in previous work 

results (Reiß et al., 2011), and the author suggested that during amino acid starvation, S. aureus  

binds to host tissue by these binding proteins then begins to produce some tissue destructive 

virulence factors such as alpha hemolysin and proteases to hydrolyse proteins in order to obtain 

the needed amino acids. Conversely, Wolz and colleagues 2009 have speculated that down-

regulation of cell wall proteins due to agr locus repressive activity during the stringent 

response would give the cells the ability to escape from limited nutrition environments (Pohl et 

al., 2009). It worth noting that, despite the repressive activity of RNAIII on some exponentially 

expressed virulence genes such as fibronectin-binding protein A (Novick, 2003). The 

transcription of this gene increased 45 fold at 1 h. sar gene was up-regulated at this time point, 

Wolze and colleagues (Wolz et al., 2000) have shown that, SarA plays important role in FnbpA 

activation which might explain this result. Another explanation might be that RNAIII 
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repressive activity on these genes has been either weakened or deactivated during the stringent 

response. 

Positive induction for these genes had occurred at 12 h as the cell OD increased. A previous 

study (Pohl et al., 2009) showed that, catalase and intracellular adhesion proteins (IcaADBC) 

are regulated by CodY dependently which may explain their up-regulation at this time point, 

they were then  all negatively controlled when the growth rose dramatically at 24 h. This 

regulation manner at 12 h and 24 h can be attributed to their tight growth phase-dependent 

regulation pattern.  

A third group of virulence genes were positively controlled throughout all the time points. 

Some of them were involved in binding such as fibronectin binding protein B 

(SAOUHSC_02802 ), in virulence such as staphylokinase (SAOUHSC_02171)  and in response 

such as (SAOUHSC_00715). The changes in expression were the highest at 1 h and lowest at 12 

h, and at 24 h they were intermediate. It is difficult to interpret this result but it is possible that 

genes of this group are under several regulators, so that each one of them affects expression at 

different growth phases/conditions. Another possibility might be that up-regulation of these 

genes is related to maintaining gene regulation and cell adaption to different environment 

conditions, besides their involvement above. However, it is crucial to remember that gene 

transcription does not imply translation to its protein as discussed in chapter 5 results earlier 

and opposite regulation between transcription and translation has been reported in a previous 

study (Reiß et al., 2011).   

Group D virulence factors genes were up-regulated at 1 h but the fold change of their 

transcription did not reach the threshold of the cut-off (2 fold) and were therefore not 

significant at this time point. Throughout the time points some of them showed a transcription 

manner similar to group A genes such as serine protease SplB,C,D F and phenol-soluble 
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modulins 1 and 2. Others displayed a transcription manner similar to group B such as clumping 

factor and enterotoxin family protein. However, the transcription level of some of these genes 

had reached a significant level of fold change at other time points such as clumping factor 

which increased 3 fold change at 12 h and phenol-soluble modulin1 at 24 h (7.4 fold). A recent 

study  (Geiger et al., 2012) showed that phenol-soluble modulins 1and 2 was regulated 

independently from CodY which may explain its different  transcription level at 1 h in 

comparison to other stationary phase virulence genes in group A that are  regulated  by CodY . 

Furthermore, reasons for the insignificant level of transcription at 1 h for other genes are not 

clear but it is possible that these genes are induced via cofactors or regulators in excess nutrient 

conditions and, as a result of stringent response, these cofactors or regulators are inhibited 

which may reduce the transcription level of group D genes at 1 h. 

In conclusion, the results suggest that the regulation of virulence genes in S. aureus during 

stringent response is related to CodY which, due to reduction in [GTP], loses its affinity to bind 

its target genes, such as the agr locus, leading to activated transcription of this locus with  

consequent up-regulation a variety of virulence genes via its effector RNAIII. On the other 

hand, restoring intracellular GTP/BCAAs to normal levels after recovery from the stringent 

response would reactivate CodY repressive activity on its targeted virulence genes, resulting in 

reduced transcription as reported above for stationary phase virulence genes at 12 h. A 

proposed model for this regulation is shown in Figure 49. 

6.3.5 Differentially expressed genes for test cells 

The effects of sublethal concentrations of mupirocin on cell growth and gene regulation 

throughout different time points was investigated in this part of the work.      

ppGpp, was detected 1 h after mupirocin exposure which in line with previous data and HPLC 

analysis. A comparison between treated and untreated cell transcriptome results revealed that 
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remarkable repression of genes that were involved in various cellular functions, and processes 

such as transcription, translation, replication, energy production and transport had occurred, 

which may explain the stalled cell growth for treated cells after 1 h. Conversely, genes that 

were involved in stress response adaption, amino acid biosynthesis, and transports and 

virulence genes, were up-regulated.  
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Figure 49 proposed model for effects of CodY on S. aureus gene expression. (A) In excess nutrient GTP induces CodY repressive activity on 

targeted genes (bold squares). (B) In stringent response condition, CodY loses its ligand, GTP which would deactivate its repressive activity on 

its target genes resulting in up-regulation of these genes. bold Arrowheads indicate positive induction and T-junctions indicate negative 

regulation. Dotted lines indicate  CodY deactivated repressive activity .  
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The contrast between treated cells results shows that the 12 h transcriptome had similarities to 

1 h, as the percentage of differentially expressed genes between the two was 18% of the 

complete transcriptome profile. In addition, visualising the transcriptome data on the heatmap, 

based on fold changes in gene expression displayed the similarity between these time points. It 

is worth noting that, transcription of codY gene (SAOUHSC_01228 ) was down-regulated at 1 

and 12 h but increased at 24 h (2 fold). Down regulation of codY gene might reduce its 

repressive activity on the targeted genes during 1 and 12 h. Conversely, its positive 

transcription might play a role in restoring its repressive activity on its targeted genes. For 

example, several clusters of genes that were involved in amino acids including, BCAAs 

biosynthesis and metabolism processes, carboxylic acid system, and nitrogen component 

metabolism, were induced positively at 1 and 12 h. Most of these genes are under CodY  

regulation (Geiger et al., 2012, Pohl et al., 2009, Majerczyk et al., 2010), up-regulation of 

these genes at these time points would increase the similarity between their transcriptome 

profiles.  

Nevertheless, some transcriptional regulators genes that were up-regulated during 1 h, such as 

SAOUHSC_02664, SAOUHSC_00934 and host factor protein gene SAOUHSC_01281 

(regulates transcription of some virulence genes), were significantly down-regulated at 12 h. 

Furthermore, several clusters of genes that were involved in molecular functions, such as 

carbohydrate transport and galactose metabolism, energy, DNA, nucleotide metabolic and 

binding processes were considerably up-regulated at 12 h only, which may contribute to 

eliciting the increasing growth at this time point. Cells at 12 h are clearly entering recovery 

processes from the stringent response, which might explain these results. More details about 

the stringent response recovery are discussed below.  

Differentially expressed genes rate increased up to 31.3% and 37% in a contrast between 24/1h 

and 24/12h respectively. Genes that were activated at 1 and 12 h, as mentioned above, were 
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negatively controlled with overlapping, in particular, for these were significantly increase 

during stringent response and that can be attributed to cell growth at 24 h. Conversely, genes 

that were involved in replication, trans-membrane activity, nucleotide, nucleoside and 

nucleobase biosynthetic processes were positively activated. In addition, the increasing in OD 

at 24 h and up-regulation of these genes can indicate that cell recovery from the stringent 

response had occurred. 

6.3.6 Stringent response tolerance and recovery 

Most of the previous studies on triggering the stringent response in S. aureus via mupirocin 

were not able to observe cell tolerance and recovery from stringent response as they used 

bactericidal concentration of mupirocin that lead to cell death (Crosse et al., 2000a, Anderson 

et al., 2006, Reiß et al., 2011), However, resuming growth after mupirocin treatment  was 

reported by Edwards-Jones (thesis 1997) and Edwards-Jones and Foster  (1994) when they 

claimed that sub-inhibitory concentrations of mupirocin had no effect on growth after 24 h 

(Edwards-Jones and Foster, 1994b) which agrees with the results of the current work.  

Here, treated cell growth increased slowly after 12 h of sub-lethal concentration of mupirocin, 

from OD600 0.5 after 1 h to 2.6 after 12 h. This growth was associated with decreased level of 

RSH transcript, and ppGpp was not detected at 12 h, which suggests that (p)ppGpp hydrolysis 

had occurred. The reason for down-regulated transcription of RSH is not clear yet but one can 

assume that stopping ppGpp synthesis can be achieved via reducing its inducer, deacylated 

tRNA in the A-site of ribosome that is caused by mupirocin treatment. As described in chapter 

1 (section 1.2.1) mupirocin works as a reversible competitive enzyme inhibitor that inhibits the 

synthesis of the isoleucyl-tRNA synthase IleS, which plays a crucial role in catalysing the 

transfer of isoleucine onto its cognate tRNA. Recovery from such competitive enzyme inhibitor 
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effect can be achieved via increasing either the concentration of the targeted enzyme, IleS, or 

its substrate, isoleucine (Hughes and Mellows, 1978b).  

In recent study IleS coding gene was reported as one of the highest up-regulated genes after 

mupirocin treatment (Reiß et al., 2011). In this work, transcriptome data  revealed  that the 

coding gene for IleS (SAOUHSC_01159) was up-regulated at 1, 12 and 24 h time points ( 9.7, 

4.3 and 5.2 fold) respectively, which may suggest that a cell treated with mupirocin is trying to 

overcome the inhibitory effect of mupirocin by producing higher concentrations of IleS enzyme 

than its inhibitor. Moreover, the remarkable up-regulation for genes that are involved in 

BCAAs (isoleucine, valine and leucine) cellular biosynthesis and metabolism processes, as 

well as genes that coding for proteases and amino acid transport, support the assumption stated 

earlier that S. aureus tries to compensate for the lack of amino acids quickly via cellular 

biosynthesis as well as through importing amino acids from the surrounding environment or 

host tissue. Indeed, early increase of BCAAs was detected after 30 min of mupirocin treatment 

(Reiß et al., 2011), which is in agreement with the gene transcription results above.  

In addition, genes that are involved in tRNA metabolism and processes, such as 

SAOUHSC_01726 and SAOUHSC_01599, were up-regulated at 12 h, increasing 2.9 and 7.4 

fold respectively, which show that the cells are producing new tRNA instead of impeded tRNA 

in the A-site of ribosomal proteins. Also, more than 30 genes that encoded for ribosomal 

proteins were significantly up-regulated after 24 h which can be related to compensating 

blocked ribosomes with un-charged tRNA in order to resume the machinery function. 

However, Shyp and colleagues 2012 have suggested that increasing amino acid concentration 

and aminocylated tRNA would resume translation (Shyp et al., 2012). Indeed, activation of 

genes that are involved in transcription, translation, replication, energy production and 

transport were seen in the transcriptome data for 12 h, 24 h or both, and can be reflected on the 

cell growth at these time points. Early study on E.coli stringent response claimed that cessation 
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of (p)ppGpp  synthesis and accumulation would  occur  as long as  ribosomes are actively 

engaged in protein synthesis which  might interpret the undetectable (p)ppGpp at these time 

points (Cashel and Gallant, 1969). Activation of these genes mentioned above, can be 

attributed to either losing ppGpp repressive activity on them after its hydrolysis (Geiger et al., 

2012, Reiß et al., 2011) or might be related to  increasing GTP intracellular level via up-

regulation of its synthetic genes. For example, genes that contribute to GTP synthesis were up-

regulated at 12 and 24 h including HprT (1.2 fold) , GmK  (2.4 fold)  and (1.2 fold), (2.4 fold) 

respectively.       

All these alterations in different genes functions mentioned above suggest a scenario that could 

explain how the cells tolerate the stringent conditions as well as reprograming gene regulation 

to recover and resume its growth and replication. A model for these processes is shown in 

Figure 50.   
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Figure 50 proposed mechanisms that can result in tolerance and recovery processes from the stringent response after treatment with 

sublethal concentrations of mupirocin. 
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7 General discussion and conclusions 

The results in this study show that the increased clinical use of mupirocin in the UK has not 

lead to a gross increase in mupirocin resistance in MRSA isolates although the sample size 

was relatively small. However there was evidence of mupirocin resistance in MRSA isolates 

from Libya. The difference may be that use of mupirocin to eliminate carriage before elective 

surgery is carefully controlled and the patients are checked to confirm clearance and are 

subjected to further treatment if unsuccessful (Coates et al., 2009). Such careful use helps to 

prevent resistance and resistant strains may be eliminated by other treatments. In contrast in 

Libya, antibiotics are available without prescription and may be used indiscriminately by the 

general public to treat a variety of skin conditions. A similar increase in resistance was seen 

in New Zealand when mupirocin was made available over the counter (Upton et al., 2003). 

Reduction in availability can led to a reduction in resistance as seen in Australia (Torvaldsen 

et al., 1999). These results suggest that careful stewardship e.g. control of availability and 

careful use of mupirocin is needed to prevent increased prevalence of resistance. 

Relatively few previous studies have been carried out on the stringent response in S. aureus. 

The majority of these studies triggered the stringent response either by depleting branched 

chain amino acids from growth media or via adding inhibitory concentrations of mupirocin 

(Cassels et al., 1995, Crosse et al., 2000).   

The present study has confirmed that sub-inhibitory concentrations of mupirocin were also 

able to trigger the stringent response. For the first time, the ability of sub-inhibitory 

concentrations to inhibit TSST-1 synthesis and global effects on gene expression were 

studied by RT-PCR and  RNA-seq analysis respectively. Even at sub-inhibitory 

concentrations there were significant phenotypic and genotypic alterations during the first 

few hours of treatment including growth inhibition, ppGpp synthesis and global 
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transcriptional alterations. Similar alterations had been reported when the stringent response 

was triggered by bactericidal concentrations of mupirocin in previous studies (Anderson et 

al., 2006, Geiger et al., 2010a, Reiß et al., 2011). Furthermore, observation of the effects of 

this concentration was continued for 12 and 24 h after mupirocin addition and cells showed 

gradual increasing growth which indicates that the cells were able to recover from the 

stringent response, something not possible with cells treated with inhibitory concentrations as 

this leads to cell death.   

In addition, a TSST-1 producing clinical isolate of S. aureus (B49) was been treated with the 

sub-inhibitory concentration of mupirocin to investigate the effects of this concentration on 

TSST-1 production. Substantial changes relatively to the control had appeared including growth 

inhibition, early transcription of the toxin gene (and RNAIII) but toxin synthesis was delayed 

which was also the result of the stringent response.     

7.1 Summary of the key finding in stringent response effects 

The sub-inhibitory concentration of mupirocin in this work was capable of inducing the stringent 

response and several features of stringent response were seen after the treatment. 

 7.1.1 Effect on cell growth                                                                                                               

Significant growth inhibition was seen through the first 4 h of mupirocin exposure compared to 

control cells. That this was due to the stringent response was confirmed by detection of ppGpp 

which probably causes this effect by affecting DNA replication as has been shown in B. subtilis 

and E.coli (Schreiber et al., 1995a, Levine et al., 1991). However, the effective mechanism of 

ppGpp on DNA replication in S. aureus is unknown at the present, but transcriptome profile for 

the treated cell at 1 h showed down-regulation for genes that are involved in nucleoside 

biosynthetic processes and DNA replication including genes coding for replication initiation 



174 
 

proteins and DNA gyrase subunit A-B. These findings are in line with the decreased cell density 

seen at 1 h in treated cells compared to controls.  

7.1.2 Effect on gene transcription                                                                                                             

Transcriptional activities are affected after mupirocin treatment and differentially expressed 

genes reached 30.3% of the total transcriptome. GTP pool concentrations play a crucial role 

in transcription alteration and an obvious decrease in GTP intracellular pool was seen up to 4 

h which was probably associated with ppGpp synthesis. GTP is consumed during ppGpp 

synthesis and ppGpp also inhibit enzymes that are involved in GTP synthesis pathway at the 

posttranscriptional level which can explain the decrease in the intracellular pool of GTP 

(Kriel et al., 2012).    

A high GTP intracellular pool is important for many genes that need this nucleotide to initiate 

their transcription such as rRNA proteins genes (Krásný and Gourse, 2004, Tojo et al., 2010). 

Further effect of the GTP pool in transcription can be seen on the virulence genes regulation 

as the metabolic responsive protein CodY loses its repressive activity on virulence genes 

which leads to transcriptional activation for global virulence genes regulatory systems and 

proteins such as agr system and SarA (Majerczyk et al., 2010). The transcriptome profile 

during this time in this work showed up-regulation of more than 50 genes that involved in S. 

aureus virulence factors.    

7.1.3 Effect on gene translation                                                                                                             

Protein synthesis is affected during then stringent response in S. aureus which can be related 

to several events.  For example, mupirocin plays a role in inhibiting translation as 

accumulated uncharged tRNA binds to A-site of the ribosome and obstructs the translation 

machinery (Hughes and Mellows, 1978a). In addition, an abundant GTP pool is important for 

the translation processes as GTP is utilized during initiation and translocation steps of 
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translation (Luchin et al., 1999, Laalami et al., 1996). Transcriptional data showed down-

regulation of genes that encode translation initiation factor 2 (IF2). Furthermore, de-

activation of genes that encode for ribosomal proteins as results of declined GTP pool would 

significantly affect the translation processes.    

In general, after sub-inhibitory concentration of mupirocin addition, significant growth 

inhibition and global transcriptional alterations as well as negative influence on translation 

key factors such as GTP pool and IF2, in S. aureus 8325-4 was seen.  

These changes on the cell growth, transcription and the effect on translation key factors that 

occurred after exposure to sub-inhibitory concentration of mupirocin are typical features of 

the stringent response and they are adequate evidences to claim that, this concentration is 

capable to trigger the stringent response in S. aureus 8325-4.  

7.2 Recovery from stringent response                                                                                   

Triggering the stringent response in S. aureus in previous studies was performed by using 

bactericidal concentration of mupirocin which resulted in cell death few hours of treatment 

and squandered the opportunity to verify the cell ability to recover from stringent response 

with exception of Edward-Junes and Foster work (Edwards-Jones and Foster, 1994b). 

However, in the current work treated cells with sub-inhibitory concentration of mupirocin 

showed slow and gradual growth after 12 h of exposure then the growth reached expositional 

phase 24 h which indicated cell recovery from stringent response. 

Transcriptome profile at these time points showed several indications which might allow 

production of a scenario for recovery. For example, significant activation for clusters of 

genes that are involved in different functions including amino acid biosynthesis and transport, 

protease activity and (IleS) gene all may antagonise the effects of mupirocin. Products of 
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these genes might tackle the stringent response induction by decreasing the accumulation of 

uncharged tRNA which is the trigger for ppGpp synthesis.  

Another group of genes activated such as genes that code for enzymes that facilitate the GTP 

biosynthesis pathway and which can increase the GTP intracellular pool and subsequently 

increase translation machinery activity. Furthermore, increasing the GTP pool would restore 

the global regulatory protein CodY activity either in positive manner such as for genes that 

involved in carbohydrate metabolism to facilitate growth (Shivers et al., 2006), or in negative 

manner such as repressing the virulence factor transcription and other stationary phase genes 

(Pohl et al., 2009).   

Nevertheless, it is essential to verify the synthesis of these genes product in order to support 

this scenario. However, as mentioned above cells density at these time points increased 

slightly at 12 h and exponential at 24 which is in line, in general, with their transcriptome 

profiles.    

7.3 Sub-inhibitory concentration influence on TSST-1 production 

The clinical isolate and TSST-1 producer of S. aureus was also exposed to a sub-inhibitory 

concentration of mupirocin to verify the effect of this concentration on TSST-1 production. A 

prolonged lag phase occurred between 1 and 8 h then the cells OD increased dramatically 

through 16 and 24 h in comparison to control cells. Transcriptomic results by q-PCR showed 

increased transcription ratio had occurred for tst and its regulator RNAIII during the inhibited 

growth (1, 8 h). These genes are regulated in a growth-dependent manner and they are 

usually transcribed in the post-exponential phase of growth also Toxin synthesis was 

inhibited as no toxin was detected during growth inhibition despite the upregulation of 

transcription.     
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7.4 Future work  

A proteomics study would provide a more complete picture of the effect of the sub-inhibitory 

concentration of mupirocin in S. aureus. This is particularly for those virulence genes that to 

determine whether increased transcription leads to increased production of e.g. toxins. Two-

dimensional gel electrophoresis (2D-E) and Mass spectrometry (MS) can be used to detected 

protein synthesis. Also, confirmation for RNA-seq results for some important genes in the 

stringent response such as relA and IleS as well as codY and sar genes that involved in 

virulence factors regulation in S. aureus during stringent response via RT-PCR would be 

useful.  

7.5 General conclusion 

Sub-inhibitory concentrations of mupirocin were able to trigger the stringent response in       

S. aureus 8325-4. Although the stringent response and consequent reduction in the GTP pool 

induce virulence factors transcription, significant negative effects on the transcription of 

translation machinery elements was observed and toxin synthesis was reduced. In addition, 

observation of the effects of this concentration of mupirocin on TSST-1 production showed 

delayed synthesis of TSST-1 despite its early transcription. Delaying toxin synthesis might 

cause an immediate reduction of pathogenicity of the bacterium in particular for diseases 

caused by toxin production. Also, quick growth inhibition caused by the sub-inhibitory 

concentration of mupirocin can contribute effectively in treatment combination with other 

antibacterial agent that would target other points such as cell wall synthesis. Thus in clinical 

use even if some cells are not exposed to inhibitory concentrations, the inhibition of growth 

will contribute to the overall clearance of the organism. 
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