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Abstract  

This thesis details an exploration of the behaviour of spatial optical solitons (self-

collimated, self-stabilising light beams) interacting with the interface between classes of 

nonlinear dielectric materials. 

Chapter 1 gives the theoretical background to the thesis by introducing the soliton concept, 

material interfaces and the Helmholtz model.  

The second chapter discusses the reflection and refraction characteristics of soliton beams 

incident on the planar boundary between dissimilar cubic-quintic materials.  The 

deployment of Helmholtz soliton theory allows for the simultaneous consideration of: (i) 

arbitrary angles of incidence, reflection and refraction (relative to the interface), and (ii) 

finite beam waists (as opposed to infinitely-wide plane waves).  Despite an abundance of 

literature concerning solitons at interfaces, there appears to be no published research 

addressing refraction in the presence of cubic-quintic optical nonlinearity (and certainly 

none in arbitrary-angle contexts).  Excellent agreement is generally found between 

theoretical predictions from a generalised Snell’s law and results from extensive computer 

simulations.   

In Chapter 3, these novel analyses have been complemented by further investigations into 

other fundamental aspects of optical refraction, namely Goos-Hänchen shifts and critical 

angle prediction.  Both aspects are the first of their kind in the cubic-quintic regime. 

The fourth chapter considers surface wave propagation along the interface between two 

dissimilar power-law materials; this research has already contributed to a published peer 

reviewed paper [J. M. Christian et al., "Helmholtz bright spatial solitons and surface waves 

at power-law optical interfaces,"  Journal of Atomic, Molecular & Optical Physics 2012 

(2012), art. no. 137967].  The chapter also expands upon that paper by giving a more 

detailed account of surface wave stability properties. 

Chapter 5 provides an in-depth computational study into beam propagation in coupled 

waveguide arrays (materials whose refractive index is periodically patterned) and there 

appears to be a link between the beam's critical angle and the depth of the modulation of 

the array. 
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The thesis concludes with a summary of findings and suggestions surrounding the 

implications of this novel research.  
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1. Introduction 

This thesis explores the behaviour of Helmholtz solitons (self-collimating, self-stabilising 

beams of light) at a variety of material boundaries.  

The research in that which follows has only been possible because of the nature of the 

materials considered – they are all nonlinear optical materials.  This means that the 

polarisation (dipole moment per unit volume) of the materials depends on the field strength 

of the applied optical field (this is discussed further in section 2.1.1 and see [1] for more 

information).  This in turn means that the refractive index of the medium is dependent on 

the intensity of the beam propagating through it, and it is this key feature which leads to 

the existence of optical solitons and the Kerr effect, see section 1.1 for further discussion 

of this.  Solitons are ubiquitous in nature [2, 3], this means that wherever an object or 

material has an intensity dependent refractive index, solitons can exist. 

The materials which have been investigated in the following chapters include; cubic-

quintic (examples of which include semiconductors AlGaAs [4], doped glasses CdSxSe1-x 

[5, 6], the polydiacetylene para-toluene sulfonate or ‘P S’ -conjugated polymer [7-9], 

chalcogenide glass Ag-As-Se [10-12], and transparent optical materials [13]), power-law 

(a more generalised example of a Kerr material, have been shown to exist in 

semiconductors, InSb [14] and GaAs/GaAlAs [15], doped filter glasses CdSxSe1-x [16] and 

liquid crystals such as MBBA [17]) and coupled-waveguide arrays (example of solitons in 

materials with CWA properties include long proteins [18], 1d ionic crystals [19] and 

electrical lattices [20]). 

This thesis marries analytical and numerical approaches in the investigation of soliton 

behaviour at nonlinear interfaces – an area of optics which still remains relatively under 

investigated.  The study is important in that it will give us a better understanding of the 

properties of solitons and the materials through which they travel in advance of their 

further use in optical technologies [21-31].  This work means that we can identify potential 

pitfalls in the development of such technologies, including data transfer and all optical 

switching [3] without the need for more extensive (and costly) physical experiments. 

This study is also novel in that it calls for the use of the nonlinear Helmholtz approach to 

modelling soliton behaviour.  Using the Helmholtz equation over the nonlinear 

Schrödinger equation as has been done elsewhere [32-43], provides more robust results 
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and gives the opportunity to explore soliton properties when they propagate at arbitrary 

angles - the advantages of Helmholtz soliton theory will be given in 1.3. 

1.1 Spatial optical solitons 

Spatial optical solitons are beams of laser light that can propagate in nonlinear optical 

materials, as mentioned, a material whose refractive index has a local intensity-dependent 

contribution.  They are self-collimating, i.e. they evolve with a stationary intensity profile 

and uniform phase fronts, and self-stabilising in that they are robust against perturbations.  

These two key properties mean that solitons could be used to carry bits of data in future 

optical devices [21-31]. 

The self-focusing (and self-defocusing) of continuous wave (CW) beams in a bulk 

nonlinear medium has been the subject of a number of earlier studies [2, 44, 45].  A spatial 

soliton is formed when an equilibrium point is found between the nonlinear effects of the 

medium and the diffractive effects of the beam.  This is highlighted in the figure below: 

 

Figure 1 Showing how the equilibrium point between the focusing of the material and the diffraction of the beam 

lead to a spatial soliton. 
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The formation of a soliton is possible in a nonlinear medium (such as a Kerr type material) 

because of the intensity dependence of the medium’s refractive index.   his acts like a 

lens, causing the beam to focus, overcoming its natural tendency to diffract.  This system 

is a result of its own optical waveguide since the light is confined (‘trapped’) to the high-

index region because of the balance created by the conditions found in the system[46].  

Before this response was discovered, this type of waveguide phenomenon was frequently 

purposely created in linear systems.  This was done by introducing an increasing refractive 

index in the transverse region occupied by the beam [46]. 

The work in this thesis explores the behaviour of beams created by the self-focusing of 

continuous wave beams, i.e. bright spatial solitons.  While properties of beams created by 

self-defocusing (dark solitons) are certainly of interest (see here [35, 38, 43]) the 

exploration of their behaviour in nonlinear systems is beyond the scope of this thesis. 

1.2 Geometries: single- and multi-interface problems 

The work in this thesis is based on two different types of interfaces.  The first introduced 

are single interfaces, which appear in chapters 2, 3 and 4.  The single interface is a result of 

two adjoining dissimilar materials, that is, two materials with uniform nonlinear refractive 

index are either side of the interface.  Interfaces of this type have been investigated in the 

past [36, 40, 41, 43, 47-50], and a variety of interface phenomenon seen at them, including 

Goos-Hänchen shifts [36, 42, 47] and surface waves [36, 51, 52].  In chapter 5, the 

interface investigated is a multi-interface [53-55], which means that the first material is 

similar to those discussed above, however, the second medium is a coupled waveguide 

array.  The beam propagating from medium 1 to medium 2 will experience multiple 

changes in waveguide, hence multi-interface.  Figure 2 highlights these two situations 

below:   
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Figure 2 Showing the difference between single- and multi-interface problems. 

1.3 The role of Helmholtz modelling 

Undoubtedly the most popular method of modelling the propagation of spatial solitons is 

the nonlinear Schrödinger (NLS) equation.  This type of modelling is exhibited [47-50, 56] 

and explained [1] in many publications, despite its inherent disadvantages.  The NLS 

equation is not the only way to model beams of this nature; the nonlinear Helmholtz 

(NLH) approach, while remaining less commonly used, is developing a reputation of 

producing more reliable and less restrictive results. 

The NLH equation, first used for modelling solitons in [34], has been used extensively in a 

variety of soliton based investigations [32, 34, 36, 37, 39-43].  The intrinsic advantages of 

the NLH equation over the NLS equation are numerous and have led to its use in this 

study.  These advantages will be set out here. 

All studies exploring soliton behaviour which use the NLS as their governing equation 

require the implementation of paraxial approximations [47, 48].  Such a modelling 

approach leads to a number of physical limitations implicit in the governing equation, and 

restricts the general validity of conclusions that may be drawn about the refraction 

properties of nonlinear beams.  The NLS equation forces the assumption of the following 

three criteria: 

 

 



5 

 

i. the width of the beam is broad in comparison to the carrier wavelength; 

ii. the beam is of moderate intensity; 

iii. the beam must propagate very close to the reference direction. 

In this research programme, Helmholtz soliton theory has been deployed to relax the third 

restriction: broad beams of moderate intensity may now propagate at arbitrary angles of 

incidence, reflection and refraction with respect to the interface.  This intrinsic advantage 

of the NLH equation allows for a study of wider scope, and one which more accurately 

reflects the actual properties of solitons in the physical world, and theoretical and 

computational models need to account for this.  The following section explains how we 

can reach the nonlinear Helmholtz governing equation from first principles.  

1.4 Nonlinear Maxwell's equations 

As has been identified, the use of Helmholtz soliton theory has intrinsic advantage over 

other approaches.  In this section, it will be shown how to arrive at the nonlinear 

Helmholtz equation used throughout this thesis from first principles. 

For a dielectric medium where B H , Maxwell's equations may be written as: 

 ,
t




 


D
B  (1.1) 

 0, D  (1.2) 

 ,
t


  



B
E  (1.3) 

 0, B  (1.4) 

where Ẽ is the electric field vector, B  is the magnetic field vector, D  is the electric 

displacement vector, H is the magnetic field strength vector,  is the permeability of free 

space and t is time.  In deriving a wave equation for the dielectric field, Ẽ and B  are 

decoupled as a first step.  This can be achieved by taking the curl of equation (1.3) and 

substituting (1.1): 
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Now using an operator identity from vector calculus, namely 

     2 ,    E E E  (1.7) 

it follows that equation (1.6) becomes 
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The next step is to simplify the left hand side of equation (1.8) by replacing the E term 

with the constitutive relation that connects D  to Ẽ through the polarisation, P  (and the 

associated susceptibility tensors, ).  Consider the general definitions: 

 0 , D E P  (1.9) 

 
L NL , P P P  (1.10) 

where 
L

P and 
NL

P  are the linear and nonlinear polarisation vectors, respectively and 0 is 

the permittivity of free space.  When the linear response of the medium is isotropic, 

L (1)

0 P E , NL D E P  and 0 ,r   where 
 1

1r   and  1
 is the linear 

susceptability.  In nonlinear optics, the nonlinear optical response can often be described 

by expressing the polarisation as a power series in the electric field strength: 

 
         1 2 3 4 52 3 4 5

0 ( ) ( ) ( ) ( ) ( ) .t t t t t          
 

P E E E E E  (1.11) 

where the second- and fourth-order polarisation terms only occur in noncentrosymmetric 

crystals (crystals that do not display inversion symmetry) and therefore vanish in the 

materials considered in this thesis [1].  By combining this constitutive relation with 

equation (1.2) it follows that: 
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NL1 1

.
 

     E E P  (1.12) 

Hence, even when the linear dielectric properties of a host medium are uniform i.e. where 

gradients  are zero, the divergence E is generally non-vanishing.  To proceed a 

homogeneous linear medium is assumed, so that 0.    Then by substituting equation 

(1.12) into equation, it obtains that:   

 

2 2 NL
NL 2

2 2

1
,

t t
 



  
      

  

E P
P E  (1.13) 

which leads to 

  
2 2 NL

2 NL

2 2

1
.

t t
 



 
    

 

E P
E P  (1.14) 

By assuming the carrier wave has 

 ( , , ) ( , )exp( ) *( , )exp( ),x z t x z i t x z i t    E E E  (1.15) 

where equation (1.15) is the continuous wave solution and  is the angular frequency.  The 

nonlinear polarisation is 

 
NL NL NL( , , ) ( , )exp( ) *( , )exp( ),x z t x z i t x z i t    P P P  (1.16) 

then equation (1.14) becomes 

  2 2 NL 2 NL1
( ) ( ).  


     E E P P  (1.17) 

If Ẽ is linearly polarised in the y direction and propagates along the z direction, and if, 

therefore, the  NL P term is neglected, it emerges that 

 

2 2 2
2

2 2 2
( ) 0.j

E E
n E E

z x c

 
  

 
 (1.18) 

Where n(j) is the general refractive index (including linear and nonlinear effects).  Equation 

(1.18) is the nonlinear Helmholtz equation, which is the starting point to the analysis of all 

the research in the following chapters.   
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An assumption is made that the nonlinearities are nonresonant.  Whilst this assumption 

excludes the consideration of some nonlinear effects, such as frequency doubling, these 

effects are not relevant to the work done in this thesis [57-59]; the effects of interest are 

described by equations discussed in section 2.2.  
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1.5 Thesis outline 

In order to methodically describe and explain bright soliton behaviour at a variety of 

interfaces, the thesis will be structured as follows. 

Chapter 2 discusses the reflection and refraction characteristics of soliton beams incident 

on the planar boundary between dissimilar cubic-quintic materials.  The deployment of 

Helmholtz soliton theory allows for the simultaneous consideration of: (i) arbitrary angles 

of incidence, reflection and refraction (relative to the interface), and (ii) finite beam waists 

(as opposed to infinitely-wide plane waves).  Despite an abundance of literature 

concerning solitons at interfaces, there appears to be no published research addressing 

refraction in the presence of cubic-quintic optical nonlinearity (and certainly none in 

arbitrary-angle contexts).  Excellent agreement is generally found between theoretical 

predictions from a generalised Snell’s law and results from extensive computer 

simulations.   

In Chapter 3, these novel analyses have been complemented by further investigations into 

other fundamental aspects of optical refraction, namely Goos-Hänchen shifts and critical 

angle prediction.  Both aspects are the first of their kind in the cubic-quintic regime. 

The fourth chapter considers surface wave propagation along the interface between two 

dissimilar power-law materials; this research has already contributed to a published peer 

reviewed paper [36].  The chapter also expands upon that paper by giving a more detailed 

account of surface wave stability properties. 

Chapter 5 provides an in-depth computational study into beam propagation in coupled 

waveguide arrays (materials whose refractive index is periodically patterned) and there 

appears to be a link between the beam's critical angle and the depth of the modulation of 

the array. 

The thesis concludes with a summary of findings and suggestions surrounding the 

implications of this novel research.  
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2. Single interfaces I: cubic-quintic systems 

2.1 Introduction 

This section will focus specifically on the refraction of spatial solitons at the interface 

between dissimilar cubic-quintic materials (see Figure 3).  Examples of such materials 

include some semiconductors, e.g. AlGaAs [1] and doped filter glasses, e.g. CdSxSe1-x [2, 

3].  This is the first time that Helmholtz soliton theory has been used to investigate 

refraction with the universal cubic-quintic optical nonlinearity.  Previous analyses have 

considered only Kerr-type [4-6] and more recently, power-law [7] materials (where 

Helmholtz solitons were shown to well-describe nonparaxial, i.e., arbitrary angle, 

refraction).  The motivation here is to derive a novel Snell's law that may be used to 

predict the arbitrary-angle refraction of finite-amplitude beams in the most general 

nonlinear-medium context to date.  The problem is first analysed mathematically, and 

theoretical predictions are subsequently tested computationally. 

 

Figure 3.  Schematic diagram showing a typical set-up for an interface between dissimilar cubic-quintic materials, 

and the parameters which can be varied across the interface.  The values of these parameters will define whether 

the interface is linear, nonlinear, or mixed. 

2.1.1 Nonlinear Polarisation 

The material being investigated in chapters 2 and 3 has the refractive index, seen in Figure 

3, which will be discussed more in 2.2.1.  Within the assumptions of scalar wave optics, 

the nonlinear polarisation for such a material can be written as: 
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 (2.1) 

where E is the (complex) electric field, (1)
 is the linear susceptibility, while (3)

 and (5)
 

are the third and fifth order nonlinear susceptibilities, respectively.  The first term on the 

RHS of (2.1) is the linear polarization term and the last two terms are the nonlinear 

polarisation terms.  It is the last two terms in equation (2.1) which give materials with the 

refractive index (2.4) the name 'cubic-quintic' [8]. 

2.1.2 Defining Interface Problems 

A nonlinear material is one with a contribution to the refractive index n of the form nNL = 

nNL(E), where E is the local electric field amplitude (a more detailed mathematical 

treatment will be given in section 2.2.1).  The incident beam travels from medium j = 1 to 

medium j = 2, where the values of n0j (the linear part of the refractive index), j and j 

(nonlinearity coefficients) vary across the interface (strictly, it is the abrupt changes in 

these parameters that define the interface itself).  When n01 = n02 (no change in linear 

refractive index), the interface may be classified as nonlinear.  Similarly, when  ≡ 2/1 

= 1 and  ≡ 2/1 = 1, the interface is classified as linear.  Mixed interfaces have, in 

general, arbitrary changes in the medium parameters. 

2.1.3 Literature Review 

The seminal papers dealing with spatial solitons at interfaces were by Aceves and co-

workers nearly 30 years ago [9-13]. This extensive body of research explores the 

behaviour of beams at Kerr-type interfaces within the restriction of paraxial wave optics 

(see section 1.3).  Reference [9] develops an equivalent particle theory, whereby the 

soliton is modelled as a spatially-averaged particle moving in an equivalent potential 

(whose shape depends upon, for instance, material mismatches).  While this paper has 

provided general background reading, the paraxial analysis therein is not particularly 

relevant to the fully angular (i.e., Helmholtz nonparaxial) problem.  For instance, a similar 

description of Helmholtz solitons is of limited practical use: it has no simple ‘Newtonian 

mechanics’ interpretation and provides reasonably accurate predictions only at moderate 

angles of incidence. 

The theoretical cornerstone for this chapter is to be found in the papers by Sánchez-Curto, 

Chamorro-Posada, and McDonald [4, 6].  This work investigates the behaviour of solitons 
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at Kerr-type interfaces but, crucially, avoids the use of the paraxial approximation.  In this 

way, the first beam-refraction model based on an inhomogeneous nonlinear Helmholtz 

equation could be developed.  Their approach provides an analytical platform that allows 

for angles (incidence, reflection, and refraction) of any size (with respect to the interface) 

to be investigated.  The paper also reports a novel generalisation of Snell’s law  which 

includes a generic multiplicative correction factor.  Computer simulations are used to test, 

and confirm, the appropriateness of the model.  Results show excellent agreement between 

theoretical predictions and full numerical calculations. 

The same authors have more recently published a follow-up paper [5].  This article focuses 

on two particular phenomena under these conditions: nonlinear external refraction and 

total internal reflection, again, good agreement is shown between the theory and numerics. 

The final paper that plays a fundamental role in this chapter is by Christian, McDonald, 

and Chamorro-Posada [14].  This article reports the first exact analytical bright solitons for 

a Helmholtz equation with cubic-quintic nonlinearity.  Mathematical and computational 

analyses are used to investigate the stability properties of the new Helmholtz solitons 

against perturbations to the beam shape.  

2.2 Solitons at Interfaces 

2.2.1 Model Equation 

Underpinning the subsequent analysis is the continuous-wave scalar electric field, 

          *, , , exp , exp ,E x z t E x z i t E x z i t      (2.2) 

where x and z are the spatial coordinates in the medium, t is the time coordinate and ω is 

the optical (angular) frequency.  This representation makes sure that   remains real, as 

should be the case.  If the spatial part of the electric field is slowly varying on the scale of 

the free-space optical wavelength , then E(x,z) must satisfy a nonlinear Helmholtz 

equation on each side of the material boundary: 

  
2 2 2

2

2 2 2
0,j

E E
n E E

z x c

 
  

 
 (2.3) 

where j = 1, 2 denotes the medium and c is the vacuum speed of light.  The total refractive 

index nj is routinely taken to be the sum of two terms: nj = n0j + nNLj(E), where n0j is the 

linear index of the medium at frequency ω, and nNLj(E) is a (small) field-dependent 
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contribution. Since equation (2.3) is quadratic in nj, it follows that nj
2
 = n0j

2
 + 2n0jnNL(E) + 

nNL
2
(E).  However, since |nNLj(E)|/n0j << O(1), the last term may be safely neglected so that 

nj
2
 ≈ n0j

2
 + 2n0jnNLj(E).  For cubic-quintic materials, the nonlinear part of the refractive 

index may be written as nNLj(E) = (2n0j)
-1

(j|E|
2
 + j|E|

4
), and hence 

 
2 42 2

0 .j j j jn n E E     (2.4) 

Here, j is the cubic (or Kerr) coefficient, which is taken to be positive, and j is the 

quintic correction term which can be either positive or negative [14]. 

To facilitate a straightforward analysis with earlier works [9-13, 15, 16], a carrier-wave 

component, exp(ik1z), can be factored out of E(x,z): 

      0 1, , exp .E x z E u x z ik z  (2.5) 

Here, E0 is a real constant, k1 = (/c)n01, and u(x,z) is the dimensionless envelope.  The 

target is now to find an equation for u.  It can be shown (see Appendix B) that u satisfies 

the inhomogeneous nonlinear Helmholtz equation, 

      
2 2

2 4 2 4

2 2

1
1 1

2 4

u u u
i u u u u u u H u     

   

    
             

 (2.6) 

The longitudinal and transverse coordinates are normalised according to z/LD1 and 

x/w0, respectively, where LD1 = k1w0
2
/2 is the diffraction length of a reference 

(paraxial) Gaussian beam of full waist w0.  Since the validity of equation (2.6) requires ≡ 

w0 << O(1) (i.e., that beam waists are much larger than the free-space light wavelength), 

the inequality ≡ (1/k1w0)
2
 = 2

/42
n01

2
 << O(1) is maintained throughout.  By measuring 

the laboratory electric field in units of E0 = (n0/kn2LD)
1/2

, the small parameter 

≡1E0
2
/describes the ratio of quintic to cubic nonlinear phase shifts.  The Heaviside 

unit function H(ξ) is defined by H(ξ < 0) = 0 and H(ξ > 0) = 1 (see Figure 2) so that in the 

domain of medium 1, equation (2.6) is just the conventional cubic-quintic Helmholtz 

equation [14].  The model is also supplemented by three parameters that describe the 

mismatch between the linear and nonlinear properties of the two media (note that only 

relative changes are important): 
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(2.7) a, b & c 

In the classic paraxial models (based upon the universal nonlinear Schrödinger equation), 

the  parameter is absorbed into system normalisation (the transverse coordinate is scaled 

by a factor proportional to 
1/2

).  One immediate consequence of such a scaling is that only 

those material configurations with  > 0 (i.e., n02 < n01) may be considered.  It will be 

shown shortly that a refraction regime of fundamental physical importance (namely, 

external refraction) is automatically excluded from the paraxial domain. 

 

Figure 4. Schematic diagram showing refraction at an interface.  In the first medium,  is negative and the 

Heaviside unit function H = 0.  In the second medium,  is positive and H = 1.   

2.2.2 Mathematical Method 

 he mathematical procedure for deriving Snell’s law for soliton beams can be bro en 

down into stages: 

i. Derive the exact analytical soliton solutions in the two media, 

ii. Apply the continuity conditions at the interface, 

iii. Exploit the geometrical relations to find Snell’s law in terms of angles. 

 

Strictly, u and its normal derivative should be continuous across the interface.  However, 

enforcing these two conditions in the context of scalar modelling can lead to erroneous 

predictions (mainly, that a finite-amplitude beam can never refract across the interface).  
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The work of Sánchez-Curto et al. [4] showed that Helmholtz solitons at interfaces can be 

very well described by enforcing only phase continuity across the interface. 

2.2.3 Exact Bright Solitons 

From equation (2.6), the governing equations in each medium can be isolated as: 

Medium 1: 

2 2
2 4

2 2

1
0,

2

u u u
i u u u u 

  

  
    

  
 (2.8) 

Medium 2: 

2 2
2 4

2 2

1
0.

2 4

u u u
i u u u u u  

   

   
     

  
 (2.9) 

On-axis soliton solutions of equations (2.8) and (2.9) may be sought using an ansatz: 

      
1 2

, 1 cosh exp exp ,
2

u A B C ik i


   



  
      

 
 (2.10) 

where A, B, C and k (the propagation constant) are real parameters.  Substituting equation 

(2.10) into equations (2.8) and (2.9) yields 
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    (2.11) 

where the ± sign in the phase flags the longitudinal sense of propagation (forward or 

backwards in z, respectively).  The other solution parameters for the solution (2.10) in each 

medium are given in Table 1:     

Medium 1:                       Medium 2: 
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Table 1 showing the parameters for the exact soliton solution. 

To generate more general off-axis solitons, the following rotational transformation is 

applied to solution (2.10) (which leaves the parameters A, B, C and  unchanged): 
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Table 2 showing the transformations needed to find the off axis solutions. 

 

Figure 5 Shows the two coordinate frames of the on, and off axis solutions. 

The off axis solution in medium 1 is 
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(2.12) 

where Binc ≡ 1 + (4/3)0, 0 is the peak intensity of the beam, inc ≡ (0/2)[1 + (2/3)0] 

is related to the propagation constant of the corresponding paraxial solution, and inc(,) 

= 2(2inc)
1/2

( – Vinc)/(1 + 2Vinc
2
)

1/2
.  Similarly, in medium 2, 
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 (2.13) 

where Bref ≡ 1 + (4/3)0, ref ≡ (0/2)[ + (2/3)0] and ref(,) = 2(2ref)
1/2

( – 

Vref)/(1 + 2Vref
2
)

1/2
.  Thus, the incident and refracted soliton beams [solutions (2.12) and 
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(2.13), respectively] have very similar mathematical structures.  A key distinction is the 

appearance of the linear mismatch parameter  in the phase of the latter. 

2.2.4 Universal Snell’s Law 

For simplicity, the interface in the laboratory frame is aligned along the z axis so that its 

transverse position is always at x = 0.  The phase of solutions (2.12) and (2.13) at the 

interface (i.e., at ξ = 0) can be matched only when the incident and refracted beams share a 

common longitudinal sense.  Phase continuity then ensures that: 
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which can be rearranged to find Vref
2
  in terms of Vinc

2
 according to: 
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While equation (2.15) describes soliton refraction in terms of transverse velocities (in 

normalised coordinates), it is more instructive to consider propagation angles (in 

laboratory coordinates).  A beam with velocity V in the (ξ, ζ) frame evolves at oblique 

angle θ relative to the longitudinal axis in the (x, z) frame.  The fundamental trigonometric 

relations [17]: 
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 (2.17)a,b 

leads to the compact result 

 inc, ref inc, reftan 2 .V   (2.18) 

One of the fundamental properties of wave propagation in Helmholtz-type models is that 

θinc and ref can be of any magnitude, even though  << O(1) [18].  By combining 

equations (2.15) and (2.18)  a universal Snell’s law can be obtained: 

 01 inc 02 refcos cos ,n n    (2.19) 
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 (2.20) 

Equations (2.19) and (2.20) are key results of this research, describing soliton refraction in 

cubic-quintic systems.  It is important to note that equation (2.19) contains a single 

multiplicative correction factor  that captures the interplay between material mismatches, 

a finite beam waist, and system nonlinearity. 

2.2.5 Critical Angles 

When θinc = θcrit, the refracted soliton might be expected to travel along the interface (one 

also expects surface waves to play a central role in understanding propagation properties in 

such a regime).  More formally, the condition θref  = 0 at θinc = θcrit, when applied to 

equation (2.19), leads to an algebraic prediction for the critical angle (see Appendix B): 
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 (2.21) 

The existence of a critical angle requires the argument of the square-root in equation (2.21) 

to be non-negative (e.g., when  =  = 1 and  > 0).  In the plane-wave limit, it would 

seem reasonable for incident waves travelling at θinc = θcrit to be refracted along the 

interface (as they are according to ray optics in linear systems [19]).  In the more 

complicated case of beams, diffraction (particularly in combination with system 

nonlinearity) will inevitably lead to more complicated wave phenomena in the vicinity of 

such critical points. 

2.2.6 Interface Transparency 

The interface is effectively transparent to the incident beam when θref = θinc.  From 

equation (2.19), it follows that the condition for interface transparency is n02 = n01, which 

is equivalent to  [obtained by setting Vref
2
 = Vinc

2
 in equation (2.16)].  Transparency 

thus occurs when the linear and (peak) nonlinear refractive index mismatches cancel each 

other exactly.  It is interesting to note that the transparency condition (where the beam 

passes through the interface unrefracted) is inherently satisfied by the 'no interface' 

condition, [i.e., Δ = 0 (since n02 = n01),  = 1 (since 2 = 1), and  1 (since 2)] 

even though the two situations are physically different. 
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2.2.7 Reflection and Refraction 

When a beam encounters an interface, generally one of two effects tend to dominate the 

system behaviour: reflection or refraction. 

Reflection.  When medium 2 is less optically dense and inc < crit, a refracted 

beam generally cannot be excited – the incident soliton cannot penetrate 

across the boundary into the second medium because this would demand 

|cosref | > 1.  In such cases, the in-going beam will often be totally internally 

reflected.  Since the system at hand is highly nonlinear, any beam interaction 

with the interface may generate radiation (i.e., low-amplitude diffracting 

waves with sufficient intensity to effectively self-trap).  Recent results [7] 

have also shown that in the presence of strong nonlinearity (e.g., power-law 

regimes), the incident soliton can simply break up into radiation close to the 

critical angle. 

 

Refraction.  When (i) medium 2 is less optically dense and inc > crit, or (ii) 

medium 2 is more optically dense, the incident beam may be refracted at 

angle ref = cos
–1

[(n01/n02)cosinc].  Refraction characteristics may be sub-

classified as internal or external, depending upon whether the outgoing beam 

bends toward the interface or away from it, respectively (see Figure 6).  This 

categorisation is most simply described in terms of the sign of [see equation 

(2.16)].   

 0 Vref > Vinc  so that ref > inc … External refraction 

 = 0 Vref = Vinc  so that ref = inc … Transparency condition 

 0 Vref < Vinc  so that ref < inc … Internal refraction 

External refraction is an intrinsically nonparaxial regime, where ref can 

easily violate the paraxial approximation even under the simplest material 

constraint (e.g., a linear interface with n02 > n01, and hence  < 0). 
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Figure 6. Schematic diagram showing (a) internal refraction where the beam bends towards the interface and (b) 

external refraction, where the beam bends away from the interface. 

2.3 Simulating Solitons at Interfaces 

The analysis in the preceding section captures the essence of soliton refraction within the 

phase-continuity approximation.  However, the full complexity of the interface problem 

can be addressed only through computer simulations.  Such simulations will be undertaken 

here using a suite of Matlab codes that integrate model (2.6) numerically and analyse the 

dataset using custom curve-fitting routines. 

2.3.1 Numerical Methods 

Outline of Algorithm 

A brief description of the numerical methods used will now be given.  This description is 

relevant to all the simulations carried out for this thesis. 

There are three initial steps to simulating the propagation of the beams in the longitudinal 

direction .  Firstly, input conditions must be specified – in this case a cosh-type function 

such as u(,0) = A/{1 + Bcosh[2(2)
1/2}1/2

.  To approximate the solution after the first 

step (of size ), a split step method is used.  This approach (even when symmetrized) can 

only be deployed for Helmholtz-type models in the short term (in this case, a single 

longitudinal step) as it proves to be insufficiently accurate [20].  The field at the second 

step, and every step thereafter, is calculated with a difference-differential algorithm.  This 

method requires information from the two preceding steps before it can be implemented 

(hence why it cannot be used to find the field after the first step).  The difference-

differential method has been shown to be a highly effective and efficient way to simulate 
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beam propagation problems of this type [20].  It replaces longitudinal derivatives with 

their (centred) finite difference approximations, and the transverse diffraction operator is 

implemented through the use of Fast Fourier Transforms. 

Spatial Filtering 

The continuum Helmholtz equation (2.6) has an elliptical plane wave dispersion relation 

given by equation (2.22).  Any spatial frequencies k on the associated computational grid 

that fall outside this ellipse can result in an unphysical numerical instability; such spectral 

components must hence be removed from the solution after each propagation step.  A full 

description of the spatial filtering condition traditionally used in homogeneous Helmholtz-

type nonparaxial simulations can be found in ref. [20].  Within the linear plane wave 

approximation, spatial frequencies satisfying k
2
 > (k

2
)max are eliminated using a top-hat 

function in Fourier space, where: 

  
2

2

2max

4
1 1 .

2
k

 

 

  
    

   
 

 (2.22) 

When necessary, equation (2.22) can be easily augmented by a correction term (at /2) to 

accommodate interface geometries.   

2.3.2 Interface Geometries 

In section 2.2, the material boundary was aligned along the z axis so that oblique incidence 

was described in a frame where the ingoing beam was inclined at angle θinc relative to the 

fixed interface.  Such a choice of relative orientation is entirely arbitrary and made purely 

for mathematical convenience (to facilitate simpler phase matching).  In fact, simulating 

model (2.6) with that particular configuration can lead to numerical difficulties arising 

from spatial filtering in combination with dense grid discretisation and solution phase 

sampling requirements [4].  To avoid these complications, all computations have been 

performed in the frame where the incident soliton is on-axis and the interface is rotated 

relative to the fixed input beam (see Figure 7). 
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Figure 7a) Schematic diagram showing beam refraction at an interface in the analysis in section 2.  b) Shows the 

interface setup used in the computer simulations, the beam approaches the interface travelling directly down 

the longitudinal axis, while the analytical problem considers the interface to be aligned along the 

longitudinal axis. 

2.3.3 Calculation of Refraction Angle 

Before proceeding with simulations, a way must be found to extract the refraction angle 

from the numerical dataset.  Referring to Figure 7b), the angular deviation  from the 

incident (straight-through) line is related to the refraction angle ref by:   

 ref inc .     (2.23)        

Therefore, it follows that 

   inc
ref inc

inc

tan tan
tan tan ,

1 tan tan

 
  

 


  


 (2.24) 

where the trigonometric addition formula has been used to obtain the far right-hand side of 

equation (2.24).  In the frame in which the computations are carried out,  can be 

identified with a transverse velocity v through 

 tan 2  v.   (2.25) 

By combining equations (2.25) and (2.24), it is straightforward to show that 
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or equivalently, 
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 (2.27) 

Since simulations are always performed in the normalised frame of reference, the 

numerical data can be analysed to yield a value for v.  The desired angle ref can then be 

obtained from equations (2.27) and (2.18). 

In all simulations, the interface is oriented along the line   + Vinc = 0 such that the centre 

of the beam encounters the interface at  =  = 0.  If the peak of the refracted soliton is 

supposed to move along the trajectory 

 v 0,    (2.28) 

then it follows that the local velocity v (far away from the interface in medium 2) may be 

calculated from the slope 

 v .
d

d




  (2.29) 

This result is crucial for analysing the numerical data. 

2.4 Simulations to test Snell’s Law 

The results in this section test the predictions of the new Snell’s law [equation (2.19)] 

against fully-nonlinear numerical computations for a variety of interfaces.  The line ref = 

inc (marked on all of the following Snell-type plots) represents the transparency condition 

(where δ = 0 – see section 2.2.6); it differentiates between regimes involving internal 

(below the line, i.e. θref < θinc) and external (above the line, i.e. θref > θinc) refraction.  The 

full interface problem is associated with a six-dimensional parameter space that must 

somehow be tamed.  For definiteness, the following parameters are chosen for simulations: 

  (/w0)
2
 (inverse beam width).  Two typical values of  are considered (namely, 

2.510
3

 and 1.010
4

); both respect the inherent inequality for Helmholtz modelling [that 

 << O(1)]. 
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 ≡ 2/1 (ratio of cubic nonlinearity coefficients).  Values of  are chosen to be 0.5, 1.0 

or 2.0.  The two non-unity cases represent a large change in the strength of the focusing 

properties of the medium across the interface (a halving and doubling, respectively). 

 ≡ 2/1 (ratio of quintic nonlinearity coefficients).  Values of  are chosen to be 0.5, 1.0 

and 2.0 so that the relative change in the quintic coefficients is the same as that for the 

cubic coefficients. 

≡1E0
2
/ (ratio of cubic to quintic nonlinear phase shifts).  Typically, the quintic 

contribution to self-focusing is a small correction to the cubic (Kerr) effect [8].  The 

competing cubic-quintic nonlinear response can be used as a leading-order approximation 

to a saturable intensity-dependent refractive index [8].  Here,  = ±0.15 is used [14].   

0 (peak intensity).  For  = 0.15, the bistability condition means that there are two values 

of 0 describing solutions with different peak intensities but the same full-width-at-half-

maximum: 0  1.3 and 0  4.14 [14].  For  = +0.15, the corresponding soliton is 

monostable and has 0  0.87. 

2.4.1 Linear Interfaces 

Illustrative results for soliton refraction at a linear interface are shown in Figure 8a) for a 

relatively narrow beam (where  = 2.510
3

).  Generally, the agreement between 

theoretical predictions [solid lines – obtained from equations (2.19) and (2.20)] and 

numerical data (points) is very good.  Figure 8b) shows refraction for parameters with a 

low angle of incidence (inc = 1.0) and  = 0.01 (a relatively large step in refractive 

index).  Upon colliding with the interface, the beam splits into a predominant externally-

refracted component (well described by the Snell law), accompanied by a lower-amplitude 

satellite structure (this secondary component does not survive in the long term, having 

insufficient energy to self-trap and form a solitary wave).  The beam/interface interaction 

also generates radiation modes that are reflected back into medium 1. 

The true collision, as predicted by solving equation (2.6) numerically, is much more 

complicated than the adiabatic assumptions of the analysis is section 2.2 (which allows 

only for a single stationary refracted beam and no radiation or reflected waves).  Such an 

increase in complexity clearly gives rise to a difference between the Snell’s-law prediction 
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and the true (computed) refraction angle.  However, it is interesting to note [from Figure 

8a)] that the general trend of the Snell’s-law prediction is still well adhered to.   

 

Figure 8a) Shows a Snell's law plot for a linear interface.  Figure 8b) Shows the 3d plot for the point:  = -0.01 and 

 = 1°.  Figure 8c) Shows the 3d plot for the point:  = -0.005 and  = 1° and Figure 8d) Shows the 3d plot for the 

point:  = 0.005 and  = 10°. 

Figure 8c) shows a similar example of soliton refraction but with  = 0.005 (as opposed 

to  = 0.01).  With a smaller index step, the interaction is much 'cleaner': far less 

radiation is generated, and there is no secondary/satellite structure shadowing the refracted 

beam.  In Figure 8d) the beam is propagating with a larger angle of incidence.  Here, the 

beam can be seen to refract into the second medium without losing much radiation at the 

interface, and so, the point representing this refraction in Figure 8a) fits well with the 

theory line. 
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Figure 9a) Shows a Snell's law plot for a linear interface.  Figure 9b) Shows the 3d plot for the point:  = -0.01 and 

 = 1°.  Figure 9c) Shows the 3d plot for the point:  = -0.005 and  = 1° and Figure 9d) Shows the 3d plot for the 

point:  = 0.005 and  = 10°. 

Figure 9 repeats the simulations shown in Figure 8, but with incident beams that are 

broader by a factor of 5 ( = 1.010
4

).  Most notable is that the agreement between the 

theory and numerics is much improved at lower angles of incidence [compare Figures 8a) 

and 9a)].  By comparing Figures 8b) and 9b), it is immediately apparent that the splitting 

phenomenon is much more pronounced for broader beams [for instance, in Figure 9b), the 

dominant part of the solution (i.e., that component with the highest amplitude) is actually 

the reflected, as opposed to the refracted, beam].  However, the interaction (while still 

being non-adiabatic) is still 'cleaner' (much less radiation is generated) and the refraction 

angle is more accurately described by the Snell law.  Similar trends can also be identified 

by comparing Figures 8c) and 9c). 
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A particularly intriguing feature of Figures 9b) and 9c) is the appearance of such a strong 

reflected component.  In the two material configurations,  < 0 and there is no critical 

angle [c.f. equation (2.21)]: refraction is external, and one would not traditionally expect to 

find such prevalent reflected components. 

2.4.1.1 Role of Finite Beam Waist 

The two Snell's law plots in Figures 10a) and 10b) share a common set of system 

parameters, and differ only in the nonparaxial parameter .   

 

Figure 10a) and b) Showing Snell's law plots with different values of Figure 10c) Shows a schematic of a beam 

profile with a high amplitude curvature and Figure 10d) Shows a schematic of a beam profile with a low 

amplitude curvature.  

For smaller  values (broader beams) the theory-numerics agreement is excellent, much 

better (at lower incidence angles) than for larger values.  The results in Figures 8 and 9 

appear to suggest that the reason for improved agreement is, surprisingly, not due to a 

cleaner refraction process (e.g., without splitting, or with less radiation); one must thus 

look elsewhere for a convincing physical explanation.  One possibility proposed by 

Christian et al. [7] is that smaller  values correspond to broader beams which, 
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accordingly, have lower amplitude curvature [see Figures 10c) and 10d)].  Scenarios 

involving reduced amplitude curvature map much more closely onto the inherent 

assumptions of the Snell’s-law analysis, which (at least so far as field matching is 

concerned) treats beams and plane waves (zero amplitude curvature) on an equal footing 

since only phase continuity is enforced.  As  increases, so too does amplitude curvature 

and one is more likely to find a divergence between theoretical predictions and 

simulations. 

2.4.1.2 Effect of the Angle of Incidence of the beam 

 

Figure 11a) Showing a beam propagating with the interface at a low angle of incidence, and Figure 11b) Showing 

a beam propagating at a larger angle of incidence with respect to the interface. 

Although the angle of incidence of the beam is a fundamental part of the Snell law derived 

earlier, the theory cannot account for the changes in the cross-sectional area of the beam 

interacting with the interface.  Figure 11 gives an illustration of how changing the angle of 

incidence also has an effect on the cross-sectional area of the beam encountering the 

interface; as the angle of incidence of the beam is decreased, a larger cross-section [in 

comparison to that at a larger angle of incidence, see Figure 11b)] of the beam comes into 

contact with the interface.  Since beams with low angles of incidence are more affected by 

the interface’s perturbative action (because of the larger cross-sectional area encountering 

it), and since our theory does not account for this perturbation effect, results for these low 

angles will be more off-theory than the equivalent beams at higher angles of incidence. 
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2.4.1.3 Effect of  

 

Figure 12 Highlights the effect that changing the value of  has on the behaviour of the beam at the interface.  

Figure 12a) Shows a Snell's law plot for a linear interface.  Figure 12b) Shows the 3d plot for the point:  = -0.01 

and  = 1°, Figure 12c) has:  = -0.01 and  = 3°, Figure 12d) has:  = -0.001 and  = 1° and Figure 12e) has:  = -

0.001 and  = 3°. 

As || is increased, the step in the linear part of the refractive index also increases.  This 

means the beam is propagating into a medium where the linear part of the refractive index 

is significantly different to the value in the first medium.  In many instances, this leads to 

beam splitting, as is the case in Figures 12b) and c).  In Figures 12d) and e) the change in 

the linear part of the refractive index is much smaller, and the beam can be seen to refract 

fairly 'cleanly' (that is, it only loses a limited amount of radiation) across the interface.  

This results in a much better fit between theory and numeric for this set of beams as can be 

seen in Figure 12. 
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2.4.2 Mixed Interfaces 

The results for mixed interfaces are not as favourable as those for linear interfaces, where 

the interaction with the nonlinear material boundary can cause strong self-reshaping 

oscillations in the second medium.  Also, if the beam has a high intensity, the likelihood 

that the beam will split at the interface into multiple reflected and refracted beams is 

greater. 

 

Figure 13 a) Shows a Snell's law plot for a mixed interface (with  = 0.5).  Figure 13b) Shows the 3d plot for the 

point:  = -0.005 and  = 1°.  Figure 13c) Shows the 3d plot for the point:  = 0.005 and  = 6° and Figure 13d) 

Shows the 3d plot for the point:  = 0.001 and  = 10°. 

Figure 13b) shows the refraction for a beam propagating at a low angle of incidence (1°).  

As the beam interacts with the interface, its amplitude changes in the second medium and 

some radiation is lost during the collision. Figure 13c) shows a beam propagating close to 

its critical angle, causing the beam to split on interacting with the interface into reflected 
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and refracted components.  Since the scenarios in Figures 13b) and 13c) are not 

accommodated by our theoretical model, this gives rise to a mismatch between the 

prediction and the output.   Figure 13d), on the other hand, shows a beam refracting into 

the second medium without loss of radiation (although the beam does reshape in the 

second medium); this is a situation accommodated adequately by the model and resultantly 

the point fits well in Figure 13a). 

 

Figure 14 a) Shows a Snell's law plot for a mixed interface (with  = 0.5).  Figure 14b) Shows the 3d plot for the 

point:  = -0.005 and  = 1°.  Figure 14c) Shows the 3d plot for the point:  = 0.005 and  = 4.5° and Figure 14d) 

Shows the 3d plot for the point:  = 0.001 and  = 10°. 

Figure 14 shows the refraction of beam for the same parameters as in Figure 13, but with a 

smaller value of .  Here, the fit between the theoretical and numerical results is much 

improved (this is to be expected – see section 2.4.1.1).  Figures 14b) and c) provide 

examples of beams splitting at the interface, though for different reasons [c) splits because 
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it is close to the critical angle; for b) a critical angle does not exist so the reason for the 

splitting currently unclear].  These types of result would usually lead to the points in 

Figure 14a) being off-theory, however it can be seen that the agreement remains 

surprisingly good.  The reason for this appears to relate, again, to the role of the finite 

beam waist.  Figure 14d) shows that the beam passes through the interface losing only a 

small amount of radiation, and this, therefore, agrees with the results in Figure 14a). 

 

Figure 15 a) Shows a Snell's law plot for a mixed interface (with  = 0.5).  Figure 15b) Shows the 3d plot for the 

point:  = -0.005 and  = 1°.  Figure 15c) Shows the 3d plot for the point:  = 0.005 and  = 2° and Figure 15d) 

Shows the 3d plot for the point:  = 0.001 and  = 10°. 

Figure 15 shows results with the quintic coefficient lower after the interface.  Figure 15b) 

shows a beam interacting with the interface at an angle of incidence of 1°.  Significant 

amounts of radiation are lost on interacting with the interface - some of which is reflected 

and some refracted.  No splitting occurs in Figure 15c), despite the beam propagating close 
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to its critical angle.  All three 3d plots (Figures 15b-d) show beams becoming narrower in 

the second medium.  This effect is predicted by soliton solution (2.13) (c.f., the behaviour 

of parameter ref when 0 < v < 1). 

 

Figure 16 a) Shows a Snell's law plot for a mixed interface (with  = 0.5).  Figure 16b) Shows the 3d plot for the 

point:  = -0.005 and  = 1°.  Figure 16c) Shows the 3d plot for the point:  = 0.005 and  = 4° and Figure 16d) 

Shows the 3d plot for the point:  = 0.001 and  = 10°. 

Figure 16, with a lower value of  (1 x 10
-4

), reinforces the previous results.  Figure 16b) 

shows the beam loses a large amount of radiation, yet the fit with the predicted theoretical 

results remains acceptable; this is also true for Figure 16c).  As previously described, the 

larger beam waist accounts for such agreement.  Also noteworthy, in these low  regimes 

is the existence of a reflected component of the beam arising on interaction with the 

interface - despite there being no critical angle in these parameter regimes. 
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2.4.3 Nonlinear Interfaces 

 

Figure 17a) Shows a Snell's law plot for a nonlinear interface (with  = 0 and  = 1).  Figure 17b) Shows the 3d 

plot for the point:  = 0.87,  = 0.5 and  = 10°.  Figure 17c) Shows the 3d plot for the point:  = 0.87,  = 0.5 and 

 = 3° and Figure 17d) Shows the 3d plot for the point:  = 0.87,  = 2 and  = 3°. 

Figures 17b) and 17c) both represent points which are slightly off theory in Figure 17a).  

Both beams shed energy into radiation modes at the interface and undergo oscillations in 

the second medium (which is why results are off-theory).  Figure 17d) represents a point 

which is more off theory.  This is because the beam loses radiation at the interface and also 

reshapes in the second medium.   
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Figure 18a) Shows a Snell's law plot for a nonlinear interface (with  = 0 and  = 1).  Figure 18b) Shows the 3d 

plot for the point:  = 0.87,  = 0.5 and  = 10°.  Figure 18c) Shows the 3d plot for the point:  = 0.87,  = 0.5 and 

 = 3° and Figure 18d) Shows the 3d plot for the point:  = 0.87,  = 2 and  = 3°. 

All the points in Figure 18a) have good agreement between the theoretical and numerical 

results.  The 3d plots show similar beam refraction to those in the previous figure.  Figures 

18b) and c) show the beam changing in amplitude and losing radiation at the interface.  

Figure 18d) shows the beam losing radiation and reshaping in the second medium.  This is 

similar to all the small value  results seen previously in the report. 
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2.5 Conclusion 

For the first time, the behaviour of spatial solitons at the interface between two dissimilar 

cubic-quintic materials has been investigated.  It is important to note at this point the 

novelty which this work adds to the field of nonlinear photonics: there are, to the best of 

our knowledge, no published works (paraxial or nonparaxial) concerning soliton refraction 

contexts with this type of universal system nonlinearity.    

The use of an inhomogeneous nonlinear Helmholtz equation, in combination with its exact 

analytical soliton solutions  has allowed us to derive a generalised Snell’s law.   his new 

law gives researchers a tool to predict the refractive properties of nonlinear beams 

interacting with a generic class of dielectric interface.   Extensive computer simulations 

across a wide range of system parameters have demonstrated generally excellent 

agreement between numerical calculations and theoretical results.  The research presented 

here thus provides further evidence for the power and applicability of Helmholtz soliton 

theory in arbitrary-angle optical configurations.  Computations have also helped uncover 

some of the potential limitations of our modelling approach in various physical regimes 

depending on: 

i. The value of  – lower values of  mean a lower amplitude curvature.  When  

assumes larger values, neglecting amplitude curvature becomes less of a valid 

approximation and the plane-wave basis of Snell’s law starts to brea  down. 

ii. The value of || – when || is large (corresponding to a large difference in the 

linear parts of the refractive index in each medium) the beam is much more 

likely to split, at the interface, into reflected and refracted components.  Our 

adiabatic theory does not accommodate non-adiabatic effects.    

iii. Quasi-paraxial incidence angles – when the beam is propagating at a low angle 

of incidence with respect to the interface, then a much larger cross-sectional 

area of the beam will interact with the interface.  The soliton-interface 

interaction length is longer in such regimes, so beams can suffer sustained 

(longitudinally distributed) perturbations. 

The results from this work package give a deeper insight into the global properties of 

Helmholtz solitons that, in future, could be beneficial to the development of novel optical 
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technologies that exploit single- and multi-layer configurations.  This is something which 

is discussed further throughout this thesis. 
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3. Single interfaces II: Goos-Hänchen shifts 

3.1 The concept of the Goos-Hänchen shift 

This chapter investigates Goos-Hänchen shift (GHS) behaviour at the interface between 

two dissimilar cubic-quintic materials; this type of interface problem was discussed 

extensively in Chapter 2.  A GHS [1] is a phenomenon that occurs when a collimated light 

beam interacts with an interface at an angle of incidence that is close to the beam’s critical 

angle.  Upon interaction with the interface, rather than being reflected by the interface, the 

beam becomes trapped by it, propagates along (or close to) it for a distance, and is then 

reflected back into the first medium (see Figure 19).   

 

Figure 19 A schematic diagram of a GHS.  ref is not necessarily the same as inc. 
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Because the beam is trapped along the interface for a distance, it can partially penetrate 

into the second medium.  The beam is not reflected from a single point as a plane wave 

would be; the reflection process instead, is distributed along the interface, giving rise to the 

GHS.  Here, the shift is defined as the displacement of the beam along the interface, i.e. 

the difference between the geometrical optical path and the actual path of the reflected 

beam, in the longitudinal direction, as opposed to being the transverse displacement 

between the geometrical optical path and the actual path of the beam.  Both of these 

definitions have been used in previous studies: [2] (transverse displacement) and [3] 

(longitudinal displacement).  The two different definitions for quantifying the GHS are 

highlighted in Figure 20.   

 

Figure 20 Showing the two definitions of a GHS.  The definition shown in a) is used here.   

3.1.1 Literature Review 

The GHS was first observed and investigated extensively for Gaussian beams at the 

interface between two linear materials [4-8], where the shifts were found to be of the order 

of one optical wavelength.  It was later found that the nonlinear GHS at the interface 

between a linear and a nonlinear material [9, 10] or between two nonlinear materials [3, 

11, 12] is much larger than the linear GHS.  This increase is due to the potential for the 

beam to become trapped by a nonlinear interface and propagate as a surface wave [13]. 
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Although the Helmholtz wave equation has been used previously in studies investigating 

GHSs at interfaces between two linear dielectric materials [14], Sánchez-Curto et al. in [3] 

are the first to consider the GHS of Helmholtz solitons.  By using this theory, new regimes 

of shift behaviour have been investigated, which will be discussed in section 3.4.2.  One 

conclusion made in reference [3] is that the broadness of the beam can easily be predicted 

in the second medium, w.r.t its broadness in medium1, depending upon the parameter 

regimes being investigated.  This is also found to be predictable at cubic-quintic interfaces, 

however the parameter regimes considered here are more complex than at Kerr interfaces, 

and thus, making the prediction is not as straight forward.  This will be shown in section 

3.4.2.2. 

In reference [12] the GHSs considered are not within the standard Kerr-type materials, but 

rather a more general power-law material interface. Again, Helmholtz soliton theory was 

used to simulate the GHSs, meaning that instances of linear external refraction can be 

seen.  This paper is of importance because it predicted that by changing the nonlinearities 

of the host materials from Kerr to power-law, new, and qualitatively different phenomena 

in the behaviour of the GHS can emerge.  Amongst other results, it was found that 

increasing the angle of incidence of the beam does not always mean that the GHS will 

increase (which is in contrast with reported results for Kerr interfaces, see reference [3]). 

Another study of note is reference [11].  In this paper, the authors derive an equation 

which predicts the length of a GHS as a function of the energy of the beam.  Reference 

[11] shows that there is marginal agreement between this prediction and the numerical 

results.  A similar attempt was made to predict the length of GHSs as part of this work, but 

it proved ineffectual and is, therefore, not included here.  This is an area where further 

work is needed. 

3.2 Critical angles 

The critical angle defined in ray optics [15] is rarely seen when investigating spatial 

solitons at the interface between two nonlinear materials.  When the beam is propagating 

with an angle of incidence which is close to its predicted critical angle, its behaviour on 

interacting with the interface is very unpredictable.  This makes ascertaining a true value 

for the critical angle problematic.  The following schematic shows how the critical angle is 

defined in geometrical optics, and is adapted directly from reference [15]. 
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Figure 21 Showing how the behaviour of light at an interface changes, as the angle of incidence is increased. 

However, such an idealised manifestation of the behaviour of a beam at its critical angle 

has never been found in the numerical cubic-quintic results.  Changing the angle of 

incidence by values as low as one millionth of a degree in the range where we would 

expect to find the critical angle, brings us no closer to finding such an idealised result. 

 

Figure 22 Beam behaviour as the angle of incidence is increased.  In this example, giant GHSs are present.  The 

data for these results has: 0 = 1.3,= 2.5 x 10
-3

,  = 1,  = 1,  = -0.15.  a) has an angle of incidence of inc = 0.5°, 

b) inc = 1.674°, c)inc = 1.822° and d) inc = 1.9°. In this example, c) is taken to be the critical angle. 

Because the idealised behaviour at the critical angle does not exist for spatial solitons at 

cubic-quintic interfaces (no assertion is made here about the status of critical angles in 

other media), a more workable and empirically-useful definition is required.  In examples 

where little or no beam splitting is seen, the actual value for the critical angle is taken to be 

the angle of incidence which relates to a shift of around  = 120, see Figure 22.  In these 

cases, it is almost inevitable that even longer shifts could be found, which would be closer 

to the 'truer' value of a critical angle since the behaviour of the beam at critical angle is 

essentially a GHS of infinite length.  However, there is a limit to the amount of computing 

power which can be devoted to finding the value of the critical angle, and so,  = 120 is a 

compromise between rigour and practicality.  
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Figure 23 Showing beam behaviour as the angle of incidence is increased.  In this example, beam splitting is 

present in c), d) and e).  The data for these results has: 0 = 1.3,= 2.5 x 10
-3

,  = 1,  = 1,  = -0.15 and  = 0.01.  

a) has an angle of incidence of  inc = 0.5°, b) inc = 5.045946°, c)inc = 5.463964°,  d) inc = 5.96486° and e) inc = 

6.3°.  In this example, c) is taken to be the critical angle. 

In Figure 23, cases where the beam splits as it interacts with the interface can be seen.  The 

actual critical angle is taken to be the lowest angle of incidence where a refracted beam 

can be seen.  This is because this point is realistically the closest point to the critical angle.  

Although a theoretical value for the critical angle of the beam at this interface can be 

calculated using: 
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 (3.1) 

it has already been seen in Chapter 2 that this equation has its limitations.  In this Chapter, 

the results will be analysed using the above reasoning and the theoretical value for the 

critical angle seen in equation (3.1) to pin down the most accurate value for the actual 

critical angle. 

3.3 Computational method for calculating shifts 

To calculate the value of the GHS computationally, a way to extract the difference in the 

longitudinal position of the numerical data and the predicted path of the beam with no shift 

must be found.  The first step in doing this is to locate the centre of the beam from the 

numerical solution (see line zfit on Figure 24). 

3.3.1 Finding zfit 

To find the trajectory of the centre of the beam after the interaction with the interface, the 

data needs to be fitted to a profile resembling the exact cubic-quintic soliton [16].  This is 

done using the ‘fminsearch’ function in MATLAB, which tweaks the solution parameters 

until the profile of the numerical solution best fits an exact analytical solution.  A line can 

then be plotted through the newly tweaked transverse position of the beam, and the 
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longitudinal position of the beam.  This line is zfit, and it is taken to be the actual path of 

the beam after encountering the interface.  

3.3.2 Finding zopt 

The initial conditions of the beam are set up so that the centre of the beam interacts with 

the interface at the origin (see Figure 24).  The assumption can then be made that with no 

shift, the beam would reflect from the interface at this location.  To find the trajectory for 

this predicted path, an assumed value for the gradient must be made.  By extracting the 

gradient for the line zfit (using ‘polyfit’) and shifting this down to the origin  a line can be 

plotted to represent the geometrical optical path of the beam (denoted by zopt).  

 

 

Figure 24 A schematic diagram showing how a value for the GHS is found computationally. 

3.3.3 Finding GHSs 

Once the steps in sections 3.3.1 and 3.3.2 have been carried out, the GHS can then be 

calculated easily.  An average value for the difference in z location for the last 129 points 

for the lines zfit and zopt is found, and this is taken to be the value for the GHS. 
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3.4 Shifts in systems with cubic-quintic nonlinearity 

The following equation: 

    2
0 03

2 1 1 ,            (3.2) 

is key when analysing the GHS results.  The net mismatch parameter  in equation (3.2) 

characterises beam refraction at the interface, and was introduced in Chapter 2.  It has 

already been discussed that for a GHS to exist, a critical angle must be real for the 

parameters chosen.  Equation (3.2) can predict, with some accuracy whether or not a real 

theoretical critical angle exists for the parameters selected (when > 0 a critical angle 

exists, but when  < 0 the critical angle is imaginary, and thus unphysical). 

If  (the mismatch in the linear part of the refractive index) is positive, and  is also 

positive then the GHSs are internal.  These shifts have been seen many times in the 

literature, see references [4-10, 14].  The use of Helmholtz soliton theory means that, 

physically,  can also be negative, and that if other parameters in equation (3.2) are chosen 

to allow  to remain positive, external shifts can be investigated.  These have been seen 

previously, in ref. [3], however due to the introduction of the quintic term in the refractive 

index, there is the potential to show qualitatively-new external GHSs.  All the results in 

this section have had parameters selected due to equation (3.2).  

In the figures which follow, the graph labelled a) shows how the value of the GHS changes 

as the angle of incidence is increased between either 0.5° or 0.1° to the value for the 

theoretical critical angle.  The results labelled b), c) and d), are the data from the largest 

angle of incidence for each value of , and resultantly, the point chosen to be the critical 

angle. 

The parameters used here are the same as those considered in Chapter 0:  

  (/w0)
2
 (inverse beam width).  Two typical values of  are considered (namely, 

2.510
3

 and 1.010


); both respect the inherent inequality for Helmholtz modelling [that 

 << O(1)]. 

 ≡ 2/1 (ratio of cubic nonlinearity coefficients).  Values of  are chosen to be 0.1, 0.5, 

1.0 or 2.0.  The two non-unity cases represent a change in the strength of the focusing 

properties of the medium across the interface. 
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 ≡ 2/1 (ratio of quintic nonlinearity coefficients).  Values of  are chosen to be 0.1, 0.5, 

1.0, 2.0 or 2.5. 

≡1E0
2
/ (ratio of cubic to quintic nonlinear phase shifts).  Typically, the quintic 

contribution to self-focusing is a small correction to the cubic (Kerr) effect [17].  The 

competing cubic-quintic nonlinear response can be used as a leading-order approximation 

to a saturable intensity-dependent refractive index [17].  Here,  = ±0.15 is used [16].   

0 (peak intensity).  For  = 0.15, the bistability condition means that there are two values 

of 0 describing solutions with different peak intensities but the same full-width-at-half-

maximum: 0  1.3 and 0  4.14 [16].  For  = +0.15, the corresponding soliton is 

monostable and has 0  0.87. 

3.4.1 Linear Interfaces 

For a GHS to exist, the parameter regimes being considered must be those where a critical 

angle exists (GHSs are found when the angle of incidence of a beam is close to its critical 

angle).  For a critical angle to exist here, then  > 0.  At linear interfaces (defined as having 

 = 1 and  = 1), from equation (3.2) one has  .  This means for the purposes of this 

section on linear interfaces, only results with  > 0 were explored further, since instances 

of  < 0 would not give rise to GHSs at this interface type. 
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Figure 25 Shown here are GHSs for the parameters: 0 = 1.3,  = 2.5 x 10
-3

,  = 1,  = 1 and  = -0.15.  The figure 

labelled a) shows the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) 

show the full results for the highest value of the angle of incidence shown in a) (and hence the critical angle) for 

values of  = 0.001 (crit(act) = 1.822°), 0.005 (crit(act) = 3.582883°) and 0.01(crit(act) = 5.463964°),   respectively. 

The results shown in Figures 25-27 are all examples of internal shifts (where  > 0).  The 

plots in pane a) show the changes in the length of the shift as the angle of incidence is 

increased.  In the majority of these results, when  = 0.001 (which is the smallest value of 

 investigated here), increasing the angle of incidence of the beam increases the length of 

the shift.  The closer the angle of incidence of the beam gets to its actual critical angle, the 

larger the increases in the shift become. 
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Figure 26 Shown here are GHSs for the parameters: 0 = 1.3,  = 1 x 10
-3

,  = 1,  = 1 and  = -0.15.  The figure 

labelled a) shows the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) 

show the full results for the highest value of the angle of incidence shown in a) (and hence the critical angle) for 

values of  = 0.001 (crit(act) = 1.886°), 0.005 (crit(act) = 3.892405°) and 0.01 (crit(act) = 5.672973°) respectively. 

As  is increased, it becomes more likely that the values for the shifts will be significantly 

smaller.  Although the shifts increase when the angle of incidence is between 0.5° and 2°, 

for angles of incidence above this, the value of the shift tails off, and an oscillatory 

relationship emerges.  Also common for larger  is that close to the critical angle, the 

beam splits into reflected and refracted components on encountering the interface.  This 

makes it much more difficult to ascertain an actual value for the critical angle, and this is 

seen in Figures 25-26 b) and c), and 27d). 

For all these results the actual critical angle is found to be less than the theoretical critical 

angle. 
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Figure 27 Shown here are GHSs for the parameters: 0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 1 and  = -0.15.  a) shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) show the full results 

for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of  = 0.001 

(crit(act) = 1.8024°), 0.005 (crit(act) = 4.1137°) and 0.01 (crit(act) = 4.836937°) respectively. 

Figure 27 shows an unusual result, in that for  = 0.005 (Figure 27c), the relationship 

between  and GHS is similar to that expected when  = 0.001; contrary to expectation 

(i.e., with respect to Figure 25), we find less beam splitting at  = 0.005 and more giant 

GHSs.  Beam splitting at larger values of  is due to the mismatch between the linear part 

of the refractive index in each medium being too great to allow for the beam to penetrate 

into the second medium, causing beam splitting at the point of interaction with the 

interface [18].  Figure 27c) shows that giant GHS can exist when  = 0.005.  More work is 

needed to explain fully this unusual result, but it is probably related to the relative 

narrowness of the beam [3]. 
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3.4.1.1 Giant Goos-Hänchen Shifts 

Although the preceding plots show values of shift up to 0 = 120, it has been shown that 

shifts of much larger values may exist; see ref. [3] and Figure 28 below.  Figures 28 and 29 

above that Giant GHS can be found with both low and high amplitude beams. 

 

Figure 28 Showing a GHS for the parameters 0 = 1.3,  = 2.5 x 10
-3

 and  = 0.001.  The value of the shift here is 0 

= 2470.7, and corresponds to an angle of incidence of 1.82491°. 

In ref. [3] giant GHSs are shown at dissimilar Kerr-type interfaces.  In that paper, shifts are 

seen with values up to  = 200.  Figure 28 shows a giant GHS at a cubic-quintic interface, 

where the shift is  = 2470.7.  This is, to the best of my knowledge, the largest GHS 

found at a nonlinear interface.    

  

Figure 29 Showing a GHS for the parameters 0 = 4.14,  = 2.5 x 10
-3

 and  = 0.001.  The value of the shift here is 

0 = 1678.1, and corresponds to an angle of incidence of 1.80374°. 
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It is thought that the shift size for results with smaller values of  will increase indefinitely 

because the GHSs appear to diverge asymptotically; that is to say ever smaller increments 

in θinc result in vastly larger shifts.  Both the results in Figures 28 and 29 show the beams 

penetrating a significant distance into the second medium, before being reflected back into 

the first.   

3.4.1.2 Negative GHS 

When the angle of incidence of the beam is 0.5°, 0 < 0.  A negative value for a GHS 

occurs when the beam 'feels the effect' of the interface before encountering it, and is 

repelled by the interface.  This results in a reflected beam that has interacted only very 

weakly with the interface.   

 

Figure 30 Shows examples of negative GHS.  It can be seen in all three examples that the beam reflects without 

the centre of the beam encountering the interface. Parameters of the beams are: 0 = 1.3,  = 2.5x10
-3

,  = 1,  = 1, 

 = -0.15, inc = 0.5° with  = 0.001, 0.005 and 0.01 in a), b) and c) respectively. 

Because the value of the GHS is calculated according to: 

 GHS actual reflected path predicted optical path,   (3.3) 

the shift being a longitudinal displacement means that the value will be negative when 

reflecting before interacting with the interface.  The geometrical optical path of the beam 

will then have larger  values than the beam’s actual reflected path. 
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Figure 31 Schematic diagram showing the negative GHS arises as a result of reversing the direction of a 

displacement. 

3.4.2 Shifts at mixed interfaces 

Results at mixed interfaces can be categorised as either internal or external GHSs.  Internal 

GHSs will be considered first in this section.   hey are a more ‘standard’ type of shift  

having been seen previously in this chapter (all GHSs at linear interfaces are instances of 

internal GHSs) and are prominent in the literature [1, 4-11]. 

3.4.2.1 Internal shifts at mixed interfaces 

Internal shifts arise when the parameters are chosen such that  > 0 (which is always 

required for GHSs to occur) and  > 0 (as was necessary when looking at linear 

interfaces). 
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Figure 32 Shown here are GHSs for the parameters: 0 = 1.3,  = 2.5 x 10
-3

,  = 0.5,  = 1 and  = -0.15.  a) Shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) show the full results 

for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of  = 0.001 

(crit(act) = 3.774°), 0.005 (crit(act) = 6.672°) and 0.01(crit(act) = 8.892°) respectively. 

One obvious difference between the internal shifts at mixed interfaces, and the results in 

any other section of this chapter, is that the beam will invariably split on interacting with 

the interface when the angle of incidence is close to its critical angle.  The splitting 

manifests as the GHS goes from negative to positive.  One question that may arise from 

this is ‘how meaningful is the shift value when a beam splits?’   ue to the way in which 

the shift is calculated, the shift value is still accurate when a significant amount of beam 

splitting is seen, however, as has already been mentioned, the difficulty lies in finding a 

true value for the critical angle.  Figures 32-34, b), c) and d) show the beam propagating 

with an angle of incidence which is as close to the critical angle of the beam as possible.  
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Figure 32a) shows the relationship between the GHS and the angle of incidence of the 

beam.  Beam splitting causes reductions in the magnitude of the GHS. 

 

Figure 33 Shown here are GHSs for the parameters: 0 = 4.14,  = 2.5 x 10
-3

,  = 0.5,  = 1 and  = -0.15.  a) Shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) show the full results 

for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of  = 0.001 

(crit(act) = 5.045946°), 0.005 (crit(act) = 6.672441°) and 0.01(crit(act) = 8.892405°) respectively. 

Figure 33 shows similar results to Figure 32, however the magnitudes of the shift are much 

reduced, with increasing the intensity of the beam.  The reflected beams are much stronger 

as the refracted beam forms than in Figure 32. 
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Figure 34 Shown here are Goos-Hänchen shifts for the parameters: 0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 2 and  = -

0.15.  a) Shows the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) show 

the full results for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values 

of  = 0.001 (crit(act) = 3.06036°), 0.005 (crit(act) = 4.185039°) and 0.01(crit(act) = 5.308861°) respectively. 

Here, in Figure 34, the shifts are very small.  It is interesting to note that it seems, on close 

inspection of the figures presented, that the results in a) appear more accurate than in 

Figures 32-33.  Accuracy here is judged manually, by finding what the length of the shift 

is ‘supposed to be’ from the graph in a) and comparing this to the ‘actual’ shift lengths in 

figures b) through d).  In doing this we find that the values in the graph in Figure 34a)  are 

closer to the lengths of the shifts found in the 3-d plots in Figure 34b)-d) than is the case 

for the respective results in highlighted in Figures 32 and 33.  In Figures 32-34 it can be 

seen that the values are more accurate when the reflected beam is stronger (i.e. has a 

higher amplitude and looks more 'beam like') when the refracted beam forms.  In Figure 34 

it can be seen that the beam is, indeed, stronger when the refracted beam forms than is the 
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case in Figures 32-33 and so it may be postulated that this is the reason for the more 

accurate results in this case. 

3.4.2.2 External shifts at mixed interfaces 

As can be seen from equation (3.2) there are three cases investigated here to find external 

GHSs at mixed interfaces: 

 Case 1:  < 1 

 Case 2:  < 1 and  > 0 ( = 1) 

 Case 3:  > 1 and  < 0 ( 

Although external GHSs also exist when case 2 is combined with case 1, only the three 

separate cases mentioned were investigated (due to time constraints). 

Case 1:  < 1 

External results when  < 1 have been investigated before at Kerr interfaces, see reference 

[3].  The results discussed below are novel: this is the first time external GHSs have been 

simulated at cubic-quintic interfaces. 

 

Figure 35 Shown here are GHSs for the parameters: 0 = 1.3,  = 2.5 x 10
-3

,  = 0.1,  = 1 and  = -0.15.  a) Shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b) Shows the full result for the 

highest value of the angle of incidence shown in a) (and hence the critical angle) for  = -0.001 (crit(act) = 3.2342°).  

Other values of  investigated are  = -0.005 and  = -0.01, however these value proved to have no critical angle. 

Although the predicted theoretical critical angles for case 1 are quite large, sometimes as 

large as 4°, the results for the simulations show the critical angle for many of the chosen 
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parameters cannot be found.  Figure 35 shows the results for the smallest |.  It can be 

seen that the value of the shift only just gets above 0.  At the point chosen as the critical 

angle, a lot of radiation can be seen crossing the interface, and the reflected beam is 

beginning to break down, as well as the path of the beam bending after the interaction with 

the interface.  The negative shifts that occur at around 3° are potentially caused by the 

beam splitting. 

Case 2:  < 1,  > 0 

The following two cases of external shifting rely on the values of , so these cases show 

new results. 

 

Figure 36 Shown here are GHSs for the parameters: 0 = 0.87,  = 2.5 x 10
-3

,  = 1,  = 0.1 and  = 0.15.  a) Shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b), c) and d) show the full results 

for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of  = -0.0001 

(crit(act) = 0.14194°), -0.00005 (crit(act) = 0.6161°) and -0.00001(crit(act) = 0.7075°) respectively. 



61 

 

All results for case 2 present clear examples of giant GHSs.  The predicted critical angles 

are very small (around 1°), and the mismatch parameters had to be chosen carefully to 

allow for the (potential) existence of a critical angle, and therefore the values of  used in 

Figure 36 are an order of magnitude smaller than those used in the linear interfaces 

section.  Although the theoretical critical angles are small it was still possible in the 

simulations to find examples of beam reflection.  Moreover, shifts of a significant length 

were found.  The actual critical angles for the case 2 results are always slightly smaller 

than the theoretical predicted angles.  

Case 3 -  > 1,  < 0  

 

Figure 37 Shown here are GHSs for the parameters: 0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 2.5 and  = -0.15.  a) Shows 

the relationship between the angle of incidence of the beam, and its GHS value.  b) and c) show the full results for 

the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of  = -0.001 

(crit(act) = 2.74°) and -0.0025 (crit(act) = 2.643°).   = -0.005 was also investigated, however no critical angle was 

found. 

For Case 3, the results are mixed.  From the simulations, it would seem that the results are 

more like the results at linear interfaces, with significant shifts when | is smaller, and 

then as this is increased, beam splitting becomes the predominant behaviour.  As was true 

in case 1, there are differences in the theoretical and actual critical angles (the figure shows 

results for two values of , the third value investigated,  = -0.005, did not reflect, even at 

small incidence angles).  Again, the actual critical angle is lower than the theoretical one, 

although the difference between the two is much greater than it was for case 2, results 

tables showing this can be found in Appendix C. 
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3.4.2.3 Nonlinear Interfaces 

By looking at purely nonlinear interfaces (with  = 0), the effect of varying the mismatch 

in the cubic and quintic contributions can be seen.  This is the first time Helmholtz cubic-

quintic GHSs have been investigated, so the parameter regimes where any effect could be 

solely linked to the quintic term is where novelty will lie (since it is the addition of the 

quintic term which distinguishes cubic-quintic material from Kerr materials).  

As with every section in this chapter, the parameters have been chosen to ensure that a 

critical angle exists [see equation(3.2)].  When  = 0, to ensure  > 0, there are two 

regimes considered: 

  = 1,  = 0.5 (shows the effect of varying the cubic contribution across the 

interface) 

  = 2,  = 1 (shows the effect of varying the quintic contribution across the 

interface.  Results for this have not been seen in literature before.  The effects are a 

direct result of the 
(5)

 parameter) 

 

Figure 38 Shown here are GHSs for the parameters: 0 = 1.3,  = 0 and  = -0.15.  a) Shows the relationship 

between the angle of incidence of the beam, and its GHS value.  b) ( = 2.5 x 10
-3

) and c) ( = 1 x 10
-3

) show the full 

results for the highest value of the angle of incidence shown in a) (and hence the critical angle) for values of 

andd) ( = 2.5 x 10
-3

) and e) ( = 1 x 10
-3

) show the critical angle results for  = 1 and  = 2.  

Figures 38 and 39 show results at a purely nonlinear interface.  The results here are 

striking.  A strong trend is seen between the behaviour of the beam close to the critical 

angle and the value of  and . 
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When  = 0.5, the beam splits as it encounters the interface.  In previous sections (at 

mixed interfaces), when the beams split, the reflected beam decreased (in strength) 

gradually as the refracted beam increased (in strength), as the angle of incidence was 

increased.  A reflected beam was always present until the point where the refracted beam 

was fully formed.  However, here, it is the case that the reflected beam starts to 

‘disintegrate’ before a refracted beam is fully formed.   he highest value for the angle of 

incidence before the beam ‘disintegrates’ is ta en to be the critical angle.  At this point the 

refracted beam is beginning to be formed, and just above this point, the refracted beam is 

‘fully formed’. 

 

Figure 39 Shown here are Goos-Hänchen shifts for the parameters: 0 = 4.14,  = 0 and  = -0.15.  a) Shows the 

relationship between the angle of incidence of the beam, and its GHS value.  b) ( = 2.5 x 10
-3

) and c) ( = 1 x 10
-3

) 

show the full results for the highest value of the angle of incidence shown in a) (and hence the critical angle) for 

values of andd) ( = 2.5 x 10
-3

) and e) ( = 1 x 10
-3

) show the critical angle results for  = 1 and  = 

2. 

When  = 2, and the quintic contribution to the refractive index is varied across the 

interface, the beam becomes trapped by the interface at the point of interaction.  This 

means that as the angle of incidence increases, the GHS increases, and the GHS is 

sensitive to very small changes in the angle of incidence.  This leads to the giant GHS 

being present in regimes where  = 2.  These results are novel, as results in these 

parameter regimes have not be presented in any literature before. 
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3.4.3 Comparison with Shifts at Dissimilar Kerr Interfaces 

This section will compare interesting features of the GHS results at cubic-quintic 

interfaces to similar parameter regimes at an interface between Kerr type materials.  

Extensive results of the latter can be found in ref. [3].  In making these comparisons, it will 

become evident as to the effect that the quintic term in the refractive index has on beam 

propagation in near-critical-angle regimes. 

The dissimilar Kerr-type interface problem has a refractive index of n = n0i + (i/2n0i)I, 

where n0i is the linear refractive index, i > 0 (for bright solitons) is the cubic coefficient 

and I is the optical intensity.  The subscript i is 1 in medium 1, and 2 in medium 2.  By 

comparing this refractive index with that seen in Figure 19, it becomes clear that changes 

in the behaviour of the shifts for similar parameter regimes are a result of the quintic term 

present only in the cubic-quintic refractive index. 

There is one cause for concern for the results in this section: changing the materials that 

the beam is propagating in also modifies the critical angle.  The behaviour depends 

strongly on the critical angle, and for this reason the results in this section will consider 

beams propagating at their theoretical critical angle. 

 

Figure 40 Shows the relationship between the angle of incidence and the length of the GHS in both Kerr (blue 

line) and cubic-quintic (black line) materials, when  = 2.5 x 10
-3

.  a) Has 0= 1.3 and b) has 0= 4.14.   

The results shown in Figure 40 are in linear interface parameter regimes.  Simulations 

were run between 0.5° and 1.8° in both Kerr (blue line) and cubic-quintic (black line) 
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materials.  At linear interfaces, Kerr and cubic-quintic materials have the same predicted 

critical angle, so the results are directly comparable.  Because the theoretical critical angles 

are the same, it is unsurprising that the results for the two materials are similar.  The results 

differ more when the peak intensity of the beam is larger.   

For the following results, a) shows a beam propagating at its theoretical critical angle for 

particular parameters in a cubic-quintic material, while b) shows a beam propagating with 

the same parameters (though  = 0, making the material Kerr-type) at the theoretical 

critical angle predicted for a Kerr material.  When the interfaces are linear ( = 1 and  = 

1) the predicted critical angles become the same. 

 

Figure 41 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 1.81121°) and 

b) Kerr (crit(theoretical) = 1.81121°).  0 = 1.3,  = 0.001,  = 1,  = 1,  = 2.5 x 10
-3

. 

The results here are for a linear interface.  This means that the predicted critical angle is 

the same in both the Kerr and cubic-quintic media.  The results here are significantly 

different from one another (with one reflecting and one refracting), which shows that 

qualitatively new results are found when the quintic term is introduced into the refractive 

index. 
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Figure 42 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 3.7280°) and 

b) Kerr (crit(theoretical) = 3.7268°).  0 = 1.3,  = 0.001,  = 0.5,  = 1,  = 2.5 x 10
-3

. 

 

Figure 43 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 1.3792°) and 

b) Kerr (crit(theoretical) = 1.8112°).  0 = 1.3,  = 0.001,  = 1,  = 0.5,  = 2.5 x 10
-3

. 

 

Figure 44 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 6.0790°) and 

b) Kerr (crit(theoretical) = 6.0556°).  0 = 4.14,  = 0.001,  = 0.5,  = 1,  = 2.5 x 10
-3

. 
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Figure 45 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 7.0703°) and 

b) Kerr (crit(theoretical) = 7.0501°).  0 = 4.14,  = 0.005,  = 0.5,  = 1,  = 2.5 x 10
-3

. 

 

Figure 46 Shows beam behaviour at its theoretical critical angle for a) cubic-quintic (crit(theoretical) = 6.6658°) and 

b) Kerr (crit(theoretical) = 6.6273°).  0 = 4.14,  = -0.005,  = 0.1,  = 1,  = 2.5 x 10
-3

. 

Figures 39-43 all show similar results.  At the predicted value for the theoretical critical 

angle the beams split on interacting with the interface.  For all five figures, the reflected 

beam is less well defined in the Kerr material than it is in the cubic-quintic material.  For 

Figures 39 and 40 both the reflected and refracted beams are less well defined than those 

found in Figures 41-43.  Figure 43 (where the parameter regimes are external) shows the 

most striking difference in the beam behaviour in the different materials.  For the cubic-

quintic material the path of the reflected beam is distorted by the interface, whereas in the 

Kerr material only radiation is reflected by the interface. 
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3.5 Conclusions 

This chapter has presented in-depth results into phenomena which arise when a beam is 

propagating at an angle of incidence that is close to its critical angle.  Although the 

simulations carried out for this chapter are exhaustive, there is much scope for further 

work based on the results found here. 

Results at linear interfaces show that when  is small, giant GHSs can be found in near-

critical-angle regimes.  As the value of  is increased, the GHS is drastically reduced, as 

beam splitting becomes a major feature.  At mixed interfaces, two classes of result were 

considered; firstly, internal GHS at mixed interfaces ( > 0), where giant shifts were not 

found.  The beams here always split on interacting with the interface.  It has been shown 

that the way the beam splits has an effect on the magnitude of the GHS (if the reflected 

beam is strong (high amplitude) as the refracted beam begins to form, then this results in 

smaller GHSs). 

The story becomes slightly less clear when external GHSs at a mixed interface are 

considered.  There are three parameter cases to investigate when  < 0.  Case 1 has  < 1 

and here the predicted critical angles are the most inaccurate, moreover, many theoretical 

critical angles do not appear in the simulated results (even when these small angles are 

increased incrementally by millionths of a degree).  For case 2, giant GHSs were common 

in the results.  The theoretical critical angles are of the order of 1°, and as a result  (the 

mismatch in the linear part of the refractive index) was kept small (by an order of 

magnitude compared to the values used in linear-interface calculations).  Case 3 shows 

similar results to those at linear interfaces, where giant GHSs are present at small |, and 

then as the mismatch increases, beam splitting starts to dominate and the value of the GHS 

dramatically decreases. 

For purely nonlinear interfaces ( = 0) the results are noteworthy because the effect of a 

mismatch in the quintic contribution can be isolated.  For valid results, parameters 

investigated were  = 0.5 and  = 1 (where the beam splits at the interface) and  = 1 and 

 = 2 (where giant GHS are often seen).  These are a result of the mismatch in the quintic 

term, and are therefore qualitatively new.  The trend is found to be the same when looking 

at high and low intensity beams.    
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The investigation and comparisons found in this chapter have shown that the GHSs at 

cubic-quintic materials may be qualitatively different from those found at Kerr interfaces. 
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4. Single interfaces III: nonlinear surface waves
1
 

4.1 Introduction 

In an optical context, surface waves are localised stationary states of light that propagate 

along the interface between two dissimilar materials.  Since the light straddles both media 

simultaneously, it follows that there is usually an inherent asymmetry in its transverse 

profile (the strength of this asymmetry depends upon the interplay between mismatch 

parameters and the wave’s nonlinear phase shift).  The stability properties of surface 

waves are of fundamental interest in nonlinear science.  Classic methods routinely 

deployed for predicting the robustness of solitons in homogeneous systems [2] cannot 

necessarily be applied to surface waves in inhomogeneous systems [3].  In the absence of 

any rigorously-derived integral criterion, surface wave stability must be addressed 

numerically. 

Surface waves are familiar phenomena in photonics.  In the nonlinear domain, they have 

been extensively investigated in both Kerr-type and power-law media over the past two 

decades.  Analyses have tended to fall into one of two categories:  analytical (finding 

solutions to governing equations, but with no complementary numerical investigations) or 

computational (simulating surface waves within the paraxial limit only).  Until very 

recently [1], there was no complete analysis (i.e., theory with supporting simulations to 

provide evidence of solution stability) of surface waves in the Helmholtz nonparaxial 

regime.  It is precisely this regime that is of interest for the remainder of this chapter. 

4.1.1 Power-Law Interfaces 

For maximum generality, attention will be paid to the planar interface defined by two 

dissimilar power-law type materials (see Figure 47).  The refractive-index distributions are 

described by  

2 2

0 ,
q

j j jn n E   (4.1) 

where the nonlinearity exponent q > 0.  In this simple generalisation, the coefficients j are 

taken to be positive and the universal Kerr-type response corresponds to the special case of 

q = 2.  Examples of optical materials that can exhibit power-law characteristics include 

some semiconductors (e.g., InSb [4], GaAs and GaAlAs [5]), doped filter glasses (e.g., 

                                                
1 The work presented in this chapter has been published in a peer-reviewed journal [1] 
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CdSxSe1-x [6]), and liquid crystals (e.g., methoxybenzilidene butylanaline (MBBA) [7]).  

Both paraxial- [8] and Helmholtz-type [9] governing equations with nonlinearity (4.1) 

admit a continuum of exact analytical sech-type solitons.  These solutions are generally 

stable against perturbations within the range 0 < q < 4.  

 

Figure 47  Schematic diagram showing a typical set-up for an interface between dissimilar power-law materials, 

and the parameters which can be varied across the interface.  The values of these parameters will define whether 

the interface is linear, nonlinear, or mixed. 

4.1.2 Literature Review 

In previous literature concerning nonlinear surface waves [2, 3, 10, 11] the focus of the 

research has been to try and link the stability of the surface wave to the VK criterion.  The 

VK criterion can accurately predict the stability of solitons, but does not necessarily extend 

to predicting that of surface waves.  The criterion is related to the value of dP/d, where P 

is the beam power, and  is related to the propagation constant of the beam.   

Aceves, Moloney and Newell provided the first investigations into nonlinear surface 

waves at the interface of two nonlinear materials [3].  The interface is one between two 

dissimilar Kerr materials.  The stability of the surface waves are considered, although not 

through the use of numerical analysis, and they conclude that the stability criterion 

proposed in earlier work analysing surface waves at a linear-nonlinear interface (dP/d > 0 

will have stable surface waves, while dP/d means that the surface waves will be 
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unstable) is not necessarily applicable for interfaces between two nonlinear materials.  This 

is also found to be the case here; sections 4.4 and 4.3 show the VK criterion is a necessary 

but not sufficient condition for stability.  Aceves et al.'s finding that stable solutions only 

occur when the peak of the beam is in the material with the higher nonlinear refractive 

index, is also supported by the results in this study. 

The paper by Snyder and Tran [11] is the first to look at surface waves at the interface of 

power-law materials.  This paper considers two different interface scenarios: the right hand 

medium (or medium 1) is always self-focusing, however in the first scenario the left hand 

medium (or medium 2) is considered to be self-focusing, and in the second scenario 

medium 2 is thought of as self-defocusing.  The surface mode solutions are found by 

inverting the solution to a linear waveguide.  It was only after the solution had been 

inverted that the authors could identify that the nonlinear mode is one of a power-law 

nonlinearity. 

This paper makes inferences about the stability of these surface waves, stating that those 

on the lower branch are always unstable, where as those on the upper branch (dP/d > 0) 

are possibly stable, but that the stability of the upper branch is dependent on the value of 

the nonlinear index.  These predictions are not explored further by Snyder and Tran, but 

are tested extensively in this chapter (see 4.4 and 4.3).   

Ma and Chen's [10] is the first paper to find exact analytical solutions for nonlinear surface 

waves at the interface of two non-Kerr like media.  Once again in this work, both of the 

materials have a power-law nonlinearity.  Four different interface scenarios are 

investigated here, all four permutations of medium 1 and medium 2 being either self-

focusing or self-defocusing.  One area which is investigated in Ref. [10] but neglected here 

are dissimilar values for the nonlinear index of the materials, both analytically and 

numerically.  Their findings focus only on a few special cases, and make no mention of 

surface wave stability or any stability criterion.  For this reason, the results are not 

discussed further here.  

The work which follows gives analytical results for Helmholtz surface waves at a power-

law interface.  It then goes on to give a full numerical investigation of the stability of such 

surface waves, with reference to the VK criterion. 
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4.2 Nonlinear Surface Waves 

4.2.1 Model Equation 

By using the same approach as in section 2.2.1 and deploying instead the refractive index 

model of equation(4.1), the dimensionless envelope u must satisfy           

    
2 2

2 2

1
1 .

2 4

q qu u u
i u u u H u  

   

    
          

 (4.2) 

The material mismatch parameters,  and , retain their earlier definitions [see equations 

(2.7)], and the normalisation is the same as before except that the laboratory electric field 

is now measured in units of E0 = (n01/k1LD)
1/q

.  

4.2.2 Exact Analytical Solutions 

To proceed, equation (4.2) is separated into its forms for medium 1 and medium 2: 
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and exact surface wave solutions are sought using the following ansatz: 

      , exp exp ,
2

ju F ik i


    



 
   

 
 (4.5) 

where F(j) is the transverse profile centred on j.  By substituting into equations (4.3) 

and (4.4), it can be shown that the solutions in medium 1 and medium 2 are: 
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respectively.  The solution contains a parameter  whose value determines the profile of 

the surface wave.  To find the displacements and , the field u and its normal derivative 

(in this case  ∂u/∂) must be continuous across the interface.  These conditions yield a pair 

of auxiliary equations 

 

11 2 1 2

1 2 2

1 2

1
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2 4 42
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 (4.8) 
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which may be solved to give:  
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Equations (4.6), (4.7) and (4.10)-(4.13) are exact analytical surface waves of model (4.2).  

The full derivations can be found in Appendix D.  

4.2.3 Existence Criterion 

The realness of displacements 1and 2demands that 2
< 1and 2

< 1, and these two 

simultaneous conditions lead to a constraint on the product 4: 

 min4 4 .
1

 



 


 (4.14) 

When considering any given interface (described by  and ), it now becomes obvious 

that surface waves may only exist when the product 4 exceeds a minimum (positive) 
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numerical value denoted by 4min.  As a consequence, surface wave solutions may exist 

only for those interfaces that fall into one of two categories: regime 1 ( > 0 and  > 1) or 

regime 2 ( < 0 and 0 <  < 1). 

4.3 Stability of Lower-Branch Solutions 

Extensive computations have investigated the validity of the VK criterion [2] (which states 

that’s solutions will be stable when dP/d > 0 is satisfied) in the context of predicting the 

stability of Helmholtz surface waves lying on the lower branch (see Appendix D).  

Simulations demonstrate repeatedly (over a wide parameter choice) that such solutions 

tend to be stable if the condition dP/d > 0 is met: the initial profile is preserved 

(exhibiting no change in shape) as the wave propagates along the interface.  Solutions with 

dP/d < 0 have been found to exhibit a variety of qualitatively different instabilities that 

will be explored in detail.   

4.3.1 Regime 1 

Illustrative examples of instabilities when dP/d < 0 are shown in Figure 48 for 

nonlinearity exponents q = 1, 2 and 3 (when  = 2.5×10
–3

, min = 1.00 and  has been set to 

1.01).  As each surface wave travels along the interface  their profiles ‘wobble’ in the 

transverse direction.  For q = 1 and q = 2, the oscillation is approximately periodic in the 

longitudinal direction (a property that is perhaps related to weak asymmetry in the input 

beam – the peak of the profile is always located in medium 2); also, a smaller q value leads 

to an oscillation on a longer scalelength in .  For q = 3, the evolution of the unstable 

surface wave is initially much more erratic than in the previous two cases, and clearly 

nonperiodic.  Another immediately apparent feature is that systems with higher q 

exponents (e.g., q = 3) generate much more radiation than systems with lower q (e.g., q = 

1).  Radiation tends to be shed into medium 1 (the domain  < 0), where the linear 

refractive index is higher (this phenomenon could be related to the total internal reflection 

of low-amplitude waves, which do not greatly experience system nonlinearity).  A third 

interesting observation is that all three surface waves, despite being unstable, nevertheless 

remain localised within the vicinity of the interface in both the short and long term. 

If parameter  is increased slightly from 1.01 to 1.08, then dP/d > 0 for q = 1 while dP/d 

< 0 for q = 2 and q = 3.  Accordingly, the surface wave for q = 1 is stable and propagates 

with invariant shape.  The waves for q = 2 and q = 3 are both found to be unstable.  While 
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the qualitative aspects of these two instabilities remain unchanged, two notable differences 

can be clearly identified in their quantitative properties (compare Figures 48 and 49).  

Firstly, the longitudinal scalelength of the oscillations is increased; secondly, much less 

radiation is generated in the q = 3 systems [compare Figures 48d) and 49d)].  These 

differences (longer scale-lengths and less generated radiation) are augmented further if  is 

increased (e.g., to 1.3 – see Figure 50). 

 

Figure 48 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 1.01 and is chosen such that all three lower branch curves have a negative 

gradient. 
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Figure 49 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 1.08 and is chosen so that for q = 1 the lower branch curve has a positive 

gradient, but q = 2 and q = 3 have negative gradients. 
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Figure 50 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 1.3 and is chosen so that for q = 1 and q = 2 the lower branch curves have a 

positive gradient, but q = 3 has a negative gradient. 

 

 



80 

 

4.3.2 Regime 2 

As in regime 1, solutions with dP/d > 0 have been found to be stable (propagating with 

invariant profiles over arbitrarily long distances).  However, simulations have uncovered a 

qualitatively new characteristic of lower-branch instabilities when dP/d < 0.  After a 

sufficiently long propagation distance, an unstable surface wave (i.e., a stationary wave 

travelling along the interface) transforms spontaneously into an obliquely-propagating 

soliton (i.e., a stationary beam travelling at a finite angle with respect to the interface).  

 his process is much ‘cleaner’ than the corresponding instability in regime 1  where 

surface waves remain quasi-bound to the interface and (for q = 3) generates more 

radiation. 

Inspection of Figure 51 shows that the instability growth rate depends upon the exponent q 

when other parameters remain fixed.  That is, systems with stronger nonlinearity (i.e., 

those described by larger q values) have a higher instability growth rate.  In regime 2, the 

peak of the surface wave resides in medium 2 and it is always this medium into which the 

soliton has been seen to escape. 

 

Figure 51 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 2.505 and is chosen such that all three lower branch curves have a negative 

gradient. 



81 

 

Further simulations (in Figures 52 and 53) have shown that the instability growth rate also 

depends upon .   

 

Figure 52 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 1.08 and is chosen such that for q = 1 the lower branch curve has a positive 

gradient, but q = 2 and q = 3 both have negative gradients. 
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Figure 53 Shows the effect of changing  for lower branch surface waves.  Figures b), c) and d) show q = 1, 2 and 3 

surface waves respectively.  Here,  = 2.55 and is chosen such that for q = 1 and q = 2 the lower branch curves 

have a positive gradient, but q = 3 has a negative gradient. 
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4.3.3 Interim Conclusion 

Simulations have been deployed to investigate the stability problem for Helmholtz surface 

wave states on the lower branch.  Strong numerical evidence has been gathered which 

supports the assertion that the VK criterion provides a reliable indicator of solution 

robustness.  However, that criterion provides no information about the qualitative features 

of instabilities when dP/d < 0. 

Detailed computations have established that lower-branch surface-wave solutions 

satisfying dP/d > 0 tend to be strongly stable entities, evolving over long distances 

without changing their shape.  A full numerical perturbative analysis (e.g., considering 

local disturbances to the beam shape [9, 12]) could provide further information on this.  

However, very small perturbations still exist within the system (e.g., in the form of finite 

machine precision and algorithm accuracy); these same perturbations are still sufficiently 

large to seed instabilities (in regimes with dP/d < 0) whose characteristics depend heavily 

upon the parameters defining the interface.  In regime 1 ( > 0,  > 1), the surface wave 

can acquire oscillatory characteristics but, crucially, the wave remains essentially intact 

and bound to the interface.  In other words, the surface wave is unstable (in the sense that 

propagation is no longer stationary) but it still remains bound to the interface.  Such 

solutions may be classified as weakly unstable as their defining physical property 

(localised excitations travelling along a material boundary) is preserved.  In regime 2 ( < 

0, 0 <  < 1), a different class of instability has been uncovered.  The unstable surface 

wave decays very cleanly (e.g., with almost no radiation) into a soliton that propagates at 

an oblique angle to the interface (and always in medium 2).  Such solutions may be 

classified as strongly unstable: the surface wave ceases to exist and transforms completely 

into a soliton. 
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4.4 Stability of Upper-Branch Solutions 

4.4.1 Upper Branch regime 1 

Upper branch surface waves are found to be inherently unstable.  This section of the report 

will look in detail at the surface waves in regime 1, that is where and   Figure 

54a) shows the upper branch solutions in blue, red and green lines, for q = 1, 2 and 3 

respectively.  

 

Figure 54 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line, and  in all three cases. 

Figures 54-57 show that, no matter the change in the parameter regime, all surface waves 

are unstable, i.e. the surface wave deflects from the interface.  The peak of the beam is also 

shown to be in medium 1 before it is deflected into the second medium, i.e. the peak of the 

beam is on different sides of the interface before and after the instability. As q increases, 

the distance that the surface wave propagates along the interface before becoming unstable 
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is decreased and, in addition, the width of the solution appears to decrease with increasing 

q. 

 

Figure 55 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

By decreasing , all of the beams appear to be narrower than the case where  = 2.5 x 10
-3

, 

and also in all three examples the instability occurs after a shorter length than in Figure 

54. 
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Figure 56 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

 in Figure 56 has been decreased by a factor of 2 compared to Figure 55.  By halving the 

value of , all three solutions appear broader, but the propagation length before the beam 

becomes unstable is increased in comparison to that of Figure 55.  
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Figure 57 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

A reduction in  has occurred between Figures 56-57.  By decreasing , the instability 

occurs over a shorter distance in the direction and there is no obvious difference in the 

width of the beam. 
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4.4.2 Upper Branch Regime 1 Changing 

The results here look specifically at surface waves with different values of for three 

different values of q  

 

Figure 58 Shows the effect of varying the parameter , when q = 1.  a) Shows the beam powers for all the values of 

 tested.  b) has  = 2.5 (or  = min), c) has  = 2.75 (or  = 1.1 x min) and d) has  = 3 (or  = 1.2 x min).  

Figure 58 shows how increasing the value of  affects the stability of the surface wave 

solutions.  Figure 58b) shows the surface wave solution when  = min.  The solution 

‘skims’ the interface and can, therefore, be described as being unstable.  Figure 58c), 

where the value of  has been increased to  = 1.1min, the oscillations are more rapid in , 

and they are larger in .  Figure 58d) show results similar to those in the previous section 

where the beam is deflected into the second medium.  As the value of  increases, the 

beam oscillations increase in  until  reaches a point where the beam is so unstable that it 

completely leaves the interface to propagate in the second medium.  Put simply, as the 

value of  increases, the beam becomes more unstable.  
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Figure 59 Shows the effect of varying the parameter , when q = 2.  a) Shows the beam powers for all the values of 

 tested.  b) has  = 2.5 (or  = min), c) has  = 2.75 (or  = 1.1 x min) and d) has  = 3 (or  = 1.2 x min). 

Figure 59b), which has  = min, shows a skimming mode along the interface, but the beam 

does not leave the interface.  By increasing  to 2.75, the longitudinal oscillations of the 

skimming mode become more rapid, c.f. Figures 59b) and c).  Figure 59d) shows the beam 

propagating along the interface until a certain point where the beam is deflected and 

propagates into medium 2.  Again, as the value of  has increased, the surface wave 

solutions become more unstable.  
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Figure 60 Shows the effect of varying the parameter , when q = 3.  a) Shows the beam powers for all the values of 

 tested.  b) has  = 2.5 (or  = min), c) has  = 2.75 (or  = 1.1 x min) and d) has  = 3 (or  = 1.2 x min). 

In Figure 60 the value of q has been increased to 3.  Figure 60b) shows the surface wave 

solution when  = min.  The surface wave appears to propagate along the interface until it 

begins to oscillate.  These oscillations become much smaller in  with increasing , until 

the beam appears to be propagating along the interface without any oscillations in .  

Figures 60c) and d) show the beams being deflected into the second medium, though the 

beam in Figure 60d) propagates at a larger angle with respect to the interface.  

Summary 

When q = 1 and q = 2, the results show that as  increases the surface waves develop more 

instability.  For  = min there are small oscillations, for  = 1.1min the oscillations are 

larger in  and more rapid in , and for  = 1.2min, the beam leaves the interface 

altogether. 

When q = 3, the results are slightly different.  For  = min the beam does start oscillating, 

but these oscillations appear to die out at increases.  For  = 1.1min and  = 1.2min the 
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beam leaves the interface, in the case of  = 1.2min, after less  distance when compared 

with  = 1.1min.  For q = 3 as the value of  increases the beam does become more 

unstable (as it does when q = 1 and q = 2), however the instabilities of the beam are not 

manifest in the same way when q = 2 and q = 3. 
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4.4.3 Upper Branch regime 2 

This section of the report will look in detail at the upper branch surface waves in regime 2, 

where and 0 <  Upper branch surface waves are unstable in this regime just as 

they are in regime 1.  Figure 61a) shows the upper branch solutions in blue, red and green 

lines, for q = 1, 2 and 3 respectively.  

 

Figure 61 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

Figure 61 shows the stability of a regime 2 upper branch surface wave.  No exact 

comparison can be carried out between regime 1 and 2, since more than one parameter has 

been changed between the two systems.  Despite this, one noticeable feature of regime 2 is 

that the peak of the beam before and after the point of deflection is on the same side of the 

interface, unlike in regime 1 where the peak of the beam crosses the interface, c.f. Figures 

62-64.  As with the regime 1 results, increasing q decreases the distance the surface wave 

will propagate before becoming unstable. 
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Figure 62 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

As is increased, the distance the surface wave propagates along the interface before 

being deflected is also increased, compare Figures 61 and 62.  Also the beams all appear 

broader in Figure 62 than in Figure 61. 
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Figure 63 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

Increasing | leads to the instability becoming apparent at a decreased distance along the  

axis, compare Figures 62 and 63.  Again, the peak of the beam initially and the peak of the 

beam after the instability are at the same side of the interface (in medium 2), and as q 

increases, the distance the beam travels along the interface before becoming unstable 

decreases.   
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Figure 64 Showing a) P(vs. curves with the upper branches of the curves in colours representing q = 1, 2 or 3 

and the lower branches shown in black (it is just the upper branches that are being considered at this point).  b), 

c) and d) show the surface wave solutions for q = 1, 2 and 3 respectively.  The interface is represented by a white 

line and  in all three cases. 

When comparing Figures 63 and 64, the value of  has been decreased by 2/3.  By 

decreasing , the distance the surface wave propagates along the interface before it 

becomes unstable is slightly increased for all three q values.  It shows that as q increases, 

the distance the beam propagates along the interface before deflecting decreases.   
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4.4.4 Upper Branch Regime 2 Changing 

As in section 4.4.2, our interest here is on the effect of changing  on the behaviour of 

surface waves, in this instance in regime 2 conditions. 

 

Figure 65 Shows the effect of varying the parameter , when q = 1.  Figure a) shows the beam powers for all the 

values of  tested.  Figure b) has  = 1 (or  = min), Figure c) has  = 1.1 (or  = 1.1 x min) and Figure d) has  = 

1.2 (or  = 1.2 x min). 

Unlike the results for regime 1 (where the instability looked different as the value of  

changed), the instabilities within regime 2 parameters are always of the same type (i.e. the 

surface wave deflects).  This is highlighted in Figures 65-67 – they all show that as  is 

increased from min the surface wave propagates along the interface for a decreasing 

distance before the beam becomes unstable. 

It is interesting to note that for all the results thus far, increasing  makes the beam more 

unstable.  In regime 1, this meant qualitatively different results as  increased (from beams 

oscillating, to beams completely leaving the interface).  Here, in regime 2, all the beams 

leave the interface, increasing  just decreases the propagation distance before this 

happens.  
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Figure 66 Shows the effect of varying the parameter , when q = 2.  Figure a) shows the beam powers for all the 

values of  tested.  Figure b) has  = 1 (or  = min), Figure c) has  = 1.1 (or  = 1.1 x min) and Figure d) has  = 

1.2 (or  = 1.2 x min). 
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Figure 67 Shows the effect of varying the parameter , when q = 3.  Figure a) shows the beam powers for at all the 

values of  tested.  Figure b) has  = 1 (or  = min), figure c) has  = 1.1 (or  = 1.1 x min) and figure d) has  = 1.2 

(or  = 1.2 x min). 
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4.4.5 Interaction Between Surface Waves and Solitons 

In section 4.3, the stability of lower-branch surface waves was investigated numerically by 

using initial conditions for equation (4.2) that corresponded to exact solutions.  The only 

perturbation in the system was due to finite machine precision and algorithm accuracy.  

There are, of course, other methods to test solution stability against stronger disturbances.  

Two standard approaches involve adding a pre-determined level of (suitably filtered) 

complex noise to the initial condition, or by introducing a smooth modulation to the input 

profile. 

Here, the stability of lower-branch stable surface waves (i.e., those satisfying dP/d > 0) is 

tested by considering their interactions with an obliquely-incident soliton.  When 

considering the refraction of an incident soliton, changes in material mismatches have no 

influence at all on the input beam.  However, even small variations in  and/or  can lead 

to dramatic changes in surface-wave profiles precisely because the surface wave itself is 

characterised in terms of such mismatches.  The parameter  plays a more subtle role by 

also affecting the numerical value of min (see equation (4.14)) and, subsequently, 

changing the P() curves (here,  = 1.8min is fixed throughout).  An investigation of this 

type is thus awkward to formulate in terms of a systematic variation of a single parameter. 

In the following simulations, the parameters have been chosen so that, in the absence of 

any collision, the surface wave would propagate indefinitely without any change in shape.  

These results will start to provide deeper insight into the stability problem since collisions, 

in general, cannot be considered a small perturbation.  The soliton will be injected from 

well inside medium 1 (ensuring there is effectively zero interference between the soliton 

and surface wave at the start of the simulation), in which case equation (4.2) has the exact 

analytical solution [9] 
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also asol ≡ q[0
2
/(2+q)]

1/2
 and the propagation angle in the laboratory frame is  



100 

 

sol = tan
–1

[(2)
1/2

Vsol].  Surface waves in regimes 1 and 2 will be considered and, for 

definiteness, the incoming soliton will be travelling at either a quasi-paraxial (sol = 2°) or 

fully nonparaxial (sol = 10°) angle.  At quasi-paraxial angles, one can expect to find a 

wide variety of inelastic behaviours – such as annihilation, fission (splitting) and fusion 

(coalescence) [13] – that are universal features of nonlinear wave interactions.  These 

phenomena typically exhibit a strong sensitivity on the relative phase difference between 

the interacting entities (here, the surface wave and the soliton are always launched in-

phase); they are highly non-adiabatic processes that are often accompanied by the 

generation of much radiation. 

In contrast, such behaviour might be expected to largely disappear at nonparaxial angles 

and the general complexity of the behaviour should be greatly reduced.  For all interfaces 

considered in regime 1, the incidence angle of inc = 10° is well above the critical angle so 

that the soliton always passes through the surface wave. 

4.4.5.1 Interactions in Regime 1 

The top row of simulations in Figures 68-71 all show solitons propagating at an angle of 

incidence of 2° without any surface wave present  in order to highlight the soliton’s 

behaviour in the absence of more complicated interactions.  The figures all show that, in 

spite of the changes in a variety of parameters, the soliton behaviour remains broadly the 

same – with beams reflected by the interface, which is to be expected since the angle of 

incidence is significantly lower than the critical angle.   

For a quasi-paraxial interaction between relatively narrow beams, there is one key trend 

that is immediately apparent (see Figure 68): the soliton reflects from the interface and the 

energy initially localised in the surface wave is scattered into medium 2.  The collision 

itself thus deflects the surface wave, transforming it into an obliquely-propagating soliton-

like beam (this wave can no longer be classed as a surface excitation since it is no longer 

bound to the interface).  Both spatial structures retain their distinctive identities (i.e., there 

is no splitting or coalescence) and the interaction generates radiation.  The surface wave 

also remains unstable against nonparaxial collisions.  As the nonlinearity exponent is 

increased from q = 1 to q = 2, the propagation angle of the deflected surface wave (relative 

to the interface) approaches that of the refracted soliton.  For q = 3, these two entities 

coalesce into a single high-intensity narrow filament. 
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At this point, the role played by  in the surface wave solutions becomes more apparent.  

While decreasing  (to capture broader beams) leaves the normalised soliton profile 

essentially unchanged, there is a large effect on the surface wave (whose peak intensity can 

increase dramatically).  One can reasonably anticipate that such a change may have a 

profound impact on the system evolution (see Figure 69).  For q = 1 and a quasiparaxial 

incidence angle, the surface wave clearly dominates the system: the soliton refracts from 

the interface and the collision induces only small modulations in the surviving surface 

wave [see Figure 69d)].  This type of surface-wave modulation has previously been 

referred to as ‘s imming’ [1].  For q = 2, coalescence has been uncovered wherein the 

energy of the surface wave becomes coupled into the trajectory of the reflected soliton [see 

Figure 69e)].  For q = 3 [see Figure 69f)], one finds a similar type of coalescence but the 

radiation pattern (particularly in medium 1) is becoming more visible in the solution.   

                       q = 1             q = 2               q = 3 

 

Figure 68.  Top row: Soliton interaction with an interface ( = 0.01 and  = 2.0) at the quasi-paraxial incidence 

angle inc = 2° and with  = 2.5×10
3

.  Middle row: same configuration as the top row, but with a regime 1 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 
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This pattern has distinct fringes that may be connected to the interference between 

radiation shed by the dominant post-collision filament and radiation that has been totally 

internally-reflected by the interface.  Another interesting and rather subtle aspect of Figure 

69f) is the degree of spatial asymmetry in the solution (introduced by the material interface 

itself).  For a nonparaxial incidence angle, the skimming mode appears in the q = 1 system 

(as opposed to inducing surface-wave deflection).  For q = 2 and q = 3, phenomena that are 

qualitatively similar to those in Figure 68 are uncovered. 

By maintaining the broader-beams regime ( = 1.0×10
3

) but lowering the linear refractive 

index step (from  = 0.01 to  = 0.005), the peak amplitude of the surface wave is 

decreased.   
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                       q = 1             q = 2               q = 3 

 

Figure 69.  Top row: Soliton interaction with an interface ( = 0.01 and  = 2.0) at the quasi-paraxial incidence 

angle inc = 2° and with  = 1.0×10
3

.  Middle row: same configuration as the top row, but with a regime 1 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 

One then finds similar qualitative behaviour to that encountered for narrower beams with a 

larger linear-index step (compare Figures 70 and 68).  Here, it is interesting that for q = 3, 

the reflecting soliton is annihilated by the collision and the surface wave is transformed to 

an off-axis soliton-like beam in medium 2.  

By weakening the self-focusing properties of medium 2 (e.g., reducing  = 2.0 to  = 1.5), 

the quasi-paraxial collision can start to excite skimming modes.  Inspection of Figure 71 

reveals that the longitudinal oscillations of the skimming are more rapid for q = 2 than for 

q = 1.  Nonparaxial collisions for q = 1 and q = 2 trigger skimming and surface-wave 

deflection, respectively.  However, in the case of q = 3, simulations reveal splitting rather 

than coalescence (i.e., after the collision, there are three distinct beams propagating in 

medium 2).  
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                       q = 1             q = 2               q = 3 

 

Figure 70.  Top row: Soliton interaction with an interface ( = 0.005 and  = 2.0) at the quasi-paraxial incidence 

angle inc = 2° and with  = 1.0×10
3

.  Middle row: same configuration as the top row, but with a regime 1 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 



105 

 

                       q = 1             q = 2               q = 3 

 

Figure 71.  Top row: Soliton interaction with an interface ( = 0.005 and  = 1.5) at the quasi-paraxial incidence 

angle inc = 2° and with  = 1.0×10
3

.  Middle row: same configuration as the top row, but with a regime 1 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 
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4.4.5.2 Surface Waves in Regime 2 

As in section 4.4.5.1, reference simulations have been carried out in order to demonstrate 

soliton behaviour in the absence of a surface wave.  The top row of 3d plots in Figures 72-

75 show a soliton interacting with the interface at an angle of 2°; unlike the same results 

for regime 1, the soliton is always refracted into the second medium (rather than being 

reflected).  This is explained by the fact that, in regime 2,  is always negative, meaning 

(on the whole) no critical angle exists, giving rise to beam refraction. 

                       q = 1             q = 2               q = 3 

 

Figure 72 Top row: Soliton interaction with an interface ( = -0.0025 and  = 0.75) at the quasi-paraxial incidence 

angle inc = 2° and with  = 1.0×10
3

.  Middle row: same configuration as the top row, but with a regime 2 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 

The behaviour of the soliton following its interaction with the surface wave is much more 

consistent in regime 2 than it is in regime 1.  When inc = 2° (shown in the middle rows of 

Figures 72-75), and q = 1, there is a skimming mode after the interaction with the 

interface.  As q is increased to 2, the longitudinal skimming oscillations, after the 
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interaction, become more rapid.  When q = 3, the surface-wave is deflected into the first 

medium.  This is a general pattern is borne out for solitons propagating at an angle of 

incidence of 2°, c.f. Figures 72, 73 and 74 d)-f). 

                       q = 1             q = 2               q = 3 

 

Figure 73.  Top row: Soliton interaction with an interface ( = -0.0025 and  = 0.75) at the quasi-paraxial 

incidence angle inc = 2° and with  = 2.5×10
3

.  Middle row: same configuration as the top row, but with a regime 

2 surface wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle 

row, except with a nonparaxial incidence angle of inc = 10°. 

When inspecting the interactions with solitons propagating at a nonparaxial angle (i.e. the 

bottom row of Figures 72-75) a skimming mode is present along the interface, after the 

interaction with the soliton.  As q is increased, the longitudinal skimming oscillations 

become more rapid, which has been seen in a number of the results above.  This applies to 

results in Figures 72-74 g)-i). 
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                       q = 1             q = 2               q = 3 

 

Figure 74.  Top row: Soliton interaction with an interface ( = -0.005 and  = 0.75) at the quasi-paraxial incidence 

angle inc = 2° and with  = 2.5×10
3

.  Middle row: same configuration as the top row, but with a regime 2 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 

It is noteworthy that the results in Figures 72-74 show no qualitative differences, despite 

changes to the inverse beam width and to the size of the linear refractive index step.  It has 

been mentioned previously that small changes to any one parameter means significant 

differences in the input properties of the surface wave.  Further work needs to be carried 

out to in order to find a convincing explanation for this seemingly aberrant behaviour. 
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q = 1             q = 2               q = 3 

 

Figure 75.  Top row: Soliton interaction with an interface ( = -0.005 and  = 0.5) at the quasi-paraxial incidence 

angle inc = 2° and with  = 2.5×10
3

.  Middle row: same configuration as the top row, but with a regime 2 surface 

wave (with  = 1.8min) travelling along the interface.  Bottom row: similar configuration to the middle row, 

except with a nonparaxial incidence angle of inc = 10°. 

The results in Figure 75 differ from those shown in the previous three sets of results, but 

only when q = 3.  When the soliton is propagating at a low angles of incidence, the surface 

wave is deflected into medium 2 rather than medium 1 (compare Figures 74 and 75).  At 

nonparaxial angles, with q = 3, the beam is also deflected into medium 2, where previously 

a skimming mode could be seen at the interface see Figures 72-74.   

4.5 Conclusion 

Exact Helmholtz surface wave solutions have, for the first time, been found for interfaces 

between dissimilar power-law materials.  The stability of these surface waves has been 

tested, and several trends have been identified.  
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For upper branch surface waves with regime 1 parameters, an instability is always present 

irrespective of the sign of dP/d.  The peak of the initial condition in all solutions of this 

type resides in medium 1, until the solution reaches a state of instability at which point the 

beam propagates into the second medium.  As q increases, the propagation length before 

the instability decreases, and the broadness of the beams seems to decrease with increasing 

q.  This is much the same for upper branch surface waves in regime 2, except that the peak 

of the beam remains at the same side of the interface, in medium 2, regardless of the 

instability.  Also, although changing  has a similar effect for both regimes 1 and 2, the 

same cannot be said for the effect when changing  and n regime 1, decreasing  

increases the distance the beam propagates before becoming unstable, whereas in regime 2 

decreasing  decreases the distance before the surface wave becomes unstable. Decreasing 

 in regime 1 decreases the distance the surface wave propagates along the interface 

before becoming unstable, but decreasing  in regime 2 increases the distance of stable 

propagation before becoming unstable (the value of  is changed through all these results 

so it is difficult to say whether the change in propagation length before the instability is 

directly related to  and ).    

For lower branch solutions, the surface waves tend to be stable when dP/d > 0 and 

unstable when dP/d < 0 (which occurs when  is close to min).  The instability in regime 

1 usually appears as oscillations along the interface.  The signature of instability in regime 

2 is usually the spontaneous deflection of the surface excitation away from the interface 

(i.e., transformation into an obliquely-propagating soliton-like beam). 

Also tested was the stability of lower-branch surface waves against collisions with 

solitons.  For regime 1 and when the angle of incidence is small (2°), the surface waves are 

always unstable after the interaction.  Typically, the surface wave deviates away from the 

interface entirely, although there are some cases (e.g., for q = 1 and q = 2) when it 

oscillates along the interface after the interaction. When the angle of incidence is increased 

to 10°, the surface-wave solution often oscillates along the interface where q = 1.  When q 

= 2 all of the examples given in the previous section show that the surface wave is 

deflected into medium 2 (transforming into a soliton-like beam).  When q = 3, the surface 

wave and soliton may merge into a single high-intensity filament propagating obliquely 

into medium 2.  In regime 2 for a soliton propagating with an angle of incidence of 2°, 

when q = 1 and q = 2 the surface wave oscillates along the interface after the interaction.  
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When q = 3 the surface wave always deviates away from the interface after the interaction 

with the soliton.  For larger angles of incidence (10°), as the value of q increases, the 

surface wave becomes more unstable after the collision.  
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5. Coupled Waveguide Arrays: linear patterning 

This chapter is concerned with the refraction and propagation properties of Helmholtz 

spatial solitons in a coupled waveguide array (CWA).  A CWA is a material which has a 

periodically patterned refractive index.  Under investigation in this chapter is the behaviour 

of solitons moving from a standard Kerr-type material (medium 1) into a CWA (medium 

2).  The reason for starting with a uniform Kerr material is that there is a need for the 

soliton shape to be controllable as it reaches the interface.  The interface setup can be seen 

in Figure 76: 

 

Figure 76 Showing the interface setup considered in this chapter 

The use of Helmholtz soliton theory sets this research apart from other related studies 

involving CWAs [1-3].  One exception is the very recent work by Shi, Guo and Li [4], 
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who consider a Helmholtz-type model for optical propagation in systems with diffusive 

nonlinearity.  Helmholtz soliton theory’s main advantage of allowing beams to propagate 

at arbitrary angles of incidence with respect to any reference direction, is highly beneficial 

for modelling geometries of this type.  The possibility of accommodating arbitrary angles 

allows us, in this chapter, to identify a key physical relationship between two fundamental 

periodic systems seen commonly in the literature (see Figure 77). 

 

Figure 77 a) Showing the difference in relative orientation between a photonic crystal and a waveguide array.  

Figure b) Shows how these two separate problems can become one through the use of Helmholtz modelling 

Figure 77 shows two distinct interface setups.  Due to the inherent angular restrictions of 

paraxial analyses, these two configurations (photonic crystals and waveguide arrays) have 

tended to be considered independently of one another.  The relaxation of angular 

restrictions makes for a more general (and powerful) study, wherein a single governing 

equation can, in principle, capture the full range of angles.  Such a prospect clearly opens-

up controllability of one of the most important experimental parameters (the angle of 

incidence).   

This chapter is also novel in its approach to investigating the CWA problem.  Many 

previous research papers addressing beam propagation in periodic structures have resorted 

to discrete analyses [5-10].  The only research using continuous models – which is found 

in this study – looks at gap solitons and Floquet-Bloch modes [2, 3, 11], rather than the 

soliton propagation which is of principle interest here.   

Following a survey of the limited literature in this area, a derivation of the model equation 

will be presented.  Next, descriptions of the benefits of considering continuous models 

over there simpler discrete counterparts will be given, as well as discussing the nature of 
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the beam interaction with the interface (head-on vs. side-coupling geometries).  Extensive 

results from simulations are presented, before conclusions are drawn. 

5.1 Literature Review 

Three key papers which use continuous methods in analysing beams in CWAs are of most 

interest [2, 3, 12].  Their approach is similar to that deployed here, although they differ in 

that Floquet-Bloch modes are their primary focus.  Mandelik et al. explore the band gap 

structure of periodic waveguide arrays in linear and nonlinear regimes [12].  This paper 

gives a clear account of coupled-mode theory, and highlights the difficulties with that 

method (namely that its results do not necessarily describe excitations in higher bands than 

band 2).  The same authors return to localised waves in CWAs but investigate the 

behaviour of bright and dark spatial gap solitons [2].  Gap solitons are nonlinear waves 

propagating in patterned systems whose linear refractive index has a periodic modulation 

(see [11] for more detailed information on gap solitons), Also discussed in [2] is how the 

transverse velocity of a beam differs in waveguide arrays from its more traditional 

continuum analogue.  This effect has been taken into consideration in section 5.6.  The 

results presented in [2] compare the propagation of a beam encountering a waveguide 

array with the same beam in the absence of any interface, thereby highlighting the effect of 

periodicity and paraxial-type side coupling on transverse velocity.  The paper also provides 

an in-depth discussion of the two different geometries that need to be considered when 

investigating beam behaviour at CWAs: head-on and side-coupling (this will be expanded 

upon in the next section). 

A paper which is directly related to the research in this chapter is [4].  That work, 

conducted independently from this thesis, is couched in terms of Helmholtz soliton theory, 

and involved a governing equation which is similar to model (5.5).  Shi et al. [4] highlight 

that the depth of the modulation of the lattice can affect the beam behaviour; the role of 

modulation depth has been extensively explored this thesis, with results presented in 

section 5.6.  The findings of this thesis confirm what is suggested by Shi et al., that by 

changing the depth of the modulation, qualitative differences can be seen in predicted 

beam behaviour.  A significant difference between the work in [4] and that found in this 

thesis is Shi et al.’s use of diffusive nonlinearity (i.e. a nonlinearity with a nonlocal 

response).  This study focuses on non-diffusive nonlinearity, and this is along with 

arbitrary angle considerations is where the novelty of this study can be found. 
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Lastly, reference [9] has also been a study of interest.  This paper discusses some of the 

fundamental aspects of discrete spatial solitons, and has been used because a detailed 

description of a CWA has been given, along with more information on coupled mode 

theory. 

5.2 Discrete versus continuous models 

There are two main methods for modelling scalar beam propagation in CWAs: discrete 

(where the beams considered are discrete solitons) and continuous (where beams may be 

described by Floquet-Bloch modes). 

5.2.1 Discrete 

Discrete solitons can be investigated using coupled mode theory.  The basis of this 

approach is the discrete nonlinear Schrödinger equation (or DNLS): 

  
2

1 12 0,n
n n n n n

d
i c

d


     


       (5.1) 

where c is a coupling constant, 1 12n n n      is effectively a discrete transverse 1d 

Laplacian and  parameterises the strength of the Kerr-type self-interaction.  Coupled 

mode theory describes the longitudinal propagation of the complex amplitude n in 

waveguide channel n.  The field in any particular channel is typically subject to evanescent 

nearest-neighbour liner coupling, since the governing equation for n depends on both n+1 

and n-1, see [12-14] and Figure 78: 

 

Figure 78 Showing where the amplitudes are calculated from with discrete methods 

Collectively, these individual waveguides are considered as a ‘supermode’.   he 

information about the field between the gaps comes from the coupling constant c (the 
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contribution from the averaging process) in equation(5.1).  A large c value means strong 

overlap and a low c value will imply a weak overlap [1].  

5.2.2 Continuous 

The work presented in this chapter uses a continuous model.  Such a method is 

advantageous because there are no assumptions made as to the character of the field in 

between the waveguide channels.  There are two different analyses that can be made using 

continuous methods: i) Floquet-Bloch analysis; investigation into band gaps, Floquet-

Bloch modes (a solution for an optical wave propagating in a periodic structure), gap 

solitons and Bragg scattering, see [2, 12] and ii) Helmholtz soliton theory, which leads to 

an ‘averaged Snell’s law approach ’ the theory for which  will be developed in this chapter, 

see section 5.4 (and see also [4], for a less fulsome account).   

5.3 Side-coupling and head-on geometries 

Unlike previous chapters, where both materials had uniform refractive index, there are two 

different geometries in which beams can be excited in the waveguide array.  This arises as 

a result of the 2d nature of the waveguide. 

5.3.1 Head-on geometry 

The first way to excite beam propagation in the waveguide array, but not considered 

further here, is to use head-on geometry (see section 5.5 for further discussion as to why 

this geometry is not investigated).  This method can be used to excite a Floquet-Bloch 

mode at the edge of a band [2], if the beam is spatially shaped to match the beam shape of 

the desired mode before it enters the waveguide array, see Figure 79, adapted from [2].  
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Figure 79 Showing a beam propagating in head-on geometry.  This geometry is explored in [2]. 

It will be shown in 5.5 why this approach is not explored further in this thesis. 

5.3.2 Side-Coupling geometry 

Side-coupling geometry is used in this study to inject a soliton beam into the array (results 

of which will be shown in section 5.6).  The beam is initiated in medium 1, taken to be a 

uniform Kerr medium. When the beam interacts with the interface, any light transmitted 

into the second medium is propagating in the waveguide array.  Figure 80 shows the 

orientation of the array with respect to the continuum, so it can be seen that with this 

geometry, it is impossible for the beam to interact 'head-on' with the waveguide array, 

regardless of the beam’s angle of incidence (if the beam is propagating at 90° to the 

waveguide, the channels are the ‘wrong way round’).  
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Figure 80 Showing a beam propagating in side-coupling geometry.  This geometry is the focus of the investigation 

in this chapter. 

The use of the geometry is further discussed 5.5, with a particular emphasis on how this 

relates to the results in 5.6. 
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5.4 Derivation of Helmholtz model equation 

The first step when exploring this material geometry (as it has been in all the previous 

chapters) is to derive the model equation for the interface at hand, shown in Figure 81: 

 

Figure 81 Showing the interface setup that the model equation needs to relate to. 

The refractive index n is in terms of the relative permittivity r of the materials, where r = 

n
2
.  The permittivity in medium 1 is taken to be: 

 
2

( 1) 1 1 ,r medium r E     (5.2) 

i.e., that of a standard Kerr material, and in medium 2: 
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where rj is the average linear permittivity in the array and j the coefficient of the 

nonlinear contribution to the refractive index (j = 1,2), d is the periodicity of the array 

(along the x direction) and E is the electric field.  As mentioned in section 1.4, the electric 

field E must satisfy the nonlinear Helmholtz equation on either side of the material 

boundary: 
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The same method is followed that is seen in Chapter 2, and the full model equation is 

found to be: 
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where  = 1-(r2/r1) is the mismatch in the linear permittivity,  = 2/1 is the mismatch 

in the nonlinear permittivity,  = r2/r2 is the relative modulation depth of the linear 

permittivity in the array and  = 2 d/w0 is the period of the array. 

For the purposes of computational modelling, equation (5.5) is modified so that the 

waveguides are square rather than sinusoidal: 
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 (5.6) 

Where the sgn term reduces to + or -1 depending on whether sin[(2/)] is positive or 

negative. 

5.5 Computational Considerations 

As far as simulating these beams is concerned, only minor alterations are needed to the 

code (discussed in section 2.3) in order to ensure it captures the physical properties of 

CWA.  The alteration is made to the boundary conditions that governs the refractive index 

in the second medium, which is done through the use of equation (5.5).  This particular 

refractive index set-up can cause problems if initiated incorrectly, as outlined below.  

5.5.1 Geometrical Considerations 

In section 2.3, it was noted that the computer simulations must be set up so that the 

interface is rotated to change the angle of incidence of the beam (this prevents certain 

computational issues, such as needing dense grid discretisation for accurate solutions).  

Having the interface at an angle adds extra complications to initiating the CWA in the 

second medium, this is due to the 2d nature of the waveguide array.  Figure 82 shows the 

interface set-up if the interface was vertical.  
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Figure 82 Showing how the computational analysis would be performed if the interface were vertical. 

Each step of the refractive index is initiated at the same point, and all the steps ‘line up’. 

However, because the interface is angled, careful consideration has to be made to ensure 

that the CWA is initiated at the right point at every step in the z direction.  The figure 

below highlights the importance of this: 
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Figure 83 Showing an inappropriate method of simulating the CWA’s refractive index. 

The CWA must be set up in such a way that the refractive index for each step begins at the 

same point relative to the interface to prevent the CWA being initiated as in Figure 83.  

This is important because if the CWA has always been considered with a boundary as in 

Figure 82, then the CWA should start in the same way when the interface is tilted. 

 From Figures 82 and 83, we can see that using this particular method of computational 

analysis, Head-on Geometry cannot be investigated here, because even if the beam heads 

straight towards the CWA, the interface the beam interacts with is ‘tilted’ so the whole of 

the beam won’t interact with the CWA in the same way. 
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5.6 Solitons in linearly-patterned structures 

This section presents the results from extensive simulations run on the basis of the 

theoretical work presented in the previous sections.  The difference in behaviour between 

beams propagating in a nonlinear medium with a periodically patterned refractive index, 

and those at a single interface Kerr material, will be illustrated.  This single interface is 

created by setting the depth of the modulation to 0 - since a modulation size of 0 is implicit 

for uniform materials. For clarity, the following parameters are chosen for simulations: 

  (/w0)
2
 (inverse beam width).  Values of  explored previously are considered again 

here (namely, 2.510
3

, 110
3

 and 1.010
4

); these values respect the inherent inequality 

for Helmholtz modelling [i.e. that  << O(1)]. 

 = 1-(r2/r1) (mismatch in linear permittivity).  Values of  are set as 0.0025 and 0.005.  

These values are consistent with the  values chosen in other chapters of this thesis, and so 

allow for ease of comparability across the thesis.  

 ≡ 2/1 (ratio of cubic nonlinearity coefficients).  Values of  are chosen to be 0.5, 1.0 

or 2.0.  The two non-unity cases represent a large change in the strength of the focusing 

properties of the medium across the interface (a halving and doubling). 

≡r2/r2 (relative modulation depth).  Values of  are chosen to be 0, 0.0175, 0.035 or 

0.07.  0.07 is chosen to be the highest value because the results become increasingly 

unstable above this point.  When  = 0, the interface becomes a dissimilar Kerr interface, 

and results for this configuration are shown here as a comparison. 

 (peak amplitude of the beam).   is always 1. 

 = 2 d/w0 (period of array).  The value of  is 0.6465 for all results shown here. 

There are two figures shown for each set of parameters; the first being a 3d plot showing 

the beam propagation from above. On these figures, the beam can be seen approaching the 

interface, interacting with the interface, and its behaviour thereafter.  The second figure is 

a plot of the profile of the beam at the last step of the simulation.  At this stage the beam 

has encountered the interface and has propagated some distance into the array.  The green 

lines on these plots are a representation of the linear refractive index (included to highlight 

the effect the patterning has on the shape of the beam profile).   
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5.6.1 Linear Interfaces 

Firstly, results from a linear interface ( = 1) are considered.  For the purposes of this 

chapter, when the theoretical critical angle, crit(theoretical) is mentioned, it refers to the 

critical angle predicted by the Snell law between two dissimilar uniform Kerr materials 

(see ref. [15], i.e with  = 0).  This is because (as yet) no soliton solutions have been found 

for the model used is this chapter.  The limitations of basing the value of the critical angle 

on that for dissimilar Kerr interfaces will be discussed in section 5.6.2.   

It can be seen from Figures 84-86 that when the angle of incidence of the beam is below 

crit(theoretical),  the beam is reflected by the interface.  As the (incidence) is increased beyond 

crit(theoretical), the beams pass into the waveguide array. 

 

Figure 84 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 0.0175 and a) and d) have  = 2°, b) and e)  = 4° and c) and f)  = 10°.  The theoretical value for crit = 

2.8553°.  The green lines on these plots are a representation of the linear refractive index. 

The plots d), e) and f) show the profile of the beam after the interaction with the interface.  

When the beam is below the critical angle, and therefore reflected by the interface, the 

profile of the beam remains smooth.  When the beam is refracted into the array, the effect 

of the periodically patterned refractive index can be seen i.e. that the beam intensity drops 

slightly between each waveguide, causing the beam profile to have a modulated shape, 

which is a manifestation of the array periodicity. 



126 

 

 

Figure 85 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.005,  

= 0.0175 and a) and d) have  = 2°, b) and e)  = 4° and c) and f)  = 10°.  The theoretical value for crit = 4.0447°.  

The green lines on these plots are a representation of the linear refractive index. 

When the beam is propagating close to crit(theoretical), see [Figure 85b) and e)], it splits at 

the interface into reflected and refracted components.  The reflected beam retains a smooth 

profile and the refracted beam acquires a modulation profile which relates to the refractive 

index periodicity of the CWA.   

 

Figure 86 Showing the results for beam propagation in coupled waveguide arrays, where  = 1x10
-3

,  = 0.0025,  

= 0.0175 and a) and d) have  = 2°, b) and e)  = 4° and c) and f)  = 10°.  The theoretical value for crit = 2.8638°.  

The green lines on these plots are a representation of the linear refractive index. 
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When  is decreased to 1 x 10
-4

, the results become slightly less reliable (as was 

encountered earlier in Chapter 2, and was described in some detail in section 2.4.1.1). In 

Figures 87b) and e) the beam is propagating at crit(theoretical) of 4°, which is well above its 

theoretical critical value of 2.8690°.  It would be expected that the beam should penetrate 

into the second medium, however, this is not the case.  It is possible that the nature of the 

amplitude curvature of solutions in combination with CWA periodicity, is having a strong 

effect on refraction effects as compared to the single interface problem. 

 

Figure 87 Showing the results for beam propagation in coupled waveguide arrays, where  = 1x10
-4

,  = 0.0025,  

= 0.0175 and a) and d) have  = 2°, b) and e)  = 4° and c) and f)  = 10°.  The theoretical value for crit = 2.8638°.  

The green lines on these plots are a representation of the linear refractive index. 

5.6.2 Effect of changing the depth of the modulation 

One of the key points of interest in this chapter is how the depth of the modulation () 

affects the beam propagation.  The results shown in this subsection and the next, compare 

beam propagation for different values of , starting with  = 0 (which is a standard Kerr 

material), and then with  = 0.0175, 0.035 and 0.07. 

The results in Figure 88 all have (incidence) of 10° which is well above crit(theoretical) of 

2.8553°, and as a result, there is very little in the way of reflected light.  It can also be seen 

that as  increases, the shape of the profile of the beam can be strongly affected, when  = 

0, the beam profile is a smooth ‘bell-shape’ because the refractive index is uniform.  As  

is increased, the modulation depth in the profile becomes increasingly sharp. 
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In Figure 89, the beams are propagating with (incidence) of 4°, which is close to crit(theoretical).  

In these results, all the beams split on encountering the interface.  As before, when the 

beam splits, the reflected beam has a smooth profile, whereas the refracted beam acquires 

a modulation.  As  is increased, more incident light is coupled into the array and the 

refracted beam has a high degree of self-collimation.  This is an interesting result because 

it leads to the suggestion that changing the depth of the modulation changes the critical 

angle, which is an idea that has been neglected up to this point (previous analyses have 

sometimes assumed that the critical angle for the CWA is the same as that at its single 

interface counterpart, also neglected are the nonparaxial aspects of the coupling).  These 

are matters that will be returned to later in the chapter.  
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Figure 88 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 10° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green lines 

on these plots are a representation of the linear refractive index. 



130 

 

 

Figure 89 Showing the results for beam propagation in coupled waveguide arrays, where  = 1x10
-3

,  = 0.005,  = 

4° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green lines on 

these plots are a representation of the linear refractive index. 
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5.6.3 Near Critical-Angle Regimes 

The investigation now considers beams propagating in near critical-angle regimes, with a 

view to providing further evidence for the hypothesis that the depth of the modulation does 

affect the critical angle of the beam.  The beams have (incidence) = crit(theoretical), and the only 

parameter which is varied is i.e. the variable governing the depth of the modulations in 

the CWA.  Figure 90 shows the results for a beam with crit(theoretical) of 2.8553°.  Figures 

a)-e) show that as  is increased, the beam gets increasingly close to its actual critical 

angle, as the main component of the beam (the reflected component) gets closer toward 

travelling along the interface (c.f. chapter 3).  Figures g) and h) show the beam splitting 

into three components: one that propagates along the interface (at least up until  = 35), 

reflected radiation and refracted radiation.  This is again closer to the actual critical angle 

than those with lower  values, so the results in Figure 90 suggest that by increasing  the 

beams propagate closer to their actual critical angle, and therefore changing  changes the 

actual critical angle associated with the parameters. 

In Figure 91, the actual critical angle seems to be slightly below crit(theoretical) = (incidence), 

since the majority of the beam is transmitted into the array.  As  is increased, it appears 

that despite the refracted beam getting weaker, the refraction angle increases and so the 

angle of incidence is further away from the actual critical angle when  = 0.07 [Figure 91 

g) and h)] than  = 0 [Figure 91 a)and b)].    
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Figure 90 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 2.8553° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 



133 

 

 

Figure 91 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.005,  

= 4.70447° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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5.6.4 Mixed Interfaces 

The results for mixed interfaces ( ≠ 1 and  ≠ 0) will be presented here  and in particular  

two values of  will be considered ( = 0.5 and  = 2).  These values have been chosen in 

order to allow for comparability with previous chapters. 

First to be considered are cases where  = 0.5. In Figure 92 the angle of incidence is 10°, 

which is again well above crit(theoretical).  As a result, all the figures show beams 

propagating into the CWA.  As has been mentioned previously, by increasing the depth of 

the modulation of the array, the depth of the modulation of the beam profile also increases.  

When   is at its largest ( = 0.07), the beam in the CWA is much narrower and has a 

much higher intensity than for the other values of .   

Figure 93 shows the same parameters as Figure 92, but the angle of incidence is chosen to 

be crit(theoretical) = (incidence) = 4.0447°.  For all four of the results, the beam splits on 

encountering the interface.  These results show that as  is increased to 0.07, the beam gets 

closer to its actual value for the critical angle (as  is increased, the reflected beam has a 

smaller angle of reflection, and when  = 0.07, the dominant part of the beam propagates 

along the interface). 

Figure 94 has  = 2 and an angle of incidence of 2°.  The refraction in these figures is 

external (i.e. the refracted beam deviates away from the interface).  From the beam profile 

figures, it can be seen that the modulations in the beam profile which are associated with 

propagation in a CWA, are much smaller than those seen when  = 0.5, or at linear 

interfaces.  From the figure, it seems as if the CWA hardly has an effect on the beam 

profile at all.  When  = 0.07, part of the beam ‘snakes’ along the interface, which is 

unexpected as no critical angle exists for these parameters.   

Figure 95 has the same parameters as Figure 94, apart from  which has doubled from 

0.0025 to 0.005.  This figure gives the greatest evidence yet that by varying the depth of 

the modulations of the CWA, the actual value for the critical angle changes.  In Figures 

95a) and c), the beam refracts into the CWA (and as with Figure 94, the modulations in the 

beam profile are much less predominant than when  = 0.5, and at linear interfaces).  As 

the depth of the modulations is increased to  = 0.035 in Figures 95e) and f), the dominant 
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component of the solution propagates along the interface (at least up to  = 30), and when 

 is increased again to 0.07, the beam is reflected by the interface in Figures 95g) and h).   

Figure 96 show results for a smaller  = 1 x 10
-3

) compared with results shown in 

Figures 92-95 (where  was consistently set at 2.5 x 10
-3

).  Here it can be seen that all the 

beams transmit into the CWA.  The angle of incidence of the beam is 4°, which is higher 

than crit(theoretical) = 1.2790°. Again, the refraction is internal.  Inside the CWA [i.e. Figures 

96c), e) and g)], the beam propagates in a curved path.  This is something that has often 

been seen in the results at mixed interfaces, but only when  = 2. 
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Figure 92 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 0.5,  = 10° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The 

green lines on these plots are a representation of the linear refractive index. 
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Figure 93 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 0.5,  = 4.04469° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The 

green lines on these plots are a representation of the linear refractive index. 
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Figure 94 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.0025, 

 = 2.0,  = 2° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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Figure 95 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0.005,  

= 2.0,  = 2° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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Figure 96 Showing the results for beam propagation in coupled waveguide arrays, where  = 1x10
-3

,  = 0.0025,  

= 2.0,  = 4° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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5.6.5 Nonlinear Interfaces 

This section will explore results at nonlinear interfaces (i.e. where  = 0 and  ≠ 1). When 

 = 0, the linear permittivities are the same on either side of the interface, though the 

periodicity still remains. 

 Figure 97 shows results when  = 0.5 and inc = 2°.  crit(theoretical) = 2.8553°, and one can 

immediately see that inc is close to crit(actual) from the simulations presented.  Figure a) has 

 = 0 and the beam is reflected by the interface, after shifting along it.  As  is increased to 

0.0175, the beam becomes trapped by the interface and propagates along it for a distance 

(at least greater than the simulation length).  Further increases of  to 0.035 and 0.07 show 

the beam beginning to form reflected and refracted components, and these increase in 

amplitude. 

Both Figures 98 and 99 show results for  = 2, neither of which have critical angles.  

Figure 98 shows external refraction.  Figure 98g) ( = 0.07) shows that the beam appears 

to be approaching crit (although it has just been mentioned that according to the Snell's 

law, no critical angle exists).  The beam splits into three components; one of which 

becomes trapped by the interface, which is behaviour associated with beams propagating 

close to crit.  This unusual behaviour occurs solely as a result of the CWA. 

For Figure 99a), when  = 0 (a uniform material) the refraction appears to be external.  As 

 is increased to 0.0175 (so that medium 2 is a CWA) the path of beam propagation 

becomes curved, and it becomes difficult to assess whether the refraction is internal or 

external.  As  increases, the path of the beam becomes increasingly curved, and deviates 

towards the interface more.  The modulations in the beam profile also increase as  is 

increased.  As well as this, radiation is reflected by the interface.  This behaviour should 

not be seen in external regimes, and is related solely to the CWA. 
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Figure 97 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0,  = 

0.5,  = 2° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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Figure 98 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0,  = 

2.0,  = 2° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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Figure 99 Showing the results for beam propagation in coupled waveguide arrays, where  = 2.5x10
-3

,  = 0,  = 

2.0,  = 10° and a) and b) have  = 0, c) and d)  = 0.0175, e) and f)  = 0.035 and g) and h)  = 0.07.  The green 

lines on these plots are a representation of the linear refractive index. 
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5.7 Conclusions 

A Helmholtz governing equation has been derived to fully describe the beam propagation 

from a Kerr medium to a coupled waveguide array.  Although this is not the first time 

Helmholtz spatial solitons have been investigated in CWAs, see reference [4], the 

independent work done here has been the most extensive study into Helmholtz solitons in 

CWAs to date.  Moreover, unlike in reference [4], detailed results have been shown, and a 

variety of qualitative effects uncovered. 

The results give detailed information highlighting the beam profiles whilst propagating in 

the CWA, the detail of which is of importance because studies of discrete solitons in 

CWAs are not able to fully describe the soliton solutions. 

One of the main aims of the study was to investigate further the effect that the depth of the 

modulation has on the propagation of the beam.  This idea was first broached in [12], 

where the transverse velocity of the beam in a waveguide array was shown to be different 

from that in its continuum counterpart (with no interface).  Not only is this shown here, but 

also that as the depth of the modulations is increased from 0 (Kerr material) through 

0.0175, 0.035 to 0.07, the results can be seen to change qualitatively as the size of the 

modulations increases.  This finding is of particular importance when trying to predict the 

critical angle for an incident beam.  When results are shown in near critical-angle regimes 

(where (incidence) is set as the crit(theoretical) for a Kerr interface), the qualitative difference is 

significant.  The beam can change from reflecting, to propagating along the interface, to 

refracting, simply by changing the depth of the modulation in the CWA.  This kind of 

detailed scrutiny of the ramifications of manipulating modulation depth has not been 

carried out previously. 

Though this has been a comprehensive study of beam behaviour in CWAs, there remains 

much scope for further research.  Firstly, finding exact soliton solutions for these beams 

would add value to the work, since this would lead to a generalised Snell’s law and a 

prediction of the critical angle relating to the CWA, and not just Kerr materials (as have 

been considered here).  Moreover, there is scope to extend the near critical-angle regime 

results shown in section 5.6.3 to make them as painstakingly thorough as those in chapter 

3.  In the current chapter, the Helmholtz governing equation was derived with the idea that 

the periodically patterned refractive index is directly related to the linear aspect of the 
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refractive index.  Further investigations could examine the effect of having periodic 

patterning in the nonlinear part of the refractive index. 
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6. Thesis conclusion and future research 

6.1 Summary of main findings 

This is the first time that soliton beams at material interfaces have been presented in this 

kind of detail.  The use of Helmholtz soliton theory has been justified by its ability to 

facilitate the investigation of beams propagating at arbitrary angles, meaning that a full 

description of the behaviour of these beams has been provided.  The alternative, paraxial, 

approach to studying solitons at interfaces, no matter how ground breaking, can only ever 

scratch the surface in terms of providing a full description of beam behaviour at material 

boundaries. 

The contributions of this study to our understanding of the properties of bright solitons will 

be revisited and brought together in what follows.  For single interface investigations, 

which have been the main focus of this thesis and have also been a subject of particular 

interest for paraxial studies [1, 2], the work is novel in three fundamental aspects: 

i. its basis in Helmholtz soliton theory - opening up the investigation to previously 

unscrutinised regimes (i.e. any angles above ~2°) 

ii. the reporting of backwards, as well as the more traditional forwards, propagation of 

the beam 

iii. the sheer volume of computational results - the presented research has been both 

timely and comprehensive.  This has allowed for qualitative analysis to supplement 

the more usual quantitative analyses, giving rise to the drawing out of finer-grained 

differences in soliton behaviour. 

Whilst the novelties listed above also apply to multi-interface work, there is less relevant 

literature against which to compare findings.  The work presented in this thesis, therefore, 

acts as a strong foundation to any further research in this arena.     

For cubic quintic interfaces  a generalised Snell’s law was derived and tested  across a 

wide range of system parameters.  A full explanation of its validity has been given.  

Chapter 3 then sees an expansion of this key result into an investigation of near critical 

angle regimes.  Here Goos-Hänchen shifts larger than any previously seen in the literature 

were presented, and other effects seen in these particular angle regimes such as beam 

splitting.  An in-depth discussion was also provided about the applicability of predicting 
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critical angles at nonlinear interfaces.  It is important to note here, that despite considerable 

searching, no published works (paraxial or nonparaxial) concerning soliton refraction 

contexts with the type of system nonlinearity featured in chapters 2 and 3 have been found. 

Also scrutinised were power-law interfaces, where the stability of the beams was predicted 

and tested, and it was shown how to determine if a surface wave will be stable from its 

initial parameters.  It was seen that these predictions are reliable.  The stability of these 

solutions was tested further still by analysing the behaviour after a collision with a soliton.  

Once again, this investigation provided novelty. 

For coupled waveguide arrays, a model equation was derived, and this was used to run 

investigative simulations to show the propagation of the incident soliton.  It was shown 

that as the depth of the modulations was varied, significant qualitative differences could be 

seen in the behaviour of the beam.  This work only scratches the surface of what can be 

done, and should be used as a starting point for other research (suggestions for the 

direction this may take are given in section 6.3).  

6.2 Applications of these findings 

The potential applications of these findings include providing other researchers with the 

opportunity to perform experimental versions of the problems studied here.  Although this 

is less applicable to multi-interfaces, where experimental literature has proliferated [3-5], 

experimental works at single interfaces are disproportionately lacking.  This thesis, then, 

provides a good ‘jumping–off point’ for those wishing to ta e up the baton in carrying 

experiments with solitons at single interfaces. 

As has been mentioned previously, spatial solitons can be used to transfer bits of optical 

data.  This means that the beams could be exploited in the areas of data storage and 

information processing.  After understanding the fundamentals of  how a spatial solitons 

propagates in a nonlinear medium, the next most important aspect to appreciate is how the 

beam will behave at the boundary of two materials, in order to anticipate manufacturing 

limitations and restrictions (this will help in the design and manufacture of optical 

devices).  If a beam has to propagate from a start point to an end point to carry the 

information successfully, then it is important to know what effect (if any) a possible 

interface will have on the propagation of the beam.  
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Multi interface work has its applications in still further areas.  All-optical switching 

devices (where fully controlled switching of optical signals between the input and output 

ports is the ultimate goal [6]) are a highly relevant area of research.  Literature shows that 

waveguides are a prime material for realising this type of technology [7], so the results 

presented in chapter 5, especially those at near-critical angle regimes, are likely to be of 

importance to the future development of these technologies. 

6.3  Limitations and suggestions of future work 

One of the obvious limitations of using Helmholtz soliton theory over the nonlinear 

Schrödinger equation is its increased mathematical and computational complexity.  The 

extra term which is found in the nonlinear Helmholtz equation means that a completely 

different and more involved numerical approach has had to be deployed [8]. 

As with many research projects, the biggest limitation has been time.  This has left the 

door open to work which may be studied in the future.  Further research into critical angles 

at nonlinear interfaces (i.e. better ways to predict them on the basis of input variables) 

would be of much interest.  Also the work presented in the CWA chapter is only the 

beginning of Helmholtz solitons in CWAs; this could be expanded upon by considering 

different ways to exploit the periodic patterning of the CWA.  Also looking into more 

nonlinearities, power-law (what happens for q ≠ 2) and cubic-quintic to name two, is an 

obviously necessary avenue of future research. 

Lastly, an investigation into surface waves at cubic-quintic interfaces would be an 

important extension of single-inteface analyses, and may be considered a complementary 

aspect to this programme of research. 
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Appendix B 

B.1 Derivation of Model Equation 

From  axwell’s equations: 
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For dissimilar cubic-quintic materials: 
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Transform to forward reference frame (substitute 0 1( , ) ( , )exp( )E x z E u x z ik z ) 
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But: 
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Rescale using: 
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Multiply by 1
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Need to choose units for the electric field: 
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Units of electric field: 
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Where 1 is the ratio of linear and nonlinear phase shifts. 

For medium 1: 
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Medium 2 (where x > 0) 
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Transform to the forward reference frame: 

 

2 2 2 2 2
2 42 2 2 4

1 1 02 2 0 1 02 2 2 2 2
2 0

u u u
i k k u n u E u u E u u

z z x c c c

  
 

  
      

  
 (5.22) 

 

2
2 2

1 022
k n

c


  

 

2 2 2 2 2 2
2 42 2 2 4

1 01 02 2 0 2 02 2 2 2 2 2
2 0

u u u
i k n u n u E u u E u u

z z c x c c c

   
 

  
      

  
 (5.23) 

 

22 2 2 2 2
2 42 2 402

1 01 2 0 2 02 2 2 2 2 2

01

2 1 0
nu u u

i k n u E u u E u u
z z c n x c c

  
 

   
       

   
 (5.24) 

  

 

2

02

2

01

1
n

n

 
   

 
 

 

2 2 2 2 2
2 42 2 4

1 01 2 0 2 02 2 2 2 2
2 0

u u u
i k n u E u u E u u

z z c x c c

  
 

  
      

  
 (5.25) 

Rescale using the table above: 
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For medium 2: 

 

2 2
2 4

2 2

1
0

2 4

u u u
i u u u u u  

   

   
     

  
 (5.31) 

Full model equation: 
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B.2 Exact Soliton Solutions 

Using the equation below: 
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need to find on-axis solution of the form: 
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Consider the first two terms of equation (5.35): 
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So the propagation constant is: 
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Equation then becomes: 
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Equate the coefficients to zero: 
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Solve the quadratic equation to find B. 
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Need to solve quadratic equation for B. 
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Substitute into equation (5.58): 
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Substitute into equation (5.54): 
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Now need to apply the transformations in table 2 to find the off-axis solutions: 
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Where the constants remain unchanged after the transformation. 
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B.3 Derivation of Generalised Snell's Law for cubic-quintic interfaces 

The phase of the solutions must be matched at the interface.  The phase continuity 

condition is: 
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The generalised Snell's law in terms of transverse velocities is: 
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Generalised Snell's law in terms of angles 
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Generalised Snell's law is: 
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B.4 Critical Angle 
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B.5 Linear Interface Results 
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Mixed Interface Results – similar quintic coefficients (ν=1) 
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Mixed Interface Results – similar cubic coefficient (α=1) 
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Mixed Interface Results – similar quintic coefficients (ν=1) 
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Snell’s Law Plots for a mixed interface: ρ0 = 1.3  ν = 1 and κ = 1 × 10
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Mixed Interface Results – similar cubic coefficient (α=1) 
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Nonlinear Interfaces - Δ=0 
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Linear Interface Results 
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Snell’s Law Plots for a linear interface with ρ0 = 0.87 
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Mixed Interface Results – similar quintic coefficients (ν=1) 
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Snell’s Law Plots for a mixed interface: ρ0 = 0.87 ν = 1 and κ = 1 × 10
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Mixed Interface Results – similar cubic coefficient (α=1) 
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Snell’s Law Plots for a mixed interface: ρ0 = 0.87  = 1 and κ = 2.5 × 10
-3 

  

                = 0.5
 

                                                                = 2.0 

 

 

Snell’s Law Plots for a mixed interface: ρ0 = 0.87  = 1 and κ = 1 × 10
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Nonlinear Interfaces - Δ=0 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10


i


t

Refraction at nonlinear interface ( = 0,  =0.0025)

 

 

=0.5,  = 1

=2,  = 1

 

 

 

 

 

 

Snell’s Law Plots for a nonlinear interface: Δ = 0 and ν = 1 
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Appendix C 

C.1 GHS Results Tables 

Figure 25 

0 = 1.3,  = 2.5 x 10
-3

,  = 1,  = 1,  = -0.15 

 c(theoretical) c(actual) 

0.001 1.8112 1.822 

0.005 4.0447 3.582883 

0.01 5.7106 5.463964 

 

Figure 26 

0 = 1.3,  = 1 x 10
-3

,  = 1,  = 1,  = -0.15 

 c(theoretical) c(actual) 

0.001 1.8112 1.886 

0.005 4.0447 3.892405 

0.01 5.7106 5.672973 

 

Figure 27 

0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 1,  = -0.15 

 c(theoretical) c(actual) 

0.001 1.8112 1.8024 

0.005 4.0447 4.1137 

0.01 5.7106 4.836937 
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Figure 32 

0 = 1.3,  = 2.5 x 10
-3

,  = 0.5,  = 1,  = -0.15 

 c(theoretical) c(actual) 

0.001 3.7280 3.774 

0.005 5.1926 6.672 

0.01 6.5724 8.892 

 

Figure 33 

0 = 4.14,  = 2.5 x 10
-3

,  = 0.5,  = 1,  = -0.15 

 c(theoretical) c(actual) 

0.001 6.0790 5.045946 

0.005 7.0703 6.672441 

0.01 8.1355 8.892405 

 

Figure 34 

0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 2,  = -0.15 

 c(theoretical) c(actual) 

0.001 5.5809 3.06036 

0.005 6.6474 4.185039 

0.01 7.7714 5.308861 
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Figure 35 

0 = 1.3,  = 2.5 x 10
-3

,  = 0.1,  = 2,  = -0.15 

 c(theoretical) c(actual) 

-0.001 3.9818 3.2342 

-0.005 1.6423 None 

-0.0055 1.0234 None 

 

Figure 36 

0 = 0.87,  = 2.5 x 10
-3

,  = 1,  = 0.1,  = 0.15 

 c(theoretical) c(actual) 

-0.0001 0.8859 0.14194 

-0.00005 0.9741 0.6161 

-0.00001 1.0393 0.7075 

 

Figure 37 

0 = 4.14,  = 2.5 x 10
-3

,  = 1,  = 2.5,  = -0.15 

 c(theoretical) c(actual) 

-0.001 6.2129 2.74 

-0.0025 5.8040 2.643 

-0.005 5.0471 None 
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Figure 38 

0 = 1.3, ,  = -0.15 

   c(theoretical) c(actual) 

1 x 10-3 1 2 0.7097 1.0522 

2.5 x 10-3 1 2 1.1290 1.6611 

1 x 10-3 0.5 1 1.857 2.0639 

2.5 x 10-3 0.5 1 3.01 3.2589 

 

Figure 39 

0 = 4.14, ,  = -0.15 

   c(theoretical) c(actual) 

1 x 10-3 1 2 2.331 3.3484 

2.5 x 10-3 1 2 3.700 5.2796 

1 x 10-3 0.5 1 3.983 3.6802 

2.5 x 10-3 0.5 1 6.725 5.8039 

 

 

 



205 

 

Appendix D 

D.1 Derivation of Governing Equation 

From  axwell’s equations: 

 

2 2 2 2

2 2 2
0

E E n
E

z x c

 
  

 
 (5.97) 

For dissimilar power-law materials: 

 
2 2

1 01 1

q
n n E   (5.98) 

 
2 2

2 02 2

q
n n E   (5.99) 

Medium 1 (where x < 0) 

 

2 2 2 2
2

01 12 2 2 2
0

qE E
n E E E

z x c c

 


 
   

 
 (5.100) 

Transform to forward reference frame (substitute 0 1( , ) ( , )exp( )E x z E u x z ik z ) 

 
2 2 2 2

2 2

1 1 01 1 02 2 2 2
2 0

qqu u u
i k k u n u E u u

z z x c c

 


  
     

  
 (5.101) 

But: 

 

2
2 2 2 2

1 01 0 012
k n k n

c


   

 

2 2 2 2 2
2 2

1 01 01 1 02 2 2 2 2
2 0

qqu u u
i k n u n u E u u

z z c x c c

  


  
     

  
 (5.102) 

 

2 2 2

1 1 02 2 2
2 0

qqu u u
i k E u u

z z x c




  
   

  
 (5.103) 

Rescale using: 

0

2
x

w
   

1D

z

L
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0

2

x w 

 


 
 

1

1

Dz L 

 


 
 

 

 

2
2 2 2

1 1 02 2 2 2

1 1 0

1 1 2
2 0

qq

D D

u u u
i k E u u

L L w c




  

    
    

   
 (5.104) 

Multiply by 1

12

DL

k
 

 

2 2 2

1 1
1 02 2 2 2

1 1 1 0 1

1
0

2 2

qqD D

D

L Lu u u
i E u u

L k k w c k




  

  
   

  
 (5.105) 

 

1 1

1

2DL k
  ,      

2 2

1 0
1

2
D

k w
L  ,    1

2 2

1 0

2 1

2 2

DL

k w
  

 

2 2 2

1
1 02 2 2

1

1
0

2 2

qqDLu u u
i E u u

c k


 

  

  
   

  
 (5.106) 

Need to choose units for the electric field: 

 

2

1
1 02

1

1
2

qDL
E

c k


   (5.107) 

 

2

1 1 1 1 1
1 0 02 2

1 01 01

1
2 2

q qD DL k L k
E E

k n n


    

Units of electric field: 

 

1
2

01
0

1 1 1

2 q

D

n
E

L k

 
  
 

 (5.108) 

  

For medium 1: 

 

2 2

2 2

1
0

2

qu u u
i u u

  

  
   

  
. (5.109) 

Medium 2 (where x > 0) 
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2 2 2 2
2

02 22 2 2 2
0

qE E
n E E E

z x c c

 


 
   

 
 (5.110) 

Transform to the forward reference frame: 

 

2 2 2 2
2 2

1 1 02 2 02 2 2 2
2 0

qqu u u
i k k u n u E u u

z z x c c

 


  
     

  
 (5.111) 
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1 012
k n
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2 2 2 2 2
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2 0

qqu u u
i k n u n u E u u

z z c x c c

  


  
     

  
 (5.112) 

 

22 2 2 2
2 02

1 01 2 02 2 2 2 2

01

2 1 0
qqnu u u

i k n u E u u
z z c n x c

 


   
      

   
 (5.113) 
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2 2 2 2
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qqu u u
i k n u E u u

z z c x c

 


  
     

  
 (5.114) 

Rescale using the table above: 

2
2 2 2 2

2

1 01 2 02 2 2 2 2

1 1 0

1 1 2
2 0

qq

D D

u u u
i k n u E u u

L L c w c

 


  

    
      

   
 (5.115) 

Multiply by 1

12

DL

k
 

2 2 2 2
2 1 1
01 2 02 2 2 2

1 1 1 1

1 1
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2 2 2 2

qqD D
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i n u E u u
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 (5.116) 

1 1

1

2DL k
   

2 2 2 2
2 1 1
01 2 02 2 2 2

1 1

1
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2 2 2

qqD DL Lu u u
i n u E u u

c k c k

 
 

  

  
     

  
 (5.117) 
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2
2 1 1 1
01 12

1 1

1 1

2 2 2 4

D D
D

L k L
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c k k
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 (5.118) 

But 
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1
1 02
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qDL
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2 4

qu u u
i u u u




    

    
     

    
 (5.119) 

 2

1





  

For medium 2: 

 

2 2

2 2

1
0

2 4

qu u u
i u u u 

   

   
    

  
 (5.120) 

Full model equation: 

 
2 2

2 2

1
(1 ) ( )

2 4

q qu u u
i u u u H u  

   

    
          

 (5.121) 
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D.2 Derivation of nonlinear Surface Waves 

medium 1 

 

2 2

2 2

1
0

2

qu u u
i u u

  

  
   

  
 (5.122) 

exact Surface wave solutions are sought using: 

    ( , ) exp exp
2

ju F ik i


    



 
   

 
 (5.123) 

 exp
u

ik F ik 
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2
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k F ik 




 


 

 
2 2

2 2
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u F
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q qu u F ik
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2

1
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2

ik ik ik ikqF
k Fe i i k Fe e F e      

 



     


 

  
2

2 1

2

1
0

2

qF
k k F F 




   


 

we know that 2k k    , so 

 

2
1

2

1
0

2

qF
F F




  


 (5.124) 

but   1 1sech pF    , where  1 1 1a    , need to find 
2

2

F






: 

first derivative of 1sech p : 

1sechu   
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py u  

1 1 1sech tan ( )
du

a
dx

    

1pdy
pu

du

  

1

1 1 1 1 1 1 1sech sech tan ( ) sech tanh ( )p pdy
p a p a

dx
         

 1 1 1 1 1 1sech tanh ( ) tanhpdF
p a pa F

d
   


       

2

2
' '

F
u v v u




 


 

1 1tanhu pa    

2

1 1' sechu pa    

v F  

1 1' tanhv pa F   

  
2

2 2 2 2 2

1 1 1 12
1 sec sec

F
p a h F pa h F 




  


 

 

substitute into equation (5.124) 

  2 2 2 2 2 2

1 1 1 1 1 1

1
1 sech sech sech 0

2

qp a pa         
 

 

by separating the coefficients to the constant and sech
21 we are left with 

constant:  

 1
2

a q
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sech
21: 

 

1

1

2

2

qq
 

 
  
 

 

surface wave solution in medium 1: 

  
1 1

222
( , ) sec exp 1 4 exp

2 2 2 2

q
q

j

q
u h q i i

  
     

 

        
            

         

(5.125) 

medium 2 

2 2

2 2

1
0

2 4

qu u u
i u u 

   

   
    

  
 (5.126) 

exact Surface wave solutions are sought using: 

    ( , ) exp exp
2

ju F ik i


    



 
   

 
 (5.127) 
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we know that 2k k    , so 
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2
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2 4

qF
F F 

 

  
   

  
 (5.128) 

but   2 2sech pF    , where  2 2 2a    , need to find 
2

2

F






: 

first derivative of 
2sech p : 

2sechu   

py u  

2 2 2sech tan ( )
du

a
dx

    

1pdy
pu

du

  

1

2 2 2 2 2 2 2sech sech tan ( ) sech tanh ( )p pdy
p a p a

dx
         

 1 2 2 2 2 2sech tanh ( ) tanhpdF
p a pa F

d
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2
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F
u v v u
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2

2 2' sechu pa    

v F  

2 2' tanhv pa F   

  
2

2 2 2 2 2

2 2 2 22
1 sec sec

F
p a h F pa h F 




  


 

 

substitute into equation (5.124) 
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2

2 2 22
2 2 21 sech sech 0

2 4

qa
p p p    



 
       

 
 

by separating the coefficients to the constant and sech
22 we are left with 

constant:  

 
2

4 2

q
a 



 
  

 
 

sech
21: 

 

1

2

1 2

2 4

qq
 

 

      
     

    
 

surface wave solution in medium 2: 

 

 

1 1
22

2

1 2
( , ) sec exp 1 4 exp

2 4 4 2 22

q
qq q

u h i i
 

      
    

              
                 

             
 (5.129) 

At the interface when  = 0 the field u and its normal derivative 
u F

 

  
 

  
must be 

continuous 

continuity of u 

 

11 1
2 21 2 2

2

1
sech sech

2 4 42

q
q q q q

q


   
  

            
            
             

 (5.130) 

continuity of du/d 

 

1
2

1

0

2 tanh (0)
2

dF
q F

d


 



    
    
     

 (5.131) 

 

1 1
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2 tanh (0)
4 42

dF q
F

d
  

  

       
       

       

 (5.132) 
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we now have two equation that we can use to find the remaining parameters.  Solve the 

simultaneous equation to find: 

 

1
2

1sech
4 ( 1)

 
 

 
  

 
 (5.133) 

 

1
22

1 1

1 1
ln

2
q

 
 



     
            

 (5.134) 

 

1
22

1

1 2 1 1
ln
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 (5.135) 

 

1
1 1 2

2

1
sech 1

4 4
  

  

      
       

     

 (5.136) 

 

1
22

2 2

1 1
ln

42

q 
  

 

   
         

 (5.137) 

 

1
22

2

1 12
ln

4q


 

 

    
        

 (5.138) 
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D.3 Surface wave results 

Lower Branch Regime 1 

 

Figure 100 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Figure 101 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Figure 102 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Lower Branch Regime 2 

 

Figure 103 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Figure 104 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Figure 105 showing a) P(vs. curves with the lower branches of the curves in colours representing q = 1, 2 or 3 

and the upper branches shown in black (it is the lower branches that are now being considered).  b), c) and d) 

show the surface wave solutions for q = 1, 2 and 3 respectively where, the interface is represented by a white line 

and  in all three cases. 
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Appendix E 

E.1 Derivation of Governing Equation for CWA 

From  axwell’s equations: 

 

2 2 2

2 2 2
0r

E E
E

z x c




 
  

 
 (5.139) 

For dissimilar this model: 
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( 1) 1 1r medium r E     (5.140) 
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 (5.141) 

Medium 1 (where x < 0) 
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1 12 2 2 2
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E E
E E E
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 (5.142) 

Transform to forward reference frame (substitute 0 1( , ) ( , )exp( )E x z E u x z ik z ) 
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 (5.143) 

But: 
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Rescale using: 
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 (5.146) 

Multiply by 1
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 (5.147) 
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 (5.148) 

Need to choose units for the electric field: 
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Units of electric field: 
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 (5.150) 

  

For medium 1: 
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. (5.151) 

Medium 2 (where x > 0) 



223 

 

 

2 2 2 2
22

2 22 2 2 2

2

2
1 sin 0

2

r
r

r

E E
x E E E

z x c d c

  
 



    
      

    
 (5.152) 

Transform to the forward reference frame: 
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 (5.153) 
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 (5.156) 

Rescale using the table above: 
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Multiply by 1
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But 
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For medium 2: 
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 (5.161) 

Full model equation: 
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