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Summary 

We propose and investigate, for the first time to our knowledge, an entirely new 

regime in wave physics  the diffraction of fractal waves from simple apertures.  A 
selection of new analyses and physical predictions will be given for experimental 
geometries when the illuminating field has structure on multiple spatial scale-lengths. 
 
Weierstrass fractal illumination 
 

   Berry's seminal work from over three decades ago [1] established that plane waves 
scattering from infinitely-wide complex objects (e.g., a transparent mask with a 
random fractal phase modulation) may acquire fractal characteristics in their 
statistics. Here, we consider the diametrically-opposing paradigm in complexity: the 
diffraction of a fractal wave from a simple object. We report on very recent research 
results concerning the scattering of fractal light from simple apertures. Attention is 
paid to two classic configurations that underpin both theoretical and experimental 
studies of diffraction: (i) a single infinite edge, and (ii) a single infinite slit. Classic 
analyses consider normally-incident plane-wave illumination, and the corresponding 
diffraction patterns are well known. 
 

   The novelty of our approach lies in accommodating an incident optical field that 
possesses a very broad spatial bandwidth (i.e., a waveform whose spatial spectrum 
extends over decimal orders of pattern scale-length).  We consider an input wave in 
the form of a Weierstrass fractal that has a straightforward optical interpretation: 
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where U0 is the plane wave amplitude and  is the strength of the fractal modulation.  

The nth spectral component has a spatial frequency Kn = (2/ )n (with  > 1 and  

is a fundamental scale-length), while its phase n may be deterministic or random.  

Note that the Weierstrass fractal in Eq. (1) has a largest pattern scale-length 2/ K0 = 

 but no small-scale cut-off [3]. Typically, the degree of complexity in Uin() is 
determined by 1 < D < 2, where D = 2 describes an area-filling pattern (see Fig. 1). 
 

 
 
 

Fig. 1. Input Weierstrass fractal in Eq. (1) when  = 3.0 and the parameter D (often interpreted 
as the Hausdorff-Besicovich dimension) is set to: (a) D = 1.37, (b) D = 1.5, and (c) D = 1.8.  The 

phases n = 0 for all n, in which case the input field is symmetric in coordinate . 



Diffraction of fractal light waves 
 

Exact mathematical descriptions of near-field (Fresnel) patterns have been obtained 
using Young's edge waves [4] as elemental spatial structures (see Fig. 2).  Moreover, 
analysis using specialist software [5] has suggested that calculated diffraction 
patterns are bandwidth-limited fractals, as generally occur in Nature (see Fig. 3).  
Far-field (Fraunhofer) predictions of diffraction patterns emerge asymptotically from 
our near-field results (as they must) in the limit of vanishing Fresnel number. 
 

 

 

 

 
 

   As the diffracted field propagates away from the aperture, the fractal signature of 
the illuminating wave is modified until one is left, ultimately, with a far-field pattern 
characterized by a single scale-length proportional to 1/NF (where NF is the Fresnel 
number of the aperture). This surprising result is profound, and goes to the heart of 
many considerations involving fractal wave diffraction. In contrast to analyses of 
infinitely-wide systems, finite transverse aperturing effects appear to have a strong 
impact on the complexity of the outgoing wave.  This result has major implications 
for, and applications in, a diverse range of fields [6] such as fractal antenna 
engineering [7] and surface-roughness measurement techniques [8]. 
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Fig. 3. (a) Diffracted Weierstrass 

fractal with  = 3 and D = 1.37 
for an aperture Fresnel number 
of NF = 1000. (b) The rescaled-
range (denoted with R/S) 
dimension of the pattern in (a) is 
found to be [5] DR/S ≈ 1.307. 
Analysis suggests that the 
diffracted field may be classified 
as a bandwidth-limited fractal 
whose dimension is generally 
less than that of the input field. 

Fig. 2. Diffraction pattern produced by a single slit of width 2a when illuminated by a Weierstrass 
fractal with dimension D = 1.37 (blue lines) [input field corresponds to the wave in Fig. 1(a)].  

Comparison is made with a plane wave illuminating field ( = 0, red lines).  Fresnel numbers 
are: (a) NF = 10, (b) NF = 100, (c) NF = 1000.  Shaded areas denote geometrical shadow region. 
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