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Abstract 

Background: Patients with vertebral column deformations are exposed to high risks 

associated with ionising radiation exposure. Risks are further increased due to the 
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serial X-ray images that are needed to measure and asses their spinal deformation 

using Cobb or superimposition methods. Therefore, optimising such X-ray practice, 

via reducing dose whilst maintaining image quality, is a necessity. 

Objectives: With a specific focus on lateral thoraco-lumbar images for Cobb and 

superimposition measurements, this paper outlines a systematic procedure to the 

optimisation of X-ray practice. 

Methods: Optimisation was conducted based on suitable image quality from minimal 

dose. Image quality was appraised using a visual-analogue-rating-scale, and Monte-

Carlo modelling was used for dose estimation. The optimised X-ray practice was 

identified by imaging healthy normal-weight male adult living human volunteers. 

Results: The optimised practice consisted of: anode towards the head, broad focus, 

no OID or grid, 80kVp, 32mAs and 130cm SID. 

Conclusion: Images of suitable quality for laterally assessing spinal conditions using 

Cobb or superimposition measurements were produced from an effective dose of 

0.05mSv, which is 83% less than the average effective dose used in the UK for 

lateral thoracic/lumbar exposures. This optimisation procedure can be adopted and 

use for optimisation of other radiographic techniques. 

Keywords  

Optimisation of X-ray imaging, lateral thoraco-lumbar imaging, exposure dose 

reduction, image quality preservation, Cobb method, superimposition method. 

Introduction 

In X-ray imaging, risks as severe as cancer may be imposed on patients due to 
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ionising radiation exposure. This is why as low as reasonably achievable (ALARA) 

dose should always be adopted, but not at the expense of image quality1, 2. 

Optimising X-ray practices is thus essential for imaging people. This is particularly 

important when performing serial imaging3-5. 

Serial imaging is often required when treating young patients with vertebral column 

deformations (thereby imposing high risks such as breast cancer6). Imaging is 

commonly performed using plain X-ray7, 8 where images are used to monitor and 

assess a patient’s deformation using ‘Cobb’ or ‘superimposition’ method for inter-

vertebral angle7 or range of motion8 measurements, respectively. Optimisation 

associated with these measurement methods should be based on minimising dose 

whilst maintaining image quality suitable for taking accurate measurements to 

assess vertebral deformation. 

Several publications6, 9-14 have outlined how manipulating some acquisition 

parameters may result in dose reduction whilst maintaining image quality for 

accurate Cobb method measurements. Some found the posterio-anterior (rather 

than anterio-posterior) projection is an effective way of reducing dose to critical 

organs9. Others have demonstrated that dose can be reduced and image quality 

maintained by manipulating certain acquisition parameters, for instance: not using a 

secondary radiation grid (or using an air gap technique)9-12; increasing both voltage 

and inherent beam filtration6, 14; and using digital imaging equipment11-13. However, 

no publication has considered in a single study outlining the combined effect of the 

different acquisition parameters. Also, whilst posterio-anterior and anterio-posterior 

projections of the spine have been considered within many publications, only some 

have addressed lateral projections of the spine 15-16. Furthermore, all publications 
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have focused on dose reduction for the Cobb method, whereas none have 

considered the superimposition method. 

In an attempt to overcome this gap in the literature, this study has considered the 

combined effect of the main acquisition parameters (discussed below) within one 

optimisation procedure in order to identify the acquisition parameters settings that 

result in adequate image quality from minimal dose. In this study, the lateral thoraco-

lumbar spine (9th thoracic to 3rd lumbar vertebra (T9 to L3)) was selected for imaging 

because spinal deformations are common in this region17. 

This study, therefore, aims to outline a systematic procedure to the optimisation of X-

ray practice with a specific focus on lateral thoraco-lumbar (T9 to L3) images for 

Cobb and superimposition measurements. 

Methodology 

For the purposes of optimisation, image quality was appraised using a bespoke 

visual analogue rating scale (VARS), and dose was estimated using software 

PCXMC 2.0.1.318 (STUK, Finland). 

The VARS’ five criteria (given in Table 1) met the requirements for Cobb and 

superimposition methods, and were informed by the European guidelines on quality 

criteria for lateral lumbar radiographs19. To verify appraisers’ consistency in using the 

VARS, 3 radiographers and 1 orthotist scored 50 lateral thoraco-lumbar images of 

clear to not clear qualities. These images were choosen, by 2 independent 

radiographers, from a pool of just under 1000 images acquired at different 

acquisition parameters. Cohen’s Kappa coefficient20 demonstrated high consistency 

between the 4 appriasiers (as seen in Table 1), and on this basis 1 appraiser scored 



5 

 

all images in this study. Cohen’s Kappa coefficient test was used rather than 

weighted Cohen’s Kappa coefficient test because the later is used when the 

agreement on a specific category(s) within the scale is to be investigated. However, 

in this study, this was not the case as there was only  two categories on the scale 

(clear or not clear) and they both were equally important20,21 

Table 1. This gives the agreement level between the 4 appraisers based on Cohen’s kappa coefficient 
results in relation to each of the five criteria that formed the VARS. ‘A1’, ‘A2’, ‘A3’, and ‘A4’ are 
appraisers 1, 2, 3, and 4, respectively. Based on Landis and Koch 

35
, a Kappa of 0.81 to 1.00 

indicates substantial to almost perfect agreement (presented as ‘•’); and Kappa of 0.61 to 0.80 
indicates moderate agreement (presented as ‘Θ’). 

Criteria Appraiser combinations 

 A1 to A2 A1 to A3 A1 to A4 A2 to A3 A2 to A4 A3 to A4 

V
is

u
a

li
s
a

ti
o

n
 o

f 
th

e
…

 

…superior vertebral endplate • • • • • • 

…inferior vertebral endplate • • • • • • 

…inter-vertebral spaces Θ • • • Θ • 

…pedicles Θ • • • • • 

…spinous processes • • • • • • 

 

Due to time restrictions and the large number of dose measurements that were 

needed, effective dose (E) was estimated from air Kerma using Monte Carlo 

simulation18, 22, 23 with International Committee of Radiology Protection 103 weighting 

factors24. 

The optimisation was conducted in 2 parts. Part 1 consisted of an anthropomorphic 

phantom based investigation into the effect of the main acquisition parameters on 

image quality and E, and involved a computed radiography (CR) system (Arcoma-

Arco-Ceil, 3.5mm total filtration), an AGFA 35-X digitiser (AGFA, Belgium), an NX 

3.7.0.0 workstation, and an Alderson-Rando anthropomorphic phantom (Supertech, 
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USA). Part 2 consisted of healthy male volunteers based imaging validation that took 

into account the results from part 1. In particular, 9 normal-weight (body mass index 

of 18.50 to 24.99 kg/m2) adult (18-40 year-olds) living human volunteers with heights 

ranging from 155-200cm were recruited. Each volunteer was imaged 6 images in 

different positions (i.e. flexion, extension and neutral) as part of another investigation 

that was held to compare restrictions on spinal mobility (measured using Cobb and 

superimposition methods) whilst wearing different spinal orthoses. Due to the 

unrelated focus, the results of this investigation will be published in a separate paper. 

In this part, a CR MEDIO 50 system (Philips, Netherlands, 3.5mm total filtration), an 

AGFA 30-X digitiser (AGFA, Belgium), and NX 3.7.0.0 workstation were used. For 

both studies, the same look-up table was used to display and process the images 

(see table 2). Also, equipment quality control tests met manufacturer specifications. 

Table 2. Look-up table specifications 

Criterion Value 

Speed class 

MUSI contrast 

Noise reduction 

Extended window left 

Extended window right 

Threshold 

Edge contrast 

Latitude reduction 

Sesitometric curve 

Contrast Nr of levels 

400 

3 

0 

-0.2 

0.2 

0.1 

0 

0 

RP1KT 

3 

 

Ethical approval was granted for the human (part 2) study, whereby each participant 

consented before taking part in the study. Females were excluded, because they 

carry higher risks than males due to increased organ radio-sensitivity and maybe an 
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unknown pregnancy. 

1) Overview of part 1 (phantom study) 

Investigating the effect of the main acquisition parameters (discussed below) on 

image quality and E is best performed with a full-factorial investigation that takes into 

account all possible combinations between the settings across all acquisition  

parameters. However, such a procedure would be time consuming due to the 

extensive number of experimental possibilities. Instead, the main acquisition 

parameters were divided into a primary and secondary set, whereby only the primary 

set was subject to a full-factorial investigation. 

X-ray photon quantity, penetrability and intensity are primarily controlled by kilovolt 

peak (kVp), milliamp seconds (mAs) and source to image detector distance (SID). 

These were considered to be the primary acquisition parameters as they directly 

affect image quality and dose. In turn, anode heel effect, focal spot, object to image 

receptor [IR] distance (OID), air gap, and grid were considered as the secondary 

acquisition parameters as they have a lesser effect on image quality and dose than 

the primary acquisition parameters. 

The procedure by which the effect of the main acquisition parameters on image 

quality and E was investigated consisted of 3 steps: 

Step 1 – Establish the factorial set of primary acquisition parameters 

Step 2 – Optimise each secondary acquisition parameter individually 

  (using a factorial set of primary acquisition parameter combinations, 

whilst the other secondary acquisition parameters are fixed) 
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Step 3 – Conduct a full-factorial primary acquisition parameter investigation 

  (whilst secondary acquisition parameters are fixed at their optimised 

settings) 

During these 3 steps, the phantom was positioned in accordance with Clark25. 

Collimation was limited to T9 to L3 in accordance with the recommendations from 

the Institute of Physics and Engineering in Medicine26. 

2) Overview of part 2 (human study) 

The results from part 1 were applied within part 2 to identify suitable acquisition 

parameter settings. 

3) Details of part 1 (phantom study) 

Step 1 – Establish a factorial set of primary acquisition parameters 

For each of the 3 primary acquisition parameters (i.e. kVp, mAs and SID), 10 fairly 

evenly distributed settings were chosen from their available range of settings. 

Different combinations between these settings (where each combination involved all 

3 primary acquisition parameters) were then used for imaging the phantom, until a 

combination was identified that produced an image of suitable quality based on the 

VARS results. Throughout this testing, the secondary acquisition parameters were 

fixed, based on the European guidelines on quality criteria for lateral lumbar 

radiographs19. 

Additional primary acquisition parameter settings were then chosen via a systematic 

procedure, using 2 settings below and 1 above each of the 3 obtained settings. The 

reason for choosing only 1 setting above (rather than 2 settings as with below) is 
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based on the VARS results in that images acquired at 2 settings above were mostly 

associated with unsuitable image quality. This gave a total of 4 settings for each of 

the 3 of primary acquisition parameters (i.e. 1 initial setting plus 2 settings below and 

1 setting above) and hence a total of 64 combinations (4 kVp × 4 mAs × 4 SID = 64). 

Step 2 – Optimise each secondary acquisition parameter individually 

Anode heel effect 

Using the 64 combinations identified in step 1, 64 images were acquired at each: 1) 

anode towards the head; and 2) anode towards the feet (i.e. the 2 anode heel effect 

settings). Then, based on suitable image quality and lowest E, the optimised setting 

was identified. 

Focal spot 

Focal spot was optimised using the same procedure as for anode heel effect. 

However, images were acquired at each: 1) broad (1.2mm); and 2) fine focus 

(0.6mm). Exposure time was recorded for all images, as this can be different 

between the 2 foci. 

OID and air gap 

As both OID and air gap are indicators of the distance between the exposed object 

and the IR, air gap is implicitly optimised by optimising the OID. OID was optimised 

using the same procedure as for anode heel effect. However, images were acquired 

at each: 1) OID=0cm (in contact with the phantom); 2) OID=15cm; and 3) 

OID=30cm. The latter 2 OIDs were chosen as they have been reported appropriate 

for vertebral column imaging11, 12, 27. 
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Due to the different ways in which an OID can be created, OID was investigated 

twice: 

1. Increasing the SID associated with the 64 combinations from step 1 by the 3 

OIDs (0cm, 15cm and 30cm) (i.e. SOD [source to object distance] was fixed); 

2. Decreasing the SOD by the 3 OIDs (0cm, 15cm and 30cm) (i.e. SID associated 

with the 64 combinations from step 1 was fixed). 

Grid 

A reciprocating 10:1 focus grid (Wolverson, UK) was used, because it is common in 

clinical practice5. The use of a grid was optimised using a similar procedure to anode 

heel effect. However, images where acquired at each: 1) no grid (OID=0cm); and 2) 

grid. Also, the 64 combinations of kVp, mAs and SID were slightly modified in that 

the SID was fixed at 110cm to avoid grid cut-off as specified by the manufacturer. 

Step 3 – Conduct a full-factorial primary acquisition parameter investigation 

For this, the primary acquisition parameters were investigated based on images 

acquired at all combinations of kVp, mAs and SID settings with the secondary 

acquisition parameters fixed at their optimised settings identified in step 2. 

Images were acquired using 60 to 95kVp (stepping through 5kVp increments) in 

relation to 22 to 55mAs (stepping through 2mAs increments when applicable) in 

relation to 90 to 140cm SID (stepping through 5cm SID increments). The increments 

were based on preliminary work in which the minimum to trigger a change in image 

quality was identified. Also, the maximum and minimum primary acquisition 

parameter settings were chosen based on 2 settings above and 2 settings below the 
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highest and lowest kVp, mAs and SID settings from the 64 combinations established 

in step 1, respectively. The reason for doing this was to investigate whether 

combinations of primary acquisition parameters from ranges outside the established 

ranges from step 1 were associated with suitable image quality from lower E. 

Acquired images were appraised with the VARS, and E was estimated for only the 

combinations of primary acquisition parameter settings associated with suitable 

image quality. These combinations were then ranked according to E values. 

4) Details of part 2 (human study) 

Knowing that there may be differences between phantoms and humans, the ranked 

combinations of acquisition parameters from part 1 (phantom study) were tested on 

humans. 

Results and Discussion 

Part 1 – Phantom study 

Step 1 – Establish a factorial set of primary acquisition parameters 

The acquisition parameter combination that produced suitable image quality was 

80kVp, 39mAs and 120cm SID. Based on these settings, the 64 combinations of 

primary acquisition parameters that were used during step 2 (again, which also 

involved 2 settings below and 1 above each obtained setting) were 70, 75, 80 and 

85kVp in relation to 27, 33, 39 and 45mAs in relation to 100, 110, 120 and 130cm 

SID. 
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Step 2 – Optimise each secondary acquisition parameter individually 

Anode heel effect 

 
Figure 1. This gives the number of times each E produced a suitable image quality for the 2 anode 
heel effect settings (no zeros shown). 64 images were acquired at each setting, whereby the figure 
presents only images associated with suitable quality. 

 

E to produce suitable image quality was either the same or lower when the anode 

was towards the head than towards the feet (Figure 1). This contradicts Fung & 

Gilboy28, who investigated dose absorbed by various organs in relation to both 

anode heel effect settings from a lateral lumbar spine exposure (28.81mGy entrance 

skin dose). With the anode towards the feet, they found an organ dose reduction of 

385µGy and 3.7µGy for ovaries and testes, respectively. There was an increase of 

3µGy, 0.4µGy, 0.1µGy for breasts, thyroids, and eye lenses, respectively. However, 

they used the same exposure factors of 96kVp and 120mAs for both anode heel 

effect settings, and did not consider optimising for image quality. This is perhaps why 

their findings differ from this study. Based on the above, ‘anode towards the head’ is 

the optimised setting. 
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Focal spot 

In agreement with others29, this study showed that E associated with suitable image 

quality was the same at both foci (Table 3). Also, acquisition time was always 47-

80ms shorter with a broad focus. Reducing acquisition time would likely reduce 

patient movement and therefore motion blur. Based on the above, ‘broad’ is the 

optimised setting. 

Table 3. The different Es are shown in ascending order, whereby the number of times each E 
produced a suitable image quality is shown for the 2 focal spot settings’ exposure times (no zeros 
shown). 64 images were acquired at each setting, whereby the table presents only images associated 
with suitable quality. 

Broad focus (ms) E (mSv) Fine focus (ms) 

63 71 90 100  110 125 140 160 180 

1    0.04 1     

1 1   0.05  1 1   

2 1 1  0.06  2 1 1  

 2 2  0.07   2 2  

2   1 0.08  2   1 

 1 1  0.09   1 1  

  1  0.11    1  

   1 0.13     1 

 

OID or air gap 

Suitable image quality could be produced from lower E at OID=0cm than at OID=15 

and 30cm (Table 4). Although in agreement with other studies5, 30, the findings from 

this study are in contradiction to Trout et al.27, who suggested that images of similar 

quality can be produced at 0 and 15cm OIDs from the same E by adjusting SID to a 

long setting. This contradiction might be because those authors considered image 

contrast, rather than a visual scale, as a tool for identifying suitable image 
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quality.Therefore, their conclusion is questionable, because they were not looking for 

diagnostic criteria in their image quality definition. Following OID investigation, the 

optimised OID setting is ‘0cm’. 

Table 4. The different Es are shown in ascending order, whereby the number of times each E 
produced a suitable image quality is shown for the 3 OID settings (no zeros shown). 64 images were 
acquired at each setting, whereby the table presents only images associated with suitable quality. 

OID (cm) E (mSv) OID (cm) 

0  15 30 

1 0.04   

2 0.05   

5 0.06   

4 0.07   

5 0.08   

3 0.09   

 0.10 1  

1 0.11 1  

 0.12 1  

1 0.13  1 

 0.14 1 2 

 0.15  1 

 0.16 2 2 

 0.19 1 1 

 0.20 1  

 0.23 2  

 0.27  1 

 0.32  1 

 0.36  2 
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Grid 

E to produce suitable image quality was always lower at OID=0cm than with a grid 

(Figure 2). In particular, the grid required an increase of at least 0.1mSv to produce 

the same image quality (i.e. the same VARS scores). Therefore, the optimised 

setting is ‘OID=0cm’. 

 
Figure 2. This gives the number of times each E produced a suitable image quality for OID=0cm and 
grid settings (no zeros shown). 64 images were acquired at each setting, whereby the figure presents 
only images associated with suitable quality. 

 

Step 3 – Conduct a full-factorial primary acquisition parameter investigation 

From the 880 combinations of primary acquisition parameter of the full-factorial 

investigation (i.e. 8 kVp × 10mAs × 11 SID = 880), images of suitable quality were 

produced from only 74 of these combinations. The combinations mainly ranged from 

75 to 90kVp, from 27 to 45mAs, and from 100 to 130cm SID (Figure 3). 
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Figure 3.This gives the 74 combinations of kVp, mAs and SID settings that produced images of 
suitable quality with the anode towards the head, broad focus, OID=0cm (IR in contact with the 
volunteer), and no grid settings. Any column represents a combination of settings that produced a 
suitable image quality. For better illustration purposes, the increase in column height and darkness 
indicate an increase in E (measured in mSv). 

 

Table 5 demonstrates a sample of the estimated E from the 74 combinations of 

primary acquisition parameter settings that produced the 74 images of suitable 

quality (whilst the secondary acquisition parameters were fixed at their optimised 
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settings). 

Table 5. A sample of the 20 lowest Es is shown in conjunction with the associated primary acquisition 
parameter settings. The secondary acquisition parameters were fixed at their optimised settings: with 
the anode towards the head, broad focal spot size, and OID=0cm. The corresponding air Kerma is 
also listed. 

E Air Kerma Exposure factors 

mSv mGy kVp mAs SID 

0.040 1.25 75 27 120 

0.048 1.45 75 36 125 

0.049 1.48 80 27 120 

0.050 1.50 80 32 130 

0.052 1.58 75 30 115 

0.053 1.63 75 36 120 

0.053 1.61 75 40 125 

0.054 1.46 85 27 125 

0.056 1.83 75 30 110 

0.057 1.86 75 27 105 

0.059 1.65 80 40 130 

0.060 2.07 70 36 105 

0.060 1.84 75 36 115 

0.060 1.67 80 36 125 

0.060 1.65 85 27 120 

0.060 1.64 85 30 125 

0.062 1.88 80 27 110 

0.064 2.09 75 30 105 

0.065 2.05 75 39 115 

0.066 1.88 80 36 120 

 

These 74 combinations of primary acquisition parameter settings, together with the 

optimised secondary acquisition parameters settings, formed a list of ranked 
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radiographic practices (based on E) for producing lateral T9 to L3 images from a 

reduced E. 

The results show that images acquired at SIDs above 100cm but below 130cm may 

have the same image quality. Additionally, images acquired at SIDs less than 100cm 

had a considerably reduced quality in comparison to those acquired at SID above 

130cm. Also, images acquired based on a range of SIDs from 100cm up to 130cm 

may have the same image quality. This was in contradiction to Brennan and Nash31, 

who found reduced sharpness of superior and inferior endplates with increasing 

SIDs from 100 to 130cm (whilst other acquisition parameters were fixed) in a lateral 

lumbar exposure. However, they suggested that this is due to grid cut-off, rather than 

increase in SID, which agrees with findings from the current study where a without 

grid exposure in conjunction with an SID of 100cm up to 130cm (whilst other 

acquisition parameters were fixed) reproduced the superior and inferior endplates 

clearly. 

Further, with the same kVp and mAs settings, when SID increases above 100cm, the 

E steadily reduces, and the image quality is not affected until the SID exceeds 

130cm. This is in agreement with other investigations that found a marked entrance 

surface dose and E reduction of approximately 12.5% and 45%, respectively (without 

affecting image quality) when SID increased above 100cm up to 130cm in lateral 

lumbar exposures32. 

Furthermore and in accordance with other investigations33, a relatively low setting of 

both kVp and mAs was associated with suitable image quality in this study. This was 

the case possibly because images are considered suitable as long as they can be 

used for Cobb and superimposition method measurements, regardless of image 
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noise.  

Part 2 – Human study 

The combination of acquisition parameter settings from the phantom-based study 

associated with the 4th lowest ranked E (rather than the 1st lowest ranked E) was the 

one that produced human volunteer images of suitable quality from the lowest E 

(Figure 4). This optimised combination was successful in producing images of 

suitable quality from human volunteers whilst standing upright and with the trunk 

flexed and extended. 

 
Figure 4. This gives a lateral thoraco-lumbar exposure of one of the human living volunteers using the 
identified optimised combination of acquisition parameter settings (i.e. 80kVp, 32mAs, 130cm SID, 
anode towards the head, broad focus, OID=0cm (IR in contact with the volunteer ), and with no grid). 

 

At the hospital where the human study took place, lateral thoraco-lumbar spine X-ray 

imaging for Cobb method measurements is typically associated with an E of 1mSv 

from using 90kVp, 100mAs, 100cm SID, no concern for anode heel effect, broad 
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focus, and a grid (and hence no concerns for the OID). In contrast, as identified in 

the human study, the combination of acquisition parameter settings associated with 

suitable image quality from an E of 0.05mSv were 80kVp, 32mAs, 130cm SID, 

anode towards the head, broad focus, OID=0cm (IR in contact with volunteer), and 

no grid. This E of 0.05mSv represents a reduction of almost 95% from that used in 

the hospital, and 83% from the average E used in the UK (0.3mSv) for lateral 

thoracic or lumbar imaging34. 

The current investigation was novel in that the complex effect of multiple acquisition 

parameters (at their available settings) on image quality and dose was investigated 

and resulted in a new X-ray practice that was tested successfully on living human 

volunteers. In addition, obtained results could reduce risks of exposures on a large 

population of spinal deformation patients whose assessment is based on Cobb or 

superimposition method measurements. More importantly, although being focused 

on Cobb and superimposition measurements, this paper presents a newly developed 

and successful procedure for optimising different X-ray practices based on reducing 

dose without affecting diagnostic image quality. 

Nevertheless, further investigations in this area of research are needed. In particular, 

parameters other than the ones investigated in the current paper as, for example, 

other grid types need to be considered. Also, optimisation for people with different 

sizes (not only normal-weight) should be considered. Additionally, although the 

results from the study were tested on 9 healthy volunteers, studies on larger sample 

sizes are needed to make generalisation of obtained practice possible. Finally, in the 

current investigation and due to time restrictions and the huge number of tested 

parameters, dose was estimated from air Kerma; whereby dose estimated from TLD 



21 

 

readings could be more precise. 

Conclusion 

This study was based on a new systematic optimisation procedure to identify the 

settings of the main acquisition parameters that would produce a suitable lateral 

thoraco-lumbar spine X-ray image for inter-vertebral angulation measurements using 

Cobb and superimposition methods from the lowest E. The obtained acquisition 

parameter settings and resultant optimised radiographic practice was then validated 

by imaging healthy normal-weight male adult living human volunteers. The specific 

optimised radiographic practice that emerged from this procedure produced suitable 

image quality from ALARP E using anode towards the head, broad focus, no OID or 

grid, 80kVp, 32mAs, 130cm SID. With an E of 0.05mSv, this is approximately 83% 

less than the average E of 0.3mSv used in the UK30 for lateral thoracic or lumbar 

imaging. The new optimisation procedure was successful in identifying suitable 

image quality whilst greatly reducing E. Although this procedure was developed for 

lateral thoraco-lumbar spine exposures, it might also be adopted for the optimisation 

of other radiographic procedures. 
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