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Abstract

Conformal geometry is considered within a general relativistic framework. An in-
variant distant for proper time is defined and a parallel displacement is applied in the
distorted space-time, modifying Einstein’s equation appropriately. A particular solution
is introduced for the covariant acceleration potential that matches the observed velocity
distribution at large distances from the galactic centre, i.e. Modified Newtonian Dynam-
ics (MOND). This explicit solution, of a general framework that allows both curvature
and explicit local expansion of space-time, thus reproduces the observed flattening of
galaxys’ rotation curves without the need to assume the existence of dark matter. The
large distance expansion rate is found to match the speed of a spherical shock wave.

1 Introduction

The motion of stars around spiral galaxies trace flat rotation curves which do not equate
to those calculated from Newtonian dynamics applied to the luminous matter of the galaxy
[1]. One possible explanation for this is the existence of non-luminous dark matter such as
Weakly Interacting Massive Particles [2] which, when included in the calculation, reproduce
the observed velocity profiles. Observations made on the bullet cluster of galaxies suggest
the existence of dark matter [3], although other effects have also been attributed to these
observations [4]. Another possible explanation is that galactic motions are governed by non-
Newtonian physics. This viewpoint is backed by the Tully-Fisher relation [5] that shows
a correlation between the speed of rotation of stars and luminosity in a galaxy without the
requirement for dark matter. One suggestion is a modification to Newtonian dynamics named
MOND [6] which produces the motions of spiral galaxies, and McGaugh [7] has demonstrated
that it also fits the motions for gas-rich galaxies. A relativistic gravitation theory to support
MOND dynamics has been developed [8], although it has been suggested that this might
lead to unstable dynamics for stars [9]. Other theories have also been suggested, for example
conformal gravity [10] [11], expanding space-time [12], a theory based on curvature effects [13],
and a modification to the gravitational field equations [14]. In the present paper, conformal
geometry is used within a general relativistic framework. This formulation has similarities
with Weyl theory [15] [16] [17] which considers a gauge re-scaling that changes the vector
length, and Weyl relates this to the electromagnetic potential satisfying Maxwell’s equations.
However, this leads to a variance in the atomic time of clocks which is not observed and
which led to the theory being discounted in particular by Einstein [18]. To overcome this,
conformal gravity considers a variational in which an infinitesimal gauge re-scaling occurs
simultaneously with a conformal transform that allows a counterbalancing length re-scaling
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such that the line element remains invariant [10] [11]. Similarly, the formulation presented
here can equivalently be viewed as a gauge re-scaling together with a length re-scaling to
ensure that for weak distortion of space-time the invariant (line element) proper time is the
atomic time and so does not vary as it does in Weyl theory. Defining an invariant distance
for proper time and applying parallel displacement in the distorted space-time leads to a
formulation that fits MOND for the dynamics of galaxies by introducing a particular solution
for the covariant acceleration potential.

2 The distortion of space-time

The notation and arguments as laid out by Dirac [19] are followed. Assume that there
exists a higher N -dimensional space described by rectilinear contravariant coordinate points
z′n(n = 1, 2, ....N), such that there is a distance measure ds′ between two neighbouring points
given by

ds′2 = dz′ndz
′n = hnmdz′mdz′n, (1)

where dz′n and dz′n are the covariant and contravariant infinitesimal changes in position
respectively, and the tensor hnm is constant. In the presence of matter, assume that this
space is distorted by both local expansions and curvature.

Consider local expansions first. Allowing explicit expansions that are isotropic at point
zm such that dz′m =

√
αdzm, then (1) becomes

ds′2 = αhnmdzmdzn, (2)

where the factor 1/α is a function of position.
Now consider curvature. In particular, consider a lower-dimensional curved ‘surface’

lying in the higher dimensional plane. The lower-dimensional 4-space xµ, (µ = 0, 1, 2, 3) is
defined, where x0 denotes the time coordinate, and (x1, x2, x3) denote the spatial coordinates.
Follow the convention where Greek symbols denote indices summed from 0 to 3, and Roman
symbols denote indices summed from 1. Let the point yn(x) in the higher dimensional plane
correspond to a point xµ in four-dimensional space-time. Then from (2) we get

ds′2 = αhnmyn,µ y
m,ν dx

µdxν

= αyn,µ yn,ν dx
µdxν

= gµνdx
µdxν (3)

where the comma denotes a differentiation, and the convention for inner product is aµbµ =
a0b0 − a1b1 − a2b2 − a3b3. The metric is therefore defined as

gµν = αyn,µ yn,ν . (4)

Hence, the components of the metric tensor are determined by both local expansion and
curvature, from the α factor and from the yn,µ yn,ν factor respectively.

3 Invariant distance and parallel displacement

Requiring an invariant distance means that

ds2 = yn,µ yn,ν dx
µdxν , (5)



where ds is the invariant infinitesimal distance (line element or proper time) between two
infinitesimally close points. For weak curvature (5) becomes ds = dx0, so proper time becomes
atomic time without a scaling factor present; in Weyl theory, the distance measure is chosen
as the rescaled gauge, and so for weak curvature the scaling factor is present, leading to
Einstein’s objection. Equating this with (3) gives

αds2 = ds′2 = αyn,µ yn,ν dx
µdxν , (6)

which is equivalent to a gauge rescaling together with a counterbalancing length rescaling on
the left-hand-side and right-hand-side of (6) respectively.

The change in vector length due to parallel displacement is

dAν = (Aµαyn,µ yn,νσ +Aν(lnα),σ )dx
σ . (7)

Note that when α = 1 there is no expansion and the standard result for parallel displacement
is recovered.

4 Expansion symbols and covariant differentiation

This analysis works on the metric and its re-scaling, so produces the same formulations
obtained by Weyl for gauge invariance [15] [16] [17], and give rise to expansion symbols Eµνσ

and Christoffel symbols Γµνσ. The standard Christoffel symbol is,

Γµνσ = 1/2(gµν ,σ −gσν ,µ+gµσ,ν ),

and the expansion symbol given by

Eµνσ = 1/2(gµν (lnα),σ −gσν(lnα),µ +gµσ(lnα),ν ) (8)

are introduced. So, the change in the covariant vector Aν given by (7) can be rewritten as

dAν = Aµ(Γµνσ − Eµνσ + gµν(lnα),σ )dx
σ

= AµΓ∗µνσdx
σ , (9)

where the Christoffel symbol has been modified to

Γ∗µνσ = Γµνσ − Eµνσ + gµν(lnα),σ

= Γµνσ + Eνµσ (10)

The infinitesimal change in the covariant vector is now used to define covariant differenti-
ation. Noting that Aµ(x)+Γα

∗µνAαdx
ν is a parallel displaced tensor so is also a tensor (where

gαβΓ
α
∗µν = Γ∗βµν), then define a modified covariant derivative

Aµ;ν = Aµ,ν −Γα
∗µνAα, (11)

as opposed to the standard covariant derivative given by Aµ:ν = Aµ,ν −Γα
µνAα. So the

modified curvature tensor is

Rβ
∗νρσ = Γβ

∗νσ,ρ − Γβ
∗νρ,σ + Γα

∗νσΓ
β
∗αρ − Γα

∗νρΓ
β
∗ασ.

For weak curvature, dropping quadratics, this becomes

R∗µν = Γα
∗µα,ν − Γα

∗µν,α

= gαβ (Γ∗βµα,ν − Γ∗βµν,α) . (12)



5 Change in vector length and contravariant change

The change in the dot product of two vectors is

d(AνBν) = d(gµνAµBµ)

= gµνAµdBν + gµνBνdAµ +AµBνg
µν ,σ dx

σ.

Substituting in for the covariant change (9), and using the fact that Γµνσ +Γνµσ = gµν ,σ and
Eµνσ + Eνµσ = gµν(lnα),σ , gives

d(AνBν) = [AνBµgµν ,σ −AνBµgµν(lnα),σ

+2AνBν(lnα),σ +AαBβg
αβ ,σ

]

dxσ.

Noting that AαBβg
αβ ,σ = −AνBµgµν ,σ, then gives

d(AνBν) = AνBν(lnα),σ dx
σ

= AνBνd(lnα). (13)

Therefore, d(A
νBν

α
) = 0 and so letting Aν = Bν gives a change in vector length

d((1/α)(AνAν)) = 0,

so the length of a vector changes by the factor 1/α from point to point. Letting Aν = dxν ,
then d((1/α)(dxνdxν)) = d(ds′2/α) = 0, giving

d(ds) = 0,

and so ds is an invariant distance as expected from (5) for consistency.
From (13), d(AνB

ν) = AνB
νd(lnα) = AνdB

ν + dAνB
ν , this gives

AνB
ν = d(AνB

ν)−AνB
µΓν

∗µσdx
σ

= AνB
νd(lnα)−AνB

µΓν
∗µσdx

σ.

This holds for any Aν , and so cancelling the repeated term gives

dBν = −BµΓ∗ν
µσdx

σ, (14)

where Γ∗ν
µσ = Γν

µσ − gνµ(lnα),σ , and so

Γ∗

αµσ = Γαµσ − Eαµσ .

6 Geodesic acceleration

Letting

dxσ =
dxσ

ds
ds = V σds,

where ds is the invariant distance, then from (14) the contravariant velocity V µ in weak
distorted space is

dV µ

ds
= −Γ∗µ

νσV
νV σ

dV m

ds
= −Γ∗m

νσ V
νV σ

= −Γ∗m
00 V 0V 0

= −gmnΓ∗

n00V
0V 0. (15)



For a static gravitational field, gµν ,0 = α,0 = 0 and also gn0 = 0. So, Γn00 = (−1/2)g00,n and
En00 = (−1/2)g00(lnα),n. Furthermore, from (3) αdx2 = gµνdx

µdxν , and so for a static field
(such that gm0 = g0m = 0) and for velocities small compared with light such that quadratics
V mV n can be dropped, then α = g00V

0V 0. Substituting these results into (15) gives

dV m

ds
= −gmnΓ∗

n00V
0V 0 = (1/2)gmn

(

g00,n V
0V 0 − g00(lnα),n V

0V 0
)

= (1/2)(αgmn) (ln(g00/α)) ,n

= (αgmn)φ,n ,

where

φ = ln

√

g00
α

≈
√

g00
α

− 1 ≈ (1/2)

(

g00
α

− 1

)

(16)

is the covariant acceleration, since in the weak distortion limit αgmn = −1 for m = n. It is
noted that when α = 1, the standard result for geodesic acceleration is obtained.

7 Einstein’s field equations and the gravitational force

In empty space, Einstein’s field equations then become

R∗µν − (1/2)gµνR∗ = 0.

In the presence of matter, a material energy tensor T µν is required such that T µν
;µ = 0,

for the modified covariant differentiation given by (11). Defining a velocity V µ
∗ given by

differentiating distance with respect to the higher dimensional distance measure s′, then
V µ
∗ = dxµ/ds′ = (1/

√
α)V µ and so gµνV

µ
∗ V ν

∗
= 1, leading to V∗µV

ν
∗;σ = 0. Together with the

condition for conservation of matter (ρV µ
∗ );µ, then gives T µσ

;µ = (ρV µ
∗ V ν

∗
);µ = 0. So, consider

generalising Einstein’s field in the presence of matter by

R∗µν − (1/2)gµνR∗ = −8πρV∗µV∗ν . (17)

For α = 1, R∗ = R and V∗µ = Vµ, and the standard law is recovered. Rearranging in the
usual way to incorporate the term R∗ into the right hand side of (17), substituting for R∗µν

given by (12) and neglecting quadratic quantities in Γ and E for weak distortion, gives when
µ = ν = 0

αgαβ (Γβ0α,0 −Γβ00,α ) + αgαβ (E0βα,0 −E0β0,α ) = −4πρV0V0.

A static field such that gαβ ,0 = (lnα),0 = 0 gives Γβ0α,0 = 0, Γβ00,α = (−1/2)g00,βα, E0βα,0 =
0 and E0β0,α= (1/2)[g00(lnα),β ]α. So

(1/2)gmn (g00,mn −[g00(lnα),n ],m ) = −4πρV0V0.

For a weak field

ynµyn,ν ≈











1 forµ = ν = 0
−1 forµ = ν 6= 0
0 otherwise,

and so

gµν = αynµyn,ν =









α 0 0 0
0 −α 0 0
0 0 −α 0
0 0 0 −α









, gµν =









1/α 0 0 0
0 −1/α 0 0
0 0 −1/α 0
0 0 0 −1/α









.



For a static and weak field g00V0V0 = 1/α, so V0 = 1 and

g00,mm−[g00(lnα),m ]m = 8πρ. (18)

From (16) the covariant potential φ is such that (1/2)[(ln g00),n −(lnα),n ] = φ,n, and so
substituting this into (18) gives

(g00φ,m ),m= 4πρ, (19)

and rearranging (16) gives
g00
α

= 1 + 2φ.

It is seen that although g00/α must be close to unity for weak distortion, g00 is unrestricted.
So g00 can be equated to the MOND function, retrieving MOND dynamics in a simple and
straightforward way.

For a point source, following the same arguments as [20], from (19) we get Newton’s
second law given explicitly as

Mg00a = F (20)

assuming no curl vector field present, where M is the point mass, a the acceleration and F

the force, which is the standard MOND modification but with g00 identified as the MOND
interpolation function µ.

8 Point source and general solution

Using (16) and substituting g00 = αe2φ into (19) yields after integration that

αe2φ =
D

(

r2|▽̃φ|
) (21)

for point source of massM , ρ = Mδ(r), whereD is an integration constant, r =
√

x21 + x22 + x23
and δ(r) is the Dirac delta function. Matching this solution to the observed flattening of
galaxys’ rotation curves imposes that |▽̃φ| → D/r2 when |▽̃φ| ≫ a0 and that |▽̃φ| →√
a0D/r when |▽̃φ| ≪ a0, where a0 is the acceleration parameter of MOND theory. Thus a

consistent solution for the potential is derived to be

φ = −M/r +
√

a0M ln r, (22)

where D has been identified as the point source mass. This empirical derivation allows
interpretation of the rate of expansion, suggesting a physical context and thus an alternative
derivation (see later). The first term is the Newtonian potential due to the curvature φNEWT ,
and the second term is the MOND potential due to local expansions φMOND, see figure 1.
Then, (g00φ,m ),m = 4πρ means that g00φ,m= (M/r2)~r. So

g00 =
M/r2

M/r2 +
√
a0M/r

, (23)

and g00/α = 1− 2M/r + 2
√
aoM ln r. Two limits can now be considered.

For small r such that the curvature term M/r2 dominates the expansion term
√
a0M/r,

then this equates to a dominant solution of the Newtonian potential φNEWT where the accel-
erations are such that |φN ,m |/a0 >> 1. Then (22) becomes φNEWT = −M/r, φNEWT ,m=

(M/r2)~r, and (23) becomes g00 = 1−
√

a0
M
r ≈ 1, g00/α = 1−2M/r. So, the Newtonian point

source potential is recovered.



φ,NEWT
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Figure 1: The change in acceleration with distance

For large r such that the expansion term
√
a0M/r dominates the curvature term M/r2,

then this equates to a dominant solution of the MOND potential φMOND where the ac-
celerations are such that |φM ,m |/a0 << 1. Then (22) becomes φMOND =

√
a0M ln r,

φMOND,m= (
√
a0M/r)~r, and (23) becomes g00 =

√

M
a0

1
r
.

Substituting into (19), gives [
√

M
a0

1
r
(
√
a0M ln r),m ],m = [M

r2
~r],m= 4πMδ(x) = 4πρ as

expected.

Also if limits are introduced directly into (21) such that for the Newtonian case as r → 0,
α = 1 and 2φ ≪ 1, this gives

r2 (1 + 2φ) ▽̃φ = M. (24)

After integration and |φ2| ≪ |φ| yields φ = −M/r as expected.

In the MOND limit |φ2| ≫ |φ3| and α = α(r). After integration this gives φ(r) ∝√
a0M ln r, where

α(r) =
1

2a0r ln r
. (25)

Interestingly, the 1/r ln r dependence for α (the space-time expansion) is identical to the
large r radial velocity of a spherical shock wave [21] [22] [23]. So, if one assumed this physical
origin for expansion one can directly derive the second term in (22) without fitting MOND
characteristics to the solution.

It is noted that the factor g00 is approximately unity in the Newtonian approximation,
meaning that (19) is linear and so a system of point sources can be considered as a summation
of separate point source solutions. However, in the MOND approximation, g00 is a varying
function, and so (19) is non-linear and cannot be broken down in this way. Furthermore, the
mass term on the right hand side of (19) is split into a factor

√
M with the potential and a

factor
√
M with g00. So, the momentum equation of Newton’s second law only makes sense

if it is modified to include the factor g00. Furthermore, because of the nonlinearity this factor
g00 can only be calculated once the complete system is known.



The point source solution suggests a general solution given by

φ = φNEWT + φMOND

g00 =

∣

∣

∣

∣

∣

∇φNEWT

∇φNEWT +∇φMOND

∣

∣

∣

∣

∣

α =
1− 2φNEWT − 2φMOND

1 + |∇φMOND/∇φNEWT |
g00/α = 1 + 2φNEWT + 2φMOND

where ∇ is the differential operator ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

) for Cartesian co-ordinate system vector

representation (x1, x2, x3). φNEWT and φMOND are connected in the sense that they can
be seen as limiting values of the same general potential φ, such that the first is the limit of
small relative radius for solar systems, and the second is the limit of large relative radius for
galaxies. So this choice of φ has a certain degree of physical justification in that it gives the
expected physics in these limits. The two limits are then as follows.

When |φ,n |/a0 >> 1, then curvature dominates so |∇φNEWT | >> |∇φMOND|, and

φ = φNEWT

g00 = 1

α = 1− 2φNEWT

g00/α = 1 + 2φNEWT ,

and so φNEWT ,mm = 4πρ, and the Newtonian gravitational representation is recovered. Such
accelerations feature in solar system dynamics.

However, when |φ,n |/a0 << 1, then expansion dominates |∇φMOND| >> |∇φNEWT |,
and

φ = φMOND

g00 =

∣

∣

∣

∣

∣

∇φMOND

a0

∣

∣

∣

∣

∣

α =

∣

∣

∣

∣

∣

∇φMOND

a0

∣

∣

∣

∣

∣

(1− 2φMOND)

g00/α = 1 + 2φMOND,

and so (19) becomes

(g00φ,m ),m = (
|∇φMOND|

a0
φMOND,m ),m = 4πρ,

which is the MOND representation for the potential acceleration. Such accelerations feature
in the motions of galaxies.
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