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Abstract 
Objectives:  To measure the organ dose and calculate effective dose from CTAC acquisitions from 
four commonly used gamma camera SPECT/CT systems.  
 
Method: CTAC dosimetry data was collected using thermoluminescent dosimeters on GE’s Infinia 
Hawkeye four and single slice systems, Siemen’s Symbia T6 and the Philips Precedence. Organ and 
effective dose from the administration of 99mTc-tetrofosmin and 99mTc-sestamibi were calculated 
using ICRP reports 80 and 106. Using this data the lifetime biological risk was calculated.  
 
Results: The Siemens Symbia gave the lowest CTAC dose (1.8 mSv) followed by the GE Infinia 
Hawkeye single-slice (1.9 mSv), GE Infinia Hawkeye four-slice (2.5 mSv) and Philips Precedence (3.0). 
Doses were significantly lower than the calculated doses from radiopharmaceutical administration 
(11 mSv and 14 mSv for 99m Tc-Tetrofosmin and 99m Tc-Sestamibi respectively). Overall lifetime 
biological risks were lower suggesting that using CTAC data posed minimal to the risk to the patient. 
Comparison of data for breast tissue demonstrated a higher risk than that from the 
radiopharmaceutical.  
 
Conclusions: CTAC doses were confirmed to be much lower than from radiopharmaceutical 
administration. The localised nature of the CTAC exposure compared to the radiopharmaceutical 
biological distribution indicated dose and risk to the breast to be higher. 
 
Advances in knowledge: This research proved that CTAC is a comparatively low dose acquisition. 
However, it has been shown that there is increased risk to breast tissue especially in the younger 
patient. As per legislation justification is required and CTAC should only be used in situations that 
demonstrate sufficient net benefit. 
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Introduction 

SPECT/CT has become common place in clinical imaging and a major role for CT is for the 

attenuation correction (AC) of SPECT data in myocardial perfusion imaging (MPI) [1, 2]. The benefits 

of CTAC in MPI are well known and many national and international professional organisations 

recommend its use to improve SPECT MPI diagnostic accuracy [3, 4]. Associated with the CT 

acquisition is an additional radiation dose which is often considered to be low yet very few papers 

quantify the dose and the associated risk.  

Effective dose is a useful figure that allows for a comparison between different techniques and 

protocols to be made. However it is widely recognised that the tissue weighting factors are averaged 

over both genders and all ages and so assessment and comparison of risk for an individual patient or 

patient group is not advised [5-8].Lifetime risk of cancer incidence, sometimes referred to as lifetime 

biological risk is a concept that has been suggested by a number of authors as an alternative to 

effective dose (E) to allow a comparison of risk from non-uniform dose distributions [5-7, 9]. Brenner 

[5-7] is arguably the strongest advocate for a move to what he terms “effective risk” as it is argued 

that E is based on “questionable science” as the tissue-specific weighting factors used, although 

based on research, are established by committee decisions and do not take into account differing 

age and gender dependencies. Wall et al [10] similarly states that E can and should play a role in 

radiation protection of radiation workers and members of the public and for the optimisation of 

techniques involving changes in radiation quality. 

The quality of the images generated by CTAC and the clinical evaluation of these to identify 

incidental extracardiac findings has been discussed in literature [11-13]. Using phantom and human 

studies it has been shown that CTAC data has the potential to allow a reporter to identify 

extracardiac pathology. The accuracy and confidence has been shown to vary with the protocols 

used. This paper measured the organ dose and calculated the E from CTAC acquisitions from four 

different protocols. The protocols selected were those pre-set by manufacturers in four commonly 
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used SPECT-CT scanners and were considered to be suitable to produce data of adequate quality to 

allow attenuation and scatter correction. The aim was to establish what differences in dose exist 

from the different protocols when the data produced is used for the same purpose.  Using this data 

the lifetime biological risk was calculated with a specific emphasis on the female breast. To 

contextualise these figures organ, E and lifetime biological risks from the administration of 

radiopharmaceuticals (99mTc Tetrofosmin and 99mTc Sestamibi) were calculated from data contained 

in ICRP reports 80 and 106 [14, 15]. Comparisons were also made to estimated doses using the dose 

length product (DLP) and published normalised values of effective dose per DLP [16]. 
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Materials and Methods 

Organ dose (HT) was measured using thermoluminescent dosimeters (TLD-100 [LiF], Thermofisher 

Scientific Massachusetts), and E was calculated from these values using the ICRP 103 waiting factors 

[17]. TLDs were placed within critical organs in an adult CIRS ATOM dosimetry phantom (model no 

701B, CIRS, Virginia, USA). Four SPECT/CT systems were selected due to the variations in the CTAC 

protocols. The systems included: GE Infinia Hawkeye (single slice), GE Infinia Hawkeye (4 slice) (GE 

Healthcare, Buckinghamshire UK), Siemens Symbia T6 (Siemens Healthcare Erlangen, Germany) and 

Philips Precedence (Philips Healthcare, Amsterdam, Netherlands).  

The CIRS ATOM dosimetry verification phantom is made up of the head and torso of an adult male. 

There are thirty-nine contiguous slices containing differing density epoxy resin (representing bone, 

lung and soft tissue). The 701B is supplied with 5mm pre-drilled holes spaced in a 30 x 30 mm matrix 

that are filled with tissue equivalent plugs. Hole configuration had to be modified so that they 

aligned to specific internal organs. The modification was carried out by drilling additional holes as 

indicated in the phantom manufacturer’s documentation for organ dosimetry [18].  

The location and range to be scanned was established by performing CT scan of the phantom thorax 

and the upper and lower limit of the left ventricle identified. The scan range was measured and 

found to be 12 cm. The upper and lower borders of the scan range were marked on the phantom 

using permanent ink. Radiopaque markers were attached to the phantom to allow localisation on 

the scan projection radiograph (SPR) on the Siemens and Philips systems. The GE systems do not 

acquire an SPR as the operator uses the emission data to plan the CTAC range. Using a zero refresh 

rate on these scanners’ positioning monitors a cobalt-57 source was placed on the marks for no 

more than five seconds to allow the scan range to be established. Using the reference activity of 3.7 

MBq for the Cobalt source, the dose from this in 5 seconds at a distance of 1 cm in air would be 6.53 

x 10-4 mGy. This value was considered to be negligible when calculating the dose from the TLDs in 

the phantom from the CTAC acquisitions.  



6 
 

Thermo-luminescent dosimeters (TLD-100) (Thermo Scientific, Erlangen, Germany) were cleaned and 

prepared in accordance with Tootell et al [19]. TLDs were organised into batches that ensured that 

the percentage variation of each batch was between 1.8 and 2.2 %. This was done by annealing and 

exposing all the TLDs to a uniform exposure of 120kV and 20mAs using a standard X-ray unit 

(Wolverson Arcoma, Willenhall, UK). The TLDs were ranked in order of response and organised into 

five batches. Each batch was calibrated using the same general X-ray unit at beam energies 

equivalent to the CTAC protocols using a calibrated Unfors Mult-O-Meter (Unfors RaySafe, Billdal, 

Sweden). 

The TLDs were placed in a bespoke shielded case for transportation to the nuclear medicine 

departments involved in the study to prevent exposure to background radiation and any sources of 

radiation in the nuclear medicine departments. These TLDs were placed in the phantom in critical 

organs identified in ICRP 103 and the manufacturer user guide of the phantom to allow organ dose 

to be measured [17, 18, 20] (Table 1) 

Table 1 Number of TLDs used in critical organs 

Organ Number of TLD 

Adrenals 2 

Bladder 16 

Brain 11 

Breast 2 

Active bone Marrow  85 

Clavicle 20,  

Cranium 4 

Cervical Spine 2 

Femora 4 

Mandible 6 

Pelvis 18,  

Ribs 18 

Sternum 4 
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Thoraco-lumbar Spine 9 

Eyes* 2 

Gall Bladder 5 

Heart 2 

Intestine (Small and large) 16 

Colon 11 

Small intestine 5 

Kidneys 16 

Liver 30 

Lungs 36 

Oesophagus 3 

Pancreas 5 

Prostate 3 

Spleen 14 

Stomach 11 

Testes 2 

Thyroid 10 

* Not included in effective dose calculations 

 TLDs located in the anterior of C2 and upper oesophagus 

were used to calculate extra thoracic organ dose 

 TLDs located in the left and right lingula of the mandible 

and to the left and right of the sublingual fossa were used 

to calculate salivary gland organ dose 

× TLDs located in the left and right lingula of the mandible 

were used to calculate oral mucosa organ dose 

 

A total of five TLDs remained with the phantom except during imaging for background radiation 

correction. CTAC imaging was performed using the standard manufacturer protocols for MPI 

attenuation correction (Table 2).  
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Table 2 Protocols used for attenuation correction for myocardial perfusion imaging. 

Scanner Scout 

view 

Axial/

Helical 

kV mA Rotation Slice 

thickness 

Pitch 

 

Automatic 

exposure/ 

dose 

modulation 

GE Infinia 

Hawkeye (1 

slice) 

No Axial 140 2.5 30 second per 

rotation 

(214o 

exposure) 

10mm N/A N/A 

GE Infinia 

Hawkeye (4 

slice) 

No Helical 140 2.5 30 second per 

rotation  

(214o 

exposure) 

5mm 1.9mm 

per 

rotation 

N/A 

Siemens 

Symbia T6 

Yes Helical 130 20 0.6s 3mm 0.938 AEC and 

DOM 

Philips 

Precedence 16 

Yes Helical 120 30 1.5s 5mm 0.938 N/A 

 

Three CTAC exposures were performed on each SPECT-CT system to allow a cumulative dose on the 

TLDs to be acquired. CTDIvol and dose length product data was recorded to be used for dose 

calculation and comparison to measured doses. Reading of the TLDs was carried out using a Harshaw 

3500 manual TLD reader (Thermo Electron Corporation, Reading, UK) and WinRems software (Saint-

Gobain Crystals & Detectors, Wermelskirchen, Germany). TLD readings were corrected for 

background and an average value for each TLD calculated. Organ doses were calculated and then 

used to calculate E and lifetime biological risk using the equations shown in Figure 1. The conversion 

coefficient for CT chest imaging was applied to the DLP readings and the resulting dosimetry 

compared to the measured readings [16].  
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Figure 1 Equations for (a) Organ dose, (b) Active bone marrow dose, (c) Effective dose and (d) Lifetime biological risk 

[18]. 

 

Active bone marrow dose was calculated using data on bone marrow distribution from Christy [21]. 

According to statistics, ischaemic heart disease affects a larger proportion of the population of men 

over 55 and women over 65 [22]. The maximum age considered by Christy is 40 therefore this data 
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a) 

Where    
HT  = equivalent organ dose 
 j = 1,…n, the number of TLDs in organ i. 

 

b) 

Where    
Dabm  = Dose to active bone marrow 
Ak  = proportion of active bone marrow described by Cristy [21] (∑      

 

c)  

Where    
E = effective dose to the entire body 

   WT = tissue weighting factor of tissue (T) defined by ICRP 103 [20] 
   HT = equivalent dose absorbed by tissue (T) 
 
 
d) 

Where    
R = lifetime biological risk (defined as the generic lifetime radiation-attributable  

cancer risk) 
   rT = lifetime radiation-attributable organ-specific cancer risk estimates (per unit  

equivalent dose to tissue T) 
   HT = equivalent dose absorbed by tissue (T)  
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was used in the equation for calculating the equivalent dose to active bone marrow.  

Values for rT  used in this study are tabulated in the Health Protection Agency report  HPA-CRCE-028 

for 11 cancers of high risk organs over age ranges 0-9, 10-19, 20-29 etc. up to 90-99 [10]. Cancers of 

other radiosensitive organs share a collective risk estimate. This study followed the method 

described by Li et al [9] by applying this value to a weighted average dose of other radiosensitive 

organs (Figure 2). 

 

Figure 2 Equivalent dose to Other Organs defined in ICRP 103[17] 

 

 

 

 

 

Other organs included the salivary glands, brain, heart, kidney, gallbladder, spleen, pancreas, 

adrenal glands, thymus, small intestine, extrathoracic region and oral mucosa. Data collection using 

TLDs for lymph nodes, muscle, bone surface and skin was not performed as they are large 

organs/systems and it was deemed these would contribute very little to the overall E and lifetime 

biological risk calculations as only a small proportion of the tissue would be exposed during the 

imaging process and their exclusion would have negligible effect. The weighting for the remaining 

organs was averaged over those organs where dose was measured [23].   

Organ and E for the radiopharmaceutical administration were calculated using data provided in ICRP 

report 80, report 106, diagnostic reference levels (DRL) indicated in the Administration of 

Radioactive Substances Advisory Committee’s publication and guidance published by the British 

Nuclear Medicine Society and adopted by the British Cardiac Society and the British Nuclear 

Cardiology Society [15, 24-26]. The total dose and risks for a stress and rest procedure using a total 
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1600MBq of 99mTc-tetrofosmin and 99mTc-sestamibi were compared to the additional dose and risk 

from the CTAC acquisitions performed using parameters described in Table 2. Data for lifetime 

biological risk incidence was obtained from Wall et al [10]. 

 

Results 

Table 3 shows the dose effective dose for a single CTAC acquisition of the four protocols used in the 

study. 

Table 3 Organ and Effective doses for a single CTAC acquisition measured using TLDs. 

Organ 

Dose (mSv) 

GE Infinia 
Hawkeye 1 

GE Infinia 
Hawkeye 4 

Siemens 
Symbia T6 

Philips 
Precedence  

Brain 0.0 0.0 0.1 0.1 
Salivary glands 0.0 0.0 0.1 0.2 

Thyroid 0.1 0.3 0.8 0.4 
Oesophagus 1.3 1.9 1.2 2.3 

Lungs 1.8 2.7 1.5 2.8 
Breast 3.5 3.3 2.0 4.1 
Liver 1.3 2.4 1.3 2.4 

Stomach 0.5 1.2 0.9 1.5 
Colon 0.0 0.1 0.2 0.2 

Bladder 0.0 0.0 0.2 0.2 
Testes 0.0 0.0 0.1 0.2 

Active (red) bone marrow 0.6 0.6 0.9 0.9 
Remainder 0.1 0.1 0.1 0.1 

Effective Dose 1.0 1.2 0.9 1.5 

 

Table 4 shows the comparison in E measured using TLD and E calculated using the DLP.  

Table 4 Effective dose using DLP*k (conversion coefficient (mSv/mGy*cm) where k=0.017 [16] 

System 

protocol 

CTDIvol 

(mGy) 

DLP       

(mGy*cm) 

Calculated 

Effective 

Dose (EDLP) 

(mSv)  

Measured 

Effective 

Dose (ETLD) 

(mSv) 

Percentage 

difference 

(%) 
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GE single 

slice 
4.11 49 0.83 1.0 13.5 

GE four slice 3.9 46 0.78 1.2 46.3 

Siemens 

Symbia T6 
1.75 21 0.36 0.9 85.7 

Philips 

Precedence 
3.5 42 0.71 1.5 71.5 

 

E and organ dose for the lung, oesophagus, colon, liver and stomach from the administration of 99mTc 

Tetrofosmin and 99mTc Sestamibi are shown in Table 4 and two CTAC acquisitions (performed for 

both rest and stress protocol) are shown in Table 5. 

Table5 Equivalent and effective doses following administration of radiopharmaceuticals for a rest/stress procedure and 
two CTAC acquisitions. 

 

 

 

Organ  

Dose (mSv) 

99mTc 

Tetrofosmin  

99mTc 

Sestamibi 

 

GE single 

slice 

GE four 

slice 

Siemens 

Symbia 

T6 

Philips 

Precedence 

Lung 5.1 7.1 3.6 5.4 3.1 5.5 

Oesophagus 5.3 6.5 2.5 3.8 2.4 5.6 

Colon 28.8 34 0.2 0.2 0.6 0.5 

Liver 5.3 16 2.6 4.7 2.7 4.9 

Stomach 7.4 10 1.1 2.4 1.7 3.1 

Breast 3.7 5.7 7.1 6.6 4.1 8.2 

E (mSv) 11 13.3 1.9 2.5 1.8 3.0 
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Following the method described by Wall et al [10] conversion to lifetime cancer risk per million (106) 

was performed and are shown in Table 6. 

Table 6 Total risk (per million) from radiopharmaceutical and CTAC acquisitions using diagnostic reference levels and 
manufacturer protocols 

Examination  

Risk (per 106) 

Age at exposure 

40-49 50-59 60-69 70-79 

99mTc Tetrofosmin 525 386 244 130 

99mTc Sestamibi 608 447 284 152 

CTAC GE single slice 63 52 39 24 

CTAC GE four slice 101 83 61 37 

CTAC Siemens Sybmia T6 80 63 45 27 

CTAC Philips Precedence 103 86 64 40 

 

Consideration was given to the risk to the breast from radiopharmaceutical administration and CTAC 

acquisition. The phantom used in the study was male and no additional breast tissue was added 

however, the acquired data allowed for a comparison of the risks within the context of this study. 

 

Table 7 Risk to breast (per million) from radiopharmaceutical and CTAC acquisitions using diagnostic reference levels 
and manufacturer protocols 

Examination  

Risk (per 106) 

Age at exposure 

40-49 50-59 60-69 70-79 

99mTc Tetrofosmin 31 31 8 3 

99mTc Sestamibi 48 48 12 5 

CTAC GE single slice 60 60 15 6 



14 
 

CTAC GE four slice 55 55 14 5 

CTAC Siemens Sybmia T6 34 34 9 3 

CTAC Philips Precedence 69 69 17 6 

 

Discussion 

Comparison of EDLP and ETLD showed significant differences in the two values with EDLP being 

consistently lower. This agrees with published literature [27-29]. However, the average percentage 

difference between the two is 54.2% which far exceeds figures quoted by Groves et al [27] of 18% 

and Hurwitz et al [29] of 25%. Criticisms of k state that the factors are based on old technology and 

old data; they are based on several scanners that were in use circa 1990 and the tissue weighting 

factors used in their calculation are from ICRP 60 [16, 30, 31]. There are also a number of 

assumptions made that would increase the error in the calculated effective dose. For example, the 

patient is assumed to be standard and, as noted by McCollough et al [32], this standard patient is a 

little thin by today’s standards (nominal body mass of 70 kg). Possible sources of error were 

considered and additional quality checks performed on the TLDs. The batches were checked for 

uniformity and were found to be within the 2% level established before the experiment commenced 

at higher and lower doses of X-radiation. The images acquired as part of the CTAC exposure were 

also compared and it was clear that the same region of the phantom was exposed each time. 

Whether the cited criticisms of k are the main contribution to these differences is unclear from this 

research. 

Comparing E of the CTAC acquisitions to those from the administration of the radiopharmaceuticals 

it can be seen that these figures are smaller but acquisition of AC data using CT does contribute 

additional dose to the patient. From this research this is in the magnitude of 7.3% to 27.3%. 

Comparison of CTAC to the “typical effective dose” for a CT chest of 6.6 mSv supports the popular 

opinion that CTAC is a low-dose CT procedure [10].   
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Consideration of risk again highlights large differences between the radiopharmaceutical and CTAC 

acquisition. When considered with the reported benefits of CTAC in improving the sensitivity and 

specificity it can be said that the reported benefits of attenuation and scatter correction using CT 

benefits do outweigh the risks [33-35].  

A comparison of doses from the CTAC acquisitions showed some interesting findings. The protocol 

from the Siemens Symbia T6 gave the lowest E, this was significantly different to the protocols from 

the Philips Precedence and GE Hawkeye 4 slice systems (paired T Test, p<0.05). However statistical 

comparison of the protocols from the Symbia T6 to the GE Infinia Hawkeye single slice showed no 

statistical difference (paired T Test p=0.37). The Siemens Symbia T6 CT component is a higher 

specification system that has been shown to produce diagnostic quality CT images so it would be 

expected that E would be higher [12]. Close examination of the imaging parameters in Table 2 does 

highlight two interesting features, including the use of automatic exposure control (AEC) and dose 

modulation (DOM) during the acquisition. This technology (referred to as CARE Dose4D) manipulates 

the tube current in two ways. Firstly the tube current is varied based on the attenuation data 

acquired as part of the SPR. Secondly, attenuation in the patient is measured in real-time during the 

helical acquisition, where the mA is modulated to equalise the photon flux reaching the detectors 

during the scan. The aim of both these techniques is to keep noise levels consistent throughout the 

scan to allow for anatomical variations in attenuation, hence optimising image quality and patient 

dose.  

The GE systems have a low specification CT component with many of the exposure parameters being 

fixed. On first glance it could be assumed that with a tube current of 2.5 mA, the dose from CTAC 

acquisitions would be significantly lower than the Siemens which has a mA of 20. However, taking 

the rotation time into account the effective mAs of each slice is much higher. Calculations using the 

mA and rotation time and angle of rotation illustrate that an effective mAs of 44.6 is used for each 

slice in these acquisitions. Performing a T-test between the two GE systems together illustrates a 
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statistically significant difference in dose (p=0.0002), with the four slice system giving the higher 

dose. Reasons for this could be due to the method of acquisition as the four-slice system acquires 

data helically rather than axially. 

The protocol used by the Phillips Precedence gave the highest E of the four systems. The Phillips 

Precedence is a 16 slice “full diagnostic” system but as can be seen in Table 2, parameters used are 

significantly lower than those that would be used in diagnostic CT imaging. The opportunity for 

further dose reduction should be recognised by the Operator and options for dose optimisation on 

an individual patient basis utilised. The authors recognise that the imaging parameters used are set 

by the manufacturer and a departmental process of optimisation may have the potential to further 

reduce E. Manipulation of parameters such as mA, rotation time, pitch and/or acquisition method 

(helical or axial) have the potential to reduce dose while ensuring adequate data quality. 

The phantom used in this study is representative of an adult male phantom and so risk and 

calculations of E are specific to this gender. Dose to breast and risk calculations were carried out and 

are shown in Table 7 however It is recognised that the risk to the female breast is likely to be 

different to the quoted figures due to the absence of additional breast tissue that would be present 

in the female phantom but as a comparison within the context of this study, some interesting results 

were found. This comparison highlights that although the overall lifetime biological risks associated 

with the CTAC exposure are much lower, organ specific risks may be comparable or higher. For 

example the addition of a CTAC using the Philips Precedence protocol to a 99mTc Tetrofosmin stress 

and rest study in a 40-49 year old increases the risk to the breast from 31 per million to 100 per 

million.  

 

Conclusion 

The authors recognise that local optimisation of administered radioactivity and CT imaging 
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parameters should be performed and actual values for E and risk will vary accordingly. However, as a 

comparison exercise this paper provides the information on the associated risks of performing CTAC. 

On comparison to doses and risks from the administration of radiopharmaceutical, the CTAC poses a 

small increase to risk especially to the older population. However, it has been shown that 

consideration should be given to risks to individual organs and in this case Practitioners should be 

aware of the increased risk to breast tissue especially in the younger patient. As per legislation 

justification is required and CTAC should only be used in situations that demonstrate sufficient net 

benefit to the patient. 
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