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Summary 

A new model is proposed for describing coupled optical waves propagating in a 

system with linear dispersion (both group-velocity and spatial contributions) and (3) 
nonlinear susceptibility. The modulational instability problem is solved in full, and its 
predictions are related to the analysis of new exact analytical vector soliton families. 
 
Spatiotemporal model equations 
 

   Recently [1], we considered a model of scalar nonlinear optical pulse propagation 
that captures the novel physical context of spatial dispersion as introduced by 
Biancalana and Creatore [2]. Frame-of-reference considerations and coordinate 
transformations play a central role in our approach (for instance, the velocity 
combination rule is akin to that in relativistic kinematics). The assumption of slowly-
varying envelopes is omitted (since it can frustrate the description of spatial 
dispersion phenomena), and we do not use the standard device of Galilean-boosting 
to the local time frame (since it hinders, rather than helps, the analysis). 
 

   Menyuk’s classic coupled nonlinear Schrödinger (NLS)-type model has proved to 
be a theoretical mainstay for describing the propagation of optical waves in Kerr-type 
systems [3].  Here, we report on recent research that combines our spatiotemporal 
formalism [1] with (two-component) vector geometries. In normalized units, 
envelopes uj (with j = 1 and 2) satisfy the following pair of coupled wave equations in 
the laboratory frame: 
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where  /  denote time / longitudinal coordinates, the (inverse) group speed of wave j 

is described by j, spatial / group-velocity dispersion (GVD) is parametrized by j / sj, 

and the strength of the wave coupling (cross-phase modulation) is determined by . 
 
Modulational instabilities 
 

   The continuous wave (cw) vector solution to model (1) is of the form uj(,) = 

u0jexp[i(j  kj)]exp(i/2j), where u0j are amplitudes (taken to be real, without loss 

of generality), j denote frequency shifts, and the propagation constants are kj ≡ ±[1 

 4j(u0j
2  u03j

2)  4jj(j  sjj/2)]1/2/2j [the ± flags propagation in the forward () 

or backward () longitudinal sense].  Linear analysis, deployed to test the robustness 
of these uniform states against small perturbations, yields a modulational instability 
(MI) spectrum that is described by the roots of an eighth-degree polynomial equation. 
The general features of the MI gain curve can be somewhat complicated (see Fig. 1), 
depending critically on the interplay between system parameters and cw intensities.  



 
 

 

 

 

 

 

Exact spatiotemporal vector solitons 

   Exact analytical vector solitons have been derived for model (1), which include 
bright-bright, bright-dark, and dark-dark families.  These new solutions are non-trivial 

generalizations of their more familiar NLS-type counterparts [1,35], with much more 
intricate and subtle space-time structure (e.g., in terms of solution existence 
conditions). Multi-parameter asymptotic analysis has proved that under the 

assumption of slowly-varying envelopes, where |j∂
2uj/∂

2| << |∂uj/∂| [so that all 
contributions from first term in Eq. (1) can be safely neglected simultaneously], one 
may Galilean-boost from the laboratory to a local-time frame travelling at the average 
group speed. In that unique frame, all predictions from Eq. (1) are in full agreement 
with Menyuk’s classic system [3] (as must be the case). Our latest investigations are 
focusing on spatiotemporal analyses of linear and nonlinear birefringence [3,7]. 
 

   Simulations of model (1) can be performed using a vectorized modification of the 
difference-differential method used for the numerical integration of related nonlinear 
wave equations [8]. When used as initial conditions, traditional NLS-type vector 
solitons may evolve into the stationary solutions of model (1) (see Fig. 2).  These 
results suggest that the new solitons are surrounded by wide basins of attraction. 
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Fig. 2. Perturbed initial-value problem for model (1) involving bright-bright solitons. (a) Evolution of 
the peak amplitude in u2 as perturbation strength increases.  Evolution of (b) |u1| and (c) |u2| for a 

strongly perturbed bright-bright soliton in the (,) plane [corresponding to the black curve in (a)]. 

Fig. 1. (a) An induced-MI spectrum 
for cw solutions of model (1) with 
s1 < 0 (normal GVD) and s2 > 0 
(anomalous GVD) when the  

coupling parameter is  = 2/3. The 
spectrum is far more complicated 
than the single bow-tie structure 
found for the NLS equation. (b) 
Spontaneous MI for a system with 
s1 > 0 and s2 > 0 [FFT axis in 
arbitrary units of 100]. 


