
THE DESIGN AND DEVELOPMENT OF A

GENERIC LOCATION BASED SOCIAL

MEDIA ENGINE

Richard Lawrence Ogden

School of Computing, Science and Engineering

University of Salford, UK

Submitted in Partial Fulfillment of the Requirements of the

Degree of Master of Science, 2014

ii

Contents

Acknowledgements xi

Abstract xii

1 Introduction 1

1.1 Research Aim and Objectives . 3

1.2 Thesis Overview . 4

2 State of the Art Analysis 5

2.1 Location Detection & Smartphones 5

2.1.1 Location Data Formats and Calculations 6

2.2 Evolution of Social Media Applications 7

2.2.1 Blogs . 8

2.2.2 Collaborative Projects . 9

2.2.3 Content Sharing Sites . 10

2.2.4 Social Networks . 11

2.2.5 Virtual Social Worlds & Virtual Gaming Worlds 11

2.3 Location Awareness and Social Media 12

2.3.1 Location-Based Social Media Service 12

2.3.2 Wikis . 13

iii

2.3.3 Blogs . 16

2.3.4 GeoSocial Networks . 17

2.3.5 Content Sharing Communities 18

2.3.6 Commonality & Differences 20

2.4 Technology Analysis . 21

2.4.1 Compilers & Interpreters 21

2.4.2 Database Servers . 22

2.5 Application Design . 27

2.5.1 The Model View Controller Pattern 28

2.5.2 Adapter Pattern . 28

2.5.3 Registry Pattern . 29

2.5.4 Software Development Practices 29

2.6 Rationalisation . 31

3 Requirements Analysis 34

3.1 Platform . 35

3.1.1 Language . 35

3.1.2 Data Storage . 35

3.2 Architecture . 36

3.2.1 Engine Core . 36

3.2.2 Permissions . 37

3.2.3 Content . 37

3.2.4 Framework . 38

3.3 Functional Requirements . 39

3.4 Requirements Overview . 41

4 Implementation 42

4.1 Modular Post Types . 44

iv

4.1.1 Required Classes . 45

4.1.2 Configuration File . 50

4.1.3 Post Type Controller . 51

4.2 Geospatial Library . 54

4.2.1 Location_Earth Class . 56

4.2.2 Location_Point Class . 57

4.2.3 Location_Distance Class 58

4.2.4 Location_Line . 60

4.2.5 Location_Mbr . 61

4.3 Application Wide Permissions and Configuration 63

4.4 Engine Design . 67

4.4.1 User Authentication . 68

4.4.2 Geospatial Searching . 69

4.4.3 User Commenting . 77

5 Testing and Evaluation 79

5.1 Methods of Testing . 79

5.1.1 Functional Acceptance Testing 80

5.1.2 Geospatial Library Testing 82

5.2 Testing Environment . 83

5.2.1 Separate Implementations 83

5.2.2 Commonality . 85

5.3 Functionality Tests . 86

5.3.1 Test User Registration . 88

5.3.2 Testing Geospatial Searching 89

5.3.3 Testing If A User can Edit another User’s Post 90

5.3.4 Moderator Delete Comments 91

v

5.3.5 Test Results . 92

5.4 Spatial Tests . 95

5.4.1 Unit Tests on Calculations 95

5.4.2 Bounding Box Tests . 102

5.5 Results Evaluation . 109

5.5.1 Further Implementation 110

6 Conclusion & Further Work 111

6.1 Technology . 112

6.1.1 Database Backend . 112

6.1.2 Application Framework . 113

6.2 Further Work . 114

6.2.1 Missing Features . 114

6.2.2 Expansion of the Location Library 116

6.2.3 Front End Design . 116

6.3 The Future of location-based social media 117

vi

List of Tables

2.1 Feature Comparison . 32

3.1 Requirements Specification . 40

5.1 Requirements Specification . 81

5.2 Requirements Specification compared to results 94

vii

List of Figures

2.1 Examples of the GeomFromText function containing WKT 23

2.2 The Envelope function . 24

2.3 An example of two GeoJSON objects 26

4.1 Overview of Application Structure 43

4.2 Post Type Module Structure . 44

4.3 Overview of Application Structure (with the Post Abstracts loca-

tion highlighted) . 45

4.4 My_PostModule_PostTypeAbstract::getPosts method 48

4.5 My_PostModule_PostTypeAbstract::register method 49

4.6 My_PostModule_Bootstrap::_initRegister method 50

4.7 An example Post Type configuration file 51

4.8 The createAction method . 53

4.9 Overview of Application Structure (with highlighted geospatial lib-

rary) . 55

4.10 Location Library File Structure 56

4.11 Location_Point::getRelativePoint Implementation 58

4.12 Distance calculation implementation 59

4.13 Get Bearing Implementation . 61

viii

4.14 MBR Calculation Implementation 62

4.15 Overview of Application Structure with the configuration directory

highlighted . 64

4.16 lbsm.ini . 65

4.17 An example “permissions.ini” configuration 67

4.18 Overview of Application Structure with the core engine directory

highlighted . 68

4.19 The PHP template followed by the HTML which is generated from

the template . 70

4.20 Generating the geographic URL 71

4.21 Locations and Locations to Posts Table 72

4.22 The getLocationsFromMbr method 74

4.23 Example of generated SQL . 75

4.24 Sort the list of posts by distance method 77

5.1 Apache Configuration for the three test environments 84

5.2 List of Selenium test cases . 87

5.3 The Register Test Case . 89

5.4 Find Post from Geographic Coordinates 90

5.5 A standard user editing another user’s text post. 91

5.6 A moderator has the ability to delete a comment. 92

5.7 Results of the functionality testing. 93

5.8 Location_PointTestL::setUp() . 97

5.9 Location_PointTest::testGetRelativePoint 97

5.10 Testing the Distance calculation in kilometres 98

5.11 Overall code coverage of the Location library 99

5.12 Unit test coverage of the Location_Point class 100

ix

5.13 Unit test coverage of the Location_Line class 101

5.14 Unit test coverage of the Location_Distance class 101

5.15 Unit test coverage of the Location_Mbr class 102

5.16 Post Locations . 103

5.17 Results from 2.2km search . 104

5.18 Results from 2km search . 105

5.19 Results from 1.55km search . 106

5.20 The 1.55km bounding box . 107

5.21 The 0.5km bounding box . 108

5.22 Results from 0.5km search . 108

x

Acknowledgements

I am indebted my supervisor Professor Nigel Linge and co-supervisor Dr Adil Al-

Yasiri along with the rest of my colleagues in the school of Computing, Science &

Engineering at the University of Salford for their guidance and advice throughout

this project.

I would also like to thank my parents and my partner Colette for their support

and encouragement, particularly during the writing up stages.

xi

Abstract

This thesis examines how location aware applications have evolved alongside the

rise in high powered mobile devices that provide a location sensing function.

A user’s location can now be exploited for the delivery of content that is con-

textually relevant and for users to tag their own content with location specific

information. This in turn has given rise to location-based social media in which

common social media applications have now become location aware. However,

the growth in location-based social media has resulted in the development of

incompatible systems and so this thesis presents the case for the creation of a

generic and extensible application engine to facilitate new location-based social

media applications.

Social media applications have been categorised into six main types, and the im-

pact of location has been assessed against each one. From this a generic location-

based social media engine was developed using open-source technologies with the

core features which spanned across these social media types, and was built on

a modular system which allowed the differences to be either configured through

configuration files or programmed as separate modules. This applicability of this

xii

engine was then demonstrated by implementing it in a cross section of social

media types. This was on the whole successful with those limitations that arose

being clearly identified and their impact assessed.

The thesis provides an analysis of the state of the art for location-based social

media , a rationale with a set of requirements for the developed engine and details

on key aspects of the engine’s design. This is followed by a description of the

tests used, an evaluation of the results obtained and a series of recommendations

outlining the suitability of the engine as the basis for the creation of new location-

based social media applications.

xiii

Chapter 1

Introduction

When conceived in the late 1980s, The World Wide Web was initially developed

as a unidirectional medium of content delivery. A web page (usually written in

HTML) was uploaded to a web server and a user would then download that data

and render it via a web browser. This was described as Web 1.0 and it followed

the same concepts as other media which had been around for hundreds of years

which were published and distributed in a pre-written, non-customisable format

without any ability for users to provide input.

At the end of the 1990s a new type of website started appearing. These were sites

that did not necessarily consist of static pages, but started having interactive

elements. No longer were websites restricted to a broadcast style of distribution,

users started to be able to customise the published content which added the ability

for users to contribute back either by commenting on the initial data published

1

or even in some cases by users creating new content themselves. The term “Web

2.0” was coined to describe these new types of websites (O’Reilly, 2005).

The development of Web 2.0 therefore enabled the provision of user-generated

content in which users were able to create the original content with the possibility

of others being able to edit or comment on that content. This concept became

known as Social Media and has spawned a variety of different forms including

Blogs, content sharing sites and Wikis. Users were now the authors as well as

consumers.

Today, social media websites have grown so large that they are now some of the

largest websites around. Wikipedia, for example, claims that it has over twenty

nine million articles with an edit rate of six hundred words per minute (Wikipedia,

2013a) and is the sixth most popular site on the internet (Alexa, 2013). Wikipedia

is now fifty eight times larger than the Encyclopædia Britannica (based on printed

volume size).

The development of the mobile phone in the mid-1980s in many ways tracked the

evolution of the world wide web. By the mid 2000s the smartphone had emerged

combining the power of a Personal Data Assistant with the ability to use cellular

data networks for both telephone and Internet access. Increasing functionality

was added to the smartphone, including a Global Positioning System receiver

which consequently opened doors to a whole new set of applications which were

able to use the mobile’s physical geographic location to provide data which is

even more relevant to the user.

2

These location aware concepts were very quickly introduced into social media

which then gained the ability to associate content published with a geographic

location (e.g. Youtube, Flickr and Wikipedia), but it also gave rise to a new type

of social media called location-based social media . This type of social media had

location as the prime emphasis and gave rise to applications such as Yelp, Urban

Spoon and Foursquare.

Every day an increasing number of these location-based social media applications

are emerging, but as many of them are developed by companies, each application

is written from scratch on a proprietary platform. This means that many hours

of development time is wasted due to companies having to “reinvent the wheel”

and it is also prohibitive to small companies and volunteers who may want to

create an application for non-profit purposes. This problem could be reduced if

there was an existing platform and location engine for developers to base future

location-based social media applications on.

1.1 Research Aim and Objectives

The aim of the work reported in this thesis is therefore to determine if a truly gen-

eric location-based social media engine can be developed to support and provide

a basis for the future development of location-based social media applications.

In order to achieve this aim, the following key objectives need to be addressed:

3

1. To determine what common characteristics location-based social media ap-

plications have and to identify the features that differentiate them

2. To produce a design that requires minimum code changes across implement-

ations and can be implemented on a wide range of platforms

1.2 Thesis Overview

The remainder of this thesis is organised as follows. Chapter two provides a review

of relevant literature which includes a discussion of the existing major location-

based social media applications and the associated technologies which can be used

to develop these. Chapter three derives a specification for a generic location-based

social media engine for which a design and implementation is presented in chapter

four. Chapter five provides the results obtained from testing the generic location

based social media engine and its effectiveness in being able to deliver a variety

of location based social media applications is analysed and discussed in chapter

six. Finally, chapter seven concludes the thesis and identifies areas for further

research and development.

4

Chapter 2

State of the Art Analysis

As described in the previous chapter, the aim of this research is to develop a

generic location-based social media engine. In order to realise this aim there is a

need to understand location detection in devices, social media applications, open

systems and design patterns that can be used in development. Each of these will

now be considered in the following sections.

2.1 Location Detection & Smartphones

Smartphones have been key to the evolution of location-based social media .

Smartphones are a combination of a number of technologies into a single device:

5

mobile phone and data connection, the features of a PDA (Personal Digital Assit-

ant) and GPS (Global Positioning System) for positioning (Charlesworth, 2009).

The first concept of a Smartphone (which pre-dated the term “Smartphone”)

was the Simon which was prototyped in 1992 by a joint venture between IBM

and BellSouth Cellular. Simon was a mobile phone which exhibited PDA-like

features including having a touch screen and apps. However, it was restricted as

web browser and mobile data infrastructure technology was not sufficient for it to

reach any meaningful potential (Sagar, 2012). However, it was not until the year

2000 when “selective availability” was discontinued and consumer devices were

able to get a much more accurate location from GPS. The first mobile phone to

implement inbuilt GPS is the Benefon Esc! which could display the user’s loca-

tion on a map and had the ability to integrate with Yellow Pages short messaging

service to bring the user information about services near by (Kaasinen, 2003).

2.1.1 Location Data Formats and Calculations

When a location is determined it needs to be represented in a standard format.

These formats are generally represented in terms of coordinates along two axes.

There are two major systems used to map coordinates of a location (these are

called geodetic systems): OSGB 36 and WGS84. OSGB 36 (Ordnance Survey

Great Britain 1936) is a standard grid system developed by the Ordnance Survey.

This is the grid system used on Ordnance Survey maps of the UK, but is limited

as it is not a global system (Ordnance Survey, 2013).

WGS84 (World Geodetic System 1984) originated from the United States military

6

during the 1950s when the various departments of the military came together and

created the World Geodetic System 1960. This went through various revisions up

until 1984 (Burkard, 1984). WGS84 is what is used today by GPS systems across

the globe as well as for online location based services such as OpenStreetMap,

Google Maps and Wikipedia.

Due to the nature of the surface of Earth being curved, standard Euclidean geo-

metric equations cannot be used. Instead the Haversine formula is used to calu-

late distance using great circles across the surface, great circles are the shortest

path between any two given points on the surface of a spherical object. Veness

(2012) has published this and other geospatial formulae along with JavaScript

implementations and examples.

2.2 Evolution of Social Media Applications

When social media came into public awareness, it was used to describe various

different media forms including: blogs, collaborative projects (such as Wikis),

social networking sites, content publishing sites and was even used to describe

virtual worlds for either social interaction or game play (Kaplan & Haenlein,

2010). Although very different media types, the commonality between them is

that the content is created by the people who consume it.

Social media sites have been analysed and shown to comprise of seven functional

blocks: identity, presence, relationships, reputation, groups, conversations and

7

sharing. Different social media types focus on different functional blocks, so not

all blocks are present in all social media types (Kietzmann, Hermkens, McCarthy

& Silvestre, 2011).

2.2.1 Blogs

Blogs (short for weblogs) are online diaries where people can periodically (as

frequently or infrequently as they like) write posts which are then published on

the website. These were one of the first instances of social media and came

into existence in the late 1990s when server-side technology enabled users to add

information onto a web site without the technical knowledge which was previously

required. The first blog platform was launched in 1998 and called Open Diary

(Kaplan & Haenlein, 2010). This site offered the ability for users to interact via

a comments system.

A blog is a very versatile platform, different people use blogs for different purposes.

There are generally five motivations for blogging: documenting of life, where

users write about their day to day activities. Commentary blogs where users

write about specific issues and current affairs, often opinionated and political.

There are cathartic blogs in which users use the blog as an outlet to express

their emotions, blogs which users use as an output to aid them in a creative

process and finally a blog which can be used as a “community forum” where often

multiple blog authors write about a specified subject or subjects (Nardi, Schiano,

Gumbrecht & Swartz, 2004).

8

Although blogs are not specifically covered by Kietzmann et al. (2011), they

do state that blogs are strongly based around the “conversation” building block.

There can also be relationships through this conversation but they do not have

formal relationship connections. Identity also plays a part as a user normally blogs

as a specified author (whether or not that author name is real or a pseudonym).

2.2.2 Collaborative Projects

The most common form of collaborative project is a Wiki. Wiki comes from the

word “quick” and are websites where the content is contributed and edited by

the users. Collaboration is key for a Wiki where users are not only encouraged

to create content but also edit content contributed by other people. This allows

for correction of erroneous material (which may have been put up there in error

or maliciously) and allow material to be kept up to date. This self-righting

mechanism in theory should keep the material on a Wiki accurate and current

(Dennis, 2013). The most famous implementation of a Wiki is Wikipedia which

is powered by the MediaWiki software. This Wiki allows anyone to edit any

article (with a few “restricted” articles). With Wikipedia there is no individual

ownership of content as often it is written by a number of authors. Other examples

of Wikis include documentation for Open Source projects, such as projects hosted

on GitHub.

Wikis seem to predominantly revolve around the “sharing” and “conversations”

blocks from Kietzmann’s functional blocks. A wiki allows the sharing of content

through an article which multiple people can contribute to, which in turn will

9

enable discussions that can form through the comments people leave on the art-

icle. “Identity” is virtually non-existent as no single user owns the article, and

some Wikis (such as Wikipedia) allow anonymous accessing (although the user’s

IP address is stored) (Wikipedia, 2013b). However, all wiki software still allows

user authentication as well.

2.2.3 Content Sharing Sites

A content sharing site is a service which allows users to create content and publish

it. Unlike a Wiki, users are generally solely in control of their own content and

content can only be edited or removed by the creator or a site administrator.

The most famous content sharing service is Youtube which is used for sharing

videos. This was launched in 2005 and purchased by Google for $1.65 billion

(Google, 2006). There are other examples of content sharing services such as

Instagram and Flickr (for sharing photos which were bought by Facebook and

Yahoo! respectively), SoundCloud (for sharing audio) and Slideshare (for sharing

presentations). Kietzmann et al. (2011) states that the main functional block of

a content sharing site (YouTube in particular) is “sharing”.

10

2.2.4 Social Networks

Social networks are probably the most prominent example of social media. The

content that users put up is generally to do with themselves and their own exper-

iences. This makes social networks quite different from the previous three types

of social media as it is not oriented around the content which is published, but

around the relationship users have with each other. The content generally con-

sists of a user profile, an ability for the users to post comments and other media

and an ability for a user to “befriend” or “follow” other users and their posts.

The biggest social networking site is Facebook with an estimated 750 million

unique monthly visitors followed by Twitter which has 250 million as of Octo-

ber 2013 (EBizMBA, 2013). According to Kietzmann et al. (2011), the main

functional block for Facebook is “relationships”.

2.2.5 Virtual Social Worlds & Virtual Gaming Worlds

Virtual Social Worlds and Virtual Gaming Worlds are fully immersive worlds

where users control avatars which can interact with other users’ avatars as a

user would do in the real world. While some of these virtual worlds have spaces

modelled on the real world (such as San Francisco in Second Life), it does not

relate directly to the physical locations. Therefore it is deemed that these social

media are not relevant to this research because of this lack of focus on the real

world for which physical location is a key parameter.

11

2.3 Location Awareness and Social Media

Location-based social media is appearing in a variety of forms, however location

awareness is not limited to location-based social media applications. Existing

social media are becoming increasingly location aware.

2.3.1 Location-Based Social Media Service

Kim, Lee, Lee and Paik (2010) devised a system where a client retrieves data

from a server which is relevant to them based on the user’s location and interests.

A user would complete a survey to determine their social characteristics. This

would then be analysed to allow the system to serve only information which the

user would find interesting. This type of system is quite complicated because it

requires a certain amount of fuzzy logic to be used to determine what is relevant

and what is not. Furthermore, the user’s relationship with the author is taken into

account, thus meaning this system is also a social network. This could be very

useful if the user would like to see what their friend has to say about a location,

but there are quite often times that the social relation may not be relevant.

The project is written using .NET technology, which is quite limiting because it

will only work on .NET compatible platforms. This means that the server must

be a Windows server with the correct version of the .NET libraries. In addition,

the client must be a device which has the .NET framework. This limits you to

a single platform (Windows) which is far less common than other platforms such

12

as Android or iPhone. This would cause problems if this product was to be rolled

out to consumer devices. By using existing web standard technologies, there may

not be a need to have a physical client application installed on the device, and

use the application straight through a web browser.

2.3.2 Wikis

WikiWikiWeb was developed in 1995 and is widely regarded as the first Wiki

engine developed. The idea was to allow quick collaboration between authors

for the Portland Pattern Repository, a project which revolved around pattern

languages (C2.com, 2013). Since the original incarnation there have been many

Wiki implementations written for a variety of different platforms and in a number

of different languages. There is no evidence that WikiWikiWeb contained any

geo-location

2.3.2.1 MediaWiki

MediaWiki is the software behind the largest Wiki in the world: Wikipedia.

Users can create and edit articles on the whole without moderation (there are

some articles which are protected to stop abuse). The application that powers

Wikipedia is MediaWiki; an open source wiki system written in PHP.

The MediaWiki database schema is of great interest because the articles are

13

all created by the users and are continually being updated. Articles may be

updated with erroneous information, and therefore require more alterations or to

be “rolled back” to a previous version of the article (or page as is the term used

by MediaWiki). This means that all versions of the article are kept for future

reference. The “revisions” table contains the metadata for each modification of

each article, and references the text for that revision (in the “text”: table). This

links to the user (the person who edited it), and of course the table of each wiki

article (which is the “page” table).

This is a very useful structure but limited to a single content type for articles.

It only allows plain text with the standard wiki markup. While this is a good

format, it is restrictive and doesn’t allow other types of data (e.g. video, audio

or images) to be used directly, only embedded in the content.

MediaWiki also has a complete user management system. In MediaWiki users

are members of groups (e.g. Registered-users, moderators or admin). Each group

can be given general permissions, (e.g. Only moderators can add or edit pages)

and also page specific permissions (e.g. Registered-users can add or edit pages,

but on some pages only moderators can edit them). This means that MediaWiki

is more flexible, and also allows it to be used in more than just the scenario it

was created for (which was to power Wikipedia).

MediaWiki does have the ability to “geotag” an article, however historically it

has not been location driven. If a user wanted to geotag an wiki entry they

would simply add the coordinates in Wiki markup. Now Wikimedia have released

Geodata, a method of storing location information in a separate database for

14

MediaWiki entries. This enables the use of geospatial searches, which prior to

this were not really possible (Semenik, 2013).

MediaWiki is written in PHP, which is an open-source language which runs on a

variety of platforms and interacts with MySQL which also runs on a number of

platforms. This gives flexibility into the server it can be deployed on.

2.3.2.2 Other Wiki Software

DokuWiki is another popular Wiki engine. It is also written in PHP but does not

require a database as it uses text files to store the data. The DokuWiki project

is aimed at small-businesses and project documentation, and has the advantage

of being very easy to set up as no database configuration is required, however the

flat file system does pose limitations.

LocalWiki is a Wiki engine written in Python design around localisation. Articles

are written and geographically tagged to the location that is relevant to the article.

LocalWiki uses PostgreSQL with the PostGIS extension installed to handle the

spatial data queries. The PostGIS extension allows the geospatial calculations to

be performed within the database.

15

2.3.3 Blogs

The most common blog platforms of the modern day are Blogger (owned by

Google) and Wordpress. Google do not release the number of blogs which are

hosted by Blogger, but it is believed to be tens of millions. In 2008 Google

announced that they were experimenting with the geotagging of blog posts in

Blogger. This allowed a user to select a location on a map which was then

displayed along with the blog post (Google, 2008).

Wordpress are reporting over sixty five million blogs at the time of writing (Word-

press, 2013c). The reason for the huge adoption of Wordpress seems to be because

of the two ways a user can use it. They can use Wordpress.com which is owned

by Automattic which allows users to set up their own fully functional blog on

the Wordpress.com server for free with adverts, but if a user wants extra cus-

tomisations or the removal of adverts then they must pay to be upgraded to a

“premium” account.

The second wayWordpress can be used is to self host the software. The Wordpress

software is released under the GNU General Public License (Wordpress, 2013a)

and therefore can be freely downloaded and used. Plugins and themes can be

created for Wordpress and installed into the software without overwriting any

of the existing code. This, along with the large library of plugins and themes

Wordpress hosts for users to download means that the software has expanded

beyond the realms of purely a blogging platform and is now often used as a

Content Management System for many different types of website. Wordpress has

very little in the way of geolocation. Out of the box Wordpress has no concept

16

of geolocation, but due to the open source nature of the Wordpress project there

has been a geolocation plugin which allows users to geotag a blog post.

Wordpress is written in PHP and requires PHP 5.2.4 and MySQL 5.0 or newer

to run (Wordpress, 2013b). These are cross platform, open source projects and

therefore should enable Wordpress to be run on most web servers and operating

systems.

2.3.4 GeoSocial Networks

Gowalla was a location-based social network and was launched in 2007. In 2009

Foursquare, a direct competitor to Gowalla was launched and although many

opinions were that Gowalla was better designed, Foursquare ended up dominating

due to its larger user base. This was thought to be for a number of reasons such as

Gowalla’s more complicated user interface. Gowalla was based in Austin whereas

Foursquare was based in New York, and as social networks are all about the users

and not the content, New York had the population density (which is important

for a GeoSocial Network) and therefore the user base (Schonfeld, 2011).

Gowalla ended up being purchased by Facebook who were not interested in the

product itself, but the talent for them to create their own geographical addition

to their existing social networking site. Facebook users could now “Check In”

to locations and tell their friends where they are. As Facebook is the largest

social networking site out there with 1.11 billion users as of March 2013 (The

Associated Pess, 2013), they are able to dominate social networking market due

17

to social networks being about the identity and relationships between users and

less about the content.

Foursquare have retained their user base due to game-like features. Users score

points for “checking in” to a location. The user gets more points if they check

in to new places or check in to a specific place more times than any other users

(this is called being the “mayor”). As well as point rankings against other users,

Foursquare offers badges for achievements (e.g. number of check-ins into a spe-

cific category of place). All these factors create competition between users and

therefore encouraging usage of the service.

Around the same time as the release of Foursquare, Google released their own

GeoSocial Network: Google Latitude, which also has failed to gain market share.

This could be to do with a number of factors but it definitely is to do with the

competition from Foursquare. As with Gowalla, if the users are not using the

service, then a social network becomes ultimately pointless. As Foursquare holds

this market there seems to be little use in developing a GeoSocial Network, and

for that reason it is deemed to be beyond the scope of this project. Furthermore,

as all these are proprietary applications, there is little that can be determined

about how the locations are stored and queried.

2.3.5 Content Sharing Communities

There are various content sharing communities in existence which predominantly

focus around a specific medium (images, audio, video etc). The most famous of

18

these is probably YouTube. Created in 2005 and purchased by Google in 2006,

YouTube is one of the few examples of a successful product despite it being bought

out by a larger company (mostly large technology companies purchase smaller

ones for the talent as opposed to the product as Facebook did with Gowalla).

YouTube allows users to upload videos and other users to discover them through

sharing or search. Youtube also allows users to add geographic information to

their videos via the “video location” field in the “advanced settings” when editing

a video’s information. This can then be retrieved through the API (Application

Programming Interface) (Google, 2013) and will also appear on other Google

location based services such as Google Earth and Google Maps but cannot be

used to search for videos on the YouTube website (Agarwal, 2011). Youtube is

not the only application in this market, there are many others including Vimeo

and more recently Vine, but neither of these allow geographic tagging of media.

Flickr is similar to YouTube except it is used for sharing images rather than

videos. Flickr pre-dates YouTube as it was launched in 2004 and acquired by

Yahoo! in 2005. Flickr also allows users to tag the geographic location of images

by tagging the image’s location on a map which can then be searched for using

the API.

Geotagging in these systems seems to be very much in its infancy, and although

the functionality is there, it has little to no effect on how the application performs

to a normal user as there are no maps or obvious representation of the locations.

The only effect it has is if a developer wants to use the APIs, they can then

perform queries on or consume the geographic locations of uploaded content.

19

2.3.6 Commonality & Differences

Looking at the existing social media applications, it has become apparent that

there are three key features which they have in common: identifcation/authentic-

ation, the posting/reading of content and the ability to comment on said content.

In order for users to be identified there must be a registration and login feature.

This allows users to be identified on the social media platform and prevents users

masquerading as other users.

Users (either authenticated or anonymous depending on the application) are able

to create media across them all, although the media varies from application to

application. For example, users can create articles on Wikipedia, blog posts on

Wordpress, upload images on Flickr and add videos to Youtube. Because the

media is generally text and easily editable on Wikipedia and Wordpress, users

are able to edit and delete existing media, whereas on the more complex media

types (such as videos and images), they are generally just removed.

Users should also be able to interact with other users on the subject of the media.

This is achieved via comments in Wordpress and Youtube and a talk page in

Wikipedia. User interaction is key to social media as it has become apparent

that user feedback is as important as the creation of the content.

20

2.4 Technology Analysis

Web applications generally consist of a number of services running on a web

server. These are often referred to as a “server stack” and normally include an

operating system, compiler/interpreter, a database management system and a

web server. There are some technologies which require specific operating systems

or web servers. As this project is to develop a generic engine, this section will

focus on cross-platform technologies.

2.4.1 Compilers & Interpreters

There are a wide variety programming languages across the web, although there

is one major language which powers far more websites than any other; PHP.

PHP stands for “PHP: Hypertext Processing” and was developed in the mid-

nineties by Rasmus Lerdorf. It is an open-source cross platform language which

can be run on a number of different web servers and platforms and it is used to

power many of the websites mentioned above including Facebook, Wordpress and

Wikipedia. PHP is the widest used interpreter on the web with 80% of web sites

running it and has a large amount of development tools and frameworks (such as

Zend Framework, Symfony, CakePHP, CodeIgniter) which can aid a developer in

creating a large application structure and keeping it flexible. ASP.NET is the next

most popular language with a 19% market share (W3Techs, 2013). ASP.NET is

a language developed by Microsoft as a successor of ASP (Active Server Pages)

and normally runs on the IIS web server on Windows.

21

Python is another open-source and cross platform language. When developing a

web application it is often used in conjunction with the Django web framework.

Like the PHP frameworks mentioned above Django provides an application struc-

ture and pre-written code which can be used and reused throughout an applica-

tion. Ruby with the Rails framework is also another language with an associated

framework. These both have relatively low usage across the web.

2.4.2 Database Servers

Databases are used to power most social media applications on the web. Each

database system has its own specialities, this section will outline the some of

the most common databases in use on the web which have geometric capabilit-

ies. These databases need to be able to handle geospatial data as this is a core

requirement of the engine.

2.4.2.1 PostgreSQL & PostGIS

PostgreSQL is an open source database server which is often used for geospatial

data. This is due to it having the specialist GIS extension PostGIS which adds

support for geometric and geographic data.

PostGIS implements the Simple Features from the Open Geospatial Consortium

22

Inc. (2010). The Simple Features specification is an ISO standard for the imple-

mentation of geospatial data on a two dimensional plane. The format of Simple

Features can be in one of two formats: a text format named Well-Known Text

(WKT) or a binary format named Well-Known Binary (WKB). The information

contained in these formats revolve around a set of geometric classes including the

Point class, which is a single dimensionless location on a two dimensional grid

(e.g. X and Y or Longitude and Latitude). Other specified classes include Line

and Polygon. These are used to specify a set of points to create a line or path

and a set of points which create a two dimensional shape respectively.

In PostGIS, geometry can be used in an SQL query using the ST_GeomFromText()

function with the parameters containing WKT as a string as illustrated in figure

2.1.

ST_GeomFromText('POINT(1 2)')
ST_GeomFromText('LINESTRING(2 3, 6 9)')

Figure 2.1: Examples of the GeomFromText function containing WKT

PostGIS also implements many other spatial functions, many are not applicable

to this project. One functionality, however, that is relevant is ST_Distance which

is used for distance calculations. This calculation defaults to using a spherical

surface which means that it is suitable for calculating distances across the planet.

Another applicable feature is the ~ and && operators which are used to test if

one geometry contains or intersects another respectively. This is useful with the

23

ST_Envelope function which is supplied with minimum and maximum coordin-

ates for each axis to create a bounding box as shown in figure 2.2.

ST_Envelope('POLYGON(0 0, 0 6, 3 6, 3 0, 0 0)') &&
GeomFromText('POINT(3 5)')

Figure 2.2: The Envelope function

2.4.2.2 MySQL

MySQL (like PostgreSQL) is an open source DBMS and forms part of the com-

mon LAMP stack (Linux, Apache, MySQL, PHP/Perl/Python) and is the most

commonly used database for web projects (Oracle, 2008). The social media pro-

jects Wordpress and MediaWiki both use MySQL by default. MySQL has a

spatial extension which adds support for Simple Features including WKT and

WKB however has its limitations.

Spatial indexing is not supported by the InnoDB storage engine which as of

MySQL 5.5 is the default storage engine used by MySQL (Oracle Corporation,

2013). In order to use spatial indexing the MyISAM storage engine must be used.

MyISAM has its drawbacks as it does not support features like foreign keys or

row level locking (which should increase reliability).

MySQL’s spatial classes and functions conform to the naming standard, however,

unlike PostGIS they drop the optional ST_ prefix. This means that ST_GeomFromText()

becomes simply GeomFromText(). Other than this the creation of geometries is

24

the same as PostGIS.

Operators are also different. Instead of using the && or ~ operators, MySQL imple-

ments its own functions MBRIntersects(geom1, geom2) and MBRContains(geom1, geom2).

Another drawback of MySQL is it does not implement any distance calculations.

This means that the calculation must either be implemented manually in the

query (which may be very slow as it is not optimised) or calculated post-retrieval

in the application layer.

2.4.2.3 MongoDB

Unlike the previous two DBMSs MongoDB is a NoSQL document-oriented data-

base. This means there are no predefined schemas and the data is stored in

documents. MongoDB uses its own form of JSON (JavaScript Object Notation)

for data representation called BSON (standing for Binary JSON) (MongoDB Inc.,

2013). This means that the database would be unfamiliar to many developers

who want to implement the engine into their application. Additionally, it has

considerably lower usage than the others so is less likely to be installed on a

server.

MongoDB has geospatial functionality built in. As of version 2.4 MongoDB uses

the GeoJSON format for storing and representing geometry. This GeoJSON

standard contains similar data to the Simple Features specification, however, it

is represented differently. Generally, it is a JSON object containing the two fields

25

“type”, which contains the data about what type of geometry it is representing and

“coordinates” which contains arrays of coordinates which the geometry comprises

of. This is illustrated in figure 2.3.

{
"type" : "Point",
"coordinates" : [0, 4]

}
{

"type" : "LineString",
"coordinates" : [[2, 0], [3, 6]]

}

Figure 2.3: An example of two GeoJSON objects

Geospatial searching in MongoDB is very efficient as it is possible to perform a

“near” search, which will return the n closest results to a location in distance

order (nearest to furthest). This is achieved by creating a grid containing all

entries and searching further and further away around the location for until it

reaches its limit (Rethans, 2014). This is the most efficient way of searching if it

is required to find the closest entries without limiting the distance.

2.4.2.4 Database Summary

Overall, any of these databases could be used for a location-based social media

as they all handle geospatial data types and each have their benefits. MongoDB

has the best geospatial searching techniques, but has the lowest adoption which

will limit the engine’s deployment ability and therefore makes the engine less

26

generic. PostgreSQL is an SQL database which has higher adoption than Mon-

goDB and also has some quite advanced geospatial handling. Finally MySQL has

considerably higher adoption than either of the previous two databases, and is

very common in the LAMP (Linux, Apache, MySQL, PHP/Perl/Python) server

stack. Although it does handle geospatial data, it does not, however, have the

level of functionality that the other two databases have.

2.5 Application Design

When designing a generic engine, it is important to have a project structure which

is easily editable and maintained by others. This can be maximised by following

standard well known programming paradigms to aid the future development,

expansion and maintainability of the engine. These are known as design patterns.

A design pattern is a standard approach which can be used to solve a variety

of problems in software engineering. For a generic engine which can be used

(and potentially developed by) by many users, it is important that these are used

to allow ease of customisation and understanding of the software. This section

includes an overview of the most applicable design patterns for this research

project.

27

2.5.1 The Model View Controller Pattern

The design pattern Model, View, Controller (or MVC) is one which organises

your program into three different sections. The model contains the “business

logic”. This means that it contains the bulk of the decision making code which

makes the application work. This code is organised into classes to keep code

self contained and easily maintainable. The view is the interface that a user (or

another external program) interacts with. This could be in the form of a web

page (for a user to interact with through a web browser), or an API for another

application to interact with (e.g. A smartphone application). The controller

takes the inputted data (by the user or other application) and passes it to the

model to allow it to be processed (Leff & Rayfield, 2001).

The separation of the business logic from the display and the handling allows for

better project structure, easier maintenance and more scalable applications. This

is incredibly important when a developer is building an application around the

core location-based social media engine.

2.5.2 Adapter Pattern

The Adapter pattern is a structural pattern. The adapter pattern gives the

ability to change how an object is interacted with. This is useful if the object

has features which are not expected by the rest of the application. It means that

you can transform an individual class into something that conforms with the rest

28

of the application without actually having to change the code or functionality

of this new class (Noble, 1998). This could be very useful when working with

multiple methods of retrieving a location or data which is contained, posts/articles

which contain different types of content and added functionality by an application

developer using the location-based social media engine.

2.5.3 Registry Pattern

The registry pattern allows a single, central place for data or instances of objects

to be stored. A registry is often a static class which has store and retrieve methods

(or equivalent of). This is often used to overcome the need for global variables,

which are considered bad practice, and allows a more organised storage of data

which needs to be accessed throughout the application. Within a location-based

social media engine it could be useful to store all the different post types in a

registry, to allow them to be added and retrieved easily, along with the application

configuration and permissions system.

2.5.4 Software Development Practices

Along with the design patterns, there are further software development techniques

(Perks, 2006) which aid development and ensure software meets the requirements

of the specification.

29

Frameworks are used in software development as they provide pre-written code

which often performs common functions and contains a predefined organised pro-

ject structure. This predefined structure aids consistency within and between

projects as well as encouraging good development practices. Furthermore, the

pre-written code decreases the length of time required to write software therefore

increasing productivity and efficiency of a development team (Mnkandla, 2009).

The software needs to be tested once it has been written. Unit tests are a method

of automatically testing code; they work on the principle of assertions which check

that the outputs of methods in objects are consistent with expected values. If the

outputted values are consistent with the assertions, then the code is deemed to

have passed the unit test. Traditionally tests are written after the code, however,

there is also an agile software development methodology called “Test Driven De-

velopment”. With Test Driven Development (or TDD), development starts with

the writing of the tests and then code is written which should pass all the tests.

The advantages of this are that it encourages developers to write testable code

and the tests themselves also act as a design specification for the functionality of

the code (Maximilien & Williams, 2003).

Unit tests are useful for testing individual classes, but less useful for testing the

overall functionality of web applications. Historically this was achieved through

user testing. However, Selenium WebDriver and IDE are tools which allow a

developer to automate this. Selenium effectively takes control of a web browser,

and follows a set of instructions (which can include the clicking of links and

putting text in text boxes) and assertions can be made from page content to

make sure the website has met the functional requirements. By controlling the

30

web browser, it also tests the browser engine’s ability to render the page and

execute any client side code, which is becoming increasingly important in modern

web applications (Holmes & Kellogg, 2006).

2.6 Rationalisation

With the exception of LocalWiki, these existing open source social media plat-

forms are becoming increasingly location aware but are not location orientated.

The rest of the location-based social media services are proprietary systems built

for the specific applications. The consequence of this is that there is little available

in terms of open source social media platforms. With this being the case, there

is a need for a generic location based platform which will allow a cross-section of

social media applications to be developed on top of.

This platform should have the common features across the social media platforms

built in, and allow a developer to customise the differences. The core features of

social media seem to be: identity (through authentication), the ability to create

content and the ability to feedback on the content. There are differences, however,

around these from different social media types. These are compared in table 2.1,

which focuses on the identity (which is common across all platforms), the content

which is created, and the ability for social interaction around the content.

31

Feature Blog Wiki Content-Sharing

Site

Identity All social media types have a similar way of identifying users. The

authentication method is by allowing users to register and then

login with a username and password to identify themselves. The

identity of the user and the role they have states the permissions

for what they can and cannot do.

Content A blog post nor-

mally consists of

text and HTML.

These posts can

generally only be

created and edited

by users who have

the permissions

(normally the blog

owners).

A wiki article is

made up of text

and a special

non-standardised

markup called “wiki

markup”. These

articles can gener-

ally be created and

edited by anyone,

sometimes even

those who are not

registered.

A content sharing

site normally allows

any registered user

to create content

and edit their own

content. The con-

tent itself is gener-

ally a specific type

of media such as im-

age, video or audio.

Social Interaction A blog often allows

other users (can

be either registered

users or anonym-

ous users) to post

comments about

the blog post. This

creates a threaded

conversation about

the subject matter

of the blog post.

A wiki site often

has a “talk” section

which allows people

to discuss potential

edits and content of

the main article.

A content sharing

site has an ability

for people to com-

ment on the content

created.

Table 2.1: Feature Comparison

32

The requirements for a generic location-based social media engine will be based

upon the aforementioned findings and will be discussed in chapter 3.

33

Chapter 3

Requirements Analysis

In order to realise the goal of developing a generic engine for location-based so-

cial media applications as defined in chapter 1 which can realise the application

types identified in chapter 2, the engine must clearly be able to power a location

based blog, wiki or content sharing site, and run on the widest possible number

of platforms. Meanwhile the engine itself should be well structured and main-

tainable. This chapter will discuss the decisions which need to be made regarding

the platform, architectural design and the feature requirements.

34

3.1 Platform

As stated in section 2.4, there are a number of platforms which could be used

for developing this engine. The platform should be chosen to allow this engine

to be deployed on the widest possible platforms. The platforms discussed are the

language the engine is written in (and consequently the interpreter required on

the server) and the data storage.

3.1.1 Language

The language chosen is PHP due to its ability to run all common Operating Sys-

tems and web servers. PHP is also the most common web-programming language

so it should the familiar to the widest possible number of developers who will be

using, deploying and modifying the application which facilitates the widespread

adoption amongst developers.

3.1.2 Data Storage

The database is a key aspect, and as all databases handle queries differently

from each other, a decision needs to be made regarding which database this

application is going to use. As discussed in chapter two, MySQL is the most

common database for a web server, but has limited geospatial functionality. On

the other-hand PostgreSQL with PostGIS or MongoDB have very good geospatial

35

functionality, but are not as widely available. For this reason, MySQL is chosen

to enable this engine to stay as “generic” as possible by enabling it to be deployed

onto the widest number of web servers available.

This has an impact on the application design, as it means the geospatial calcu-

lations must be done application side to increase efficiency rather than in the

database queries.

3.2 Architecture

The architecture of the engine is key to aid its implementation into applications

and future development of the engine. This section will cover how the engine

should be structured to enable it to be as flexible and maintainable as possible.

3.2.1 Engine Core

All location and distance data should be stored and calculated within the applica-

tion. This could be handled by a third party service (such as Google Maps APIs)

which would ease the development of the engine. This will allow the application

to be standalone and reduce the requirement for third party subscriptions which,

if the engine was implemented in a popular enough application, would require a

subscription. The content should be searched for based on a geographic location

and returned in the order of closest to furthest. Finally, as identity is key to all

36

social media types, the application core should also handle user registration and

authentication.

The engine core should not need to be altered or edited by a developer who is

using it to implement their own application. As this will need to be maintained

and developed however, it should still be organised in a well structured manner.

3.2.2 Permissions

It makes sense that the design allows the permissions to be configured on a per-

application basis. This means that there should be a simple way an administrator

can alter the permissions. This could be using web interface, but could also be

a configuration file which contains the permissions in a simple, easily readable,

understandable and editable format.

3.2.3 Content

The content can be anything from a simple block of text, to a mixture of mul-

tiple media types (including text, images, videos, external content etc.) and any

combinations of the above. For example, a image-sharing site may just want a

title and an uploaded image, whereas a restaurant review site will probably want

information such as; name, review, image and rating. On top of this, some ap-

plications may want multiple types of content within the same application. For

37

this reason, how the content is inserted, validated and retrieved will be different

depending on the application.

To enable this, the engine will be designed in a modular system where modules

(called “post types”) can be plugged in to the engine to allow different types of

content to be created. Modules should register themselves with the application so

no extra configuration is required. This will allow non-technical administrators to

simply drop in a post type module from a repository of pre-created post types. It

will also allow developers to create their own post types with minimal amount of

coding. This could be enhanced by providing abstract classes which a developer

extends to create their own post types.

3.2.4 Framework

To allow these variations, the engine needs to be developed in a consistent, well

structured manner. To allow for ease of future development the engine should use

an industry standard framework. This means that any other developer would be

able to modify the engine with relative ease and give a pre-defined structure for

the application to be built around. When this research began the most common

framework for PHP is Zend Framework. This provides a consistent structure and

aids the ability for this to be cross platform. It requires a minimum of PHP

version 5.2 and can run on Linux, Windows and Mac OS X.

38

3.3 Functional Requirements

This engine should be able to power a blog, wiki or content sharing site which

is location-oriented. This means that the way articles are searched and sorted

are based on a geographic location and distance from that location rather than

by key phrase searching or date order. There needs to be the ability to create,

edit and delete content together with the ability to create and delete comments

relating to the content. Who is able to do this varies between the social media

types as discussed in table 2.1. The three levels of user (known as “roles”) will

be “anonymous” (an unregistered or unauthenticated user), “user” (an authentic-

ated member of the site) and “moderator” (a user that has special moderation

privileges). On top of this there should also be an “owner” privelege, which is the

specific user who created the content. Table 3.1 lists the abilities of each of these

levels for each social media type.

39

Function Blog Wiki Content-Sharing

User Management

Registration X X X

Authentication X X X

Content Searching

Search around Location X X X

Post Actions

Anonymous Read X X X

Anonymous Create X X X

Anonymous Edit X X X

Anonymous Delete X X X

User Read X X X

User Create X X X

User Edit X X X

User Delete X X X

Owner Read X X X

Owner Edit X X X

Owner Delete X X X

Moderator Read X X X

Moderator Create X X X

Moderator Edit X X X

Moderator Delete X X X

Comment Actions

Anonymous Read X X X

Anonymous Create X X X

Anonymous Delete X X X

User Read X X X

User Create X X X

User Delete X X X

Owner Read X X X

Owner Delete X X X

Moderator Read X X X

Moderator Create X X X

Moderator Delete X X X

Table 3.1: Requirements Specification

40

In addition to these roles there will be a third level which is “admin”. This is not

an official role but will allow an admin user to bypass the privilege system.

3.4 Requirements Overview

To make sure this engine meets the requirements of being generic, the following

decisions have been made. It should run on the widest possible number of plat-

forms within reason, which is the reason for the decisions in section 3.1. The

architecture of the system should be well structure to allow collaborative devel-

opment and future expansion. It should also allow the post types to be created

and included with no modification of the engine core and the permissions should

be easily configurable through configuration files.

The end product should be tested compared to the functional requirements as

specified in table 3.1. It must have the core functionality of a location-based

social media including geospatial searching, content creation, edition and dele-

tion as specified along with the ability to control the functionality depending on

the location-based social media application which the engine is powering. The

implementation and evaluation of an engine designed to meet this requirement is

presented in chapters 4 and 5.

41

Chapter 4

Implementation

Figure 4.1 shows the overall design of the system. This chapter will start with an

overview of an individual post type, in which the classes inherit from the post type

abstracts in the library. This will be followed by a look at the configuration of the

engine, then the location library for the geospatial representation and calculations

the application core and configurations, and finally a look at the application core

which ties all these together. This will not look at the Zend Framework directory

as this is an unmodified version of Zend Framework.1

In order to satisfy the core requirements identified in chapter 3, the design will fol-

low the standard Zend Framework project structure: all core application code is

inside the applications/ directory, all files which should be exposed to the web

are in the public directory and all library classes used are stored in the library/
1Information on this version of Zend Framework can be found here:

http://framework.zend.com/manual/1.12/en/manual.html

42

directory (labelled “Library” in figure 4.1). Inside the application/ (labelled

“Core” in figure 4.1) directory are a number of other directories which follow the

MVC (Model-View-Controller) design pattern as discussed in section 2.5, how-

ever, on top of this there are the configuration files in application/configs and

the modules directory in application/modules where modules can be dropped

in and removed with ease. For this reason, the modules directory is going to be

used for the post types, and any number of post types can be used at any one

time.

Figure 4.1: Overview of Application Structure

43

4.1 Modular Post Types

To allow the post types to have ultimate flexibility regarding post content, storage

location and retrieval, each post type is developed as a separate Zend Framework

module and is put in the application/modules directory. Each module will

correspond to an individual post type and there can be an unlimited number of

post types in use at any time. The only stipulation is that each post type needs

a unique name. The file structure of an example post type is shown in figure 4.2.

Figure 4.2: Post Type Module Structure

44

The structure follows a standard Zend Framework module MVC structure.

4.1.1 Required Classes

There are a number of classes which are required, and each of these classes ex-

tends abstract classes which are in the library/My/PostModule directory. These

provide the common functionality required across all post types. In figure 4.3,

the block highlighted in green is where all these abstract classes are located.

Figure 4.3: Overview of Application Structure (with the Post Abstracts location

highlighted)

45

4.1.1.1 Post Class

The Post model in the individual post type extends the My_PostModule_PostAbstract

class found in the post abstracts library. The only method that is required to

be implemented is a getTitle method to retrieve the title of the post. This is

because this is used when listing post search results, whereas the summary and

the full post is rendered by the “PostType” class. The setting of the _postType

property is also required which must be the name of the post type. The abstract

class contains methods to handle the setting and retrieval of the individual post’s

author and location (which is part of the application and therefore a developer

should not need to write that functionality in themselves).

4.1.1.2 PostType Class

The PostType model needs to extend the My_PostModule_PostTypeAbstract.

This is the class used to interact with the post module. It contains the properties

for storing the post type name (a unique identifier for that post type), the module

name (for to allow for the instantiation of classes from the module) and the title

(which is the displayed name when creating a new post of that type). There are

also two other properties which are used for controlling a post type’s abilities:

“readonly” is used to allow a post type be defined as read only. This is particularly

useful if the data is being retrieved from an external data source and therefore

cannot be edited through this application. Another ability is “editable”, which is

set to false if you only want a user to be able to create and delete and post type,

but not have the editable functionality.

46

This class abstract contains two abstract methods which need to be implemen-

ted for each post type. The getPost() method expects a single post ID as a

parameter, and expects the return of either null or a Post object. This has to

be implemented by the developer of the post type, as the way the post data is

retrieved and the object is constructed will differ between each implementation.

This makes the storage and retrieval of the post as flexible as possible. The other

abstract method is renderPost which takes a Post object as its parameter. This

should return a string (probably containing HTML) of the full post rendered for

display to the end user. Again, this is because how a post is rendered will be very

variable from one implementation to another.

The getPosts method (as shown in figure 4.4) is the method that is called to

retrieve posts from the location. This is passed the Zend_Db_Table_Rowset

retrieved from the database query, the list of locations found from the application

core and the bounding box. The latter parameter is not used by the default

method, but could be useful if a developer created a post type which had an

overriding method; particularly if the data source is external.

47

public function getPosts(Zend_Db_Table_Rowset $rowset,
Array $locations, Location_Mbr $mbr = null)

{
$postArray = array();
foreach ($rowset as $row) {

if ($row->posttype == $this->_name) {
$post = $this->getPost($row['posts_id']);
if ($post instanceof My_PostModule_PostAbstract) {

$post->setLocation($locations[$row['locations_id']]);
$postArray[] = $post;

}
}

}

return $postArray;
}

Figure 4.4: My_PostModule_PostTypeAbstract::getPosts method

The rowset contains related location IDs, post IDs and post types. The post

type name is checked, and if it is the name of the current post type it calls the

getPost method which is passed the post ID. If a post is returned, it then sets

the location of the post using the setLocation method (which is defined in the

post Abstract class) and appends it to an array of other posts. This array is then

returned.

The register method in the postTypeAbstract is called by the bootstrap. This

method uses a registry pattern to store all the post types which are in the ap-

plication in a single place together. To achieve this Zend_Registry is used and

an array of post types is stored in the registry key “posttypes”.

48

Figure 4.5 illustrates this registration process and also shows why the post type’s

“name” must be unique, as it acts as the key of an associative array. An exception

is thrown if a post type of the same name already exists in the registry.

public function register()
{

$posttypes = Zend_Registry::get('posttypes');
if (!isset($posttypes[$this->_name])) {

$posttypes[$this->_name] = $this;
Zend_Registry::set('posttypes', $posttypes);

} else {
throw new Exception('post type already exists');

}
return $this;

}

Figure 4.5: My_PostModule_PostTypeAbstract::register method

Finally there is a parseConfig method which is used for parsing a standard Ini

configuration file. This allows the main information about the post type to be

stored in an external, easily editable file rather than being hard coded into the

PostType class. This is also invoked by the bootstrap.

4.1.1.3 Bootstrap

A developer does not need to write any code for the Bootstrap.php file, they

just need to extend the My_PostType_Bootstrap class. This class has a single

method _initRegister. Methods in the bootstrap which start with “_init” are

automatically called by Zend Framework, and this is where the PostType class is

49

initialised and added to the registry.

Figure 4.6 shows this method which uses reflection to retrieve the location for the

configuration file, parses it and passes it to the PostType’s parseConfig method

followed by calling its register method from figure 4.5.

protected function _initRegister()
{

$namespace = $this->getAppNamespace();
$className = $namespace . '_Model_PostType';
$ref = new Zend_Reflection_Class($this);
$iniFile = dirname($ref->getFileName()) . '/configs/posttype.ini';
$postType = new $className();
if (file_exists($iniFile)) {

$config = new Zend_Config_Ini($iniFile, APPLICATION_ENV);
$postType->parseConfig($config);

}
$postType->register();

}

Figure 4.6: My_PostModule_Bootstrap::_initRegister method

4.1.2 Configuration File

The properties of the post type can be configured in a configuration file. This

makes it easier to create and alter post types as you can set up the post type

without the need to edit any PHP code. Figure 4.7 is an example post type

configuration from the config/posttype.ini file in the figure 4.2.

50

[production]
posttype.name = "image"
posttype.module = "image"
posttype.title = "Image"
posttype.readonly = false
posttype.editable = true

[development : production]

Figure 4.7: An example Post Type configuration file

These configuration parameters correspond directly to the properties of the Post-

Type class.

4.1.3 Post Type Controller

As well as specific models required, each post type requires an “IndexController”

for which the abstract is called “My_PostControllerAbstract”. This is the de-

fault controller of the post type, and implements the ability to create, edit and

delete posts of the post type. This abstract requires the implementation of three

methods: “create”, “edit” and “delete”.

The abstract’s “createAction” (figure 4.8) method handles the location and au-

thorisation (whether a user is allowed to create a post), and if they are, calls the

custom “create” method. This method should handle everything that is required

to create a post type (such as rendering of forms, handling of data submitted

and insertion into database) and should either return “null” or an instance of the

51

PostAbstract class. If a post is returned, it is assumed that this is a brand new

post has been created and it assigns that post to the location. Finally, it then

redirects to the newly created post.

52

public function createAction()
{

$post = null;
$this->_isAuthorisedTo('create');

$postId = $this->create();
if ($postId != null) {

$posttype = $this->_getPostType();
$post = $posttype->getPost($postId);
if ($post instanceof My_PostModule_PostAbstract) {

$locationType = $this->getRequest()
->getParam('locationType', null);

$locationVal = $this->getRequest()
->getParam('locationValue');

if($locationType == 'locationId') {
$location =

Application_Model_Location::fromId($locationVal);
}
else {

$location =
Application_Model_Location::fromString($locationVal);

}
if($location instanceof Application_Model_Location) {

$location->addPost($post);
$this->_helper->redirector->gotoRoute(array(

'controller' => 'index',
'action' => 'post',
'postType' => $posttype->getName(),
'postId' => $post->_postId,
'module' => 'default'

),
'post',
true

);
}

}
}

}

Figure 4.8: The createAction method

53

The “editAction” does a very similar thing but for editing a post. This is simpler

as a post is already allocated to a location, but it still handles the authorisation

and redirect once edited. This calls the “edit” method to actually perform the

editing of the post. Finally the “deleteAction” also calls the “delete” method

after checking the authorisation, however, it does not redirect to the post as it

is assumed the post no longer exists once called. The “delete” method should

handle the actual deleting of the post.

4.2 Geospatial Library

To increase the flexibility of this engine, it should not rely upon third party

services (such as Google Maps) for handling geospatial data and calculations. In

order to do these, a geospatial library was written in PHP which was loosely based

upon the geospatial data types from the Simple Features specification as discussed

in 2.4.2. This library was written to follow Zend Framework naming conventions

with each class being prefixed by Location_, and could be easily extracted from

the location-based social media engine to be used completely standalone in a

separate project. Figure 4.9 highlights the location of this library in the project.

54

Figure 4.9: Overview of Application Structure (with highlighted geospatial lib-

rary)

Figure 4.10 illustrates the location library file structure. This library comprises

of a collection of classes. The main classes are based upon the Simple Features

classes. These are: Point (relating to the Point class), Line and Multipoint Line

(relating to the LineString class), and Polygon and Mbr (which are based upon

the Polygon class). These classes all implement a toSQL() method which will

convert the object to a WKT geospatial representation in a string format. This

allows for objects to be easily inputted into an SQL database. In addition to these

there are some other classes: Earth (for data specific to Earth) and Distance (used

55

for distance calculations and unit conversion).

Figure 4.10: Location Library File Structure

4.2.1 Location_Earth Class

From a design perspective, a decision was made to include information specific

to Earth in a single class to allow it to be used throughout the library. This class

has a single static method radius, which takes one optional parameter which is

the unit the in which the radius is required (this defaults to “km” if no parameter

is passed) and returns the average radius of Earth in the provided unit.

This was developed as a method rather than as static constants as, due to Earth

not being entirely spherical, the radius changes depending on the latitude. This

means that it could be developed in the future to take a latitude as a parameter,

and allow it to return the radius for that location. This would allow for more

accurate distance calculations.

56

4.2.2 Location_Point Class

An instance of the point class is used to represent a single, dimensionless loc-

ation on the surface of the planet. The constructor takes in the latitude and

longitude in decimal format. This class has a number of methods: thelineTo()

an d bearingTo() methods take another Location_Point object as a parameter

and relate to the Location_Line class, offering alternative interfaces to creat-

ing a new Location_Line and Location_Line::getBearing() respectively (see

subsection 4.2.4 on page 60). The longitudeToRad() and latitudeToRad()

methods convert the values of the latitude and logitude to radians and are gen-

erally used by other methods when performing calculations. The distanceTo()

method also takes another Location_Point object and returns an instance of the

Location_Distance class.

The getRelativePoint method takes a numerical distance, initial bearing (in

degrees) and unit of the distance (defaults to “km”). To work out the latitude of

the second point equation 4.1 is used:

ϕ2 = arcsin(sin(ϕ1). cos

(
d

R

)
+ cos(ϕ1). sin

(
d

R

)
. cos(θ)) (4.1)

The longitude calculation is a little more complicated as the lines of longitude

vary in distance depending on the latitude. To determine this, equation 4.2 is

used:

57

λ2 = λ1 + arctan 2(sin(θ). sin

(
d

R

)
. cos(ϕ1), cos

(
d

R

)
− sin(ϕ1). sin(ϕ2)) (4.2)

The method implements these two equations and returns a new Location_Point

based on the results as demonstrated in figure 4.11.

$rad = Location_Earth::radius($unit);
$lat1 = $this->latitudeToRad();
$lon1 = $this->longitudeToRad();
$bearing = deg2rad($bearing);

$lat2 = sin($lat1) * cos($distance / $rad) +
cos($lat1) * sin($distance / $rad) * cos($bearing);

$lat2 = asin($lat2);

$lon2y = sin($bearing) * sin($distance / $rad) * cos($lat1);
$lon2x = cos($distance / $rad) - sin($lat1) * sin($lat2);
$lon2 = $lon1 + atan2($lon2y, $lon2x);
return new Location_Point(rad2deg($lat2), rad2deg($lon2));

Figure 4.11: Location_Point::getRelativePoint Implementation

4.2.3 Location_Distance Class

The distance calculations were abstracted to their own class to allow ease of

unit conversion. Although this class currently can only convert “miles” and “kilo-

metres”, it can be easily expanded to include other units (such as “nautical miles”

or “metres”). It is highly unlikely that the user will instantiate this class (although

there is nothing stopping them), but it is more likely to be returned from the

58

Location_Point::distanceTo() and Location_Line::getLength() methods

or used in the Location_Line::getBearing() method. The constructor takes

two Location_Point objects and on construction uses the Haversine formula

(equation 4.3) to determine the shortest distance between the two Location_Point

objects.

a = sin2

(
∆ϕ

2

)
+ cos(ϕ1). cos(ϕ2). sin

2

(
∆λ

2

)
d

R
= 2. arctan 2

(√
a,
√

1− a
)

(4.3)

This formula was written in JavaScript on moveable-type.co.uk, which was con-

verted into PHP for this project as illustrated in figure 4.12.

$distance = sin($this->_distanceLat/2) * sin($this->_distanceLat/2) +
cos($this->_firstLocation->latitudeToRad()) *
cos($this->_secondLocation->latitudeToRad()) *
sin($this->_distanceLong/2) * sin($this->_distanceLong/2);

$distance = 2 * atan2(sqrt($distance), sqrt(1 - $distance));

Figure 4.12: Distance calculation implementation

When converting this distance into miles and kilometres it retrieves the radius of

Earth from the Location_Earth class. In order to add more units of measurement

one would simply need to add another unit to the Location_Earth and pass the

unit as a parameter into the Location_Distance::to() method.

59

Additionally, this class contains a Location_Distance::getBearing() method

which returns the initial bearing of the line between the two points. This was

delegated to this class as it uses some of the same as used in the distance calcu-

lation.

4.2.4 Location_Line

The Location_Line is a class that represents a one-dimensional, great-circle line

between two Location_Point objects. The getLength() method creates a new

instance of Location_Distance and passes in the start and end Location_Point

objects.

This class also has the getBearing() which retrieves the initial bearing of the

line using the formula described in equation 4.4

b = arctan 2(sin(∆λ). cos(ϕ2), cos(ϕ1). sin(ϕ2)− sin(ϕ1). cos(ϕ2). cos(∆λ))

(4.4)

This is implemented in PHP as illustrated in figure 4.13.

60

$y = sin($this->_lonDiff()) * cos($this->_end->latitudeToRad());
$x = cos($this->_start->latitudeToRad()) * sin($this->_end->latitudeToRad())

- sin($this->_start->latitudeToRad())
* cos($this->_end->latitudeToRad()) * cos($this->_lonDiff());

$result = atan2($y, $x);

Figure 4.13: Get Bearing Implementation

4.2.5 Location_Mbr

MBR stands for Minimum Bound Rectangle. This class is used to generate the

bounding box by being given a location (Location_Point object) and a radius

when performing a search for posts. This will calculate a maximum and minimum

latitude and longitude required for performing the search. This MBR can be

converted to a Location_Polygon object by calling the toPolygon method. This

is what is used by the SQL query. Matuschek (2013) published the equation for

determining the bounding box on a spherical plane, this was implemented in the

class method _setLimits (figure 4.14).

61

protected function _setLimits()
{

$north = $this->_point->getRelativePoint($this->_radius,
'0', $this->_unit);

$south = $this->_point->getRelativePoint($this->_radius,
'180', $this->_unit);

$this->_limits['n'] = $north->lat;
$this->_limits['s'] = $south->lat;

$radDist = $this->_radius / Location_Earth::radius($this->_unit);
$minLat = deg2rad($this->_limits['s']);
$maxLat = deg2rad($this->_limits['n']);
$radLon = $this->_point->longitudeToRad();
if ($minLat > deg2rad(-90) && $maxLat < deg2rad(90)) {

$deltaLon = asin(sin($radDist) /
cos($this->_point->latitudeToRad()));

$minLon = $radLon - $deltaLon;
if ($minLon < deg2rad(-180)) {

$minLon += 2 * pi();
}
$maxLon = $radLon + $deltaLon;
if ($maxLon > deg2rad(180)) {

$maxLon -= 2 * pi();
}

}

$this->_limits['w'] = rad2deg($minLon);
$this->_limits['e'] = rad2deg($maxLon);

}

Figure 4.14: MBR Calculation Implementation

62

4.3 Application Wide Permissions and Configur-

ation

The configuration directory contains three “ini” files (the location of these files

is highlighted in figure 4.15); “application.ini”, “lbsm.ini” and “permissions.ini”.

The “application.ini” file contains the necessary configurations for the application

such as the classes which are required for the autoloader, namespaces and routing

information. This file should not be edited by a developer implementing the

system.

63

Figure 4.15: Overview of Application Structure with the configuration directory

highlighted

The “lbsm.ini” (figure 4.16) file contains the implementation specific configura-

tion. This is a file which a developer implementing the system would need to

edit. This is a small file with the following configuration requirements:

64

[production]
; Set the database configuration
resources.db.adapter = "PDO_Mysql"
resources.db.params.username = "username"
resources.db.params.password = "password"
resources.db.params.dbname = "dbname"

; Set the site information
resources.frontController.baseUrl = "http://url.to.site/"
lbsm.title = "LBSM"
lbsm.default.role = member
lbsm.default.unit = "miles"
lbsm.default.radius = 5
lbsm.default.range.min = 0
lbsm.default.range.max = 100
lbsm.default.range.step = 0.1

[development:production]

Figure 4.16: lbsm.ini

The first group of configuration is standard database connection parameters. The

second is involved with this application. the resources.frontController.baseUrl

should contain the full URL to the root of the application. This allows the ap-

plication not to be at the web root, but can be a subdirectory of a domain. The

lbsm.title sets the title used throughout the application. It is displayed at

the top-left of each page. The other lbsm.default configurations are all for the

default values for the application. The default role is the role which is given

to a newly registered user. The unit tells the application to query and display

results in either miles or kilometres (“km”). The default radius value determines

the radius of the bounding box of the initial query. Finally the range values de-

termine the minimum and maximum radius which can be searched, along with

the incrementation which the range slider can select.

65

The final configuration file is “permissions.ini”. This contains the user levels

(known as roles) and the permissions. This uses a resource and privilege system

to determine who (role) can perform an action (privilege) on what (resource).

Roles can inherit from each other, for example if a standard “member” has a

privilege on a resource, “moderator” role can inherit from that role which will

also automatically allow these privileges for the moderator user as well.

The top section of figure 4.17 allocates the roles and inheritance. These roles

are not fixed and there can be any number of roles. The only roles which are

hard-written into this system are the role of “guest” which is the default role for

a non-authenticated user and “admin” which will automatically be allowed to do

everything. This example defines the role “guest” and does not inherit from any

role, the next role is “member”, which inherits all privileges from “guest” and so

on.

The next section is specifying the resources and privileges which roles have. In

this case the resource is “post” and there are a number of privileges. The top line

of this part states that a user of a “member” role is allowed to create a “post”. The

third section is the same configuration as the previous one, but for the “comment”

resource. Finally, there is a line which will prevent registration and can be used

to prevent new users from registering. This was added as an additional feature

as it is not required for the requirements specification.

66

[production]
acl.roles.guest = null
acl.roles.member = guest
acl.roles.moderator = member
acl.roles.admin = moderator

acl.resources.post.create.allow = member
acl.resources.post.delete.allow = member
acl.resources.post.edit.allow = moderator
acl.resources.post.read.allow = guest

acl.resources.comment.create.allow = guest
acl.resources.comment.delete.allow = moderator
acl.resources.comment.edit.allow = moderator
acl.resources.comment.read.allow = guest

acl.resources.user.register.allow = guest

[development : production]

Figure 4.17: An example “permissions.ini” configuration

4.4 Engine Design

There are multiple aspects to the design of the engine core, and the development

of this is done in the main application directory (highlighted in figure 4.18).

67

Figure 4.18: Overview of Application Structure with the core engine directory

highlighted

4.4.1 User Authentication

This project uses the built in Zend Framework component Zend_Auth to perform

the user authentication. This is all contained within the AuthController which

handles the display of forms and comparison with the database. When a user

enters their details into a registration form, the form is validated against the

following criteria. The username and email must not already exist in the “users”

68

table, the password and password confirmation must be identical and the email

address entered must be a valid email address. If it passes this validation a new

row is entered into the table with all the details and the password hashed and

salted. In addition, the user’s role is entered into the database which is the default

role as specified in the configuration.

Once registered a user can authenticate by filling out the login form. The pass-

word is hashed with the salt and compared to the hashed password stored in the

database row with username.

4.4.2 Geospatial Searching

A key part of this engine’s function is the ability to perform searches from location

data.

4.4.2.1 Location Retrieval

The location retrieval is achieved by one of the small amounts of JavaScript in

application. This uses the HTML 5 geolocation API which attempts to retrieve

the web browser’s location. As this is an HTML 5 standard, it works the same

on any browser with geolocation capability (including mobile browsers).

On the index page (/), there is a large link with the text “What’s around me?”.

69

This is the HTML element which the JavaScript manipulates by replacing the

“href” attribute’s value with a generated URL based on a pattern which contains

placeholders for the latitude and longitude values. The original URL and the

pattern URL are generated using the Zend Framework URL generator (figure

4.19(a)), which means if the URL does change, the JavaScript should continue

working.

(a)

<a id="locate-me" class="btn btn-primary btn-large" href="<?php
echo $this->url(array(

'action' => 'index',
'controller'=>'locate'

));
?> " data-geourl="<?php

echo $this->url(array(
'action'=>'geo',
'controller'=>'locate',
'lat' => ':lat:',
'lon' => ':lon:'

), 'geolocate');
?> ">What's around me?

(b)

<a id="locate-me" class="btn btn-primary btn-large"
href="http://lbsm-wiki.local/locate"
data-geourl="http://lbsm-wiki.local/geo/%3Alat%3A/%3Alon%3A">
What's around me?

Figure 4.19: The PHP template followed by the HTML which is generated from

the template

The JavaScript (figure 4.20) uses the template from the data-geourl data attrib-

ute (figure 4.19(b)), which when HTML entities have been parsed has the path

70

/geo/:lat:/:lon:, replaces the :lat: and :lon: placeholders with the actual

latitude and longitude respectively. This is done by passing the HTML element

(el) URL string (geoString) to a function called generateUrl.

var generateURL = function(el, geoString) {
if(navigator.geolocation) {

var watch = navigator.geolocation.watchPosition(
function(position) {

geoString = geoString.replace('%3Alat%3A',
position.coords.latitude);

geoString = geoString.replace('%3Alon%3A',
position.coords.longitude);

el.attr('href', geoString);
}, null, {

enableHighAccuracy: true
});

}
}

Figure 4.20: Generating the geographic URL

Geolocating a web browser is not instant as it has to be permitted by the user,

it will then attempt to obtain as accurate a location as possible, but this in itself

takes time. This script continues to run and regenerate the URL every time a new

or more accurate location is retrieved. If no location is retrieved by the time the

link is clicked however, the original URL in the href attribute is followed which

takes the user to a form. The contents of this form attempts to be auto-populated

with the geolocation, however, if the user has not permitted this, they can type

their geographic coordinates in manually as a last resort.

Whichever method is used, the end result is the user is redirected to a URL

containing a set of geographic coordinates. This URL is for a page which uses

71

those coordinates to perform the search around that area.

4.4.2.2 Geolocation Storage

The storage of locations was designed using the concepts of a “many to many”

relation, but not actually implemented as such. This is to keep the engine generic

as it gives the ability for multiple posts to be at the same location, but those posts

may be of any different “post type”. Furthermore, a location may not necessarily

have a physical or static geographic location. Figure 4.21 shows the design of the

two tables.

Figure 4.21: Locations and Locations to Posts Table

A row in the “locations” table must have a numeric ID and may have a geolocation

which is stored as a Spatial Point data type. The “locations_has_posts” table

contains a foreign key to the “locations” table called “locations_id”, and the other

two columns denote the post type, and the post ID. These are both required as

the posts are implemented by third parties, there is no guarantee that post IDs

will be unique across post types.

72

4.4.2.3 Geospatial Query

The coordinates are retrieved from the URL for the geospatial query. The geospa-

tial query is done through URL parameters rather than a JavaScript geolocation

retrieval because this method enables a location to be bookmarked and also manu-

ally called (such as by a third party application), thus increasing the flexibility

of how this engine can be used. These coordinates are then used to create a

bounding box (or Minimum Bound Rectangle) based on either a preset radius or

a custom radius also passed in the URL.

The controller instantiates a new instance of the Application_Model_PostList

class which is then injected with a Location_Mbr object (see section 4.2.5 for

more information). Once this has been set the method getPostsByGeoLocation

is called which calls the query, and gets the post IDs from the database.

The PHPmethod which performs the query is in the Application_Model_DbTable_Locations

class and is called getLocationsFromMbr as show in figure 4.22, which is passed

the Location_Mbr object.

73

public function getLocationsFromMbr(Location_Mbr $mbr) {
$polygon = $mbr->toPolygon()->toSql();
$sql = $this->select()

->from($this, array('id',
'g' => new Zend_Db_Expr('ASTEXT(geo)')))

->where('MBRContains(GeomFromText(?), geo) = 1', $polygon);
$locations = array();

foreach($this->fetchAll($sql) as $row) {
$loc = new Application_Model_Location();

$locations[$row['id']] = $loc->setDatabaseLocation(
$row['id'], $row['g']

);
}

return $locations;
}

Figure 4.22: The getLocationsFromMbr method

This method converts the MBR (which contains the minimum and maximum

longitudes and latitudes for a geographic location with a distance radius) to a

Location_Polygon object which is then converted to a WKT (Well-Known Text)

representation. A Zend_Db_Select object is used to construct the SQL select

statement using the MBRContains MySQL function to return all the rows where

the “point” is contained within the polygon. The SQL which is generated will be

similar to figure 4.23.

74

SELECT id, ASTEXT(geo) FROM `locations` WHERE
MBRContains(GeomFromText('POLYGON((

53.499879484892 -2.2972739174845,
53.499879484892 -2.2504200825155,
53.472000515108 -2.2504200825155,
53.472000515108 -2.2972739174845,
53.499879484892 -2.2972739174845))'), geo) = 1

Figure 4.23: Example of generated SQL

This query converts each row to Application_Model_Location object. This

object is used to convert handle change of location formats throughout the ap-

plication, and contains the geographic location and the location ID (if it has one).

This row is then returned and then the related rows in the “locations_has_ posts”

are retrieved. The application now has a list of locations and posts in those loc-

ations.

The post types are retrieved from the registry, and the getPosts methods are

called from each, with the rowset, the locations array and MBR object being

passed. Each of post types return an array of any number of Post objects. These

arrays are then merged and stored in the post list object.

4.4.2.4 Sorting

Due to the retrieval being a bounding box query, the order in which they are

returned is not the order they should be in (which is distance). The sorting could

be achieved in the database query, but this is an incredibly inefficient process as

75

the database is not optimised to perform complex calculations.

This is all performed in the Application_Model_PostList::sortByDistance

method (figure 4.24). It uses the PHP usort function which implements a merge

sort algorithm in which an anonymous function is passed as an argument to

provide the search criteria. The criteria provided compares the distances of the

posts from the centre of the bounding box. There will be occasions when multiple

posts may be identical distances away, particularly as you can add multiple posts

to the same location. If this is the case, then it is sorted by alphabetical order

from the post’s title.

76

public function sortByDistance()
{

$pl = $this->_mbr->getLocation();
usort(

$this->_postArray,
function ($a, $b) use ($pl) {

$locationa = $a->getLocation()->getGeo();
$locationb = $b->getLocation()->getGeo();
if ($locationa == null) {

$distancea = 0;
} else {

$distancea = $locationa->distanceTo($pl)->toKm();
}

if ($locationb == null) {
$distanceb = 0;l

} else {
$distanceb = $locationb->distanceTo($pl)->toKm();

}
if ($distancea == $distanceb) {

return strcasecmp($a->getTitle(), $b->getTitle());
}
return ($distancea < $distanceb) ? -1 : 1;

}
);

return $this;
}

Figure 4.24: Sort the list of posts by distance method

4.4.3 User Commenting

The action where the post is rendered also contains the functionality to comment

on the post. Since how the post is rendered could vary dramatically depending

on the post type, the actual rendering of the post is left entirely to the post type

77

itself. This prints the return string from the “render” method of the appropriate

post type.

Below the rendered post type is the list of comments (if there are any and if

the user has the right permissions to read the comments) and a form for a user

to create a comment (again, if the user has permissions to create a comment).

There are one of two forms displayed. If the user has not been authenticated,

then a form to type a name, email address and comment is display. If the user

is authenticated, however, then it just displays a comment box as the username

is used for the name. These comments will act as the discussion functionality for

a Wiki and the commenting functionality for a blog or content sharing site as

discussed in section 2.3.

The testing and evaluation of the engine as described in this chapter is presented

in chapter 5.

78

Chapter 5

Testing and Evaluation

As this is a “generic engine” which can power a range of location-based social

media applications, the testing needs to focus on assessing the functionality of

the engine that has been produced. The accuracy of the location library needs to

be determined, the ability for the engine to handle multiple post types and have

different configurations for different implementations need to be covered.

5.1 Methods of Testing

As this engine has been built by the person who is testing it, the tests need

to automated and repeatable based on the specification and with the author’s

79

influence on the testing outcome removed. These specifications are the geospa-

tial abilities and the configurability of the engine to be implemented in different

applications.

5.1.1 Functional Acceptance Testing

To test the engine itself, it needs to be implemented in applications for the three

different social media types identified as: a blog, a wiki and a content sharing

site. This then needs to be tested for functionality (using functional testing

techniques).

In software development it is common practice to have in-house software testing

before it is delivered to the client. As this is a web application, Selenium IDE

will be used which is an automated test-suite built into the Firefox web browser.

It is used to automate tasks and make assertions based on the tasks performed

as a proof of functionality.

80

Function Blog Wiki Content-Sharing

User Management

Registration X X X

Authentication X X X

Content Searching

Search around Location X X X

Post Actions

Anonymous Read X X X

Anonymous Create X X X

Anonymous Edit X X X

Anonymous Delete X X X

User Read X X X

User Create X X X

User Edit X X X

User Delete X X X

Owner Read X X X

Owner Edit X X X

Owner Delete X X X

Moderator Read X X X

Moderator Create X X X

Moderator Edit X X X

Moderator Delete X X X

Comment Actions

Anonymous Read X X X

Anonymous Create X X X

Anonymous Delete X X X

User Read X X X

User Create X X X

User Delete X X X

Owner Read X X X

Owner Delete X X X

Moderator Read X X X

Moderator Create X X X

Moderator Delete X X X

Table 5.1: Requirements Specification

81

Table 5.1 is a copy of the functional requirements that were originally presented

in chapter 3 as table 3.1. The plan is to run a set of identical to table tests

which correspond to each row in this table, and then run on each implementation

which represents the columns in said table. The result should reflect the ability

to perform that task as that user level in each test. Normally, a test suite should

pass in its entirety, but in this case the plan is to run the same test suite across all

applications and the tests should pass or fail depending on whether that ability

is permitted in that application. Another way would be to write individual test

suites per implementation, but this would remove the guarantee that the same

functionality is tested across them all and hence, not help prove the engine’s

generality.

5.1.2 Geospatial Library Testing

The geospatial calculations need to be checked for accuracy, so unit tests are

most appropriate for this. The expected results will be based upon calculations

done prior using an application which is known to be correct. These will then

be compared to the results which the geospatial library returns and the test will

pass or fail depending on this accuracy.

The unit test coverage will not need to be 100%, but it should at least cover any

geospatial equation which has been implemented. Additionally, rounding errors

may occur, but it should be accurate to a reasonable resolution, in this case

deemed to be three decimal places as this will provide resolution to one metre.

82

5.2 Testing Environment

Although multiple applications need to be implemented to test this engine func-

tionally, there still needs to be proof that this is the same engine powering all

three. Therefore a structure was devised whereby the web base directory would

be duplicated three times, as would the configuration directory (one for each ap-

plication). This would allow different domains to be created for each and allow

the inclusion of separate configuration files. The application core, however, would

be the same files across all three implementations.

5.2.1 Separate Implementations

The web-base directory is the directory which is exposed by the web server, and

in this case is called “public”. This directory will be duplicated and named as

“public-blog”, “public-wiki” and “public-share” to represent the blog, wiki and

content sharing site respectively. These directories will be the base directory of

multiple Apache Web Server vhosts. The domains used for testing will be “lbsm-

blog.local”, “lbsm-wiki.local” and “lbsm-share.local” and the Apache configuration

is as described in figure 5.1.

83

<VirtualHost *:80>
ServerAdmin webmaster@dummy-host2.example.com
DocumentRoot "/Users/rick/Dev/lbsm/public-blog"
ServerName lbsm-blog.local
ErrorLog "/private/var/log/apache2/lbsm_error_log"
CustomLog "/private/var/log/apache2/lbsm_access_log" common

<Directory "/Users/rick/Dev/lbsm/public-blog">
AllowOverride All
Order allow,deny
Allow from all

</Directory>
</VirtualHost>
<VirtualHost *:80>

ServerAdmin webmaster@dummy-host2.example.com
DocumentRoot "/Users/rick/Dev/lbsm/public-wiki"
ServerName lbsm-wiki.local
ErrorLog "/private/var/log/apache2/lbsm_error_log"
CustomLog "/private/var/log/apache2/lbsm_access_log" common

<Directory "/Users/rick/Dev/lbsm/public-wiki">
AllowOverride All
Order allow,deny
Allow from all

</Directory>
</VirtualHost>
<VirtualHost *:80>

ServerAdmin webmaster@dummy-host2.example.com
DocumentRoot "/Users/rick/Dev/lbsm/public-share"
ServerName lbsm-share.local
ErrorLog "/private/var/log/apache2/lbsm_error_log"
CustomLog "/private/var/log/apache2/lbsm_access_log" common

<Directory "/Users/rick/Dev/lbsm/public-share">
AllowOverride All
Order allow,deny
Allow from all

</Directory>
</VirtualHost>

Figure 5.1: Apache Configuration for the three test environments

Apart from a small alteration of the “index.php” file which contains the includes,

84

these three directories are identical. This alteration allows the inclusion of differ-

ent configuration files for the different implementations.

The configuration directory inside the application directory is also duplicated,

and named “configs-blog”, “configs-wiki” and “configs-share”. The configuration

files inside are designed to be altered by the developer who is implementing the

engine for their own application. The “application.ini” file is the same across the

three directories, the “lbsm.ini” file has had a single entry altered which is the

lbsm.title entry. This changes the application title to distinguish the different

implementations for the testing.

The main alteration between the configurations is in the “permissions.ini” file

which contains the access controls. Each of these have been altered to meet the

general configurations of each of these social media types as stated in table 3.1

and 5.1.

5.2.2 Commonality

All three implementations will be using the same application core, database and

post type. The reason for using the same application core is to prove that the

engine is generic, and it is exactly the same code powering all three implementa-

tions. The reason for the same database and post type is to provide consistency

for the testing environment. This allows the same tests to be run across all im-

plementations (albeit with different results), but without having to worry about

the databases not being in sync.

85

5.3 Functionality Tests

The following subsections will describe four of the twenty nine test cases writ-

ten (figure 5.2) in Selenium IDE, corresponding to the twenty nine functional

requirements listed in table 5.1, to give an overview of how the tests are run.

The test case instructions are a mixture of actions (which selenium must perform

such as “type” or “click” a link) and assertions (assert the existence of an HTML

element or assert that the text of an element is a specific value). Each instruction

is rendered as a row with three columns; the first column is the command (e.g.

“clickAndWait”, “type” or “assertElementPresent”), the second column is the se-

lector (this can use element IDs, CSS selector or an Xpath query) and the final

column is a an optional column which is only used for certain commands (such

as the text to type in or the value of the text of an element). If this final column

contains data, but the command does not require it, the text is ignored.

86

Test Suite

Register

Authentication

Find Posts

Read A Text Post

Create A Text Post

Edit A Text Post

Delete A Text Post

User Read A Text Post

User Create A Text Post

User Edit A Text Post

User Delete A Text Post

Owner Read A Text Post

Owner Edit A Text Post

Owner Delete A Text Post

Moderator Read A Text Post

Moderator Create A Text Post

Moderator Edit A Text Post

Moderator Delete A Text Post

Read Comment

Create Comment

Delete Comment

User Read Comment

User Create Comment

User Delete Comment

Owner Read Comment

Owner Delete Comment

Moderator Read Comment

Moderator Create Comment

Moderator Delete Comment

Figure 5.2: List of Selenium test cases

For the tests to work, there needs to be an initial state for the applications to

be in, which need to be reset each time the test suite is run. This contains some

initial users and specific roles: “user1” and “user2” are pre-existing users which

have the roles of ordinary application “members”, “moderator” is a user with the

role of “moderator” for testing, and finally the user “rick” is set as “admin” (which

is guaranteed to have permissions for everything).

87

There is also an initial “Text Post” post type with a known ID (which is used for

direct access) and geographic coordinates. This post also has a single comment

attached to it to start with. This is used for the search tests, the read tests and

for all the comment tests.

5.3.1 Test User Registration

To test the registration system, a test case was written in Selenium IDE as shown

in figure 5.3. The two lines (first open and ClickAndWait commands) are used to

reset the login. This precedes most test cases as it makes sure that browser is not

logged in. After this the site root is opened and the “Register/Login” button is

clicked. The script then types a new username, password, password confirmation

and email in the registration form then clcicks submit (ClickAndWait means the

script will wait until the HTTP response has fully loaded).

To check if the registration has been achieved, the same process is then repeated,

except this time the test is expected to get an error stating that both the username

and email address has already been registered. If this error appears, the test is

passed.

88

Figure 5.3: The Register Test Case

5.3.2 Testing Geospatial Searching

Figure 5.4 is a simple test case which performs a search of a specific set of geo-

graphical coordinates. This set of coordinates is chosen because the place-holder

post will be within the search radius (which, as it is not specified, is the default

search radius of 5 miles). It asserts that this post is found.

The search radius is then narrowed to a radius known to not contain the place

holder post. Another check is then performed to assert that that post does not

come up in the results. This is only a crude test as the geospatial calculations

are properly tested in the unit tests (as described in section 5.4.1).

89

Figure 5.4: Find Post from Geographic Coordinates

5.3.3 Testing If A User can Edit another User’s Post

Figure 5.5 shows the instruction set for testing if a standard user (with the role

“member”) is allowed to edit another user’s post. After the initial authentication

reset as described in section 5.3.1, the test case logs in as standard user “user1”

and create’s a new “Text Post” post type at a specific location with the title

“Member Edit A Text Post”. This is verified as being created and then the script

logs out.

The script then logs back in, but this time as “user2”; another standard user which

does not have any moderator privileges. The test case then finds the post by the

title, and attempts to edit it. An assertion is made that the content has been

edited and if it has the test case is passed.

90

Figure 5.5: A standard user editing another user’s text post.

5.3.4 Moderator Delete Comments

The test case in figure 5.6 logs in as a normal user (“user1”) and creates a comment

against the place-holder post. Then it is asserted that an element exists on the

web page containing the text which was written as the comment. The test case

then logs out and logs in as moderator. The same post is visited, and attempts to

click the “delete” link which is next to the piece of text written as the comment.

Finally it is asserted that the element which contained the text now does not

91

exist.

Figure 5.6: A moderator has the ability to delete a comment.

5.3.5 Test Results

Figure 5.7 shows the results from the test suite run on the blog, wiki and content

sharing website implementations. The green background indicates that particular

test case passed, and red background indicates that it failed. These results need

to be compared with table 5.1. The expectations are that where there is a tick

(X) it is expected that the test will pass, but where there is a cross (X) the test

is expected to fail. Table 5.2 is a side-by-side comparison of each functionality

with the expected and actual results (actual results in green).

92

(a) Blog Results (b) Wiki Results (c) Content Sharing Res-

ults

Figure 5.7: Results of the functionality testing.

93

Function Blog Wiki Content-Sharing

User Management

Registration X X X X X X

Authentication X X X X X X

Content Searching

Search around Location X X X X X X

Post Actions

Anonymous Read X X X X X X

Anonymous Create X X X X X X

Anonymous Edit X X X X X X

Anonymous Delete X X X X X X

User Read X X X X X X

User Create X X X X X X

User Edit X X X X X X

User Delete X X X X X X

Owner Read X X X X X X

Owner Edit X X X X X X

Owner Delete X X X X X X

Moderator Read X X X X X X

Moderator Create X X X X X X

Moderator Edit X X X X X X

Moderator Delete X X X X X X

Comment Actions

Anonymous Read X X X X X X

Anonymous Create X X X X X X

Anonymous Delete X X X X X X

User Read X X X X X X

User Create X X X X X X

User Delete X X X X X X

Owner Read X X X X X X

Owner Delete X X X X X X

Moderator Read X X X X X X

Moderator Create X X X X X X

Moderator Delete X X X X X X

Table 5.2: Requirements Specification compared to results

94

The results as illustrated in table 5.2 show that the functional requirements pass

across all three social media types as the test results match the original functional

requirements. Since the engine itself has not been altered for each implement-

ation, this demonstrates that the engine is generic enough to power the three

social media types.

5.4 Spatial Tests

Another factor of the engine which needs to be tested is the ability to calculate

distances correctly and retrieve all results within a bounding box.

5.4.1 Unit Tests on Calculations

Unit tests are an accepted way of testing software (Runeson, 2006). They run

specific parts of the software (normally methods in classes), and compare the

output of the software to known values (these are called assertions). A test

case normally consists of one or more assertions. If all the assertions in a test

case are true, then it is considered to have passed the test case. If any single

assertion is false, even if all other assertions in the test case are true, it is still

considered to have failed the test. In this case, there will be a number of unit

tests which correspond to each of the developer-instantiated classes from the

“Location” library and each unit test will consist of a test case for each geospatial

calculation. The methods that contain the geospatial calculations, and therefore

95

the ones that need to be tested are as follows:

• Location_Distance::__construct()

• Location_Distance::_trigCalc()

• Location_Point::getRelativePoint()

• Location_Line::getMidPoint()

• Location_Line::getBaring()

• Location_Mbr::_setLimits()

PHPUnit is the software used to run these tests. There is a bootstrap file which

sets up the environment for the unit tests which means that the unit tests can

use the Zend Framework autoloader. PHPUnit is instructed to use this file by

the phpunit.xml file, which also instructs PHPUnit to automatically generate

an HTML report of code coverage of the unit tests.

The Unit test assertions have been retrieved from Veness (2012) as this is a

widely cited source, and would have been corrected if there were errors. The tests

themselves are very simple, and just match the actual output with an expected

output. Here are two of the tests written.

96

5.4.1.1 Test for Location_Point::getRelativePoint

Before each unit test, a setUp() method instantiates a new Location_Point ob-

ject and saves it to a property of the test class for use in test cases as shown in

figure 5.8.

protected function setUp()
{

parent::setUp();
$this->_point = new Location_Point(53.485722, -2.273644);

}

Figure 5.8: Location_PointTestL::setUp()

This point is then used in the test case for getting a relative point.

public function testGetRelativePoint()
{

$relative = $this->_point->getRelativePoint(1, 120, 'km');
$this->assertInstanceOf('Location_Point', $relative);
$this->assertEquals(53.481, round($relative->latitude, 3));
$this->assertEquals(-2.261, round($relative->longitude, 3));

}

Figure 5.9: Location_PointTest::testGetRelativePoint

The test in figure 5.9 retrieves a point at a known distance and bearing, and

makes three assertions: the first assertion is that the object returned from the

method is an instance of the Location_Point class and the second and third

are asserting the latitude and longitude respectively. This test passes if all three

assertions are met.

97

5.4.1.2 Test for the Location_Distance Class

The setUp() method of this test creates a new Location_Distance object from

two Location_Point objects. There are then two tests, one to test the distance

returned is as expected in miles, and one to test that the distance returned is as

expected in kilometres rounded to three decimal places. The test in figure 5.10

is testing the calculation in kilometres.

public function testDistanceInKm()
{

$this->assertEquals(2.276, round($this->_distance->toKm(), 3));
}

Figure 5.10: Testing the Distance calculation in kilometres

5.4.1.3 Unit Test Results

In total there are fifteen test cases with thirty five assertions across them all (due

to some tests having multiple assertions as illustrated in figure 5.9), with figure

5.11 displaying the overall code coverage of the Location library. The coverage is

far from 100%, however, when the results of the individual classes are analysed,

the key methods with the calculations in have full coverage.

98

Figure 5.11: Overall code coverage of the Location library

As can be seen in figure 5.12, the getRelativePoint() method is covered by

the unit test which is the only method in this class which contains a calculation.

Any other methods which return calculations call methods from the other classes

(such as bearingTo())j.

99

Figure 5.12: Unit test coverage of the Location_Point class

Figure 5.13 shows the results from the unit tests for the Location_Line class.

The two methods in this which contain calculations are the getMidPoint and

getBearing methods. As this figure shows, both those methods have been 100%

tested.

100

Figure 5.13: Unit test coverage of the Location_Line class

The Location_Distance class contains two methods which need testing, the con-

structor __construct and the protected method _trigCalc. The getBearing

method has not been tested, as it calls the getBearing from the Location_Line

class, so the calculation has already been tested. As figure 5.14 shows, the two

core methods have 100% coverage.

Figure 5.14: Unit test coverage of the Location_Distance class

101

Finally, the testing of the Location_Mbr class, which requires the _setLimits

method to be tested. Figure 5.15 illustrates that this has also 100% coverage of

that method. However, this needs to be tested further to make sure that posts

from within the bounding box are actually retrieved.

Figure 5.15: Unit test coverage of the Location_Mbr class

5.4.2 Bounding Box Tests

In the unit tests, the calculation for the Location_Mbr class was compared with

other MBR implementations, which matched. However, it was tested within the

application as well to ensure that the results were correct and therefore would

only return posts whose locations were inside the box. A test environment was

set up with nine posts posted around various points of the University of Salford

campuses, and the distance unit was set to kilometres to increase the granularity

of the results.

Figure 5.16 shows the locations of the posts, and the green marker is also where

102

the geospatial search is being performed from (the centre of the bounding box).

The furthest post away is the MediaCityUK post which is 2.11km away (bottom

left of figure 5.16), and the second furthest is Castle Irwell (very top of figure

5.16).

Figure 5.16: Post Locations

The first test performed was set at a 2.2km radius and should encompass all these

posts, as shown in figure 5.17.

103

Figure 5.17: Results from 2.2km search

This is the correct result. If the radius is reduced to 2km, then the query is

expected to return all posts except MediaCityUK. The actual result is shown in

figure 5.18 which it can be seen that the results still include MediaCityUK.

104

Figure 5.18: Results from 2km search

In fact the query can go as low as 1.55km and still include MediaCityUK as shown

in figure 5.19. Interestingly though, the Castle Irwell post is now missing, as that

is 1.56km away, which is the correct result.

105

Figure 5.19: Results from 1.55km search

The reason for this is due to the query finding everything inside the bounding

box, and although the sides of the box are 1.55km away from the centre, the

corners of the box will return posts which are further away. This is shown in

figure 5.20.

106

Figure 5.20: The 1.55km bounding box

Finally, the box is reduced to 0.5km, which should definitely exclude MediaCityUK

and also exclude Adelphi House and Adelphi Campus as those are both 0.6km

from the search location as shown in figure 5.21.

107

Figure 5.21: The 0.5km bounding box

This is confirmed by the results from the search query as is shown in figure 5.22.

Figure 5.22: Results from 0.5km search

108

Overall the bounding box query is returning all the results within the box, and

therefore the geospatial searching is working as expected.

5.5 Results Evaluation

With a created post type it was possible to create new posts in a specific location,

edit and delete the posts along with the ability to add comments to the post.

These posts are able to be queried by location and retrieved with the results

being ordered by proximity to search location. The ability to control user levels

and permissions makes this flexible enough to be implemented in a variety of

different social media types.

Due to use of a bounding box SQL query, the geospatial searching prioritises

returning all data from within an area over returning too much data (i.e. outliers).

This could be solved easily in the application core by checking the distance before

the render of the post item in the list, however, the data would still be retrieved

from the database query so would not make the query any more efficient. This in

itself is not a problem as it is better to return more posts than required than miss

out posts which are within the radius. The other alternative is to pre-calculate

the distances of all locations before retrieval, however this would be inefficient as

this is not a functionality the database is designed to have.

109

5.5.1 Further Implementation

This engine was used to implement an application as part of the FIRM project, an

EPSRC funded project involving the University of Salford, Lancaster University,

Goldsmiths and the BBC. In this project there was a web-based video editing

application called Storisphere where users could upload video clips and create

stories by combining and editing these video clips. The editing is done through

a collaborative editing workspace through the web and the videos can then be

published for others users to view.

This engine was used as a method of giving these videos geographic locations

and being able to search through the geographically tagged videos based on the

location. To implement this a new post type was created (named Storisphere),

which would interface with the Storisphere API and serve up videos which were

not locally stored by the location-based social media application implementation.

The conclusions drawn from this evaluation of the engine, further work required

and the future of location-based social media are presented in chapter 6.

110

Chapter 6

Conclusion & Further Work

The original aim of this project was to create a truly generic engine to power a

location-based social media application. Although the engine is not perfect and

could now be implemented more easily, it is possible to create multiple location-

based social media applications with different abilities and content, without modi-

fying the main code of the engine. This was evidenced by the testing of the three

main social media types presented in section 5.3.

The first objective was to identify the characteristics which differentiate the social

media types. The conclusion of this was primarily the differing of permissions

between levels of users and guests. Another difference which was identified was the

differing content which users could post up. This latter difference, however, was

not limited to different social media types, but differed between implementations

of the same social media type. These were summarised in tables 2.1 (page 32)

111

and 3.1 (page 40).

The second objective was to create a generic engine which would allow location-

centric applications to be implemented of these social media types. This was

implemented successfully in chapter 4 and tested, with the results of the tests

being shown in 5.

6.1 Technology

Web and mobile technology is a fast moving field. With this project commencing

in 2010 and only being worked on part time, this application was created using

technology which was out of date by the time it was finished. This section will

discuss key technology areas which may be used if the project commenced in

2014. Although the technology has changed, the key architectural concepts from

the requirements analysis and the design approach adopted in the implementation

are still valid and would still be used with these newer technologies.

6.1.1 Database Backend

MySQL is still the most common open-source platform around but databases

such as MongoDB are becoming increasingly supported. MongoDB would be a

much better database for geospatial searches as it would allow searching for the

112

closest as opposed to using a bounding box. This would allow pagination and

remove the need for altering the bounding box for searching.

In MongoDB version 2.4 the “2dsphere” index was added (MongoDB Inc., 2014a)

to allow distance calculations across a spherical plane (such as Earth). This

means that the results could be ordered by distance from search location in the

database query by using the $near proximity operator (MongoDB Inc., 2014b),

rather than this having to be done within the application itself. Also, because

MongoDB is schemaless (no tables are needed to be created), it would make the

creation of new post types easier as the developer would not need to create new

database tables and the queries across all post-types could be done in a single

database call.

With cloud based “Database as a Service” hosting companies appearing over re-

cent years (such as mongohq.com), it is possible to use MongoDB for an applic-

ation even if MongoDB was not provided by the web host. Therefore MongoDB

would be a much more sensible choice for the application back-end than MySQL

if this application was written today.

6.1.2 Application Framework

When this project was started, Zend Framework was considered the most common

and complete PHP framework around. Over recent years, however, a new set of

“second generation” frameworks have been developed. These frameworks harness

the power of PHP 5.3 or higher, as PHP 5.2 is now unsupported. Examples of

113

these frameworks include Zend Framework 2 and Symfony2.

These newer frameworks implement dependency injection with a service hand-

ler, meaning that the code is much more loosely coupled and any dependencies

are automatically injected in from data in configuration files. If this location-

based social media engine was implemented with this, it would probably allow

much easier implementation of new post types, and potentially allow a completely

new post type to be created simply from a configuration file. Additionally,these

frameworks have Object Relational Mapping (ORM) for SQL databases or Ob-

ject Document Mapping (ODM) for NoSQL databases such as MongoDB which

would allow for an easier development of database independent code, as the cur-

rent implementation can only work on MySQL.

6.2 Further Work

For this engine to be released there are a number of areas which should be im-

proved, this section will outline the key areas that could be improved upon both

for the location-based social media engine and for its components.

6.2.1 Missing Features

A useful feature to add, particularly for something which is location based, is

adding a “nearby” feature to the post types, meaning that when displaying the

114

post type, it should have a list of other posts which may be of interest. This is very

similar to the “see also” feature which some blogging platforms have. Additionally,

being able to categorise posts would provide additional functionality and allow

people to filter out posts belonging to categories which they were not interested

in. These categories should be dynamic with the ability to create new categories

on creation of a new post.

The ability to rate comments would also be useful to allow the highest rated

comments to be displayed at the top (similar to YouTube). This would be less

useful for posts as the search is based on geographic proximity and would not use

the ratings to affect the results.

A full administrative dashboard would be useful to allow an admin to manage

users, including (but not necessarily limited to): creating a new user, editing

users’ details, altering the roles of users and deleting/suspending user accounts.

A user password reset would also be useful and potentially other methods of

authenticating such as OAuth with another social media platform.

Finally, it would be nice to have an API which would allow external applications

to consume it. This would increase the flexibility of the application and allow

it to power not just web applications but mobile applications as well as being

embedded into other web sites. The API should use a modern and consistent

architecture (such as RESTful) and should be easy to use with OAuth 2 for

authentication of the client.

115

This could potentially be a huge piece of software, so the opportunities for ex-

panding the features are endless.

6.2.2 Expansion of the Location Library

The location library was designed to be kept as a separate project to the rest of

the location-based social media application. As this library was useful in another

project, it has already been forked and uploaded onto GitHub. This version has

been updated and requires PHP 5.3 as a minimum as it uses namespaces and

conforms to the PSR-0 specifications. This version is also installable through

Composer as it is published in the Packagist repository.1 Additional features

have also been added to the Location library, primarily the support of GeoJSON

which is a standard data format for storing geospatial data. MongoDB is one of

the spatial databases that uses this format. At time of writing this library has

been installed thirteen times for use in other applications.

6.2.3 Front End Design

Although this front-end uses Twitter Bootstrap, which was used primarily to

create a usable interface out of the box and easily customisable by a developer

implementing the engine, the actual design is very minimal. Additionally, the

only JavaScript really used is for the HTML 5 geospatial API. Many modern web
1This is viewable at http://packagist.org/packages/ricklab/location

116

applications are using front-end MVC frameworks such as Backbone or Angu-

larJS. These frameworks give an impression of an application on the web rather

than a website, often only consisting of a single HTML page which is altered by

the JavaScript.

For this engine, it would make sense to move to this model as it would aid its

usability on a small screen such as a smartphone, which for a location-based social

media application would make sense.

6.3 The Future of location-based social media

Location-based social media is not going away. As well as mobile devices, new

wearable devices are starting to appear on the market. These devices (such as

Google Glass and the Pebble smartwatch) are likely to increase the number of

location aware applications and ease the interaction with the applications. This

means there is likely to be a need for an engine like this, to allow developers

to rapidly develop new location-based social media applications to be used with

these devices. This engine can also be locked down with the permissions so it

could power a non-social location-based application. This would increase variety

of location-based applications which could be developed based on this engine and

enable more of these types of services to be created.

117

Bibliography

Agarwal, A. (2011). How to Find Videos on YouTube by Location. Retrieved

October 3, 2013, from http://www.labnol.org/internet/find-videos-by-

location/19742/

Alexa. (2013). Wikipedia.org Site Info. Retrieved March 26, 2013, from http :

//www.alexa.com/siteinfo/wikipedia.org

Burkard, R. K. (1984). THE WORLD GEODETIC SYSTEM. In Geodesy for

the layman (4th ed., Chap. 8). Retrieved from http://www.ngs.noaa.gov/

PUBS%5C_LIB/Geodesy4Layman/TR80003E.HTM%5C#ZZ11

C2.com. (2013). Wiki History. Retrieved February 27, 2013, from http://c2.com/

cgi/wiki?WikiHistory

Charlesworth, A. (2009). The ascent of smartphone. Engineering & technology,

4 (February 2009), 32–33. Retrieved from http://digital-library.theiet.org/

content/journals/10.1049/et.2009.0306

Dennis, M. A. (2013). wiki (Web site) – Encyclopedia Britannica. Retrieved May

17, 2013, from http://www.britannica.com/EBchecked/topic/1192819/wiki

118

EBizMBA. (2013). Top 15 Most Popular Social Networking Sites. Retrieved Oc-

tober 3, 2013, from http://www.ebizmba.com/articles/social-networking-

websites

Google. (2006). Google To Acquire YouTube for $1.65 Billion in Stock - News

announcements - News from Google - Google. Retrieved April 22, 2014,

from http : / / googlepress . blogspot . co . uk/2006/10/google - to - acquire -

youtube-for-165%5C_09.html

Google. (2008). New feature: Geotagging. Retrieved August 21, 2013, from http:

//bloggerindraft.blogspot.co.uk/2008/12/new-feature-geotagging.html

Google. (2013). YouTube API v2.0 - API Query Parameters - YouTube - Google

Developers. Retrieved June 26, 2013, from https://developers.google.com/

youtube/2.0/developers%5C_guide%5C_protocol%5C_api%5C_query%

5C_parameters

Holmes, A. & Kellogg, M. (2006). Automating Functional Tests Using Selenium.

In Agile 2006 (agile’06) (pp. 270–275). IEEE. doi:10.1109/AGILE.2006.19

Kaasinen, E. (2003, May). User needs for location-aware mobile services. Personal

and Ubiquitous Computing, 7 (1), 70–79. doi:10.1007/s00779-002-0214-7

Kaplan, A. M. & Haenlein, M. (2010, January). Users of the world, unite! The

challenges and opportunities of Social Media. Business Horizons, 53 (1), 59–

68. Retrieved from http://www.sciencedirect.com/science/article/B6W45-

4XFF2S0-1/2/600db1bd6e0c9903c744aaf34b0b12e1

Kietzmann, J. H., Hermkens, K., McCarthy, I. P. & Silvestre, B. S. (2011, May).

Social media? Get serious! Understanding the functional building blocks of

social media. Business Horizons, 54 (3), 241–251. doi:10 .1016/ j .bushor .

2011.01.005

Kim, J.-T., Lee, J.-H., Lee, H.-K. & Paik, E.-H. (2010). Design and Implement-

ation of the Location-Based Personalized Social Media Service. In Internet

119

and web applications and services (iciw), 2010 fifth international conference

on (pp. 116–121). doi:10.1109/ICIW.2010.25

Leff, A. & Rayfield, J. (2001). Web-application development using the Mod-

el/View/Controller design pattern. In Proceedings fifth ieee international

enterprise distributed object computing conference (pp. 118–127). IEEE Com-

put. Soc. doi:10.1109/EDOC.2001.950428

Matuschek, J. P. (2013). Finding Points Within a Distance of a Latitude/Longit-

ude Using Bounding Coordinates. Retrieved March 7, 2014, from http://

janmatuschek.de/LatitudeLongitudeBoundingCoordinates%5C#Longitude

Maximilien, E. & Williams, L. (2003). Assessing test-driven development at IBM.

In 25th international conference on software engineering, 2003. proceedings.

(pp. 564–569). IEEE. doi:10.1109/ICSE.2003.1201238

Mnkandla, E. (2009, September). About software engineering frameworks and

methodologies. In Africon 2009 (pp. 1–5). IEEE. doi:10.1109/AFRCON.

2009.5308117

MongoDB Inc. (2013). BSON - Binary JSON. Retrieved September 4, 2013, from

http://bsonspec.org/

MongoDB Inc. (2014a). 2dsphere Indexes - MongoDB Manual 2.4.9. Retrieved

March 16, 2014, from http://docs.mongodb.org/manual/core/2dsphere/

MongoDB Inc. (2014b). $NEAR - MONGODB MANUAL 2.4.9. Retrieved March

16, 2014, from http ://docs .mongodb .org/manual/reference/operator/

query/near/%5C#op.%5C_S%5C_near

Nardi, B. A., Schiano, D. J., Gumbrecht, M. & Swartz, L. (2004, December). Why

we blog. Communications of the ACM, 47 (12), 41. doi:10.1145/1035134.

1035163

Noble, J. (1998). Classifying relationships between object-oriented design pat-

terns. In Proceedings 1998 australian software engineering conference (cat.

120

no.98ex233) (pp. 98–107). IEEE Comput. Soc. doi:10.1109/ASWEC.1998.

730917

Open Geospatial Consortium Inc. (2010). OpenGIS Implementation Standard for

Geographic information - Simple feature access - Part 2 : SQL option.

Oracle. (2008). MySQL :: Market Share. Retrieved September 2, 2013, from http:

//www.mysql.com/why-mysql/marketshare/

Oracle Corporation. (2013). MySQL :: MySQL 5.5 Reference Manual :: 14.3 The

InnoDB Storage Engine. Retrieved September 4, 2013, from https://dev.

mysql.com/doc/refman/5.5/en//innodb-storage-engine.html

Ordnance Survey. (2013). Surveying guidelines | Business and government | Ord-

nance Survey. Retrieved September 4, 2013, from http://www.ordnancesurvey.

co.uk/business-and-government/help-and-support/navigation-technology/

os-net/surveying.html

O’Reilly, T. (2005). What Is Web 2.0 - O’Reilly Media. Retrieved March 26, 2013,

from http://oreilly.com/web2/archive/what-is-web-20.html

Perks, M. (2006, August). Best practices for software development projects. IBM.

Retrieved from http://www.ibm.com/developerworks/websphere/library/

techarticles/0306%5C_perks/perks2.html

Rethans, D. (2014). Finding a Pub with MongoDB and OpenStreetMap. Re-

trieved April 11, 2014, from http://derickrethans.nl/talks/mongo-osm-

confoo14.pdf

Runeson, P. (2006, July). A survey of unit testing practices. IEEE Software,

23 (4), 22–29. doi:10.1109/MS.2006.91

Sagar, I. (2012). Before IPhone and Android Came Simon, the First Smartphone.

Retrieved August 19, 2013, from http://www.businessweek.com/articles/

2012-06-29/before-iphone-and-android-came-simon-the-first-smartphone

121

Schonfeld, E. (2011). Gowalla Versus Foursquare: Why Pretty Doesn’t Always

Win | TechCrunch. Retrieved June 27, 2013, from http://techcrunch.com/

2011/12/05/gowalla-versus-foursquare/

Semenik, M. (2013). GeoData: a new age of geotagging on Wikipedia. Retrieved

August 21, 2013, from https://blog.wikimedia.org/2013/01/31/geodata-a-

new-age-of-geotagging-on-wikipedia/

The Associated Pess. (2013). Number of active users at Facebook over the years

- Yahoo! News. Retrieved June 27, 2013, from http://news.yahoo.com/

number-active-users-facebook-over-230449748.html

Veness, C. (2012). Calculate distance and bearing between two Latitude/Lon-

gitude points using Haversine formula in JavaScript. Retrieved March 14,

2014, from http://www.movable-type.co.uk/scripts/latlong.html

W3Techs. (2013). Usage Statistics and Market Share of Server-side Programming

Languages for Websites, October 2013. Retrieved October 2, 2013, from

http://w3techs.com/technologies/overview/programming%5C_language/

all

Wikipedia. (2013a). Wikipedia:Statistics - Wikipedia, the free encyclopedia. Re-

trieved March 26, 2013, from http://en.wikipedia.org/wiki/Wikipedia:

Statistics

Wikipedia. (2013b). Wikipedia:Welcome unregistered editing - Wikipedia, the

free encyclopedia. Retrieved June 6, 2013, from http://en.wikipedia.org/

wiki/Wikipedia:Welcome%5C_unregistered%5C_editing

Wordpress. (2013a). GNU General Public License. Retrieved June 21, 2013, from

https://wordpress.org/about/gpl/

Wordpress. (2013b). Requirements. Retrieved June 21, 2013, from http://wordpress.

org/about/requirements/

122

Wordpress. (2013c). Stats - WordPress.com. Retrieved May 16, 2013, from http:

//en.wordpress.com/stats/

123

