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Abstract 

Most spatial audio reproduction systems have the constraint that all loudspeakers must be equidistant 

from the listener, a property which is difficult to achieve in real rooms. In traditional Ambisonics this 

arises because the spherical harmonic functions, which are used to encode the spatial sound-field, 

are orthonormal over a sphere and because loudspeaker proximity is not fully addressed. Recently, 

significant progress to lift this restriction has been made through the theory of sound field synthesis, 

which formalizes various spatial audio systems in a mathematical framework based on the single 

layer potential. This approach has shown many benefits but the theory, which treats audio rendering 

as a sound-soft scattering problem, can appear one step removed from the physical reality and also 

possesses frequencies where the solution is non-unique. In the time-domain Boundary Element 

Method approaches to address such non-uniqueness amount to statements which test the flow of 

acoustic energy rather than considering pressure alone. This paper applies that notion to spatial audio 

rendering by re-examining the Kirchhoff-Helmholtz integral equation as a wave-matching metric, and 

suggests a physical interpretation of its kernel in terms of common acoustic power flux density 

between waves. It is shown that the spherical basis functions (spherical harmonics multiplied by 

spherical Bessel or Hankel functions) are orthogonal over any arbitrary surface with respect to this 

metric. Finally other applications are discussed, including design of high-order microphone arrays and 

the coupling of virtual acoustic models to auralization hardware. 
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1 Introduction 

Solving the problem of optimally reproducing a desired sound field by an enclosing array of 

loudspeakers typically involves integral equations, although their use is not always written explicitly. 

Classical Ambisonics uses spherical harmonics [1] precisely because they are orthonormal with 

respect to inner-product integration over a sphere and most, if not all, encoding and decoding 

methods exploit this property. This has however led to the perceived restriction that loudspeaker 

systems must also be spherical. 

 

Another key area where integral equations find application in acoustics is the conversion of the 

linearized wave equation in a volume to integral equations on a bounding surface. In particular The 

Kirchhoff-Helmholtz Boundary Integral Equation [2] (KHBIE) enables some very powerful 

mathematical modelling methods for acoustics, specifically the Boundary Element Method (BEM). It is 

often described as being a mathematical statement of Huygens’ principle (see Zotter and Spors [3] for 

a review of early works on this topic) and is usually interpreted as a combination of infinitely dense 

monopole and dipole secondary source layers on the boundary, which are capable of exactly 

reproducing a sound field in an enclosed volume. Probably the most widely cited use of the KHBIE in 

spatial audio is in its directly implemented manifestation as Wave Field Synthesis. Here it usually 

appears in its dipole-free Single-Layer Potential (SLP) form, due to practical difficulties of realizing 

broadband dipole loudspeakers. This surface of monopoles is still capable of realizing the same 

sound field within the enclosed volume as the full KHBIE; however it will also radiate additional sound 

energy back into the exterior of the array. This has implications for spatial audio systems located in 

real rooms. It also means that finding the monopole density for an arbitrary shaped array involves 

solving an inverse problem; this would not be necessary if both monopoles and dipoles were to be 

used together, since inspection of the KHBIE gives the driving functions directly. 

 

The theory of sound field synthesis is the name adopted for a recent body of work, one of the aims of 

which is to eradicate the requirement for spherical loudspeaker arrays and allow arrays of arbitrary 

geometry [4].  If the mapping onto spherical harmonic coefficients is performed on the same surface 

on which the loudspeakers are located then an inverse problem arises which has the form of an 

acoustic scattering problem involving an obstacle with a sound-soft boundary condition [5]. It is well 
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known that this problem possesses frequencies, corresponding to resonances of a hypothetical 

enclosed cavity, at which the solution is non-unique. It is therefore no surprise that the same issues 

affect sound field synthesis [3]. 

 

It is important to identify however that there is no physical scattering taking place. It is also interesting 

to note that such a formulation actually uses two surface integral equations; one being the SLP and 

the other being the spherical surface integral which is implicitly used when mode-matching exploits 

the orthogonality of the spherical harmonic functions. This is made clear in [6], which separates the 

surfaces on which: a) the loudspeakers are located, and b) the matching of spherical harmonic 

coefficients is performed. Crucially it is shown that the non-unique frequencies are associated with 

resonances of the volume enclosed by the testing surface, rather than that enclosed by the 

loudspeaker array. Appropriately Fazi and Nelson refer to this formulation as ‘Boundary Pressure 

Control’, and it is the attempt to fully characterize a sound field in a volume by only the pressure on its 

boundary which produces non-uniqueness, not the reproduction by the loudspeaker system. Similar 

issues have plagued spherical microphone arrays which aim to map an incident field onto spherical 

harmonic coefficients using only omni-directional pressure measurements [1].  

 

In BEM the CHIEF [7] and Burton & Miller [8] methods are well known approaches to respectively 

handle and avoid the issue of non-uniqueness; application of both of these to the theory of sound field 

synthesis has already been suggested [3,6] and is likely to be effective. Another interesting 

observation comes from time-domain BEM, where non-uniqueness manifests as a cause of instability. 

In the time domain, the Burton & Miller method (there called the Combined Field Integral Equation) 

can be shown to be equivalent to a boundary condition which permits energy flow out of the 

hypothetical enclosed cavity but not in [9]. Another time-domain BEM formulation, derived by applying 

the divergence theorem to instantaneous acoustic energy density in a volume, has been proven to be 

unconditionally stable [10], again emphasizing that examining acoustic energy flow may have 

advantages over examining only pressure. The authors have presented some early results showing a 

BEM method based on matching acoustic energy flow between waves [11]; at the heart of this is the 

notion that the kernel of the KHBIE can also be understood as a common-energy-flow testing metric. 

This paper will investigate the application of a similar integral operator to spherical basis functions. 
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This will first be used to derive orthogonality relations for the spherical basis functions valid on any 

surface, and the physical interpretation and potential applications will then be discussed. 

 

All of what follows will consider time-harmonic variation of sound-field quantities with angular 

frequency 𝜔 and – i𝜔𝑡 time dependence i.e. φ(𝐱, 𝑡) = 𝑒−i𝜔𝑡Φ(𝐱). The wavenumber 𝑘 = 𝜔 𝑐⁄ , where 𝑐 

is the speed of sound in the medium. 

 

2 Background 

2.1 Green’s Second Theorem and the KHBIE 

Green’s second theorem is a general theorem of vector calculus and is not specific to acoustics. It 

begins with a vector field 𝐕 with the form: 

𝐕{Φ, Ψ}(𝐲) = Φ(𝐲)∇Ψ∗(𝐲) − Ψ∗(𝐲)∇Φ(𝐲). 

(1) 

Here Φ(𝐲) and Ψ(𝐲) are two scalar fields and 𝐲 is a point in 3D cartesian space. Note Eq. (1) differs 

slightly from convention by writing a conjugate on Ψ; this makes no difference to the derivation and 

the reason for it will become clear in section 3.1. The divergence theorem is applied over a connected 

volume Ω bounded by a piecewise-smooth surface Γ: 

∬ 𝐧̂ ∙ 𝐕{Φ, Ψ}(𝐲) 𝑑Γ

Γ

= − ∭ ∇ ∙ 𝐕{Φ, Ψ}(𝐲)dΩ

Ω

. 

(2) 

Here 𝐧̂ is the surface normal unit vector at 𝐲 orientated into Ω; this is the opposite of the convention 

for the divergence theorem hence the minus sign on the right hand side. Using standard rules of 

vector calculus the divergence of 𝐕 can be shown to be: 

∇ ∙ 𝐕{Φ, Ψ}(𝐲) = Φ(𝐲)∇2Ψ∗(𝐲) − Ψ∗(𝐲)∇2Φ(𝐲). 

(3) 

If the two scalar fields Φ and Ψ are acoustic waves which satisfy the Helmholtz equation, so ∇2Φ =

−𝑘2Φ and ∇2Ψ∗ = −𝑘2Ψ∗, then the two terms cancel and ∇ ∙ 𝐕 = 0. If this holds everywhere in Ω then 

Eq. (2) reduces to: 
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∬ 𝐧̂ ∙ 𝐕{Φ, Ψ}(𝐲) dΓ

Γ

= 0. 

(4) 

The KHBIE is a special case of this equation where Ψ(𝐲) is chosen to equal 𝐺∗(𝐱, 𝐲), the conjugate of 

the free-space Green’s function 𝐺(𝐱, 𝐲) = 𝑒i𝑘𝑟 4π𝑟⁄ , where 𝑟 = |𝐲 − 𝐱| is the distance from point 𝐱 to 

point 𝐲. If 𝐱 lies outside Ω then Eq. (4) still holds. However if 𝐱 is within Ω then 𝐺(𝐱, 𝐲) is singular and 

the assumptions behind Eq. (4) break down. The solution to this is to remove it from Ω by subtracting 

a vanishingly small sphere Ω𝐱 centered on 𝐱; this introduces an additional surface Γ𝐱 = ∂Ω𝐱 (see 

Figure 1) and Eq. (4) becomes: 

∬ 𝐧̂ ∙ 𝐕{Φ, 𝐺∗}(𝐲) dΓ

Γ

+ ∬ 𝐧̂ ∙ 𝐕{Φ, 𝐺∗}(𝐲) dΓ

Γ𝐱

= 0. 

(5) 

Taking the limit as the radius of Γ𝐱 approaches zero the right hand surface integral over Γ𝐱 can be 

shown to be equal to −Φ(𝐱) (see e.g. Theorem 2.1 of [12]), producing the well known KHBIE: 

Φ(𝐱) = ∬ 𝐧̂ ∙ 𝐕{Φ, 𝐺∗}(𝐲) dΓ

Γ

 

= ∬ 𝐧̂ ∙ [Φ(𝐲)∇𝐺(𝐱, 𝐲) − 𝐺(𝐱, 𝐲)∇Φ(𝐲)] dΓ

Γ

. 

(6) 

The case where 𝐱 lies on Γ has not been specifically considered here but the principle is much the 

same. Note that it is the singularity in 𝐺 which allows Φ(𝐱) to be found; if 𝐺 was not singular then the 

integral on the right would equate to zero and no explicit information on the sound field within Ω would 

be yielded. 

 

2.2 Spherical basis function representation 

Higher Order Ambisonics [13] relies on expressing the sound field as a weighted sum of spherical 

basis functions. They are called basis functions because they form an orthonormal basis over the 

infinite domain ℝ3. These comprise a spherical harmonic function 𝑌𝑛
𝑚(𝛽, 𝛼), which is dependent on 

zenith angle 𝛽 and azimuth angle 𝛼, multiplied by spherical Bessel or Hankel function dependent on 
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the wavenumber 𝑘 and radius 𝑟. The origin of the spherical coordinate system will be taken to be the 

point 𝐱, so the definition of 𝑟 matches that used above. 

 

Three spherical basis functions are defined. The first two are: 

𝐻𝑚,𝑛
𝑖𝑛 (𝐲) = 𝑌𝑛

𝑚(𝛽, 𝛼)ℎ𝑛
𝑖𝑛(𝑘𝑟), 

(7) 

𝐻𝑚,𝑛
𝑜𝑢𝑡(𝐲) = 𝑌𝑛

𝑚(𝛽, 𝛼)ℎ𝑛
𝑜𝑢𝑡(𝑘𝑟). 

(8) 

𝐻𝑚,𝑛
𝑜𝑢𝑡 represents a diverging wave emanating outwards from a source at 𝐱. 𝐻𝑚,𝑛

𝑖𝑛  represents a 

converging wave coalescing inwards to a sink at 𝐱. ℎ𝑛
𝑜𝑢𝑡  and ℎ𝑛

𝑖𝑛 are the order 𝑛 spherical Hankel 

functions of the first and second kinds respectively. They are also complex conjugates and have been 

labeled ℎ𝑛
𝑜𝑢𝑡  and ℎ𝑛

𝑖𝑛 instead of ℎ𝑛
(1)

 and ℎ𝑛
(2)

 because propagation direction is the property of interest 

(they switch places if time harmonic variation is with 𝑒i𝜔𝑡 instead of 𝑒−i𝜔𝑡 as used here). Both 𝐻𝑚,𝑛
𝑖𝑛  

and 𝐻𝑚,𝑛
𝑜𝑢𝑡 satisfy the Helmholtz equation everywhere except at 𝐱. 

 

The third wave is often called the regular spherical basis function and is defined as follows, where 

𝑗𝑛(𝑘𝑟) is a spherical Bessel function of order 𝑛: 

𝐽𝑚,𝑛(𝐲) = 𝑌𝑛
𝑚(𝛽, 𝛼)𝑗𝑛(𝑘𝑟) =

1

2
[𝐻𝑚,𝑛

𝑖𝑛 (𝐲) + 𝐻𝑚,𝑛
𝑜𝑢𝑡(𝐲)] 

(9) 

As suggested by the relation with 𝐻𝑚,𝑛
𝑖𝑛  and 𝐻𝑚,𝑛

𝑜𝑢𝑡, this is the superposition of a wave which coalesces 

at a point and then reradiates; it can be thought of as the spherical equivalent of a standing wave. 

Consequentially the source and sink cancel out and 𝐽𝑚,𝑛 satisfies the Helmholtz equation in all of 

space. 

 

3 Orthogonality relations for spherical basis functions 

It is well known that the spherical harmonic functions are orthonormal over the surface of the unit 

sphere 𝑆. Here 𝛿𝑎,𝑏 is the Kronecker delta which equals 1 if 𝑎 = 𝑏 and is zero otherwise.  
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∬ 𝑌𝑛
𝑚(𝛽, 𝛼)𝑌𝑞

𝑝∗
(𝛽, 𝛼)dΓ = 𝛿𝑚,𝑝𝛿𝑛,𝑞

𝑆

. 

(10) 

An interesting question is whether a similar orthogonality relation might hold for the spherical basis 

functions over a surface, and whether the requirement that this surface be spherical can be relaxed. 

This latter point is of particular interest in Ambisonics since it is one of the main factors which dictates 

that spatial audio systems should be spherical. Eq. (4) is used as a starting point, inspired by its 

effectiveness in producing the KHBIE; this means that any orthogonality will be with respect to 𝐧̂ ∙ 𝐕 

rather than the standard inner product kernel Φ(𝐲)Ψ∗(𝐲). 

 

First consider the relation between a pair of regular spherical basis functions 𝐽𝑚,𝑛 and 𝐽𝑝,𝑞. Both of 

these satisfy the Helmholtz equation everywhere, therefore the result of the integral is zero for any 

choice of 𝑚, 𝑛, 𝑝, 𝑞 and Γ: 

∬ 𝐧̂ ∙ 𝐕{𝐽𝑚,𝑛, 𝐽𝑝,𝑞}(𝐲) dΓ

Γ

= 0. 

(11) 

Now consider the incoming and outgoing waves. If the source/sink point 𝐱 is not contained within Ω 

then once again the result of the integral will be zero. If on the other hand 𝐱 is contained within Ω then 

special consideration is necessary. As with the derivation of the KHBIE, Ω is modified by subtracting a 

sphere Ω𝐱 centred on 𝐱, thereby introducing an addition surface Γ𝐱 = ∂Ω𝐱 (Figure 1). Note that unlike 

the KHBIE derivation there is no restriction that Ω𝐱 be vanishingly small. 

 

Evaluating the surface integral over Γ𝐱 analytically is now the main focus. To keep the derivation as 

general as possible we will not yet stipulate whether each of the pair of waves are incoming or 

outgoing; instead this will be kept general through the use of a pair of parameters †, ‡∈ {𝑖𝑛, 𝑜𝑢𝑡}. We 

will therefore evaluate the integral of 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
† , 𝐻𝑝,𝑞

‡ } over Γ𝐱; this may be expanded as: 

𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
† , 𝐻𝑝,𝑞

‡ }(𝐲) =  𝐻𝑚,𝑛
† (𝐲)𝐧̂ ∙ ∇𝐻𝑝,𝑞

‡ ∗
(𝐲) − 𝐻𝑝,𝑞

‡ ∗
(𝐲)𝐧̂ ∙ ∇𝐻𝑚,𝑛

† (𝐲) 

(12) 
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The surface normal on Γ𝐱 is equal to the radial unit vector 𝐫̂ of the spherical coordinate system 

centered on 𝐱, hence 𝐧̂ ∙ ∇≡ ∂ ∂r⁄ . This derivative (indicated by an apostrophe) applies only to the 

radial functions (not the spherical harmonics), hence: 

𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
† , 𝐻𝑝,𝑞

‡ }(𝐲) = 𝑘𝑌𝑛
𝑚(𝛽, 𝛼)𝑌𝑞

𝑝∗
(𝛽, 𝛼) [ℎ𝑛

†(𝑘𝑟)ℎ𝑞
‡ ∗′

(𝑘𝑟) − ℎ𝑞
‡ ∗

(𝑘𝑟)ℎ𝑛
† ′

(𝑘𝑟)] 

(13) 

Since 𝑟 is constant over Γ𝐱 the radial functions may be brought outside the surface integral. This in 

turn may be re-written as an integral of over the surface of the unit sphere 𝑆 multiplied by 𝑟2, meaning 

the orthogonality in Eq.(10) may be exploited: 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
† , 𝐻𝑝,𝑞

‡ }(𝐲) dΓ

Γ𝐱

= 𝑘𝑟2 [ℎ𝑛
†(𝑘𝑟)ℎ𝑞

‡ ∗′
(𝑘𝑟) − ℎ𝑞

‡ ∗
(𝑘𝑟)ℎ𝑛

† ′
(𝑘𝑟)] 𝛿𝑚,𝑝𝛿𝑛,𝑞 . 

(14) 

Consider now the term in the bracket. If †≠‡ then, by the conjugate relation of the Hankel functions, 

ℎ𝑛
‡ ∗

= ℎ𝑛
†
 and the bracketed expression becomes ℎ𝑛

†(𝑘𝑟)ℎ𝑛
† ′

(𝑘𝑟) − ℎ𝑛
†(𝑘𝑟)ℎ𝑛

† ′
(𝑘𝑟) = 0. It is apparent 

therefore that 𝐻𝑚,𝑛
𝑖𝑛  and 𝐻𝑚,𝑛

𝑜𝑢𝑡 are orthogonal with respect to 𝐧̂ ∙ 𝐕 integrated over a spherical surface 

centered on 𝐱.  

 

It is desirable to also evaluate what the constant of orthogonality is for other possible pairings.  

Consider the case if †=‡= 𝑜𝑢𝑡. The bracketed expression now becomes ℎ𝑛
(1)(𝑘𝑟)ℎ𝑛

(2)′
(𝑘𝑟) −

ℎ𝑛
(2)(𝑘𝑟)ℎ𝑛

(1)′
(𝑘𝑟); this is recognised as a Wronskian [14], which for the pair of spherical Hankel 

functions is known to be 𝒲{ℎ𝑛
(1)(𝑘𝑟), ℎ𝑛

(2)
 (𝑘𝑟)} = − 2 i(𝑘𝑟)2⁄ . Hence the integral of 𝐧̂ ∙ 𝐕 over a 

spherical surface centered on 𝐱 for a pair of outgoing spherical basis functions 𝐻𝑚,𝑛
𝑜𝑢𝑡 and 𝐻𝑝,𝑞

𝑜𝑢𝑡 equals 

−2𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ . Finally, the case †=‡= 𝑖𝑛 equates to switching the role of the arguments in the 

Wronskian such that the bracketed expression now equates to 2 i(𝑘𝑟)2⁄ . Hence the integral of 𝐧̂ ∙ 𝐕 

over a spherical surface centered on 𝐱 for a pair of incoming spherical basis functions 𝐻𝑚,𝑛
𝑖𝑛  and 𝐻𝑝,𝑞

𝑖𝑛  

equals 2𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ . Note that these relations are independent of the radius of Γ𝐱. 

 

These results are now substituted back into the surface integral over Γ + Γ𝐱 and are summarised 

below. The integral over Γ𝐱 has been moved to the right-hand side causing a change of sign to the 

constants derived above. Because all the spherical basis functions considered satisfy the Helmholtz 
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equation in the entire enclosed domain Ω − Ω𝐱, the orthogonality properties found for Γ𝐱 also apply to 

any surface Γ which encloses 𝐱 (albeit with a change of sign). This includes the possibility to expand 

and contract Γ at will, since the integral over added or removed volume will contribute zero if it does 

not contain 𝐱 (see Figure 2). 

 

These results can be summarized as follows: 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑜𝑢𝑡 , 𝐻𝑝,𝑞

𝑜𝑢𝑡}(𝐲) dΓ

Γ

= {
2𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ if 𝐱 ∈ Ω

0 otherwise
 

(15) 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑖𝑛 , 𝐻𝑝,𝑞

𝑖𝑛 }(𝐲) dΓ

Γ

= {
−2𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ if 𝐱 ∈ Ω

0 otherwise
 

(16) 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑖𝑛 , 𝐻𝑝,𝑞

𝑜𝑢𝑡}(𝐲) dΓ

Γ

= 0. 

(17) 

In addition, from definition of 𝐽𝑚,𝑛 we have: 

∬ 𝐧̂ ∙ 𝐕{𝐽𝑚,𝑛, 𝐻𝑝,𝑞
𝑜𝑢𝑡}(𝐲) dΓ

Γ

= {
𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ if 𝐱 ∈ Ω

0 otherwise
 

(18) 

∬ 𝐧̂ ∙ 𝐕{𝐽𝑚,𝑛, 𝐻𝑝,𝑞
𝑖𝑛 }(𝐲) dΓ

Γ

= {
−𝛿𝑚,𝑝𝛿𝑛,𝑞 i𝑘⁄ if 𝐱 ∈ Ω

0 otherwise
 

(19) 

 

3.1 Acoustic Cross-Intensity 

Given the useful properties that 𝐕 demonstrates above it is interesting to consider what its physical 

interpretation could be. The details given here are not completely rigorous and are intended to be an 

overview in advance of a more detailed paper which is in preparation on this topic. The instantaneous 

acoustic intensity is the starting point here, which for a time-varying sound field is given by 𝑰(𝐲, 𝑡) =

𝑝(𝐲, 𝑡)𝒖(𝐲, 𝑡), where 𝑝 is the pressure and 𝒖 is the particle velocity. As well as stating the intensity of 

the acoustic field, it can also be understood as describing the flow of acoustic energy; to be precise it 

is the acoustic power flux density. 
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The work presented so far has however all been in the frequency domain. As discussed by Morse and 

Ingard [15] (Sec. 6.2 Pg. 250 “Complex notation”), care has to be taken when using complex time-

harmonic notation with energy measures, since there is potential for confusion between instantaneous 

and time-averaged quantities. In particular the instantaneous intensity of a real-valued time harmonic 

wave comprises a time-invariant part plus a part which oscillates at twice the frequency of the field 

quantities. Here we will only consider the time-invariant or time-averaged part 𝑰(𝐲) = Real(𝑃(𝐲)𝑼(𝐲)∗). 

In the case that the wave is real and purely time harmonic, then the complex amplitudes 𝑃 and 𝑼 

must be regarded as RMS quantities, that is the peak amplitude normalized by a factor of √2. 

 

What has been presented in previous sections has only dealt with pressure; particle velocity 𝒖 can be 

found from this using the conservation of momentum equation ρ0𝒖̇ = −∇𝑝, where ρ0 is the density of 

the medium at rest. Writing this for the complex amplitudes 𝑃 and 𝑼, the time derivative of 𝒖 becomes 

a multiplication by – i𝜔, hence 𝑼 = ∇𝑃 i𝜔ρ0⁄ . This is substituted into the definition for time-averaged 

intensity and expanded to give: 

𝑰(𝐲) = Real(𝑃(𝐲)𝑼(𝐲)∗) 

= [𝑃(𝐲)∗𝑼(𝐲) + 𝑃(𝐲)𝑼(𝐲)∗] 2⁄  

= [𝑃(𝐲)∗∇𝑃(𝐲) − 𝑃(𝐲)∇𝑃(𝐲)∗] 2i𝜔ρ0⁄  

(20) 

Consider that the total pressure 𝑃 might be the sum of two waves Φ and Ψ, i.e. 𝑃(𝐲) = Φ(𝐲) + Ψ(𝐲). 

Substituting this into Eq. (20) and expanding gives four terms: 

𝑰(𝐲) = [Φ(𝐲)∗∇Φ(𝐲) − Φ(𝐲)∇Φ(𝐲)∗] 2i𝜔ρ0⁄  

+ [Ψ(𝐲)∗∇Φ(𝐲) − Φ(𝐲)∇Ψ(𝐲)∗] 2i𝜔ρ0⁄  

+ [Φ(𝐲)∗∇Ψ(𝐲) − Ψ(𝐲)∇Φ(𝐲)∗] 2i𝜔ρ0⁄  

+ [Ψ(𝐲)∗∇Ψ(𝐲) − Ψ(𝐲)∇Ψ(𝐲)∗] 2i𝜔ρ0⁄  

= 𝑰𝜑𝜑(𝐲) + 𝑰𝜑𝜓(𝐲) + 𝑰𝜓𝜑(𝐲) + 𝑰𝜓𝜓(𝐲) 

(21) 

Here we have introduced a new quantity 𝑰𝜑𝜓 defined as: 

𝑰𝜑𝜓(𝐲) = [Ψ∗(𝐲)∇Φ(𝐲) − Φ(𝐲)∇Ψ∗(𝐲)] 2i𝜔ρ0⁄ . 

(22) 
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The definition is conjugate symmetric, meaning 𝑰𝜑𝜓 + 𝑰𝜓𝜑 is real even though 𝑰𝜑𝜓 and 𝑰𝜓𝜑 are both 

complex, and it reduces to the standard intensity of a single wave in the ‘auto’ case 𝑰𝜑𝜑. 

 

In reality, measured 𝑝(𝐲, 𝑡) and 𝒖(𝐲, 𝑡) will typically be stochastic non-periodic signals, which may be 

assumed to be stationary and ergodic. In this case time-averaged intensity 𝑰(𝐲, 𝜔) can be thought of 

as a statistical function akin to a power spectra (indeed in the two-microphone method it is calculated 

from a cross-power spectra [16]), only here measuring acoustic power flux density through space 

instead of power in a 1D signal. Building on this interpretation, the result of incoherent power addition 

between Φ and Ψ would be 𝑰𝜑𝜑 + 𝑰𝜓𝜓. Hence it follows that the cross-intensity terms 𝑰𝜑𝜓 and 𝑰𝜓𝜑 

must in some way measure the coherent or common power flux density that exists between the 

waves Φ and Ψ. Even if Φ and Ψ are time harmonic with the same frequency (and therefore 

inherently synchronized in time), 𝑰𝜑𝜓 provides a measure of whether they are propagating in the same 

direction. Based on these ideas and properties, it seems appropriate to name the quantity 𝑰𝜑𝜓 the 

acoustic ‘cross-intensity’, analogous to how cross-power spectral density measures the common 

energy between two signals. 

 

With regard to the physical interpretation of 𝐕(𝐲), it is apparent that 𝐕(𝐲) = −2i𝜔ρ0𝑰𝜑𝜓(𝐲), hence 𝐕(𝐲) 

may also be interpreted as a measure of common acoustic power flux density, albeit one scaled by 

the factor −2i𝜔ρ0. Eq. (4) with Φ = Ψ therefore has the physical interpretation that the acoustic power 

flux into and out of a source free region is zero, which is as expected since no losses were included in 

the definition of the medium. Examining Eq. (4) with Φ ≠ Ψ has the interpretation that common 

acoustic power flux (between Φ and Ψ) into and out of a source free region is also zero.  

 

The orthogonality results presented in the previous section can be interpreted in terms of common 

acoustic power flux. Eq. (17) states that a converging and a diverging wave with the same origin have 

no acoustic power flux in common through a bounding surface, which makes conceptual sense since 

the energy flow for the two waves is in opposite directions. Eq. (15) and Eq. (16) state that spherical 

basis functions of different orders have no acoustic power flux in common through a bounding 

surface; this is essentially the orthogonality (with respect to angle) of the spherical harmonic functions 

projected out onto the bounding surface. Finally, they also state that the acoustic power flux for a 
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single wave (𝑚 = 𝑝 and 𝑛 = 𝑞 ‘auto’ case) is the same regardless of the surface through which it is 

measured. This too makes conceptual sense; when a surface is further away the power flux density 

spreads out over it such that the total power flux (with respect to solid angle) is unchanged. 

 

3.2 A ‘wave-matching’ metric 

Given the orthogonality relations above and the interpretation that 𝐕 is some measure of similarity 

between waves in terms of common energy, it follows that this can perhaps be used to match terms in 

a spherical basis function representation of a wave. Φ will be regarded as the wave on which 

information is sought and Ψ is the ‘testing wave’ which is chosen based on exactly what information 

about Φ is required. It is assumed that Φ  arises due to sources outside Ω (Williams [14] would call 

this an ‘interior problem’) so is non-singular throughout and may be expressed as a weighted sum of 

the regular spherical basis functions 𝐽𝑚,𝑛: 

Φ(𝐲) = ∑ ∑ Φ𝑚,𝑛 𝐽𝑚,𝑛(𝐲)

𝑛

𝑚=−𝑛

∞

𝑛=0

 

(23) 

Φ could be all (or a component) of the sound field to be reproduced, or the sound field radiated by 

one (or a group of) loudspeakers outside the reproduction region Ω. In either case interest lies in 

finding the coefficients Φ𝑚,𝑛 which represent Φ, either to encode it or to setup a matrix inversion 

problem such that it might be decoded for playback on a system of loudspeakers. 

 

A first guess for an effective testing function might be one of the regular spherical basis functions 𝐽𝑝,𝑞, 

since those are the terms in the series expression for Φ which the aim is to match. However, as was 

seen in Eq. (11) the integral of 𝐧̂ ∙ 𝐕 between two regular spherical basis functions vanishes over any 

closed surface and no explicit information is yielded. Recalling instead the observation that it was the 

singularity in 𝐺 which was responsible for producing the Φ(𝐱) term in the KHBIE, another possibility is 

to choose Ψ to be one of the singular spherical basis functions 𝐻𝑚,𝑛
𝑖𝑛  or 𝐻𝑚,𝑛

𝑜𝑢𝑡. On the understanding 

that 𝐕 is some measure of similarity between waves, then a first choice would be 𝐻𝑚,𝑛
𝑖𝑛 , since it would 

mean matching the sound field as it enters the domain rather than as it exits (which is causally a 
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secondary effect). Combining the definition for Φ in Eq. (23) with the orthogonality relation in Eq. (18) 

gives: 

∬ 𝐧̂ ∙ 𝐕{Φ, 𝐻𝑚,𝑛
𝑖𝑛 }(𝐲) dΓ

Γ

= {
− Φ𝑚,𝑛 i𝑘⁄ if 𝐱 ∈ Ω

0 otherwise
 

(24) 

This is a powerful result. It states that the acoustic power flux in common between Φ and 𝐻𝑚,𝑛
𝑖𝑛  over Γ 

allows the component Φ𝑚,𝑛 of  𝐽𝑚,𝑛 present in Φ to be computed. This provides a means to find the 

spherical harmonic coefficients of a wave using data sampled on an arbitrary surface Γ which does 

not need to be spherical. The only restrictions are that it must satisfy the usual conditions required by 

the divergence theorem and that it must contain the origin of the spherical coordinate system 𝐱. 

 

3.3 Equivalence with the KHBIE 

The KHBIE evaluates Φ(𝐱) whereas Eq. (24) produces a spherical harmonic coefficient. To show they 

are equivalent the first step is to examine the representation of Φ(𝐱) as a sum of spherical Bessel 

functions. This involves evaluating 𝑗𝑛(0), which equals 1 for 𝑛 = 0 and is zero otherwise. The only 

valid value of 𝑚 for 𝑛 = 0 is also zero. 𝑌0
0(𝛽, 𝛼) = 1 √4π⁄ , hence Φ0,0 = √4π Φ(𝐱). The integral 

equation to find Φ0,0 involves matching with 𝐻0,0
𝑖𝑛 (𝐲) = i𝑒−i𝑘𝑟 √4π𝑘𝑟⁄ = − √4π𝐺∗(𝐱, 𝐲) i𝑘⁄ . Substituting 

these two statements into Eq. (24) and dividing both sides by − √4π i𝑘⁄  gives the KHBIE of Eq. (6). It 

can therefore be stated that another interpretation of the KHBIE is that it measures the common 

acoustic power flux between the sound field Φ and a converging spherical wave which coalesces at a 

sink at 𝐱. 

4 Applications 

Equation (24) uses both pressure Φ and the surface-normal component of pressure gradient 

∂Φ ∂𝑛⁄ = 𝐧̂ ∙ ∇Φ to map the wave Φ onto its representation as a weighted sum of spherical basis 

functions; this allows it to avoid the non-unique frequencies encountered with Boundary Pressure 

Control. As mentioned in the introduction, the Burton-Miller method [8] overcomes an equivalent non-

uniqueness issue in BEM, and it too does so by using Φ and ∂Φ ∂𝑛⁄ . In that, the contribution of Φ and 

∂Φ ∂𝑛⁄  are respectively weighted by 1 and a position-invariant coupling coefficient, which is usually 
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chosen to be imaginary. Eq. (24), in contrast, weights both Φ and ∂Φ ∂𝑛⁄  by position dependent 

quantities; specifically Φ by ∂Ψ ∂𝑛⁄ ∗ (𝐲) and ∂Φ ∂𝑛⁄  by −Ψ∗(𝐲), where Ψ(𝐲) is a ‘testing wave’ 

representing the propagation mode of interest. The key question therefore, in considering the impact 

of the results in section 2.2, is what advantages this new formulation offers over both Boundary 

Pressure Control and the Burton-Miller approach. 

 

4.1 Sound Field Synthesis 

The transfer of the Burton-Miller method to address the non-uniqueness issue in sound field synthesis 

has already been suggested by Zotter & Spors [3]. Fazi and Nelson suggested a similar formulation in 

section 4.5 of [6], and additionally note that the coupling coefficient could be varied spatially, thought 

they give no details therein as to what form this variation might take or what benefits it might have. 

Physically they interpret the formulation as a scattering problem with an impedance boundary 

condition; mathematically this is correct, but once again results in the problem of sound field synthesis 

being discussed via an analogy. It is the authors’ opinion that the physical interpretation introduced 

herein, based on acoustic energy flow, is more directly representative of the spatial audio 

reproduction problem. Note that intensity has also been used in a different way in Wave Field 

Synthesis as a secondary-source selection criterion [17]; that technique should not be confused with 

the approach considered herein. 

 

The orthogonality relations derived in section 2.2 hold over surfaces of arbitrary shape, and this 

suggests that loudspeakers needn’t be constrained to lie on a spherical surface centered on the 

listener. More subtly, it also says that if cross-intensity is used as the testing metric on the boundary 

of the listening area then the result is independent of the choice of that boundary, so long as it 

contains the listening position 𝐱. Mathematically this means that this hypothetical boundary may be 

deformed at will to whatever geometry makes the problem easiest to evaluate.  

 

Consider for example a scenario where the listener is surrounded by a finite number of discrete 

loudspeakers. According to linear superposition, the sound radiated by each of these may be 

considered independently. It is therefore interesting to consider how a single monopole loudspeaker 

located at point 𝒍 radiates sound to a listener at point 𝐱. Full details are given in the appendix, but the 
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outline is as follows. Equation (24) will be used to find the coefficients Φ𝑚,𝑛, which represent the 

sound radiated by the loudspeaker as a weighted sum of spherical basis functions centered on 𝐱 (as 

Eq. (23). The surface Γ, on which the cross-intensity metric is evaluated, is (as usual) initially 

assumed to be the boundary of the listening area inside the radius of the loudspeakers. It may 

however, without changing the value of the integral, be deformed outwards until passes the 

loudspeaker, leaving it excluded by a small sphere Γ𝒍, and expands to become a sphere Γ∞ of infinite 

radius (see Figure 3). It is possible to show, using the large argument approximation for the spherical 

Hankel functions, that the integral over Γ∞ equals zero. If the loudspeaker is regarded as a monopole, 

then evaluation of the integral over Γ𝒍 produces the Addition Theorem [14], which is the basis of 

nearfield-compensated higher-order Ambisonics. 

 

In some senses this result takes us back to the starting point of the investigation. The theory of sound 

field synthesis was devised in part to avoid the matrix inversion issues which arise from the standard 

mode matching, but unfortunately gave rise to non-unique frequencies due to the use of Boundary 

Pressure Control. Here an attempt to circumvent that issue by considering acoustic energy flow has 

led back to a standard mode-matching formulation. The result should however be no surprise. In 

section 8.3.1 of [14] Williams already showed the equivalence between the Addition Theorem and the 

KHBIE for a spherical surface centered on 𝐱; this work has extended that to arbitrary surfaces. Nicol 

and Emerit [18] also derived the classical Ambisonic encoding equations from the KHBIE, starting 

with a similar process, then taking the limit as the point source moved away such that the radiated 

field at 𝐱 approximated a plane wave. A useful formulation might arise if the orthogonality relations in 

section 2.2 were applied to a continuous source density; however that remains as future work. 

 

4.2 Design of microphone arrays 

Standard spherical microphone arrays using a single layer of omni-directional capsules can also 

suffer from non-unique frequencies [1]. Use of directional capsules can overcome this, and as Fazi & 

Nelson discuss in section 4.5 of [6], this is equivalent to using a Burton-Miller type testing scheme. 

 

Equation (24) in contrast suggests a microphone array where the pressure and its gradient are 

captured separately and weighted in a position dependent way. This also avoids the issue of non-



Jonathan A. Hargreaves 

17 

 

unique frequencies, plus it also removes the restriction that the array must be spherical. An interesting 

feature is that Eq. (17) suggests that such an array (with a converging wave used for testing) would 

be insensitive to sound emanating from its center (i.e. scattering from the array hardware), since that 

is described purely in terms of diverging waves. Similar questions were addressed by Hulsebos et al 

[19] (albeit for the 2D KHBIE) and this paper generalizes their findings. Their Eq. (34) is essentially 

equivalent to Eq. (24) herein, though it is derived in a way which constrains the microphones to lie on 

a circle (so a sphere in 3D) and they do not identify that the denominator in their expressions is a 

Wronskian, so can therefore be re-written in a simplified form. Their work on linear microphone arrays 

(e.g. their Eq. (20) and Fig. 7) is also very closely linked to the formulations proposed herein. In 

particular they also choose position dependent weightings for their measurements of Φ and ∂Φ ∂𝑛⁄ , 

and these are in fact scaled versions of ∂Ψ ∂𝑛⁄ ∗ (𝐲) and −Ψ∗(𝐲) respectively, where Ψ is a plane 

wave propagating in the direction of interest. It is apparent therefore that the linear microphone arrays 

suggested by Hulsebos et al also compute an integral of cross-intensity between a physical sound 

field (sensed by the microphones) and a testing wave of interest. Their simulations also demonstrate 

the effectiveness of cross-intensity (compared to pressure or particle velocity alone) in discriminating 

between waves propagating forward and backward with respect to the array normal vector. 

 

Alternatively, Eq. (11) and Eq. (18) suggest that if a regular spherical basis function was used as the 

testing wave, then it would be possible to build a microphone ‘tent’ which was sensitive only to sound 

created from within it, thereby allowing the spatial radiation (or scattering) of sources to be 

characterized in situ. This ability to eliminate room effects is well known for standard measurements 

of radiated sound power using an enclosing surface of intensity samples [20]. However for source (or 

scattering) directivity measurements it has only been achieved with spherical double layer 

microphone arrays [14,21]; this work allows extension of that to other shaped enclosing surfaces. 

 

All of these applications however assume that the surface-normal pressure gradient of  Φ can 

somehow be captured adequately, either using pressure gradient transducers or a double layer array 

of microphones. In either case, this would double the number of sensors required and worsen the 

noise floor of the device, which would likely be a limitation in real-world implementations. 
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4.3 Coupling to virtual acoustic models 

The statements derived in section 3 may also find application in coupling virtual acoustic models to 

auralization hardware. Outputting the audio to be reproduced in an Ambisonic format is attractive 

because it is independent of the reproduction system which will ultimately be used for playback, be it 

using a loudspeaker array or binaural. In FDTD this mapping is often achieved by simulating 

microphone arrays, so Eq. (24) should prove useful since it allows the measurement surface to be 

made cubic and aligned to the spatial grid, where pressure and its gradient are readily available. 

 

In standard BEM, elements are usually small with respect to wavelength, so can be approximated by 

monopoles and mapped on to spherical harmonic expression using the Addition Theorem. There is 

however an emerging variant called Numerical-Asymptotic Hybrid BEM [22], which has potential to be 

extremely useful for acoustic simulation since its computational cost grows only very slowly (if at all) 

with frequency (unlike conventional BEM where the computational cost and storage grows with 

frequency to the power four). This method uses elements which are large with respect to wavelength, 

on which the interpolation functions are usually solutions to the Helmholtz equation (e.g. plane waves) 

multiplied by piece-wise polynomials (see e.g. Figure 4, which shows the scattering from an 

interpolation function comprising a plane wave multiplied by a triangle function). The scattering from 

these can be approximated effectively by neither a monopole nor a plane wave, so standard 

Ambisonic encoding techniques cannot be applied. Eq. (24) however could be readily applied, since 

the test surface Γ could be chosen to be the same one on which the BEM interpolation functions are 

defined. Evaluating this integral with each interpolation function in turn (in place of Φ) will produce a 

matrix of coefficients which directly maps the BEM discretization coefficients onto a spherical 

harmonic description of the sound field at a chosen listening point. This would allow Hybrid BEM 

models of rooms to be auralized in 3D. 

5 Conclusions 

Motivated by issues of non-uniqueness which arise when attempting to map spatial audio fields onto a 

spherical harmonic representation using pressure only, this paper has investigated the properties of 

the spherical basis functions within integrals with the form of the Kirchhoff-Helmholtz Boundary 

Integral Equation (KHBIE). It has been shown that, further to the commonly known orthogonality of 
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the spherical harmonic functions over a sphere, the spherical basis functions (which are each 

individually solutions of the Helmholtz Equation) are orthogonal over any surface with regard to this 

form of integral. The physical interpretation of this has been discussed and a new quantity acoustic 

‘cross-intensity’ has been proposed, allowing the kernel of the KHBIE to be interpreted as a measure 

of common energy flow. Finally the KHBIE has been shown to be equivalent to integrating the cross-

intensity between the wave of interest and a time-reversed monopole contracting to coalesce at a sink 

located at the point where pressure is desired to be known. Further applications of these concepts 

have been discussed, including design of microphone arrays and coupling of emerging virtual 

acoustic models to auralization systems. 
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8 Appendix – alternative derivation of the Addition Theorem 

The addition theorem [14] describes the sound radiated by a monopole at point 𝒍 in terms of spherical 

basis functions centered on another location 𝐱. It is usually written as: 

Φ(𝐲) = G(𝒍, 𝐲) =
𝑒i𝑘|𝐲−𝒍|

4𝜋|𝐲 − 𝒍|
= i𝑘 ∑ 𝑗𝑛(𝑘𝑟)ℎ𝑛

𝑜𝑢𝑡(𝑘𝑟𝑙) ∑ 𝑌𝑛
𝑚(𝛽, 𝛼)𝑌𝑛

𝑚∗(𝛽𝑙 , 𝛼𝑙)

𝑛

𝑚=−𝑛

∞

𝑛=0

 

 (25) 

Here (𝑟, 𝛽, 𝛼) describe the location of 𝐲 relative to 𝐱, and (𝑟𝑙 , 𝛽𝑙 , 𝛼𝑙) the same for 𝒍 relative to 𝐱. It may 

also be written in the form of Eq. (23), a weighted sum of regular basis functions, where the 

summation weights Φ𝑚,𝑛 = i𝑘𝐻𝑚,𝑛
𝑖𝑛 ∗

(𝒍), an incoming spherical basis function (with its origin at 𝐱) 

sampled at 𝒍 and multiplied by i𝑘. In what follows, use will also be made of spherical basis functions 

centered on 𝒍; these are indicated by a vertical bar and the subscript 𝒍. In this coordinate system Φ(𝐲) 

can be simply represented as an zeroth order outgoing spherical basis function: 

Φ(𝐲) = G(𝒍, 𝐲) = i𝑘𝐻0,0
𝑜𝑢𝑡|

𝒍
(𝐲) √4𝜋⁄ = i𝑘ℎ0

𝑜𝑢𝑡(𝑘|𝐲 − 𝒍|). 

(26) 

The orthogonality relations derived earlier will now be used to give an alternate derivation of the 

addition theorem. A natural first choice for the testing surface is one which surrounds 𝐱 but not 𝒍, 

however this may be expanded outwards without changing the result of the integral. The resulting 

scenario is depicted in Figure 3. Γ∞ is a large spherical surface with radius tending to infinity and Γ𝒍 is 

a small spherical surface centered on 𝒍; this is necessary because Φ(𝐲) is singular at 𝒍 and must be 

excluded the contained volume Ω by a spherical surface Γ𝒍 centred on 𝒍. The integral in Eq. (24) 

computed over Γ∞ ∪ Γ𝒍 gives the value of Φ𝑚,𝑛, here negated and conjugated because the order of the 

arguments in 𝐕 has been switched (𝐕{𝐻𝑚,𝑛
𝑖𝑛 , Φ} = −𝐕∗{Φ, 𝐻𝑚,𝑛

𝑖𝑛 }): 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑖𝑛 , Φ}(𝐲) 𝑑Γ

Γ∞∪Γ𝒍

= −[Φ𝑚,𝑛 i𝑘⁄ ]
∗
. 

(27) 

Consider first the integral over Γ∞. Since Φ is a diverging wave and 𝐻𝑚,𝑛
𝑖𝑛  is a converging wave, it may 

be expected from Eq. (16) that the integral above will be equal to zero, however care is required 

because the origins of the two waves are not the same. Since 𝑟 is very large on Γ∞ the large 
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argument approximation ℎ𝑛
(2)(𝑘𝑟) ≈ i𝑛ℎ0

(2)(𝑘𝑟) may be employed, giving 𝐻𝑚,𝑛
𝑖𝑛 (𝐲) ≈ i𝑛ℎ0

(2)(𝑘𝑟)𝑌𝑛
𝑚(𝛽, 𝛼). 

It may also be approximated that |𝐲 − 𝒍| ≈ 𝑟 − 𝐫̂ ∙ 𝒍, where𝐫̂ is a unit vector pointing in the direction of 

increasing 𝑟 at 𝐲. Applying this to the oscillatory component of ℎ0
(1)(𝑘|𝐲 − 𝒍|), but not to the 

denominator since 𝑟−1 ≈ (𝑟 − 𝐫̂ ∙ 𝒍)−1 for large 𝑟, gives Φ(𝐲) = i𝑘𝑒−i𝑘𝐫̂∙𝒍ℎ0
(1)(𝑘𝑟). Putting this together 

and noting that the 𝐧̂ ∙ ∇ derivatives on Γ∞ are purely radial gives: 

𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑖𝑛 , Φ}(𝐲)  ≈ i𝑛−1𝑘 𝑌𝑛

𝑚(𝛽, 𝛼)𝑒i𝑘𝐫̂∙𝒍 [ℎ0
(2)(𝑘𝑟)ℎ0

(1)∗′
(𝑘𝑟) − ℎ0

(1)∗
(𝑘𝑟)ℎ0

(2)′
(𝑘𝑟)] = 0 

(28) 

Consequentially the integral over Γ∞ equates to zero. 

 

The integral over Γl may be re-expressed in spherical basis functions centred on 𝒍; this was already 

done for Φ(𝐲) above. The testing wave 𝐻𝑚,𝑛
𝑖𝑛  is non-singular in the region Ω𝒍 contained within Γl hence 

may be represented by a weighted sum of regular spherical basis function centred on 𝒍: 

𝐻𝑚,𝑛
𝑖𝑛 (𝐲) = ∑ ∑ H𝑚,𝑛,𝑝,𝑞

𝑝

𝑞=−𝑝

∞

𝑝=0

𝐽𝑝,𝑞|
𝒍
(𝐲) 

(29) 

It follows that the integral over Γl may be expanded into a weighted sum of integrals between 𝐽𝑝,𝑞|
𝒍
(𝐲) 

terms and Φ(𝐲) = i𝑘𝐻0,0
𝑜𝑢𝑡|

𝒍
(𝐲) √4𝜋⁄ . Each of these may be evaluated according to the process in 

section 3 as −𝛿0,𝑝𝛿0,𝑞 i𝑘⁄ . Finally it may also be shown that H𝑚,𝑛,0,0 = √4𝜋 𝐻𝑚,𝑛
𝑖𝑛 (𝒍) (see section 3.3). 

Putting this all together gives: 

∬ 𝐧̂ ∙ 𝐕{𝐻𝑚,𝑛
𝑖𝑛 , Φ}(𝐲) 𝑑Γ

Γ𝒍

=
i𝑘

√4𝜋
∑ ∑ H𝑚,𝑛,𝑝,𝑞

𝑝

𝑞=−𝑝

∞

𝑝=0

∬ 𝐧̂ ∙ 𝐕 {𝐽𝑝,𝑞|
𝒍
, 𝐻0,0

𝑜𝑢𝑡|
𝒍
} (𝐲) 𝑑Γ

Γ𝒍

 

= −
i𝑘

√4𝜋
∑ ∑ H𝑚,𝑛,𝑝,𝑞

𝑝

𝑞=−𝑝

∞

𝑝=0

𝛿0,𝑝𝛿0,𝑞

i𝑘
 

= − H𝑚,𝑛,0,0 √4𝜋⁄  

= −𝐻𝑚,𝑛
𝑖𝑛 (𝒍). 

(30) 

Equating this with Eq. (27) gives [Φ𝑚,𝑛 i𝑘⁄ ]
∗

= 𝐻𝑚,𝑛
𝑖𝑛 (𝒍), hence Φ𝑚,𝑛 = i𝑘𝐻𝑚,𝑛

𝑖𝑛 ∗
(𝒍) completing the 

derivation. 
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9 Collected Figures 

 

Figure 1: Geometry showing how the singularity at 𝐱 is removed from the domain Ω. 

 

 

Figure 2: Changing the size of the domain Ω has no effect so long as it still contains 𝒙. In this diagram 

the region Ω2\Ω1 is source-free, so the surface integral over Γ2 equals the surface integral over Γ1. 

 

 

Figure 3: Evaluating the sound radiated from a loudspeaker at 𝒍 to a listener at 𝐱 
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Figure 4: Scattered pressure from a hybrid basis function defined on a square element which is large 

w.r.t. wavelength (side view). Inset: Pressure on element (top view). 

 


