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Abstract 

 

Functional electrical stimulation (FES) is the controlled use of electrical pulses to 

produce contraction of muscles in such a way as to support functional movement. FES 

is now widely used to aid walking in stroke patients and research into using FES to 

support other tasks is growing. However, in the more complex applications, it is very 

challenging to achieve satisfactory levels of FES control. 

 

The overall aim of the author’s PhD thesis is to develop improved techniques for real-

time Finite State Machine (FSM) control of upper limb FES, using multiple 

accelerometers for tracking upper limb movement and triggering state transitions. 

Specific achievements include: 1) Development of new methods for using 

accelerometers to capture body segment angle during performance of an upper limb 

task and use of that data to trigger state transitions (angle triggering); 2) Development 

of new methods to improve the robustness of angle triggering; 3) Development of a 

flexible finite state-machine controller for control of upper limb FES in real time; 4) 

In collaboration with a clinical PhD student, implementation of a graphical user 

interface (GUI) that allows clinical users (e.g. physiotherapists) to set up FSM 

controllers for FES-assisted upper limb functional tasks. 

 

Three alternative methods that use 3-axis accelerometer data to track body segment 

angle with respect to gravity have been reported. The first uncalibrated method 

calculates the change in angle during a rotation using the gravity vectors before and 

after the rotation. The second uncalibrated method calculates the angle between the 

accelerometer x-axis and the gravity vector. The third calibrated method uses a 

calibration rotation to define the measurement plane and the positive rotation 

direction. This method then calculates the component of rotation that is in the same 

plane as the calibration rotation. All three methods use an algorithm that switches 

between using sine and cosine, depending on the measured angle, which overcomes 

the poor sensitivity problem seen in previous methods. 

 



xviii 

 

A number of methods can be included in the transition triggering algorithm to 

improve robustness and hence the usability of the system. The aim of such methods is 

to reduce the number of incorrect transition timings caused by signal noise, jerky arm 

movements and other negative effects, which lead to poor control of FES during 

reaching tasks. Those methods are: 1) Using the change in angle since entering a state 

rather than absolute angle; 2) Ignoring readings where the acceleration vector is 

significant in comparison to the gravity vector (i.e. the magnitude of the measured 

vector is significantly different from 9.81); and 3) Requiring a given number of 

consecutive or non-consecutive valid readings before triggering a transition. These 

have been implemented with the second uncalibrated angle tracking method and 

incorporated into a flexible FSM controller. 

 

The flexible FSM controller and the associated setup software are also presented in 

this thesis, for control of electrical stimulation to support upper limb functional task 

practice. In order to achieve varied functional task practice across a range of patients, 

the user should be able to set up a variety of different state machines, corresponding 

to different functional tasks, tailored to the individual patient. The goal of the work is 

to design a FSM controller and produce an interface that clinicians (even potentially 

patients) can use to design and set up their own task and patient-specific FSMs. 

 

The software has been implemented in the Matlab-Simulink environment, using the 

Hasomed RehaStim stimulator and Xsens MTx inertial sensors. The full system has 

been tested with stroke patients practicing a range of tasks in the laboratory 

environment, demonstrating the potential for further exploitation of the work.  
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Chapter 1 – Introduction 

 

Stroke is one of the top three causes of death in developed countries (Lindley, 2008; 

WHO, 2003). Around 50% of survivors may lose some control of the arm and/or hand 

(Broeks, Lankhorst, Rumping, & Prevo, 1999; Heller et al., 1987; Parker, Wade, & 

Hewer, 1986; Timmermans et al., 2009). Such people typically suffer from a 

reduction in muscle strength and coordination (Burgar et al., 2011; Harris & Eng, 

2010). Other problems for the upper limb include a reduced ability to extend the 

shoulder, elbow and hand joints (Ruth N. Barker, Brauer, & Carson, 2008; 

Timmermans et al., 2009).  

 

A wide range of rehabilitation interventions have been developed which aim to help 

restore upper limb motor function after stroke. Interventions include constraint-

induced movement therapy, electromyographic (EMG) biofeedback, robotically 

assisted therapy, mental practice with motor imagery, and functional electrical 

stimulation (FES) therapy. FES is a controlled electrical stimulation for producing 

contraction of muscles, and such technology is now widely used in helping restore 

motor function for stroke patients (Lynch & Popovic, 2008). However, achieving 

satisfactory levels of FES control is very challenging because of the nonlinear 

(Ferrarin, Palazzo, Riener, & Quintern, 2001; Lynch & Popovic, 2008) and time-

varying (Lynch & Popovic, 2008) response of muscles to stimulation. In addition, 

perturbations from muscle spasticity and other central nervous system feedback loops 

introduce often unpredictable challenges to the controller (Lynch & Popovic, 2008).  

 

To address these problems, designers have developed closed-loop, open-loop and 

state machine controllers. Closed-loop controllers usually employ command, feed-

forward and feedback signals together with error detection and correction processes 

for control of FES. The feedback signals are typically force (Lawrence et al., 2008), 

position (Chadwick et al., 2011), and joint angle (Kurosawa, Futami, Watanabe, & 

Hoshimiya, 2005). Command and feed-forward signals can include EMG (Hara, 

2008), electroneurogram (ENG) (Inmann & Haugland, 2004) and 

electroencephalogram (EEG) (Sinkjaer, Haugland, Inmann, Hansen, & Nielsen, 2003) 
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signals. Open-loop controllers are simple and typical systems usually consist of a 

stimulator and a command source, which can be a switch (Tomović, Popović, & Stein, 

1995) used by the patient or therapist (acting as the system controller) or a specific 

muscle activity (Braz, Russold, & Davis, 2009; Francisco et al., 1998). A finite state 

machine (FSM) controller is defined as a list of states, and the triggering conditions 

for leaving each state (for a detailed definition, see section 2.4). The FSM have been 

shown to be an effective and intuitive approach for the control of FES (Tresadern, 

Thies, Kenny, Howard, & Goulermas, 2008). FSM control using sensors on the body 

for transitions between states (movement phases) is a potentially good compromise 

between open-loop control and true closed-loop control, but is currently limited by a 

lack of flexibility. In other words, unless a control engineer is also involved, clinical 

users are unable to set up FSM controllers to deliver different functional tasks for 

different patients with different impairments. To overcome this problem, a flexible 

FSM controller is required that can be set up to deliver upper limb FES for many 

different functional tasks. At the same time, a quick and easy set-up tool is essential to 

guide clinical users, with little or no software expertise, through the setup of new 

FSM controllers for different upper limb rehabilitation tasks. This requires them to 

define the number of states, the state transition conditions (angle thresholds, timeouts, 

combinational logic etc.), and stimulation parameters for each state (thresholds, 

targets, ramps etc). 

 

A related problem is that of capturing upper limb motion with small, low cost, body 

worn sensors and using this information to robustly trigger state transitions. Modern 

accelerometers are low cost (Barbour & Schmidt, 2001; Verplaetse, 1996; Zheng, 

Black, & Harris, 2005), low power consumption (Cuesta-Vargas, Galán-Mercant, & 

Williams, 2010; Zheng et al., 2005), small in size (Barbour & Schmidt, 2001; Cuesta-

Vargas et al., 2010; Zheng et al., 2005), light weight (Barbour & Schmidt, 2001; 

Cuesta-Vargas et al., 2010), and provide accurate and reliable outcomes (Cuesta-

Vargas et al., 2010). These advantages make accelerometers a promising solution for 

use in the FSM control of upper limb FES. 

 

However, the measurement of body segment angle using accelerometers suffers from 

two main problems. Firstly, the existing methods for processing the accelerometer 

signals, to obtain angle from the vertical, all suffer from very poor sensitivity when a 
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sensitive axis approaches the vertical. Secondly, the methods reported rely on the true 

acceleration being negligible and are, therefore, only suitable for measuring angle 

under static or low acceleration conditions. Furthermore, there are significant 

challenges to overcome to make the triggering of state transitions, based on 

accelerometer derived angles, more robust because of movement variability, sensor 

misalignment, the true acceleration component, signal noise etc.  

 

1.1 Research objectives 

The overall aim of the author’s PhD study is to develop improved techniques for real-

time FSM control of upper limb FES, using multiple accelerometers for tracking 

upper limb movement and triggering state transitions. Specific objectives include: 

1) Creation of a flexible FSM controller that can deliver real-time control of upper 

limb FES for many different functional tasks.  

2) Creation of a user-friendly graphical user interface (GUI) for guiding therapists, 

with little or no software expertise, through the setup of FSM controllers for upper 

limb rehabilitation tasks. A GUI is defined as a type of interface that allows users to 

interact with software via graphical icons. Users should be able to define: number of 

states, state transition conditions (angle thresholds, timeouts, combinational logic etc.), 

and stimulation parameters for each state (thresholds, targets, ramps etc); 

3) Investigation of alternative methods for using accelerometers to capture body 

segment angle during FES upper limb rehabilitation tasks; 

4) Investigation of algorithms to improve the robustness of angle triggering for state 

transitions.  

 

1.2 Overview of the thesis 

Chapter 2 is a comprehensive literature review covering: general background on 

upper limb rehabilitation following stroke, principles of electrical stimulation, 

available methods for the control of FES, FSM control of FES, and the use of inertial 

sensors for motion tracking.  
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Chapter 3 describes the author’s work on angle measurement using accelerometers. 

The methods presented include two uncalibrated angle tracking algorithms and a 

calibrated angle tracking algorithm. The two uncalibrated angle tracking methods are 

used for converting acceleration measurements into the sensor’s angle (or change of 

angle) from the vertical. The term ‘uncalibrated’ refers to the fact that the subject is 

not required to make any calibration movements after the sensors have been donned. 

The first uncalibrated angle tracking method calculates the change in angle from the 

vertical by calculating the angle between the gravity vectors before and after the 

rotation, both expressed in the sensor’s coordinate frame. The second uncalibrated 

angle tracking method calculates the angle of the sensor’s x-axis from the vertical and 

rejects any rotation about the x-axis, which can be advantageous if the wish is to 

avoid triggering a transition as a result of pronation-supination of the forearm. The 

calibrated angle tracking method gives both the magnitude and the sign of the angle 

change in a given plane that is defined by a calibration movement. Finally, a real-time 

auto-calibration algorithm has been developed that updates the gains applied to the 

three sensor signals (x, y and z components of acceleration) to compensate for 

calibration errors. The auto-calibration method is designed to operate in parallel with 

any of the angle tracking methods mentioned above. 

 

Chapter 4 presents robust angle triggering algorithms, which are based on ignoring 

bad sensor readings resulting from signal noise, jerky arm movements and other 

negative effects. The aim is to avoid incorrect FSM transition timings and hence poor 

control of FES during reaching tasks. The following methods have been implemented 

and tested: 

- Using the change in angle since entering a state rather than absolute angle, 

which reduces the effects of sensor misalignments and movement variability; 

- Ignoring readings where the acceleration vector is significant in comparison to 

the gravity vector (i.e. the magnitude of the measured vector is significantly 

different from          ) 

- Requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition. 
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Chapter 5 presents a flexible FSM controller for the real-time control of FES during 

upper limb rehabilitation. A GUI guides clinical users through the process of setting 

up new FSM controllers for different upper limb rehabilitation tasks for different 

patients with different impairments. Users define the number of states, state transition 

conditions (angle thresholds, timeouts, combinational logic etc.), and stimulation 

parameters for each state (thresholds, targets, ramps etc). 
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Chapter 2 - Literature review 

 

2.1 Upper limb rehabilitation following stroke 

2.1.1 Stroke and the consequences for the upper limb 

A stroke is a type of brain injury caused by disruption of blood to a specific part of the 

brain (Caplan, 2005). Stroke can be divided into two main groups, haemorrhagic and 

ischemic. Haemorrhagic stroke is a stroke in which damage to the brain is caused by a 

blood vessel bursting and there are several subtypes, depending on the location of the 

bleed. Ischaemic strokes are caused by a blockage in a blood vessel interrupting blood 

supply to the brain and can also be classified according to the affected region of the 

brain (Caplan, 2005). 

 

Stroke is one of the top three causes of death in developed countries (Lindley, 2008; 

WHO, 2003). Each year in England, about 110,000 people have a stroke. In addition 

approximately 20,000 suffer a transient ischemic attack, a short term disruption of 

blood supply to the brain in which the symptoms last less than 24 hours (Easton et al., 

2009; Lecouturier et al., 2010; NAO, 2005). Approximately 20 - 30% of people die 

within a month of having a stroke, and at least 300,000 people are living with 

moderate to severe disabilities as a consequence of stroke in England (Lecouturier et 

al., 2010; NAO, 2005). Patients who survive a stroke often suffer impairments, 

including poor control of the limbs, loss of swallowing function, disturbance of vision, 

as well as reduced or heightened sensation. In addition, often severe psychological 

impacts occur as a result of stroke  (M Fisher, 2008).  

 

Around 50% of survivors may lose some control of the arm and/or hand (Broeks et al., 

1999; Heller et al., 1987; Parker et al., 1986; Timmermans et al., 2009). Such people 

typically suffer from a reduction in muscle strength, maximum voluntary force, and 

coordination (Burgar et al., 2011; Harris & Eng, 2010). Other problems include a 

reduced ability to extend the shoulder, elbow and hand joints (Ruth N. Barker et al., 
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2008; Timmermans et al., 2009), shoulder pain (In Sook Lee et al., 2009) and 

reduction in sensations of touch and heat (Nykänen, 2010). In the absence of 

treatment, such arm and hand impairments often remain, or become more severe with 

time. Additionally, shoulder pain is another common complication after stroke and 

this may negatively impact on both rehabilitation and daily living activities (In Sook 

Lee et al., 2009). In addition, upper limb impairments may affect balance and walking 

(Shumway-Cook & Woollacott, 2001). 

 

2.1.2 Outcome measures of arm usage in everyday life 

In this section, the common measures of to what extent people after stroke use their 

arm in everyday life are addressed. One of the widely used methods is the Motor 

Activity Log (MAL) test, a questionnaire-based test (Hammer & Lindmark, 2010). 

The MAL asks patients to recall which of a list of common tasks the subjects perform 

in their daily lives. The items in the questionnaire include the actual activities of 

everyday life, such as picking up a glass, brushing teeth etc (Uswatte, Taub, Morris, 

Vignolo, & McCulloch, 2005). The score is based on the number of tasks performed, 

as well as the extent to which the affected arm is used to perform each task. 

 

2.1.3 Rehabilitation of the upper limb after stroke 

A wide range of rehabilitation interventions have been developed which aim to help 

restore upper limb motor function after stroke. Interventions include constraint-

induced movement therapy, EMG biofeedback, robotics, mental practice with motor 

imagery, and FES therapy. 

 

2.1.3.1 Electromyographic (EMG) biofeedback 

EMG biofeedback is the use of visual or auditory feedback to the patient on activity 

levels in paretic muscles. The EMG signals are derived from the electrical potentials 

in the motor units and usually measured at the skin surface (Langhorne, Coupar, & 

Pollock, 2009). By providing the patient with feedback on their muscle activity, it is 
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believed that patients may be able to retrain their brain or spinal cord to increase the 

ability to activate these weak muscles. (Robinson & Snyder-Mackler, 2007).   

 

EMG biofeedback therapy has some evidence of effectiveness in upper limb 

rehabilitation (Armagan, Tascioglu, & Oner, 2003; Crow, Lincoln, Nouri, & Weerdt, 

1989; Inglis, Donald, Monga, Sproule, & Young, 1984). A systematic review 

(Woodford & Price, 2007) of EMG biofeedback therapy identified 13 trials (involving 

a total of 269 subjects) and concluded that there was only a small amount of evidence 

to suggest that EMG biofeedback therapy has a positive effect on arm functions. The 

overall results were limited because of the small number of trials. 

 

However, no evidence was found that EMG biofeedback therapy has significant 

benefits in improving hand function (Langhorne et al., 2009).  In addition, according 

to Woodford and Price’s systematic review, EMG biofeedback therapy has limited 

effect on improving wrist joint range of motion.  

 

2.1.3.2 Constraint-induced movement therapy (CIMT) 

Typically, stroke patients begin to use their intact upper limb for functional tasks 

during the early stage of recovery from stroke, as use of the affected limb is difficult 

(Kunkel et al., 1999). This may lead to impaired motor recovery in the following 

months and years (Grotta et al., 2004). Constraint-induced movement therapy (CIMT) 

is a rehabilitation technique that involves the intensive use of affected upper limb 

through restraint of the unaffected upper limb (Kunkel et al., 1999; Suputtitada, 

Suwanwela, & Tumvitee, 2004; E Taub et al., 1993). Highly intensive practice of 

functional movements and exercises using the impaired limb is believed to be an 

effective approach to accelerating the restoration of arm and hand function (Bruce, 

2005; French et al., 2009; French et al., 2010; Prange, Jannink, Groothuis-Oudshoorn, 

Hermens, & Ijzerman, 2006).  

 

A number of large randomised, controlled studies have shown positive effects of  

CIMT on the rehabilitation of upper limb function (Atteya, 2004; Lorie, Carolyn, 

Melinda, & Amit, 2008; Page, Sisto, & Johnston, 2002; Page, Sisto, Levine, Johnston, 
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& Hughes, 2001; Wolf et al., 2006; Wolf et al., 2008). For example Wolf, Winstein et 

al. (2008) investigated 106 three to nine months stroke patients, who received CIMT 

therapy for up to 5 hours per day, 5 days per week over 2 weeks. The results show 

that CIMT therapy may lead to a significant improvement in upper limb strength and 

function, and that the effects are retained for at least 2 years. Thus, CIMT treatment is 

believed to have long-term benefits to the rehabilitation of upper limb function. A 

recent systematic review (Shi, Tian, Yang, & Zhao, 2011), which included 13 

randomized controlled trials (RCTs), concluded that CIMT treatment has significant 

benefits to the rehabilitation of the impaired upper limb . Importantly, no negative 

medical side effects of CIMT have been found (Edward  Taub, Uswatte, & Pidikiti, 

1999).  

 

However, CIMT is limited in its applicability. For example, it is not suitable for 

widespread use in the acute phase of stroke. A study in acute stroke patients showed 

that out of 187 potential CMIT participants, 30 patients had no movement in the hand 

and another 55 patients had other reasons for exclusion, such as aphasia (Grotta et al., 

2004). In addition, CMIT is costly, as it is demanding of therapists time and the 

resources of a rehabilitation unit (Grotta et al., 2004; Langhorne et al., 2009). 

 

2.1.3.3 Robotic-assisted therapy 

Robotic-assisted therapy is the use of mechanical devices to provide or support 

highly- intensive, and controllable repetitive upper limb practice (Marc Fisher, 2009), 

(Prange et al., 2006). Thus, robotic therapy offers a potential solution to the problem 

of needing a therapist to be present throughout therapy sessions (Volpe, Ferraro, 

Krebs, & Hogan, 2002). Additionally, robotic-assisted therapy appears to be more 

acceptable to the patients compared with traditional exercise therapy (Kwakkel, 

Kollen, & Krebs, 2008). Recent work has investigated the motivational benefits of 

structuring robotic therapy sessions as games, thereby encouraging patients to 

exercise for longer than would otherwise be the case (Kwakkel et al., 2008). Also, 

robotic-assisted therapy allows for more control over the therapy to the arm during 

treatment (Kwakkel et al., 2008). Robotic-assisted therapy typically allows both for 

control of the environment (e.g. you can make the robot stiff about particular axes) 
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and monitoring of performance (Masiero, Celia, Rosati, & Armani, 2007) (e.g. 

recording of movement, forces, speed and direction of residual movements etc) 

(Masiero et al., 2007). 

 

Kwakkel, Kollen et al. (2008) reviewed 10 studies, of robotic-assisted therapy. The 

results show that robotic therapy has a significant positive effect on restoration of 

upper limb function. Another review (Mehrholz, Platz, Kugler, & Pohl, 2009) has also 

demonstrated that robotic-assisted therapy had a positive effect on arm motor function 

and arm motor strength. Moreover, a large RCT (Lo et al., 2010) that involved 127 

patients with upper limb impairment 6 months or more after stroke has concluded that, 

for long-term stroke patients with upper limb impairment, robotic-assisted therapy 

seems to offer potential benefits to the rehabilitation of motor functions for those 

patients who receive over 36 weeks treatment. 

 

However, robotic therapy provides limited improvement in activities of daily living 

(ADL) (Kwakkel et al., 2008; Mehrholz et al., 2009). Also, according to a recent 

review paper (Langhorne et al., 2009) no significant improvements in hand function 

were observed. 

 

2.1.3.4 Mental practice with motor imagery 

Mental practice with motor imagery is a neuro-rehabilitation technique that involves 

repeated imagining of particular motor tasks, with the aim of improving or stabilizing 

the actual motor tasks. Motor imagery of a physical task activates very similar parts of 

the brain to those that are activated when the physical task is performed(Jacksona, 

Lafleur, Malouin, Richards, & Doyon, 2003). e (Berntson & Cacioppo, 2009). By 

creating an imagined movement of the paretic limb using a part of the brain that is 

undamaged by stroke, the motor imagery technique aims to strengthen alternative 

neuron connections in the brain, to allow a different (undamaged) part of the brain to 

take over the role of the damaged part (Marshall et al., 2000) and enhance the spared 

area adjacent to the damaged part of the brain (Nudo, Wise, SiFuentes, & Milliken, 

1996).  
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Mental practice with motor imagery is inexpensive (Dickstein & Deutsch, 2007) and 

easy to use (Page, Szaflarski, Eliassen, Pan, & Cramer, 2009) therapy that may 

contribute to the rehabilitation of motor function. Braun, S., A. Beurskens, et al. (2006) 

reviewed the literature and found that mental practice, as an additional therapy, has 

some benefits in improving motor performance. Another more recent review, 

concluded that mental practice with motor imagery technique has potential positive 

effects on recovery of arm functions (Langhorne et al., 2009). It is suggested that 

mental practice therapy is more suitable for patients who were receiving physical 

therapy or occupational therapy at the same time (Braun, Beurskens, Borm, Schack, & 

Wade, 2006; Dickstein & Deutsch, 2007; Page, Levine, & Leonard, 2007).  

 

However, the largest study to date, Letswaart, Johnston et al. examined 121 stroke 

patients with a residual upper limb weakness (on average < 3 months post-stroke), 

and found no improvement in outcome measures. Thus, there is no clear evidence that 

mental practice with motor imagery technique improves motor functions and benefits 

stroke rehabilitation in isolation (Letswaart et al., 2011).  
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2.2 Electrical stimulation 

2.2.1 Introduction 

Excitable muscle or nerve tissues provide the basis for FES as a rehabilitation tool for 

patients following a stroke. In this section the reader is introduced to the basic theory 

of excitable tissues and principles of activating excitable tissues using ES, including 

the effects of stimulation amplitude, duration, frequency on physiological responses.  

 

Finally, some examples of FES applications for the restoration of upper extremity 

function are described.  

 

2.2.2 Excitable tissues 

2.2.2.1 Structure of a nerve and motor unit 

 

Figure 2.1: The basic structure of a nerve cell and the communication between nerve 

cells (Hegner, Acello et al. 2009). A nerve cell typically contains a cell body and 

extensions called axon and dendrites. The nerve impluses enter the nerve cell via the 

dendrites, are transmitted through the cell body and axon until they reach the synapse.  

The nerve cell is the basic unit of the communication network in the human body. A 

nerve cell typically contains a cell body and fiber processes of axon and dendrites (see 

figure 2.1). The axon is the longest process and transmits the nerve impulses along its 
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length, while the dendrites are responsible for interfacing with other nerve cells 

(Hegner, Acello, & Caldwell, 2009). 

 

 

Figure 2.2: Structure and composition of muscles (Sheriff 2004) 

Muscle responds to neural signals to produce force. The sarcomere is the basic unit 

for production of force, and contains thick myosin and thin action filaments (Baker, 

Wederich, Mcneal, Newsam, & Waters, 2000). Myofilaments comprise many 

repeating interdigitated sarcomere. A group of myofilaments, organized in a pattern of 

thick and thin contractile proteins, is termed a myofibril. The largest unit in the 

muscle, the myofiber consists of a number of myofibrils. Specifically, the number of 

myofibrils is determined by the size and function of the parent muscle. Myofibers are 

enclosed by the muscle membrane and are elongated cylinders in shape, and the 

myofibers comprise the muscle fasciculus (see figure 2.2) (Baker et al., 2000; Sheriff, 

2004). 
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2.2.2.2 Electrochemical balance in a nerve cell (sodium pump etc) 

The nerve cell is rich in potassium ions and poor in sodium ions, compared with the 

cell exterior, due to the structural characteristics of the membrane and the metabolic 

membrane pumps (see figure 2.3). In the steady state resting potential, the membrane 

is more permeable to potassium ions than sodium ions. The active transport (wide 

arrow) moves more sodium ions and potassium ions than the passive diffusion 

(narrow arrow). In addition, more sodium ions are transferred to the cell exterior 

relative to potassium ions to the cell interior through the sodium-potassium pump. 

Thus, the cell has a slightly negative charge, which is called the resting potential 

(Baker et al., 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The resting potential of a nerve fiber (Baker, Wederich et al. 2000). At the 

steady state resting potential, the membrane is more permeable to potassium ions than 

sodium ions. 

2.2.2.3 Action potentials and their propagation 

The nerve action potentials
1
 are the message units and responsible for transmission of 

information within the nervous system (Baker et al., 2000).  

 

                                                 
1
 Action potentials are short-lasting events and usually occur in excitable cells, such as neurons. In 

neurons, action potentials are the mechanism by which cell to cell communication takes place. In 

muscle cells, they initiate contraction. 
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When a positive electric field is applied to the neuron in its resting potential, there is 

an outflow of current (ions) across the membrane, which if sufficiently long lasting 

and of sufficient amplitude leads to the depolarization
2

 of the neuron. If the 

depolarizing stimulation exceeds a specific level, which is usually called the threshold 

of excitation, it will result in a massive depolarization of the membrane and explosive 

opening of sodium channels. The sodium ions will flow across the membrane of the 

neuron until reaching the sodium equilibrium point, which leads to the closure of 

sodium channels. After this process, potassium ions start flowing out from the interior 

of the nerve fiber and when the membrane returns to its resting potential, the 

potassium channels will also close. The whole process is completed within one msec 

for a nerve and one to five msec for a muscle (Baker et al., 2000). The response of 

rapid depolarization followed by repolarization in response to any stimulation over 

the threshold of excitation is the same (achieving a peak voltage of +30 mV), and 

called the action potential (see figure 2.4). 

 

 

 

Figure 2.4: (a) Membrane potential response of a nerve cell over time to a small 

depolarizing stimulation; (b) Response to a stronger depolarizing stimulation; and (c) 

Response to a depolarizing stimulation over the threshold of excitation (Kalat 2008) 

                                                 
2
 In biology terms, depolarization is a potential difference change between the inside and outside of 

membrane. A large enough depolarization (triggering the threshold for excitation) will lead to action 

potentials in cells.  

(a) (b) 
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The propagation of action potentials is described as the transfer of an action potential 

from one point of the axon to its adjacent area. The action potential at the initial point 

of the axon will act as the stimulation for production of other action potentials (see 

figure 2.5). A basic character of propagation is the positive dependence of speed of 

propagation on axon diameter. In another words, the greater diameter of axon, the 

greater the speed of propagation along the axon (Kalat, 2008). 

 

 

 

 

 

 

 

 

Figure 2.5: (a) The action potential of peak voltage level of 40 mV causes current 

flow to the negative area of the axon. The flow of current acts as the depolarizing 

stimulation over the threshold of excitation; and (b) when the threshold of excitation 

is achieved, another action potential will be elicited, and this process leads to the 

propagation of the action potential along the axon (Bullock, Boyle, & Wang, 2001). 

When an action potential is propagated and reaches the axon terminals, a chemical 

transmitter will be released by the presynaptic terminal. The chemical transmitter will 

then bridge the synaptic gap between the nerve and the muscle fiber membrane, and 

approach the postsynaptic muscle neuron. This process will lead to production of an 

action potential in the muscle (Kalat, 2008).  

2.2.2.4 Muscle fiber contraction 

If adequate levels of chemical transmitters approach the postsynaptic terminals on the 

muscle fiber, this will result in the depolarization of the muscle membrane and 

generation of action potentials. As the basic unit of production of force, the sarcomere 

starts storing calcium ions, released from the propagation process, the myosin and 

actin filaments start interacting i.e. sliding across one another. When the muscle 

membrane returns back to its resting potential, the myosin and actin filaments stop 
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interacting, and the sarcomere also returns to the initial length (Smeltzer, Bare, 

Hinkle, & Cheever, 2009). Such a process will lead to the twitch and relaxation of 

myofibrils, the basic mechanism underlying the contraction and relaxation of muscles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

2.2.3 Electrical stimulation of excitable tissues 

As described above, a disturbance of the electrical field surrounding a nerve cell can 

elicit action potentials. Such a disturbance can be achieved using a pair of electrodes, 

comprising two ‘poles’ (an anode ‘+’ and a cathode ‘-’), (usually) located on the 

surface of specific areas of the body to form a circuit. When electric current passes 

within the circuit, positive ions are repelled from the tissue close to the anode and 

those positive ions are driven by the Lorentz Force
3
 to flow towards the cathode. 

Once the potential difference between inside and outside the membrane decreases 

(which happens at tissues near a cathode) below the critical threshold for excitation, 

an action potential will be elicited. The action potential propagates in both directions 

from the point of electrical stimulation, leading to muscle contractions.  

2.2.3.1 Stimulation parameters 

Stimulation current pulses are typically characterized by three parameters, which are 

pulse frequency, amplitude and duration (see figure 2.6), and all three stimulation 

parameters have an effect on muscle contraction. 

 

 

 

 

 

 

 

Figure 2.6: Three main parameters for FES. The pulse amplitude is the peak current 

during the pulse and the pulse duration is the period of time a pulse remains on. 

Increasing the pulse amplitude or pulse duration may increase the strength of muscle 

                                                 
3
 Lorentz Force is the force on a point charge, which generated by the interaction between point 

charge and electromagnetic fields. 
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contractions by recruiting more nerve fibers. The pulse frequency is the number of 

pulses per second. At a sufficiently high frequency, the contractions cannot be 

individually distinguished (Lynch & Popovic, 2008). 

2.2.3.2 Stimulus pulse amplitude and duration 

An action potential in a nerve is only elicited once a stimulus pulse exceeds a 

particular threshold in either current amplitude or pulse duration. The current 

amplitude is described as the peak current value in the phase of a pulse and the pulse 

duration is the period of time an electrical pulse remains on.  

 

Increasing amplitude or duration of stimulations may increase the strength of muscle 

contractions by recruiting more nerve fibers.  A schematic muscle recruitment curve 

(see figure 2.7) shows the typical, non-linear response to stimulation; at a point just 

after initial motor response, a small change in stimulation amplitude can cause a large 

increase in muscle force; further increasing of stimulation levels results in no increase 

in muscle force.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Muscle force against current amplitude. No muscle motor units have been 

recruited until the threshold of excitation for muscle excitation has been exceeded. A 

further increase in current amplitude will lead to a large increase in muscle force, until 

saturation is reached (Data collected from quadriceps femoris by using constant 
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current surface stimulator at frequency of 35 pulses per second (pps) and pulse 

duration of 300 µs. 1 ft-lbs = 1.3558 Nm) (Baker et al., 2000).  

As nerve fibers vary in their diameter and proximity to the stimulation, those nerve 

fibers that are largest (P. Hunter Peckham & Knutson, 2005) and closest to electrode 

(Baker et al., 2000) will be stimulated at the lowest level of electrical stimulation 

(intensity and duration of stimulation just above the critical threshold). Increasing the 

current of stimulation or pulse width will excite the closer, smaller diameter nerve 

fibers and larger diameter nerve fibers that are further from the electrode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: The relationship between pulse duration and current amplitude and 

stimulation response. The lower curve represents the current amplitude and pulse 

duration required to achieve the minimum neural excitation. The upper curve 

represents the current amplitude and pulse duration for a near maximal muscle 

contraction (Data collected from wrist extensors by using constant current surface 

stimulator at frequency of 35 pps) (Baker et al., 2000) 

As the curves in figure 2.8 show, if pulse duration is set to a constant value of 200 µs, 

then the maximal recruitment of motor units can be achieved by increasing current 

amplitude from about 15 to 40 mA. Increasing pulse duration to 400 µs will only 
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result in a small reduction in the current amplitude required for maximum motor 

response and level of threshold of excitation. Further increasing pulse duration will 

not significantly affect the amplitude required for either threshold or maximal 

stimulation. Importantly, a decrease of pulse duration below 200 µs will lead to a 

huge increase of current amplitude required for both maximum motor response and 

the level of threshold for excitation. Similarly, if the current amplitude has been set to 

a constant value, such as 40 mA, the maximum motor response can be achieved by 

increasing pulse duration from about 40 to 200 µs. In the example shown in figure 2.8, 

a decrease of current amplitude below 20 mA, would result in no motor response, 

irrespective of the pulse amplitude. So, in summary, the parameters of pulse 

amplitude and duration are the two main factors that affect the triggering of action 

potentials. 

 

Pulse durations of 200 – 400 µs are preferable for clinically used electrical stimulators, 

which can provide relatively comfortable experiences for patients and sensitive 

control for muscle contraction (Baker et al., 2000; Chapman & Fratianni, 2008).  

 

2.2.3.3 Stimulus pulse frequency 

The pulse frequency is described as the number of pulses per second. To achieve 

smooth contraction of muscle, the stimulation pulses must be repeated above a certain 

frequency, known as the fusion frequency. If the frequency is too low, the muscle will 

return to resting state after stimulation, and the muscle will respond in a series of 

twitches. As the frequency of stimulation increases and reaches a sufficiently high 

frequency (fusion frequency), the muscle response becomes both stronger and the 

summating contractions cannot be individually distinguished, which is recognized as 

the tetany state. However, significant further increases in frequency will increase the 

muscle fatigue rate. Typically, due to the problems of fatigue associated with 

increasing frequency, engineers design FES systems that adjust the strength of muscle 

contraction through changing the pulse amplitude and/or duration (Bullock et al., 

2001; Strojnik & Peckham, 2000), keeping stimulation frequency at a constant (low) 

value. Typically, clinically used peripheral nerve stimulators usually work on a 

frequency between 25 – 50 pps (Baker et al., 2000). 
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2.2.3.4 Simulation waveforms 

Two stimulation waveforms, monophasic and biphasic, have been clinically used for 

excitation of nerves. The monophasic waveform consists of repeating unidirectional 

pulses and thus, only allows ion flow in one direction (example see figure 2.9 a). The 

biphasic waveform consists of repeating bidirectional pulses, which allow ion flow in 

both directions. Typically, the biphasic waveform has a cathodic phase and usually 

followed by an anodic phase. If the cathodic phase and anodic phase are equal to each 

other (equal charge flow in both direction), then the biphasic waveform is balanced 

(example see Figure 2.9 c). The secondary pulse (usually the anodic phase) lets the 

ions, which flow into the tissues near cathode in the first pulse, to flow out of the 

electrode-tissue interface and probably can reverse the potential damage to tissues 

(Mortimer, 1981). If the cathodic phase and anodic phase are not balanced, potential 

muscle tissue damage can occur (see Figure 2.9 a). The mechanism of tissue damages 

is the electrochemical irritation due to Ph imbalance. 

 

The following figure gives examples of different stimulation waveforms of 

monophasic and biphasic rectangular pulses.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Common stimulation waveforms of different shapes. (a) Monophasic 

stimulation waveform provides rectangular pulses. It is not safe at, or above a net DC 

current density of        ⁄ . (b) Imbalanced biphasic stimulation waveform, which 

(a) 

 

(b) 

 

(c) 
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may cause damage to muscle tissues if a net DC current density goes 

above        ⁄ . (c) Balanced biphasic stimulation waveform allows ion flow in 

both directions, thereby avoiding potential damage due to electrochemical and other 

processes. (Baker, Wederich et al. 2000; Scheiner, Mortimer et al. 1990). 

2.2.3.5 Factors affecting the spatial distribution of stimulating current  

Whether or not the applied stimulation reaches beyond the level required to initiate 

action potential at a particular point in the tissue is also affected by electrode location. 

If two electrodes (anode and cathode electrodes) are close to each other, more current 

will choose to pass through surface tissues due to the shorter pathways through the 

superficial layers, and hence deeper tissues will be less likely to be stimulated. If 

deeper tissues are the targets for excitation during stimulation, the two electrodes 

should be placed farther from each other to increase the current passing through 

deeper tissues. The reason of this phenomenon is, when placing the two electrodes 

farther apart, both surface tissues resistance and deeper tissues resistance will increase, 

but the surface tissues resistance will increase faster than deeper tissues resistance.  

 

The electrode size (contact area with the skin) will influence the current density, 

which is another factor which may affect the neural or muscle excitation. The current 

density is defined as the amount of charged ions moving through a specific area of 

tissue. Thus, low current density may lead to inadequate depolarization of the 

membrane and the stimulation will not exceed the threshold of excitation. The current 

density will increase with a reduction in electrode size for a given stimulation current. 

One good example of using the theory above is the use of a small cathode placed over 

the tissue to be excited in combination with a large anode. In this case, the current 

density will increase at the target tissue area (near the cathode) and diffuse the current 

at the irrelevant area at the anode.  

 

2.2.3.6 Ramp time for stimulation 

When stimulation is used for a functional purpose, it is common to avoid abrupt 

changes in stimulation intensity. A rapid increase in stimulation intensity is usually 

uncomfortable and can lead to a rapid stretch of a muscle, which in turn can lead to an 
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unwanted reflex response in the antagonist muscle (muscle that opposes the action of 

the muscle being stimulated). Similarly, an abrupt termination of stimulation can also 

be problematic in some applications. For example, in FES for drop foot, ramping off 

stimulation to the tibialis anterior muscle may improve stability during load 

acceptance (Gerard M. Lyons, Sinkjær, Burridge, & Wilcox, 2002). 

 

The gradual change in stimulation intensity with time is termed a ramp. Ramps are 

usually specified in terms of the time during which stimulation changes from one 

target level to another (see figure 2.10). The parameter that is changed in the ‘ramp’ 

can be intensity of pulse or duration of pulse. Most manufactures use increasing or 

decreasing intensity of pulse width or amplitude to produce ramps.  

 

The following figure gives an example of implementation of ramp times to 

stimulations.  

 

 

 

 

 

Figure 2.10: Stimulation ramp times. In a typical ramped stimulation pattern, the 

stimulation intensity ramps up or down linearly (Baker, Wederich et al. 2000) 

2.2.4 Functional electrical stimulation 

FES is a controlled electrical stimulation for producing contraction of muscles. FES 

(Baker et al., 2000), was first introduced during the 1960s. FES is now widely used in 

helping restore motor function for stroke patients (Lynch & Popovic, 2008). FES is 

used as a neural prosthesis, whose purpose is to substitute for the missing or corrupted 

neural signals during the performance of a functional task. Typical applications 

include cycling (Donaldson, Perking, Fitzwater, Wood, & Middleton, 2000), rowing 

(Davoodi & Andrews, 2003, 2004; Davoodi, Andrews, Wheeler, & Lederer, 2002; 

Pons, Vaughan, & Jaros, 1989), standing (Jaeger, 1986; Matjacic & Bajd, 1998) and 

standing-up (Kagayaa et al., 1995; Kern et al., 1999), as well as enhancement of gait 
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pattern (Bogataj, Gros, Kljajić, Aćimović, & Maležič, 1995; Granat, Keating, Smith, 

Delargy, & Andrews, 1992; Régine et al., 2000).  

 

There are three types of electrode used in FES systems: surface electrodes 

(Pfurtscheller, Müllera, Pfurtschellerc, Gernerd, & Ruppd, 2003), percutaneous 

electrodes (electrodes implanted under the skin connected via wires crossing through 

the skin) and fully implantable electrodes (Keith et al., 1989; Mulcahey, Betz, Smith, 

Weiss, & Davis, 1997). 

 

The first attempt at using surface electrodes applied to the upper limb to assist with 

the control of the hand was reported in 1963 (C. Long, 1963; Vodovnik, Long, 

Reswick, Lippay, & Starbuck, 1965). Subsequent developments have built on this 

approach (Mangold, Keller, Curt, & Dietz, 2005; Pfurtscheller, Müller-Putz, 

Pfurtscheller, & Rupp, 2005; Pfurtscheller et al., 2003; Mirjana B. Popovic, Popovic, 

Sinkjær, Stefanovic, & Schwirtlich, 2002; Prochazka, Gauthier, Wieler, & Kenwell, 

1997; Thrasher, Zivanovic, McIlroy, & Popovic, 2008), as described in detail below. 

 

2.2.5 FES applications for the upper extremity 

Current studies of FES therapy demonstrate its potential value for rehabilitation of the 

upper extremity function after stroke. Studies have shown that FES may be an 

efficacious intervention in rehabilitation of reaching and grasping function (Jayme S. 

Knutson, Hisel, Harley, & Chae, 2009; Thrasher et al., 2008), elbow extension 

(Hughesa et al., 2010; Thrasher et al., 2008), shoulder motion (Kameyama, Handa, 

Hoshimiya, & Sakurai, 1999), and stabilization of wrist joints (Mulcahey et al., 1997).  

 

However, as described in detail in section 3, the current FES control systems are 

crude. Most clinical FES applications use open-loop control in which the stimulation 

parameters are adjusted during the tasks by the control system without feedback. The 

clinically available open-loop controlled FES systems also cannot provide precise 

adaptation to the input in response to the users’ performance nor generate minimum 

levels of stimulation to continually challenge the patient. Both of these are seen as 

valuable functions in promotion of motor relearning (Hughes et al., 2010). 
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In the following section, electrical stimulation systems that have been used for upper 

limb rehabilitation are described. The section begins with an overview of the systems 

reported in the literature, including those that deliver pre-programmed stimulation 

profiles (i.e. with no input from the user), systems that rely on “unnatural” triggering, 

such as button activated ES, and finally, systems in which the onset, termination and 

sometimes magnitude of stimulation is controlled by the user. In each section, the 

different systems are described and the clinical evidence reviewed. 

 

2.2.5.1 ES systems that are not under voluntary control, or are push-button controlled 

Stimulators that are not voluntarily controlled are pre-programmed by the clinician or 

user to repeat a fixed duty cycle, or cyclical electrical stimulation. Cyclical electrical 

stimulation result in the repetitive contraction of muscles. In some cases pre-defined 

stimulation profiles can be started or stopped via a push button. Commercial systems 

that can deliver this kind of stimulation profile include the Bioness Handmaster, 

Odstock Medical Microstim 2 and Odstock 4 Channel Stimulator Kit.  

 

The Odstock Medical Microstim 2 is two-channel stimulator that can deliver cyclical 

(exercise) stimulation to weak or paralysed muscles (Mann, Burridge, Malone, & 

Strike, 2005). Another Odstock 4 Channel Stimulator Kit is available on the market 

that allows the user to setup exercise stimulation profiles which require more than 2 

channels of stimulation.  

 

The BioNess Handmaster is one of the most widely used and well studied ES systems 

for the upper limb of patients with spinal cord lesions or stroke (Alon & McBride, 

2003; Ijzerman et al., 1996). The NESS Handmaster includes a spiral carbon fibre 

splint with surface electrodes attached on the splint for stimulation of finger and 

thumb muscles. The controller of NESS Handmaster is attached to the orthosis by a 

cable, which provides 5 different selections (3 exercise modes and 2 function modes) 

for the users (Snoek, Ijzerman, Groen, Stoffers, & Zilvold, 2000). The exercise modes 

provide repetitive stimulation of targeted finger and thumb extensor and flexor and 

enable the users to take repetitive exercises. The functional modes include key grip 
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and release mode and palmar grasp and release mode. The first triggering of system 

activates finger flexors and thumb extensors in key grip mode, or finger and thumb 

extensors in palmar grasp mode. After an adjustable preset duration, stimulation of the 

appropriate flexors is sequentially activated and enables the users to maintain of either 

key grip or palmar grasp. The second triggering of system enables the users to release 

the hand in key grip and release mode or palmar grasp and release mode. Triggering 

of the system in either exercise modes or functional modes can be done by pressing a 

push pad on the controller, or by activating a remote trigger that is incorporated into 

the orthosis.  

 

Studies of cyclical stimulation have shown positive effects on motor recovery after 

stroke (Handa & Hoshimiya, 1987; Kralj, Acimovic, & Stanic, 1993). The use of 

cyclical stimulations can reduce spasticity of muscles, increase the strength of 

muscles and movement of joints, and correct contractures of muscles (Powell, 

Pandyan, Granat, Cameron, & Stott, 1999). However, such systems have shown less 

effect on the restoration of upper limb motor functions compared with therapy using 

ES triggered by voluntary movement (e.g. using position information or EMG signals 

as the inputs to the control of ES) (Kroon, IJzerman, Chae, Lankhorst, & Zilvold, 

2005). 

 

2.2.5.2 FES systems that are controlled via voluntary effort from the user 

Of central interest to this thesis are the systems that are controlled via voluntary effort 

from the user. These include systems controlled by EMG, EEG and voluntary 

movement of the upper limb itself. These systems are described and reviewed below: 

 

a) EMG triggered systems 

 

EMG triggered ES is one of the techniques that allows voluntary control from the 

users. In general, EMG triggered systems start stimulation if the voluntary EMG 

signals reach a specific threshold and terminate stimulation once it drops below this 

threshold. Another EMG triggered system that controls grasping has been developed 

(Saxena, Nikolic, & Popovic, 1995). The system records the EMG signals from wrist 
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extensors, and once the voluntary contractions of wrist extensors exceed a specific 

threshold (next-state function), the stimulation of finger and thumb flexors will turn 

on.  

 

 

 

 

 

 

 

Figure 2.11: State machine control of Saxena, Nikolic et al.’s EMG triggered system 

(Saxena et al., 1995). The system detects voluntary EMG signals from wrist extensors, 

and stimulation of the finger and thumb extensors will produce hand opening when 

the EMG signals exceed a specific threshold. 

Another example of a system using EMG signals as control inputs is the STIWELL 

med4 (Rakos, Hanh, Uher, & Edenhofer, 2007). This system provides the user with 

two EMG channels for measuring muscle activation and up to four stimulation 

channels. Exceeding a threshold will activate stimulation to the target muscle groups. 

The system can provide pre-programmed functional tasks (e.g. hand to mouth).  

 

EMG triggered systems that employ a proportional control strategy allow the control 

of electrical stimulation intensity, to be proportional to the magnitude of voluntary 

EMG signals. Muraoka has developed an EMG controlled system, which is called the 

integrated volitional control electrical stimulator (IVES), for the elicitation of wrist 

and fingers extension (Muraoka, 2001; Yamaguchi et al., 2011). The IVES activates 

stimulation of muscles at a specific intensity level, and makes the intensity level 

proportional to the voluntary EMG signals. In another word, the level of users’ wrist 

and fingers extension will be in proportion to the amplitude of voluntary EMG signals 

recorded from a target muscle. 

 

The EMG triggered systems are believed to improve arm/hand motor functions during 

stroke recovery (Bolton, Cauraugh, & Hausenblas, 2004). However, the limitations to 
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Hand open 
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EMG signals are exceeding 

a specific threshold 

EMG signals are going 
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the EMG triggered system are: 1) a minimum voluntary muscle contraction is 

required (Bolton et al., 2004; Saxena et al., 1995); 2) reliable surface EMG data is 

limited in people with paretic upper limbs, especially in dynamic conditions. The 

interpretation of surface EMG data becomes significantly complex in dynamic 

conditions. The factors such as force output, muscle fiber length and relative position 

of surface EMG electrodes and source occurring during dynamic tasks will all affect 

the changes of surface EMG signals (Gazzoni, 2010; Yamaguchi et al., 2011). 

 

b) EEG triggered systems 

 

EEG triggered systems also allow voluntary control by the user (Lauer, Peckham, & 

Kilgore, 1999; Pfurtscheller et al., 2005; Scherberger, 2009). The EEG signals 

typically record the brain activity by using the surface scalp electrodes at several sites 

over specific brain regions (Lauer et al., 1999; Sinkjaer et al., 2003). Lauer, Peckham 

et al. developed an EEG based control system that allows control of hand opening and 

closing. The system records EEG signals and converts such signals into the command 

signals. Two thresholds (a high threshold and a low threshold) have been preset. If the 

EEG signals go above the high threshold, this generates the command signals for 

activating stimulation of the muscles, which are responsible for hand closure. When 

the EEG signals go below the high threshold, command signals for stop closing are 

generated. Such stimulation stops and the hand stops closing. In order to activate the 

stimulation of muscles responsible for hand opening, the EEG signals need to go 

below the low threshold, which generates command signals to go from hand closed to 

hand open.  
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Figure 2.12: State machine control of Lauer, Peckham et al.’s EEG triggered system 

(Lauer et al., 1999). The system records EEG signals and converts these into 

command signals, which are used to control hand opening and closing. 

Most of the current EEG triggered systems use non-invasive EEG electrodes. The 

non-invasive EEG electrodes can only provide indirect neural signals and only have a 

limited information transfer rate capacity (Scherberger, 2009). In addition, the current 

EEG triggered systems, require subjects to complete a great amount of training before 

using EEG triggered systems (Scherberger, 2009). 

 

c) Motion-triggered systems 

 

The current motion triggered systems typically use shoulder motion (P. Hunter 

Peckham et al., 2001; P. Hunter Peckham & Knutson, 2005), wrist motion (Prochazka 

et al., 1997; Prochazka, Wieler, Kenwell, & Gauthier, 1996), contra lateral hand 

motion (Jayme S. Knutson et al., 2009) or head motion (P. H. Peckham, Mortimer, & 

Marsolais, 1980) as the control source to the FES system. The typical examples of 

motion triggered systems are described as follows. 
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Jayme S. Knutson et al., (2007) developed a new contralaterally controlled functional 

electrical stimulation (CCFES) treatment which aims to restore finger and thumb 

extension (see figure 2.13). The system employs a proportional control motion 

triggered system, with the degree of paretic hand opening proportional to the 

voluntary opening of the contralateral unimpaired hand (Jayme S. Knutson, Harley, 

Hisel, & Chae, 2007; Jayme S. Knutson et al., 2009). The authors claim the CCFES 

system requires no residual hand movement of patients and less occupational therapist 

time due to self-administration of CCFES use. 

 

 

Figure 2.13: A glove with sensors detects the degree of unaffected hand opening, and 

stimulation of the finger and thumb extensor muscles will produce proportional 

opening of affected hand (Jayme S. Knutson et al., 2009) 

Another example was the Bionic Glove, first developed in 1989 (Prochazka et al., 

1997; Prochazka et al., 1996). The Bionic Glove FES system is designed for 

producing functions of hand grasping and opening for C6/7 spinal cord injury (SCI) 

patients (Dejan Popovic et al., 1999). The typical Bionic Glove usually has a wrist 

position sensor, which is used for detecting voluntary wrist movement. Such signals 

collected from wrist position sensors are used as the reference to the control of FES. 

Voluntary wrist flexion to a specific preset angle activates stimulation and result in 

hand opening. Conversely, wrist extension to another preset angle activates 

stimulation of specific muscles and produces a pinch grip (see figure 2.14). However, 

due to the requirement of voluntary wrist movement, the Bionic Glove is only suitable 

for patients with C6/7 SCI. The two main effects of daily use of the Bionic Glove 

Affected arm 
Unaffected arm 
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were (1) increasing of grasp force; and (2) increasing of the range of movements of 

finger joints (Dejan Popovic et al., 1999). 

 

 

Figure 2.14: The Bionic Glove. (a) The adhesive electrodes are placed on the muscles 

that will be activated. (b) The wrist position sensor is used for detect the voluntary 

movement of wrist. (c) When the wrist flexes to a preset angle, the stimulation is 

activated to the muscles for production of hand opening. (d) When wrist extends to 

another preset angle, the stimulation is activated to the muscles for production of 

pinch grip (Prochazka et al., 1997) 

Motion triggered systems allow voluntary control of stimulation to the target muscles, 

via voluntary movement of the upper limb itself. Many motion triggered systems are 

effective for restoration of upper limb functions (Jayme S. Knutson et al., 2009; P. 

Hunter Peckham et al., 2001; P. Hunter Peckham & Knutson, 2005; Prochazka et al., 

1997).  

 

2.2.5.3 Summary 

In summary, most of the current motion triggered systems are pre-programmed for a 

limited range of specific tasks (see Table 2.1). For example, as discussed above, the 

Bionic Glove FES system (Dejan Popovic et al., 1999) can only stimulate wrist and 

(a) 

(b) 

(c) 

(d) 
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finger muscles, using wrist extension/flexion as the control signal, and hence is 

limited to the restoration of grasp/release (see Figure 2.14). In order to adapt the 

system to use different control inputs or vary the control profile, an engineer would be 

required.  

 

Current FES systems for the upper limb rehabilitation are also inflexible in terms of 

the number and location of muscles to be stimulated. For example, the objective of 

most commercial FES systems seems to be to restore wrist and hand function only 

(Hara, 2008; Lynch & Popovic, 2008; P. Hunter Peckham & Knutson, 2005). 

Relatively little attention has been paid to the development of flexible systems, which 

allow the user to stimulate a set of muscles specific to both task and patient-specific 

impairment patterns (Tresadern et al., 2008). To enable the reader to gain an overview 

of the systems discussed in the literature review, the following table summarises their 

functional properties. 

 

 

Developers 

(year) 

Max 

stimulation 

channels 

Restricted 

stimulation 

to 

particular 

body 

anatomy? 

Voluntary 

triggered 

via body-

worn 

sensor? 

If so, is the 

sensor 

configuration 

flexible? 

Programmable 

by therapists 

for specific 

functional 

task 

NeuroControl 

Freehand 

system 

8 Yes Yes No No 

H200 

Wireless 

Hand 

Rehabilitation 

System 

5 Yes No / No 

Microstim 2 2 No / / No 

Odstock 4 

Channel 

Stimulator 

Kit 

4 No / / No 

STIWell 

Med4 

4 No Yes No Yes 

NEC 

FESMate, 

Early 80’s 

30 Yes No / No 

Bionic Glove, 

(1989) 

3 Yes Yes No No 
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Saxena et al. 

(1995) 

2 Yes Yes No No 

S. E Crook 

and P. H 

Chappell 

(1998) 

8 Yes Yes No No 

Muraoka 

(2001) 

1  Yes Yes No No 

Pfurtscheller 

et al. (2003) 

/ Yes Yes No No 

J. S Knutson, 

Hoyen, 

Kilgore, and 

Peckham 

(2004) 

No 

 

/ Yes No No 

Pfurtscheller 

et al. (2005) 

4 

 

Yes Yes No No 

Jayme S. 

Knutson et al. 

(2007) 

3 Yes Yes No No 

Tresadern et 

al. (2008) 

2 

 

No Yes No Yes 

Chadwick et 

al. (2011) 

/ Yes Yes No No 

Table 2.1: Functional properties of existing FES systems  

Referring to table 2.1, most FES applications are limited by their hardware design to 

stimulate particular parts of the upper limb, specifically the wrist/hand (S. E Crook & 

P. H Chappell, 1998; Hermann et al., 2010; Hobby, Taylor, & Esnouf, 2001; J. S 

Knutson et al., 2004; Jayme S. Knutson et al., 2007; Pfurtscheller et al., 2003; Saxena 

et al., 1995). Microstim2 and Odstock 4 channel stimulator kit (Odstock Medical Ltd, 

Salisbury, UK) provides flexible stimulation channels and they are not restricted by 

design to stimulation of the particular body anatomy. However, their systems are not 

under voluntary control and only provide exercise stimulation profiles to repeat a 

fixed duty cycle. Arguably the most flexible systems are the STIWell Med 4 and the 

CST developed by Tresadern et al., (2008). However, the CST set-up interface was 

not sufficiently user-friendly to be exploited clinically, the sensor configuration was 

fixed (e.g. see figure 2.26) and the exploitation of accelerometer signals for triggering 

was relatively crude. The STIWell Med 4 provides a user-friendly interface, but is 

limited by a fixed sensor configuration (EMG only). 
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This PhD reports on the design of a real-time control system that allows for accurate 

and flexible control of stimulation via a number of inputs, including therapist-

specified voluntary movements of the patient. To achieve this goal, a flexible FSM 

controller is required that can be set up to deliver appropriately sequenced FES to 

specified muscles at levels appropriate to the patient and task requirements. At the 

same time, a set-up tool is essential to guide clinical users, with little or no software 

expertise, through the setup of FSM controllers. The system should be able to provide 

sufficient stimulation channels and flexibility over the set of muscles to be stimulated 

to cover the range of upper limb impairments commonly seen after stroke and a range 

of functional tasks of everyday life. The system should also allow the user to trigger 

stimulation via a user-configurable sensor set.   
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2.3 FES control 

2.3.1 Introduction 

Achieving satisfactory levels of FES control is very challenging. The nonlinear 

(Ferrarin et al., 2001; Lynch & Popovic, 2008) and time-varying (Lynch & Popovic, 

2008) response of muscles to stimulation are the two major problems in FES control. 

For example, muscle fatigue, which is an unwanted side effect of prolonged 

stimulation, affects the capacity of muscle to generate force (Ferrarin et al., 2001). In 

addition, perturbations from muscle spasticity and other central nervous system 

feedback loops introduce often unpredictable challenges to the controller (Lynch & 

Popovic, 2008). To address these problems, designers have developed closed-loop, 

open-loop and state machine controllers. Following a brief section on body worn 

sensors used in FES systems, the merits and limitations of the closed-loop and open-

loop control approaches are described below. State machine control is described in 

section 4. 

 

2.3.2 Sensors for control of FES systems 

Sensors can be either used as the command sources or the feedback sources for the 

control of stimulation (P. Hunter Peckham & Knutson, 2005). Common sensors that 

are employed by FES systems include force sensors (Lawrence et al., 2008), position 

sensors (Popovic, Stojanovic et al. 1999), and EEG and EMG sensors (Pfurtscheller, 

Müllera et al. 2003; Gert, R et al. 2005). 

 

Force sensors (S. E. Crook & P. H. Chappell, 1998), position sensors or acceleration 

sensors (Tresadern et al., 2008) are usually employed in FES systems to produce 

command signals (e.g. start/stop stimulation of muscles). However, in more recent 

FES control systems, force (Lawrence et al., 2008), position, and angle sensors have 

been used to provide feedback signals . Additionally, EMG (Hara, Ogawa, Tsujiuchi, 

& Muraoka, 2008), ENG, and EEG signals, as common biopotentials signals, which 

are recorded from muscles, nerves and the brain or individual cells (Sinkjaer et al., 

2003), are also used in feedback control systems. 
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2.3.3 Continuous closed-loop control of FES 

Closed-loop FES control system usually employ feedback signals, error detection and 

correction processes, and a model of the system to decide the output of stimulations to 

the target muscle groups for achieving a desired movement or force (Lan, Crago, & 

Chizeck, 1991). The feedback signals are typically  force (Lawrence et al., 2008), 

position (Chadwick et al., 2011), joint angle (Kurosawa et al., 2005), EMG (Hara, 

2008), ENG (Inmann & Haugland, 2004) and EEG (Sinkjaer et al., 2003) signals. If 

properly designed closed loop control may lead to the improvement of functional 

output in the presence of perturbations or fatigue of muscle (P. Hunter Peckham & 

Knutson, 2005). For example, Lemay, Crago et al. (1993) investigated one open-loop 

controller and two closed-loop controllers used for the restoration of hand grasp 

function and found that the closed-loop controller required lower stimulation levels 

and provided better regulation of grasp output (subjects performance when grasping 

the instrumented object and maintaining a certain grasp opening) in the presence of a 

disturbance (Lemay, Crago, Katorgi, & Chapman, 1993). In addition, less interaction 

from the users of the closed-loop FES control systems is required, as modelling errors, 

perturbations or fatigue of muscle are compensated automatically (Lynch & Popovic, 

2008). 

 

The following figure shows a generic closed-loop FES control system (shown in 

figure 2.15). This generic closed-loop FES system is used to regulate joint angle by 

manipulating the amount of stimulation delivered to the flexor and extensor muscle 

groups (Lynch & Popovic, 2008).  
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Figure 2.15: A model of a generic closed-loop FES control system. This generic 

closed-loop FES system is used to regulate joint angle by manipulating the amount of 

stimulation delivered to the flexor and extensor muscle groups (Lynch & Popovic, 

2008)   

Kurosawa, Futami et al. (2005) have developed a feedback error learning controller, 

which includes a feedforward and a feedback controller. Their controller (see Figure 

2.16) employs the desired joint angle and its first and second derivatives (angular 

velocity and angular acceleration) at times t to t+5 (discrete time interval of 50 ms) as 

inputs. The feedforward controller (a four-layered neutral network) learns from 

outputs (measured joint angle and stimulation currents) of the feedback controller 

while control of limbs, and thus, can imitate the response of the joint angle to 

electrical stimulation. The feedforward controller outputs are the stimulation currents 

to the target muscle groups. Other stimulation currents which aim to cancel out the 

difference between the desired joint angle and actual angle output from the feedback 

controller. In this system, the feedback controller can compensate for load (e.g. 

control of wrist angle with a 250 g cup in hand) and other disturbance (Kurosawa et 

al., 2005). 
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Figure 2.16: The four-layered neural network control system in the Kurosawa, Futami 

et al.’s feedback error learning controller;    is the desired joint angle,    and    are 

the stimulation current delivered to the target muscle groups (Kurosawa et al., 2005) 

Muscle models can be considered in two categories (Lynch & Popovic, 2008): the 

physiological models and the empirical or black box models. Physiological model 

tend to be accurate, complex and differ between subjects, and attempt to model the 

physiological structure and behaviour of muscle. The second type of model does not 

reflect the structure of muscles, and just attempts to reproduce the input-output 

behaviour of the real muscle (Hunt, Munih, Donaldson, & Barr, 1998; Lynch & 

Popovic, 2008). 

 

One of the common empirical muscle models is the Hammerstein model (Hunt et al., 

1998). The Hammerstein model, as shown in figure 2.17, contains a static recruitment 

nonlinearity (the recruitment curve describes the proportion of stimulation-recruited 

muscle fibers as a function of describing static gain relation between stimulation 

activation level and output torque while muscle length keeps constant) and the linear 

dynamic model (linear discrete-time transfer function that describes the contraction 

dynamics of the muscle in response to the stimulation). In the diagram, the  ( ) is the 

stimulation pulse width (constant amplitude),   ( )  is the disturbance signal, and 

 ( ) is the muscle moment.     is the delay operator,   is a discrete input-output 

time-delay that is greater than or equal to 1,    and    are polynomials in the delay 

operator. However, the Hammerstein model is not accurate in representing of 
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behaviour of stimulated isometric muscles (Hunt et al., 1998; Le, Markovsky, 

Freeman, & Rogers, 2009). 

 

Figure 2.17: The Hammerstein muscle model (Hunt et al., 1998) 

By contrast to the lower limb, for which there are a number of closed-loop controllers, 

including a few used in the clinical environment (Ferrarin et al., 2001), there are very 

few FES applications for the upper extremities and those that have been reported are 

not widely used in the clinical environment (Chae, Sheffler, & Knutson, 2008). One 

possible reason is that the upper limb has kinematic redundancy, allowing for multiple 

joint trajectories for any given end point trajectory (Jeng-Feng Yang, Scholz, & 

Latash, 2007). Further, the upper limb is used for a much wider range of tasks than 

the lower limb, where the objectives of FES are prevention of footdrop during the 

swing phase of gait, restoration of standing and transfer (seated to standing), and 

restoration of walking (P. Hunter Peckham & Knutson, 2005). Thus, control of FES to 

the upper limb may meet more challenges than the control for lower limb. Some 

examples of closed-loop FES systems are given in the following. 

 

Hara has described a power-assisted FES system that comprises a surface electrode 

for recording EMG signals and an electrical stimulator (Hara, 2008). The EMG 

signals from the target muscles are recorded and delivered to a controller (Hara, 2008). 

The stimulator activates the same muscles in proportion to the EMG signals. As the 

power-assisted FES system employs closed-loop control, after proper setting of 

parameters of EMG sensitivity and electrical stimulation, further adjustment is not 

required (Hara, 2008).  
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Figure 2.18: Example of a closed-loop EMG control system (Hara, 2008). The EMG 

signals are recorded from the target muscles and used as feedback signals. 

Chadwick, Blana et al. have developed a closed-loop FES system for the restoration 

of arm and hand functions, based on cortical neuron data (Chadwick et al., 2011). The 

system records the cortical neuron signals and is able to control a stimulated dynamic 

arm in real-time. The details of the system are shown in figure 2.19. The system 

includes a dynamic arm model which has two degree of freedom and includes six 

muscles. The controller is used to calculate and control activations of muscles to 

produce desired movement trajectories of the virtual arm according to the decoded 

movement command and feedback position of the virtual arm. Additionally, the 

controller can correct for arm trajectory errors, which may be caused by perturbations 

or the rapid change of muscle properties, such as muscle fatigue (Chadwick et al., 

2011). 
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Figure 2.19: Overview of experimental setup (Chadwick et al., 2011). The system 

detects the cortical neuron signals and is able to control a simulated dynamic arm. The 

position of the virtual arm is recorded and used as the feedback. 

The neural data are collected from the area of the motor cortex that controls arm 

movements and delivered to the decoder. Based on these inputs movement velocity 

commands (velocity of planar movement of virtual arm) are decoded and delivered to 

the FES controller, which is used to produce coordinated stimulations of multiple 

muscles to achieve the desired movements. The current position signals from virtual 

sensors on the arm are fed back to the FES controller. The dynamic movement of the 

virtual arm, which is the simulation of muscle activations effects, is displayed to the 

user via a monitor. 

 

Inmann and Haugland (2004) compared open-loop control and closed-loop control of 

a hand grasp neuroprosthesis. The closed-loop control system is controlled by three 

push buttons (button on the wheelchair control unit controls system on/off, other two 

buttons control system for selection of grasp patterns and increase/decrease the 

stimulation intensity) and ENG feedback signals, which are recorded by natural 

sensors in the skin of the index finger, and offer functions of open hand, lateral grasp 

and palmar grasp. When the stimulation intensity is below a specific threshold, the 

hand will only produce a negligible grasp force or open. Otherwise, the system will 
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enter automatic command control state that allow automatic control of stimulation 

intensity based on the feedback ENG signals during the test. The user (tetraplegic 

patient) of the closed-loop control system incorporating ENG feedback signals was 

asked to attempt an eating task, using their neuroprosthesis. Also, open-loop control 

increased the stimulation intensity and locked at the maximum level, and thus 

accelerated the onset of muscle fatigue. The task completion time did not differ 

significantly between open-loop control and closed-loop control (Inmann & Haugland, 

2004). 

 

Despite the potential advantages of feedback control, most FES applications still use 

open-loop control (Kostov, Andrews, Popovic, Stein, & Armstrong, 1995; Prochazka, 

1993; Schmidt & Wrisberg, 2008). The FES system with feedback control remains 

largely a research system (Frankel et al., 2011; Prochazka, 1993). In addition, in 

feedback control systems, both complexity of coordination and unpredicted 

interaction with external objects are difficult to compensate for (Cole & Sedgwick, 

1992; Teasdale, Forget, Bard, Paillard, & Lamarre, 1993).  

 

2.3.4 Open-loop control of FES 

The simplest method of controlling FES systems is open-loop control. Typical open-

loop control systems consist of a stimulator and a command source. The command 

source is typically a switch (Tomović et al., 1995) used by the patient or therapist 

(acting as the system controller) or a specific muscle activity (Braz et al., 2009; 

Francisco et al., 1998). Open-loop control systems can be discrete (equivalent to a two 

state finite state machine), in which the users trigger or terminate stimulation via a 

(usually) manually operated switch. Alternatively, open-loop control systems can 

provide continuous control, in which the level of a continuous signal from a body-

worn sensor sets the amplitude of stimulation. Both systems use the patient as the 

controller, and inputs are determined based on proprioceptive feedback, vision, and 

experience (Prochazka, 1993).  

 

An upper limb FES system based on open-loop control, the NESS H200 hand 

restoration system (NESS H200, Bioness Inc., Valencia, CA),  is now available for 
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clinical use (Kanchiku, Lynskey, Protas, Abbas, & Jung, 2008). The system 

incorporates a wrist extension orthosis and a controller. Users are required to 

manually control the system via a push-button switch (Hermann et al., 2010), such as 

selection of operation mode, turn on/off stimulation, adjustment of stimulation 

intensity and etc.  

 

The Freehand system is another open-loop neuroprosthesis, which was commercially 

available. It was aimed at restoring hand grasp and release for patients with C5 or C6 

tetraplegia (P. Hunter Peckham et al., 2001; P. Hunter Peckham & Knutson, 2005). 

The Freehand system provides two kinds of hand grasps, a lateral grasp and a palmar 

grasp. The users can select the hand grasps and turn on/off the system through a 

switch located on the shoulder controller (also known as position detector). The 

shoulder controller incorporates both a switch and a potentiometer. The magnitude of 

stimulation to muscles that control hand opening is proportional to the extent of 

retraction of the shoulder and stimulation to finger flexor muscles is proportional to 

the extent of shoulder motion in the opposite direction. The system allows locking the 

hand in a fixed position by a quick elevation or depression movement of the shoulder 

(see figure 2.20).  

 

Figure 2.20: The NeuroControl Freehand system (Hobby et al., 2001). The Freehand 

system can provide both lateral grasp and palmar grasp, and users can select the hand 

grasps and turn on/off the system through a switch located on the shoulder controller. 
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The stimulation of the muscles that control hand opening/ grasp is proportional to the 

extent of shoulder motion. 

Another open-loop neuromuscular applications is the Bionic Glove (Prochazka et al., 

1997; Prochazka et al., 1996). A wrist position sensor was implemented with the 

Bionic Glove and used to detect the voluntary flexion of the wrist. If the angle of 

wrist flexion exceeds a preset threshold, stimulation of muscles that open the hand 

will be activated. Similarly, voluntary extending the wrist to another threshold angle 

will activate stimulation of muscles that produce grasp (Prochazka et al., 1997). Thus, 

the movement of wrist directly controls the onset/termination of the stimulation of 

specific muscles that open/close the hand. 

 

In summary, the open-loop control systems of FES demonstrate many problems. 

Open-loop control requires a great deal of information about the system’s properties 

in order to produce acceptable movements. However, in open-loop systems, the 

controller is the person being stimulated, or a clinician. Therefore, any perturbation 

(e.g. muscle length, contraction velocity, fatigues of muscle) may be difficult to 

compensate for (Patrick E. Crago, Lan, Veltink, Abbas, & Kantor, 1996). This 

phenomenon may also lead to over stimulation of corresponding muscle (Comer, 

1995). There is a tendency for fatigue to rapidly become an issue in open-loop 

systems, due to the difficulty in appropriately controlling stimulation levels to 

particular muscles based entirely on observations of the limb state (Hoffer et al., 

1996). Some factors, such as the nonlinear and time-varying response of stimulation 

of muscles, muscle fatigue, electrode drift, length-tension properties of the muscles 

are hard to address in the open-loop system (Haugland, Lickel, Haase, & Sinkjaer, 

1999). Also, many open-loop control systems required full attention from the users 

(users need to continuously or repeatedly operate the FES system) (Lynch & Popovic, 

2008). 

 

2.3.5 Conclusion 

Current FES control systems for the upper limb remain limited in the functionality 

they can restore. Closed-loop control systems are slow compared with open-loop 
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systems, and provide accuracy of control of muscles at the expense of time (Frankel et 

al., 2011; Prochazka, 1993). Also, most of the current models of muscles for closed-

loop control, despite their complexity, are not comprehensive enough (Cole & 

Sedgwick, 1992; Lynch & Popovic, 2008; Teasdale et al., 1993), thus unpredicted 

interaction with external objects and fatigue is hard to compensate for and will affect 

the performance of the system (Haugland et al., 1999). Secondly, the users of open-

loop control systems must set the parameters of FES (e.g. stimulation intensity) based 

visual feedback and experience (Prochazka, 1993) making continuous open-loop FES 

control difficult (Haugland et al., 1999; Lynch & Popovic, 2008). 

 

The finite state machine technique gives an alternative way of controlling FES. The 

finite state machine can be implemented as an open-loop control system (e.g. with 

pre-set timing transitioning between states) and as a closed-loop control system (e.g. 

based on values from body-worn sensors). The finite state machine control using 

sensors on the body for transitioning between states is a potentially good compromise 

between patient-controlled open-loop systems and true closed-loop controllers and is 

introduced in the next section (2.4 Finite State Machine (FSM) Control). 
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2.4 Finite state machine (FSM) control  

2.4.1 FSM principle 

A finite state machine is usually described in terms of a sequential circuit with several 

internal states that the system may enter (Comer, 1995). Typically, a finite state 

machine is composed of five entities: symbolic states, input signals, output signals, 

next-state functions and output functions (Chu, 2006). In a finite state machine, each 

state represents a possible situation (Ferdinand, Ruedi, Thomas, & Wolstenholme, 

2006), and when in a particular state, the system must be able to stay in that state and 

remain for a finite period of time, even if the input signals have changed (Comer, 

1995). The transition between states will occur only if the next-state function has been 

achieved. Therefore, the next-state function is also called a state transition condition. 

The next-state function is based on the current state and input signals. The output 

function depends either on the current state alone (defined as a Moore output), or a 

combination of the input signals and the current state (defined as a Mealy output) 

(Chu, 2006). (see figure 2.21). 

 

 

 

 

 

 

 

Figure 2.21: Two types of output – Moore output and Mealy output 

A simple example is introduced, in order to give a clear understanding of state 

machines (see figure 2.22). The following finite state machine has i states, and state 1 

is usually described as the initial state. In state 1, if the next-state function 1 has been 

satisfied, transition 1 will be triggered and state moves to state 2. Similarly, in state 2, 

if the next-state function 2 has been satisfied, state machine will move to state 3. The 

state will move on to the next, which depends on the current state and next-state 

function. As shown in the following state machine, once it moves to the state i, the 

state machine will move back to state 1, if next-state function i has satisfied. Table 2.2 
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Mealy 

output 

Moore 

output 

Input signals 
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gives more information on the example. The output of each state, in this example, 

only depends on the state it is in and therefore can be classified as a Moore output. 

 

 

 

 

 

 

 

Figure 2.22: A typical example of a FSM 

State Next-state function Transition Output (Action)  

State 1 Next-state function 1 & state 1 Transition 1  

(move to state 2) 

Action(s) for  

state 1 

State 2 Next-state function 2 & state 2 Transition 2  

(move to next state) 

Action(s)  for  

state 2 

… … .. .. 

State i Next-state function i &  

state i 

Transition i  

(move to state 1) 

Action(s)  for  

state i 

Table 2.2: A typical description of attributes for the example FSM 

In general state machines, the number of next states can be greater than 1 and the next 

state to which the state machine will go, depends on which next-state function has 

been satisfied (see figure 2.23). Specifically, in the case shown in figure 2.23, if next-

state function i has been satisfied, the state machine will move to next state 1, the state 

machine will move to next state 2 if next-state function i+1 has been satisfied. Strictly, 

only one next-state function can be satisfied. In this example, the current state, which 

is state i, is the same for both next state 1 and next state 2. Thus, the transition 

conditions of state i to next state 1 or next state 2 only depends on the next-state 

function, but not on the current state. 

 

 

 

Transition 1 

 

Transition 2 

 

Transition i 

 

Transition i-1  

 … … … 

 

State 1 

 
State i 

 

State 2 

 Next-state 

function 1 

Next-state 

function 2 

Next-state 

function i-1 

Next-state function i 



48 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: An example of a FSM which has two possible next states to enter 

Outputs (actions) of state machines are classified under four categories, which depend 

on the conditions and the timing. The four types of outputs (actions) are entry action, 

exit action, input action and transition action (Ferdinand et al., 2006). The entry action 

is the output which happens when a state machine enters a state. The exit action is the 

output which happens when a state machine leaves a state. The input action is the 

output which happens when input signals satisfy specific conditions. For each state, 

there can be several input actions. The transition action is the output which happens 

when the state moves (see figure 2.24). 
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Figure 2.24: An example FSM showing four different output actions 

2.4.2 Finite state control 

Finite state control of FES typically includes several states, their associated actions 

and next-state functions associated with those states. The actions associated with a 

specific state (e.g. starting and stopping stimulation, ramp times and delays) are pre-

defined (Postans & Granat, 2005). The transitions to the next state are governed by 

the current state and the value of artificial signals (e.g. switches), motion sensors or 

biosignals, such as EMG. 

 

The finite state method has been shown to be an effective and intuitive approach for 

controlling of FES for improving the performance of gait (Kojovic, Djuric-Jovicic, 

Dosen, Popovic, & c, 2009; Sweeney, Lyons, & Veltink, 2000) and standing (Braz et 

al., 2009).  Below, the finite state machine applications for upper limb FES control is 

described. 
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Crook and Chappell designed a closed-loop system for grasp and release, which is 

implemented with FSM control. The system includes 5 grip force sensors, mounted on 

the finger tips, and a wrist sensor that controls the starting and stopping of the hand 

grasp. The information from 5 grip force sensors is sent to the controller, and used for 

the control of grasp. The wrist force sensor is responsible to provide the start signal 

(user presses the wrist force sensor) and end signal (user presses the wrist force sensor 

again) to the FSM controller. The FSM includes 7 states (see figure 2.25). The state of 

hand relaxed is the initial state and in this state, all stimulations are turned off. When 

the subject wishes to open to attempt to grasp an object, he needs to press the wrist 

force sensor. Once the wrist sensor detects the starting signal from the wrist sensor, 

the state moves to the second state, “preset extension”. In this state stimulation of 

finger and thumb flexors are activated and ramp up until reaching their preset 

maximum value, which leads to the opening of the hand. Then the state machine 

moves to the next state, “wait for contact”. Stimulation to each of the muscles is 

maintained and the five force sensors on the tips of the fingers and thumb are 

monitored. In this state, the subject starts to grasp the target object (finger tips start 

contacting the object). If the contact force exceeds a certain level, the state machine 

transitions to ‘grip initiated’ and the extension stimulation decreases and flexion 

stimulation increases. This allows the subject to grasp tightly. This continues until the 

flexion pulsewidth exceeds half the maximum extension pulsewidth at which point 

the next transition occurs to “grasp maintained”. In this state, stimulation adjusts for 

the errors, which are caused by the delay between information from the sensor and 

stimulation adjustment. If the subject wishes to release the object, the wrist sensor 

needs to be pressed again, and FSM enters the last state, ‘Preset ramp down of flexion 

and preset ramp up of extension’. Flexion stimulation is ramped down and extension 

stimulation is ramped up at the same time when the wrist sensor receives an end 

signal. When the flexion stimulation drops to zero and extension stimulation is 

ramped up to a certain level, then all the stimulation is turned off. Afterwards, the 

state will move back to the initial state (see table 2.3). The timing of change over from 

flexion to extension takes place is important. A too fast change over will lead to a risk 

of releasing the object when the user is not ready for adjusting themselves (S. E. 

Crook & P. H. Chappell, 1998).  
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State Next-state function Transition Output (Action)  

Hand relaxed Wrist sensor detects 

starting signal 

Transition 1 All the stimulation off 

Pre-set 

extension 

Stimulation of extension 

is ramped up 

Transition 2 Stimulation turns on 

(finger extensors and 

thumb electrode) and 

increases up to a pre-set 

level 

Wait for 

contact 

Touch sensors sense the 

contact force exceeds a 

certain level 

Transition 3 Stimulation remains 

maximum 

Grasp 

initialted 

Flexion pulsewidth 

exceeds half the 

maximum extension 

pulsewidth 

Transition 4 Extension stimulation 

goes to zero and the 

flexion stimulation 

increases 

Grasp 

maintained 

Wrist sensor detects end 

signal 

Transition 5 Stimulation adjust 

Preset ramp 

down of 

flexion and 

preset ramp up 

of extension 

All the stimulation is 

turned off 

Transition 6 Flexion stimulation is 

ramped down and 

extension stimulation is 

ramped up, then all the 

stimulation is turned off 

Table 2.3: Attributes of a FSM for hand grasp and release (S. E. Crook & P. H. 

Chappell, 1998) 
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Figure 2.25: FSM for hand grasp and release (S. E. Crook & P. H. Chappell, 1998) 

In many cases, including the example above, the user does not have the capacity to 

define finite state machine topolgies and next-state functions. A group from Salford 

University developed a clinical set-up tool (CST), which was implemented with a 

finite state controller that allows the user to easily define and set up new state 

machines (Tresadern et al., 2008). The CST allows the users to create their own FSM 

by defining the attributes of the FSM (e.g. number of states, next-state functions, 

selections from a range of sensor inputs, and actions). In the CST, the available next-

state functions include trigger conditions of greater than or less than. The variables 

that may be used in state transition conditions include acceleration and time. The 

actions are whether stimulation is on or off during each state.  
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Figure 2.26: Screenshot of the CST GUI showing a FSM design for a drinking task 

(Tresadern et al., 2008) 

An example of a FSM, created using the CST, for a drinking task for a subject with 

the ability to close the hand, but weakness in muscles that open the hand is shown in 

figure 2.27. In the initial state, named the neutral state, the patient keeps the arm in a 

neutral position (example FSM takes no action). When the patient attempts to move 

the arm towards to the glass, the state moves to the next (next-state function is 

satisfied by the x/y acceleration value taken from a forearm-located accelerometer 

exceeding a specific user-defined threshold). In the second state, the action is 

stimulation to the wrist and finger extensors is ramped up, leading to the opening of 

the hand. After a specific period of time (triggered by a user-specified timeout 

function), the state moves again. The stimulation is ramped down to zero as the action, 

which leads to the patient being able to close the hand and the glass is then lifted to 

the mouth. When the arm is then lowered, the x/y acceleration values trigger the 

transition of the state at a specific user-defined threshold, and state moves again. In 

this state, the glass is replaced on the table, and stimulation remains off. The next-

state function for the transition to the last state is the x/y acceleration value exceeding 

a specific threshold. If the next-state function is satisfied, the state moves and 

stimulation is activated again as the action of last state. The hand opens again to 
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release the glass. After another short period of time (timeout function triggers the 

transition), the state goes back to the initial state and all simulations are turned off. 

 

 

 

 

 

 

 

 

 

 

Figure 2.27: Example of a FSM for drinking from a glass task 

Knutson, Hoyen et al. (2004) developed a FSM, which used myoelectric signals 

(MES) from wrist flexor and extensor muscles as inputs to modulate the stimulation 

sent to the target muscles in each state. Their FSM has four states (see figure 2.28): 

Hand open, Hand close, Hold and Grasp pattern change. Different regions of the MES 

space correspond to these states (see figure 2.29). No electrical stimulation was 

implemented in this study. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28: FSM used for control of hand grasp 
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Figure 2.29: The activation of states controlled by MES signals (J. S Knutson et al., 

2004) 

Knutson, Hoyen et al.’ have tested their FSM for a task following a state sequence of 

Hold, Hand close, Hold, Hand open (see figure 2.30). At the beginning, the FSM stays 

at the state of Hold (wrist extensor and flexor MESs remain at a low level) and no 

command signal will be applied (command signal and stimulation level will remain 

same at its most recent value). If the wrist extension is increasing until simultaneous 

wrist extensor MES moves to the region of state of Hand close, the state moves to 

Hand close, and the FSM will generate a command signal that controls the stimulation 

sent to the target muscle for hand close as the action of this state. In the next, both 

Wrist extension and flexion decrease and simultaneous Wrist extensor and Wrist 

flexor MESs move back to the region of Hold, it will activate the state of Hold again. 

The command signal will remain the same at its value of leaving state of Hand close, 

which means the stimulation sent to the target muscle for hand close will not change. 

When the wrist flexion increase and simultaneous Wrist flexor MES moves to the 

region of Hand open, it will activate the state of Hand open. The action for the state of 

Hand open is generation of a command signal that controls of stimulation sent to the 

target muscle for hand open. 
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Figure 2.30: Example of a FSM for a task following a state sequence of Hold, Hand 

close, Hold, Hand open 

2.5 Motion tracking and inertial sensors 

2.5.1 Introduction 

Various motion tracking systems have been used to measure the movements of 

patients who have suffered a stroke, or have some other disability in motor function 

(Zhou & Hu, 2008). Optical motion tracking systems are widely used in human 

movement research and can be either marker based or marker-free (Haché, 2010; 

Zhou & Hu, 2008). The marker based systems, such as Vicon or Optotrack, provide 

high accuracy position information (Roetenberg, 2006; Zhou & Hu, 2008). However, 

the major limitations of these systems are their very high costs (Roetenberg, 2006; 

Zhou & Hu, 2008), the intensive post-processing required (Zhou & Hu, 2008), and the 

need for a specialized laboratory with fixed equipment (Haché, 2010; Roetenberg, 

2006). Although marker-free optical tracking systems can be lower cost (Zhou & Hu, 

2008), they still require a number of dedicated cameras (Haché, 2010; Zhou & Hu, 

2008) and need to be used under well controlled lighting conditions (Haché, 2010). 

Both marker based and marker-free optical tracking systems require time and 
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expertise for set-up and camera calibration. All of these limitations currently prevent 

their use in everyday life.  

  

Inertial sensors are commercially available and have been used for human motion 

tracking outside the laboratory (Haché, 2010). They are low cost (Barbour & Schmidt, 

2001; Verplaetse, 1996; Zheng et al., 2005), low power consumption (Cuesta-Vargas 

et al., 2010; Zheng et al., 2005), small in size (Barbour & Schmidt, 2001; Cuesta-

Vargas et al., 2010; Zheng et al., 2005), and light weight (Barbour & Schmidt, 2001; 

Cuesta-Vargas et al., 2010). In addition, inertial sensors can provide accurate and 

reliable outcomes for motion tracking during functional tasks (Cuesta-Vargas et al., 

2010) and are, therefore, an attractive option for measuring the upper limb movements 

of stroke patients during therapy. 

 

2.5.1.1 Motion tracking using only accelerometers 

Accelerometers are now a particularly attractive option because 3-axis devices are 

available at low cost, in very small packages (e.g. 5×5×1mm chips), and with very 

low power consumption. Hence, they can be easily used as body worn devices for 

measuring and assessing human movements in clinics, research laboratories (Bonato, 

2005; Mathie, Coster, Lovell, & Celler, 2004) and even in free-living environments 

(Mathie et al., 2004; Che-Chang Yang & Hsu, 2010). Accelerometers can also be 

used to continuously record data for very long time periods, over weeks and even 

months (Godfrey, Conway, Meagher, & ÓLaighin, 2008). 

 

Examples of accelerometers being used to measure human movement include gait 

analysis (Morris, 1973; Villanueva, Trujillo, Fennon, Cardie, & Hedz, 2002), posture 

and trunk movement (G.M. Lyons, Culhane, Hilton, Grace, & Lyons, 2005; Morris, 

1973), physical activities (Mathie et al., 2004) and upper limb movement (Wong, 

Wong, & Lo, 2007; Zhou, Stone, Hu, & Harris, 2008). Examples specific to the upper 

limb include: measurement of intensity and duration of wrist movement for patients 

with either Alzheimer’s or Parkinson’s disease (Someren, 1997); measurement of 

forearm cyclic movements for the assessment of bradykinesia in patients with 
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Parkinson’s disease (Veltink, Engberink, Hilten, Dunnewold, & Jacobi, 1997); and 

use in an FES controller to trigger state transitions (Mann, Taylor, & Lane, 2011).  

 

When accelerometer signals are integrated, to estimate velocity or position, this leads 

to a significant drift over time as a result of the integration of sensor noise and offset 

(Zhou & Hu, 2008). However, the measurement of angle (also referred to as tilt) 

between the sensor axes and the vertical does not suffer drift because it relies on the 

gravity component of the measurement, not on integration of the signal (H.J. Luinge, 

Veltink, & Baten, 1999).  

 

In summary, accelerometers offer promise as sensors for use in the control of FES for 

upper limb rehabilitation, as 1) modern accelerometers are low cost, low power, small 

in size and provide accurate and reliable data; and 2) integration-related drift can be 

avoided. Thus, it was decided to focus the work described in Chapter 3 on the use of 

accelerometers alone to measure body segment angle from vertical.  

2.5.1.2 Motion tracking using only gyroscopes 

When the angular velocity output is integrated to obtain angle, body worn gyroscopes 

typically suffer drift of a few degrees per second (H. J. Luinge, 2002; Roetenberg, 

2006; Zhou & Hu, 2007). This limits their use for long-term accurate measurement. 

Nevertheless, they have been used for human movement measurement. Tsuruoka, 

Ochi et al. (1999) introduced a method for the assessment of walking stability of 

hemi-paresis patients using three gyroscopes attached to the head, the trunk at the 

height of shoulder, and the pelvis respectively. Aminian, Najaf et al. (2002) used 

gyroscopes placed on the thigh and shank for gait analysis including the estimation of 

velocity and stride length during long periods of walking. 

 

The disadvantages of gyroscopes include: their increased sensitivity to temperature 

and shock compared with accelerometers; when measuring change in angle, the drift 

caused by the integration of sensor noise and offset; and their higher cost and power 

consumption as compared with accelerometers. 
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2.5.1.3 Using sensor fusion with inertial and magnetic sensors 

When using inertial sensors, including accelerometers and gyroscopes, drift is a 

particular problem when the signals are being integrated to obtain position and 

orientation (Roetenberg, Slycke, & Veltink, 2007; Sabatini, 2011). For example, the 

integrated outputs of microelectromechanical gyroscopes are only accurate for short 

periods of no more than several seconds (Roetenberg, 2006; Zhou & Hu, 2007).  

 

The application of sensor fusion can overcome some of these limitations (Wong et al., 

2007) and can be an effective way to reduce drift in human motion tracking systems 

(Zhou & Hu, 2007). For example, in orientation measurement, accelerometers and 

magnetic sensors have been used to correct for drift errors. When using gyroscopes to 

measure angles in the vertical plane, integration related drift can be corrected by using 

a Kalman filter and accelerometers to measure the gravity vector (Luinge, Veltink et 

al. 1999, Zheng, Black et al. 2005). When using gyroscopes to measure angles in the 

horizontal plane, drift errors can be corrected for by using magnetic sensors that are 

sensitive to the earth’s magnetic field (Roetenberg, 2006; Zhou & Hu, 2007).  

2.5.2 Deriving angle from accelerometers 

A major focus of this thesis is the use of accelerometers to measure body segment 

angle from the vertical during upper limb tasks. Therefore, a systematic literature 

search was performed to identify existing techniques for angle calculation using only 

accelerometer outputs. Analysis of the literature identified three general approaches, 

which were then assessed in terms of their advantages and drawbacks. 

 

2.5.2.1 Using single axis accelerometers 

The first group of methods are based on using just one accelerometer signal, either 

from a single axis device or from a multi-axis device where the separate signals are 

not being used together. Furthermore, they all assume that the true acceleration is 

negligible and, therefore, the accelerometer is simply measuring the projection of 

gravity onto its sensitive axis. 
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In one approach, following calibration over a range of angles, an interpolation 

algorithm can be used to derive the angle of the sensitive axis from the vertical (P. E. 

Crago et al., 1998; Dikkenberg et al., 2002; Graham, 2008). It should be noted that the 

calibration curve is significantly non-linear and, therefore, if reasonable accuracy is 

required, calibration must be undertaken at many different angles. 

 

Alternatively, a trigonometric approach can be adopted which reduces the number of 

points required for calibration. Referring to Figure 2.31, the angle   between the 

measured vector and gravity can be obtained by using          (              ⁄ ) 

(Baek & Yun, 2010; Bakhshi, Mahoor, & Davidson, 2011; Bourke, Torrent, Parra, 

Catala, & Nelson, 2011; El-Khatib, Guillon, & Dômont, 1998; Fabera, Changb, 

Kingmac, & Dennerleina, 2013; Juan, Chen, & Shen, 2013; Karantonis, Narayanan, 

Mathie, Lovell, & Celler, 2006; Kengo, Morio, Takagi, & Kajitani, 2013; Latt et al., 

2007; Myong-Woo Lee, Khan, Kim, Cho, & Kim, 2010; Lugade, Fortune, Morrow, & 

Kaufman, 2014; Song, Jang, & Park, 2009). Similarly, the angle         can be 

obtained by using           (              ⁄ )  (Caroselli, Bagalà, & Cappello, 

2013; Constandinou & Georgiou, 2008; Ha, Park, Choi, & Kim, 2013; Husak, 2002; 

Kemp, Janssen, & Kamp, 1998; Remme et al., 2009; Shizuka et al., 2009; Skotte, 

Korshøj, Kristiansen, Hanisch, & Holtermann, 2014; Williams, 2004; Zhang, Qiao, 

Song, & Wang, 2012). In practise, the denominators of the arcsin and arcos 

arguments should be obtained by calibration as the maximum reading on the sensitive 

axis may not be exactly 9.81. The angle   derived by using the arcsin function yields 

a value in the range      (Shizuka et al., 2009; Skotte et al., 2014). Using the arcos 

function yields values in the range    to     . Note that these two ranges correspond 

to the same range of actual arm movement. 
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Figure 2.31: Angle calculation based on measurement on the sensitive axis and 

gravity 

Regardless of which of these three techniques is adopted for processing the 

accelerometer signal (          ), they all suffer from the same drawbacks, which are 

as follows. When            approaches either 9.81 or -9.81, the sensitivity approaches 

zero which means the signal to noise ratio is very poor and, therefore, the angle error 

band increases (Baek & Yun, 2010; Kengo et al., 2013). This corresponds to the 

regions around the zero slope points on the sine and cosine curves. Hence, it has been 

suggested that these methods should not be used to measure angles within      of 

these zero slope points (Kengo et al., 2013). Maximum errors over     were observed 

when using          (              ⁄ ), when            approaches either 9.81 or -

9.81 (Baek & Yun, 2010; Kengo et al., 2013). No reports on errors for   

       (              ⁄ ) have been found in literature. However, it is self-evident 

that the angle   derived by using the arcsin function suffers similar problems. 

 

Finally, as mentioned above, using an accelerometer to measure angle from the 

vertical is based on the assumption that the true acceleration is negligible and, 

therefore, the accelerometer is simply measuring the projection of gravity onto its 

sensitive axis. Therefore they are only suitable for measuring angle under static or low 

acceleration conditions.  
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2.5.2.2 Using dual axis accelerometers 

Referring to figure 2.32, when using a dual axis accelerometer (or two axes of a 3-

axis device), the signals from both of the sensitive axes can be used to calculate the 

angle from the vertical as follows         (    ⁄ ) (Cech, Dlouhy, Cizek, Vicha, 

& Rozman, 2009; Coulter, Dall, Rochester, Hasler, & Granat, 2011; Gebert, Snyder, 

Lopez, Siddiqi, & Evers, 2003; Grzeda & Fichtinger, 2010; Łuczak, 2007; Miura, 

Watanabe, Akasaka, & Suzuki, 2011; Nevins, Durdle, & Raso, 2002; Pallejà, 

Tresanchez, Teixidó, & Palacin., 2010; Qilong, Ruihe, Feng, Leilei, & Laiju, 2013; 

Rodriguez-Donate, Morales-Velazquez, Osornio-Rios, Herrera-Ruiz, & Romero-

Troncoso, 2010; Vinande, Axelrad, & Akos, 2010; Watanabe, Murakami, & Handa, 

2013). 

 

 

 

 

 

 

 

 

 

 

Figure 2.32: Angle calculation based on measurements on the x and z axes 

This method suffers from decreasing sensitivity and, hence, increasing angle errors as 

  approaches    (Grzeda & Fichtinger, 2010) and extreme sensitivity near      

(Pallejà et al., 2010; Rodriguez-Donate et al., 2010). Maximum errors of near    have 

been observed for this method (Pallejà et al., 2010). It is self-evident that this method 

will not work for measured angle equal to     . Furthermore, this method also relies 

on the true acceleration being negligible and is, therefore, only suitable for measuring 

angle under static or low acceleration conditions. 
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2.5.2.3 Using two accelerometers separated by a rod 

Some researchers have investigated the use of a rigid rod with an accelerometer 

mounted on each end to derive angle from the vertical, but without being restricted to 

low acceleration conditions (Djurić-Jovičić, D, Jovičić, & Popović, 2011; Milica D. 

Djurić-Jovičić, Jovičić, Popović, & Djordjević, 2012; Kusuhara et al., 2012; 

Willemsen, Frigo, & Boom, 1991).  

 

For example, Kusuhara, Jikuya et al., 2012, used this approach to measure knee-joint 

angle in the vertical plane. However, their technique is only suitable for applications 

where the position of the knee is fixed. Indeed their interest was to capture knee angle 

during a seated stretch reflex test. 

 

Djurić-Jovičić, D and colleagues used a similar approach to capture angular motions 

of leg and foot segments but without the need for any fixed joint centres (Kusuhara et 

al., 2012). In other words, their interest was to capture the motion of the lower limb 

segments during gait. However, they only derive the angular velocity and angular 

acceleration of the segment from the two accelerometer outputs. Therefore they still 

have to integrate to obtain angle from the vertical and, hence, have not avoided the 

associated drift problems (i.e. their system is effectively a crude gyroscope). 

 

2.5.3 Conclusion 

Angle measurement using a single accelerometer (1, 2 or 3-axis) suffers from two 

main problems. Firstly, the existing methods for processing the accelerometer signals 

to obtain angle from the vertical all suffer from very poor sensitivity when a sensitive 

axis approaches the vertical. Thus, a method that overcomes this problem is required 

in order to exploit the accelerometer-derived angle data irrespective of the limb (and 

hence sensor) orientation. None of the published work appears to have used the 

approach reported in Chapter 3 to overcome this problem. Secondly, the methods 

reported rely on the true acceleration being negligible and are, therefore, only suitable 

for measuring angle under static or low acceleration conditions. As it is reasonable to 

assume that in the application that is the focus for the thesis, there will be occasional 
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cases in which true acceleration is significant, algorithms to identify and sensibly 

address these cases are also required (see Chapter 4). 

 

Methods that use two accelerometers separated by a rigid rod have been used to 

overcome the limitation of measuring angle only under low acceleration conditions. 

However, this only works for rotation around a fixed point (e.g. the knee) or to obtain 

angular velocity which must then be integrated. 

 

2.6 Conclusions 

This chapter introduced and discussed current rehabilitation interventions for 

restoring upper limb motor function after stroke. The interventions included EMG 

biofeedback, CIMT, robotics, mental practice with motor imagery, and FES therapy. 

However, each of these interventions has significant limitations. A shared limitation is 

that there is insufficient evidence of general effectiveness in a routine clinical setting 

(Langhorne et al., 2009). Although further and better designed clinical trials in the 

area are undoubtedly required, it is clear that improvements to the technological 

interventions are also required. 

 

One of the most commonly used therapy for improving motor function is FES(Lynch 

& Popovic, 2008). However, current FES control systems for the upper limb remain 

limited. As discussed in the chapter, the FSM technique is a promising approach to 

control of FES as an alternative to continuous control methods. FSM controllers 

typically use time and/or signals from body-worn sensors as inputs to rules governing 

transitions between states and represent a potentially good compromise between 

simple open-loop and complex closed-loop control. However, as the specific structure 

of a state machine and the set of rules (and associated sensor data) governing 

transitions are likely to be both task and subject-specific, current FSM control 

approaches are not sufficiently flexible for general purpose use.   

 

One promising body worn sensor for use in FSM control is the accelerometer, which 

offers the potential to give information about the orientation and motion of limb 

segments. Accelerometers can be used in most environments (Bonato, 2005; Mathie 
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et al., 2004) (Mathie et al., 2004; Che-Chang Yang & Hsu, 2010) are low cost, very 

small (e.g. 5×5×1mm chips), and require very low power. However, due to sensor 

noise and offset problems, integration leads to drift in estimation of position and 

orientation. Nevertheless, the problems associated with integration can be avoided if 

orientation can be calculated directly (H.J. Luinge et al., 1999). 

 

There are a number of published techniques to estimate orientation directly from 

accelerometer signals, which cluster into three general approaches. Previous 

approaches to angle measurement using a single accelerometer (1, 2 or 3-axis) suffer 

from two main problems. Firstly, the calculated angle from the vertical demonstrates 

very poor sensitivity when a sensitive axis approaches the vertical. Secondly, the 

methods reported rely on the true acceleration being negligible and are, therefore, 

only suitable for measuring angle under static or low acceleration conditions. Methods 

that use two accelerometers separated by a rigid rod have also been explored. 

However, using two separated accelerometers to directly estimate orientation only 

works for rotations around a fixed point; the alternative approach requires the 

calculation of angular velocity which must then be integrated (hence introducing drift). 

 

The primary aim of this thesis is to develop improved techniques for setting up and 

implementing real-time FSM control for upper limb FES; inputs to the controller 

should include segment angle derived from body worn accelerometers. The following 

chapters describe the work to achieve this goal. Chapters three and four describe 

novel methods for measuring angle from the vertical using 3 axis accelerometer data, 

and report on new approaches to improve the robustness of angle-based state 

transition rules. Chapter five reports on the implementation of the FSM controller and 

an associated graphical user interface for guiding therapists in the design of FSMs 

which are specific to the task and the patient’s impairment profile. The final chapter 

highlights the novel work and identifies potential ways forward. 
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Chapter 3 – Angle tracking for state transitions 

 

3.1 Introduction 

 

In this chapter, methods are investigated for using an accelerometer to track body 

segment angle and, hence, to act as a trigger for moving to the next state in an FES 

state-machine controller (see section 2.4.1). An Xsens inertial sensing unit (MTx, 

Xsens technologies B.V., Netherlands) has been used for test purposes. 

 

The Xsens accelerometer provides the x, y and z components of the vector sum of the 

acceleration and gravity vectors. For motions where the accelerations are low, this is 

approximately equal to the gravity vector. Some of this raw sensor information may 

be used directly to trigger state transitions. However, if the acceleration data can be 

successfully converted into the angle that the Xsens (and arm segment it is attached to) 

rotates through, then this angle can also be used for triggering state transitions. As 

will become apparent, using body segment angle is less affected by placement errors 

when donning the Xsens sensors and is also more meaningful anatomically. 

  

In this chapter, firstly two uncalibrated angle tracking methods are presented that 

convert acceleration data into the Xsens angle (or change of angle) from the vertical. 

It should be emphasised that the gravity vector alone cannot provide any information 

about rotation in the horizontal plane. In this context, “uncalibrated” refers to the fact 

that the subject is not required to make any calibration movements after the Xsens 

sensors have been donned. 

 

The first uncalibrated angle tracking method calculates the change in the angle of the 

Xsens from the vertical. It does this by calculating the angle between the gravity 

vectors before and after the rotation, both expressed in the Xsens coordinate frame. 

Note that, because there is no defined reference orientation (zero angle orientation), 
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this method does not give an absolute angle from the vertical, only the change in the 

Xsens angle from the vertical during a rotation. 

 

The second uncalibrated angle tracking method calculates the angle of the Xsens x-

axis from the vertical. Because there is now a reference orientation (i.e. the angle is 

zero when the x-axis is vertical), this method provides the Xsens angle from vertical. 

However, any rotation about the x-axis is not detected which can be advantageous if, 

for example, the wish is to avoid triggering as a result of pronation-supination of the 

forearm. 

 

The two uncalibrated angle tracking methods can only provide positive angle values. 

Thus, for example, it is not possible to distinguish between 30° of flexion and 30° of 

extension when the start angle is zero (vertical). Therefore, a calibrated angle tracking 

method has been developed which gives both the magnitude and the sign of the angle 

change. The disadvantage is that calibration movements must be undertaken after 

donning the Xsens sensor to define both the required plane of rotation and the positive 

rotation direction. 

 

Finally, an auto-calibration algorithm has been developed that updates the gains 

applied to the three Xsens signals (x, y and z components), in real time, to compensate 

for calibration errors. For example, if the y-axis axis is reading half of what it should 

and the other axes are accurately calibrated, then the algorithm will home in on gains 

of 1, 2 and 1 for the x, y and z axes respectively. The auto-calibration method can 

operate in parallel with any of the angle tracking methods mentioned above. 

 

3.2 First uncalibrated angle tracking method 

The first uncalibrated angle tracking method aims to convert the accelerometer data (x, 

y and z signals) into the change in Xsens angle from the vertical during a rotation. 

Referring to Figures 3.1 and 3.2, as the Xsens rotates, the gravity vector is stationary 

and vertical in the global coordinate frame (not shown), but appears to rotate in the 

Xsens frame (shown) in the opposite direction to the Xsens itself. The gravity vector 

at the start of the rotation is        and the gravity vector after the rotation is complete 
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is     . It is clear that the angle between these two vectors ( ) when expressed in the 

Xsens frame (Figure 3.2), is the same as the angle through which the Xsens has 

rotated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The gravity vectors        and      in the global frame, before (left) and 

after (right) the Xsens sensor has rotated, and their components 
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Figure 3.2: The gravity vectors        and      in the Xsens frame separated by the 

rotation angle  . 

3.2.1 Mathematical procedure  

The gravity vectors at the start (       or   ) and at the end (     or   ) of an Xsens 

rotation are as follows 

 

                                                           (3.1) 

|      |  √   
     

     
                                     (3.2) 

 

                                                         (3.3) 

|    |  √   
     

     
                                     (3.4) 

 

Where the x, y and z components are collected from the Xsens. Note that these can 

only be considered to represent the gravity vector if any translational acceleration 

during the rotation is small in comparison to 9.81. 

 

a) Calculating      using the dot product 

 

The definition of the dot product gives the following 
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            |      | |    |                              (3.5) 

 

Therefore, cos  can be expressed as follows 

 

     
           

|      ||    |
                                               (3.6) 

 

And thus 

 

     
                    

√   
     

     
 √   

     
     

  
                           (3.7) 

 

An alternative is to use the standard acceleration due to gravity (9.80665 ms
-2

) in the 

denominator as follows 

 

     
                    

                                             (3.8) 

 

b) Calculating      using the cross product  

 

The definition of the cross product gives the following 

 

            |      | |    |       ̂  [                 (       

      )                  ]                                     (3.9) 

 

Where  ̂ is a unit vector that is perpendicular to both        and     . 

 

Therefore, sin  can be expressed as follows 

 

     
|           |

|      ||    |
                                               (3.10) 
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And thus 

 

     
√               

 
 (             )                 

 

√   
     

     
 √   

     
     

 
            (3.11) 

 

An alternative is to use the standard acceleration due to gravity (9.80665 ms
-2

) in the 

denominator as follows 

 

     
√               

 
 (             )                 

 

         
            (3.12) 

 

 

c) Angle calculation algorithm 

 

As Figure 3.3 shows, when sin  or cos  approach 1, their sensitivity to changes in 

  approaches zero (i.e. their derivatives approach zero). This leads to very small 

changes in sin  or cos  and, hence, a poor signal to noise ratio and correspondingly 

large errors in the calculated   as a result of signal noise. Therefore, to maximize 

accuracy, the cross product ( sin ) is used for         and for           , 

and the dot product ( cos ) is used for          .  
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Figure 3.3: The angle ranges where the cross product and the dot product are applied 

It is also clear from Figure 3.3 that, in the range 0° to +180°, any one value of sin  

corresponds to two values of   (compare points A (    )  and B (      ) ). 

Therefore, the value of cos  is used to decide whether the result of       (    ) 

should be in the range       or in the range         . 

 

Therefore, combining the principles described above, the following logical rules can 

be used to calculate   from sin  (cross product) and cos  (dot product). 

If  cos 0.707106781 angle range is from 0° to 45°    

            (    ) 

Elseif  cos 0.707106781 angle range is from 135° to 180°     

              (    ) 

Else (angle range is from 45° to 135°) 

            (    ) 

End 
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3.2.2 Testing and discussion of results 

The following test was designed to evaluate the accuracy of the first uncalibrated 

angle tracking method. Both the test results and a discussion of the results are 

presented. 

 

a) Method 

 

A protractor attached to a flat board was employed (see figure 3.4). The Xsens sensor 

was attached to the blade of the protractor, close to the blade pivot to reduce any 

errors caused by the protractor blade bending. Before starting the test, the board was 

placed on a table and adjusted to ensure it was horizontal using a spirit level. During 

the test, the protractor was moved from    to    , with short pauses at    ,    ,     

and     . The test was repeated twice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The protractor system used for testing 
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b) Results 

 

Figures 3.5 and 3.6 show the results from two tests where the Xsens sensor was 

rotated from    to    with short pauses at    ,    ,     and     .  

 

 

Figure 3.5: Calculated angle in degrees in test 1. The horizontal lines indicate    , 

   ,    ,      and      (the protractor settings) 

 

 

Figure 3.6: Calculated angle in degrees in test 2. The horizontal lines indicate    , 

   ,    ,      and      (the protractor settings) 
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In this context the errors are the differences between the calculated angles (based on 

Xsens accelerometer data) and the protractor angles, which were as follows: 

 

Protractor angles Average errors in test 1 Average errors in test 2 

30  0.315  0.138  

60  0.584  0.413  

90  0.79  0.619  

150   0.688  0.802  

180  4.217  4.389  

Table 3.1: Average errors in test 1 and test 2 compared with the protractor angles of 

30°, 60°, 90°, 150° and 180° 

c) Discussion of results 

 

In both tests, the errors are small (less than 1°) for all angles except 180  where the 

errors are 217.4  and 389.4  in tests 1 and 2 respectively (The errors are not 

necessarily getting bigger up to 150). This problem is probably a result of the fact that 

this method only returns positive values between 0⁰ and 180⁰. When measuring a 

nominal angle from the vertical of 0⁰, the actual angle could be +δ⁰ or –δ⁰ where δ is 

the deviation from the nominal angle. In both cases, this method would return a 

positive value (i.e. +δ⁰). Similarly, when measuring a nominal angle of 180⁰, the 

actual angle could be (180–δ)⁰ or (–180+δ)⁰. In both cases, this method would return 

a positive value (i.e. 180–δ). Therefore a 180⁰ change in angle (rotation) from -2⁰ to 

+178⁰ would be interpreted as a rotation from +2⁰ to +178⁰ leading to a 4⁰ error. This 

is indicative of the fact that this method should not be used for rotations close to 180⁰, 

not that it is inherently inaccurate. 

 

A limitation of this method is that it only gives positive results. Regardless of the 

direction of the change in Xsens angle from the vertical, the calculated angle is 

always positive. The cross product based calculation involves taking the modulus of 

the cross product and therefore loses any directional information. The dot product 

method gives     , which is symmetrical about       and hence cannot distinguish 

between positive and negative angles. 
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A big advantage of this method is that it does not rely on a particular placement of the 

Xsens sensor relative to the anatomy. The downside of this is that the method cannot 

distinguish between different anatomical rotations. For example, with the forearm 

horizontal, a calculated change in forearm angle from the vertical could be a result of 

either forearm pronation-supination or movements at the elbow or shoulder. 

Furthermore, this also means that the method can only provide the change in angle 

from the vertical, not the absolute angle, because there is no defined reference 

orientation (zero angle orientation).  

 

3.3 Second uncalibrated angle tracking method 

 

As discussed in the previous section, the first uncalibrated angle tracking method 

calculates the change in angle from the vertical and does not distinguish between 

different anatomical rotations and there is no defined reference orientation (zero angle 

orientation). The second uncalibrated angle tracking method calculates the angle of 

the Xsens x-axis from the vertical. Because there is now a reference orientation (i.e. 

the angle is zero when the x-axis is vertical), this method provides the absolute Xsens 

angle from vertical. Furthermore, any rotation about the x-axis is not detected which 

can be advantageous if, for example, the wish is to avoid triggering as a result of 

pronation-supination of the forearm. To do this, the long axis of the Xsens (the x-axis) 

would be simply aligned with the long axis of the forearm. 

 

3.3.1 Mathematical procedure 

Referring to Figure 3.7, the method calculates the angle   between  ̂ and     , where 

 ̂ is the unit vector representing the Xsens x-axis, and      is the current gravity 

vector which is always vertical. Therefore,   is the angle between the Xsens x-axis 

(the long axis of the Xsens box) and vertical.  
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Figure 3.7: Angle   between   ̂ (Xsens x-axis) and      (vertical) 

 

By adapting the equations used in the previous uncalibrated angle tracking method, 

replacing        with  ̂ , the following expressions for    ( )  and    ( )  can be 

obtained 
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Where the cross product is given by 
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The angle calculation algorithm that uses these expressions is identical to that of the 

first uncalibrated angle tracking method (see section 3.2.1c). 

 

3.3.2 Testing and discussion of results 

The following test was designed to evaluate the accuracy of the second uncalibrated 

angle tracking method. Both the test results and a discussion of the results are 

presented. 

 

a) Method 

 

Again, a protractor attached to a flat board was employed (see Figure 3.4). The Xsens 

sensor was attached to the blade of the protractor, close to the blade pivot to reduce 

any errors caused by the protractor blade bending. Before starting the test, the board 

was placed on a table and adjusted to ensure it was horizontal using a spirit level. 

During the test, the protractor was moved from 0  (Xsens x-axis and vertical in same 

direction) to 180 (Xsens x-axis and vertical in opposite directions), with short pauses 

at 30 ,60 ,90 150and    .  

 

b) Results 

 

Figure 3.8 shows the results from the test where the Xsens sensor was rotated from 0  

to 180 , with short pauses at 30 ,60 ,90 150and    . 
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Figure 3.8: Calculated angle in degrees. The horizontal lines indicate 0 , 30 , 60 , 

90 , 150  and 180 (the protractor settings) 

In this context the errors are the differences between the calculated angles (based on 

Xsens accelerometer data) and the protractor angles, which were as follows: 

 

Protractor angles Average errors in test 

0  2.5  

30  1.3  

60  0.5  

90  0.3  

150  0.2  

180  2.3  

Table 3.2: Average errors in test compared with the protractor angles of 30°, 60°, 90°, 

150° and 180° 

c) Discussion of results 

 

The errors are small (less than 1.3°) for all angles except 0° and 180  where the errors 

are 2.5° and 2.3° respectively. Again, this problem is probably a result of the fact that 
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this method only returns positive values between 0⁰ and 180⁰ (see the discussion on 

page 72). In this case, because an absolute angle is returned (not a change in angle), 

the problem manifests itself at angles of both 0⁰ and 180⁰. This is indicative of the 

fact that this method should not be used for angles from the vertical which are close to 

0⁰ or 180⁰, not that it is inherently inaccurate. 

 

As is the case for the first uncalibrated method, a limitation of this method is that it 

only gives positive results. However, it does have the advantage of providing the 

absolute Xsens angle from vertical. Furthermore, any rotation about the x-axis is not 

detected which can be advantageous if, for example, the wish is to avoid triggering as 

a result of pronation-supination of the forearm. To do this, the long axis of the Xsens 

(the x-axis) would be simply aligned with the long axis of the forearm. 

 

3.4 Calibrated angle tracking method 

 

The two uncalibrated angle tracking methods cannot indicate the direction (sign) of 

the change in angle (or of the absolute angle) from vertical. This is because the dot 

product gives     , which is symmetrical about    , and the cross product based 

calculation involves taking the modulus of the cross product and therefore loses any 

directional information (     is always positive). Furthermore, neither method can 

define a particular plane, relative to the anatomy, in which the measured rotation 

should take place. Therefore, a calibrated angle tracking method has been developed 

which overcomes these problems.  

 

3.4.1 Mathematical procedure  

a) Calibration stage 

 

This method requires a calibration rotation to establish the desired plane of rotation 

relative to the Xsens sensor and, hence, relative to the body segment it is attached to. 

Two gravity vectors are captured during the calibration rotation, separated by at least 
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30° to avoid noise having a large effect on the direction of their cross product vector. 

Their cross product is defined as follows 

 

1 2 1 2
ˆsin .g g g g n                                          (3.16) 

 

Noting that sin
2121

gggg   this leads to 

 

1 2

1 2

ˆ
calib

g g
n

g g





                                               (3.17) 

 

This calibration vector ( calibn̂ ) is normal to the desired plane of rotation and therefore 

defines that plane.  

 

b) Procedure during state-machine operation 

 

During normal state-machine operation (after calibration), the calibration vector can 

be used to obtain the component of the rotation in the desired plane and to determine 

its direction (sign). The magnitude of the Xsens angle change from vertical is 

calculated in the same way as for the first uncalibrated angle tracking method. In 

addition, a vector perpendicular to the rotation plane,  ̂, is calculated in the same way 

as calibn̂  above, which defines the plane of rotation during state-machine operation. 

 

Then, to calculate the component of rotation that is in the same plane as the 

calibration rotation, the dot product is applied as follows 

 

calibnn ˆˆcos                                                 (3.18) 

 

 cosproj                                                 (3.19) 

 

where:   is the magnitude of the Xsens angle change (between 0° and 180°) 

   is the angle between the calibration and new rotation planes; 
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 proj  is the component of the new rotation that is in the same plane as the  

 calibration rotation (i.e. projected onto calibn̂ ). 

 

Note that 
proj  will have a sign associated with it, which indicates whether it is in the 

same direction as the calibration rotation (+ve proj ) or in the other direction (-ve 

proj ). 

3.4.2 Initial testing 

The first stage of testing focused on establishing whether the calculation of      is 

effective as this is fundamental to this approach. Initially this was done using the 

same protractor system that was used in the testing of the first uncalibrated angle 

tracking method (Figure 3.4), and without changing the plane of rotation after 

calibration. In other words, the Xsens sensor remained attached to the protractor blade 

in the same relative orientation during both calibration and subsequent angle tracking. 

Therefore, the two vectors,  ̂ and  ̂𝑐𝑎𝑙 𝑏, were parallel and      should have been 1. 

The results are shown in Figures 3.9 and 3.10 

 

 

 

Figure 3.9: Cosine of the angle between the rotation planes (    ) 
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Figure 3.10: Corresponding magnitude of Xsens angle change ( ) 

Referring to Figures 3.9 and 3.10, it is apparent that there are problems when   

     and        In these cases, large errors occur in     , which should be 1 or 

very close to 1 for all angles. The problem is believed to do with the fact that as the 

two gravity vectors approach being parallel (     and       ), the direction of 

their cross product ( ̂) becomes very sensitive to small errors in the gravity vectors. 

For these reasons, further testing has been abandoned for the time being. 

 

3.5 Auto-calibration of Xsens axes 

 

An auto-calibration method has been developed that updates the gains applied to the 

three Xsens signals (x, y and z components), in real time, to compensate for 

calibration errors. For example, if the y-axis axis is reading half of what it should and 

the other axes are accurately calibrated, then the algorithm will home in on gains of 1, 

2 and 1 for the x, y and z axes respectively. The auto-calibration method can operate 

in parallel with any of the angle tracking methods mentioned above. 
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3.5.1 Mathematical procedure 

Referring to Figure 3.11, the magnitude of the corrected gravity vector can be 

expressed as follows 

 

| 
 

|  √(    )        
 

 (    )                               (3.20) 

 

 

Where     ,    and    are the auto-calibration gains for each Xsens axis  

                ,    and    are the Xsens accelerometer readings before applying the gains  

 

The three gains are defined as follows 
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       𝑎 
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 𝑎                             

       𝑎 
                                   (3.23) 

 

If the Xsens is perfectly calibrated, then there is no need for any corrections and the 

auto-calibration gains are all equal to 1.  
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Figure 3.11: Corrected gravity vector and its components 

Under ideal conditions, assuming no noise and also that the accelerometer readings 

are a result of gravity alone (acceleration is negligible), the correct gains can be 

obtained by capturing three independent sets of accelerometer readings (representing 

three different gravity vectors). Then the gains are calculated by solving the following 

three equations relating the three unknown gains: 
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Where (         ), (         ) and (         ) are the three sets of 

accelerometer readings. 

 

These lead to 

|𝑔𝑚|           

O 

Y axis 
𝑔𝑦  𝑘𝑦𝑎𝑦𝑗  

X axis 
𝑔𝑥  𝑘𝑥𝑎𝑥𝑖  

Z axis 

𝑔𝑧  𝑘𝑧𝑎𝑧𝑘  



86 

 

 

|  |
 

 (     )         
 

 (     )      
      

      
     (3.27) 

|  |
 

 (     )         
 

 (     )      
      

      
     (3.28) 

|  |
 

 (     )         
 

 (     )      
      

      
     (3.29) 

 

Where,  

    
 
  

    
 
  

    
 
  

 

Eliminating   in the above equations leads to 
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Then solving for X and   gives 

 

  

(
|  |

 

   
  

|  |
 

   
 )(

   
 

   
  

   
 

   
 ) (

|  |
 

   
  

|  |
 

   
 )(

   
 

   
  

   
 

   
 )

(
   

 

   
  

   
 

   
 )(

   
 

   
  

   
 

   
 ) (

   
 

   
  

   
 

   
 )(

   
 

   
  

   
 

   
 )

 

|  |
 
[ 𝑎  

  𝑎  
  𝑎  

   𝑎  
  𝑎  

  𝑎  
   𝑎  

  𝑎  
  𝑎  

 ]

 𝑎  
 𝑎  

  𝑎  
 𝑎  

  𝑎  
  (𝑎  

 𝑎  
  𝑎  

 𝑎  
 )𝑎  

   𝑎  
 𝑎  

  𝑎  
 𝑎  

  𝑎  
 
  

 

  

(
|  |

 

   
  

|  |
 

   
 )(

   
 

   
  

   
 

   
 ) (

|  |
 

   
  

|  |
 

   
 )(

   
 

   
  

   
 

   
 )

(
   

 

   
  

   
 

   
 )(

   
 

   
  

   
 

   
 ) (

   
 

   
  

   
 

   
 )(

   
 

   
  

   
 

   
 )

 

|  |
 
[ 𝑎  

  𝑎  
  𝑎  

   𝑎  
  𝑎  

  𝑎  
   𝑎  

  𝑎  
  𝑎  

 ]

 𝑎  
 𝑎  

  𝑎  
 𝑎  

  𝑎  
  (𝑎  

 𝑎  
  𝑎  

 𝑎  
 )𝑎  

   𝑎  
 𝑎  

  𝑎  
 𝑎  

  𝑎  
   



87 

 

 

And also 
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These equations can be simplified by letting 
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Thus, the gains for each axis of the Xsens are 
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3.5.2 Testing and discussion of results 

a) Method 

 

A random set of accelerometer data was collected by slowly moving and rotating the 

Xsens sensor. This data was then scaled to create 4 data-sets, the original set and three 

sets representing different miscalibrations of the Xsens as follows: 

 

 
x-axis 

scaling factor 

y-axis 

scaling factor 

z-axis 

scaling factor 

Data-set 1 1 1 1 

Data-set 2 0.5 1 1 

Data-set 3 1 0.7 1 

Data-set 4 1 1 0.2 

Table 3.3: Scaling of original accelerometer data 

The three different   vectors used to test the auto-calibration of Xsens gain on three 

different axes were the 100
th (         ), 1600

th
 (         ) and 3200

th
 

(         ) samples from the scaled accelerometer data.  

 

b) Results for accelerometer data-set 1 

 

Figure 3.12 shows accelerometer data-set 1 (the original accelerometer data with no 

scaling). The three vertical lines indicate the 100
th (         ) , 1600

th
 

(         )  and 3200
th

 (         )  samples from the original 

accelerometer data. 
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Figure 3.12: Accelerometer data-set 1 (X axis acceleration data in blue, Y axis 

acceleration data in green and Z axis acceleration data in red) 

The gains determined using the auto-calibration algorithm were as follows: 

                      

                      

                      

 

The gains were all very close to 1, which was to be expected as none of the data was 

scaled. The x and y-axes of the Xsens accelerometer were well calibrated (error less 

than 1%), whereas the z-axis was less well calibrated (error of 3.3%). 
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c) Results for accelerometer data-set 2 

 

Figure 3.13 shows accelerometer data-set 2 (scaling factors of 0.5, 1, 1). The three 

vertical lines indicate the 100
th (         ), 1600

th
 (         ) and 3200

th
 

(         ) samples from the scaled accelerometer data. 

 

     

 

Figure 3.13: Accelerometer data-set 2 (X axis acceleration data in blue, Y axis 

acceleration data in green and Z axis acceleration data in red) 

The gains determined using the auto-calibration algorithm were as follows: 

                     

                      

                     

 

The y and z-axis gains were the same as those calculated for data-set 1, which was to 

be expected as this data was not scaled. The x-axis gain was 2 times that for data-set 1, 

which was also to be expected as this data was scaled by 0.5. 
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d) Results for accelerometer data-set 3 

 

Figure 3.14 shows accelerometer data-set 3 (scaling factors of 1, 0.7, 1). The three 

vertical lines indicate the 100
th (         ), 1600

th
 (         ) and 3200

th
 

(         ) samples from the scaled accelerometer data. 

 

     

 

Figure 3.14: Accelerometer data-set 3 (X axis acceleration data in blue, Y axis 

acceleration data in green and Z axis acceleration data in red) 

The gains determined using the auto-calibration algorithm were as follows: 

                      

                     

                      

 

The x and z-axis gains were the same as those calculated for data-set 1, which was to 

be expected as this data was not scaled. The y-axis gain was 
 

   
 times that for data-set 

1, which was also to be expected as this data was scaled by 0.7. 
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e) Results for accelerometer data-set 4 

 

Figure 3.15 shows accelerometer data-set 4 (scaling factors of 1, 1, 0.2). The three 

vertical lines indicate the 100
th (         ), 1600

th
 (         ) and 3200

th
 

(         ) samples from the scaled accelerometer data. 

 

     

 

Figure 3.15: Accelerometer data-set 4 (X axis acceleration data in blue, Y axis 

acceleration data in green and Z axis acceleration data in red) 

The gains determined using the auto-calibration algorithm were as follows: 

                      

                      

                      

 

The x and y-axis gains were the same as those calculated for data-set 1, which was to 

be expected as this data was not scaled. The z-axis gain was 5 times that for data-set 1, 

which was also to be expected as this data was scaled by 0.2. 
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f) Discussion of results  

 

The auto-calibration gains calculated from the original unscaled accelerometer data 

seem reasonable (all close to 1, indicating that the Xsens accelerometer was 

reasonably well calibrated). Furthermore, the algorithm deals accurately with the 

scaled data, calculating auto-calibration gains that are exactly equal to 
      𝑎𝑙  𝑎  

 𝑐𝑎𝑙     𝑎𝑐   
. 

 

Further testing is required to determine: 

 How accuracy is affected when the three samples are close together (the 

gravity vectors are more similar); 

 Whether the algorithm works accurately when multiple axes are scaled; 

 How the algorithm can be incorporated into a real-time state-machine 

controller with angle tracking. 

 

3.6 Conclusions 

Two uncalibrated angle tracking methods and a calibrated angle tracking method have 

been developed, which use as inputs 3 axis accelerometer signals. The methods can be 

used to track body segment angle which can be used as input(s) to transition rules 

governing moving between states in an FES state-machine controller. The methods 

have been demonstrated using an Xsens inertial measurement unit and tested using a 

protractor system (see Figure 3.4). 

 

Using the first two uncalibrated angle tracking methods that convert accelerometer 

data into angle (or change of angle) from the vertical requires no calibration after the 

accelerometer have been donned. For the first uncalibrated angle tracking method the 

errors were found to be generally small (less than 1°) except when approaching 180° 

(see Table 3.1). The second uncalibrated angle tracking method showed errors that 

were below 1.3° except for when the angle was at either extreme value (0° and 180° 

(see Table 3.2)). Compared to the first uncalibrated angle tracking method, the second 

uncalibrated angle tracking method is insensitive to rotation about the x-axis. This 

feature could be advantageous in FSM control of upper limb FES if, for example, the 
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wish is to avoid triggering as a result of pronation-supination of the forearm. A shared 

limitation for both the first and second uncalibrated angle tracking methods is that 

they can only provide positive angle values. 

 

The calibrated angle tracking method can provide both the magnitude and the sign of 

the angle change. The disadvantage is that calibration movements must be undertaken 

after donning the Xsens sensor to define both the required plane of rotation and the 

positive rotation direction. Significant errors were observed when Xsens angle change 

from vertical is less than     or greater than      (see Figures 3.9 and 3.10).  

 

Finally, an auto-calibration algorithm has been developed that can update the gains 

applied to the three Xsens signals (x, y and z components), in real time, to compensate 

for calibration errors (see Figures 3.12-3.15). The algorithm is expected to operate in 

parallel with any of the angle tracking methods described in this chapter. 
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Chapter 4 – Robust angle triggering algorithms 

 

4.1 Introduction 

When one of the angle tracking algorithms described previously (referring to section 

3.3) is incorporated into a FSM controller for the purpose of triggering state 

transitions, a number of methods can be included in the transition triggering algorithm 

to improve robustness and hence the usability of the system. The aim of such methods 

is to reduce the number of incorrect transition timings caused by signal noise, jerky 

arm movements and other negative effects, which lead to poor control of FES during 

reaching tasks. This is most likely to cause the reaching task to fail when early 

triggering occurs as the change in arm-segment angle may be insufficient to allow the 

next movement phase to commence successfully. For example, if a transition between 

‘forearm lift’ and ‘reach forward’ phases occurs too early, then the forearm may not 

have lifted far enough to clear an obstacle such as a table. 

 

The following methods have been implemented: 

 Using the change in angle since entering a state rather than absolute angle; 

 Ignoring readings where the acceleration vector is significant in comparison to 

the gravity vector (i.e. the magnitude of the measured vector is significantly 

different from 9.81); 

 Requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition. 

These have been implemented with the second uncalibrated angle tracking method 

and incorporated into a state-machine controller (Figure 4.1) for demonstration 

purposes.  
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Figure 4.1: Setup of state machine for test purposes 

In the following sections, the details of the methods listed above are described, the 

experimental test protocol is described, the results are discussed, and then conclusions 

drawn. 

  

4.2 Algorithms to improve robustness of angle triggering 

4.2.1 Using the change in angle since entering a state  

Because of kinematic variability from one execution of an upper limb task to the next, 

particularly with stroke impaired subjects, it is likely that using fixed angles from the 

vertical as triggers for state transitions may not be ideal. Furthermore, the acceleration 

sensor may not be perfectly aligned with the long axis of its body segment, and also 

its alignment may change during a therapy session as a result of the soft attachment 

used (e.g. an elastic bandage slipping). Therefore, it is hypothesised that using the 

change in angle since entering a state is likely to be more robust.  

 

The second uncalibrated angle tracking algorithm calculates the absolute angle of the 

Xsens x-axis from the vertical. Therefore, referring to Figure 4.2, the angle when first 

entering a state (   𝑎  ) must be captured, so that the change since entering the state 

( 𝑐          𝑎  ) can be monitored. Then the trigger for leaving that state could 

be, for example, when  𝑐      or   𝑐      , where    is the trigger angle. 

 

 

State 1 State 2 State 3 

State 4 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑        𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑       

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         
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Figure 4.2: Change in angle since entering state  𝑐          𝑎   

Figure 4.3 shows the change in angle  𝑐 as the state machine controller in Figure 4.1 

moves from one state to the next. When a state transition occurs, a new value of    𝑎   

is captured and the change in angle returns to zero. Figure 4.4 shows how the state 

changes as transitions (angle triggers) occur.  

 
 

Figure 4.3: Change in angle since entering a state 

 
 

Figure 4.4: State number and timing of state transitions 
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4.2.2 Ignoring readings where the acceleration vector is significant  

In this method, accelerometer readings are ignored if the acceleration vector is 

significant in comparison to the gravity vector (i.e. if the magnitude of the measured 

vector is significantly different from 9.81). This is done because the measured vector 

is the sum of the acceleration vector and the gravity vector and, therefore, it can only 

be relied on for calculating angle if the acceleration is small in comparison to gravity. 

This also has the effect of ignoring readings when signal noise has resulted in the 

vector magnitude being significantly different from 9.81. 

 

Specifically, the following logic is applied: 

If  (9.81 – tolerance <| |<9.81+tolerance) then 

flag = 0  (acceleration is ok) 

Else 

flag = 1  (acceleration too high) 

End 

If  (flag = 1) then the accelerometer reading is ignored for state transition purposes 

 

Figures 4.5 and 4.6 show the magnitude of the measured vector and the corresponding 

value of the flag that indicates whether the reading is valid (flag=0) or invalid 

(flag=1). The best tolerance has still to be determined but for demonstration purposes 

a g-tolerance of      has been used. 
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Figure 4.5: Magnitude of measured g-vector. The solid red lines are the lower limit 

(9.31) and upper limit (10.31). 

 
 

Figure 4.6: Acceleration flag value (Flag=0 means within g-tolerance) 

4.2.3 Requiring a given number of consecutive or non-consecutive valid readings 

Some form of signal smoothing or averaging is often used to reduce the effects of 

signal noise and, in this case, jerky arm movements. In the case of state transition 

triggering, a simple way to achieve this is to require that the trigger condition is 

satisfied for a specified number of consecutive readings, which is equivalent to 

satisfying the condition for a specified time. Figure 4.7 illustrates this approach where 

the transition condition is that the angle must exceed the threshold for the specified 

number of consecutive readings. 
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Figure 4.7: Transition condition must be satisfied for six consecutive readings 

By combining this approach with the rejection of readings that don’t satisfy the g-

tolerance requirement, it is likely that improved noise rejection can be achieved. 

Figure 4.8 illustrates the method’s operation when readings are also rejected because 

they don’t satisfy the g-tolerance requirement (Flag=1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Six consecutive valid readings that satisfy the g-tolerance trigger the 

transition. The readings marked by the red circles are either not satisfying the 
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transition condition (angle below threshold) or failing to meet the g-tolerance 

requirement. 

Finally, an alternative approach is to accept a specified number of non-consecutive 

valid readings as illustrated in Figure 4.9. This may be of benefit if requiring 

consecutive valid readings turns out to be too conservative, possibly introducing 

unacceptable delays in triggering. The readings marked by the red circles are either 

not satisfying the transition condition (angle below threshold) or failing to meet the g-

tolerance requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Six non-consecutive valid readings trigger the transition. The readings 

marked by the red circles are either not satisfying the transition condition (angle 

below threshold) or failing to meet the g-tolerance requirement. 

Figures 4.10, 4.11 and 4.12 show some example test results for a trigger algorithm 

that requires 6 consecutive valid readings and uses g-tolerance rejection of bad 

readings.  
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Figure 4.10: Acceleration flag value (flag=0 means within the range g ± g-tolerance) 

 

 

 

 

Figure 4.11: Six consecutive valid readings to trigger a transition. Bad readings are 

rejected 
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Figure 4.12: Count of consecutive valid points 

4.3 Experimental protocol 

4.3.1 Subject 

One stroke patient participated in this study (details in Table 4.1). Only one subject 

was used because the experiments were only intended to provide an initial indication 

of the performance of the robust angle triggering algorithms.  

 

Subject Gender Age Hemiplegic side Dominant side Years 

since onset 

1 M 81 Left Right 3 years 

Table 4.1: Profile of subject 
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4.3.2 Instrumentation 

 

Figure 4.13: Xsens inertial sensing units with clusters of four reflective markers 

attached 

Two Xsens inertial sensing units, each with a cluster of four reflective markers on 

their upper corners (see Figure 4.13), were attached to the upper arm and forearm of 

the subject’s affected arm using self-adherent bandage. The Xsens units were 

approximately aligned with the long axes of the body segments (see Figure 4.14). A 

Vicon motion analysis system (Vicon Motion Systems Ltd, Los Angeles, USA) 

employing ten cameras was used to capture the positions of the reflective markers on 

each Xsens unit at a sampling frequency of 100 Hz. Only acceleration data was 

captured from the Xsens units, at a sampling frequency of 20 Hz, using a separate 

laptop; which also ran the FSM controller that produced the necessary stimulation 

profiles via a Hazomed 8-channel stimulator (Hasomed GmbH, Magdeburg, 

Germany), and also ran the GUI used to set up the FSM controller. A pulse signal 

from one of the Xsens analog output channels was fed to an analogue input channel in 

the Vicon system to provide synchronization between the Xsens and Vicon systems.  
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Figure 4.14: Experimental setup showing Xsens units with reflective marker clusters 

4.3.3 Experimental procedure 

The subject was asked to practise two functional tasks, which were “Brush coins into 

the other hand” and “Drink from a cup”. For both tasks, the subject sat at a table with 

their affected hand comfortably placed on the table at the starting position. The 

therapist gave instructions to the subject to guide them in achieving the required 

movements during each FSM state (movement phase) and manually triggered the 

transitions between the states via the laptop keyboard. Ten trials of each task were 

recorded using both Vicon and Xsens systems to capture motion data. Descriptions of 

the two functional tasks are as follows: 

 

1) “Brush coins into the other hand” 

The subject was required to reach for some coins and brush them back into his other 

hand (see Figure 4.15 for the associated FSM). The position of the coins was not too 

far from the subject so that he could achieve the task with only FES assistance. The 

affected hand and the coins were placed at the same starting positions before each 

repetition of the task.  
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Figure 4.15: FSM controller for the “Brush coins into other hand” task. The 

transitions between states were manually triggered by the therapist 

2) “Drink from a cup” 

The subject was required to reach for a cup, grasp it, lift the cup to the mouth, replace 

the cup and release it (see Figure 4.16 for the associated FSM). The position of the 

cup was not too far away from the subject so that he could achieve the task with only 

FES assistance. The affected hand and cup were placed at the same starting positions 

before each repetition of the task.  

 

 

 

 

 

 

Figure 4.16: FSM controller for the “Drink from a cup” task. The transitions between 

states were manually triggered by the therapist 

4.3.4 Data processing 

The absolute angles of the two Xsens x-axes from the vertical were recorded directly 

by the real-time FSM controller as it incorporated the second uncalibrated angle 

tracking method (see section 3.3).  

 

Vicon position data (coordinates) for the reflective markers attached on the Xsens 

units were exported using Visual 3D software (C-Motion, Inc., Rockville, MD, USA). 

A bespoke MATLAB program was used to process the marker coordinates. The 
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Vicon marker data were down-sampled to provide data at 20Hz and synchronized 

with the Xsens data.  

 

 

Figure 4.17: Vicon graphic showing marker clusters on the upper arm and forearm 

respectively 

Referring to Figure 4.17, the x-axes of the Xsens units (    and    ) were 

approximately aligned with the long axes of the upper arm and forearm respectively. 

A cluster of four markers (               ) were used for tracking the movement 

of A1 (the upper arm unit), while the other four markers (               ) were 

used for tracking the movement of A2 (the forearm unit). Each cluster of markers was 

used to derive a vector that corresponds to the associated Xsens x-axis. Hence, both 

the Xsens and Vicon derived x-axis vectors were approximately aligned with the long 

axes of their body segments and more exactly aligned with each other. The Vicon 

derived vectors are as follows: 
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Where (               ) are the position coordinates of markers on the upper 

arm 

            (               ) are the position coordinates of markers on the forearm 

                     and indicates the marker number  

                     where   is the number of Vicon frames captured during a 

reaching task 

 

Thus, the absolute angle of each body segment from the vertical can be calculated by 

using the Vicon derived vectors        𝑎   and        𝑎   and the second uncalibrated 

angle tracking method. These Vicon derived angles were treated as the gold standard 

for comparison with the Xsens (accelerometer) derived angles. 

 

4.4 Results 

Figure 4.18 shows the absolute angle of the upper arm from the vertical during the 

“Brush coins into the other hand” task, obtained from both Vicon and Xsens systems. 

Figure 4.19 shows the same information for the forearm. Considering only the low 

frequency content, the angles from the vertical obtained from the two systems are a 
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close match to each other. However, the Xsens derived angles are subject to more 

high frequency noise. In this context, it should be noted that there was no additional 

filter applied to either Vicon data or Xsens acceleration signals. The slight differences 

in the low frequency content are probably a result of small misalignments between the 

Xsens and Vicon derived x-axis vectors. 

 

Figure 4.18: Example data for upper arm angle from the vertical, obtained from both 

Vicon and Xsens systems, for the “Brush coins into other hand” task 
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Figure 4.19: Example data for forearm angle from the vertical, obtained from both 

Vicon and Xsens systems, for the “Brush coins into other hand” task 

4.4.1 Change in angle since entering a state vs. absolute angle 

One of the reasons for using “change in angle since entering a state” was to 

compensate for misalignment between the sensor x-axis and the long axis of the body 

segment. However, in this experimental protocol, the Vicon derived x-axis was used 

to calculate the gold standard angles rather than the true long axis of the associated 

body segment. Because only very small misalignments were expected between the 

Xsens and Vicon derived x-axes, an artificial misalignment of 10° has been 

introduced to mimic a more realistic scenario where the sensor has only been 

approximately aligned with the long axis of the body segment.  
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Figure 4.20: Artificial misalignment of the Xsens unit relative to the Vicon gold 

standard: (a) The Xsens unit and Vicon gold standard are aligned; (b) the artificial 

Xsens and Vicon gold standard are misaligned 

Referring to Figure 4.20, the Xsens acceleration data was modified to mimic a 

misalignment of       about the unit’s z-axis by applying a rotation matrix as 

follows 

 

[

               

               

               

]  [
          
         

   
]  [

    

    

    

]                    (4.3) 

 

Note that a fixed misalignment error (10° in this case) does not lead to a simple 

constant offset in the angle data because of the nonlinear nature of both the rotation 

operation and the second uncalibrated angle tracking method. For example, referring 

to Figure 4.21, a 10° misalignment of the upper arm Xsens unit relative to the Vicon 

gold standard leads to varying angle errors as the reaching task progresses. 

 

Figures 4.21 and 4.22 show the “absolute angle from the vertical” and the “change in 

angle since entering a state” for the same trial of the “Brush coins into the other hand” 

task. It is quite clear that the errors between the Xsens and Vicon gold standard are 
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Y axis 

Z axis 
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reduced by using “change in angle since entering a state”. To illustrate this more 

explicitly, Figures 4.23 and 4.24 show the errors for the two cases where these are 

defined as follows:  

 

     𝑎𝑏  𝑙     |                     –                                 |  

     𝑐 𝑎     |       ℎ              –                    ℎ             |  

 

 

Figure 4.21: Example data for upper arm “absolute angle from the vertical” during the 

“Brush coins into other hand” task, obtained from the Vicon gold standard and the 

artificially misaligned Xsens data 
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Figure 4.22: Example data for upper arm “change in angle since entering a state” 

during the “Brush coins into other hand” task, obtained from the Vicon gold standard 

and the artificially misaligned Xsens data 

 

Figure 4.23: Error in “absolute angle from the vertical” for the example trial of the 

“Brush coins into other hand” task 
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Figure 4.24: Error in “change in angle since entering a state” for the example trial of 

the “Brush coins into other hand” task 

Figure 4.25 shows the mean errors and their standard deviations for both body 

segments over 10 trials of the “Brush coins into other hand” task and 8 trials of the 

“Drink from a cup” task. This demonstrates that using “change in angle since entering 

a state” provides a significant advantage in terms of being robust to sensor 

misalignment. It is also self-evident that it increases robustness to kinematic 

variability by resetting the “change in angle” to zero at the start of each state 

(movement phase).  
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Figure 4.25: Mean error for both arm segments for the “Brush coins into other hand” 

task (n=10) and the “Drink from a cup” task (n=8). These are the means of n trial-

means and the error bars indicate standard deviation over the n trials 

4.2.2 Ignoring readings where the acceleration vector is significant 

The measured vector obtained from a 3-axis accelerometer (in this case an Xsens unit) 

is the sum of the acceleration vector and the gravity vector and, hence, it can only be 

relied on for calculating angle if the acceleration is small in comparison to gravity. 

Therefore, the measured vectors obtained from the Xsens units are ignored if the 

magnitude of the vector falls outside the range g   g-tolerance. This also has the 

effect of ignoring readings when signal noise has resulted in the vector magnitude 

being significantly different from 9.81. In this test, different settings for the g-

tolerance of          ,           and           have been used. 

 

Figure 4.26 shows the error between the absolute angle obtained from the Vicon and 

Xsens systems before removal of bad readings, whereas Figures 4.27 and 4.28 show 

the same information after removal of bad readings using g-tolerances of        

   and           respectively. In this case ‘error’ is defined as  |            

           |. It can be seen that, in Figures 4.26 and 4.27, some unwanted spikes 

have been removed (marked by the red circles) because they caused the g-tolerance to 

be violated. 
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Figure 4.26: Error in forearm “absolute angle from the vertical” for the example trial 

of the “Drink from a cup” task before removal of bad readings 

 

Figure 4.27: Error in forearm “absolute angle from the vertical” for the example trial 

of the “Drink from a cup” task after removal of bad readings using a g-tolerance of 
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Figure 4.28: Error in forearm “absolute angle from the vertical” for the example trial 

of the “Drink from a cup” task after removal of bad readings using a g-tolerance 

of           

Figure 4.29 shows that, after removal of bad readings, the maximum errors have 

reduced for both tasks. The maximum error decreases with smaller g-tolerances 

because more unwanted spikes are removed. This demonstrates that “ignoring 

readings where the true acceleration is significant in comparison to gravity” can 

remove some unwanted spikes and thereby improve the robustness of angle triggering. 

However, referring to Figures 4.26-4.28, it is clear that not all spikes are removed. 

This is discussed further in the conclusions to this chapter (section 4.5). 
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Figure 4.29: Mean maximum error for both arm segments for the “Brush coins into 

other hand” task (n=10) and the “Drink from a cup” task (n=8). These are the means 

of n trial-maximums and the error bars indicate standard deviation over the n trials 

 4.2.3 Requiring a given number of consecutive or non-consecutive valid readings 

Some form of signal smoothing or averaging is required to reduce the effects of signal 

noise and, in this case, jerky arm movements. In the case of state transition triggering, 

a simple way to achieve this is to require that the trigger condition is satisfied for a 

specified number of consecutive or non-consecutive valid readings. In this section a 

comparison is made between requiring 1, 2, 4, and 6 consecutive valid readings, and 

also 2, 4, and 6 non-consecutive valid readings to trigger a transition. For this purpose 

one transition from each task was selected as follows: 

 “Brush coins into other hand” – transition between ‘reach for coins’ and 

‘brush back coins’ – triggered by upper arm angle. 

 “Drink from a cup” – transition between ‘grasp and lift cup’ and ‘replace cup’ 

– triggered by forearm angle.  
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Before comparisons could be made between the alternative methods, angle thresholds 

had to be established that ensured that the transitions would be triggered in the 

majority of cases when using the angle data collected in the repeated trials. In other 

words, for an increasing angle, a threshold is required that is sufficiently low to ensure 

that the transition will usually occur. This was achieved by gradually decreasing the 

angle threshold from the value that corresponded to the therapist’s manual trigger. 

This was done because the therapist always waited until the patient appeared to have 

reached as far as they could, which meant that the corresponding angle threshold was 

invariably too high (see Figure 4.30). This does not mean that the therapist was wrong, 

simply that they applied a more sophisticated transition condition (i.e. “wait until the 

patient has reached as far as they can”), which cannot be represented by a simple 

angle threshold. Referring to Figures 4.31 and 4.32, using three randomly selected 

training trials and starting from the therapist defined angle threshold (i.e. the mean of 

the manual trigger angles in the 3 trials), the threshold was reduced in 1° steps until 

the transition always occurred. In this process, only triggers requiring 6 consecutive 

and 6 non-consecutive valid readings were applied because this ensures that the 

transitions will also occur when fewer valid readings are required. This led to suitable 

angle thresholds of 25° for the “Brush coins into other hand” task and 35° for the 

“Drink from a cup” task. 
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Figure 4.30: Example data for upper arm “change in angle since entering a state” 

during the “Brush coins into other hand” task. The suitable angle threshold for the 

“Brush coins into other hand” task is 25°. The transition timing determined by 

therapist is the 3.45 second, and the corresponding angle threshold is 32° (1 good 

reading over the angle threshold to trigger). 

 

 

Figure 4.31: Choosing a suitable angle threshold for the “Brush coins into other hand” 

task by gradually decreasing the angle threshold in 1° steps 
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Figure 4.32: Choosing a suitable angle threshold for the “Drink from a cup” task by 

gradually decreasing the angle threshold in 1° steps 

Having found suitable threshold angles, the alternative methods were compared using 

two measures: one to assess the risk of early triggering; and one to assess the delay in 

triggering. Early triggering is the most likely cause of task failure because the change 

in arm-segment angle may be insufficient to allow the next movement phase to 

commence successfully. Here early triggering is defined to have occurred when the 

Xsens angle is being used to trigger the transition and, for an increasing angle, the 

“true trigger angle” is less than the “angle threshold”, where the “true trigger angle” 

is obtained from the Vicon system. 
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Table 4.2 shows the number of early triggers that occurred when the data from all of 

the trials were used as input to the alternative methods.  

 

 Brush coins into other 

hand 

(10 trials) 

Drink from a cup 

(8 trials) 

1 good reading to trigger 1 1 

2 non-consecutive readings to 

trigger 

1  1 

2 consecutive readings to trigger 1  1 

4 non-consecutive readings to 

trigger 

0  1 

4 consecutive readings to trigger 0  1 

6 non-consecutive readings to 

trigger 

0  0  

6 consecutive readings to trigger 0  0 

Table 4.2: Number of early triggers when using the data from 10 repeated trials for 

the “Brush coins into other hand” task and from 8 repeated trials for the “Drink from a 

cup” task 

Although using 6 consecutive or 6 non-consecutive points reduces the risk of early 

triggers, this introduces delays in triggering, which are shown in Table 4.3 for the 

same set of trials that were used to quantify early triggers. As would be expected, this 

shows that triggering is most delayed when six consecutive valid readings are 

required to trigger a transition, and least delayed when one valid reading is required.  

 

 Brush coins into other hand Drink from a cup 

 
Angle delay 

(degree) 

Time delay 

(sec) 

Angle delay 

(degree) 

Time delay 

timing (sec) 

1 good reading to 

trigger 
1.38 0.045 1.14 0.025 

2 non-consecutive 

readings to trigger 
1.84 0.170 0.85 0.144 
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2 consecutive 

readings to trigger 
2.61 0.195 0.89 0.175 

4 non-consecutive 

readings to trigger 
2.73 0.325 1.50 0.306 

4 consecutive 

readings to trigger 
2.29 0.675 1.15 0.394 

6 non-consecutive 

readings to trigger 
6.62 0.505 3.28 0.425 

6 consecutive 

readings to trigger 
8.45 0.810 3.83 0.569 

Table 4.3: Mean delays in triggering for the three methods over all trials. Delay is 

quantified in terms of both angle (true trigger angle – threshold angle) and time 

(trigger time – time when trigger should have occurred) 

4.5 Conclusions 

Three methods have been demonstrated for improving the robustness of angle 

triggering and, hence, the usability of the FES control system; which were as follows: 

 Using the change in angle since entering a state rather than absolute angle; 

 Ignoring readings where the acceleration vector is significant in comparison to 

the gravity vector (i.e. the magnitude of the measured vector is significantly 

different from 9.81); 

 Requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition. 

These were implemented with the second uncalibrated angle tracking method and 

incorporated into a state-machine controller (Figure 4.1) for demonstration purposes.  

 

Using the “change in angle since entering a state” as a trigger for state transitions 

(rather than absolute angle from the vertical) provides a significant advantage in terms 

of being robust to sensor misalignment (Figure 4.25). It is also self-evident that it 

increases robustness to kinematic variability by resetting the “change in angle” to zero 

at the start of each state (movement phase). 
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Ignoring readings where “the true acceleration is significant in comparison to gravity” 

can remove some unwanted spikes and thereby improve the robustness of angle 

triggering (Figure 4.29). However, referring to Figures 4.26-4.28, it is clear that not 

all spikes are removed. This is because only those spikes that alter the magnitude of 

the measured vector (acceleration+gravity) are interpreted as bad readings. Referring 

to Figure 4.33, it can be seen that a significant acceleration in addition to gravity (or 

the equivalent noise from some other source) may not always mean that the 

magnitude of the measured vector falls outside the g-tolerance. 

 

 

 

 

 

 

 

 

 

 

Figure 4.33: The measured accelerometer vector (    ) is the sum of the true 

acceleration vector ( 𝑎𝑐𝑐) and gravity (   𝑎    ). Although  𝑎𝑐𝑐 is significant in 

comparison to    𝑎    , the g-tolerance is still satisfied. 

 

Although requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition reduces the risk of early triggers (Table 4.2), this 

introduces delays in triggering (Table 4.3). As would be expected, this shows that 

triggering is most delayed when six consecutive valid readings are required to trigger 

a transition, and least delayed when one valid reading is required.  

 

The main limitation of this study is that a comprehensive search for the best 

combination of the methods described above is still required, including the number of 

valid readings required and the g-tolerance range. The alternatives should be 

compared in terms of their robustness (i.e. avoidance of inappropriate state-transitions) 

𝑔𝑔𝑟𝑎𝑣𝑖𝑡𝑦 

𝑔𝑛𝑜𝑤 

𝑔𝑎𝑐𝑐 
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and the time delay they introduce. Another related limitation is the need to establish 

the most appropriate measure of overall robustness.  
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Chapter 5 – Finite state machine controller for upper limb FES 

 

5.1 Introduction 

In this chapter, a flexible FSM controller and the associated setup software is 

presented, for control of electrical stimulation to support upper limb functional task 

practice. In order to achieve varied functional task practice across a range of patients, 

the user should be able to set up a variety of different state machines, corresponding 

to different functional tasks, tailored to the individual patient. The goal of the work is 

to design a FSM controller and produce an interface that clinicians (even potentially 

patients) can use to design and set up their own task and patient-specific FSMs. 

 

The following sections cover the functionality of the flexible FSM controller, 

implementation and testing of the controller, and finally the design of a GUI for 

controller setup. 

5.2 Functionality of the FSM controller 

A FSM controller is usually composed of a set of states, input signals, output 

functions, and state transition conditions (Chu, 2006; Sweeney et al., 2000). In this 

particular case, each “state” corresponds to one movement phase and the state’s 

“output functions” implement the ramping of muscle stimulations towards their 

respective targets (note the target may be zero) and then holding them at those targets. 

The set of possible “input signals” for the FSM controller are button status, clock 

time and angle data for different body segments (e.g. upper arm, forearm) via 

accelerometer units attached to them. The “state transition conditions” implement the 

conditions for exiting each movement phase.  

 

Figure 5.1 illustrates the general form of the flexible FSM controller, consisting of 

sequential movement phases (solid rectangles) and the corresponding transitions 

between each phase (solid arrows). The first phase in the FSM is termed the neutral 
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phase, which is always associated with no muscle stimulation. The total number of 

phases for the FSM controller is flexible and defined by the user (minimum 2 phases), 

depending on the chosen task. The FSM returns to the neutral phase every time on 

exiting the last phase. Thus, a functional task will always begin and end in the neutral 

phase. The dashed arrows represent exceptional transitions (i.e. emergency stop or 

default timeout), allowing return to the neutral phase from any phase. The exceptional 

transitions have a higher priority than the normal transitions between successive 

movement phases.  

 

 

 

 

 

 

 

Figure 5.1: General form of the FSM controller. The labelled rectangles represent 

sequential states and the solid arrows represent normal state transitions. The FSM 

comprises a minimum of two states (states 1 and 2). The number of states (n) is 

defined by the user (see section 5.5). The dashed arrows from any state to state 1 

represent exceptional transitions (emergency stop or default timeout) 

The state transition conditions determine the timing for transition between phases, and 

are described in terms of the input signals and the current state. The number of states, 

state transition conditions (angle triggers, timeouts, combinational logic etc.), and 

stimulation parameters for each state (stimulation thresholds, targets, ramps etc) are 

defined using the GUI (see section 5.5).  

 

To illustrate the way in which the FSM controller can be set up for a specific FES task, 

an example (“open a door”) is discussed below. Referring to figure 5.2, this FSM has 

five movement phases; “neutral”, “reach for door”, “grasp handle”, “open door” 

and “release door”. Each movement phase output function contains a set of muscles 

to be stimulated and their associated stimulation parameters. For example, in phase 5, 

to release the door handle, stimulation is applied to the Forearm extensor muscles (see 

State 1 State 2 State 3 State 4 

State n State 5 
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5.2.1 for details). Transitions between phases are instantaneous events that occur on 

satisfaction of the transition condition. In the example, the transition between phase 4 

(open door) and phase 5 (release door) will be triggered either by the angle of the 

lower arm decreasing by 45° (since entering that phase – see 5.2.2 for details) or the 

time period in phase 4 exceeding 5 seconds. This example is further expanded upon 

later in the chapter and is used to illustrate the implementation of the various elements 

of the FSM controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Example FSM controller for “open a door”. The text below each transition 

arrow is the transition condition for exiting that phase. The muscles 

stimulated in each phase are listed in the corresponding box and are 

defined below: 

Anterior deltoid and Triceps – (AD & Tr) 

Forearm extensors – FE 

Posterior deltoid – PD 

Forearm flexors – FF 

 

Transition condition 

for exiting phase: 

Timeout – 4 sec 

 

Transition condition 

for exiting phase: 

Angle change – Upper 

arm – increase by 53° 

Transition condition 

for exiting phase: 

Button press  

 

Transition condition 

for exiting phase: 

Timeout – 4 sec 

 

Transition condition 

for exiting phase: 

Angle change – Lower 

arm – decrease by 45° 

OR  

Timeout – 5 sec 

Neutral phase 

(Phase 1) 

 

 

Reach for door 

(Phase 2) 

 (AD & Tr) + FE 

 

Grasp handle 

(Phase 3) 

 (AD & Tr) + FF 

 

Open door  

(Phase 4) 

PD + FF 

 

Release door  

(Phase 5) 

FE 
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5.2.1 Movement phases and stimulation control 

In each phase the associated set of muscles are stimulated to achieve the required 

movement. The stimulation targets are the stimulation levels that produce sufficient 

muscle force to achieve the expected movement in a phase. As the force required 

from a particular muscle will vary across the task, stimulation targets for a particular 

muscle are likely to vary with phase (see Figure 5.3). If muscles are not already at the 

required stimulation target, they are ramped up or down to reach that target (which 

can be zero). To achieve different movements in different phases, some muscles will 

continue to be stimulated but their stimulation target will be changed (see Figure 5.3), 

whereas stimulation of other muscles will be started or stopped (see Figure 5.4). Like 

the stimulation targets, the ramp rates may also be changed to achieve different 

movements in different phases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: An example of stimulation target changing with phase 

The FSM controller also allows for stimulation to jump to a pre-defined threshold 

before ramping up. Similarly, when stimulation is stopped, stimulation can jump 

down to zero after ramping down to a threshold (see Figure 5.4). In this 

implementation, sensory threshold is used (i.e. the lowest pulse width, at predefined 

pulse amplitude, needed to elicit a sensory response). Stimulation below the threshold 

will not lead to any movement or sensation. Each muscle will have its own 

stimulation threshold that does not change with phase (see figure 5.4). In cases where 

the target is lower than the stimulation threshold, the threshold is treated as the target. 

Pulse width (µs) 

Time (s) 

Target (i) 

Ramp time 

Phase (i) Phase (i+1) 

Target (i+1) 
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Figure 5.4: Jumping up to a threshold (before ramping up) and jumping down from a 

threshold (after ramping down) 

Ramp time is another user-defined FES parameter describing the time period over 

which simulation ramps from its previous target to its new target. The ramp rate is 

determined from ramp time and two consecutive nodes in the stimulation profile (i.e. 

either threshold and target or two consecutive targets, see figure 5.3 and 5.4). 

Obviously, for a given difference in stimulation levels a smaller ramp time means a 

higher ramp rate.  

 

The implementation of ramps depends on the frequency of the FSM. In this case, the 

decision was made to use 20Hz and therefore, the minimum time step is 0.05 sec. The 

reason for adopting 20Hz was to avoid the user noticing any latency. The following 

rules are used to calculate ramp rates from the stimulation parameters set by the 

therapist (ramp times, thresholds and targets). This is done in the setup GUI described 

in section 5.5 and the calculated ramp rates are then passed to the FSM controller.  

 

1. Zero any targets that are below the thresholds 

If any targets are less than or equal to the stimulation threshold for their channel, 

they are set to zero. 

Pulse width (µs) 

Time (s) 

Threshold (j) 

Target (i+1) 

for muscle (j) 

Ramp time Ramp time 

Phase (i) Phase (i+1) Phase (i+2) 

Threshold (k) 

Target (i) for 

muscle (k) 
Target (i+2) 

for muscle (k) 
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   (                     ℎ   ℎ   )  ℎ            

 

2. Phase 2  

Note that stimulation must be zero in Phase 1 (Neutral) before moving to Phase 2.  

 

Ramping up from threshold 

   (                     ℎ   ℎ   )  ℎ     

              (
        ℎ   ℎℎ   

            ⁄ ) 

                                  

             Note that 20Hz is the state-machine frequency, not the stimulation frequency. 

 

3. Phase 3 to the last phase 

 

                           ℎ      

 

Inherit ramp 

   (      ( )        (   )              )    (              )  ℎ     

  ℎ                              ℎ     

 

Ramping down to threshold 

       (      ( )                ℎ   ℎ   )   (      (   )   

             ℎ   ℎ   )   

              (
      (   )   ℎ   ℎ   

            ⁄ ) 

Ramping up from threshold 

       (      ( )                ℎ   ℎ   )   (      (   )   

             ℎ   ℎ   )   

              (
      ( )   ℎ   ℎ   

            ⁄ ) 

Ramping between targets 

       (      ( )                ℎ   ℎ   )   (      (   )   

             ℎ   ℎ   )   
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              (
      ( )        (   )

            ⁄ ) 

                                  

 

          

 

4. Phase 1 (Neutral) 

 

Inherit ramp 

   (                                    )    (              )  

  ℎ                              ℎ     

 

Ramping down to threshold 

       (      (      ℎ   )                ℎ   ℎ   )  

              (
      (      ℎ   )   ℎ   ℎ   

            ⁄ ) 

                                  

 

5. Apply upper and lower limits to ramp rates 

 

   (                      )  ℎ                          

   (                      )  ℎ                           

The logic above is designed to avoid rapid (and hence potentially painful) changes in 

stimulation levels. So ramp rates are inherited from the previous phase when the 

target has not changed (                                    ) or when the user 

appears to have mistakenly entered a very short ramp time (              ). In 

the first case, the user may enter a ramp time of zero because consecutive targets are 

the same. In both cases, it is assumed that a very rapid ramp was not intended. 

Inherited ramps ensure that the system will still work properly when there is an early 

transition to the next phase before stimulation has reached the target for the current 

phase (this is discussed in more detail in section 5.2.3). 

 

Although the descriptions above have assumed pulse width is the variable used to 

modulate stimulation level (and pulse amplitude is fixed), the implementation allows 
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pulse amplitude to be modulated (and hence pulse width fixed). The “fixed pulse 

parameter” flag indicates which pulse parameter is fixed as follows: 

 

1. If “fixed pulse parameter” flag = 1, then the pulse amplitude will be treated as 

the fixed pulse parameter. 

2. If “fixed pulse parameter” flag = 2, then the pulse width will be treated as the 

fixed pulse parameter. 

 

The Hasomed stimulator generates pulses with width that can be varied from 20 µsec 

to 500 µsec in 1 µsec steps (i.e. 480 steps), while the pulse amplitude can be varied 

from 0 mA to 126 mA in 2 mA steps (i.e. 63 steps). It is clear that the pulse width 

resolution is far better than that of pulse amplitude and, therefore, the amplitude was 

always treated as the fixed pulse parameter and the value was set at 30 mA.  

 

Table 5.1 gives detailed information of the muscles stimulated and their stimulation 

changes in each phase for the “open a door” example (referring back to Figure 5.2). 

 

Phase Output 

Neutral No stimulation is applied 

Reach for door Both (AD & Tr) and FE ramp from threshold to target and are then 

held at their respective targets. 

Grasp handle (AD & Tr) ramps to a new target. FF ramps from threshold to 

target. Both channels are held at their targets. FE turns off by 

ramping to threshold and then jumping down to zero. 

Open door FF ramps to a new target. PD ramps from threshold to target. Both 

channels are held at their targets. (AD & Tr) turns off by ramping 

to threshold and then jumping down to zero. 

Release door FE ramps from threshold to target and is held at its target. Both PD 

and FF turn off by ramping to threshold and then jumping down to 

zero. 

Table 5.1: Stimulation details for the FSM shown in Figure 5.2, including the outputs 

in each phase 
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Figures 5.5 to 5.8 show the stimulation profiles for each muscle over all movement 

phases for the example task of “open a door” (see Figure 5.2). In each phase, each 

muscle is ramped to its target level for that phase. 
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Figure 5.5: Stimulation profile for Anterior Deltoid and Triceps during all phases of 

the example task 

 

 

 

 

 

 

Figure 5.6: Stimulation profile for Forearm Extensors during all phases of the 

example task 

 

 

 

 

Figure 5.7: Stimulation profile for Posterior Deltoid during all phases of the example 

task 

 

 

 

 

Figure 5.8: Stimulation profile for Forearm Flexors during all phases of the example 

task 
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To illustrate the implementation described above, one example stimulation profile 

(Figure 5.5 – Anterior Deltoid and Triceps) will be described in detail. In phase 1 

(neutral), there is no stimulation. During phase 2 (reach for door), stimulation to 

Anterior Deltoid and Triceps jumps up from zero to threshold before ramping to the 

stimulation target. The aim in this phase is to assist the movement of the affected arm 

to reach forward. Stimulation is held at the target level until the transition condition is 

true. In the next phase (grasp handle), the target changes, so the stimulation is ramped 

down to the new target and held at the new level. Stimulation during phase 3 is 

designed to assist the affected arm to maintain its configuration (i.e. extended to the 

door handle). In phase 4 (open door), stimulation ramps down to threshold, and 

immediately jumps down from threshold to zero. During Phase 5 it remains at zero, as 

there is no need to stimulate Anterior Deltoid and Triceps during the last two phases. 

On exiting phase 5, the FSM returns to the neutral phase. 

 

5.2.2 Transitions 

Transitions between phases depend on input signals and the transition conditions for 

leaving the current phase. The FSM controller, as implemented, can take signals from 

up to four accelerometers for tracking the movements of the upper limb (i.e. hand, 

lower arm, upper arm and torso). In this case, the accelerometer provides the x, y and 

z components of the measured vector (acceleration+gravity) in the accelerometer 

reference frame. The acceleration data are streamed into the FSM controller in real 

time during a functional task. The second uncalibrated angle tracking method (section 

3.3), incorporated into the FSM controller, takes as its input the three signals from a 

given accelerometer and outputs the absolute angle of that accelerometer’s x-axis 

from the vertical, which can be used to trigger a transition (see Chapter 4). Apart from 

segment angle, transition conditions can also use button press and timeout functions. 

To extend the flexibility of the system, logical operators (N/A, AND or OR) can be 

used to combine a maximum of two Boolean conditions (condition A and condition B) 

to create a transition rule. Using N/A as the logical operator means that only one 

condition needs to be specified (always condition A).  
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Table 5.2 lists all of the Boolean conditions for the transitions between phases for the 

“open a door” example task described in Figure 5.2. For this task, two accelerometers 

are employed for tracking the movements of the upper arm and lower arm in order to 

trigger transitions between phase 2 and 3, and phase 4 and 5. Other transition 

conditions for triggering transitions include button pressing and timeout. In this 

example, the logical operator OR is used for the transition between phase 4 and 5, 

with the transition occurring either if the angle of the upper arm decreases by 45° or if 

the FSM remains in phase 4 for over 5 seconds. Note that a transition between phases 

not only depends on transition conditions, but also on the current phase. For example, 

pressing the space bar will only trigger the transition into phase 2 when the state 

machine is in phase 1. 

Transition Logical operator Condition A Condition B 

Transition between phase 1 

and 2 

N/A Button pressing 

(space bar) 

Disabled 

Transition between phase 2 

and 3 

N/A Upper arm has 

increased by 53° 

Disabled 

Transition between phase 3 

and 4 

N/A Wait for 4 sec Disabled 

Transition between phase 4 

and 5 

OR Upper arm has 

decreased by 45° 

Wait for 5 sec 

Transition between phase 5 

and 1 

N/A Wait for 4 sec Disabled 

Table 5.2: Transition rules for the example task “open a door” (Figure 5.2) 

5.2.3 Dealing with early transitions 

An “early transition” is defined as being a transition between movement phases that is 

triggered before the stimulation reaches its target. For example, referring to Figure 5.9, 

a FSM controller has been set up such that one stimulation channel should ramp 

towards target (i+1) for phase (i+1) with a ramp rate (i+1), and target (i+2) for phase 

(i+2) with a ramp rate (i+2). If transition (i+1) occurs before the stimulation reaches 

target (i+1), then this is an early transition. Early transitions are likely to occur during 

upper limb rehabilitation tasks because, for example, patients may improve with 
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practise so that they achieve a required arm movement before the stimulation target is 

reached. Ideally this should lead to adjustments in stimulation targets and/or transition 

conditions, but these may not occur until a therapist is available. 

 

When early transition occurs, the stimulation targets and ramps will be changed to 

those associated with the new phase. There are two different situations for early 

transitions, which depend on the previous and new targets. They are: 

 

1. Previous target and new target are different (see Figure 5.9). 

2. Previous target and new target are the same (see Figure 5.10). 

 

When the targets associated with the previous phase and the new phase are different, 

the controller should simply use the targets and ramp rates associated with the new 

phase. This is the case because the therapist will have explicitly defined these using 

the setup GUI described in section 5.5. 

 

However, when the previous target and the new target are the same for a particular 

channel, the therapist will not have explicitly defined a ramp rate because they will 

not be expecting the stimulation to ramp at all. In fact, if they do specify a ramp time, 

it is likely to be zero implying an immediate step change in stimulation. Therefore, for 

that channel, the new phase should inherit the ramp rate associated with the previous 

phase (see Figure 5.10); so that the stimulation continues to ramp at the same rate 

until the target is reached.  

 

The rules for the calculation of ramp rates (including inheriting ramp rates) have 

already been presented in section 5.2.1. 
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Figure 5.9: An early transition (transition (i+1)) where target (i+1) and target (i+2) are 

different. Ramp rate (i+2) is based on the specified ramp time and the difference 

between target (i+1) and target (i+2), irrespective of the fact that target (i+1) was not 

reached 

 

 

 

 

 

 

 

  

 

 

Figure 5.10: An early transition (transition (i+1)) where target (i+1) and target (i+2) 

are the same. Ramp rate (i+2) is inherited from phase (i+1) 

5.3 Implementation of the FSM controller 

Matlab/Simulink was used to implement the real-time FSM controller under the 

Windows XP Professional platform. Simulink allows on-line data acquisition, data 
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processing and control of stimulation parameters in real-time. Figure 5.11 shows an 

overview of the inputs and outputs of the FES control system. The real-time inputs to 

the FSM controller in Simulink include three axis accelerations, button pressing 

signals, and clock time for timeouts. The real-time outputs are stimulation pulse width 

(µsec), pulse amplitude (mA) and the waveform. Note that the waveform is fixed and 

pre-set in the Simulink model, and clinicians have no authority to change this. The 

Simulink system runs at 20Hz and implements angle tracking, robust angle triggering, 

the FSM controller, and safety checking. 

  



141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Real-time inputs and outputs for the FES control system 

Referring to figure 5.12, the absolute angles of the Xsens units’ x-axes from the 

vertical, calculated using the angle tracking method described in section 3.3, are 

streamed into the FSM controller. The other real-time inputs to the FSM controller are 

the transition button status (‘move phase’ button on GUI or ‘space bar’ on keyboard), 

emergency button status (‘stop’ button on GUI or ‘Enter’ on keyboard), and clock 

time for timeouts.  

 

The FSM controller includes: state transition control (sections 5.2.2 and 5.2.3); 

methods to improve the robustness of angle triggering (chapter 4); and stimulation 

output control.  Stimulation output control simply involves stepping each channel 

towards its current target at the associated ramp rate (or stepping up to /down from the 

threshold for that channel). 

 

Button pressing: 

(i) transition (space bar) 

(ii) emergency stop (enter) 
Xsens motion trackers 

Hazomed stimulator 

Angle tracking method, 

angle triggering algorithm, 

FSM controller and safety 

check implementation in 

Simulink 

Clock 
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The real-time outputs from the FSM controller (pulse widths and pulse amplitudes) 

are streamed into the safety block, which sits between the controller and the Hasomed 

stimulator. The purpose of the safety block is to avoid pain due to inappropriate 

stimulation levels or rates. The safety block limits pulse width, pulse amplitude, and 

total charge in a single pulse, as well as maximum step size for ramping. If the 

demanded step size exceeds the pre-defined maximum step size, then it is limited to 

the maximum step size. If any other limits are exceeded, then the safety block stops 

stimulation. Safety checking is applied to every stimulation channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Upper limb FES control system flow chart, including FSM controller 
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The Simulink implementation of the FES control system is shown in figure 5.13. It 

includes seven main blocks: Xsens communication; acceleration to angle conversion; 

FSM; stimulation control; safety block; Hazomed stimulator interface; and real-time 

synchronisation block. Other blocks have secondary roles such as displaying data 

(scopes). The explanations of each block are given in the following subsections. Apart 

from the Hasomed stimulator interface and real-time synchronisation (Hasomed 

GmbH, Magdeburg, Germany), the other five main blocks were implemented by the 

author using embedded Matlab functions. 
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Figure 5.13: A complete upper limb FES control system (including FSM controller) implemented using Simulink
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1. Xsens communication 

The Xsens communication block collects real-time data from accelerometers and 

passes the acceleration data to the acceleration to angle conversion block. It accesses 

accelerometers every 0.05 sec, the same frequency as the entire Simulink system, to 

record real-time acceleration data. The real-time outputs of this block are the 

acceleration data from different Xsens inertial sensing units, streamed into the next 

main block. Each Xsens unit provides three signals (x, y and z components). 

 

2. Acceleration to angle conversion block 

The second uncalibrated angle tracking method (section 3.3) is incorporated into the 

acceleration to angle conversion block. Thus, this block calculates the absolute angles 

of the Xsens units’ x-axes (usually aligned with the long-axes of the body segments) 

from vertical in real time from the raw acceleration data. In addition, in this block, a 

method of ignoring readings where the true acceleration is significant compared to 

gravity is implemented (see section 4.2.2), which sets the acceleration flags that are 

used to indicate whether the readings are valid or not. An acceleration flag is true (an 

invalid reading) if the acceleration vector’s magnitude is significantly different from 

9.81 m/s
2
.  

 

Thus the real-time inputs to this block are the x, y and z accelerometer signals from 

each Xsens unit and the real-time outputs are the acceleration flags and absolute 

angles. 

 

3. FSM block 

This is the main block that includes the generic structure of the flexible FSM (see 

Figures 5.1), which can be set up to achieve different functional task (for example 

Figure 5.2). It decides the appropriate times for transitions between phases. Thus, this 

block requires data defining the transition conditions (see Table 5.3), which is 

obtained from the therapist via the GUI described in section 5.5. 
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Parameter 
Type Number 

Logical operator (AND, OR, N/A) Integer (flag) 1 per phase 

Condition A (angle change, button or timeout)  Integer (flag) 1 per phase  

Condition B (angle change, button or timeout) Integer (flag) 1 per phase 

Angle change direction (increase or decrease) Integer (flag) As needed 

Body segment used for angle change (hand, 

forearm, upper arm) 

Integer (flag) As needed 

Angle change Float/Integer As needed  

Timeout period Float/Integer As needed 

 

Notes: 

 Condition B is not required if the logical operator is N/A. 

 The last 4 items are only needed where that condition (angle change or 

timeout) has been specified for A or B. e.g. the last item is needed if a timeout 

has been specified. 

Table 5.3: Transition conditions for leaving each phase 

Apart from the FSM structure and corresponding transition conditions, the following 

methods for improving robustness of angle triggering are also implemented in this 

block. For more details refer to sections 4.2.1 and 4.2.3. 

 Using change in angle since entering a state, rather than absolute angle. 

 Requiring a given number of consecutive or non-consecutive valid readings 

for triggering a transition (a simple form of signal noise filtering). 

Note that in this block, the real-time inputs are absolute angles and acceleration flags 

from the previous block, emergency stop button status, clock time, and transition 

button status. The emergency stop button has the highest priority and forces the FSM 

to go back to phase 1 (neutral).  

 

The transition button status is set by the clinician (by clicking the GUI ‘move’ button 

or pressing the space bar) and is continuously monitored while the FES control system 

is running. The clock time is provided by a digital clock block from the Simulink 

library. The digital clock block outputs simulation time for the Simulink model. The 

real-time output of this block is the current movement phase (state) number for the 

FSM.  
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4. Stimulation control block 

This block controls pulse width (PW) and pulse amplitude (PA) during each phase 

and for each muscle, based on pre-defined ramp rates and thresholds. The 

RehaStim
TM

 stimulator is used to generate stimulation pulses. The “fixed pulse 

parameter” flag indicates which pulse parameter remains constant (PA), the other 

parameter (PW) being used to create the varying stimulation profiles. The default 

value for the fixed pulse parameter (PA) is 30 mA. Tables 5.4 and 5.5 list the various 

stimulation parameters, which are obtained from the user via the GUI described in 

section 5.5. 

 

Parameter Type Number 

Fixed pulse parameter flag (pulse amplitude) Integer (flag) 1 per channel 

Fixed pulse parameter value Float/Integer 1 per channel 

Stimulation threshold (pulse width ) Float/Integer 1 per channel 

Table 5.4: Stimulation settings for each channel that do not vary with phase 

Parameter Type Number 

Stimulation target (pulse width) Float/Integer 1 per phase for each 

channel 

Ramp rate (pulse width) Float/Integer 1 per phase for each 

channel 

Table 5.5: Stimulation settings for each channel that differ between phases 

The real-time inputs to this block are the phase number and emergency stop button 

status. The emergency stop button has the highest priority and forces pulse width to 

ramp down to zero for all channels. The real-time outputs are pulse widths and pulse 

amplitudes of all channels. 

 

5. Safety block  

The safety block is responsible for checking the pulse widths and pulse amplitudes 

that will be sent to the Hasomed communication block, and will cut stimulation off if 

any value exceeds previously defined limits. For all stimulation channels, there are 

three hard limits (pulse amplitude, pulse width and total charge) and also a soft limit 

for total charge. Exceeding any of them will cause stimulation to ramp down at a 
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default rate. The term ‘hard’ indicates that the limits are pre-set by the programmer in 

the safety block, and clinicians have no authority to access them. The term ‘soft’ 

means that clinicians can access and change these limits. The soft limit for each 

channel is given by:  

 

                                            

 

Thus, once the max stimulation for comfort for a channel has been set up by a 

clinician, the soft limit will be updated and passed to the safety block. Note that, the 

maximum stimulation for comfort was intended to be the stimulation level at which 

functional movement is achieved and the patient reports it becoming uncomfortable. 

However, in practise, this invariably prevented adequate stimulation from being 

applied. Therefore, it was multiplied by a factor of 1.25, which was determined by 

trial and error. There were no reports of pain from the patients when applying the 

factor of 1.25 to provide a soft limit, when the system was tested in local hospitals.  

 

Exceeding the limit on step size for the ramp will not cut off the stimulation. However, 

the safety block limits the max step size to 6 µsec/step (120 µsec/second). Thus, if the 

auto-calculated step size for a ramp exceeds this value, the safety block will 

automatically reduce it to the max step size.  

 

The real-time inputs are the pulse widths and pulse amplitudes for all channels, and 

the outputs are also the pulse widths and pulse amplitudes, subject to the limits 

described above. 

 

6. Stimulator interface (Hasomed communication block) 

The Hasomed communication block is responsible for accessing the RehaStim 

stimulator through a serial port USB. It adopts the ScienceMode protocol to directly 

control the 8-channel RehaStim
TM

 stimulator. This block is implemented using a 

Matlab s-function written in C++ and Simulink masks. It was created by Hasomed 

GmbH. The real-time inputs for this block are the safe pulse widths and pulse 

amplitudes for all channels. The pulse waveform for all stimulation channels is 

‘singlet stimulation pulse mode’ (a single stimulation pulse is repeatedly generated 

and sent out on a specific channel with the desired pulse amplitude, pulse width and 
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frequency). The pulse waveform is fixed and pre-set in the Simulink model. Note that 

the stimulation frequency does not have to be the same as the FSM frequency (20Hz); 

the latter being selected to avoid users noticing any latency. 

 

7. Real-time synchronisation block 

The real-time synchronisation block is an s-function block that ensures a Simulink 

execution frequency of ~20 Hz. It does this by synchronizing the Simulink FES 

control system with the computer’s real-time clock.  

 

5.4 Testing the FSM controller 

The FSM controller was tested using the “open a door” task (see Figure 5.2). The 

outputs monitored included: 

 Accelerometer signals from Xsens units on the upper arm and forearm; 

 Change in angle from the vertical since entering a state (movement phase);  

 Phase number; 

 Pulse width for each muscle.  

 

5.4.1 Initialisation prior to testing 

Before running the FSM controller, the Xsens Motion Tracking software needs to be 

installed (Xsens technologies B.V., Netherlands, version 2.8.1), which provides a 

solution for directly accessing the Xsens MTx communications hub from Matlab. 

After installation, Matlab can communicate with the Xsens MTx hub through the 

serial port and collect real-time acceleration data from the Xsens inertial sensing units 

that are connected to the MTx hub. The Xsens system was set up to sample the real-

time accelerometer signals at a frequency of 100 Hz even though the FSM controller 

only attempts to upload data at 20 Hz, which is thought to be sufficiently high to 

prevent users noticing any latency. This was done to avoid the FSM controller 

missing or double reading any Xsens data.  
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The parameters which define the example task (see Figure 5.2) were set up using the 

GUI described in section 5.5. The number of phases, the muscles involved in each 

phase, and the transition conditions are all shown in figure 5.2. The stimulation 

parameters are given in Table 5.6. The “stimulation threshold” and “maximum 

stimulation for comfort” were set to their default values, which are 0 µs for 360 µs 

respectively. 

 

 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Channel 1 0 108 108 0 0 

Channel 2 0 54 0 0 72 

Channel 3 0 0 72 72 0 

Channel 4 0 0 0 90 0 

(a) Stimulation targets (µsec) for each channel and each phase. 

 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 

Channel 1 1 1 1 1 1 

Channel 2 1 1 1 1 1 

Channel 3 1 1 1 1 1 

Channel 4 1 1 1 1 1 

(b) Ramp time (sec) for each channel and each phase. 

Table 5.6: Stimulation parameters for each channel and each phase 

5.4.2 Test results for the “open a door” task 

Data was collected from a healthy subject undertaking the “open a door” task. The 

data was captured under real-time conditions and the dashed lines in the following 

figures indicate the transitions between the phases. To enable angle-triggering, two 

Xsens units were located on the upper arm and the forearm respectively. The 

corresponding raw accelerometer data are shown in Figure 5.14 for one repetition of 

the task. 
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(a) Upper arm 

 

 

(b) Forearm 

Figure 5.14: Acceleration profiles (x in blue, y in green, z in red). The dashed lines 

indicate transitions between phases 

Using the second uncalibrated angle tracking method, the acceleration data from the 

two Xsens units were transformed into “change in angle since entering the phase” of 

Frame number (Time × 20Hz) 

 

Frame number (Time × 20Hz) 

Acceleration (m/s
2
) 

Acceleration (m/s
2
) 
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the upper arm and lower arm respectively (see Figure 5.15). The change in angle 

returns to zero after each transition between phases (see values at dashed lines in 

figure 5.15).  

 

 

 

Figure 5.15: “Change in angle since entering the phase” during the “Open a door 

task”. Upper arm in blue and lower arm in green. The dashed lines indicate transitions 

between phases. The horizontal solid lines are the angle thresholds for transition 2 

(increase by 53°) and transition 4 (decrease by 45°) 

Figure 5.16 shows the phase number increasing, from 1 to 5, as the reaching task 

progresses as shown in Figure 5.2. The phase numbers were output in real time.  
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Figure 5.16: Phase number as output by the FSM controller 

Figure 5.17 shows the stimulation pulse width outputs to the Hasomed stimulator for 

channels 1-4. On entering a new phase, the stimulation pulse widths ramp towards the 

new targets at rates based on 1 second ramp times (Table 5.6).  

 

 

 

 

Figure 5.17: Stimulation pulse width outputs (Anterior Deltoid & Triceps in dark blue; 

Forearm Extensors in green; Posterior Deltoid in red; Forearm Flexors in light blue) 

Frame number (Time × 20Hz) 

Phase number 

Time (sec) 

Stimulation pulse width (µsec) 
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5.5 Graphical user interface for setup of FSM controller 

A GUI has been developed to allow users to set up an FSM controller and the 

associated stimulation parameters for upper limb functional tasks. The design of the 

GUI’s appearance and the specification of its functionality have been undertaken by 

the research team as a whole, including Christine Smith who is studying for a PhD on 

the usability aspects of setting up FES assisted upper limb functional tasks. The 

author’s main role has been the software implementation of the GUI. Clinicians will 

set up the flexible FSM controller for different patients and different functional tasks 

by using the GUI, thus it needs to be sufficiently flexible to support the setup of a 

range of different FSMs (i.e. different number of phases, different muscles stimulated 

during each phase, different transition conditions etc.).  

 

Current studies of less complex approaches to FES therapy demonstrate its value for 

improving upper limb motor recovery after stroke (Langhorne et al., 2009; Popović, 

Sinkjærc, & Popović, 2009). However, for more complex functional tasks, the GUI 

should allow users to set up FSMs involving multiple muscles and multiple movement 

phases.  However, in many cases, clinicians have no programming skills to create a 

new or modify an existing FSM controller. Therefore, the setup process should be 

straightforward and user-friendly. 

 

5.5.1 Breaking the setup process into logical stages 

The GUI concept is to break the setup of a FSM for a particular upper limb functional 

task into the four logical stages shown in Figure 5.18. To explain why the four stages 

were chosen, the “open a door” example shown in Figure 5.2 will be used. 

 

In Stage 1, the clinician would usually select a task from a pre-defined library of 

standard reaching tasks. However, if this were a new task not in the library, then the 

user would define the number and sequence of phases, and then enter the muscles 

associated with each phase (e.g. forearm extensors in phase 5). In this case, there are 

five phases but this may differ between patients depending on their impairment. 
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In Stage 2, the user sets up each of the stimulation channels for the previously 

specified muscles, including donning stimulation electrodes, assigning channels to the 

corresponding muscles, testing muscle response, and adjusting channel specific 

settings (sensory threshold and max stimulation for comfort). The acceleration sensors 

are also donned and assigned in stage 2 (e.g. Xsens sensing unit 1 – upper arm). 

 

In Stage 3, the stimulation parameters for each movement phase are set up (i.e. 

stimulation targets and ramp times for each channel in each phase). These stimulation 

parameters can be finely tuned by manually moving through the phases of (using the 

space bar to transition) until acceptably smooth task execution is achieved. During 

good task executions, the change in angle since entering the phase (for each sensor) 

and the time spent in each phase is logged to inform Stage 4. 

 

In Stage 4, the user sets up the automatic transition conditions for moving between 

movement phases. These include a logical operator (N/A, OR, AND) so that the 

transition condition can take one of the following three forms: A; (A OR B); (A AND 

B). The logical conditions (A and/or B) are one of the following: button press; timeout; 

angle change.  

 

After going through these four setup stages, the therapist can enter stage 5 (the 

therapy session manager) and allow the patient to repeat the functional task. The setup 

GUI stages are described in more detail in the following sections.  
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Figure 5.18: Flow chart of GUI based flexible FSM setup 

5.5.2 Stage 1 – Create, modify and select tasks  

During stage 1, users are guided to create, modify and import functional tasks for 

either existing or new patients, as follows: 

 Create a data structure to store functional tasks for new patients. Note that any 

modification to the tasks during stages 1-4 will update the data structure 

associated with that patient. 

 Create a new functional task for either existing or new patients, includes 

defining the number of phases, adding or removing muscles to be stimulated 

during each phase. 

 Modify an existing functional task for either existing or new patients, 

including changing the number of phases, adding or removing any phase of the 

FSM, and adding or removing any muscles to be stimulated during each phase. 

 Import a functional task from a standard hand-arm task library or from other 

existing patients. 

Stage 1: Create, modify and select 

tasks 

Stage 5: Practising functional 

tasks 

Stage 2: Don electrodes and 

sensors, and initial channel setup 

Stage 3: Set up stimulation 

parameters for each phase and 

capture manual transitions data 

Stage 4: Set up transition 

conditions 



157 

 

In stage 1, the user can create a data structure for a new patient or load a data structure 

for an existing patient. The data structure stores the FSM controllers for each 

functional task and associated stimulation parameters. A functional task created under 

a different data structure can easily be transferred to another. Every data structure is 

given a name, which can be either the patient’s ID number or name. When a data 

structure has been created or loaded for a patient, the user can then modify it. 

 

Users define the phase number and task name for the FSM, give a name to each phase, 

add or remove any muscles to be stimulated during each phase for creation of a new 

functional task for a patient. Drop-down menus are used to define a phase number and 

the muscles to be stimulated in each phase. A tick box for each phase allows 

modification to each phase that has been ticked simultaneously, which is believed to 

save time. For example, ticking phase 2 and phase 5 in the “open a door” task allows 

adding of forearm extensors to them at the same time. 

  

Modification of any functional task is carried out in a very similar way to creating a 

new task. Users can change the number of phases and task name for the FSM, change 

phase names, add or remove phases, and add or remove muscles in each phase.  

 

Importing a functional task from either a standard hand-arm task library or from 

existing patients may be helpful to accelerate setup. Import of a functional task is 

implemented by a pop-up panel which shows the standard hand-arm task library and 

data structures for other patients. The standard hand-arm task library, implemented in 

the software, provides standard functional tasks with pre-defined numbers of phases 

and associated muscles. 
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 A flow chart of the stage 1 process is shown in figure 5.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Flow chart showing the process followed in stage 1 

5.5.3 Stage 2 – Don electrodes and sensors, and initial channel setup 

Stage 2 guides the user through the donning and initial setup of the hardware, as 

follows: 

 Setup of stimulator channels, which includes donning stimulation electrodes, 

assigning channels to the corresponding muscles, testing for better placement 

of each electrode for muscle stimulation, and adjusting channel specific 

settings (sensory threshold and max stimulation for comfort). 

Edit task (add/remove a 

phase, muscles to be 

stimulated during each phase, 

etc) 

Create new patient Load an existing patient 

Import a task from 

task library or other 

patients 

Create a new task 

(define number of 

phases, muscles to be 

stimulated during each 

phase, etc) 

Select tasks for today’s 

practice  

Need to add 

another task? 

No 
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 Setup of acceleration motion sensors, which includes donning sensors and 

assigning sensors to the corresponding upper limb segments. 

a) Donning and initial setup of stimulator channels 

A maximum of 8 stimulation channels can be assigned. The stimulation channels are 

manually assigned, via a list box, to the set of muscles which will be stimulated in the 

task. 

 

The other stimulation parameters that are defined for each muscle are pulse amplitude 

(the fixed pulse parameter), stimulation threshold (minimum stimulation level that can 

be felt) and maximum comfortable stimulation. Stimulation can lead to pain 

(Hendricks, IJzerman, de Kroon, in 't Groen, & Zilvold, 2001; Ring & Rosenthal, 

2005), and this may be lead to the patient withdrawing from the treatment (Chae et al., 

1998). Thus, the maximum comfortable stimulation for each stimulated muscle is 

multiplied by a factor of 1.25 to provide a soft safety limit (see safety block 

description in section 5.3). The stimulation threshold and maximum comfortable 

stimulation for each muscle are found by ramping up stimulation (pulse width) via 

manually adjusting a slider from no stimulation to maximum stimulation (level at 

which functional movement is achieved and the patient reports it becoming 

uncomfortable). 

 

b) Donning and initial setup of sensors 

After setting up the channels, the Xsens unit(s) are placed on the appropriate limb 

segment (e.g. upper arm). The GUI displays a plot of the Xsens unit data in real time 

to guide the user during initial setup. 

 

In a process similar to the setup of stimulator channels, the user assigns the Xsens 

units to different body segments to match the actual location of units on the patient. 

Another list box shows the final assignments of the Xsens units. 
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5.5.4 Stage 3 – Set up stimulation parameters for each phase and capture manual 

transitions data 

In stage 3, the user is guided through the setting up of stimulation parameters for each 

muscle in each phase and, for good repeats of the task, sensor and time data is 

recorded to characterise the manually triggered transitions. The process is as follows: 

 Setup of stimulation parameters (stimulation target and ramp time) for each 

muscle in each phase, allowing a task to be achieved by manually triggering 

transitions using a button press. 

 Defining a successfully achieved functional task as a good trial. The user will 

decide whether the task was achieved successfully. 

 For those good trials, manually triggered transition data will be captured, 

specifically change in angle of each instrumented body segment since entering 

the phase and  time spent in each phase.  

There is no stimulation in the neutral phase. In each subsequent phase, the user is 

required to manually adjust pulse width using a slider from zero to a stimulation target, 

defined by the clinician observing the relevant limb motion. After the stimulation 

targets for each muscle have been found, and maintaining stimulation at these levels, 

the patient should be able to achieve the required arm movement for that phase. In 

addition, the ramp time for each muscle is also defined at this stage by simply typing a 

number in the ramp time edit box for each phase. Ramp time defines either ramp up to 

target or ramp down to zero in a phase. The above processes are repeated for each 

phase until stimulation parameters for all muscles in each phase have been set up 

successfully. 

 

Towards the end of this stage, patients are expected to achieve some good FES 

assisted trials. Transitions are achieved by the clinician manually triggering the 

transition between phases using a button press. Successful FES-assisted trials are 

labelled by the clinician. At the end of the stage, the captured transition data from the 

set of successful trials are averaged and passed as “suggested values” to stage 4 (see 

below). The suggested values are calculated by averaging any corresponding values 

from good trials as follows: 
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Where, N is the total number of good trials  

                                is the suggested value for the time period to be used as a 

timeout trigger for leaving a phase 

                              is the suggested value for change in angle when using the 

angle tracking method for triggering a transition 

 

For example, in the “open a door” task (see Figure 5.2), for three separate good trials, 

the transition data for leaving the phase “reach for door” are assumed to be upper arm 

increased by 53°, 50° and 56°, while forearm increased by 13°, 9° and 11°. Therefore, 

the average values of upper arm increased by 53° and forearm increased by 11° will 

be passed to stage 4 as a guide for the user when setting up the angle trigger for 

leaving phase 2. 

 

5.5.5 Stage 4 – Setting up transition conditions 

Stage 4 guides the user through the setup of transition conditions for automatically 

leaving each phase as follows: 

 Based on the average angle change and duration of each movement phase 

(calculated in Stage 3), it provides suggested values for use in phase transition 

conditions (for angle thresholds and timeout periods). 

 These values are used to set up phase transition conditions for leaving each 

phase. 

 The user can enter instructions (displayed or voice) to guide patients to 

achieve the movements associated with each phase. 

The transition between phases can be triggered by a button press, a timeout, a body 

segment angle trigger, or some logical combination of these. Thus, the first thing the 

user needs to decide is how to combine Boolean conditions using a logical operator 

(AND, OR or N/A), which is selected using a drop-down menu. Therefore, transition 
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conditions can take one of the following three forms: A; (A OR B); (A AND B). If 

N/A is selected then only one condition will be used (only A). 

 

The individual Boolean conditions (A and B) are selected using drop-down menus, 

which provide the following options: ‘increase angle by’, ‘decrease angle by’, 

‘timeout’ and ‘button’. When an angle trigger is selected, another drop-down menu is 

used to select the corresponding body segment, which can be hand, forearm, upper 

arm or torso. An angle threshold edit box offers a suggested value from the average of 

the good trials captured in Stage 3 (e.g. forearm increase by 15° to leave a phase). The 

user can either accept or change the suggested angle threshold using the edit box. If a 

‘timeout’ has been selected, an edit box offers a suggested value from the average of 

the good trials captured in Stage 3 (e.g. 3 second time out). The user can either accept 

or change the suggested timeout using the edit box. If a ‘button’ press has been 

selected, no other information is required.  

 

Finally, the user inputs patient instructions for each phase via an edit box for a 

displayed instruction and a microphone for a voice instruction. These instructions are 

used to guide patients to achieve the movements associated with each phase. For the 

“open a door” example task (see Figure 5.2), an instruction to guide the patient in 

phase 2 might be ‘open hand and reach for the door handle’. 

 

5.5.6 Stage 5 – Practising functional tasks 

Once the previous four setup stages have been completed, Stage 5 guides the patient 

while they are practising functional tasks during a therapy session. At present this is 

only a basic implementation which includes: 

 A simple control panel that includes two buttons, one to start/stop practice, 

and one for button triggered transitions. 

 A display to provide instructions for guiding the patient during task practice. 

 A speaker to provide audio instructions for guiding the patient during task 

practice. 
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5.6. Conclusions  

A flexible FSM controller and an associated setup GUI have been developed that 

allow clinical users (e.g. physiotherapists) to set up different FES assisted upper limb 

functional tasks and the corresponding FSM controllers. The aim was to provide a 

tool that allows clinicians to set up a variety of different FES assisted tasks for 

different patients with different levels of impairment.  

 

The FSM controller has been tested using the “open a door” example task. The results 

provided in section 5.4 illustrate the functionality of the controller and also 

demonstrate its successful implementation. 

 

The usability of the system is heavily dependent on the GUI that has been developed 

for the setup of different FES assisted tasks and the corresponding FSM controllers. 

The GUI should not require specialist knowledge of control engineering and should 

be easy to use; so that the assistance of a clinical engineer is not required. 

Comprehensive user testing has been undertaken by another member of the research 

team (Christine Smith) who is a physiotherapist with many years’ experience of 

stroke rehabilitation. 
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Chapter 6 – Discussion 

 

Around 50% of survivors from stroke lose some control of the arm and/or hand. The 

disabilities for the upper limb has the remarkable negatively impact in the ADL (R. N. 

Barker & Brauer, 2005). Typical upper limb impairments include a reduction in 

muscle strength and the ability to extend the shoulder, elbow and hand joints, as well 

as impaired coordination between limb segments. There are a range of different 

interventions aimed at promoting upper limb recovery following stroke, including 

robotic devices and FES. Current studies of FES therapy demonstrate its potential 

value in rehabilitation of reaching and grasping function, elbow extension, shoulder 

motion, and stabilization of wrist joints. However, as discussed in section 2.2.5, there 

are limitations with the existing technologies. 

 

6.1 Limitations with existing FES systems 

There is good evidence supporting intensive, repetitive, task-focused (Alon, Levitt, & 

McCarthy, 2007; Langhorne et al., 2009; Winstein et al., 2004), voluntary-initiated 

(Jayme S. Knutson et al., 2009; P. Hunter Peckham & Knutson, 2005) FES-supported 

practice for upper limb functional recovery. However, the ability to deliver this type 

of therapy in clinical practice is limited by available tools (Hara, 2008; Lynch & 

Popovic, 2008; P. Hunter Peckham & Knutson, 2005) (see section 2.2.5). The number 

of commercially available FES systems for the upper limb is limited and most systems 

providing a limited number of stimulation channels, with some systems restricted by 

design to stimulation of the particular body anatomy (Alon & McBride, 2003; Hobby 

et al., 2001; Dejan Popovic et al., 1999). Relatively little attention has been paid to the 

development of flexible systems, which allow the user to set up their own tasks 

(Rakos et al., 2007; Tresadern et al., 2008) (see table 2.1 and section 2.2.5.3).  

 

As discussed in section 2.2.5, at the start of the PhD it was identified that a system 

that allowed therapists to quickly and easily set up robust FES controllers that were 

task and patient specific would address the limitations discussed above. Specifically, 
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the aim was to produce a system for guiding therapists through the setup of FES 

controllers for patient-specific upper limb functional tasks, without involving a 

clinical engineer. To achieve this required 1) sufficient stimulation channels and 

flexibility over the set of muscles to be stimulated; 2) a robust movement sensing 

configuration; and 3) a flexible FSM controller for delivering upper limb FES that is 

specific to the impairment profile of the patient and task requirements.  

6.2 Angle tracking methods and methods to improve robustness 

In this thesis, a FSM controller has been presented that can take signals from 

accelerometers tracking the movements of up to four different body segments (hand, 

forearm, upper arm and torso). Accelerometer-based movement sensing methods were 

used in this system because 1) accelerometers are available at low cost, in very small 

packages, and with low power consumption, 2) angle relative to gravity can be 

derived directly from accelerometers, therefore avoiding integration-related drift. 

These properties make the sensors potentially suitable for long term use in clinical 

settings (see section 2.5.1.1). In order to fully exploit the output of accelerometers 

methods for estimating angle relative to gravity were needed. In chapter 2, these 

methods were reviewed. Three methods were identified from the literature (see 

section 2.5.2): 1) using single axis accelerometers; 2) using dual axis accelerometers; 

and 3) using two accelerometers separated by a rigid link. As discussed in section 

2.5.2, angle measurement using a single accelerometer (1, 2 or 3-axis) suffers from 

two main problems. Firstly, the existing methods for processing the accelerometer 

signals to obtain angle from the vertical all suffer from very poor sensitivity when a 

sensitive axis approaches the vertical. Secondly, the methods reported rely on the true 

acceleration being negligible and are, therefore, only suitable for measuring angle 

under static or low acceleration conditions. Methods that use two accelerometers 

separated by a rigid rod (see section 2.5.2.3) have been used to overcome the 

limitation of measuring angle only under low acceleration conditions. However, this 

only works for rotation around a fixed point (e.g. the knee) or to obtain angular 

velocity which must then be integrated. 

 

Three different methods were investigated for using an accelerometer to track body 

segment angle and, hence, to act as a trigger for moving to the next state in an upper 
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limb FES FSM controller. The first uncalibrated method calculates the change in 

angle during a rotation using the gravity vectors before and after the rotation (see 

section 3.2). The second uncalibrated method (see section 3.3) calculates the angle 

between the accelerometer x-axis and the gravity vector. The third calibrated method 

uses a calibration rotation to define the measurement plane and the positive rotation 

direction (see section 3.4). This method then calculates the component of rotation that 

is in the same plane as the calibration rotation. All three methods use an algorithm 

that switches between using sine and cosine, depending on the measured angle, which 

overcomes the poor sensitivity problem seen in previous methods. 

 

The second uncalibrated angle tracking method has been incorporated into a flexible 

FSM controller and tested. The reason for using the second method was that, unlike 

the first uncalibrated angle tracking method, this method provides a reference 

orientation (i.e. the angle is zero when the x-axis is vertical). In addition, this method 

is insensitive to rotation about the x-axis. This property can be usefully exploited if, 

for example, the accelerometer is aligned with the x-axis oriented along the forearm’s 

long axis, thereby making the output insensitive to pronation-supination. The 

approach was found to be accurate, with errors below 1.3° except when the angle was 

near 0° or 180°. The third, calibrated method, was shown to provide the sign of the 

angle change, but significant errors were observed when the measured angle was <30° 

or >150°. Referring to the techniques from the literatures (see section 2.5.2), 

maximum errors of over 10° were observed for the angle derived using the arccos 

function when the sensitive axis approaches vertical.  (Baek & Yun, 2010; Kengo et 

al., 2013). It is also self-evident that the angle derived by using the arcsin function 

suffers from similar limitations. When using a dual axis accelerometer, angle can be 

derived by using the arctan function. Although small errors (less than    ) have been 

observed for this method (Pallejà et al., 2010) it suffers from extreme sensitivity near 

     (Pallejà et al., 2010; Rodriguez-Donate et al., 2010). 

 

Like other methods reported in section 2.5.2.1 (Baek & Yun, 2010; Bakhshi et al., 

2011; Bourke et al., 2011; Caroselli et al., 2013; Fabera et al., 2013; Ha et al., 2013; 

Juan et al., 2013; Kengo et al., 2013; Myong-Woo Lee et al., 2010; Lugade et al., 

2014; Zhang et al., 2012) and 2.5.2.2 (Coulter et al., 2011; Grzeda & Fichtinger, 2010; 

Miura et al., 2011; Pallejà et al., 2010; Qilong et al., 2013; Rodriguez-Donate et al., 
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2010; Vinande et al., 2010; Watanabe et al., 2013), using an accelerometer to measure 

angle from the vertical relies on the true acceleration being negligible and are, 

therefore, only suitable for measuring angle under static or low acceleration 

conditions. Furthermore, there are significant challenges to overcome to make the 

triggering of state transitions, based on accelerometer derived angles, more robust 

because of movement variability, sensor misalignment, the true acceleration 

component, signal noise etc. Therefore, a number of methods that aim to improve the 

robustness of angle triggering, and hence the usability of the system, have been 

implemented based on the second uncalibrated angle tracking method. The method of 

ignoring readings where “the true acceleration is significant in comparison to gravity” 

provides guarantee of only measurements under static or low acceleration conditions 

will be used for angle triggering. This method has been shown to remove some 

unwanted spikes in the signal and thereby improve the robustness of angle triggering 

(Figure 4.29). Other methods implemented include:  

 

 Using the change in angle since entering a state, rather than absolute angle; 

 Requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition. 

 

Using the “change in angle since entering a state” as a trigger for state transitions 

(rather than absolute angle from the vertical) was found to provide improved 

robustness to sensor misalignment (Figure 4.25). It is also self-evident that it increases 

robustness to kinematic variability by resetting the “change in angle” to zero at the 

start of each state (movement phase). However, while requiring a given number of 

consecutive or non-consecutive valid readings before triggering a transition reduces 

the risk of early triggers (Table 4.2), it also introduces delays in triggering (Table 4.3). 

 

6.3 FSM and Setup GUI 

As discussed in Chapter 2 (sections 2.3 and 2.4), current FES systems for the upper 

limb are inflexible and insufficiently automated to support patient-specific and task-

specific FES-supported practice. This is because most FES systems are pre-
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programmed to support stimulation of particular muscle groups, with limited numbers 

of channels (see table 2.1 and section 2.2.5.3).  

 

This PhD thesis has presented a real-time control system that can be setup to support 

sequencing of stimulation to user-specified muscle groups, based on user-specified 

transition rules, inputs to which can include signals from body-worn accelerometers.  

A flexible FSM controller (see section 5.2 and 5.3) and an associated setup GUI (see 

section 5.5) have been developed that allow clinical users (e.g. physiotherapists) to set 

up different FES-assisted upper limb functional tasks and the corresponding FSM 

controllers. The aim was to provide a tool that allows clinicians to set up a variety of 

different FES assisted tasks for different patients with different levels of impairment. 

Specifically, the clinicians are allowed to set up the number of phases, the state 

transition conditions (angle thresholds, timeouts, combinational logic etc.), the 

different muscles stimulated during each phase, and stimulation parameters for each 

state (thresholds, targets, ramps etc) for the flexible FSM controller by using the setup 

GUI. The flexible FSM controller has been demonstrated using the “open a door” 

example task (see Figure 5.2) and the test results (see Figures 5.15-5.17) demonstrated 

its successful implementation. 

 

The GUI, designed to support setup of a range of tasks for patients with different 

levels of impairment should not require specialist knowledge of control engineering 

and should be easy to use, so that the assistance of a clinical engineer is not required. 

The usability aspects of the GUI design and system performance evaluation in clinical 

settings have been developed and evaluated by Christine Smith, a physiotherapist with 

many years’ experience of stroke rehabilitation. The protocol and full results are 

presented in Smith C PhD thesis, however, as a final demonstration of the 

performance of the system, the results are briefly summarised below. 
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6.4 Comprehensive testing of the FES control system for upper limb 

rehabilitation 

The clinical evaluation part of Smith’s study consisted of two parts. During the first 

part of testing (pre-deployment testing), six chronic stroke subjects were recruited to 

test the system functionality. In these experiments, system set up was performed by a 

member of the Salford research team, in a University laboratory. In the second part of 

the evaluation to demonstrate the usability of the final system, Christine Smith 

conducted a study (Smith, in preparation) in two early stroke rehabilitation settings. 

The study involved therapists using the system to set up FES-supported tasks with a 

range of patients Two physiotherapists and one therapy assistant from Salford Royal 

Foundation Trust (SRFT) and two physiotherapists from Central Manchester 

Foundation Trust (CMFT) received a half day’s training to use the system described 

in this thesis. The therapists used the system to set up and practice FES-supported 

functional tasks with acute stroke patients, spanning a range of different impairment 

levels, four patients in SRFT and two patients in CMFT.  

 

In total, seven different tasks, tailored to suit the impairment levels of the particular 

patients were used across the two studies. The functional tasks either created from 

scratch or modified for each stroke patients via using the setup GUI by the therapists. 

On average 2.75 different functional tasks were used for each recruited stroke patient.  

 

To demonstrate the performance of the system, completion rate was calculated. 

Completion rate is defined as follows:  

                            
                                             

                                        
 

 

Apart from ‘opening door’ task, the completion rates were greater than 70% for all 

tasks. The ‘opening door’ task had the lowest completion rate of 66.7%, although this 

number should be treated with caution as the total number of repetitions was small 

(only 3 attempts for this task, 2 of which were successful), and only one patient used 

this task. 11 out of 12 stroke patients were asked to try the “Sweeping coins” task, a 

task with only three phases believed to be easy task for the first use of the system. The 

completion rate for this task was 70.3%. The ‘pushing up from chair’ (tried by 4 



170 

 

patients) and ‘picking up tray’ (tried by 5 patients) tasks achieved relatively high 

completion rates, 85.2% and 84.8% respectively. The ‘answering phone’ task is 

believed as the most difficult, as it requires good coordination. However, the 

completion rate was 76.5% for this task in part due to therapist assistance to the 

patients. 

 

The completion rates are discussed in more detail in Smith C PhD thesis (Smith, in 

preparation). In brief, the lower than expected task completion rates are partly due to 

the approach used to identify angle thresholds. As discussed in section 4.2.3, initial 

angle thresholds had to be established that ensured that the transitions would be 

triggered in the majority of cases when using the angle data collected in the repeated 

trials. This was achieved by gradually decreasing the angle threshold from the value 

that corresponded to the therapist’s manual trigger. Therefore, during the first few 

attempts to a task, the angle trigger was most likely to fail until an angle threshold that 

is sufficiently low to ensure that the transition will usually occur was found. This 

process will negatively affect the completion rate for a task in practice sessions with 

small numbers of repeats, as was the case in most of the examples above. 

Despite these limitations, the final testing clearly demonstrated that the system could 

be set up by therapists with a range of patients, practicing a range of practical tasks.  

Further details are available in Smith C PhD thesis (Smith, in preparation). 
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Chapter 7 – Conclusions 

 

7.1 Summary of the research 

The overall aim of the author’s PhD was to develop improved techniques for real-time 

FSM control of upper limb FES, using multiple accelerometers for tracking upper 

limb movement and triggering state transitions. This included the development of: 

 Alternative methods for using accelerometers to capture body segment angle 

during FES upper limb rehabilitation tasks; 

 Algorithms to improve the robustness of angle triggering for state transitions. 

 A flexible FSM controller for delivering upper limb FES.  

 A GUI for guiding therapists through the setup of FSM controllers for upper 

limb functional tasks.  

 

Summary of Chapter 3 

 

Three methods have been developed for angle measurement using accelerometers: 

two uncalibrated angle tracking algorithms and a calibrated angle tracking algorithm. 

The two uncalibrated angle tracking methods are used for converting acceleration 

measurements into the sensor’s angle (or change of angle) from the vertical. The term 

‘uncalibrated’ refers to the fact that the subject is not required to make any calibration 

movements after the sensors have been donned. 

 

The first uncalibrated angle tracking method calculates the change in angle from the 

vertical by calculating the angle between the gravity vectors before and after the 

rotation, both expressed in the sensor’s coordinate frame. This has the advantage of 

not requiring careful alignment of the sensor with the anatomy. However, because 

there is no particular alignment with the anatomy, it cannot distinguish between 

different components of the change in angle, for example between rotation of the 
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long-axis of the forearm and pronation-supination. The second uncalibrated angle 

tracking method calculates the angle of the sensor’s x-axis from the vertical and 

rejects any rotation about the x-axis, which can be advantageous if the wish is to 

avoid triggering a transition as a result of pronation-supination of the forearm. 

However this requires the sensor’s x-axis to be aligned with the long axis of the 

segment. 

 

Both of the uncalibrated methods were accurate to with approximately 1° over most 

of the measurement range, with the exceptions that the errors increased when close to 

0° or 180° (but were still less than 5°). This was assumed to occur because the two 

vectors (e.g.  ̂  and     ) used in the calculation are close to being parallel and, 

therefore, any rotation out of the calibration plane produces a corresponding change in 

the angle between the two vectors. In contrast, when the two vectors are perpendicular, 

a rotation out of the calibration plane doesn’t alter the angle between the two vectors. 

Therefore this effect will be ameliorated as the two vectors move away from being 

parallel. 

 

Unlike the previous uncalibrated methods, the calibrated angle tracking method gives 

both the magnitude and the sign of the angle change in a given plane that is defined by 

a calibration movement. However, large errors occurred when        and   

     In these cases, large errors occur in     , which should be 1 or very close to 1 

for all angles. The problem is believed to do with the fact that as the two gravity 

vectors approach being parallel (     and       ), the direction of their cross 

product ( ̂) becomes very sensitive to small errors in the gravity vectors. For these 

reasons, further testing has been abandoned for the time being. 

 

Finally, a real-time auto-calibration algorithm has been developed that updates the 

gains applied to the three sensor signals (x, y and z components of acceleration) to 

compensate for calibration errors. The auto-calibration method is designed to operate 

in parallel with any of the angle tracking methods mentioned above. However, further 

development and testing are required to confirm that it works well when all three axes 

are initially out of calibration, and to test whether it can operate in real-time. 
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Summary of Chapter 4 

 

Robust angle triggering algorithms have been developed, which are based on ignoring 

bad sensor readings resulting from signal noise, jerky arm movements and other 

negative effects. The aim was to avoid incorrect FSM transition timings and hence 

poor control of FES during reaching tasks. The following methods were implemented 

and tested: 

- Using the change in angle since entering a state rather than absolute angle, 

which reduces the effects of sensor misalignments and movement variability; 

- Ignoring readings where the acceleration vector is significant in comparison to 

the gravity vector (i.e. the magnitude of the measured vector is significantly 

different from          ) 

- Requiring a given number of consecutive or non-consecutive valid readings 

before triggering a transition. 

These were implemented with the second uncalibrated angle tracking method and 

incorporated into a state-machine controller for demonstration purposes.  

 

Using the “change in angle since entering a state” as a trigger for state transitions 

(rather than absolute angle from the vertical) provides a significant advantage in terms 

of being robust to sensor misalignment. Ignoring readings where “the true 

acceleration is significant in comparison to gravity” removes some unwanted spikes 

and thereby improve the robustness of angle triggering. Requiring a given number of 

consecutive or non-consecutive valid readings before triggering a transition reduces 

the risk of early triggers. However, this introduces delays in triggering.  

 

Summary of Chapter 5 

 

A flexible FSM controller has been developed for the real-time control of FES during 

upper limb rehabilitation. In addition, a Graphical User Interface (GUI) has been 

developed which guides clinical users through the process of setting up new FSM 

controllers for different upper limb rehabilitation tasks for different patients with 

different impairments. The FSM controller has been tested using the “open a door” 
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example task. The results illustrate the functionality of the controller and also 

demonstrate its successful implementation. 

 

The usability of the system is heavily dependent on the GUI that has been developed 

for the setup of different FES assisted tasks and the corresponding FSM controllers. 

The GUI should not require specialist knowledge of control engineering and should 

be easy to use; so that the assistance of a clinical engineer is not required. 

Comprehensive user testing has been undertaken by another member of the research 

team (Christine Smith) who is a physiotherapist with many years’ experience of 

stroke rehabilitation. 

 

7.2 Achievements 

The main achievements of the work reported in this thesis can be summarised as 

follows: 

1) A flexible real-time FSM controller that can be set up for different upper limb 

functional tasks for different patients with different impairments. 

 

2) A user-friendly GUI for guiding therapists, with little or no software expertise, 

through the setup of FSM controllers for different upper limb functional tasks. 

 

3) Alternative methods for using accelerometers to track body segment angle from 

the vertical. 

 

4) A simple algorithm for overcoming the sensitivity problem that affects other 

accelerometer-based angle measurement methods. 

 

5) Methods for improving the robustness of angle triggering for state transitions.  
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7.3 Future work 

Angle tracking and triggering 

 

Although the methods developed to date have been quite successful, there is 

substantial scope for improvement. In particular, problems that warrant further 

investigation include: a) improved methods for aligning sensors with the anatomy 

and/or calibration algorithms to compensate for misalignment; b) methods for 

estimating joint angles from accelerometer data; and c) self-tuning approaches to 

angle triggering that adapt to the patient’s changing performance as the therapy 

session progresses. 

 

The first two objectives are related in the sense that both require additional 

information beyond that needed for simply measuring the segment angles from the 

vertical. This could be obtained by using a redundant set of accelerometers (i.e. more 

than one per body segment) and by making use of our knowledge of the kinematic 

constraints imposed by the joints of the arm. The research challenge would then be to 

understand how to use this additional information to solve the first two problems.  

 

A self-tuning algorithm could provide a much more natural approach to angle 

triggering that more closely mimics what a therapist would do. In other words, the 

aim would be to trigger after it is clear that the patient has achieved as much as they 

can without stimulation, but not before. This might make use of angular velocity 

information (or an equivalent) as well as angle from the vertical.  

 

However, because deriving angular velocity from the accelerometer data would 

involve numerical differentiation, any noise would be amplified. Therefore, the key to 

achieving this goal might be to make use of additional methods to improve the 

robustness of triggering and appropriate filtering to remove the noise resulting from 

numerical differentiation. 
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FES controller and setup GUI 

 

Future improvements to the FSM controller could include improvements to the 

implementation of both the stimulation profiles and the state transitions. In the first 

case, the option of including delays before stimulation ramping begins could be 

included to provide more flexibility and, hence, better coordination between 

stimulation channels in each movement phase. Also proportional control of 

stimulation could be included; in other words, allowing the stimulation profile to be a 

function of some other variable rather than time (e.g. an EMG signal). With regard to 

state transitions, a greater range of Boolean conditions could be provided; for example, 

the requirement for an accelerometer to “remain still for a given time” before a 

transition is triggered.  

 

Another improvement would be to make the current FSM controller as generic as 

possible. This would involve allowing branching/multiple paths to provide more 

flexibility and, hence, more intelligent control of a task. For example, for a reaching, 

grasp and release task, the patient may be able to decide whether they want to grasp or 

release an object. The FSM controller for this task could have two alternative 

branches when leaving the ‘reach forward’ phase (grasp an object/ release an object). 

 

Future improvements to the setup GUI could include: a) better ergonomic design; b) a 

library of pre-defined upper limb tasks, perhaps grouped according to level of 

impairment; and c) a session manager for use during therapy after setup has been 

completed. The first two would involve iterative development and user testing, 

probably driven by the physiotherapists in the research team. A session manager 

would require development of sensor based feedback of performance for both patients 

and therapists. For example, in a session manager, trunk lean could be continuously 

monitored during reaching tasks. The real-time biofeedback could be provided to 

warn the patient when they are using trunk lean to acquire the object rather than 

reaching with their arm. In this way the patient could be supported in achieving their 

therapy goals (improved arm functions). 
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