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Abstract 

The most significant operational cost in a treatment plant is related to the 

dewatering and disposal of sludge. Coagulation is the most common process in 

water and wastewater treatment plants and produces sludge as a by-product. The 

influence of different important coagulation factors has been investigated in this 

study to assess corresponding impacts on sludge dewaterability. The CST 

(Capillary Suction Time) apparatus was used as the main tool to measure sludge 

dewaterability, followed by the turbidimeter, the particle size analyzer, and the 

SRF (Specific Resistance to Filtration) as a comparison and also for verification.  

The CST results indicate that the magnetic stirrer produces the lowest CST 

values, while the other four shapes of mixers produced similar but higher trends. 

Rapid mixing velocity and rapid mixing time have varying degrees of influence 

on the CST value and hence on sludge dewaterability. Rapid mixing velocity 

seems to have a more significant impact on the CST value than rapid mixing time. 

The coagulants aluminium sulphate and ferric chloride have similar effects on 

CST values. The performance of aluminium sulphate and Moringa oleifera are 

affected by temperature, but the performance of coagulant ferric chloride was 

hardly impacted. Different synthetic water samples do not significantly affect the 

CST value. 

The turbidity result correlates well with the CST value. Observations using 

the particle size analyzer indicate that, in general, the floc size has a direct 

correlation with the CST value. The larger the floc size, the lower the CST value. 

Floc size distribution results show that synthetic raw water has a narrow particle 

size distribution; synthetic domestic wastewater produced a wider distribution 



xiv 
 

than synthetic raw water. The comparison between the CST and SRF results 

indicates that the CST and SRF are well correlated if different methods (rapid 

mixing velocity and rapid mixing time) are used, but uncorrelated if different 

materials (mixers, coagulants, temperature and water samples) are used. 

Based on the results of this investigation, the working of the magnetic 

stirrer should be investigated further in order to implement this mixer in the 

treatment process. The magnetic stirrer does not only produce the lowest CST 

value but is also the only mixer that produces different CST values significantly. 

This is because it produces the optimum G value for sludge formation. The 

implementation of rapid mixing velocity is more important than rapid mixing time 

in the operation of a treatment plant. Due to its correlation with temperature, ferric 

chloride is the most appropriate coagulant among the three types of coagulants 

used in the treatment plant to reduce sludge dewaterability. Based on the results 

using different water samples, all of these factors can be used for both inorganic 

and organic water and wastewater to produce lower sludge dewaterability. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

This chapter will discuss the background to this research, specific aims and 

objectives of the research, research methodology and limitations of the research. It 

will also explain the importance of the coagulation process and the impact of 

important variables on sludge production and sludge dewaterability.  

 

1.2 Background to Research 

Sludge is an inevitible by-product of the water and wastewater treatment 

process; indeed, water and wastewater treatment plants produce large volumes of 

sludge every day, and dewatering and disposal of sludge accounts for 

approximately 40% of the treatment costs of a typical treatment plant (Hernando 

et al., 2010). Globally, in modern society, the quantity of sludge increases 

annually because of increasing population and greater access to sewage and water 

treatment. Quantity and quality of sludge are dependent on the treatment process 

in the wastewater plant (Sanin et al., 2011). Table 1 shows the projection of 

sludge generation in the United States (US EPA, 1999). 

Table 1. Projection of Sludge Generation in the United States (US EPA, 1999) 

Year Total (million dry metric tons) 

1998 

 

6.3 

 2000 

 

6.5 

 2005 

 

6.9 

 2010   7.5   
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For the UK alone, sludge production in 2001 was 1,186,615 metric tons of 

dry matter; it increased to 1,360,366 metric tons of dry matter in 2003 (Sanin et al., 

2011) as can be seen in Table 2 which presents figures for the EU. As a 

consequence, sludge and the management of sludge is a significant problem in 

water and wastewater treatment plants. 

Table 2. Sludge Production in the European Union in 2001 and 2003 (Sanin 

et al., 2011) 

  Sludge Produced 

 

(metric tons of dry matter) 

Member state 2001 2003 

Austria     96,110     115,448 

Belgium Flemish     81,352       76,072 

Belgium Walloon     18,514       23,520 

Denmark   158,017     140,021 (2002) 

Finland   159,900     150,000 

France   893,252     910,255 (2002) 

Germany 2,300,686 2,172,196 

Greece      67,755      79,757 

Ireland      33,559      42,147 

Italy    884,964    905,336 

Luxembourg      NA        7,750 

Netherlands    536,000    550,000 

Portugal    209,014    408,710 (2002) 

Spain    892,238 1,012,157 

Sweden    220,000    220,000 

UK 1,186,615 1,360,366 

Total 7,737,975 8,173,735 

 

Dewatering of sludge is considered to be one of the most significant 

problems associated with sludge management, as well as being the most costly 

process in water and wastewater treatment plants (Katsiris & Katsiri, 1987; Jin et 

al., 2004). The dewaterability of sludge is fundamentally determined by the 

chemical composition and physical configuration of the flocs or solid particles 
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that make up the sludge (Verrelli et al., 2009). In water and wastewater treatment 

plants a number of process stages are employed to treat water in order to remove 

contaminants. Zhan et al. (2011) identified coagulation as one of the key elements 

within the treatment process, whilst research conducted by Diaz et al. (2011) and 

Verrelli et al. (2009) highlighted the importance of coagulation in influencing 

both the production and the dewaterability of sludge.  

The coagulation process produces purified water and sludge (floc) as a by-

product (Byun et al., 2005; Gray, 2005; Diaz et al., 2011). In this process, small 

contaminants, which have a diameter less than 1µm, attach themselves to one 

another to produce an agglomeration and, as a result, the initially small 

contaminant can be removed from water as part of a much larger agglomeration 

(AWWA, 1999). Sludge properties, such as the volume, strength, size and 

dewaterability, will influence the method of dewatering and disposal 

(Tchobanoglous et al., 2003; Razi & Molla, 2007). In order to improve the 

conditions for coagulation, rapid mixing is employed. Rapid mixing is the first of 

two stages of the mixing process (Gray, 2005) and is an essential part of the 

coagulation process (Mhaisalkar et al., 1991; Dharmappa et al., 1993). It is 

recognized that this rapid mixing phase is crucial throughout the coagulation 

process and equally important in the formation of sludge. The main purpose of 

rapid mixing is to effectively disperse a coagulant in the water; however, it also 

establishes the formation of coagulant hydrolysis products. Precipitate formation 

of coagulant hydrolysis products is the agent that has the responsibility not only to 

destabilize the contaminant, but also to determine sludge production (Wang et al., 

2008; AWWA, 1999). 
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  According to AWWA (1999), coagulation is complex, involving physical, 

chemical and also mass transfer processes. The main processes in coagulation are 

coagulant formation, particle destabilization, and inter-particle collisions. 

Coagulant formation, destabilization and the reaction between 

contaminant/coagulant occur during and immediately after the rapid mixing 

process. In addition, inter-particle collisions that cause aggregation begin to 

develop during rapid mixing and form, predominantly, during the coagulation 

process. Coagulation processes in water and wastewater treatment plants usually 

produce bulk contaminant or sludge. The amount and properties of the sludge 

depend on the coagulant used. The greater the volume of sludge, the more 

processing is required and the costs of dewatering and disposal increase. The 

effectiveness of coagulation depends on many factors such as rapid mixing, 

coagulant characteristics, pH, alkalinity, temperature and contaminant 

characteristics. Of these factors, the most important is rapid mixing (Maishalkar et 

al., 1991; Dharmappa et al., 1993). 

 In water and wastewater treatment plants, rapid mixing can be carried out 

with a wide range of mixers and reactor configurations, any of which will produce 

different shearing rates, different flocculant aggregate sizes and hence different 

rates of flocculant agglomeration. Much work has been published in the area of 

rapid mixing in relation to the coagulation process, however, the influence of 

different shapes of mixer on floc formation and stability has been neglected. 

Initial findings show that different shapes of mixer produce different coagulation 

efficiency (Leentvaar & Ywema, 1980; McConnachie, 1989; Spicer et al., 1996; 

Kim et al., 2006; Wu, 2010). This is due to different shear rates influencing the 
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rate of floc agglomeration. Serra et al. (2008), who investigated the efficiency of 

different shear devices on flocculation, concluded that different shapes of mixer 

produce different sized aggregates during flocculation. The different shapes of 

mixer produced different shear rates, thus influencing the rate of floc 

agglomeration. At low mixing or low shear rates with a mixing velocity gradient 

less than 20s
-1

(G <20s
-1

), floc diameter increased with increasing shear rates and 

aggregation dominated over break up. Intermediate shear rates (20s
-1

<G<30s
-1

) 

produced the largest flocs because flow rates were maximized. At high shear rates 

(G>30s
-1

), the shear rate was such that the maximum floc sizes were smaller due 

to the dominance of particle break up, rather than aggregation. 

 Park et al. (2003) investigated the effect of hydraulic turbulence in rapid 

mixers on turbidity removal. The research was conducted at laboratory scale using 

wet tests, Computing Fluid Dynamics (CFD) simulation and Particle Image 

Velocimetry (PIV) analysis, using three different shapes of jar: a circular jar with 

squared baffles, a circular jar without baffles and a Hudson jar. The authors 

concluded that for designing and operating rapid mixing, rapid mixing intensity, 

defined as the product of velocity gradient (G) value and mixing time (t), was 

inadequate due its inability to reflect important hydraulic conditions in the 

coagulation process, such as turbulence. In the most effective turbidity removal 

processes non-identical impeller rotating speeds and G values in different shapes 

of jar have been found. Park et al. emphasized that in determining the 

performance of a rapid mixer the most important factor is turbulent fluid 

conditions, including distribution of turbulence and formation of dead zones. 
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In this research, the behaviour of different shapes of mixer is examined 

and their influence on sludge formation analyzed. Research was carried out 

through a rigorous programme of laboratory testing, examining a range of 

parameters that are considered to affect the coagulation process, using the 

Capillary Suction Time (CST) as the main sludge dewaterability measurement 

apparatus. In order to compare and verify the CST results, particle size analysis, a 

turbidimeter and SRF (Specific Resistance to Filtration) were also employed as 

additional measures of sludge dewaterability.  

 Although a number of studies have been carried out with regards to rapid 

mixing and its influence on sludge dewaterability, comprehensive studies of 

specific aspects of this relationship are still required. It is believed that further 

research can provide insights into the increase in sludge dewaterability in water 

and wastewater treatment systems.  

 

1.3  Specific Aims and Objectives of the Research 

 The principal aim of this research is to contribute to the development of 

sludge dewatering techniques by critically evaluating the influence of a number of 

essential variables on the coagulation process, which is a critical element in 

sludge dewatering. The objectives of this research are therefore to investigate the 

influence of the following important factors on the coagulation process during 

sludge dewatering: 

 Mixer shape  

 Rapid mixing velocity  

 Rapid mixing time  
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 Coagulant type  

 Temperature  

 Water composition  

 The influence of these parameters has been examined based on the results 

of experimental work, and modifications to existing dewatering processes are 

suggested which aim to improve the efficiency and efficacy of water and 

wastewater treatment.  

 

1.4 Research Methodology 

 The research methodology focused on collecting and analyzing 

experimental data acquired through a programme of experiments relating to the 

interaction of a range of different variables and their influence on the coagulation 

process. In order to do this, the researcher identified a number of key challenges: 

1. Data analysis – the programme generates a large body of data. Detailed 

quantitative analysis of this experimental data was required, informed by 

appropriate statistical methodologies; 

2. Sludge production mechanisms – many aspects affect sludge production, 

including the shape of mixers, coagulants and contaminants in water. The 

mechanisms were investigated and analyzed based on the results of experimental 

laboratory work; 

3. Quantitative measurement of sludge dewaterability – a number of methods 

were available to evaluate sludge dewaterability, including the CST, turbidimeter, 

particle size analyzer and SRF. These were critically reviewed and evaluated in 
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the context of this study. Clearly, a key element of the experimental work is to 

evaluate the method by which sludge dewatering was assessed;  

4. Chemistry of sludge/wastewater – one of the key aspects in understanding the 

processes in water and wastewater treatment plants is the chemistry of the water 

or wastewater. In this research, the chemistry studied was based on the coagulant 

and the water sample used in the experiment. 

 

1.5  Limitations of the research 

The principal limitations of this research have been identified as: 

1. The selection of mixer shapes used in this research to represent the real 

mixer shapes in the industry. Many shapes are used in water and wastewater 

treatment plants. This research cannot use all of them, so to overcome this 

problem the selection was based on information provided by companies producing 

and/or selling standard mixers used by the water and wastewater industry. 

2. In order to obtain a sample with consistent water quality characteristics for 

laboratory tests, synthetic raw water and synthetic domestic water was used (at 

least for benchmarking purposes) in all experiments. The use of synthetic water 

minimizes differences in experimental conditions, which are particularly 

important for most laboratory-scale tests. The properties of ‘natural’ or ‘real’ 

water samples can often be highly variable and very dynamic. These properties 

depend on the treatment plant operational conditions and may change over time 

during transport, handling and storage. It was an initial requirement of this work 

to obtain appropriate synthetic water and wastewater recipes. There are no 
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standard water and wastewater formulas.  In order to address this problem, the 

researcher carried out an extensive literature review.  

 

1.6 Chapter Summary 

 Sludge dewatering and disposal is a very expensive process. Sludge 

production is increasing every year, not only in the UK but also globally. As one 

of the essential processes in water and wastewater treatment plants, coagulation 

impacts sludge conditions and sludge dewaterability. Coagulation uses different 

shapes of mixer, and research findings show that different mixer shapes produce 

different degrees of coagulation. Based on these facts, it might be valuable to seek 

a correlation between different shapes of mixer and other important variables in 

the coagulation process on sludge dewaterability. A contribution to increasing 

sludge dewaterability should result from this research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview 

Chapter 2 presents the literature review, which has an important role in supporting 

this research. Sludge problems in water and wastewater treatment plants, and 

correlation between the coagulation process and important variables in sludge 

dewaterability will be discussed in detail. The role of floc size on sludge 

dewaterability and sludge dewaterability measurement will also be considered.  

 

2.2 Sludge Problems in Water and Wastewater Treatment Plants 

 Generally, the water content in sludge is approximately 95%, which needs 

to be reduced prior to disposal and this saccounts for almost half of the treatment 

costs of dewatering and disposal (Chen et al., 2010). Reduction of sludge volume 

by separating water from sludge (solid) has become the most important part of the 

sludge treatment process (Qi et al., 2011). However, although sludge dewatering 

is considered to be one of the most expensive elements of the treatment process, it 

is also one of the least well understood (Bruus et al., 1992) and one of the more 

complex and difficult processes in water and wastewater treatment (Lee & Wang, 

2000). The cost and difficulty of sludge handling are directly correlated with the 

amount of water remaining in the sludge after the dewatering process (Dentel et 

al., 2000).  
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For example, Di Iaconi et al. (2010) compared the costs of ozone-

enhanced biological degradation and conventional processes for tannery 

wastewater treatment. The authors stated that of the 0.9€/m
3
 total cost for ozone 

treatment, 0.07€/m
3
 (8%) is for sludge treatment and disposal. For biological 

units, of the 2.4€/m
3
 total cost, 0.7€/m

3
 (29%) is for sludge treatment and 

disposal. For wastewater treated by the Fenton process, of the 1.45€/m
3
 total cost, 

0.8€/m
3
 (56%) is for sludge treatment and disposal. The sludge treatment and 

disposal costs were determined by the quantity of sludge, where the larger the 

volume of sludge, the more costly is the sludge treatment and disposal process. 

The data above shows that every water and wastewater treatment process 

produces different volumes of sludge, and this affects the cost of sludge treatment 

and sludge disposal.  

Razi and Molla (2007) stated that sludge dewatering performance is 

dependent on the composition and physical properties of the sludge, such as 

particle size, density, porosity as well as settling velocities. Besra et al. (2000) 

also found sludge dewaterability to be very much dependent on particle size and 

its distribution, sphericity of the particles, bed porosity, water retention capacities 

and variation in the dispersion properties. The composition of sludge is highly 

dependent on the treatment process and the water or wastewater composition 

(Gale & Baskerville, 1970; Wang et al., 2009; Zhang et al., 2004).  

In water and wastewater treatment plants many processes can be used to 

separate contaminants from water, including physical, chemical and biological 

processes. Almost every stage of the treatment produces sludge (Figure 1), and of 

all of these stages, coagulation, which is one of the primary treatment processes in 
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water and wastewater treatment plants, most influences sludge production (Diaz et 

al., 2011). Lin et al. (2008), investigating the effect of Al(III) speciation on 

coagulation of highly turbid water, found that sludge characteristics are dependent 

on coagulation mechanisms. Furthermore, sludge dewaterability is very dependent 

on sludge/floc characteristics, in particular size distribution and the presence of 

small particles (Jin et al., 2004), which are determined by the specific coagulation 

process mechanism.  

 

                                                                                                                                                                                            

 

 

 

 

 

 

   

 

Figure 1. Generic sludge production and treatment process 

(after Tchobanoglous et al., 2003) 

 

2.3 Relationship Between Coagulation and Sludge Dewaterability                                                                                                                              

Coagulation is a process in which all the reactions and mechanisms have 

the purpose of producing an agglomeration of contaminants or particles (AWWA, 

1999; Gray, 2005). The coagulation process consists of two-stage mixing 
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processes: rapid mixing (coagulation) and slow mixing (flocculation). Rapid 

mixing is employed at the first stage to disperse the coagulant in the water. Slow 

mixing is used as a second stage to stimulate the agglomeration of particles and to 

encourage sedimentation (Figure 2). The agglomeration itself is an essential 

process because its purpose is to produce a larger size of floc. Larger and denser 

floc seems preferable since these will settle more easily and dewater more readily 

(Larue & Vorobiev, 2003).  

 

                                                                                     

 

 

 

 

 

Figure 2. Flow Chart of Coagulation Process 

(after AWWA, 1999) 

 

Coagulation is an important process and is used worldwide in sequential 

processes in water and wastewater treatment plants (Bhatia et al., 2007). In water 

treatment, coagulation processes followed by a treatment step for liquid and solid 

separation are the most commonly used processes to remove particles and 

particulates from the water (Byun et al., 2005; Slavik et al., 2012). In addition, 

Byun et al. (2005) stated that the coagulation process is not just effective for 

treating drinking water but it is also economical. This is due to the coagulation 
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process being fast, so it can avoid lengthy power consumption and minimize 

energy costs. The coagulation process does not need an excess dose of coagulant 

to remove the contaminant from water. Charge neutralization is a coagulation 

mechanism which produces good contaminant removal but does not need an 

excessive coagulant dose (AWWA, 1999).  

Coagulation is an old process thought to date back to ancient Egypt, circa 

1500 BC (Jiang, 2001). At that time, the Egyptians used aluminum salt to 

encourage the settlement of particles, much as we do today. The modern history 

of coagulation started some 100 years ago with the first use of ferric and 

aluminum salts in a complete water treatment plant (Jiang, 2001). Much 

experimental work has been undertaken to examine the influence of coagulation 

factors such as the type of coagulant, physical-chemical processes, contaminants, 

and many other factors on the efficiency of the process (eg. Black et al., 1933; 

Jiang, 2001; Kan et al., 2002; Bektas et al., 2004; Bhatia et al., 2007; Barbot et al., 

2008; Gao et al., 2008; Almubaddal et al., 2009). However, not many 

investigations have been undertaken into rapid mixing and sludge dewaterability 

(Appendix 1), even though among all of the processes in coagulation, rapid 

mixing is considered by Dharmappa et al. (1993) and Mhaisalkar et al. (1991) to 

be the most important factor in removing the contaminant from water.  

The coagulation process comprises complex mechanisms which include 

adsorption, neutralization of colloid charges and the entrapment of colloids by the 

coagulant (Gray, 2005). Adsorption occurs when the contaminant particle is 

adsorbed or attached to the surface of coagulant hydrolysis products. 

Neutralization of colloid charges is a process where a positive charge of coagulant 
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hydrolysis products destabilizes the negative charge of colloids. As the net charge 

of the colloid reduces, it becomes easier for the colloid to make contact with 

others. Excess coagulant dosage will entrap the contaminant and cause it to settle 

down. The presence of these mechanisms is dependent on the rapid mixing 

intensity (AWWA, 1999; Kim et al., 2006). These mechanisms affect sludge 

characteristics and sludge dewaterability (Jin et al., 2004; Lin et al., 2008). This is 

a consequence of the range of floc sizes produced by different coagulation 

mechanisms (Wang et al., 2009). Gao et al. (2008), who observed the size and 

coagulation behaviour of a novel composite inorganic-organic coagulant, found 

further evidence that the coagulation mechanism determines sludge 

characteristics. They stated that when the coagulation pathway or mechanism 

changes, such as from bridge to charge neutralization, this affects significantly 

floc growth rate, floc size and floc size variance.  

 

2.3.1 The Role of Mixer Shape and Type on the Coagulation Process and 

Sludge Dewaterability 

The mixer is needed to mix the water and produce a good contact between the 

coagulant and the contaminant. To produce mixing in a coagulation chamber, the 

mixer has two actions, circulation and shearing the fluid (Tchobanoglous et al., 

2003). The mixer transfers energy into the water to produce water turbulence. The 

greater the turbulence, the better the mixing. Hydraulic turbulence is a 

hydrodynamic condition indicated by the presence of recirculation, eddies, 

apparent randomness and a Reynold’s number typically more than 10,000 

(Tcobanoglous, 2003). Relating to the coagulation process, the hydraulic 
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turbulence determines the dispersion of coagulant in the water (Oldsue, 1983) and 

also the strength of the floc (Jarvis et al., 2005). Park et al. (2003) confirmed that 

the intensity of hydraulic conditions is dependent on the pattern of energy 

dissipation from the mixer. This energy dissipation pattern relates to the mixer 

type. Even though the same mechanical energy has been employed, different 

water mixing will be produced if a different mixer type is used.   

Different types of mixer are used in water and wastewater treatment plants 

for the rapid mixing process. According to Tchobanoglous et al. (2003), the 

principal types of mixer used for rapid mixing in the wastewater treatment plant 

are static mixers, in-line mixers, high speed induction mixers, pressurized water 

jets and turbine and propeller mixers. Turbine and propeller mixers are the most 

commonly used mixer types in wastewater treatment plants. They use a paddle or 

a propeller as a tool to produce a movement in the fluid and have many shapes of 

propeller. According to A.T.E. (2011) and Chemineer (2004) the most commonly 

used mixers in water and wastewater treatments are those with axial, radial and 

marine style propellers.  

 Different shapes and types of mixer and mixer chamber have been shown 

to influence removal efficiency in coagulation (Leentvaar & Ywema, 1980; 

McConnachie, 1989; Spicer & Pratsinis, 1996; Kim et al., 2006; Wu, 2010). The 

different types of mixer produce different shear rates, different hydraulic 

conditions, different distribution of mixing and different formation of dead zones. 

The difference in hydraulic conditions affects the dispersion of mixing in the 

fluid, the formation of coagulant hydrolysis products, contact efficiency between 

the coagulant and the contaminant, the agglomeration process and finally the floc 
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properties. The greater the mixing distribution in the fluid, the better the coagulant 

distribution (Tchobanoglous et al., 2003). The coagulant hydrolysis products are 

formed very quickly after dissolution in water, usually less than 7s (Amirtharajah 

& Mills, 1982), so a high mixing intensity is required to disperse the coagulant 

and produce contact between the coagulant and the contaminant. 

 Rossini et al. (1990) observed the impact of different rapid mixing 

velocities and times on coagulation efficiency. They compared the removal 

efficiency produced by different mixers, and found that the different mixers can 

make a difference in removal efficiency of 12% to 80%. Some mixer shapes give 

better outcomes than others; for example, the Rushton mixer which has a 6-blade 

turbine (Figure 3), produced a larger floc than other mixer shapes in the 

coagulation process examined by Spicer et al. (1996). This is due to the greater 

distribution of turbulence in water mixing and this result demonstrates that 

different shapes of mixer can affect the performance of coagulation. The selection 

of the right propeller for the mixing process is crucial in determining the quality 

of the treated water, because of the different mixing produced, as well as the 

quantity and quality of the residual sludge generated in the process (Torres et al., 

1997). Mixer shapes influence the mixing pattern of fluids and the fluid mixing 

conditions.  

 

Figure 3. Examples of tested shapes of mixers (Spicer et al., 1996) 
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Even though many researchers (Leentvaar & Ywema, 1980; 

McConnachie, 1989; Spicer & Pratsinis, 1996; Kim et al., 2006; Wu, 2011) have 

demonstrated that different mixer shapes result in different removal efficiency, 

there is still no published research which explains the correlation between 

different shapes of mixer and sludge dewaterability. In water and wastewater 

treatment plants, many shapes of mixers are used (Tchobanoglous et al., 2003). 

The literature suggests that different shapes and types of mixer produce different 

coagulation efficiency, which can be indicated by the removal of turbidity and  

contaminant in water. There has been no investigation to date of the influence of 

different mixer shapes on sludge dewaterability. Thus, experimental data that 

might be used to inform decisions about mixer shape is important and a key 

outcome of this research.  

 

2.3.2  The Influence of Rapid Mixing Velocity on the Coagulation Process 

and Sludge Dewaterability. 

At a fundamental level, the rapid mixing velocity provides interaction between 

molecules and particles in the water and a coagulant (Amirtharajah & Jones, 

2000). This interaction is controlled by the hydrodynamic parameters and 

geometry of the mixer, molecular properties of the source water, and the kinetics 

of the coagulation reactions. For mechanical mixing, such as with an impeller or 

paddle, the mixing causes circulation and shear of the fluid. Mixing effectiveness 

can be roughly determined by the power input per unit volume of liquid and is 

characterized by power input or velocity gradient (G) (Park et al., 2003).  
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Previous research has examined the relationship between factors such as 

rapid mixing velocity, rapid mixing time and the type of impeller and floc or 

sludge formation. The results show that all of these factors have a significant 

impact on sludge formation (Black & Rice, 1933; Clark & Flora, 1991; Leentvaar 

& Ywema, 1980; Li et al., 2006; Yu et al., 2011). Different rapid mixing 

velocities, different rapid mixing times and different types of impeller change the 

floc conditions. These factors determine the formation of the floc and the floc 

size. Rapid mixing velocity and rapid mixing time have their own optimum values 

to produce the best floc formation (Rossini et al., 1999).  

In the coagulation process, the contaminant can be removed from the 

water by either sweep flocculation or adsorption-destabilization processes. Sweep 

flocculation is the condition where the coagulant dose exceeds the optimum value, 

due to the need for an excessive coagulant dose to entrap the colloid. In this 

process, high, intense rapid mixing is not used because the entrapment process 

will not occur properly in the presence of high mixing intensity. High, intense 

rapid mixing will disturb the entrapment of contaminant by the coagulant. For 

adsorption-destabilization processes, the coagulation dose is lower but it needs 

immediate rapid mixing velocity application, so increasing the rapid mixing 

velocity will enhance the contribution of this stage of the coagulation process 

(Rossini, 1998). Kim et al. (2006) observed the effect of different initial mixing 

conditions on the fouling of filtration membranes in the coagulation process and 

found that rapid mixing intensities affect the formation of coagulation species. 

Furthermore, Kan et al. (2002b), who investigated the effect of rapid mixing 

velocity on the coagulation process of highly turbid water, stated that the rapid 
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mixing velocity affected the aggregation degree of flocs. A poor rapid mixing 

velocity is not able to produce sufficient conditions to support the aggregation 

process, so it produces small flocs, reduces the ability of flocs to settle down and 

ultimately inhibits the reduction of water turbidity.  

As the most important factor, rapid mixing velocity influences all of the 

stages in this process and the formation of sludge (Zhan et al., 2011) and the result 

of the whole treatment depends on this stage (Rossini et al., 1999). Guan et al. 

(2005), showed that different rapid mixing velocities have various impacts on 

contaminant removal while using alum sludge to remove particulate content from 

sewage. The hydraulic velocity gradient also has an important role in the 

aggregation; Li et al. (2006) stated that the floc size, which is impacted by the 

aggregation process, decreases with the average hydraulic gradient. Moreover, 

Amirtharajah and Mills (1982) stated that rapid mixing velocity does make a 

significant difference in the quality of the settled water produced for a specific 

region of the alum stability diagram. 

Following the addition of the coagulant and employment of rapid mixing 

velocity, the hydrolysis products of coagulants such as alum or Fe (III) are 

produced in 10
-4

 to 1sec. Aluminium hydroxide starts to precipitate in about 7sec. 

The coagulant hydrolysis product species is an important factor influencing sludge 

structure, determining the structure of the floc (Wang et al., 2008). As mentioned 

previously, the floc structure is one of the factors that affects sludge 

dewaterability. 

Rapid mixing velocity affects floc size, where floc size decreases if the 

rapid mixing velocity increases (Bouyer et al., 2005). Rapid mixing velocity 
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influences floc formation due to its intensity or quality to disperse the coagulant 

into water and to determine the predominant reaction pathway (AWWA, 1999). 

Each pathway produces a different coagulant hydrolysis product and this affects 

floc formation due to the interaction between the coagulant and the contaminant. 

Figure 4 lists reaction pathways that the hydrolysis products may follow when a 

Hydrolyzing Metal Salt (HMS) coagulant is added to water that contains particles 

or Natural Organic Matter (NOM). 
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Figure 4. Pathway that hydrolysis products may follow when a coagulant is 

added to water with organic particles or NOM (AWWA, 1999) 

 

For mechanical mixing, such as with an impeller or paddle, the mixing 

causes circulation and shearing of the fluid. Mixing effectiveness can be roughly 

determined by the power input per unit volume of liquid and is characterized by a 

velocity gradient (G). Camp and Stein in 1943 used Smoluchowski’s formula for 

flocculation in uniform laminar shear to derive a widely used flocculation rate 
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equation for turbulent flow that can be used to calculate the velocity gradient 

(Tchobanoglous et al., 2003): 

G =  
 

  
                      (1) 

Where G = average velocity, T
-1

, 1/s 

 P = power requirement, W 

 µ = dynamics viscosity, N.s/m
2
 

 V = flocculator volume, m
3 

 

For use of the impeller, the formula to calculate P is: 

 P = Np ρ n
3
D

5        
              (2) 

Where  P   = Power requirement, W              

  Np = power number of impeller, unitless 

 ρ    = density of water kg/m
3 

 n    = impeller speed (1/s) 

 D   = diameter of impeller (m) 

Although rapid mixing velocities have been proven to have an impact on 

the floc conditions (Kan et al., 2002b; Bouyer et al., 2005; Kim et al., 2006; Li et 

al., 2006), the correlation between rapid mixing velocity and sludge conditioning 

in the coagulation process are still uncertain. Sawalha (2010) and Wang (2010) 

observed that mixing without subsequent chemical addition influences sludge 

dewaterability where the better the mixing, the better the sludge dewaterability. 

To ensure high quality results in sludge dewaterability, sufficient mixing is 

needed. Based on the correlation between rapid mixing and sludge conditions, this 
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raises a question about the effect of rapid mixing on sludge dewaterability. This 

research explores the influence of rapid mixing velocity on sludge dewaterability. 

 

2.3.3 The Influence of Rapid Mixing Time on the Coagulation Process and 

Sludge Dewaterability 

 Rapid mixing time is the time needed to disperse a coagulant into water. 

Alongside the rapid mixing velocity, the rapid mixing time also has an important 

role in the coagulation process (Francois & Van Haute, 1984; Rossini et al., 1990; 

Kan et al., 2002a; Chakraborti et al., 2003; Zheng Yu et al., 2011). Rossini et al. 

(1990) and Mhaisalkar et al. (1991) have observed the impact of rapid mixing 

time on turbidity removal. The results showed that optimum rapid mixing 

produces better turbidity removal. Excess rapid mixing time is not favourable for 

contaminant settlement and coagulant efficiency, because increasing the rapid 

mixing time leads to a decrease in the final floc size (Zheng Yu, 2011). The 

excess of rapid mixing will erode and split the coagulant hydrolysis product, 

especially ferric, and form small particles (Rossini et al., 1990). Even though the 

formation of the floc occurs in the slow mixing process, the small particles from 

the rapid mixing process will end with even smaller particles.  

Kan et al. (2002a) examined the time requirement for rapid mixing in the 

coagulation process. They proved that rapid mixing time has an important role in 

charge neutralization and sweep coagulation mechanisms. In the charge 

neutralization process, the rapid mixing time determines the size of the formed 

coagulant hydrolysis product. An excess of rapid mixing time breaks the 

hydrolysis products into smaller sizes. The small sized hydrolysis product has a 
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lower positive charge. This influences its capacity to neutralize the negative 

charge of the contaminant and, as a result, the removal efficiency decreases. The 

sweep flocculation is not suitable for excessive rapid mixing time. The excessive 

rapid mixing time will disturb the entrapment process and produce small flocs and 

poor coagulation efficiency. The residual turbidity of charge neutralization results 

was similar or lower if rapid mixing time exceeded the optimum time. In contrast, 

the residual turbidity of sweep coagulation results increases if the rapid mixing 

time exceeded an optimum value. This is because the duration of rapid mixing 

affects the destabilization of the colloid and the downstream aggregation of 

particles. For example, with long duration rapid mixing, alum hydrolysis products 

break up and produce microfloc, which is not favourable for sedimentation and 

filtration processes (Rossini et al., 1990).  

Rapid mixing time has an impact on floc breakage and recovery factors. 

Recovery factor is the degree of recovery of the ruptured flocs after the original 

velocity gradient is restored (Pawlowski et al., 1985). These factors have been 

calculated by Chakraborti et al. (2003) and both were found to decrease with 

increasing breakage time; thus increasing the rapid mixing time leads to a 

decrease in the final floc size For adsorption-destabilization mechanisms, the 

rapid mixing time should be sufficient for complete adsorption of the contaminant 

by the precipitate coagulant hydrolysis products (Zheng Yu et al., 2011). The 

precipitate coagulant hydrolysis product, aluminium hydroxide, has the ability to 

adsorb contaminants because it has a positive charge on its surface. These 

products need sufficient time to adsorb properly the contaminant onto its surface. 

Extended rapid mixing times give more limited floc growth, probably because 
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small and compact aggregates are formed during rapid mixing, which leads to 

smaller flocs. With only a brief period of rapid mixing there is less chance of 

compact aggregates being formed and more open, larger flocs can grow. The 

onset of flocculation can occur several minutes after dosing and the overall time 

can be reduced by a longer period of rapid mixing.  

 Rapid mixing time influences floc size. Despite many investigations 

related to rapid mixing time, the investigation to see its influence on sludge 

dewaterability has not been done. More research is still needed in this area. 

 

2.3.4 The Role of Coagulants on the Coagulation Process and Sludge 

Dewaterability 

 A coagulant is a chemical that is used in water treatment to destabilize 

contaminants and make their removal easier (AWWA, 1999). In water treatment, 

the removal of suspended solid content is very important and this process is 

strongly determined by the performance of the coagulant and the formation of floc 

with suitable properties (size and density) to settle down (Kim et al., 2001). The 

amount and type of coagulant affects the quantity, composition and physical 

properties of residue or sludge after the water treatment process. The costs 

associated with coagulation and the effectiveness of the process depend on the 

type and concentration of the coagulant, solution pH, ionic strength, as well as 

both concentration and nature of the organic residues in the effluent to be treated 

(Rodrigues et al., 2008).  

An ineffective coagulation process is usually attributed to the 

restabilization of particles in the case of excessive coagulant dosage, or 
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stabilization in the case of underdosage (Xiao et al., 2008). Coagulant 

concentration is determined as a function of raw water quality and can vary for 

each water coagulant (Barbot et al., 2008). The pH is another important factor in 

water coagulation (Kim et al., 2001; Canizares et al., 2008; Almubaddal et al., 

2009; Canizares et al., 2009; Ghafari et al., 2009). The pH of the water represents 

the amount of H
+ 

ions in the solution. The pH has an essential role in determining 

the formation of coagulant hydrolysis products, where neutral pH produces a solid 

precipitate of coagulant hydrolysis products and acid or alkali pH produces 

soluble coagulant products. The solid precipitate coagulant hydrolysis product can 

adsorb the colloid particle onto its surface and destabilize the otherwise stable 

colloid charge (Kim et al., 2001; Canizares, 2009; Ghafari et al., 2009). Since a 

simple change in the water pH can result in a significant change in coagulation 

efficiency, pH must be set to an optimum value. For alum and ferric, Almubaddal 

et al. (2009) showed that the optimal pH is between 6 - 8. In this range, the 

coagulant forms solid precipitated hydrolysis products. This precipitate adsorbs 

and neutralizes the water and, as a result, the contaminant can be removed from 

the water. 

 Many coagulants are used in conventional waste water treatment plants 

(Boisvert et al., 1997). They can be inorganic (e.g. aluminium sulphate and ferric 

sulphate), synthetic organic (e.g. polyacrylamic derivatives), or naturally 

flocculant (microbial flocculant). These are used for different purposes depending 

on their chemical characteristics (Okuda et al., 1999). Alum and ferric-based salts 

such as alum, aluminium chloride, ferric chloride, ferric sulphate are commonly 

used coagulants (Bektas, 2004; Shi et al., 2007; Liang et al., 2009). Aluminium 
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and iron salts are widely used as coagulants in water and waste water treatment 

for removing a broad range of impurities from effluent, including colloidal 

particles, and to dissolve organic substances.  

Despite widespread use of alum as a coagulant, Ndabigengesere, (1995) 

stated about the adverse effect of introducing aluminium into the environment. 

Natural coagulants, such as Moringa oleifera can be used as an alternative 

coagulant without any of the perceived negative environmental side effects of 

metal salt-based coagulants and as a substitute therefore for alum and ferric. 

Moringa oleifera is a pan-tropical, multi-purpose tree, the seed from which 

contains a high quality edible oil (up to 40% by weight) and water soluble 

proteins that act as an active agent for water and wastewater treatment. Before the 

use of synthetic chemicals like alum and ferric salts, natural coagulants of 

vegetable and mineral origin like Moringa oleifera were used in water and 

wastewater treatments (Ndabingengesere & Narasiah, 1997). The further 

advantages of using Moringa oleifera include a safe, natural and environmentally 

friendly coagulant (Bhatia et al., 2007). It is also antibiotic-resistant and shows 

antimicrobial effects against bacteria (Ghebremichael, 2004). 

The potential use of this natural coagulant material in water and 

wastewater treatment plants needs further investigation (Bhuptawat et al., 2007).  

It can be used in different ways in the water treatment process either as a primary 

source of activated carbon, and through seed extraction, the product of which 

works as a coagulant/flocculant agent. The last method is more effective and 

suitable to apply in developing countries because it does not need a complicated 



28 
 

process to use, and also does not have a negative impact on health (Heredia et al., 

2009).  

Agrawal et al. (2007) compared the use of Moringa oleifera and alum as a 

coagulant in a coagulation process to remove turbidity. The results show that their 

performance is comparable, with the former decreasing the turbidity in water 

coagulation from 30 to 14.8NTU (50%) and the latter from 30 NTU to 11.6 NTU 

(60%) at the same concentration. Katayon et al. (2006) compared the efficiency of 

using Moringa oleifera and alum as a coagulant in a high rate settling pilot scale 

water treatment plant to reduce turbidity. At optimum dosage, alum effiency is 

slightly better than Moringa oleifera. Alum decreased turbidity from 201 NTU to 

6.9 NTU and Moringa oleifera from 201 NTU to 13.9 NTU. They also found that 

Moringa oleifera can be used as a coagulant in a water treatment plant because the 

resulting turbidity is lower than the World Health Organization’s guideline value 

of < 5NTU for drinking water.  

 Considerable research has been undertaken to explore the efficiency of 

alum, ferric and Moringa oleifera as coagulants, but most research projects used 

these coagulants in isolation, making it difficult to directly compare the relative 

performance of each. Some research has considered comparing alum and ferric, 

alum and Moringa oleifera, or ferric and Moringa oleifera (Musikavong et al., 

2005; Balkan & Pala, 2009; Liang et al., 2009; Maleki et al., 2009; Karamany, 

2010), but no research has compared alum, ferric and Moringa oleifera directly 

within a single project, or considered how they directly influence sludge 

dewaterability. 
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2.3.5 The Role of Temperature on Coagulation Process 

Temperature is a crucial factor in the coagulation process. It can affect the 

metal ion hydrolysis reaction rate (Duan & Gregory, 2003). The reaction rate 

increases with increasing temperature and vice versa. Furthermore, in the 

coagulation process, the temperature determines the distribution of the coagulant 

(Duan & Gregory, 2003) and the formation of the hydrolysis products, which 

affect the coagulation and flocculation efficiency (Gao et al., 2005). 

Low water temperature can result in poor coagulation due to 

inhomogeneous distribution of coagulation species because the reaction rate is 

poor. Not only does it have an effect on the performance of coagulation in 

general, but the water temperature also distinguishes the efficiency of different 

kinds of coagulant, where ferric has a better performance than alum under low 

temperature conditions (Moris & Knocke, 1984; Duan & Gregory, 2003). 

Furthermore, Kang & Cleasby (1995) stated that low water temperature also has a 

significant effect on flocculation kinetics by decreasing the minimum solubility of 

Fe(OH)3 in water. Increasing the temperature and pH can accelerate the Fe (III) 

salt hydrolysis rate and decrease soluble polymeric iron species formation time 

(Flynn, 1984; Vander Woude & De Bruyn, 1983). 

 Morris and Knocke (1984) performed experimental research into 

temperature effects on the use of metal-ion coagulants for water treatment, and 

showed that water temperature has a substantial impact on turbidity removal. Low 

water temperature leads to a decrease in the efficiency of turbidity removal. In 

contrast, the precipitation temperature did not affect the rate of metal-ion 

precipitation. The authors also state that a range of temperature between 1 and 
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23ºC did not affect the precipitation of alum and Fe (III). Furthermore, Hanson et 

al. (1990) showed that for the temperature range 5-20ºC, coagulation kinetics 

when using ferric sulphate were nearly identical if the pOH of the solution was 

kept constant. Moris and Knocke (1984) argued that the effect of low 

temperatures in the coagulation process was related more to the sludge 

characteristics than to the reduction of the metal hydroxide precipitation rate. This 

is due to the fact that water temperature impacts the hydroxide precipitation rate 

and the establishment of equilibrium by the presence of dissolved coagulant 

hydrolysis in solution. 

 

2.3.6 Composition of Water Sample 

 Large volumes of raw water and domestic wastewater are processed every 

day in water and wastewater treatment plants. In the US, the amount of 

wastewater is 1,409.68 m
3
/s (Tchobanoglous et al., 2003). The treatment of raw 

water or reservoir water will produce tap water, while the treatment of domestic 

wastewater separates the contaminant from water and produces a better quality of 

water.  

The quality of the raw water or drinking water source will determine the 

selection of the treatment process in the water treatment plant. Thus, the stages 

and the efficiency of the process will determine the quality of the resulting tap 

water. The quality of the drinking water source is dependent on natural geology, 

land use and pollution (Gray, 2005). The quality of treated water and the 

composition of sludge are dependent on the quality of the source water (AWWA, 

1999; Jin et.al., 2004; Zhang et al., 2011). Furthermore, the efficiency of the 
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dewatering process is highly dependent on the nature of the sludge (Jin et al., 

2004). The presence of organic content and colloid material can cause a decrease 

in sludge dewaterability (Dulin & Knocke, 1989; Li et al., 2005; Qi et al., 2011). 

The organic content causes a reduction in sludge particle size and the fine size of 

colloid material can hinder the filterability which is not appropriate for the sludge 

dewatering process (Neyen et al., 2004). 

 For laboratory tests, synthetic raw water and domestic wastewater are 

used. The utilization of synthetic raw water and domestic wastewater is to prevent 

differences in experimental conditions, because for laboratory-scale tests the 

availability of certified samples and constant characteristics is required (Baudez et 

al., 2007). The properties of natural samples are variable and highly dynamic, 

depending on the operating conditions of the treatment plants and changes over 

time during transport, handling and storage.  

 Numerous studies have demonstrated that synthetic raw water and 

domestic wastewater may be used for experimental purposes (Page et al., 2002; 

Smith et al., 2002; Bracklow et al., 2007; Kuscu et al., 2009; Hu et al., 2011). The 

biggest challenge in using synthetic water is in determining the appropriate recipe 

to represent the raw water and domestic wastewater composition. Many aspects 

have been considered in previous studies to formulate synthetic raw water and 

synthetic domestic wastewater. For synthetic raw water, not many recipes have 

been published. Finding recipes focused on a particular contaminant that is the 

target to be removed from the water and wastewater. Smith et al. (2002) classified 

the quality of raw water as soft, hard and acid, and formulated recipes for each, 

because of common problems in preparing synthetic freshwater given that there is 
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no standard chemical in raw water. Page et al. (2002) formulated a recipe for 

synthetic reservoir water, the composition including aqueous DOM (Dissolved 

Organic Matter) or leachates from vegetation and soils diluted in synthetic water, 

KCl (10mg/L), CaSO4 (35mg/L) and NaHCO3 (100mg/L). Powdered quartz 

(10mg/L) was also added to represent turbidity. Kaolin has also been used as the 

main ingredient combined with tap water to simulate synthetic turbid water 

(Ndabingengesere & Narasiah, 1997; Rossini et al., 1998; Zouboulis et al., 2008).  

In relation to the use of kaolin, Bottero et al. (1993) observed that it seems 

that aggregates formed in turbid waters may have a structure similar to that 

formed by the precipitation of coagulant in pure water. Furthermore, Baudez et al. 

(2007) found that a combination of kaolin (90%), calcite (5%) and quartz sand 

(5%) was better able to describe the behaviour of real inorganic sludge (e.g 

waterworks sludge). Sun et al. (2012), Wang et al. (2012), Yang et al. (2010) and 

Zhao et al. (2011) used humic acid and kaolin as the main ingredients, as their 

research was focused on the removal of humic acid constituents from water. 

Based on these reviews, there appears to be no standard recipe for synthetic raw 

water. The selection of a recipe seems to be determined mainly by the aim of the 

research, that is by which ingredient is to be investigated. This research considers 

that kaolin can satisfactorily represent the conditions of real raw water, and so this 

will be used as the synthetic raw water ingredient.  

 For synthetic domestic wastewater, many recipes have been formulated by 

many researchers (eg. Bracklow et al., 2007; Kuscu et al., 2009; Hu et al., 2011). 

Each recipe represents the real condition of domestic wastewater with different 

ingredients to match the focus of investigation. For natural wastewater, 
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Tchobanoglous et al. (2003) have created a list of common parameters to assess 

the constituents found in wastewater. The list considers physical characteristics, 

inorganic chemical characteristics, organic chemical characteristics and biological 

characteristics. Baudez et al. (2007) stated that organic sludge has fats, fibres, 

protein and sugar within its composition, varying with the age of the sludge.  

From a study of synthetic domestic wastewater recipes, the recipe used by 

Hu et al. (2011) best represents the real condition of domestic wastewater. This is 

shown in Table 3. The composition is consistent with wastewater in term of 

physical characteristics, inorganic chemical characteristics, organic chemical 

characteristics and biological characteristics. All of the ingredients are prepared 

by dissolution in 1 l hot tap water. 

Table 3. Synthetic domestic wastewater composition  

No Constituents Concentration (mg/l) 

1 Dextrin 150 

2 Ammonium chloride 130 

3 Yeast extract 120 

4 Glucose 100 

5 Soluble starch 100 

6 Sodium carbonate 150 

7 Detergent (commercial) 10 

8 Sodium di-hydrogen orthophosphate 100 

9 Potassium sulphate 8.3 

10 Kaolin   10,000 

 

2.3.7 The Role of Floc Size on Sludge Dewaterability  

Coagulation mechanisms strongly influence floc size (Kim et al., 2001; 

Gao et al., 2008; Wang, 2009). Floc size also determines sludge dewaterability 

and plays an important role in sludge dewaterability processes (Lee & Liu, 2001; 

Zhao, 2003; Feng et al., 2009). Particle size in natural water is extremely variable, 
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ranging from less than 1µm to 1.E+05µm (AWWA, 1999). Fine floc is not 

preferable because of its impact on the sludge dewatering process: the process can 

be reduced significantly by the presence of fine floc in the sludge, as this can 

cause clogging of the sludge cake pore structure and can also increase the bound 

water content in the sludge (Neyens et al., 2004).  

In contrast to fine floc, large sized and dense floc is preferable because of 

their higher sedimentation rate and ease of dewatering (Larue & Vorobiev, 2003). 

Large sized and dense floc have higher mass and settle down more easily; large 

particles have larger floc porosity that easily releases water. Wen and Lee (1990) 

found an association between floc size and floc strength; larger flocs tend to have 

greater strength, and floc strength is recognized as an important element in sludge 

dewatering (Lee & Liu, 2001).  

Floc size is also related to rapid mixing intensity: by increasing the slow 

stirring rate, the floc sizes will be decreased (Bouyer et al., 2005; Yu et al., 2011). 

As the coagulation mechanism is determined by rapid mixing intensity (AWWA, 

1999; Byun et al., 2005) and since coagulant hydrolysis products (whose presence 

is specified by rapid mixing) determine the coagulated floc structure (Wang et al., 

2008), it should be valuable in this research to observe the impact of the 

coagulation process on floc size and its role in sludge dewaterability.  

 

2.4 Sludge Dewaterability Measurement 

 Dewaterability concerns the ease with which water is released from the 

sludge (Sanin et al., 2011). Capillary suction time (CST) and specific resistance to 

filtration (SRF) are widely accepted measurements of sludge dewaterability 
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properties (Smollen, 1996; Chen et al., 2004; Dentel & Dursun, 2009). The CST 

measurement was devised by Baskerville and Gale in 1968. CST is obtained from 

two electrodes placed at a standard interval from the funnel. Sludge is exposed to 

an area at the centre of the CST filter paper and the filtrate from the sludge is 

absorbed by the CST paper (Figure 5). The time is recorded for the filtrate to 

travel between the two electrodes. The lower the CST value, the easier it is for the 

sludge to be filtered or dewatered (Besra et al., 2000).  

 

 

                          Case dimensions : 33 x 26 x 5.5 cms  

Figure 5. Diagram of capillary suction time test apparatus 

(Singh et al., 2006) 

 

CST can be used to examine the impact of different rapid mixing 

velocities (Sawalha, 2010), different impellers on sludge dewaterability (Dentel et 

al., 2000) and is most commonly used for the rapid determination of flocculation 

dosages (Smollen, 1986). It is a valuable tool for characterizing biosolids pre-

treatment for dewatering (Mayer, 2008). 
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 The main use for CST is to determine filterability after the addition of 

coagulant aids (Scholz, 2005). The CST apparatus provides a simple, rapid, and 

inexpensive method to measure sludge dewaterability (Scholz, 2005, 2006). The 

test can be performed in any location by persons with little training because it 

does not require an external source of pressure or suction, and the automated CST 

test device is portable and easy to use. Baskerville and Gale (1968) and Sawalha 

and Scholz (2012) observed that the results of CST tests were sensitive to 

variations in temperature. The results tend to reduce with higher temperatures, 

which is probably due to the increase in filtrate viscosity with increasing 

temperature. 

An alternative test, the SRF test, utilizes a Buchner funnel apparatus, with 

vacuum port and filter paper. The CST and SRF results usually correlate well 

(Scholz, 2005) and, for the same sludge sample, the CST and SRF values show a 

significant relationship (Sawalha & Scholz, 2010). The SRF test, however, is 

more difficult to execute, is time consuming, and expensive; no specific, standard 

device to measure SRF is available (Ayol & Dentel, 2005; Li et al., 2005; Teoh et 

al., 2006; Yukseler et al., 2007). Furthermore, SRF varies with pressure, area of 

filter paper, solid concentration and liquid viscosity (Sanin, 2011). Even 

differences in the apparatus and procedures used, e.g. the filter medium and the 

vacuum applied, have been found to cause variability in the results, reported by 

different workers (Smollen, 1986a;1986b).  

The SRF equation was taken from Darcy’s law, which describes the flow 

of fluid through porous media. Sanin et al. (2011) explained the derivative 

equation taken from Chapman in 1933, who adapted Darcy’s equation to 
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filtration; and from Coackley and Jones in 1956, who adapted Carman’s 

theoretical analysis to filtration: 

Darcy’s law : 

                                                   
  

  
 

 

 

   

 
                                                      (3) 

where : 

  

  
  = rate of flow, volume (V) per time (ø) 

P   = pressure difference 

A  = area 

µ   = viscosity 

K  = permeability 

L  = thickness 

if R (resistance) = 1/K then,     
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in a filter, resistance is influenced by both the filter medium and the filter cake: 

                                                          
  

  
 

 

 

  

       
                                   (5) 

Where Rf = resistance of filter medium 

The volume of the cake can be expressed as: LA = υV 

Where ν = volume of cake deposited per unit volume of filtrate 

Substituting for L :   

                                                      
  

  
 

   

          
                                    (6) 
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Cake is expressed as dry weight volume instead of volume of cake per volume of 

filtrate. And, R (resistance by unit volume) is replaced by r (resistance by unit 

weight), thus: 

                                                   
  

  
 

   

          
                                            (7) 

Where : 

w  = weight of dry cake solids per unit volume of filtrate 

r   = specific resistance 

Assuming constant pressure over time, 
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Which is a straight line of type y = bx + a, where: 

                                                      
   

    
                                         (10) 

and 

                                                     
   

  
                                           (11) 

It should thus be possible to measure the volume of the filtrate, V, at various 

times,  , plot these as     vs V, and then obtain a straight line. The relationship 

of the slope of this line is calculated and since the slope b is equal to        2
, 

it is possible to calculate specific resistance, r, the only unknown, as: 

                                            r = 
      

  
                               (12) 

Where: 

r      : the specific resistance to filtration (m/kg),  
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P     : the filtration pressure (N/m
2
),  

A     : the filter area (m
2
), 

µ     : the viscosity of the filtrate (Ns/m
2
),  

w    : the weight of the cake solids per unit volume of filtrate (kg/m
3
),  

b     : the slope of filtrate discharge curve (s/m
6
). 

According to Sawalha (2010), the results of the CST and SRF tests are 

interrelated. This means that the SRF value can be predicted from the CST test 

results. Thus, the CST and SRF apparatus are used in this research as a means of 

quantifying sludge dewaterability. The CST test is much easier and quicker than 

the SRF measurement (Tebbut, 1998). The CST is preferred because it is easy to 

use, results are obtained quickly, it is less expensive than SRF, and it has a 

standardized procedure. The SRF test is used as a verification tool for the CST 

results. 

 

2.5 Chapter Summary 

Much work has been undertaken on coagulation, but very little in the area 

of rapid mixing. The majority of the research into mixing has been carried out in 

the area of velocity, either in rapid mixing or slow mixing, and little research on 

rapid mixing time. In the mixing process, the mixer is needed to produce 

turbulence in the water. Different mixer geometries have been known to have 

different impacts on turbidity removal from water, but the influence of different 

mixer geometries in water treatment on sludge dewaterability still needs to be 

investigated. In industry, many types of mixer are used and a recommendation for 

the best mixer shape is still needed. The literature review of rapid mixing velocity 
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and rapid mixing time shows that they have different impacts on contaminant 

removal from water. However, there has been no investigation into the impact of 

rapid mixing velocity and time in coagulation to sludge dewaterability. Alum and 

ferric are the most commonly used coagulants, but Moringa oleifera has also been 

used. Most research uses only one coagulant. And, occasionally for comparison, 

two or three coagulants are used simultaneously. However, comparison of alum, 

ferric and Moringa oleifera specifically has not been undertaken or documented. 

The distribution of the coagulant into water is also influenced by temperature, so 

that as well as the effect of different coagulants, the effect of different 

temperatures is investigated. The composition of the water sample also strongly 

influences the sludge dewaterability process. CST test apparatus and SRF 

methods are the most commonly used to measure sludge dewaterability.  

Therefore, in this research, the influence of different mixer shapes with 

different rapid mixing velocities and times, different coagulants, different 

temperature and different water samples are investigated to ascertain their impact 

on sludge dewaterability, using the CST and SRF apparatus alongside the 

turbidimeter and particle size analyzer.  

This research is based on experimental work, using many materials and 

several methods. The next chapter will discuss the materials and methodology of 

this study. 

 

 



41 
 

CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Introduction 

This section outlines the materials and specific test methods to be used in the 

primary testing phase. It also describes the results of preliminary tests carried out 

to establish the most appropriate test methodology. 

 

3.2 Materials 

3.2.1 Mixers 

The Jar test is the most commonly used in coagulation studies. However, there is 

no internationally accepted standard procedure or equipment for this test (AWWA 

2003). In this research, five shapes of mixer are used (radial, axial, wheel, 

magnetic and 3-blades) to disperse the coagulant into the water to be ‘treated’. 

The selected mixers are turbine and propeller, which use a paddle or propeller to 

produce movement in the water. The five shapes of mixer are used to investigate 

their influence on sludge dewaterability (Figure 6). The axial mixer represents the 

shape of a jar test paddle, whilst radial, wheel and 3-blades are common shapes 

produced and used in industry (A.T.E., 2011; Chemineer, 2004). The magnetic 

stirrer produces different conditions within the fluid to the other mixers, but is a 

common mixing apparatus in the laboratory. It operates at the base of the chamber 

whereas the other mixers operate at different elevations (1.5 cm) within the test 

chamber (6.5 cm internal diameter and 9 cm height) (Figure 6).  
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             Diameter: 3 cm  

                   Radial             Axial                Wheel              Magnetic          3-blades 

Figure 6. Mixer types in experimental work 

 

 All of the mixer shapes have a diameter of 3 cm. The radial shape has two 

blades which are 1.2 cm in length, 0.8 cm in width and at a 45
o
 angle from the 

mixer’s horizontal axis. The axial shape has two blades, 1.2 cm by 0.8 cm. The 

wheel shape is 1.7 cm high and at a 45
o
 angle from the mixer’s horizontal axis. 

The magnetic stirrer is 3 cm by 0.5 cm. Finally, the blades of the 3-blade shape 

are 1.7 cm by 0.4 cm. 

 The radial, wheel and 3-blades mixer shapes were chosen based on the 

information provided by companies producing and/or selling standard mixers used 

by the water and wastewater industry, such as Chemineer Ltd. (Cranmer Road, 

Derby DE21 6XT, UK) and Promix Mixing Equipment and Engineering Ltd. 

(Columbus Road, Mississauga L5T 2G9, Canada). 

The radial and axial mixers were obtained from Monmouth Scientific Ltd. 

(Units 5 and 6, Kilnside, East Quay, Bridgwater, Somerset TA6 4DB, UK). JP 

Accessories (J Perkins Distribution, Lenham, Kent ME17 2DL, UK) supplied the 

wheel mixer. The magnetic stirrer IKA REO was obtained from Sartorius 

Instrumental Ltd. (18 Avenue Road, Belmont, Surrey SM2 6JD, UK). The 3-blade 

mixer was manufactured in the engineering workshop at the University of Salford, 

based on designs obtained from Chemineer and Promix. 
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G calculation for every impeller used the formula in equation (1) and 

equation (2). Impeller power number (Np) is needed in this calculation and has the 

most important role because other elements in equation (2) are constant. Except 

magnetic stirrer, Np is provided by impeller company where for radial is 0.5 

(Fusion Fluid Equipment Ltd), axial is 3 (Hayward Gordon Ltd), wheel is 0.35 

(Dynamix Agitators Inc), magnetic is 0.958 (AWWA, 2000) and 3-blades is 0.32 

(Fusion Fluid Equipment Ltd). 

 

3.2.2 Coagulants 

 The coagulants investigated were Aluminum Sulphate Al2(SO4)3 (alum) 

and Ferric Chloride (FeCl3) (ferric) (from Sigma Aldrich Company Ltd., The Old 

Brickyard, New Road, Gillingham, Dorset SP8 4XT, UK), and Moringa oleifera 

(from Xiamen Tianzhu Ecological Agriculture and Forestry Science and 

Technology Co. Ltd., Haicang District, Xiamen City, Fujian Province, China).  

Alum and ferric were prepared by diluting the concentrate with distilled 

water to obtain a 1000 mg/l concentration. The purpose of using distilled water 

was to avoid the addition of other ingredients which may affect the performance 

of the process. These solutions were renewed every three weeks in order to obtain 

a fresh solution. Moringa oleifera was prepared by grinding non-shelled seed with 

a blender into powder. This preparation process was based on the work by 

Ndabingengesere et al. (1995). The Moringa oleifera powder was mixed with 

distilled water using a magnetic stirrer for five minutes at 1200 rpm to obtain a 

1000 mg/l Moringa oleifera solution. This solution was renewed every week to 

ensure that it was always fresh.  

http://en.wikipedia.org/wiki/Aluminium
http://en.wikipedia.org/wiki/Sulfate
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3.2.3 Temperature 

The general temperature used for all investigations was room temperature 

(20°C±1°C) unless stated otherwise. This value reflects the general laboratory 

temperature present in temperate and oceanic regions; was kept constant with the 

intention of eliminating temperature effects on the CST measurements. In 

addition, temperatures of 16°C±1°C and 26°C±1°C were used to simulate field 

(i.e. outside) measurements in spring and autumn, and summer, respectively. 

These temperatures not only vary according to the location and time of the year, 

but 26°C±1°C also represents the optimum temperature for bacteria activity (25-

30°C) and 16°C±1°C the temperature when methane-producing bacteria become 

inactive (Metcalf & Eddy 2003). The highest temperature may also reflect 

operating temperatures in laboratories located in warmer countries. All target 

temperatures were obtained by adjusting the temperature in the laboratory. 

3.2.4 Water Samples 

In this experimental study, synthetic raw water and synthetic domestic wastewater 

were used. 

3.2.4.1 Synthetic Raw Water 

Kaolin was the main ingredient for synthetic raw water because it was easy to 

obtain, inexpensive and it seems that aggregates formed in turbid waters may have 

a structure similar to that formed by the precipitation of coagulant in pure water 

(Bottero et al., 1993; Baudez et al., 1997). Furthermore, kaolin is commonly used 

to represent the TSS in raw water (Yang et al., 2010; Zhao et al., 2011; Sun et al., 

2012; Wang et al., 2012).  



45 
 

3.2.4.2 Synthetic Domestic Wastewater 

The synthetic domestic wastewater recipe followed that proposed by Hu et al. 

(2011) with the addition of kaolin as a suspended solid. This recipe was chosen 

because the composition represents the composition of domestic wastewater. 

 

3.3 Coagulation Test  

Most results presented in this research were obtained from three repeat 

coagulation experiments and from three readings. Some of the results presented 

are based on more than three readings, primarily due to high variability in the 

results.  

 

3.3.1 Rapid Mixing Velocity 

To investigate the influence of rapid mixing velocity on coagulant performance, a 

100ml water sample was poured into a glass beaker followed by the addition of 

the coagulant. After adjusting the pH with sulphuric acid (H2SO4) or sodium 

hydroxide (NaOH) to reach a pH value of approximately 6.5, the fluid was mixed 

rapidly at a variable high rate (60, 65, 70, 75, 80, 85, 90, 95 and 100 rpm) for 60 s 

and then at a moderate rate of 50 rpm for 15 minutes to accommodate the 

agglomeration process. 

 

3.3.2 Rapid Mixing Time 

Tests to examine the influence of rapid mixing time utilized a 100 ml water 

sample contained within a glass beaker, to which was added H2SO4 or NaOH to 

adjust the pH. The coagulant was subsequently added to the water sample. Once a  
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pH of 6.5 was reached, the sample was mixed rapidly at a range of times (10, 20, 

30, 40, 50, 60, 70, 80, and 90 s) with a constant 100 rpm rapid mixing velocity, 

and then at a slower  rate of 50 rpm for 15 minutes to accommodate the 

agglomeration of flocs.  

 

3.4 CST Measurement 

A Triton Type 304B Capillary Suction Timer apparatus and Whatman 17 

chromatographic paper were used in this investigation (Triton Electronics Ltd., 

Bigods Lane, Great Dunmow, Essex CM6 3BE, UK). For the CST measurement, 

following the flocculation process, sedimentation was employed for 15 minutes. 

The sludge (floc) was carefully separated from the supernatant by discarding the 

supernatant so that only sludge remained in the coagulation chamber. After 

turning on the CST apparatus, the sludge was poured into the funnel. The CST is 

timed automatically as soon as the fluid reaches the first sensor circle and stops 

when the fluid reaches the second sensor circle. The measured time is referred to 

as the CST value. A lower CST value indicates good sludge dewaterability and a 

higher CST value indicates poor sludge dewaterability (Sanin et al., 2011). 

 

3.5   Turbidity Measurement 

The turbidimeter used in this investigation was a Lovibond (The Tintometer Ltd., 

Lovibond House, Solstice Park, Amesbury SP4 7SZ, UK). The turbidity 

measurement was perfomed on a sample of the supernatant taken during/after the 

sedimentation process. This sample was poured into the turbidimeter vial which 

was subsequently placed into the turbidimeter .  
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3.6 Floc Size Measurement 

To determine the size of flocs produced during the coagulation process, a sample 

was obtained 15 minutes after the start of the sedimentation process following the 

flocculation process. The sludge sample was characterized by analyzing the 

distribution of particle sizes with a particle size analyzer (Horiba Laser Scattering 

Particle Size Analyzer LA-950 Horiba Instruments Inc., 34 Bunsen Drive, Insine, 

92618, California, USA). The instrument calculates the correlation between the 

intensity and angle of light scattered from a particle, and subsequently determines 

the particle size based on Mie-scattering theory (scattering of electromagnetic 

radiation by a sphere). Floc size shearing was minimized during the experiment, 

by careful mixing during the measurement process. An overview of the detailed 

measurement procedure is outlined on the company website 

(http://www.horiba.com). In this study, particle size is synonymous with floc size. 

 

3.7 Floc Density Measurement 

To measure floc density, bulk of sludge after flocculation was poured on to filter 

paper. The filtration process took place for 24 hour. Then, filter paper was 

weighted by scale. The weight of floc is the difference between of filter paper 

weight after coagulation and before coagulation. Floc density is the result from 

the comparison between weight of floc and volume of floc/sludge after 

coagulation. To produce the result, 3 to 5 replicates have been used in the 

experiment. 

 

http://www.horiba.com/
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3.8 Specific Resistance to Filtration (SRF) 

There is no standard procedure for operating the SRF apparatus, especially for the 

intensity of vacuum pressure (Ayol & Dentel, 2005; Li et al., 2005; Teoh et al., 

2006; Yukseler et al., 2007). The SRF method in this research followed the work 

of Bache and Papavasilopoulos (2003), who used it to investigate the dewatering 

of alumina-humic sludge. The SRF test was started by pouring the sample from 

the flocculation process into a Buchner funnel. A vacuum pressure of 80kPa was 

applied and a Whatman number 1 filter paper (Whatman International Ltd., 

Maidstore, 1 Rudolf Place, London SW8 1RP, UK) was used. The result is the 

relationship between the time needed to separate the water and the solid, and the 

filtrate volume. The filter was weighed to obtain the mass. Viscosity of the filtrate 

was measured using a viscosity meter. The SRF value was obtained from equation 

(12). 

 

3.9 Preliminary testing  

The purpose of laboratory preliminary testing is to obtain a preparation for the 

main experimental work, and to get early information about the influence of 

experimental parameters (mixer shape, coagulation velocity and time, coagulant 

and water sample) on sludge dewaterability. Most important is to determine the 

composition of the water sample, an optimum coagulant dose, the range of 

different rapid mixing velocity values, and the range of different rapid mixing 

time values. In this initial stage, laboratory work was performed with different 

shapes and types of mixer, and different rapid mixing velocities and times, to 

investigate their effects on sludge dewaterability.  
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3.9.1 Determination of Water Sample Composition 

3.9.1.1 Synthetic Raw Water 

The first step in the preliminary experimental work was to find water sample 

composition. For raw water preparation, kaolin (from Sigma Aldrich Company 

Ltd., The Old Brickyard, New Road, Gillingham, Dorset SP8 4XT, UK) was 

added to distilled water and stirred with a magnetic stirrer until well mixed 

(Zouboulis et al., 2008). In this research, mixing was done for five minutes at 

1200 rpm. Initially, a series of experimental works were carried out to determine 

the optimum time and mixing intensity to produce a well mixed sample. The 

experiment started by using 1000 rpm mixing intensity for 60 s. The solution was 

not well mixed because the coarse unmixed kaolin was present at the bottom of 

the glass. By increasing the time to 120 s, 180 s, 240 s and 300 s, it was still not 

possible to produce a homogenous kaolin solution. The mixing intensity was then 

increased to 1100 rpm and 1200 rpm for 300 s. Finally, a 1200 rpm mixing 

intensity and 300 s mixing time produced a homogenous kaolin solution. 

In addition to the rapid mixing intensity and rapid mixing time of the test, 

different kaolin dosages were examined to find the optimum dosage. The kaolin 

dosage was varied from 1 g, 2 g and 3.5 g kaolin per 100 ml distilled water. A 

comparison of the results showed a consistent trend among these concentrations 

(Figure 7). Considering the efficiency of using kaolin, 1g dose was chosen for this 

research. The concentration of SS was 1% in the synthetic raw water solution and 

became 5-30% for CST measurement, as a result of coagulation and 

sedimentation processes. 
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Figure 7. Comparison of different kaolin concentrations 

 

3.9.1.2 Synthetic Domestic Wastewater 

Raw water has different qualities from wastewater. Raw water has been identified 

as having a mainly inorganic content whilst domestic wastewater has a large 

organic content. This stage of the research investigated the impact of different 

wastewater composition on the coagulation process and on sludge dewaterability. 

Jin et al. (2004) believe that the nature of the (floc) sludge affects the efficiency of 

the dewatering process because every sludge has different characteristics, such as 

size distribution, surface properties and density, which determine the sludge 

dewaterability. Moreover, the wastewater composition determines the sludge 

composition (Zhang et al., 2004); for example, activated sludge has a complex 

and heterogeneous composition, which can be changed and finally affects the 

dewaterability (Jin et al., 2004). In this investigation, synthetic domestic 

wastewater was used.  

The synthetic domestic wastewater recipe followed that proposed by Hu et 

al. (2011), with the addition of kaolin as a suspended solid. This recipe was 

chosen because the composition has represented the composition of domestic 

wastewater. The main purpose of using kaolin is to get 1% TSS (Total Suspended 
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Solid) concentration, which is similar to the suspended solid concentration of 

synthetic raw water. The sludge concentration at the bottom of the glass increased 

5-30% due to coagulation and sedimentation processes. The solution was 

produced by adding the ingredients (Table 3), except that kaolin in 1 l hot tap 

water was followed by the addition of 10 g kaolin (well mixed by using 1200 rpm 

mixing intensity for 5 minutes). All chemicals were supplied by Sigma Aldrich 

Company Limited (The Old Brickyard, New Road, Gillingham, Dorset SP8 4XT, 

UK). This solution was prepared fresh everyday (or sometimes every two days) 

and was always stored in the fridge to avoid uncontrolled growth of 

microorganisms that might influence the wastewater quality. 

The first investigation using synthetic domestic wastewater produced 

almost consistent results in terms of sludge dewaterability and turbidity with a 

change in rapid mixing velocity. In order to validate the recipe, other recipes for 

synthetic wastewater and natural domestic sludge were investigated and used as a 

comparison.  

Another recipe was adopted from Sawalha (2010); it had been formulated 

to investigate the performance of the CST test under various conditions, such as 

different funnel geometries, different filter papers, different temperatures and 

different CST tests. The ingredients are 100 ml 85 mM sodium chloride solution, 

3.33 % w/w kaolin clay, 1.67 % w/w bentonite clay, 10 mg/100 ml sodium 

alginate, 60 mg/100 ml cellulose fibrous and 548 mg/100 ml CaCl2 6H2O. Figure 

8 shows the result of the different water samples comparison. 
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Figure 8. Investigation of synthetic domestic wastewater recipes 

 

The two recipes show that different rapid mixing velocities using synthetic 

domestic wastewater as the water sample produce a fluctuating impact on sludge 

dewaterability. In general, increasing the rapid mixing velocity increases the CST 

value, although the trend is not always constant. For rapid mixing values of 60 

rpm and 65 rpm, increasing the rapid mixing velocity causes a decrease in sludge 

dewaterability. At rapid mixing speeds higher than 65 rpm, as the velocity 

increases, sludge dewaterability reduces and finally increases again in response to 

the higher rapid mixing velocity.  

Despite the level of sludge dewaterability value, the trends of rapid mixing 

velocity vs CST value from the two recipes are similar. The initial recipe 

proposed by Hu et al. produced experimental data that compares favourably with 

other published recipes for synthetic wastewater. The results of this sensitivity 

study therefore suggest that experimental results using Hu et al.’s recipe are likely 

acceptable, so this recipe can be used as a synthetic wastewater sample.  
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3.9.2  Determination of Optimum Coagulant Dosage 

The correct coagulant dose is essential in the coagulation process as it determines 

the effectiveness of the process. It must be sufficient to destabilize the 

contaminant. A low dose results in an ineffective process because it cannot 

provide sufficient coagulant hydrolysis products to destabilize the contaminant. A 

high dose will remove the contaminant but may not be efficient or economic.  

In order to obtain an optimum coagulant dose for this research, testing was 

done by adding different dosages from different coagulants to all the water 

samples, for subsequent dewaterability measurement with the CST apparatus. The 

magnetic stirrer was used as a mixer.  

The test started by pouring a 100 ml sample into a glass beaker; H2SO4 or 

NaOH were added to adjust the pH. The coagulant was subsequently added to the 

water sample. Once a pH of 6.5 was reached, the sample was mixed rapidly for 1 

minute with a constant 100 rpm rapid mixing velocity and then at a slower  rate of 

50 rpm for 15 minutes to accommodate the agglomeration of flocs. After 15 

minutes’ sedimentation, the sludge was separated carefully from the water by a 

decanting process. Then, the dewaterability of the sludge was measured using the 

CST apparatus. This experiment was performed several times with different 

coagulant doses, to produce the graphs in Figure 9.  
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Figure 9. Optimum coagulant doses 

 

Figure 9 shows that in general, as the coagulant dosage increases the CST 

values decrease. The graphs indicate that the optimum dose for alum is 21 mg 

Al/l, for ferric is 17 mg Fe/l, and for Moringa oleifera is 80 mg Moringa/l. The 

coagulant doses for the synthetic raw water sample and synthetic domestic 

wastewater were the same.  

 

3.9.3 Determination of Optimum Rapid Mixing Velocity  

Rapid mixing velocity was explored in the preliminary research by employing a 

rapid mixing intensity of 100-2000 rpm or 300-1000 s
-1

 to examine the effect on 

sludge dewaterability. The lower bound value was selected based on the median 

value of rapid mixing velocity used in typical wastewater treatment plants, which 
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lies between 40 and 125 rpm (Metcalf & Eddy, 2003); and the upper bound value 

is related to typical values for coagulation velocity adopted in industry, which 

commonly lie between 300 and 2000 rpm or 500 and 1000 s
-1

 (UFC, 2004).  

In the preliminary investigations, different rapid mixing velocities and 

times using different shapes of mixer were employed to obtain information about 

optimum values and/or ranges of values for these variables for the coagulation 

process. Rapid mixing velocity and rapid mixing time must be performed under 

optimum conditions. 

Rapid mixing velocity varies from 0-2000 rpm and tests using four 

different shapes of mixer were conducted. The coagulant used was optimum 

dosage alum. Synthetic raw water was used as the water sample with kaolin as the 

main ingredient. Rapid mixing time was 1 minute. The results are shown in Figure 

10.  

Figure 10 indicates that, in general, high rapid mixing velocity does not 

affect the CST value. The gradual increase in rapid mixing velocities produced a 

constant effect for the CST value, except for a rapid mixing velocity of less than 

100 rpm. For rapid mixing velocities of less than 100 rpm, an increase brings 

about a decrease in the CST value, with the average removal percentage around 

50%. For rapid mixing velocities higher than 100 rpm, an increase has a similar 

impact on the CST value, with the percentage of removal still about 50%.   
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Figure 10. Optimum rapid mixing velocities 

 

In this early investigation, the consistency in the CST value measurement 

seems to have been slightly influenced by inconsistency in the water-sludge 

separation process. As a result, it produced an inconsistency in the free water 

(bulk water that is not bound to sludge, so it can be easily removed by mechanical 

means and represents a large proportion of the total water) content in the sludge. 

This factor affects the measurement process of sludge dewaterability. Another 

influencing factor that produced this constant result may have been an excess of 

the optimum rapid mixing velocity value. Excess rapid mixing velocities will 

disturb the contact between the coagulant and the contaminant so that an efficient 

process can occur (Rossini et al., 1999). Thus, an appropriate mixing velocity is 

required to produce efficiency in the coagulation process. 
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Employing this range of velocities in the preliminary research gave an 

indication that rapid mixing velocity higher than 100 rpm had no significant 

impact on sludge dewaterability. The investigations were repeated and performed 

with different shapes of mixer and different rapid mixing velocities, with 

consistent results which were indicated by the similar sludge dewaterability 

values. As a consequence, rapid mixing velocities less than 100 rpm were adopted 

for the main investigation. 

In the primary research, the rapid mixing velocity employed was within 

the range 60-100 rpm. The value of 100 rpm was based on the result from the 

preliminary research, and the value of 60 rpm on the range of mixing velocity in a 

typical treatment plant (Tchobanoglous et al., 2003). 

 

3.9.4 Determination of Optimum Rapid Mixing Time 

In order to define an appropriate range of mixing times for rapid mixing, a 

preliminary investigation was undertaken. Initially a range of 0-300 s was 

considered, informed by research published by Kan et al. (2002a), who observed 

the impact of rapid mixing time on the coagulation process. This time interval 

could describe the stage of removing turbidity from the water under the influence 

of different rapid mixing times. Just as in the rapid mixing velocity investigation, 

the parameters used were four different shapes of mixer (radial, axial, wheel and 

magnetic) with a synthetic raw water sample. A mixing velocity of 100 rpm was 

selected, based on the result from the determination of rapid mixing velocity 

value. The results are presented in Figure 11. 
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Figure 11. Optimum rapid mixing time determining experimental results 

 

The results show that a rapid mixing time lower than 90 s has a substantial 

impact on the CST value, compared to times higher than 90 s. For rapid mixing 

times greater than 90 s, increasing the time brings no change in the CST value. 

Even though larger floc is formed in the slow mixing process, continued rapid 

mixing causes the formation of small flocs or microflocs (Rossini et al., 1999). 

Based on these results, it is essential to investigate rapid mixing times lower than 

90 s in the primary investigation. From this result, subsequent investigations 

considered rapid mixing times within the range 0-90 s. 
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3.10 Statistical Analysis 

In this investigation, Pearson’s correlation coefficient was used to describe the 

strength of the relationship between any two variables. The calculation used IBM 

SPSS Statistics version 20. Pearson’s correlation coefficient was used because it 

can measure the strength and direction (decreasing or increasing, depending on 

the sign) of a linear relationship between two variables X and Y (Ahlgren et.al., 

2003). The correlation between the two variables can be considered to be good if 

(r) is close to ±1, and poor if the value is close to zero. The correlation coefficient 

between two variables is linear if the value (r) is positive and non-linear if it is 

negative. The linear correlation means that X and Y lie on the same side of their 

respective means. The non-linear correlation means that X and Y tend to lie on 

opposite sides of their respective means. 

The Pearson’s correlation coefficient (r) can be expressed in terms of (Owens & 

Jones, 1994): 

r = 
               

          
          (13) 

                             

The covariance (XY) is : 

   

 
  

      

   
                 (14) 

 

The variance of X is : 

   

 
  

  

 
 
 

           (15) 
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The variance of Y is : 

   

 
  

  

 
 
 

           (16) 

 

So, the Pearson’s correlation coefficient can be expressed as : 

r =   

    

          
          (17) 

 

3.11 Chapter Summary 

This research is based on experimental work, which was conducted in two stages: 

preliminary testing and primary testing. The preliminary testing was done in order 

to determine the optimum coagulant dose, the value for rapid mixing velocity and 

rapid mixing time, and the composition of the water samples. The primary testing 

is the major testing to prove/disprove the original hypothesis. The large amount of 

data produced will be presented and discussed in detail in Chapters 4, 5 and 6. 
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CHAPTER 4 

CAPILLARY SUCTION TIME (CST) 

RESULTS AND DISCUSSION 

 

4.1 Introduction  

Rapid mixing has an important role in water coagulation in dispersing the 

coagulant into the water; the better the dispersal, the better the agglomeration of 

the contaminant in the water (AWWA, 1999). Rapid mixing needs a mixer to 

produce and transfer the energy and the turbulence into the water. In order to 

investigate the influence of a range of process variables on sludge dewaterability 

(CST value), rigorous experimental work was conducted. The investigation 

examined: 

 mixer shape 

 rapid mixing velocity during coagulation 

 rapid mixing time during coagulation 

 coagulant 

 temperature 

 water composition.  

This chapter presents and discusses the data from the experimental work. 

 

 A part content of this chapter has been published as a manuscript in the Journal of 

Environmental Technology. 

Fitria, D., Scholz, M., and Swift, G.M. (2012). Impact of different shapes and types of mixers on 

sludge dewaterability. Journal of Environmental Technology 34 (7), 931 - 936. DOI: 

10.1080/09593330.2012.722692. 

 A part content of this chapter is also  under review for the Journal of Environmental Engineering 

Science. 

Fitria, D., Scholz, M. and Swift, G.M. Impact of temperature, coagulant and mixer type on 

capillary suction time used as indicators for sludge dewaterability.  
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4.2 Synthetic Raw Water 

4.2.1 The Influence of Mixer Shape, Rapid Mixing Velocity and Time on CST 

value 

Water and wastewater treatment plants use different shapes and types of mixer in 

their treatment processes (Tchobanoglous, 2003). In order to investigate the 

influence of these differences on sludge dewaterability, a series of investigations 

was undertaken in the laboratory using many different parameters. Five shapes of 

mixer were used, namely: radial, axial, wheel, 3-blade and magnetic stirrers.  

Figure 12 reports the sludge dewaterability results as a function of 

different shapes of mixer, different rapid mixing velocities, different rapid mixing 

times, and different coagulants. Figure 12(1) shows the effect of different mixer 

shapes, used simultaneously with different rapid mixing velocity and different 

rapid mixing times, on sludge dewaterability, using alum as a coagulant. Figure 

12(2) shows the results where ferric is used as the coagulant, Figure 12(3) the 

results using Moringa oleifera as the coagulant.  

Figure 12a) shows the relationship between rapid mixing velocity (rpm) 

and CST value (s), Figure 12b) shows the effect of rapid mixing time (s) on the 

CST value (s), Figure 12c) shows the relationship between G (s
-1

) and CST value 

(s) and Figure 12d) shows the relationship between rapid mixing velocity (rpm) 

and G (s
-1

). Actually, Figure 12a) has informed about the effect of rapid mixing 

velocity on sludge dewaterability, but this research used mixers to produce the 

mixing in to the water so G value information is needed. Figure 12c) and Figure 

12d) illustrates more the effects of mixing conditions/turbulence (G) on the CST 

value, and therefore on sludge dewaterability. 
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(2). Ferric as a coagulant 
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(3). Moringa oleifera as a coagulant 

Figure 12. The effect of mixer shape on the CST value 
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4.2.1.1 The Effect of Mixer Shape on CST value 

Each of CST value in Figure 12 is an average of 3 replicates CST values. 

Table 4 informs about descriptive statistic for CST value in responding different 

mixer shapes. 

Table 4. Descriptive statistic of CST value in responding different mixer 

shapes. 

Mixer Parameter Al Fe Moringa 

Radial mean 21.77 23.08 25.99 

 

min 18.28 21.00 18.23 

 

max 26.80 29.26 31.76 

 

std   1.94   2.13   4.56 

Axial mean 22.41 20.75 26.87 

 

min 18.44 19.30 20.43 

 

max 25.60 22.63 33.17 

 

std   1.88   0.92   3.82 

Wheel mean 22.36 21.37 26.45 

 

min 19.00 19.27 19.80 

 

max 31.10 25.83 32.76 

 

std   3.32   1.82   4.91 

Magnetic mean 17.68 18.82 19.87 

 

min 14.20 17.13 14.33 

 

max 22.60 20.60 26.33 

 

std   1.89   0.96   4.69 

3-Blades mean 21.79 20.97 27.31 

 

min 19.60 19.43 19.37 

 

max 24.10 23.40 33.73 

 

std   1.36   0.97   4.26 

 

 The results in Figure 12 indicate that a magnetic stirrer produces the 

lowest CST, although process variables have been changed. The other mixer 

shapes have similar results regarding CST value. A magnetic stirrer also produces 

the highest CST value removal of all the mixers (Table C5-Appendix 2). 
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These results indicate that mixer shapes influence CST value. This result 

agrees with the findings of Spicer et al.’s (1996) investigation; they also found 

that the mixer shape affects the coagulation efficiency. Park et al. (2003) stated 

that the mixer shape controls the mixing conditions in the coagulation process. In 

order to observe mixing conditions under the influence of mixer shape, G values 

were calculated. G is a measure of the average velocity in the fluid, higher G 

values will be observed near the blades and lower at some distance from the 

blades (Tchobanoglous, 2003). In relation with mixing effectiveness or  

turbulence, G value describes the average value of mixing or turbulence produced 

by mixer in the coagulation chamber. 

Gradient velocity observation shows that the magnetic stirrer’s G is not the 

highest among the five shapes of mixer. The axial mixer produces the highest G, 

followed by magnetic, radial, wheel and 3-blades. Radial, wheel and 3-blades 

have almost similar G values. The figure also shows that the relation between 

rapid mixing velocity in rpm is always linear with G values.  

The axial impeller transfers the highest gradient velocity to the water but 

does not produce the lowest CST value. This indicates that G value of axial 

impeller is too high relating to CST value. The magnetic stirrer produces a more 

suitable velocity gradient to produce a lower CST value. The remaining three 

others (radial, wheel and 3-blades) impellers produce insufficient gradient 

velocity to influence the CST value.  

The relation between CST value and G shows that G should be at its 

optimum value to produce the lowest CST value. It seems that only the magnetic 

stirrer meets this criterion where its G value produces the lowest CST value. This 
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due to mixing conditions affect the floc formation and floc size (Kan et al., 

2002b), and excess mixing will increase floc breakage (Spicer et al., 1996). The 

size of a floc is an important factor for the assessment of sludge dewaterability 

(Lee & Liu, 2001; Zhao, 2003; Feng et al., 2009); the bigger the floc size, the 

lower the overall floc water content and the easier the dewatering process (Larue 

& Vorobiev, 2003).  

Floc size depends on hydrodynamics because it changes when the mixing 

is modified (Coufort et al., 2005). Higher gradient velocity produces higher shear 

rates. Increased shear produces smaller floc size (Spicer et al., 1996; Zheng Yu, 

2011) and increases the CST value. Further discussion of CST and its correlation 

to floc size will be presented in Chapter 5. 

Beside the G value, the mixer position in the coagulation chamber might 

also influence the distribution of mixing. The magnetic stirrer works at the bottom 

of the coagulation chamber or glass. It introduces mixing at the bottom of the 

beaker glass and circulates the mixing from this point around the whole glass. Due 

to its shape and position in the coagulation chamber, the mixing is distributed to 

all part of the chamber appropriately. It seems that the mixing conditions 

produced by the magnetic stirrer can avoid the creation of dead zones in the outer 

part of the mixer because the stirrer moves freely and mixing is spread effectively 

so that all sections of the water are exposed to the turbulence flow. 

 In contrast, the four other mixers operated from a position higher up the 

chamber. The mixing is produced at a distance from the bottom of the glass and 

concentrated around the shaft position. The mixer’s position and movement in the 

chamber produces mixing that, in general, only exists around the mixer’s position 
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and is not well distributed to all parts of chamber. Due to this condition, dead 

zone areas are to be found at the bottom and on the surface of the chamber. Park 

et al (2003) found that the formation of dead zones reduce the performance of 

rapid mixing and the efficiency of the coagulation process. This result indicates 

that the absence of dead zones when using the magnetic stirrer avoids the 

possibility of non-contacted of contaminant by the coagulant so that produce more 

efficient floc formation and lower CST value. Due to the lack of evidence to 

support this mixer position statement, further investigation might be needed to 

provide a proper explanation. 

 

4.2.1.2 The Effect of Different Rapid Mixing Velocities and Different Rapid 

Mixing Times on CST values 

Before further discussion about the effect of rapid mixing velocity and rapid 

mixing time on CST value, Table 5 will show the descriptive statistic of CST 

value. This descriptive is classified in to rapid mixing velocity and rapid mixing 

time.  

Figure 12 shows, in general that the different rapid mixing velocities and 

times do not influence sludge dewaterability, even though the optimum conditions 

based on the preliminary research results have been used. Based on Figure 12(1)a, 

12(2)a, and12(3)a, employing rapid mixing velocity and rapid mixing time has no 

significant impact on the CST values. The values are still almost identical in 

response to the gradual increase of rapid mixing velocities and times; even using 

Moringa oleifera as a coagulant, the use of rapid mixing velocity increases the 

CST value.  
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Table 5. Descriptive statistic of CST value in responding rapid mixing 

velocity  

Parameter Radial Axial Wheel Magnetic 3-blades Coagulant 

mean 22.10 22.96 23.42 18.13 21.31 

 min 19.83 20.30 19.20 15.10 19.60 Al 

max 24.00 25.60 31.10 22.60 24.10 

 std 1.16 1.66 3.97 2.26 1.40 

 mean 23.57 20.95 20.44 19.05 20.59   

min 21.00 19.73 19.27 17.13 19.43 Fe 

max 29.26 22.63 22.37 20.60 21.73 

 std 2.81 0.88 0.91 0.97 0.79 

 mean 30.07 30.11 30.76 24.28 30.95 

 min 28.67 27.17 27.20 21.90 29.33 Moringa 

max 31.76 33.17 32.76 26.33 33.73 

 std 1.07 1.86 1.89 1.46 1.49 

  

Table 6. Descriptive statistic for CST value in responding rapid mixing time  

Parameter Radial Axial Wheel Magnetic 3-blades Coagulant 

mean 21.43 21.87 21.30 17.22 22.28   

min 18.28 18.44 19.00 14.20 20.30 Al 

max 26.80 24.70 25.20 19.00 23.70 

 std 2.53 2.03 2.27 1.42 1.20 

 mean 22.59 20.54 22.29 18.58 21.34 

 min 21.50 19.30 19.40 17.48 19.97 Fe 

max 25.07 21.57 25.83 20.15 23.40 

 std 1.07 0.96 2.08 0.95 1.02 

 mean 21.90 23.63 22.15 15.45 23.66   

min 18.23 20.43 19.80 14.33 19.37 Moringa 

max 26.70 27.17 26.50 17.30 26.93 

 std 2.33 1.98 2.42 0.88 2.54 

  

 

Statistical analysis, specifically the coefficient of correlation, was used to 

explain the correlation between different rapid mixing velocities and sludge 

dewaterability. The calculation was in two parts (Table 7 and Table 8). The first 
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used an initial CST value with 0 rpm rapid mixing velocity or 0 minute rapid 

mixing time, and the second was without the initial value. The purpose of 

including the initial value was to see the effect of rapid mixing velocity and time 

employment on the CST value; not including the initial value investigated the 

effect of increasing rapid mixing velocity and time on the CST value. 

Table 7. The impact of rapid mixing velocity on CST value.   

Velocity (rpm) CST Value (s) Coagulant 

  Radial Axial Wheel Magnetic 3-blades   

r (with 0 rpm) -0.90 -0.84 -0.86 -0.93 -0.86  Alum 

r (without 0 rpm) -0.33  0.00 -0.64 -0.61 0.04 

 

       r (with 0 rpm) -0.74 -0.87 -0.89 -0.89 -0.87 Ferric 

r (without 0 rpm) 0.26 0.14 -0.15 -0.15 0.32 

 

       r (with 0 rpm)  0.05  0.05  0.07 -0.51  0.12  Moringa 

r (without 0 rpm) -0.37 -0.18 -0.35 0.53 -0.45 

 

        

 

Table 8. The impact of rapid mixing time on CST value   

Time (s) CST Value (s) Coagulant 

  Radial Axial Wheel Magnetic 3-blades   

r (with 0 rpm) -0.74 -0.59 -0.76 -0.64 -0.55  Alum 

r (without 0 rpm) -0.73 -0.32 -0.83 -0.75 -0.19 

 

       r (with 0 rpm) -0.58 -0.53 -0.73 -0.52 -0.58  Ferric 

r (without 0 rpm) -0.47 -0.09 -0.83 -0.02 -0.51 

 

       r (with 0 rpm) -0.67 -0.56 -0.46 -0.49 -0.04  Moringa 

r (without 0 rpm) -0.51 -0.32 -0.16 0.14 0.39 
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By including the initial CST value and using alum and ferric, the rapid 

mixing velocity has a beneficial impact on the CST value. Increasing rapid mixing 

velocity results in decreasing the CST value. Using Moringa oleifera, the 

correlation between rapid mixing velocity and CST value is poor. Different 

coefficients of correlation occur if the initial CST value is excluded: they become 

very low for alum and ferric and slightly higher for Moringa oleifera. These data 

show that the implementation of rapid mixing is very important in decreasing the 

CST value, but its gradual increase does not have any essential impact when using 

metal-based coagulants. It seems that as long as the rapid mixing velocity has 

been applied, the CST value will decrease.  

For rapid mixing times, Figure 12(1)b, 12(2)b and 12(3)b show that there 

is no significant impact on the CST value when different rapid mixing times are 

applied. The coefficient of correlation values by including 0 rpm into the 

calculation (Table 8), rapid mixing time has a reasonable association with the 

CST value. Without an initial value, all the coefficient of correlation values 

decrease, even though this decrease is not as much as occurred with the rapid 

mixing velocity coefficient of correlation. Just like the rapid mixing velocity, 

rapid mixing time is important in decreasing the CST value, but the gradual 

increase is not important. This means that a low rapid mixing time is sufficient to 

decrease the CST value. 

The trends for rapid mixing velocity and rapid mixing time are slightly 

different. The former has a fluctuating trend, while the latter is more stable, 

especially when using alum and ferric. The fluctuating trend in rapid mixing 

velocity may be due to the difference in the coagulant hydrolysis product which is 
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influenced by the mixing conditions (AWWA, 1999). Every type of hydrolysis 

product has its own interacting mechanism for removing particles. This result is 

similar to the investigation results achieved by AWWA (1999) and Byun et al. 

(2005); both found that different rapid mixing intensities affect the formation of 

coagulation hydrolysis products and ultimately produce different types of 

coagulant hydrolysis products. The velocity gradient also determines the number 

of floc collisions (Mhaisalkar et al., 1991) which is an important influence on the 

settling performance and sludge dewaterability. 

For rapid mixing times, the straight and stable line in Figure 12(1)c, 12(2)c 

and 12(3)c and the poor correlation show that the enhancement of rapid mixing 

times does not have any impact on CST value and low rapid mixing time is 

enough. As explained in Chapter 2, coagulant hydrolysis products are formed 

shortly after coagulant dosing. Prolonged rapid mixing time can limit floc growth, 

possibly due to the formation of small flocs during the rapid mixing process. 

Schuetz and Piesche (2002) have confirmed that sufficient coagulation conditions 

is needed to enable a floc formation that is easily separated and dehydrated. The 

excessive mixing time may result in breakage of microflocs and reduce the re-

growth potential of the floc (Yu et al., 2011). 

When comparing the effect of different rapid mixing velocity and different 

rapid mixing times on CST values, the results show that rapid mixing velocity has 

more impact on the CST values than rapid mixing time. This finding is supported 

by Mhaisalkar et al. (1991) and Liang et al. (2009).  
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4.2.2 The Effect of Coagulant on CST value 

Aluminium sulphate, ferric sulphate and Moringa oleifera were used in this 

research to investigate their effect on the CST value. Table 9 informs about the 

statistic descriptive of CST value in responding different coagulants. Figure 13 

presents the influence of coagulants on the CST value using rapid mixing velocity 

and rapid mixing time. 

Table 9. Statistic descriptive of CST value in responding different coagulants 

Coagulant Parameter Radial Axial Wheel Magnetic 3-blades 

  mean 21.77 22.41 22.36 17.68 21.79 

Al min 18.28 18.44 19.00 14.20 19.60 

 

max 26.80 25.60 31.10 22.60 24.10 

 

std 1.94 1.88 3.32 1.89 1.36 

  mean 21.77 22.41 22.36 17.68 21.79 

Fe min 18.28 18.44 19.00 14.20 19.60 

 

max 26.80 25.60 31.10 22.60 24.10 

 

std 1.94 1.88 3.32 1.89 1.36 

 

mean 25.99 26.87 26.45 19.87 27.31 

Moringa min 18.23 20.43 19.80 14.33 19.37 

 

max 31.76 33.17 32.76 26.33 33.73 

 

std 4.56 3.82 4.91 4.69 4.26 
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(2). Axial Mixer 

 

 

(3). Wheel Mixer 

 

 

(4). Magnetic Stirrer 
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(5). 3-blades mixer 

 

Figure 13. Comparison of coagulants performances 

 

Figure 13 shows that coagulants are more sensitive to rapid mixing 

velocity than to rapid mixing time. Using rapid mixing velocity, alum and ferric 

have an almost similar impact on the CST value, and a lower CST value than 

Moringa oleifera. On the rapid mixing time variable, no conclusion can be drawn. 

Different coagulant trends on rapid mixing velocity and rapid mixing time also 

indicate that rapid mixing velocity plays a more important role in accommodating 

coagulant mechanism in water than does rapid mixing time.  

Using mixer shapes and rapid mixing velocity provides evidence that 

different coagulants produce different CST values, which means that the 

coagulant characteristics affect sludge dewaterability. The difference in 

performance of different coagulants is influenced by their base material. Alum 

and ferric are metal-based coagulants, which produce coagulant hydrolysis 

products (AWWA, 1999). On the other hand, Moringa oleifera does not yield 

coagulant hydrolysis products. The agglomeration happens as a result of 
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adsorption and charge neutralization processes of the contaminant by Moringa 

oleifera’s active protein (Ndabingengesere et al., 1995; Bhatia et al., 2007).  

Ndabingengesere et al. (1995) said that every coagulant produces different 

sludge volume, so it influences the concentration of solid in the water. Moringa 

oleifera produces a smaller volume of sludge compared to a metal-based 

coagulant because it only stimulates small contaminants to gather together without 

generating a precipitated coagulant. Metal-based coagulants like alum and ferric 

are associated with larger volumes of sludge (Ndabingengesere & Narasiah, 

1998).  

The explanation about coagulant and rapid mixing time seems correlated 

with the explanation of the effect of rapid mixing time on CST value. This can be 

found in the previous sub chapter. 

 

4.2.3 The Effect of Temperature on CST value 

Temperature is a crucial factor in the sludge dewatering process because it 

affects sludge viscosity (Sawalha & Scholz, 2012). Christensen et al. (1993) found 

that viscosity has a linear correlation with sludge dewaterability. In theory, 

viscosity is reduced at higher temperatures, and water will be released from the 

sludge more easily. This means sludge dewaterability is reduced as the 

temperature rises. In the coagulation process, the temperature determines the 

distribution of the coagulant (Duan & Gregory, 2003). The reaction rate increases 

with increasing temperature and vice versa.  

In this research, the effect of mixer shape was studied simultaneously with 

temperature, coagulant and rapid mixing velocity. Rapid mixing time was not 
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investigated because it has already been demonstrated in this study that its impact 

on sludge dewaterability is less significant. 

 

4.2.3.1 Using Alum as a Coagulant 

Alum was used as a coagulant to investigate the effect of mixer shape on the CST 

value. In this research, a temperature of 20ºC was compared with a temperature of 

26ºC. Five shapes of mixer were used as a paddle (Table 10), and a comparison of 

the different shapes at 26ºC has been produced (Figure 14).  

 

Table 10. Statistic descriptive of CST value in responding temperature 

(alum) 

Temperature Parameter Radial Axial Wheel Magnetic 3-blades 

20ºC mean 22.10 22.96 23.42 18.13 21.31 

 

min 19.83 20.30 19.20 15.10 19.60 

 

max 24.00 25.60 31.10 22.60 24.10 

 

std 1.16 1.66 3.97 2.26 1.40 

26ºC mean 141.98 23.90 15.99 11.88 12.24 

 

min 0.39 0.55 1.32 0.75 0.47 

 

max 921.11 89.00 31.10 22.60 24.10 

 

std 343.71 30.47 11.44 8.73 10.63 
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Figure 14. The influence of temperature on CST value (alum) 

 

Of the five mixers, the magnetic stirrer still yields the lowest CST value. 

This same result is similar at 20 C, again confirming that the magnetic stirrer is 

superior to the other four shapes of mixer. Using different temperatures shows 

that 26 C produces a lower CST value than 20 C for each of the mixer shapes. 

This phenomenon is supported by the results of Duan and Gregory (2003), that 

temperature affects the distribution of coagulant types in the water. A higher 

temperature makes the coagulant distribution easier than at a lower temperature, 

and ultimately affects the floc conditions. As the condition of the flocs is an 

important factor in sludge dewaterability (Lee & Liu, 2001), the impact of 

temperature is also important on the sludge dewatering process.  
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In relation to the viscosity, it confirms the theory that the higher the 

temperature, the lower the viscosity. At 20 C, water has a higher viscosity than at 

26 C, so it cannot be released from the sludge as easily as at the higher 

temperature (Sawalha & Scholz, 2012). As a result, the CST values at 20 C are 

higher than those at 26 C. As alum was used as the coagulant, it can be concluded 

that alum’s performance is affected by temperature. 

 

4.2.3.2 Ferric as a Coagulant 

The second coagulant to be used was ferric. Table 11 and Figure 15 show 

the influence of temperature on sludge dewaterability using this coagulant.  

Table 11. Statistic descriptive of CST value in responding temperature 

(ferric) 

Temperature Parameter Radial Axial Wheel Magnetic 3-blades 

20ºC mean 23.57 20.95 20.44 19.05 20.59 

 

min 21.00 19.73 19.27 17.13 19.43 

 

max 29.26 22.63 22.37 20.60 21.73 

 

std 2.81 0.88 0.91 0.97 0.79 

26ºC mean 20.56 21.16 19.70 17.99 21.91 

 

min 16.60 18.10 16.90 14.60 18.90 

 

max 24.40 24.60 22.30 20.80 28.50 

 

std 3.04 2.30 1.79 1.89 2.85 

 

Comparison of the five shapes of mixer using ferric as a coagulant at a 

temperature of 26 C indicates that, in general, the magnetic stirrer produces the 

lowest CST values. This result is comparable to previous tests using different 

parameters; that the magnetic stirrer produces better mixing conditions so that the 

coagulant and water can be properly mixed and thus produce a better 

agglomeration compared with the four other shapes of mixer. 
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The results show that temperature does not have a significant impact on 

sludge dewaterability while using ferric as a coagulant. Although the comparison 

was done repeatedly using different shapes of mixer, findings still indicate that the 

performance of ferric is not affected by temperature. In contrast, other 

investigations have shown that ferric as a coagulant was influenced by 

temperature (Van der Woude & De Bruyn, 1983; Flynn, 1984; Kang & 

Cleasby,1995). 

The insignificant effect of temperature on ferric performance can be 

explained by the previous observation. It found that an increase in temperature 

results in reduced amounts of soluble oxygen, and the formation of iron salts is 

inhibited by protons (Vilcaez et al., 2009). Moris and Knocke (1984) also found 

the same for the range of temperatures 1-23 C; the rate of iron (III) growth was 

not affected significantly. Moreover, Hanson and Cleasby (1990) found that at 

temperatures of 5-20 C and constant pOH, almost identical ferric sulphate 

coagulation kinetics occurred. 
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Figure 15. The influence of temperature on CST value (ferric) 

 

4.2.3.3 Moringa oleifera as a Coagulant 

As an alternative coagulant, Moringa oleifera is yet to be fully explored. 

This section shows the results from an investigation into the effect of mixer shape 

and temperature on sludge dewaterability. Table 12 and Figure 16 indicate the 

impact of temperature on the CST value using Moringa oleifera as a coagulant. 
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Table 12. Statistic descriptive of CST value in responding temperature 

(Moringa) 

Temperature Parameter Radial Axial Wheel Magnetic 3-blades 

20ºC mean 30.07 30.11 30.76 24.28 30.95 

 

min 28.67 27.17 27.20 21.90 29.33 

 

max 31.76 33.17 32.76 26.33 33.73 

 

std 1.07 1.86 1.89 1.46 1.49 

26ºC mean 22.26 22.68 21.88 14.47 21.76 

 

min 18.10 18.60 16.70 11.20 17.70 

 

max 25.40 25.50 27.00 16.30 25.10 

 

std 2.43 2.25 3.19 1.59 2.45 

 

 

Using radial, axial, wheel, magnetic and 3-blade types of mixer, the CST 

values yielded at temperatures between 20 C and 26 C were compared. The 

graphs present the results. The CST value decreases as temperature increases. 

This is due to the effects of viscosity. For sludge which does not contain cations, 

especially of potassium and calcium, the viscosity of the sludge increases as the 

temperature decreases (Sawalha, 2010).   

In general, at 20 C, as the rapid mixing velocity increases the CST value 

increases. However, at 26 C, an increase in rapid mixing intensity causes a 

reduction in the CST value. This indicates that Moringa oleifera’s performance is 

better at 26 C than 20 C, which is probably because the higher temperature makes 

the Moringa oleifera protein more active, thus increasing the sludge 

dewaterability. Further investigation is still needed to support this finding. 
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Figure 16. The influence of temperature on CST value (Moringa oleifera) 

4.2.3.4 The Influence of Different Coagulants at 26 C 

The aim of this analysis was to compare the performance of different 

coagulants with increasing temperature. Figure 17 represents the CST values in 
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can be seen that different coagulants have no significant influence on CST values; 

in general, all of the coagulants have a similar impact at 26 C. However, if the 

data is examined in more detail, alum is seen to give the lowest CST value.  

Most of the lowest CST values were produced by alum. Overall, the 

highest CST values were obtained using Moringa oleifera as a coagulant. The 

coagulant type determines the amount and properties of sludge. A temperature of 

26 C produces different results from a temperature of 20 C. At 20 C, alum and 

ferric were shown to be the best coagulant with the lowest CST values. This 

shows that alum and ferric are more effective than Moringa oleifera at 20 C but 

not at 26 C. At 26ºC, all three coagulants have a similar impact on the CST value. 

This may be because Moringa oleifera’s protein is more active at 26ºC than at 

20ºC, so that all the coagulants have a similar impact on sludge dewaterability at 

the higher temperature. 
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Figure 17. Comparison of different coagulants’ performance at 26ºC 

 

4.3 Synthetic Domestic Wastewater Sample 

4.3.1 Observation Results 

The aim of this investigation was to examine the effect of water composition on 

CST values. It was undertaken simultaneously with the study of the effect of 

mixer shape, rapid mixing velocity and coagulant on CST value and turbidity. In 

order to obtain a comparative measurement, a turbidimeter was used for the first 

time when using synthetic domestic wastewater. Using synthetic raw water, rapid 

mixing time had less effect on the CST value, so that in this investigation only 

rapid mixing velocity is used. Table 13, Table 14 and Figure 18 show the results.  
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 Table 13 and Table 14 inform about the statistic descriptive of CST and 

turbidity values in responding mixer shapes. Figure 18 (1) shows the result of 

CST and turbidity using alum as a coagulant, Figure 18 (2) using ferric as a 

coagulant and Figure 18 (3) using Moringa as a coagulant. 

 

Table 13. Statistic descriptive of CST value in responding mixer shapes 

Mixer Parameter Al Fe Moringa 

Radial mean 19.75 20.50 24.21 

 

min 18.67 18.90 21.70 

 

max 21.77 22.40 26.80 

 

std 1.14 1.26 1.70 

Axial mean 20.42 20.76 24.64 

 

min 17.83 15.20 23.70 

 

max 22.75 26.70 26.87 

 

std 1.57 3.51 1.08 

Wheel mean 20.68 22.24 24.31 

 

min 16.83 19.50 22.77 

 

max 24.23 26.50 25.53 

 

std 2.35 2.22 1.08 

Magnetic mean 15.87 17.61 23.14 

 

min 14.60 16.20 21.30 

 

max 17.40 19.50 25.23 

 

std 0.89 0.97 1.23 

3-Blades mean 18.23 22.73 22.15 

 

min 15.47 20.60 19.80 

 

max 20.97 25.00 24.20 

 

std 1.64 1.42 1.38 
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Table 14. Statistic descriptive of turbidity in responding mixer shapes 

Mixer Parameter Al Fe Moringa 

Radial mean 592.85 609.56 367.70 

 

min 538.67 542.00 328.33 

 

max 742.67 703.00 412.00 

 

std 78.79 48.27 25.30 

Axial mean 530.44 596.11 395.37 

 

min 501.00 467.00 368.67 

 

max 641.50 686.00 439.33 

 

std 45.41 86.06 25.29 

Wheel mean 517.96 543.67 417.04 

 

min 479.33 479.00 375.00 

 

max 598.00 605.00 446.33 

 

std 36.75 38.51 24.72 

Magnetic mean 438.33 452.22 379.15 

 

min 424.33 417.00 332.00 

 

max 460.00 488.00 411.33 

 

std 11.80 24.33 26.48 

3-Blades mean 539.74 688.00 424.89 

 

min 519.67 451.00 392.33 

 

max 570.00 886.00 481.00 

 

std 18.66 139.02 34.14 
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(1) Alum as a coagulant 
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(2) Ferric as a coagulant 
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(3) Moringa oleifera as a coagulant 

Figure 18. Results of using domestic wastewater as a water sample 

 

Figure 18a) shows the relationship between rapid mixing velocity (rpm) 

and CST value (s), Figure 18b) shows the effect of rapid mixing velocity (rpm) 

and turbidity value (NTU), Figure 18c) shows the relationship between G (s
-1

) and 

CST value (NTU) and Figure 18d) shows the relationship between rapid mixing 
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velocity (rpm) and G of CST (s
-1

). Furthermore, Figure 18e) informs the 

relationship between G (s
-1

) and turbidity value (NTU), and Figure 18f) informs 

the relationship between rapid mixing velocity (rpm) and G of turbidity (s
-1

). 

Investigating the effect of mixer shapes on CST value gave similar results 

using different coagulants, except for Moringa oleifera. The magnetic stirrer 

produced the lowest CST value compared to other shapes of mixer. The lowest 

turbidity was also produced by the magnetic stirrer. Hence, although the water 

sample is different, in general, the magnetic stirrer still produces the lowest CST 

values. Therefore, it can be concluded that water composition does not influence 

the effectiveness of the magnetic stirrer as a paddle when using metal-based 

coagulants. 

Despite the same trend of the CST value and turbidity results, the turbidity 

value after coagulation was still very high, more than 400 NTU, although the 

optimum coagulant dose was used. Determination of coagulant dose was done 

using CST apparatus, but this maybe inappropriate for turbidity, as the CST 

apparatus and turbiditimeter measure different things. So, probably this is the 

reason why the turbidity is still very high after coagulation process and it indicates 

that the optimum coagulant dosage by using CST apparatus is not suitable for 

turbidity removal. 

Using synthetic domestic wastewater, rapid mixing was not significant in 

decreasing the CST value. Although the mixer shapes and coagulants were 

changed the rapid mixing velocity still had little impact on the decrease of the 

CST value. The turbidity results also confirm that gradual increasing rapid mixing 

velocity is not important in removing turbidity. Synthetic domestic wastewater 
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has a different composition from synthetic raw water, but it was revealed that this 

difference did not result in any significant variation in the sludge CST value. 

Synthetic raw water and synthetic domestic wastewater contain 1% kaolin along 

with other ingredients, and has a turbidity value of more than 300 NTU. This 

result further indicates that highly turbid water does not need an excessive rapid 

mixing velocity (Mhaisalkar et al., 1991). 

 

4.4 The Effect of Water Sample Composition on CST value 

4.4.1 Alum as a Coagulant  

Rigorous experiments were carried out by utilizing synthetic raw water and 

synthetic domestic wastewater. These water types have different compositions. 

Figure 19 shows the result of direct comparison of water composition when using 

alum as the coagulant. Domestic raw water produces slightly higher CST results 

than synthetic domestic wastewater for all mixer shapes.  

Table 15 shows the decrease in CST values. It can be seen that there is a 

significant difference in CST values between synthetic raw water and synthetic 

domestic wastewater, the former having a higher removal percentage.  
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Figure 19. Comparison of different water composition (alum) 

 

Table 15. CST and rapid mixing velocity coefficient of correlation 

Mixer shape Decrease in CST value (%) 

  synt. raw water synt. dom ww 

Radial 40.26 -7.93 

Axial 37.95 -11.59 

Wheel 36.69 -13.00 

Magnetic 50.99  13.30 

3-blade 42.41   0.36 
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Despite the higher CST value of synthetic raw water, synthetic raw water 

has a higher decrease in CST value (the result of comparison between average 

CST values after coagulation to initial CST value before coagulation) than 

synthetic domestic wastewater. This is probably a result difference element in the 

water sample. Synthetic raw water only contains kaolin, which is inorganic, but 

synthetic domestic wastewater contains not only inorganic but also organic and 

biological material. This result indicates that the coagulation process removes 

inorganic content better than the organic and biological content. This is due to the 

presence of the hydrophilic content in synthetic domestic wastewater. Coagulation 

removes hydrophobic matter better than hydrophilic matter (Zhan et al., 2010b). 

The hydrophobic fraction has a higher molecular weight and lower repulsion of 

the flocculant (Kim et al., 2006).  

The CST values for synthetic raw water are slightly higher than synthetic 

domestic wastewater after coagulation, although the decreasing CST value is 

much higher. This is due to the presence of microorganisms which is presented by 

yeast in the wastewater. Yeasts are eukaryotic microorganism (Kurtman and Fell, 

2006). The presence of any microorganism is associated with a relatively large 

surface area (Jin et al., 2003). This means that synthetic domestic wastewater 

produces a lower CST value even though the coagulation process does not happen 

effectively. This indicates that alum is less effective to decrease CST value in 

synthetic domestic wastewater than synthetic raw water. 
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4.4.2 Ferric as a coagulant 

Figure 20 shows the influence of different water compositions on the CST value. 

Ferric is used as a coagulant, along with different mixer shapes and rapid mixing 

velocity. 

  

 

     

 

 

Figure 20. Comparison of different water composition (ferric)  
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Table 16. CST and rapid mixing velocity coefficient of correlation (ferric) 

Mixer shape The decreasing of CST value (%) 

  synt. raw water synt. dom ww 

Radial 40.84 31.43 

Axial 42.42 30.58 

Wheel 48.70 25.60 

Magnetic 52.18 41.09 

3-blade 48.33 23.96 

 

Using ferric with both water samples produces different trends to those 

produced when using alum. With ferric, in general, there is no difference in the 

trend of CST results between synthetic raw water and synthetic domestic 

wastewater, although there is a slight difference in the decrease of CST value 

(Table 16). Again, the slight difference the CST value is due to the presence of 

hydrophilic content in synthetic domestic water, which is unfavourable to the 

coagulation process (Zhan, 2010). This indicates that ferric is effective in 

coagulating the contaminants in synthetic raw water and synthetic domestic 

wastewater.  

 

4.4.3 Moringa Oleifera as a Coagulant 

Moringa oleifera was used as a coagulant in investigating the effect of water 

composition on the CST. This observation also involved mixer shape and rapid 

mixing velocity. The results can be found in Figure 21. 
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Figure 21. Comparison of different water compositions (Moringa oleifera) 
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Table 17. CST and rapid mixing velocity coefficient of correlation (Moringa)  

Mixer shape The decreasing of CST value (%) 

  synt. raw water synt. dom ww 

Radial -2.62 -4.24 

Axial -2.76 -6.07 

Wheel -4.97 -4.66 

Magnetic 17.12  0.40 

3-blade -5.63  4.65 

 

Figure 21 and Table 17 show that when using Moringa oleifera as a 

coagulant, in general, there is no significant influence of water composition on the 

CST. All the mixer shapes, except for the magnetic stirrer, show that the effect of 

water composition on CST value is almost similar. It means, in general, there is 

no effect of different water samples while using Moringa oleifera as a coagulant 

on CST value. 

 

4.4 Summary 

Using the Capillary Suction Time (CST) apparatus as a measurement tool for 

sludge dewaterability, a number of parameters were investigated: shape of mixer, 

rapid mixing velocity and rapid mixing time, coagulant, temperature and water 

composition. Only the magnetic stirrer appears to have influenced sludge 

dewaterability, with the four other mixers similar to each other. The magnetic 

stirrer consistently produced the lowest CST value although rapid mixing velocity 

and rapid mixing time, coagulant, temperature and water compositions were 

modified. This is due to the optimum mixing intensity applied to water by the 
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magnetic stirrer. Rapid mixing velocity had a more important effect on CST 

values than rapid mixing time although increased rapid mixing velocity and rapid 

mixing time are not important to the CST value. 

Alum and ferric have the same impact on the CST value, with consistently 

lower CST values than Moringa oleifera. This indicates that metal-based 

coagulants play a more important role than non-metal based coagulants in 

determination the CST values. Temperature has an important role to play when 

using alum or Moringa oleifera as a coagulant, although with ferric, the CST 

values appeared insensitive to temperature. Water composition did not have a 

significant effect on CST values when using alum, ferric or Moringa oleifera. 

Synthetic raw water and synthetic domestic wastewater produced similar CST 

values when using ferric and Moringa oleifera, but lower on decrease of CST 

value when using alum.  

In order to compare and verify the CST value, turbidity and floc size have 

been examined; details are presented in Chapter 5.  
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CHAPTER 5 

PARTICLE SIZE ANALYSIS 

RESULTS AND DISCUSSION 

 

5.1 Introduction 

Coagulation increases the tendency of particles to attach to each other in order to 

form a larger contaminant. Particle (floc) size is therefore an important factor in 

the coagulation process (Zhan, 2011) where it influences settlement following  

coagulation. The larger the floc, the more readily it can be removed from water 

(Besra et al., 2000). As a consequence, sludge conditions, including particle size, 

have an important role in sludge dewaterability (Razi & Molla, 2007).  

In order to verify the CST results, floc sizes produced by the coagulation 

process has been investigated, using a particle size analyzer. As with the CST 

analysis, five shapes of mixer were used while varying the rapid mixing velocity 

and rapid mixing time, choice of coagulant, temperature and water composition. 

 

 

 

 A part content of this chapter has been published as a manuscript on the Journal of Chemical 

Engineering and Techology. 

Fitria, D., Scholz, M., Swift, G.M. and Hutchinson, S.M. (2013). Impact of sludge floc size and 

water composition on sludge dewaterability. Chemical Engineering and Technology 

Journal. DOI: 10.1002/ceat.201300378 
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5.2 Synthetic Raw Water 

5.2.1 The Effect of Mixer Shape on Particle Size 

Experiments using the CST were undertaken using synthetic raw water and 

synthetic domestic wastewater. In order to obtain a deeper understanding of the 

subject, the research continues using a particle size analyzer to investigate floc 

size.  

Initially, synthetic raw water was utilised with only ferric as a 

representative coagulant, because in the earlier research metal based coagulants 

produced the lowest CST value. Figure 12 showed that four shapes of mixer, 

(radial, axial, wheel and 3-blade) had a consistent influence on the CST result; in 

this investigation, only three mixer shapes (radial, axial and magnetic stirrer) were 

investigated. Radial and axial mixers are representative of the four shapes of 

mixer in that they act at a certain height from the bottom of the chamber; a 

magnetic stirrer was also used as this was the most effective mixer in producing 

the lowest CST value. The investigation results are shown in Table 18 and Figure 

22.  

Table 18. Descriptive statistic of floc size in responding mixer shape 

Mixer Parameter CST 

Radial mean 6.11 

 

min 5.35 

 

max 7.06 

 

std 0.63 

Axial mean 6.79 

 

min 5.17 

 

max 7.53 

 

std 0.82 

Magnetic mean 19.05 

 

min 17.13 

 

max 20.60 

 

std 0.97 
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Figure 22. Comparison of sludge dewaterability, median floc size and size 

standard deviation (synthetic raw water)  

In this investigation, the median particle size was used to evaluate the floc 

size after coagulation, flocculation and sedimentation processes. This is because 

the median presents the upper half data of floc size, and in due course it can be 

used as representative floc size data. Figure 22a indicates the CST value, Figure 

22b the floc size and Figure 22c the floc standard deviation . 

In relation to mixer shape, the magnetic stirrer produced the lowest CST 

values, but this result was not supported by the floc size. The data indicated that 

the magnetic stirrer did not produce the largest flocs of the three mixer shapes in 

this experiment. It appears that when using synthetic raw water, there is no 

correlation between the floc size and sludge dewaterability. This is due to the 
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density of floc. Another experiment was conducted to give evidence. The result 

indicates that floc density of synthetic raw water is higher than synthetic domestic 

wastewater floc (Figure 23). And, sludge produced using the magnetic stirrer has 

a higher density floc than sludge from other mixer shapes (Figure 24); therefore 

the magnetic stirrer still produced the lowest CST value even though it did not 

have the largest flocs. 

 

Figure 23. Density of different water sample 

 

 

Figure 24. Water density related to mixer shapes 
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This mechanism could be explained by the work of Turchiulli and Fargues 

(2004); they stated that one of the factors that determine sludge dewaterability is 

the floc structure and its physical characteristics (size and density). A high-density 

solution has a high concentration of solids, and these have smaller basic units and 

less bound water. These sludges are, therefore, dewatered further and faster than 

those obtained from solutions with low concentrations of solid. 

Figure 22 shows that increasing the rapid mixing velocity has an impact on 

floc size. Floc size data suggest that lower rapid mixing velocity produces smaller 

flocs. Increasing rapid mixing velocity increases the floc sizes, but once the 

optimum rapid mixing velocity has been reached, the floc size decreases in 

response to the increase in velocity. Rapid mixing velocity seems to have an 

important role in the formation of flocs and on its size, and this result confirms the 

investigation result in Sub chapter 4.2.3.2.  

Furthermore, using synthetic raw water as the water sample in the 

coagulation process produced short-range standard deviation, as it appears that 

using only kaolin creates a uniform floc size in the coagulation process. This is 

probably due to the cohesive property of kaolin clay particles and their edge-to-

face electrostatic alignment (Sawalha, 2010). As utilizing kaolin in the water 

sample brings about similar floc sizes, further research needs to be conducted 

using different water compositions. 

 

5.3 Synthetic Domestic Wastewater 

It appears that a single ingredient makes the agglomeration process slower. 

This was shown using kaolin as the only ingredient in synthetic raw water, 
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producing a uniform size of floc and short-range particle size distribution in 

response to different mixers. In order to compare the use of kaolin, the 

investigation then used a synthetic domestic wastewater sample. This additional 

investigation was to obtain a more definitive explanation for the influence of the 

coagulation parameters on sludge dewaterability and also the effect of the 

composition of the water.  

 

5.3.1 The Influence of Mixer Shape 

Five shapes of mixer were used, with only ferric as the coagulant. Table 19 and 

Figure 25 represent the influence of mixer shape on CST values and turbidity. In 

general, there is a similarity between these factors in their response to the different 

shapes of mixer, as shown in Figure 25. From the CST, turbidity and particle size 

analyzer readings, the magnetic stirrer, in general, produced the lowest CST and 

turbidity values but larger floc size and higher standard deviation. 
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Table 19. Statistic descriptive of floc size and turbidity in responding mixer 

shape 

Mixer Parameter CST Turbidity 

Radial mean 8.44 609.56 

 

min 5.74 542.00 

 

max 10.80 703.00 

 

std 1.49 48.27 

Axial mean 9.98 596.11 

 

min 7.70 467.00 

 

max 12.55 686.00 

 

std 1.94 86.06 

Wheel mean 9.98 596.11 

 

min 7.70 467.00 

 

max 12.55 686.00 

 

std 1.94 86.06 

Magnetic mean 11.72 452.22 

 

min 10.00 417.00 

 

max 13.25 488.00 

 

std 1.15 24.33 

3-Blades mean 8.32 688.00 

 

min 5.90 451.00 

 

max 11.90 886.00 

 

std 1.70 139.02 
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Figure 25. Comparison of CST, turbidity, median floc size and standard 

deviation while using different shapes of mixer  

Floc size investigation showed that the magnetic stirrer was the best mixer 

shape to produce larger floc size. As mentioned in Chapter 4, the magnetic stirrer 

produced more appropriate hydrodynamic conditions for floc formation in the 

water than did the other mixers as indicated by CST and the turbidity meter. The 

correlation is the lower of CST value, the lower of turbidity, the larger of floc size 

and the higher of standard deviation. 

The lower CST value means that it is easier for the sludge to release water; 

and, normally, the larger the floc size, the easier it is for water to be released 

(Turchiulli & Fargues, 1994; Larue & Vorobiev, 2003). Small flocs with narrow 

capillaries do not easily release water (Besra et al., 2000). In respect of water 
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turbidity, the larger floc size makes it easier for particles to settle (Guo et al., 

2009), thereby reducing the turbidity.  

 

5.3.2 The Influence of Rapid Mixing Velocity and Rapid Mixing Time 

The influence of rapid mixing velocity and rapid mixing time were observed using 

the CST and turbidimeter. The CST value was unaffected by the rapid mixing 

velocity and the rapid mixing time, and turbidity was also unaffected by the 

mixing velocity. As the coagulation process produces a larger particle size that is 

more easily removed, particle size investigation could be useful in this research. 

Particle size analyzer results should be able to verify the CST and turbidity 

results. 

In this part of the investigation, a magnetic stirrer was used to create 

mixing in the water sample. The use of only the magnetic stirrer was because the 

results previously presented indicated that this is the most effective shape of mixer 

for sludge dewaterability. Therefore, the magnetic stirrer was selected as 

representative of all of the mixers in the investigation of the influence of 

coagulant on floc size. Table 20 and Table 21 inform about descriptive statistic of 

CST and turbidity values in responding rapid mixing velocity and rapid mixing 

time. 
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Table 20. Descriptive statistic of CST and turbidity values in responding 

rapid mixing velocity 

Variable Parameter Al Fe Moringa 

CST mean 12.05 11.72 7.20 

 

min 7.30 10.00 4.29 

 

max 18.12 13.25 8.20 

 

std 3.20 1.15 1.18 

Turbidity mean 436.78 452.22 850.89 

 

min 403.00 417.00 583.00 

 

max 465.00 488.00 1042.00 

 

std 17.01 24.33 186.24 

 

 

Table 21. Descriptive statistic of CST and turbidity values in responding 

rapid mixing time 

Variable Parameter Al Fe Moringa 

CST mean 10.08 11.72 8.63 

 

min 7.08 10.00 7.34 

 

max 16.95 13.25 9.38 

 

std 2.92 1.15 0.62 

Turbidity mean 504.00 452.22 656.67 

 

min 415.00 417.00 471.00 

 

max 677.00 488.00 966.00 

 

std 86.18 24.33 155.57 

 

5.3.2.1 Alum as a Coagulant 

In order to obtain better information about the influence of rapid mixing 

velocity and rapid mixing time, different coagulants were used as a comparison. 

Figure 26, Table 22 and Table 23 show the results of the influence of rapid mixing 

velocity and time on CST values, floc size and turbidity when using alum as a 

coagulant.  
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Figure 26. Influence of rapid mixing velocity and time on CST, floc size and 

turbidity (alum) 
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Table 22. The coefficient of correlation of CST value, median floc size and 

turbidity (alum)  

Parameter r 

Velocity & CST -0.29 

Velocity & floc size -0.07 

Velocity & turbidity -0.19 

 

 

Table 23. The coefficient of correlation of rapid mixing time, CST value, 

median floc size and turbidity (alum)  

Parameter r 

Time & CST  -0.35 

Time & floc size  -0.29 

Time & turbidity  0.37 

 

From Figure 26 it can be seen that the CST, floc median size and turbidity 

have almost identical trends. At lower rapid mixing velocity and time, the CST 

values and turbidity measurement become higher and floc size become smaller. 

When increasing the rapid mixing velocity and time, the CST and turbidity also 

decrease, as more effective contact between the coagulant and the particles is 

achieved; as a consequence, the floc size increases. As the rapid mixing velocity 

and time increases further, the CST and turbidity values continue to increase until 

the optimum rapid mixing velocity and time have been reached. When the 
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optimum rapid mixing velocity and time have been exceeded, the floc size is 

reduced because the breakage process dominates over floc formation.  

Tables 22 and 23 indicate that the CST value, floc size and turbidity are 

correlated with each other when considering rapid mixing velocity and time. 

Rapid mixing velocity and time without an initial value (0 rpm) have similar 

impacts on CST, floc size and turbidity. Floc size and turbidity results have 

confirmed CST value in term of gradual increasing rapid mixing velocity and 

rapid mixing time using alum as a coagulant. 

 

5.3.2.2 Ferric as a Coagulant 

The experiment with rapid mixing velocity and time was repeated, but with ferric 

as the coagulant. Figure 27, Table 24 and Table 25 present the results of this 

investigation. 
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Figure 27. Influence of rapid mixing velocity and time on CST, floc size and 

turbidity (ferric) 

 

Table 24. The coefficient of correlation for rapid mixing velocity, CST value, 

floc size and turbidity (ferric)  

Parameter r 

Velocity & CST -0.06 

Velocity & median size  -0.75 

Velocity & turbidity -0.15 
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Table 25. The coefficient of correlation for rapid mixing time, CST value, 

median floc size and turbidity (ferric)  

Parameter r 

Time & CST 0.13 

Time & median size  0.30 

Time & turbidity  0.49 

 

All the coefficient correlation values in Tables 24 and 25 show that, in 

general, rapid mixing velocity and rapid mixing have little impact on CST values, 

even though when examined in more detail, rapid mixing velocity is seen to have 

a good correlation with median floc size. Increasing turbidity reduces the median 

floc size, but this effect is insufficient to affect CST and turbidity.  

Rapid mixing time slightly correlates with turbidity. Except for the 

correlation between rapid mixing velocity and median floc size, all the results 

verify the CST value that rapid mixing velocity and time does not have an 

important influence on CST value. Changing the coagulant to ferric resulted in the 

CST value, median floc size and turbidity producing the same relationship with 

rapid mixing velocity and rapid mixing time. This confirms that the CST is not 

sensitive to increasing rapid mixing velocity and rapid mixing time. 

 

5.3.2.3 Moringa oleifera as a Coagulant 

The effects of Moringa oleifera on the relationship between CST value, floc size 

and turbidity are shown in Figure 28, Table 26 and Table 27.  
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Figure 28. Influence of rapid mixing velocity and time on CST, floc size and 

turbidity (Moringa oleifera) 
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Table 26. The coefficient of correlation of rapid mixing velocity, CST value, 

median floc size and turbidity (Moringa oleifera)  

Parameter r 

Velocity & CST 0.73 

Velocity & median size  0.38 

Velocity & turbidity  -0.55 

 

 

Table 27. The coefficient of correlation of rapid mixing time, CST value, 

median floc size and turbidity (Moringa oleifera)  

Parameter r 

Time & CST 0.48 

Time & median size  0.70 

Time & turbidity  0.28 

 

Figure 28 indicates that the influence of rapid mixing velocity and rapid 

mixing time on the CST value and median floc size look similar. Turbidity is the 

exception.  

From Table 26, the coefficient of correlation data for rapid mixing velocity 

shows that floc size and turbidity values do not verify the CST value. Only rapid 

mixing velocity has a significant impact on turbidity, though the correlation is not 

very good. Increasing rapid mixing velocity increases the CST value, but there is 

no effect on floc size and the turbidity reduces. Although the floc size and 
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turbidity do not correlate well with the CST results, this still indicates that rapid 

mixing velocity is not important to the CST value, floc size or turbidity result. 

These figure and tables show that turbidity verifies the CST value in its 

relationship with rapid mixing time but not with floc size. The relationship 

between the CST value and turbidity with rapid mixing time is poor. However, 

floc size has a good relationship with rapid mixing time. This data indicates that 

increasing floc size does not have a beneficial effect on the CST value. It seems 

that even though the floc size becomes larger, there is still no beneficial effect on 

the CST value and turbidity. In summary, with Moringa oleifera increasing rapid 

mixing velocity and time are not important to the CST value. 

 

5.3.3 The Effect of Coagulants on CST, turbidity and floc size 

The comparison of the effect of different coagulants on sludge dewaterability was 

based on CST and turbidity values. In order to obtain a comparison from particle 

size analysis results, a further comparison must be made, and this is presented in 

Figure 29. In this investigation, a magnetic stirrer was again used as the mixer.  

Figures 29a) and 29b) illustrate the performance of different coagulants in 

terms of CST and turbidity. Figure 29c) shows the floc size data. All of the graphs 

show similar trends, that ferric and alum are almost identical in term of CST, 

turbidity and floc size. They produce lower CST and turbidity results, and larger 

floc sizes than when using Moringa oleifera as a coagulant.  
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Figure 29. Comparison of different coagulants on CST, turbidity and floc size 

 

The turbidity and floc size results confirm those results described in 

Chapter 4. In the previous results, alum and ferric have almost the same effect on 

CST values. Moreover, they have a more positive impact than Moringa oleifera. It 

appears that the presence of coagulant hydrolysis products plays an important role 

in determining the CST value, floc size and turbidity. This investigation has 

shown that alum and ferric, which contain precipitated coagulant species, have 

lower CST values, larger floc sizes and lower turbidity results. Moringa oleifera 

floc does not contain precipitated coagulant, and the results show higher CST 

values, smaller floc sizes and higher turbidity. In summary, the coagulant 
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comparison shows that the higher CST value results in a higher turbidity value, 

and lower floc sizes. These results also indicate that sludge dewaterability, 

turbidity and particle size are inter-related.  

 

5.3.3 The Effect of Temperature 

5.3.3.1 Ferric as a Coagulant 

The CST results showed that alum and Moringa oleifera sludge dewaterability are 

influenced by changes in temperature; as the temperature increases, sludge 

dewaterability is reduced. This was not evident in the ferric CST results. Using 

ferric as a coagulant and altering the temperature revealed that ferric was not 

affected by changes in temperature. Following the investigation described in 

Chapter 4, tests were carried out with temperatures of 16 C, 20 C and 26 C, using 

a particle size analyzer to observe the particle size and temperature (Figure 30). 

Figure 30 indicates that at a range of temperatures, ferric has a different 

effect on the CST, turbidity and floc size. Since the effect for each parameter is 

different, so no conclusion can be drawn from these results. The impact trends of 

temperature on these factors are irregular. It seems that the inconsistency of ferric 

in responding different temperatures has indicated about no effect of temperature 

on CST value using coagulant ferric. The particle size analyzer and turbidity 

results confirmed that the sludge dewaterability when using ferric is virtually 

unaffected by differences in temperature. As explained in Chapter 4, this is 

because temperature did not significantly influence the rate of metal ion 

precipitation, and for temperatures between 1 and 23 C, temperature did not affect 

the rate of iron precipitation (Moris & Knocke, 1984). Furthermore, ferric 
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hydrolysis product at 20 C and 5 C were almost identical if pOH remained 

constant (Hanson et al., 1990). 

 

 

 

 

Figure 30. The effect of using ferric at different temperatures 
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The particle size analysis allows the statistical distribution of floc sizes to be 

examined. Particle size distribution graphs illustrate the floc size distribution due 
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explanation of the process in each sample, and its influence on floc size and, 

ultimately, on sludge dewaterability. 

 

5.4.1 Synthetic Raw Water 

Synthetic raw water has an inorganic content. Particle size data from this study 

allows for an assessment of the distribution of floc sizes. Each data point was 

based on three readings from the particle size analyzer. Particle size statistical 

distribution graphs illustrate the floc size distribution influenced by the 

coagulation process (Figure 31). Floc diameter distribution is in X axis, a 

percentage of similar floc size (q) is in first Y axis and the accumulative 

percentage of similar floc size (undersize) is in the second Y axis. 

 

Figure 31. General synthetic raw water floc size distributions 
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means that the coagulation process is not effective in increasing synthetic raw 

water floc size. Corresponding general particle size analysis indicated a small 

range of uniform floc distribution (concentrated around 7 µm) with kurtosis and 

skewness values of 3.51 and 0.47, respectively. The kurtosis value indicates that 

the particle size distribution of this sample is extremely leptokurtic (i.e. narrow 

with a sharp peak). Moreover, there is very little skewness in the distribution. This 

data verifies the data presented in Chapter 5.2, that coagulation has no impact at 

all on kaolin floc size.  

 

5.4.2 Synthetic Domestic Wastewater 

In this investigation the recipe for synthetic domestic wastewater has ten different 

ingredients. The purpose of using this water sample was to obtain further 

information about the influence of different water compositions on floc size.  

 

Figure 32. General synthetic domestic wastewater floc size distribution 
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Figure 32 indicates the corresponding general particle size distribution for 

synthetic domestic wastewater; it has different floc size after coagulation compare 

to floc size before coagulation process. This particle distribution has no clear 

peak, unlike the distribution of raw water (Figure 31). Synthetic domestic 

wastewater has a wider range of particle sizes and a larger mean floc size than 

synthetic raw water. The distribution can be described as platykurtic (i.e. a wide 

and flat profile) with an asymmetric particle size distribution and a tendency 

towards coarse characteristics. The synthetic domestic wastewater may also have 

a different impact on the floc formation process. A synthetic domestic wastewater 

floc is characterized more by its size, while a synthetic raw water floc is 

influenced considerably by its density, as indicated by the poor correlation 

between the CST value and floc size. 

Synthetic domestic wastewater, with its ten different ingredients, produces 

a wider range of particle sizes and larger flocs. In contrast, synthetic raw water, 

which has only a single ingredient, produces a narrow particle size range and 

relatively small flocs. This might be explained by the more likely presence of 

naturally developing microorganisms within synthetic domestic wastewater, 

compared to the synthetic raw water. The presence of any microorganism is 

associated with a relatively large surface area (Jin et al., 2003), ultimately 

affecting the floc size distribution.  

 Coagulation increases the floc size of synthetic domestic wastewater. This 

indicates that water composition influences floc size. 
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5.5 Summary 

Observation of floc sizes using the particle size analyzer was carried out. The 

results make it clear that for synthetic raw water, which has a single ingredient, 

small flocs are produced and there is no correlation between sludge dewaterability 

and floc size. Synthetic domestic wastewater produced larger flocs, so the study of 

floc size was continued by using this sample. 

Using synthetic domestic wastewater, floc size had a better correlation 

with CST, rapid mixing velocity and turbidity when using alum and ferric as a 

coagulant. The floc sizes analysis show that the magnetic stirrer is the most 

effective mixer shape, confirming the CST and turbidity values. Alum and ferric, 

in contrast to Moringa oleifera, produces a sludge with larger floc sizes, thus 

lowering the sludge dewaterability. Using the floc size data, it was shown that the 

performance of ferric as a coagulant was insensitive to temperature, which is 

consistent with the CST test result. The study of water samples’ statistical 

distribution indicates the importance of floc size on sludge dewaterability. It 

appears that the wider the range of floc size and the larger the size of floc, the 

lower the sludge dewaterability. The floc size and turbidity results correlate well 

with the CST data. 

The next chapter will present the data from the SRF results and the 

comparison with CST values. 
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CHAPTER 6 

SPECIFIC RESISTANCE TO FILTRATION 

(SRF) RESULTS AND DISCUSSION 

 

6.1 Introduction 

Along with the CST, Specific Resistance to Filtration (SRF) is one of the most 

common methods of measuring sludge dewaterability. As the SRF result was 

intertwined with the CST result in many investigations (Buyukkamaci, 2004; 

Scholz 2005, 2006; Sawalha, 2010), it was important to carry out an investigation 

to verify the CST results. 

 

6.2 Synthetic Raw Water 

Previous results using the CST apparatus, the turbidimeter and the particle size 

analyzer indicated a general related trend. In order to explore further the influence 

of different parameters on sludge dewaterability, the SRF test was carried out as 

an alternative measurement of sludge dewaterability. Synthetic raw water was 

used with different mixer shapes, different rapid mixing velocities and ferric as a 

coagulant (Table 28 and Figure 33). Ferric was used as it produces the lowest 

CST value. 

 


 The content of this chapter is being under review as a manuscript to the Journal of Separation 

and Purification Technology. 

Fitria, D., Scholz, M. and Swift, G.M. Sludge dewaterability testing: relationship between 

capillary suction time and specific resistance to filtration. Under review for Journal of Separation 

and Purification Technology. 
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Table 28. Descriptive statistic of SRF value in responding different mixer 

shapes 

Mixer Parameter SRF value 

Radial mean 18.03 

 

min 17.44 

 

max 18.60 

 

std 0.33 

Axial mean 56.72 

 

min 54.33 

 

max 57.85 

 

std 1.06 

Wheel mean 18.66 

 

min 18.20 

 

max 19.65 

 

std 0.41 

Magnetic mean 52.57 

 

min 50.79 

 

max 53.98 

 

std 0.88 

3-blades mean 30.05 

 

min 29.21 

 

max 30.79 

 

std 0.51 
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Figure 33. The effect of mixer and rapid mixing velocity on SRF using 

synthetic raw water 

Figure 33 presents the results of this stage of the investigation. Each mixer 

responds to different rapid mixing velocity in a different way. The SRF result 

shows that each mixer shape produces a different SRF value, except for radial and 

wheel, which have the same effect on SRF. Radial and wheel mixers are also the 

best shape to produce the lowest SRF.    
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 In response to rapid mixing velocity, in general at the beginning of the 

experiment lower intensity resulted in lower SRF values. With an increase in 

rapid mixing velocity the SRF value also increased up to a certain point, after 

which it began to decrease. Based on the graph f) in Figure 33, rapid mixing 

velocity and SRF trends are almost similar to CST, turbidity and floc size. This 

trend is due to the difference in floc condition produced by different rapid mixing 

velocities. As explained in Chapter 5, Muyibi and Evison (1995) and AWWA 

(1999) observed that the different rapid mixing velocities produce different 

coagulation pathways, each pathway producing a different coagulant hydrolysis 

product. Therefore, this affects the floc formation through the interaction between 

the coagulant and the contaminant. Furthermore, the CST and SRF results can be 

compared in order to explore the relationship between the two tools (Figure 34). 

 

 

Figure 34. Comparison of CST and SRF results 
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Figure 34 shows that for different rapid mixing velocities, the CST and 

SRF trends are quite similar. Both CST and SRF results show almost the same 

response for sludge dewaterability, even though a variation in rapid mixing 

velocity was employed.   

With the CST test as a measurement apparatus, the magnetic stirrer 

produced the lowest sludge dewaterability; in contrast, the four other types of 

mixer producd almost similar trends (Figure 34a). With the SRF test as a 

measurement apparatus (Figure 34b), the wheel and radial mixer shapes produced 

the lowest SRF results, and the axial mixer produced the highest SRF value. 

Based on this result, wheel and radial are the most effective mixers compared to 

axial, 3-blade and the magnetic stirrer. 

SRF values show that there is a significant impact of the mixer shape on 

sludge dewaterability. Figure 34b reveals that different shapes of mixer do have a 

significant impact on sludge dewaterability. Comparing CST and SRF results by 

using a synthetic raw water sample, the difference is quite significant. 

 

6.3 Synthetic Domestic Wastewater 

Following the previous investigation, synthetic domestic wastewater was used as 

the water sample. Using these two different compositions of water, the CST 

apparatus, turbidimeter and particle size analyzer yielded similar results. In order 

to verify the effect of water composition, further research was conducted using the 

coagulants ferric and alum. 



134 
 

6.3.1 Impact of Rapid Mixing Velocity  

Different parameters such as mixer shape, rapid mixing velocity and rapid mixing 

time, coagulant and temperature were also used in this study. Table 29 and Figure 

35 present the effect of different mixer shapes and different rapid mixing velocity 

on the SRF test results. 

Table 29. Descriptive statistic of SRF value in responding different mixer 

shapes (rapid mixing velocity) 

Mixer Parameter SRF value 

Radial mean 51.25 

 

min 49.57 

 

max 53.09 

 

std 1.33 

Axial mean 77.87 

 

min 75.10 

 

max 83.09 

 

std 2.89 

Wheel mean 142.29 

 

min 135.04 

 

max 155.81 

 

std 6.28 

Magnetic mean 248.15 

 

min 238.13 

 

max 257.02 

 

std 7.56 

3-blades mean 65.33 

 

min 62.83 

 

max 71.13 

 

std 2.76 
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Figure 35. Effect of different mixers and different rapid mixing velocity on 

SRF value 
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Table 30. Coefficient of correlation of rapid mixing velocity and SRF value 

using a synthetic domestic wastewater sample  

Mixer Shape Parameter r 

Radial Velocity & SRF -0.62 

   Axial Velocity & SRF 0.68 

   Wheel Velocity & SRF 0.19 

   Magnetic Velocity & SRF 0.06 

   3-blade Velocity & SRF 0.29 

      

 

Figure 35 shows the effect of different rapid mixing velocity on the SRF 

varies. The graphs show a fluctuating trend and the coefficient of correlation in 

Table 30 reveals a variable relationship between rapid mixing velocity and SRF 

value. Only in using the radial shape did rapid mixing velocity have a beneficial 

relationship with SRF. In general, this is similar to the CST results, where the 

effect of rapid mixing velocity was not significant on sludge dewaterability. To 

compare this SRF value and the CST value, tests using different mixer shapes 

were carried out, presented in Figure 36 and Table 31. 
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Figure 36. Effect of mixer and rapid mixing velocity on CST and SRF 

 

Table 31. CST and SRF rapid mixing velocity coefficient of correlation values 

using a synthetic domestic wastewater sample  

Mixer Shape Parameter r 

Radial CST & SRF -0.07 

   Axial CST & SRF 0.72 

   Wheel CST & SRF 0.09 

   Magnetic CST & SRF 0.12 

   3-blades CST & SRF 0.27 
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The correlation of rapid mixing velocity and CST and SRF values was 

good only when using the axial impeller; it was poor for other four mixers. The 

above comparison also suggests that different mixers have different impacts on 

SRF results. The radial mixer produced the lowest SRF values, followed by 3-

blade, axial and wheel, with magnetic stirrer as the highest. These results differ 

from those using synthetic raw water. The difference in ingredients seems to bring 

about a change in the coagulation mechanism, and thus in the SRF value. In the 

case of comparing CST and SRF results, there are distinctive trends between the 

CST and SRF values. As explained before, with the CST value, only the magnetic 

stirrer produced distinctive sludge dewaterability, while the other four shapes all 

showed the same trend as each other. On the other hand, for the SRF value, every 

mixer produced different sludge dewaterabilities.  

 

6.3.2 The Impact of Rapid Mixing Time 

SRF observation continued by investigating the effect of different rapid mixing 

times on the SRF test. In the previous results with CST, turbidity and floc size 

followed a similar trend, with no significant impact of different rapid mixing 

times on these factors. Table 32 and Figure 37 present the effect of different mixer 

shapes and different rapid mixing times on SRF values. 
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Table 32. Descriptive statistic of SRF value in responding different mixer 

shapes (rapid mixing time) 

Mixer Parameter SRF value 

Radial mean 390.90 

 

min 372.81 

 

max 422.63 

 

std 18.93 

Axial mean 13.09 

 

min 12.60 

 

max 13.93 

 

std 0.42 

Wheel mean 178.15 

 

min 157.99 

 

max 206.13 

 

std 15.79 

Magnetic mean 22.44 

 

min 20.66 

 

max 26.05 

 

std 1.53 

3-blades mean 104.72 

 

min 99.65 

 

max 113.97 

 

std 4.60 

 

 

 

 

 

 



140 
 

  

 

 

 

 

Figure 37. The effect of mixer shape and rapid mixing time on SRF value 
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Table 33. Coefficient of correlation for rapid mixing time and SRF using 

synthetic domestic wastewater  

Mixer Shape Parameter r 

Radial Time & SRF -0.33 

   Axial Time & SRF -0.14 

   Wheel Time & SRF 0.81 

   Magnetic Time & SRF -0.33 

   3-blade Time & SRF 0.44 

      

 

Figure 37 shows that different mixers yield different SRF results. The 

radial mixer produced the lowest SRF, and the wheel mixer the highest. Different 

rapid mixing times, except for the wheel impeller, had no significant impact on 

the SRF value. This observation is aligned with those from the CST experiments, 

turbidity and floc size investigations, that rapid mixing time does not have a 

significant impact on sludge dewaterability.  

 

6.3.3 Alum as a Coagulant 

Alum was used as a coagulant with different shapes of mixer, different rapid 

mixing velocities and the synthetic raw water sample. The purpose of this part of 

the study was to investigate the effect of choice of coagulant on sludge 

dewaterability as measured by the SRF. As part of this investigation, other process 

variables were also considered, including mixer shape, mixing velocity and water 

sample composition. Table 34 and Figure 38 show the results of these 

investigations.  
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Table 34. Descriptive statistic of SRF value in responding different mixer 

shapes  

Mixer Parameter SRF value 

Radial mean 518.24 

 

min 496.18 

 

max 540.39 

 

std 13.55 

Axial mean 373.44 

 

min 348.65 

 

max 405.81 

 

std 23.06 

Wheel mean 197.68 

 

min 181.77 

 

max 225.13 

 

std 12.31 

Magnetic mean 25.39 

 

min 24.26 

 

max 27.33 

 

std 0.96 

3-blades mean 236.29 

 

min 0.32 

 

max 540.39 

 

std 188.96 
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Figure 38. Relationship between coagulant, mixer shape and rapid mixing 

velocity on SRF value 
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Different rapid mixing velocities while using different mixer shapes 

exhibited fluctuating trends, similar to those produced from the CST, turbidity and 

floc size investigations presented earlier. There was a similar response to changes 

in the rapid mixing velocity for four of the mixers, the radial, axial, wheel, and 

magnetic. The coefficient of correlation between rapid mixing velocity and SRF 

(Table 35) are similar to previous results, that rapid mixing velocity does not have 

a beneficial impact on the SRF value.    

   

Figure 39. Comparison of CST and SRF results 
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 The coefficient of correlation between CST and SRF results shows a poor 

association, with the exception of the 3-blades results. This supports the 

contention that CST and SRF are not related for certain water treatment process 

variables.  

 

6.4 Comparison of Different Coagulants on CST and SRF value 

Ferric, alum and Moringa oleifera were compared in this stage of the 

investigation, using the magnetic stirrer to examine the influence of different 

coagulants on sludge dewaterability in terms of the SRF. The results are presented 

in Figure 40. 

        

Figure 40. Influence of coagulant on SRF value 
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produced the lowest CST values followed by alum and Moringa. Again, this 

suggests that the CST and SRF tests do not appear to correlate well when different 

coagulants are used.  

 

6.5 Influence of Temperature 

6.5.1 The Effect of Temperature on the SRF value  

It was shown previously that changing the water sample composition, rapid 

mixing velocity and rapid mixing time produces different trends in terms of the 

performance of different mixers at a constant temperature of 20ºC. Each of these 

parameters had a different effect on the test results. Results of exploring further 

the effect of different shapes of mixer at a different constant temperature (26ºC) 

using SRF are presented in Figure 41. 

 

 

Figure 41. The effect of temperature on mixer performance using the SRF 
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 The increase in temperature produced a different trend in the results, 

compared with previous test results. In the previous result, the radial mixer 

produced the lowest SRF value and the magnetic mixer the highest. As with 

previous experimental results, SRF appears to be insensitive to rapid mixing 

velocity. 

 

6.5.2 Comparison of temperature effects on CST and SRF value 

From the experimental work presented earlier, it appears that the effectiveness of 

the coagulant ferric as part of the water treatment process is unaffected by the 

operating temperature. This conclusion is based on the experiments using CST. 

When using SRF, however, a different conclusion was reached. This is illustrated 

in Figure 42, in which the SRF results are presented for the coagulant ferric at 

three different operating temperatures. It is clear that when using SRF as a 

measure of sludge dewaterability, temperature does affect the performance of the 

coagulant ferric in the treatment process.  

 

Figure 42. Influence of temperature on SRF value using ferric 
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Linear correlation between temperature and the SRF value is probably due 

to the effect of the negative pressure in SRF testing. Unlike CST, which uses 

positive (atmospheric) pressure, SRF uses constant negative (vacuum) pressure. 

From this result, it seems that the effect of temperature is more apparent when 

using negative pressure. The higher temperature reduces the sludge viscosity and 

makes it easier for the sludge to release water under the influence of negative 

pressure. This does not happen when using positive pressure. This result and 

hypothesis need further investigation to ensure their validity.   

  

6.6 The Influence of water composition on SRF value 

The CST results for raw water and wastewater indicated that sludge 

dewaterability is unaffected by water composition. In contrast, the floc size 

investigation revealed that the wastewater had larger particle sizes than the raw 

water. According to the floc size investigation, the CST value of domestic 

wastewater should be lower than the CST value of raw water. To verify or 

contradict these results, SRF was used with different water samples. The results 

are presented in Figure 43. 
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Figure 43. Influence of water composition on CST and SRF results 
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6.7 Correlation between CST and SRF results  

It is evident that the CST and SRF results are interrelated for some factors, but are 

not correlated or are poorly correlated for others. SRF and CST results agree that 

the gradually increasing rapid mixing velocity and rapid mixing time are not 

beneficial to sludge dewaterability.  

In the case of the effect of different mixer shape, coagulant, temperature 

and different water sample composition, the comparison of the results of the CST 

and SRF tests show distinctive trends. Investigating the different shapes of mixer 

the CST results show that only the magnetic stirrer has a different impact on 

sludge dewaterability; the other mixers have a similar degree of influence to each 

other. The SRF results show that the influence of each mixer shape on the sludge 

dewaterability varies or inconsistent to CST, turbidity and floc size values.  

The CST test results indicated that ferric was the most effective coagulant 

with the lowest sludge dewaterability, followed by alum and Moringa oleifera, 

where alum and Moringa oleifera had a similar influence to each other. In 

contrast, using the SRF test, alum appears to be the most effective coagulant,  

followed by Moringa oleifera and ferric. In addition, the CST test results were 

unaffected by temperature when using the coagulant ferric. However, the SRF test 

indicates that temperature does influence sludge dewaterability. The SRF results 

correlate well with temperature change, where a lower temperature produced a 

higher SRF value, and a higher temperature produced a lower SRF value. 

From the results of the experimental work, it appears that for mixer shape, 

coagulant, temperature and water composition, the correlation between CST and 

SRF is poor. There has been limited work investigating the relationship between 
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CST and SRF which compare about different materials i.e mixer shapes, rapid 

mixing velocity and time, coagulants and temperature. Investigations by Smollen 

(1986), Chang et al. (2001), Lee and Liu (2001) also found that CST and SRF are 

not correlated in responding to different water and polymer compositions. The 

relationship between these two tests is undoubtedly influenced by the difference 

in test equipment and the difference in test methodology (Chang et al., 2001; Lee 

& Liu, 2001). 

The overall study outcome is supported by Smollen (1986), Chang et al. 

(2001) and Lee and Liu (2001), who also found that CST and SRF do not 

correlate well for different water and polymer compositions. This has been 

explained by the differences in test equipment and methodology (Chang et al., 

2001; Lee and Liu, 2001). 

Lee and Liu (2001) observed that the difference in results between CST 

and SRF can be directly linked to the different pressures adopted in their 

respective tests. All CST tests are carried out at atmospheric pressure and SRF 

tests at negative pressure of 80 kPa. 

The processes immediately before measuring the sludge dewaterability by 

CST and SRF also differ. Before measuring with the CST equipment, the floc 

settles and is then separated from the supernatant. Thus, only separated sludge 

was measured for its dewaterability. Concerning SRF, the full solution is used for 

dewaterability measurement. 

The CST operation only requires the sludge to be poured into a funnel. A 

filter paper subsequently filters the sludge and drains off the water. In comparison, 

when applying the SRF test, the sludge is poured into a Buchner funnel in which 
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the filter paper has been placed, and a vacuum suction is then applied to facilitate 

the filtration process. The SRF value is a function of the vacuum filtration 

pressure intensity, the area of the filter paper, the slope of the curve relating 

volume of filtrate and filtration time, filtrate volume, filtered weight, and filtrate 

viscosity. The SRF test considers not only water running time but also many other 

parameters which influence the result. 

Concerning process complexity, the CST test is more stable than the SRF 

apparatus in responding to variability in the coagulation process. The CST value 

is a function of the filter paper properties (depth and thickness), instrument 

characteristics (diameter of the open part of the solar and sensor location) and 

sludge-related properties (solid concentration, filtrate viscosity, sludge cake 

permeability and deposit cake thickness) according to Sanin et al. (2011). The 

equipment and measurement procedure are simpler than those for SRF (Scholz, 

2005; Peng et al., 2011). The CST time requirement is simply the time to flow 

through the filter between two electrodes (Scholz, 2005). 

Despite many investigations showing that the CST and SRF are inter-

related (e.g. Scholz, 2005; Sawalha, 2010, Sawalha & Scholz, 2010), this 

investigation found that the CST and SRF are inter-related for some parameters, 

but are not related for all the water treatment process variables.  

Relating to the floc size and turbidity, it seems that CST is more 

favourable for measuring sludge dewaterability than SRF. The CST value has 

been verified by floc size and turbidity results. CST is also quicker to measure, 

easier to operate and cheaper than SRF. Other worker also said the same thing that 

CST provides a simple, rapid and inexpensive method to measure sludge 
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dewaterability (Scholz 2005, 2006). In contrast, SRF test is a more difficult to 

execute, time consuming, and expensive test and no specific standard device to 

measure the SRF is available (Ayol and Dentel, 2005; Li et al, 2005; Teoh et al, 

2006 and Yukseler et al, 2007).  

 

6.8 Summary 

Different parameters were used in this investigation. Different shapes of mixer, 

different coagulants, different temperatures and different water composition had 

different effects on sludge dewaterability. The influence of these different 

parameters was not constant, especially for mixer shape. If other parameters are 

changed, the effect of different mixer shapes also changes. So, no conclusion can 

be reached about the comparison of different mixer shapes in sludge 

dewaterability. The trend of rapid mixing velocity and rapid mixing time are 

constants and the former has a more significant impact on sludge dewaterability 

than the latter.  

In using rapid mixing velocity and rapid mixing times as the process 

variable, the CST and SRF test results can be correlated. When using different 

mixer shapes, different coagulants, different temperatures, the coagulant ferric and 

different water sample compositions, the CST and SRF test results are not well 

correlated. This is probably because of differences in test procedures and 

equipment. CST is more appropriate to measure sludge dewaterability because it 

has more stable results, and is quicker, easier and cheaper than the SRF apparatus. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Introduction 

 In this final chapter, the conclusions are directly aligned with the 

objectives presented in Chapter 1, and are explained in accordance with the results 

of the literature review and the experimental research. This chapter discusses the 

conclusions relating to: 

 The influence of mixer shape on sludge dewaterability 

 The influence of rapid mixing velocity on sludge dewaterability  

 The influence of rapid mixing times on sludge dewaterability 

 The influence of types of coagulant on sludge dewaterability 

 The influence of temperature on sludge dewaterability 

 The influence of water composition on sludge dewaterability. 

Some recommendations for further study are also identified and presented within 

this chapter. 

 

7.2 The Influence of Different Shapes of Mixer on Sludge Dewaterability 

The CST investigation results show that of the five mixer shapes, the magnetic 

stirrer had the lowest CST value, indicating that this mixer has both the greatest 

influence on sludge dewaterability and the only distinctive results. This is because 

the magnetic stirrer produces the optimum G value for floc formation.  
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The turbidity meter and the particle size indicate similar trends with CST 

value. These three tests indicated that the magnetic stirrer is the most effective in 

terms of sludge dewaterability, producing the lowest turbidity value and the 

largest floc size. The SRF test results, unlike the CST test results, showed that all 

five shapes of mixer produced different degrees of sludge dewaterability; at the 

same time, the magnetic stirrer did not yield the lowest SRF value. This 

investigation reveals that the CST results correlate well with the results from the 

turbidity meter and the particle size analyzer, but showed poor correlation with 

the SRF test results because of the different equipment and different procedures.  

 

7.3 The Influence of Different Rapid Mixing Velocity on Sludge 

Dewaterability  

Rapid mixing velocity itself plays an essential role in CST values, but different 

velocities do not have a significant impact, as confirmed by the coefficient of 

correlation. This means that low rapid mixing velocity is sufficient to decrease 

sludge dewaterability. The floc size, turbidity and SRF results compare favourably 

with the CST results, so that the CST, floc size, turbidity and the SRF values are 

inter-related in terms of rapid mixing velocity . 

 

7.4 The Influence of Different Rapid Mixing Times on Sludge Dewaterability 

In general, rapid mixing time is significant for the CST value, although this 

increasing does not have a significant impact on the CST test results; this is 

supported by the turbidity and floc size analysis. Again, the coefficient of 

correlation confirms this observation. It is plausible that there is an optimum time 
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for the coagulation process, beyond which the rapid mixing time is largely 

irrelevant to the process. Based on the results of the CST, turbidity meter and 

particle size analyzer, a relatively short rapid mixing time might be sufficient to 

produce contact between the coagulant and the colloidal material. This 

investigation reveals, therefore, that there is no difference between the extended 

and shorter rapid mixing times. The SRF results indicate the same trend as the 

CST results, suggesting that for rapid mixing time, CST and SRF are related. This 

is due to using the same preparatory sludge methodology for both CST and SRF. 

 

7.5 The Influence of Different Coagulants on Sludge Dewaterability 

The coagulants alum, ferric and Moringa oleifera had different effects on the CST 

test results, the effect of alum and ferric being similar to each other. Alum and 

ferric have the lowest CST value, while Moringa oleifera produced the highest 

when correlated with the rapid mixing velocity. When considering the rapid 

mixing time, CST values for the three different coagulants were consistent. Alum 

and ferric were affected more by rapid mixing velocity than by rapid mixing time; 

in contrast, Moringa oleifera was affected by rapid mixing time more than by 

rapid mixing velocity. The turbidity and median floc size data verified the CST 

test results. The coagulant ferric produced the lowest turbidity value and the 

largest median floc size, followed by alum and Moringa oleifera. The SRF test 

results indicate that alum was the most effective coagulant, followed by Moringa 

oleifera and ferric, in producing lower sludge dewaterability. This indicates that 

the CST and the SRF test results are not well correlated when using different 

coagulants as the test variable. 
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7.6 The Influence of Different Temperature on Sludge Dewaterability 

A comparison of coagulant efficiency at different temperatures indicated that the 

performance of alum and Moringa oleifera was sensitive to temperature. 

Experimental results showed that higher temperatures produced lower CST values 

and vice versa. Changes in temperature with ferric as a coagulant produced 

consistent with CST test results, suggesting that ferric is insensitive to 

temperature.  

The turbidity and median floc size data supported the CST result that the 

coagulants alum and Moringa oleifera are sensitive to temperature. The data also 

confirmed the relative insensitivity of ferric to temperature changes. However,  

the SRF test results indicated that the performance of the coagulant ferric was 

sensitive to temperature, 26 C producing the lowest SRF test results, followed by 

20 C and 16 C. The results of these experiments indicate a lack of correlation 

between the SRF and CST tests.  

 

7.7 The Influence of Different Water Sample Composition on Sludge 

Dewaterability 

The synthetic raw water and the synthetic domestic wastewater samples resulted 

in almost the same the CST values. The turbidity and median floc size showed 

different trends in the CST values, being higher with synthetic raw water and 

lower with synthetic domestic wastewater. The SRF result was also different from 

the CST value, with the synthetic raw water producing the lowest sludge 

dewaterability. The use of different water composition thus yields an uncorrelated 

relationship between CST and SRF. 
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7.8 Recommendations 

The magnetic stirrer produced the lowest CST and turbidity values, but the largest 

median size in this investigation. Along with optimum G value, only the magnetic 

stirrer had a different mixer position in the coagulation chamber compared to 

other mixer shapes. The mixer companies state that the mixer shapes work at 

specific heights from the bottom of coagulation chamber. As a result of this 

research, it is recommended that companies manufacturing industrial-scale mixers 

should consider those mixer types that best emulate the conditions produced by 

the magnetic stirrer. The coagulation process will therefore produce a better 

quality of treated water and, at the same time, improved sludge dewaterability. 

For the treatment of high turbid water, it would be more effective and 

economic if a lower rapid mixing intensity were used in the coagulation process. 

This research has shown that low mixing intensity is sufficient to achieve 

appropriate coagulation and lower sludge dewaterability. Similarly, a short rapid 

mixing time is sufficient to produce appropriate contact between the coagulant 

and the colloid material. The role of rapid mixing velocity is more important than 

rapid mixing time, so that in designing the coagulation process, it should be given 

greater consideration.  

The effectiveness of Moringa oleifera is influenced more by rapid mixing 

time than by rapid mixing velocity, unlike the coagulants alum and ferric which 

are affected more by rapid mixing velocity. Moringa oleifera should be allowed to 

have a longer time for the rapid mixing stage, because this investigation showed 

that this results in a lower CST value and better correlation.  
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If the temperature varies between 16 C and 26 C in water and wastewater 

treatment plants, it is more appropriate to use ferric as the coagulant, as this 

investigation has proven that ferric is hardly affected by temperature within this 

range. 

The organic content in synthetic domestic wastewater decreases the 

dewaterability of the sludge. In order to increase the efficiency of the coagulation 

process and sludge dewaterability, it is necessary to introduce a preliminary 

treatment to remove or decrease the organic content from wastewater before 

continuing the coagulation process in water and wastewater treatment plants.  
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Appendix 1 

List of research in Coagulation Mixing Area 

 

No 

 

Author and Title of Journal 

Rapid Mixing Parameter  

Conclusion Mixing Velocity Mixing 

Time 

Coagulants Mixer 

Shape and 

Type 

Tank 

Geometry 

Based on  

Industry 

Sludge 

Dewater-

ability 
Coagulation Flocculation Alum Ferric MO 

1 Black & Rice, 1933 

“Formation of floc by 

aluminium sulfat” 

 

√ 

 √ √       Continuous stirring is necessary in the 

conduct of jar test which will check each 

other and give accurate data for plant 

operation 

2 Leentvaar & Ywema, 1980 

“Some dimensionless 

parameter of impeller 

power in coagulation-

flocculation” 

√      √ √   The removal of colloidal compounds at a 

given G value differs with the type of 

stirrer and vessel applied in square tanks 

3 Amirtharajah and Mills, 

1982 

“Rapid mixing design for 

alum coagulation” 

√   √        High-intensity rapid mixing does make a 

significant difference in the quality of the 

settled water produced only for a specific 

region of the alum stability diagram 

4 McConnachie, 1989 

“ Turbulence intensity of 

mixing in relation to 

flocculation” 

 √  √   √    Turbulence intensity is shown to be an 

alternative measure of flocculation 

efficiency to velocity gradient or power 

input. A stirrer that extends throughout 

the volume of the reactor and has sharp-

edged blades is shown to be more 

versatile than the other types. 

 

5 Torres et.al, 1990 

“Floc Structure and 

Growth Kinetics for Rapid 

Shear Coagulation 

√  √        Analysis of the model 

suggests hydrodynamic interactions can 

be neglected in kinetics calculations and, 

further, that a sticky-floc attraction 
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of Polystyrene Colloids” suffices for our 

purposes. 

6 Rossini et.al, 1990 

“Optimization of the 

coagulation-flocculation 

treatment: Influenced of 

rapid mixing parameters” 

√  √ √ √      Rapid mix time and velocity have a 

strong influence on  coagulation results. 

7 Mhaisalkar et.al, 1991 

“Optimizing physical 

parameter of rapid mixing 

design for coagulation-

flocculation on turbid 

water” 

√ √ √ √    √   The physical parameters of rapid mix 

such as velocity gradient, duration of 

mixing and the container geometry have 

a great influence on the 

flocculation process and that their 

optimum combination is dependent on 

the turbidity of suspension 

8 Clark & Flora, 1991 

“Floc Restructuring in 

Varied Turbulent Mixing” 

 √  √       Floc properties did not vary 

monotonically with increasing breakup 

mixing intensity 

9 M.R. Wiesner, 1992 

“Kinetics of aggregate 

formation in rapid mix” 

√   √       Mixing conditions in most full scale 

installations are likely to favor the 

formation of aggregate of precipitated 

coagulant particles that are sufficiently 

large for breakup and aggregate 

restructuring to control the size 

distribution of materials leaving the rapid 

mixing basin. 

10 Muyibi & Evison, 1995 

“Optimizing physical 

parameters affecting 

coagulation of turbid water 

with moringa 

oleifera seeds” 

√ √    √     When M. oleifera was used in 

coagulating kaolin suspension, the 

following factors were found to be 

highly significant: the initial turbidity of 

the water and M. oleifera dose. So also 

were the interactions between 

initial turbidity and M. oleifera dosage, 

initial turbidity and rapid mix, initial 

turbidity and slow mix,M. oleifera dose 

and rapid mix, slow mix and time of 

slow mix. 
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11 Jiang & Logan, 1996 

“Fractal dymensions of 

aggregates from shear 

devices” 

√          The lack of correlation between fractal 

dimension and ionic strength in the 

paddle mixer is caused by the 

characteristics of aggregate restructuring 

or breakup and reaggregation into more 

dense aggregate from high shear rates 

12 Spicer & Pratsinis, 1996 

“ The effect of impeller 

type on floc size and 

structure during shear 

induced flocculation” 

 √     √    The steady state average floc size is 

shown to depend on the frequency of 

recirculation to the impeller zone and its 

characteristic velocity gradient 

13 Torres et.al, 1997 

“Coagulation-flocculation 

pretreatment of high-load 

chemical-pharmaceutical 

industry wastewater: 

mixing aspects” 

√   √ √  √    It was shown that the selection of the 

right propeller for the coagulation and 

flocculation stages is crucial in 

determining the quality of the treated 

water, as well as the quantity and quality 

of the residual sludges generated in the 

process. 

14 Hobbs & Muzzio, 1998 

“Optimization of a static 

mixer using 

dynamical systems 

techniques” 

      √    Three geometric parameters of static 

produce different mixing efficiency 

15 Biggs & Lant, 1999 

“Activated sludge 

flocculation: on-line 

determination of floc size 

and the effect of 

shear” 

 √ √        The median floc size was found to 

increase until an equilibrium between 

therates of aggregation and breakage was 

reached. At this point, a steady-state floc 

size was maintained 

16 McConnachie & Liu, 1999 

“Design of baffled 

hydraulic channels for 

turbulence-induced 

flocculation” 

 √      √   Coagulation baffled influence the 

coagulation efficiency 

17 Biggs & Lant, 1999 

“activated sludge 

 √ √ √       The median floc size was found to 

increase until an equilibrium 

http://www.sciencedirect.com/science/article/pii/S0273122397003958?_alid=1816958736&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=96&_zone=rslt_list_item&md5=ca6741dfb8c0f6d28f2ba595797ba275
http://www.sciencedirect.com/science/article/pii/S0273122397003958?_alid=1816958736&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=96&_zone=rslt_list_item&md5=ca6741dfb8c0f6d28f2ba595797ba275
http://www.sciencedirect.com/science/article/pii/S0273122397003958?_alid=1816958736&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=96&_zone=rslt_list_item&md5=ca6741dfb8c0f6d28f2ba595797ba275
http://www.sciencedirect.com/science/article/pii/S0273122397003958?_alid=1816958736&_rdoc=3&_fmt=high&_origin=search&_docanchor=&_ct=96&_zone=rslt_list_item&md5=ca6741dfb8c0f6d28f2ba595797ba275
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flocculation: on-line 

determination of floc size 

and the effect of 

shear” 

between the rates of aggregation and 

breakage was reached. At this point, a 

steady-state floc size was maintained. 

18 Rauline, et.al., 2000 

“A comparative 

assessment of the 

performance 

of the kenics and smx 

static mixers” 

      √    Different shape of mixers produce 

different mixing efficiency 

19 Kan & Pan, 2001 

“Time requirement for 

rapid mixing in 

coagulation” 

√   √       Different time in coagulation process 

give a significant impact on charge 

neutralization and sweep flocculation 

20 Heyouni et.al. 2002 

“Hydrodynamics and mass 

transfer in gas–liquid flow 

through static mixers” 

      √    Different hydrodynamics and mass 

transfer of a static mixer with different 

arrangements of mixers 

inside the contactor produce different 

pressure 

drop, bubble diameters and mass transfer 

coefficient  

 

21  Schuetz & Piesche, 2002 

“A model of the 

coagulation process with 

solid particles 

in a turbulent flow “ 

 

√          For the steady state the results represent 

different floc size distributions 

dependent on the solid concentration and 

the energy charge. 

22 Chakraborti et.al, 2003 

“Changes in fractal 

dimension during 

aggregation” 

√ √ √ √       For aggregation of an initially 

monodisperse suspension, the fractal 

dimension was found to decrease over 

time in the initial stages of floc formation 

23 Park et.al, 2003 

“ Examining the effect of 

hydraulic turbulence in 

rapid mixer on turbidity 

√   √    √   In most effective turbidity removal, non-

identical impeller rotating speeds and G 

values in different shapes of jar has been 

found as the most important factor 
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removal with CFD 

simulation and PIV 

analysis” 

24 Niamnuy & Devahastin, 

2003 “Effects of geometry 

and operating conditions 

on the mixing behavior of 

an in-line impinging 

stream mixer” 

√      √    Mixer geometry and rapid mixing 

intensity affect the mixing efficiency 

25 Yukselen & Gregory, 2004 

“The effect of rapid 

mixing on the break-up 

and re-formation of flocs” 

 

√  √ √       For the aluminium-based coagulants it 

was found that, with shorter times 

of rapid mix, larger flocs were formed, 

but only limited re-growth occurred in all 

cases, indicating a significant 

irreversibility of the floc break-up 

process. For cationic polyelectrolytes, 

the re-growth of flocs occurred to a much 

greater extent and with longer rapid mix 

times floc breakage was almost fully 

reversible 

26 Yukselen & Gregory, 2004 

“The reversibility of floc 

breakage” 

√  √        Floc strength and recovery factors were 

found to decrease with 

increased breakage time for most of the 

coagulants tested. It was also found that 

the floc size tends to a nearly constant 

value after an initial abrupt 

fragmentation, with only a very slow size 

reduction over several minutes 

27 Coufort et.al, 2005 

“Flocculation related to 

local hydrodynamics in a 

Taylor–Couette 

reactor and in a jar” 

√ √      √   The floc size 

distributions obtained at the end of each 

stage are different even though the 

hydrodynamic conditions are identical. 

The strong influence of 

the initial population conditions 

(elementary particles or flocs formed 

during break-up stages) is highlighted. 
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28 Colomer et.al, 2005 

“Experimental analysis of 

coagulation of particles 

under low-shear flow” 

√  √        shear provided a means to keep the 

particle number count high for collisions 

to occur but it is small 

enough that the aggregation–breakup 

balance is dominated by aggregation 

29 Bouyer et.al, 2005 

“Experimental analysis of 

floc size distributions in a 

1-L jar under different 

hydrodynamics and 

physicochemical 

conditions” 

√  √ √       floc size depends on the history of 

hydrodynamics conditions 

experienced by the flocs 

30 Regner, et.al., 2006 

“Effects of geometry and 

flowrate on secondary flow 

and the mixing process 

in static mixers—A 

numerical study” 

      √    Different shape of mixers produce 

different mixing intensity 

31 Kilander et. al, 2007 

“Scale-upbeha viour in 

stirred square flocculation 

tanks” 

 √  √    √   The floc structure,strength and thus the 

temporal and spatial evolution of thefloc 

size distribution are inherently affected 

by the flocculation 

mechanisms present in the system. 

32 Cheng et.al, 2008 

“A novel method for on-

line evaluation of floc size 

in coagulation process” 

√ √ √        Shorter slow mixing time did not favor 

the formation of flocs 

33 Xiao et.al, 2008 

“Effects of low 

temperature on coagulation 

of kaolinite 

suspensions” 

√ √ √ √       A greater mixing intensity (38s
-1

) was 

not able to increase the CR anymore, but 

slightly increased the residual turbidity. 

The appropriate slow-mixing 

(flocculation) time can counterbalance 

the slowness of slow coagulation at low 

temperature 

34 Serra et.al, 2008 

“Efficiency of different 

 √         an increase in the shear rate caused a 

reduction in the mean particle size 
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shear devices on 

flocculation” 

35 Ormeci & Ahmad, 2009 

“Measurement of 

additional shear during 

sludge conditioning and 

dewatering” 

√  √       √ When the mixing speed used was higher, 

it took shorter timesto deflocculate the 

contaminant. and due to the low mixing 

intensity, the sample was not fully 

disintegrated even after the extended 

time of mixing 

36 Meroney & Colorado, 

2009 

“CFD simulation of 

mechanical draft tube 

mixing in 

anaerobic digester tanks 

√       √   It was noted that tank mixing may 

deviate from ideal behavior for 

a variety of reasons associated with 

placement of inlets,outlets, stratification, 

and tank geometry 

37 Sawalha, 2010 

“ CST: Developments in 

testing methodology and 

reliability of results”  

 

         √ Sufficient  mixing is needed to increase 

sludge dewatering 

38 Rojas et.al, 2010 

“Influence of velocity 

gradient in a hydraulic 

flocculator on NOM 

removal by 

aerated spiral-wound 

ultrafiltration membranes 

(ASWUF)” 

 √   √      a suitable adjustment of the velocity 

gradient applied in 

the hydraulic flocculation can create an 

optimum floc size, permitting 

an improvement in NOM removal yields 

without exacerbating 

problems of membrane clogging 

39 Wang & Dentel, 2010 

“The effect of polymer 

doses and extended mixing 

intensity on the geometric 

and 

rheological characteristics 

of conditioned anaerobic 

digested sludge (ADS)” 

√ √        √ The results revealed that polymer doses 

had a distinct effect on the CST values of 

conditioned ADS, but that extended 

mixing intensity (EMI) did not show 

such effect at specific polymer dosage. 

Higher extended mixing intensities 

higher than 180rpm  can lead to stronger 

shear 

and deflocculation occurrence 
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40 Wu, 2011 

“CFD investigation of 

turbulence models for 

mechanical 

agitation of non-

Newtonian fluids in 

anaerobic digesters” 

      √    Through comparing power and flow 

numbers for the PBT impeller obtained 

from computational fluid dynamics 

(CFD) with those from the lab 

specifications, the realizable ke3 and the 

standard keu models are found to be 

more appropriate than the other 

turbulence models 

41 Yu et. al, 2011 

“The role of mixing 

conditions on floc growth, 

breakage and regrowth” 

√ √ √ √       Increasing the rapid mix time led to a 

decrease in the final floc size and the 

steady-state floc size decreased with 

increasing slow stirring rate 

42 Zhan et.al, 2011 

“Influence of velocity 

gradient on aluminum and 

iron floc property for 

NOM removal from low 

organic matter 

surfacewater by 

coagulation” 

√   √       Different rapid mixing velocity produces 

different size and strength flocs 
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APPENDIX 2 
 

Preliminary Testing Result 

1. Optimum Coagulant Dosage 
 Table A1 

 Sample : synthetic raw water 

 Coagulant: alum 

 

Dose (mg Al/l) CST (s) 

3.6 24.8 

7.2 25.9 

10.8 26.1 

14.4 23.4 

18.0 22.3 

21.6 20.1 

25.2 20.0 

28.8 19.8 

 

Table A2 

Sample : synthetic raw water 

Coagulant: ferric 

Dose (mg Fe/l) CST (s) 

3.4 25.9 

6.9 24.8 

10.3 23.6 

13.8 22.9 

17.2 19.8 

20.7 19.2 

24.1 19.0 

27.5 18.8 

 

Table A3 

Sample : synthetic raw water 

Coagulant: Moringa Oleifera 

 

Dose (mg MO/ml) CST (s) 

10 31.7 

20 25.3 

30 25.0 

40 24.4 

50 23.8 

60 23.0 

70 22.0 

80 21.0 

90 21.2 

100 21.0 
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2. Optimum Rapid Mixing Velocity 
 

Table B1 

 

Sample : synthetic raw water 

 
Coagulant : alum 

  
Parameter : velocity 

  
Mixer : radial 

   

    
Mixing Velocity (rpm) CST (s) Mixing Velocity (rpm) CST (s) 

0 37.0 1050 18.5 

100 17.2 1100 17.0 

150 16.9 1150 16.1 

200 17.0 1200 16.1 

250 17.2 1250 17.8 

300 17.7 1300 15.6 

350 16.8 1350 17.2 

400 17.4 1400 17.1 

450 17.8 1450 17.1 

500 15.8 1500 18.2 

550 16.3 1550 16.2 

600 17.1 1600 16.4 

650 17.3 1650 16.5 

700 15.9 1700 15.5 

750 16.2 1750 17.0 

800 17.4 1800 16.2 

850 16.9 1850 15.3 

900 16.1 1900 16.7 

950 16.7 1950 16.2 

1000 15.9 2000 16.2 
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Table B2 

 

Sample : synthetic raw water 

 
Coagulant : alum 

  
Parameter : velocity 

  
Mixer : axial 

   

    
Mixing Velocity (rpm) CST (s) Mixing Velocity (rpm) CST (s) 

0 37.0 1050 28.4 

100 24.0 1100 27.8 

150 28.0 1150 26.5 

200 28.3 1200 25.2 

250 28.9 1250 23.9 

300 30.3 1300 21.6 

350 32.0 1350 20.2 

400 32.0 1400 19.0 

450 32.3 1450 16.4 

500 32.6 1500 15.1 

550 32.4 1550 16.2 

600 32.2 1600 17.7 

650 31.0 1650 17.4 

700 30.7 1700 18.1 

750 30.5 1750 18.2 

800 30.6 1800 18.8 

850 30.6 1850 17.6 

900 29.7 1900 18.0 

950 29.1 1950 17.6 

1000 28.5 2000 18.1 
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Table B3 

 

Sample : synthetic raw water 

Coagulant : alum 

 Parameter : velocity 

 Mixer : wheel 

  

Mixing Velocity (rpm) CST (s) Mixing Velocity (rpm) CST (s) 

0 39.85 1050 20.80 

100 23.00 1100 20.90 

150 20.00 1150 21.00 

200 19.65 1200 21.05 

250 19.25 1250 21.40 

300 18.40 1300 21.40 

350 18.60 1350 21.30 

400 18.20 1400 21.00 

450 18.10 1450 20.90 

500 18.00 1500 20.80 

550 18.40 1550 20.60 

600 19.40 1600 20.80 

650 20.05 1650 20.50 

700 19.60 1700 20.50 

750 19.50 1750 20.60 

800 19.70 1800 20.60 

850 19.40 1850 20.60 

900 19.80 1900 20.60 

950 20.00 1950 18.30 

1000 20.20 2000 17.10 
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 Table B4 

 

Sample : synthetic raw water 

Coagulant : alum 

 Parameter : velocity 

 Mixer : magnetic 

 

   Mixing Velocity (rpm) CST (s)   

0 37.0   

100 19.3   

150 23.3   

200 25.2   

250 25.5   

300 25.9   

350 26.1   

400 28.6   

450 31.9   

500 19.8   

550 20.4   

600 20.9   

650 21.2   

700 22.2   

750 24.0   

800 26.0   

850 27.0   

900 28.0   

950 23.7   

1000 20.7   

1050 20.2   

1100 20.0   

1150 19.7   

1200 19.4   
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3. Optimum Rapid Mixing Time 

 
  Table C1  

Sample : synthetic raw water 

Coagulant : alum 

Parameter : time 

Mixer : radial 

 

 

Mixing Time (s) CST (s) 

0 37.00 

60 17.28 

90 18.28 

120 20.30 

150 21.36 

180 22.20 

210 22.00 

240 21.90 

270 21.00 

300 21.18 

330 21.50 

360 19.64 

390 18.93 

420 18.90 

450 19.20 

480 19.40 

510 18.76 

540 17.86 

570 16.00 

600 16.00 
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Table C2 

 

Sample : synthetic raw water 

Coagulant : alum 

Parameter : time 

Mixer : axial 

 

Mixing Time (s) CST (s) 

0 37.00 

60 24.02 

90 18.44 

120 18.36 

150 16.40 

180 16.92 

210 17.20 

240 17.24 

270 17.30 

300 18.40 

330 19.44 

360 21.60 

390 22.20 

420 21.30 

450 21.66 

480 20.44 

510 19.77 

540 19.40 

570 17.78 

600 16.73 
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Table C3 

 

Sample : synthetic raw water 

Coagulant : alum 

Parameter : velocity 

Mixer : magnetic 

 

Mixing Time (s) CST (s) 

0 37.00 

60 19.30 

90 14.22 

120 15.96 

150 16.74 

180 16.28 

210 16.27 

240 16.60 

270 17.66 

300 16.60 

330 16.46 

360 16.34 

390 16.72 

420 17.95 

450 18.56 

480 17.56 

510 18.26 

540 18.32 

570 20.84 

600 21.78 
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Table C4 

 

Sample : synthetic raw water 

Coagulant : alum 

Parameter : time 

Mixer : 3-blades 

 

Mixing Time (s) CST (s) 

0 37.00 

60 21.00 

90 22.50 

120 19.50 

150 20.45 

180 20.75 

210 19.30 

240 16.70 

270 20.80 

300 18.45 

330 20.50 

360 19.50 

390 19.60 

420 18.70 

450 20.50 

480 20.90 

510 20.30 

540 20.40 

570 20.30 

600 20.00 
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Primary Testing Result 

1. CST Synthetic raw water 

 
Table C5. The Influence of Mixer Shape, Rapid Mixing Velocity on CST (synthetic 

raw water) 

 

Velocity (rpm) CST Value (s) Coagulant 

  Radial Axial Wheel Magnetic 3-blades   

0 37.00 37.00 37.00 37.00 37.00 

 60 24.00 23.50 28.50 22.60 21.23 

 65 22.30 23.10 31.10 19.60 19.60 

 70 22.80 20.90 23.00 17.40 21.73 Alum 

75 21.60 22.80 19.20 15.40 21.60 

 80 19.83 25.60 22.80 18.20 24.10 

 85 22.47 23.30 21.20 18.50 20.15 

 90 21.23 22.40 20.10 19.00 20.50 

 95 22.03 20.30 24.00 17.40 22.60 

 100 22.67 24.70 20.90 15.10 20.25 

 % removal 40.26  37.95  36.69  50.99  42.41 

 

       0 39.85 39.85 39.85 39.85 39.85 

 60 26.53 21.00 19.70 20.00 21.37 

 65 21.50 20.50 22.37 20.60 19.53 

 70 21.00 21.40 19.27 17.13 19.43 

 75 22.83 19.83 20.53 18.83 20.53 Ferric 

80 24.90 20.90 20.63 18.50 20.17 

 85 21.10 21.13 21.00 19.03 21.73 

 90 21.97 21.43 20.57 18.97 21.16 

 95 23.06 22.63 19.77 19.06 20.53 

 100 29.26 19.73 20.13 19.37 20.83 

 % removal 40.84  47.42 48.70  52.18   48.33 

 

       0 29.30 29.30 29.30 29.30 29.30   

60 30.87 30.27 32.76 24.26 32.37 

 65 31.76 28.97 31.60 21.90 30.70 

 70 28.67 28.80 30.70 22.60 32.07 

 75 29.13 31.16 29.26 25.03 30.17 Moringa 

80 30.57 33.17 32.70 23.80 33.73 

 85 30.90 30.97 27.20 25.30 29.63 

 90 30.27 31.80 32.73 25.73 29.33 

 95 28.76 28.67 30.00 26.33 29.60 

 100 29.70 27.17 29.87 23.60 30.97 

 % removal     -2.62     -2.76     -4.97    17.12     -5.63 
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Table C37. The impact of  mixer shape, time and coagulant on CST value   

Time (s) CST Value (s) Coagulant 

  Radial Axial Wheel Magnetic 3-blades   

0 37.00 37.00 37.00 37.00 37.00 

 10 26.80 23.00 25.20 18.60 23.70 

 20 20.60 22.10 25.10 19.00 22.00 

 30 20.60 23.00 21.00 17.30 21.30 

 40 22.90 20.20 20.40 17.70 23.00 Alum 

50 22.70 20.20 19.80 16.70 20.30 

 60 21.40 24.70 20.90 18.00 23.50 

 70 20.80 24.00 20.50 17.20 23.20 

 80 18.80 21.20 19.80 14.20 22.50 

 90 18.28 18.44 19.00 16.30 21.00 

 % removal    42.07    40.88     42.43     53.45     39.78 

 

       0 39.85 39.85 39.85 39.85 39.85 

 10 25.07 19.80 25.83 17.48 22.40 

 20 21.50 20.33 23.53 19.03 23.40 

 30 23.50 21.57 23.73 20.15 21.40 

 40 21.93 21.43 23.43 18.97 20.57 Ferric 

50 22.30 19.87 22.30 17.77 19.97 

 60 22.30 21.57 19.87 18.10 20.80 

 70 22.13 19.30 20.63 17.68 21.13 

 80 22.13 21.47 19.40 19.73 20.93 

 90 22.43 19.55 21.87 18.30 21.50 

 % removal 43.31 48.44 44.07 53.37 46.43 

 

       0 29.30 29.30 29.30 29.30 29.3 

 10 22.47 27.17 26.50 14.93 25.03 

 20 22.53 23.27 19.87 15.37 24.60 

 30 26.70 22.50 19.90 16.07 19.37 

 40 20.77 23.40 23.07 15.97 23.00 Moringa 

50 23.00 22.93 20.53 15.10 20.10 

 60 20.00 25.07 22.57 14.33 23.13 

 70 21.40 22.47 25.07 14.77 25.67 

 80 18.23 20.43 19.80 17.30 25.13 

 90 22.03 25.40 22.03 15.23 26.93 

 % removal    25.24    19.36    24.40    47.26    19.24 
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Table C7. The influence of temperature on CST value (alum)  

Velocity  CST Value (s) Temperature  

(rpm) Radial Axial Wheel Magnetic 3-blades ( C) 

0 37.00 37.00 37.00 37.00 37.00 

 60 24.00 23.50 28.50 22.60 21.23 

 65 22.30 23.10 31.10 19.60 19.60 

 70 22.80 20.90 23.00 17.40 21.73 

 75 21.60 22.80 19.20 15.40 21.60 20 

80 19.83 25.60 22.80 18.20 24.10 

 85 22.47 23.30 21.20 18.50 20.15 

 90 21.23 22.40 20.10 19.00 20.50 

 95 22.03 20.30 24.00 17.40 22.60 

 100 22.67 24.70 20.90 15.10 20.25 

 % removal 40.26 37.95 36.69 50.99 42.41 

 

       0 24.05 24.05 24.05 24.05 24.05 

 60 16.80 16.90 14.75 15.85 17.00 

 65 16.60 19.70 18.80 16.35 18.15 

 70 16.60 21.20 19.40 17.10 18.25 

 75 17.20 20.50 17.10 16.00 19.25 26 

80 15.00 21.10 20.90 14.00 18.70 

 85 15.80 19.00 16.40 12.80 17.60 

 90 17.90 19.30 20.80 14.50 18.80 

 95 18.60 16.60 18.60 15.50 18.65 

 100 20.10 15.40 15.00 16.10 19.10 

 % removal 28.57 21.59 25.27 36.15 23.53 
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Table C8. The influence of temperature on CST value (ferric).   

Velocity  CST Value (s) Temperature  

(rpm) Radial Axial Wheel Magnetic 3-blades ( C) 

0 39.85 39.85 39.85 39.85 39.85 

 60 26.53 21.00 19.70 20.00 21.37 

 65 21.50 20.50 22.37 20.60 19.53 

 70 21.00 21.40 19.27 17.13 19.43 

 75 22.83 19.83 20.53 18.83 20.53 20 

80 24.90 20.90 20.63 18.50 20.17 

 85 21.10 21.13 21.00 19.03 21.73 

 90 21.97 21.43 20.57 18.97 21.16 

 95 23.06 22.63 19.77 19.06 20.53 

 100 29.26 19.73 20.13 19.37 20.83 

 % removal 40.84 47.42 48.70 52.18 48.33 

 

       0 39.00 39.00 39.00 39.00 39.00 

 60 16.60 18.70 18.10 18.80 28.50 

 65 17.00 22.20 22.30 20.80 21.20 

 70 17.40 24.60 20.40 19.20 20.90 

 75 22.60 21.00 19.70 18.00 18.90 26 

80 24.40 20.70 18.30 17.70 22.60 

 85 20.50 19.60 19.00 17.80 19.40 

 90 20.20 18.10 20.90 14.60 20.80 

 95 21.90 24.50 16.90 19.30 21.40 

 100 24.40 21.00 21.70 15.70 23.50 

 % removal 47.29 45.75 49.48 53.87 43.81 
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Table C9. The Influence of temperature on CST value (Moringa oleifera) 

Velocity (rpm) 

 

  CST Value (s)   Temperature  

Radial Axial Wheel Magnetic 3-blades ( C) 

0 29.30 29.30 29.30 29.30 29.30 

 60 30.87 30.27 32.76 24.26 32.37 

 65 31.76 28.97 31.60 21.90 30.70 

 70 28.67 28.80 30.70 22.60 32.07 

 75 29.13 31.16 29.26 25.03 30.17 20 

80 30.57 33.17 32.70 23.80 33.73 

 85 30.90 30.97 27.20 25.30 29.63 

 90 30.27 31.80 32.73 25.73 29.33 

 95 28.76 28.67 30.00 26.33 29.60 

 100 29.70 27.17 29.87 23.60 30.97 

 % removal -2.62 -2.76 -4.97 17.12 -5.63 

 

       0 25.00 25.00 25.00 25.00 25.00 

 60 24.40 24.50 21.70 11.20 23.70 

 65 25.40 19.80 18.80 14.90 22.20 

 70 22.90 23.80 23.40 16.30 25.10 

 75 20.10 23.20 16.70 16.10 20.60 26 

80 22.20 25.50 25.00 13.80 19.20 

 85 25.00 18.60 27.00 13.90 20.30 

 90 21.50 21.60 23.00 15.40 17.70 

 95 20.70 23.80 21.80 13.40 23.80 

 100 18.10 23.30 19.50 15.20 23.20 

 % removal 10.97 9.28 12.48 42.13 12.97 
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2. CST Synthetic domestic wastewater 

Table C10. Influence of mixer shape, velocity and coagulant on CST 

value.  

Velocity  CST Value (s) Coagulant 

(rpm)  Radial Axial Wheel Magnetic 3-blades   

0 18.30 18.30 18.30 18.30 18.30 

 60 20.07 19.47 19.73 14.73 18.17 

 65 21.77 17.83 20.87 16.10 18.77 

 70 18.73 22.33 16.83 17.40 16.53 

 75 18.67 20.43 20.13 16.00 15.47 Alum 

80 19.67 20.57 17.80 16.60 17.70 

 85 18.83 21.40 22.10 16.03 17.73 

 90 18.70 22.75 21.70 16.13 19.53 

 95 20.23 19.05 22.73 15.20 20.97 

 100 21.10 19.97 24.23 14.60 19.23 

 % removal -7.94  -11.59 -13.00 13.30 0.36 

 

       0 29.90 29.90 29.90 29.90 29.90 

 60 21.70 26.70 19.80 19.50 22.60 

 65 21.60 23.60 19.50 17.70 22.90 

 70 19.80 20.70 24.40 16.20 21.90 

 75 19.10 21.00 22.60 17.00 20.60 Ferric 

80 21.10 23.60 22.50 17.50 21.40 

 85 19.50 15.20 21.40 16.80 22.10 

 90 20.40 19.20 26.50 17.30 23.90 

 95 18.90 17.30 20.80 18.10 25.00 

 100 22.40 19.50 22.70 18.40 24.20 

 % removal 31.43 30.58 25.60 41.09 23.96 

 

       0 23.23 23.23 23.23 23.23 23.23 

 60 25.47 23.90 22.87 21.30 21.47 

 65 23.60 24.37 22.77 21.50 24.07 

 70 24.03 26.07 23.73 23.03 22.53 

 75 24.73 26.87 24.83 23.20 24.20 Moringa 

80 21.70 24.10 23.70 22.63 21.33 

 85 26.80 24.00 25.47 25.23 19.80 

 90 21.97 23.70 25.53 24.10 21.47 

 95 25.87 24.53 24.60 23.67 22.00 

 100 23.77 24.23 25.33 23.57 22.47 

 % removal -4.24 -6.07 -4.66  0.40  4.65 
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Table C11. Influence of mixer shape, velocity and coagulant on turbidity. 

Velocity  Turbidity (NTU) Coagulant 

(rpm)  Radial Axial Wheel Magnetic 3-blades   

0 339.00 339.00 339.00 339.00 339.00 

 60 565.00 501.00 598.00 431.00 554.33 

 65 541.33 506.33 489.00 429.33 530.00 

 70 541.00 557.33 479.33 460.00 524.00 

 75 549.00 519.00 505.00 441.33 519.67 Alum 

80 538.67 531.67 496.67 445.33 570.00 

 85 552.33 509.67 539.00 450.00 547.00 

 90 592.00 502.50 543.67 436.00 519.67 

 95 742.67 641.50 501.67 427.67 560.00 

 100 713.67 505.00 509.33 424.33 533.00 

 % removal -74.88 -56.47 -52.79 -29.30 -59.21 

 

       0 486.00 486.00 486.00 486.00 486.00 

 60 703.00 477.00 548.00 439.00 488.00 

 65 663.00 467.00 605.00 481.00 451.00 

 70 592.00 512.00 595.00 488.00 694.00 

 75 595.00 621.00 541.00 417.00 728.00 Ferric 

80 599.00 651.00 531.00 430.00 723.00 

 85 542.00 686.00 545.00 458.00 677.00 

 90 624.00 636.00 538.00 452.00 804.00 

 95 571.00 673.00 511.00 471.00 741.00 

 100 597.00 642.00 479.00 434.00 886.00 

 % removal  -0.25  -0.22  -0.11    0.06    -0.41 

 

       0 415.00 415.00 415.00 415.00 415.00 

 60 412.00 424.33 446.33 377.00 471.00 

 65 365.33 388.33 432.00 397.00 406.00 

 70 370.67 395.33 428.00 407.33 411.67 

 75 392.67 439.33 434.33 396.33 481.00 Moringa 

80 358.00 381.33 398.33 353.67 405.33 

 85 372.00 368.67 385.00 411.33 407.67 

 90 371.67 415.00 431.67 362.67 454.33 

 95 338.67 373.67 375.00 375.00 392.33 

 100 328.33 372.33 422.67 332.00 394.67 

 % removal   11.39    4.73  -0.49      8.63   -2.38 
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3. Floc size  

Table C12. The influence of mixer shape and rapid mixing velocity on CST 

value (synthetic raw water)  

Velocity (rpm) CST Values (s) Coagulant 

 

Radial Axial Magnetic 

 0 39.85 39.85 39.85   

60 26.53 21.00 20.00 

 65 21.50 20.50 20.60 

 70 21.00 21.40 17.13 

 75 22.83 19.83 18.83 Ferric 

80 24.90 20.90 18.50 

 85 21.10 21.13 19.03 

 90 21.97 21.43 18.97 

 95 23.06 22.63 19.06 

 100 29.26 19.73 19.37 

  

 

Table C13. The influence of mixer shape and rapid mixing velocity on floc 

sizes (synthetic raw water)  

Velocity (rpm) Median Flocs Sizes (µm) Coagulant 

  Radial Axial Magnetic   

0 5.98 5.42 5.98 

 60 7.06 5.98 6.06 

 65 5.68 5.17 5.04 

 70 6.36 6.38 5.39 

 75 6.23 7.29 5.80 Ferric 

80 6.24 6.54 6.89 

 85 6.99 7.53 7.20 

 90 5.35 7.35 6.91 

 95 5.48 7.51 9.50 

 100 5.64 7.33 6.45 
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Table C14. The influence of mixer shape and rapid mixing velocity on floc 

standard deviation (synthetic raw water)  

Velocity (rpm) Standard Deviation Coagulant 

  Radial Axial Magnetic   

0 0.71 9.10 0.71 

 60 0.83 0.71 0.72 

 65 0.66 0.59 0.56 

 70 2.59 0.79 2.66 

 75 2.61 4.98 4.79 Ferric 

80 2.35 4.14 4.57 

 85 1.41 0.95 2.18 

 90 4.36 0.98 3.71 

 95 2.81 1.02 1.67 

 100 2.82 4.10 1.61 

  

 

 

 

 

The Influence of Different Mixer Shapes 

Table D1 

Sample : synthetic domestic wastewater 

Coag: ferric 

Mixer shape : radial 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 21.7 703 9.1 

65 21.6 663 5.7 

70 19.8 592 9.1 

75 19.1 595 10.8 

80 21.1 599 7.3 

85 19.5 542 9.4 

90 20.4 624 7.2 

95 18.9 571 9.0 

100 22.4 597 8.4 
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Table D2 

Sample : synthetic domestic wastewater 

Coag: ferric 

Mixer shape : axial 

 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 26.7 477 7.7 

65 23.6 467 12.6 

70 20.7 512 8.6 

75 21 621 8.1 

80 23.6 651 8.1 

85 15.2 686 11.0 

90 19.2 636 11.7 

95 17.3 673 11.9 

100 19.5 642 10.5 

 

Table D3 

Sample : synthetic domestic wastewater 

Coag: ferric 

Mixer shape : wheel 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 19.8 548 8.7 

65 19.5 605 8.4 

70 24.4 595 5.8 

75 22.6 541 9.8 

80 22.5 531 8.2 

85 21.4 545 7.8 

90 26.5 538 8.6 

95 20.8 511 11.1 

100 22.7 479 6.1 
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Table D4 

Sample : synthetic domestic wastewater 

Coag: ferric 

Mixer shape : magnetic 

 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 19.5 439 13.0 

65 17.7 481 11.4 

70 16.2 488 13.3 

75 17 417 12.9 

80 17.5 430 10.8 

85 16.8 458 12.0 

90 17.3 452 11.4 

95 18.1 471 10.7 

100 18.4 434 10.0 

 

 

 

Table D5 

Sample : synthetic domestic wastewater 

Coag: ferric 

Mixer shape : 3-Blades 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 22.6 488 9.8 

65 22.9 451 11.9 

70 21.9 694 7.9 

75 20.6 728 7.6 

80 21.4 723 7.7 

85 22.1 677 5.9 

90 23.9 804 7.3 

95 25 741 8.5 

100 24.2 886 8.2 
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The Influence of Rapid Mixing Velocity and Time 

Table E1 

Sample : synthetic domestic wastewater 

Coag: alum 

Parameter : velocity 

Mixer shape : magnetic 

 

Rpm CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

60 25.6 1006 7.2 

65 26.8 1011 4.2 

70 28.7 1042 8.1 

75 27.5 962 7.3 

80 29.0 988 7.3 

85 30.1 630 7.2 

90 26.2 672 8.2 

95 25.2 583 7.9 

100 25.0 764 6.9 

 

 

 

 

Table E2 

Sample : synthetic domestic wastewater 

Coag: alum 

Parameter : time 

Mixer shape : magnetic 

Time (s) CST (s) 

Turbidity 

(NTU) Floc size 

0 29.9 486 5.4 

10 23.5 557 7.9 

20 22.3 566 7.3 

30 23.7 471 8.7 

40 24.0 655 8.8 

50 27.2 966 8.9 

60 28.2 843 8.8 

70 24.4 558 8.9 

80 25.1 665 9.3 

90 24.9 629 8.6 
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Table F1 

Sample : synthetic domestic wastewater 

Coag: ferric 

Parameter : velocity 

Mixer shape : magnetic 

 

 Rpm 

CST 

(s)  Turbidity (NTU)  Floc Size 

0 29.9 486 5.4 

60 19.5 439 13.0 

65 17.7 481 11.4 

70 16.2 488 13.2 

75 17.0 417 12.9 

80 17.5 430 10.8 

85 16.8 458 11.9 

90 17.3 452 11.3 

95 18.1 471 10.7 

100 18.4 434 10.0 

 

 

Table F2 

Sample : synthetic domestic wastewater 

Coag: ferric 

Parameter : time 

Mixer shape : magnetic 

Time (s) CST (s) 

Turbidity 

(NTU) Floc Size 

0 29.9 486 5.4 

10 14.9 450 8.4 

20 17.9 512 8.0 

30 17.5 500 8.2 

40 15.5 557 9.6 

50 18.1 465 10.6 

60 18.4 607 7.6 

70 15.9 677 8.2 

80 15.0 487 10.6 

90 18.2 566 8.8 
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Table G1 

Sample : synthetic domestic wastewater 

Coag: Moringa oleifera 

Parameter : velocity 

Mixer shape : magnetic 

 

Rpm CST (s) 

Turbidity 

(NTU) Median 

0 29.9 486 5.4 

60 25.6 1006 7.2 

65 26.8 1011 4.2 

70 28.7 1042 8.1 

75 27.5 962 7.3 

80 29.0 988 7.3 

85 30.1 630 7.2 

90 26.2 672 8.2 

95 25.2 583 7.9 

100 25.0 764 6.9 

 

 

 

 

Table G2 

Sample : synthetic domestic wastewater 

Coag: moringa 

Parameter : time 

Mixer shape : magnetic 

Time (s) CST (s) 

Turbidity 

(NTU) Floc Size 

0 29.9 486 5.4 

10 23.5 557 7.9 

20 22.3 566 7.3 

30 23.7 471 8.7 

40 24.0 655 8.8 

50 27.2 966 8.9 

60 28.2 843 8.8 

70 24.4 558 8.9 

80 25.1 665 9.3 

90 24.9 629 8.6 
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4. Specific Resistance to Filtration (Synthetic raw water) 
Table H1 

Specific Resistance to Filtration 

Sample : synthetic raw water 

Coagulant : ferric 

 Parameter : velocity 

Mixer : radial 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40871.39 

60 17.89 

65 18.19 

70 18.17 

75 18.60 

80 18.08 

85 17.98 

90 17.71 

95 17.44 

100 18.18 

 

 

Table H2 

Specific Resistance to Filtration 

Sample : synthetic  raw water 

Coagulant : ferric 

 Parameter : velocity 

Mixer : axial 

 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40871.39 

60 56.39 

65 57.37 

70 57.85 

75 57.38 

80 57.19 

85 57.34 

90 56.58 

95 56.03 

100 54.33 
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Table H3 

Specific Resistance to Filtration 

Sample : synthetic raw water 

Coagulant : ferric 

Parameter : velocity 

Mixer : wheel 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40871.39 

60 18.35 

65 18.20 

70 18.57 

75 19.65 

80 18.80 

85 18.68 

90 18.47 

95 18.67 

100 18.58 

 

 

 

Table H4 

Specific Resistance to Filtration 

Sample : synthetic raw water 

Coagulant : ferric 

Parameter : velocity 

Mixer : magnetic 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40871.39 

60 52.42 

65 52.47 

70 52.61 

75 52.06 

80 53.98 

85 53.34 

90 50.79 

95 52.56 

100 52.93 
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Table H5 

Specific Resistance to Filtration 

Sample : synthetic raw water 

Coagulant : ferric 

Parameter : velocity 

Mixer : 3-blades 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40871.39 

60 30.37 

65 29.94 

70 30.79 

75 29.85 

80 30.73 

85 29.99 

90 29.21 

95 29.66 

100 29.89 

 

 

Specific Resistance to Filtration (Synthetic domestic wastewater) 

Table I1 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : velocity 

Mixer : radial 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40990.49 

60 51.47 

65 52.36 

70 53.09 

75 52.90 

80 49.57 

85 51.18 

90 50.16 

95 49.62 

100 50.90 
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Table I2 

 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : velocity 

Mixer : axial 

 

Rpm SRF x10
12

 (m/kg) 

0 40908.67 

60 75.18 

65 76.07 

70 75.10 

75 77.55 

80 76.63 

85 83.09 

90 76.94 

95 78.09 

100 82.19 

 

 

 

Table I3 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : velocity 

Mixer : wheel 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 141.08 

65 139.77 

70 137.70 

75 137.08 

80 146.24 

85 155.81 

90 145.12 

95 135.04 

100 142.74 
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Table I4 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : velocity 

Mixer : magnetic 

 

Rpm 

SRF (x10
12

 

m/kg) 

0 40908.67 

60 255.81 

65 239.02 

70 241.95 

75 254.08 

80 238.13 

85 257.02 

90 255.28 

95 247.33 

100 244.73 

 

 

Table I5 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : velocity 

Mixer : 3-blades 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 64.54 

65 63.97 

70 62.83 

75 67.63 

80 63.17 

85 64.26 

90 71.13 

95 67.18 

100 63.29 
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Specific Resistance to Filtration (time) 

Table J1 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : time 

Mixer : radial 

 

Rapid Mixing Time 

(s) 

SRF x10
12

 

(m/kg) 

0 40908.67 

10 384.38 

20 421.51 

30 386.73 

40 375.09 

50 392.60 

60 422.63 

70 388.09 

80 374.27 

90 372.81 

 

 

 

Table J2 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : time 

Mixer : axial 

 

Rapid Mixing Time 

(s) 

SRF x10
12

 

(m/kg) 

0 40908.67 

10 13.37 

20 13.37 

30 12.72 

40 12.74 

50 13.14 

60 12.88 

70 12.60 

80 13.09 

90 13.93 



210 
 

Table J3 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : time 

Mixer : wheel 

 

Rapid Mixing Time 

(s) 

SRF x10
12

 

(m/kg) 

0 40908.67 

10 161.27 

20 157.99 

30 168.31 

40 167.38 

50 178.91 

60 206.13 

70 183.45 

80 189.79 

90 190.15 

 

 

 

Table J4 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : time 

Mixer : magnetic 

 

Rapid Mixing Time 

(s) 

SRF x10
12

 

(m/kg) 

0 40908.67 

10 21.64 

20 21.66 

30 26.05 

40 23.16 

50 22.39 

60 22.72 

70 21.93 

80 20.66 

90 21.75 
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Table J5 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : ferric 

Parameter : time 

Mixer : 3-blades 

 

Rapid Mixing Time 

(s) 

SRF x10
12

 

(m/kg) 

0 40908.67 

10 101.09 

20 103.51 

30 110.12 

40 99.65 

50 101.36 

60 105.31 

70 104.29 

80 103.17 

90 113.97 

 

 

Specific Resistance to Filtration (alum) 

Table K1 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant : alum 

Parameter : velocity 

Mixer : radial 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 540.39 

65 509.19 

70 515.88 

75 513.08 

80 507.49 

85 525.08 

90 526.48 

95 530.42 

100 496.18 
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Table K2 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant :alum 

Parameter : velocity 

Mixer : axial 

 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 405.81 

65 390.15 

70 348.65 

75 353.89 

80 359.80 

85 357.48 

90 405.05 

95 354.79 

100 385.38 

 

 

Table K3 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant :alum 

Parameter : velocity 

Mixer : wheel 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 189.06 

65 201.54 

70 196.39 

75 193.29 

80 203.50 

85 181.77 

90 189.93 

95 198.54 

100 225.13 
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Table K4 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant :alum 

Parameter : velocity 

Mixer : magnetic 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 25.07 

65 27.33 

70 24.26 

75 25.50 

80 26.17 

85 25.11 

90 24.51 

95 24.66 

100 25.89 

 

 

Table K5 

Specific Resistance to Filtration 

Sample :synthetic domestic waste water 

Coagulant :alum 

Parameter : velocity 

Mixer : 3-blades 

 

Rpm 

SRF x10
12

 

(m/kg) 

0 40908.67 

60 310.75 

65 335.40 

70 320.16 

75 315.44 

80 311.87 

85 314.20 

90 311.75 

95 294.84 

100 306.84 

 


