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Abstract 

Throughout the past few decades, science has progressed towards the ability to 

probe many extremely fast processes and a large amount of research has been 

aimed at the area of few-femtosecond pulse generation. This thesis describes the 

generation of coherent broadband radiation through two-colour pumping of 

molecular hydrogen confined to a unidirectional ring cavity, and the subsequent 

synthesis of high peak power and few-femtosecond pulses. A set of normalised 

semi-classical field equations are derived in Bloch form describing the process of 

ultra-broadband multi-frequency Raman generation or UMRG, and a 3-wave gain 

suppression analysis is derived from a subset of the plane wave UMRG field 

equations which describes gain suppression within the ring cavity in terms of both 

medium and cavity parameters. The gain suppression analysis is further generalised 

to include finite levels of linear two-photon frequency detuning of the pump 

beams.   Simulations of the plane wave ultra-broadband multi-frequency Raman 

(UMRG) equations show that a broad frequency spectrum of mutually coherent 

sideband can be generated. The inverse Fourier transform of spectra generated in 

this way yields a train of high power near Fourier limited pulses in the time domain 

which can range from a few-femtoseconds in duration to tens of attoseconds with 

repetition rates equal to the Raman transition frequency.  Pulses synthesised in this 

way are limited only by the level of medium dispersion, the reflection bandwidth of 

the chosen coupling mirror and the chosen Raman medium. Simulations of the 

transverse UMRG equations within the ring cavity geometry have shown ring cavity 

enhanced UMRG to be resilient to transverse effects such as finite beam width, 

beam diffraction and the transverse beam separation of the applied pump beams. 
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CHAPTER 1 

Introduction 

Throughout the past few decades, scientific research has progressed towards the 

ability to probe many extremely fast processes which can have timescales ranging 

from a few femtoseconds to a few hundred attoseconds in duration. For example 

the Bohr model of atomic hydrogen predicts the period of the ground state electron 

orbit to be ~100as. Many fast molecular processes such as those utilised in the 

field of femtochemistry (1) have been revealed by mode-locked lasers which can 

produce pulses on the femtosecond timescale. The field of attoscience is of 

particular interest due to the availability of high power few-femtosecond pulses 

which can be used to generate attosecond pulses via the process of high harmonic 

generation. Attosecond pulses have made the observation of ultra-fast processes 

such as electron dynamics in matter possible such as the real-time observation of 

electron tunnelling in atoms (2). 

Several theoretical and experimental investigations have been undertaken 

regarding the synthesis of high intensity few-femtosecond pulses. Such methods fall 

under two main categories: high harmonic generation and molecular modulation. 

Each method relies on the generation of an extremely broad frequency bandwidth 

to support the synthesis of attosecond pulses. The need for a large number of 

frequency components is implied by the well known Fourier bandwidth theorem. 

Wherein any wave phenomenon that occurs over a time period ∆𝑡 has to possess a 

spread of frequencies ∆𝑓 satisfying 

 

∆𝑡 ≈ 1
∆𝑓

. 
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1.1 Ti:sapphire lasers 

The first tuneable laser based on the titanium doped sapphire laser medium was 

operated for the first time in 1982 (3). Ti:sapphire has become one of the most 

widely used and commercially available transition metal doped gain medium for a 

tuneable laser. Ti:sapphire possesses a large tuning range from 660 - 1180 nm and a 

broad range of lasers can be used to pump the medium in the green spectral 

region. Hence Ti:sapphire lasers can be pumped with Argon-ion lasers or frequency 

doubled Nd:YAG lasers. Nd:YAG lasers have seen large power gains in recent years 

using multiple laser head technology and have become widely available in both 

scientific labs and industry. 

Ti:sapphire is well suited to coherent broadband light generation and the synthesis 

of short pulses and several methods for achieving such pulses have been 

demonstrated. Active mode locking by an acousto-optic modulator can produce 

pulses as short as 1.3 picoseconds (4) and other mode locking techniques have 

produced pulses approaching 200 femtoseconds. However the shortest pulses have 

been generated using the process of self mode locking (5, 6). 

In recent years few femtosecond pulses have been readily achieved through the use 

of Ti:sapphire gain media (7) and much focus has been moved towards increasing 

the repetition rate of Ti:sapphire lasers. Reference (8) reports results for a prismless 

femtosecond Ti:sapphire ring laser where 5.9 femtosecond pulses were generated 

at a repetition rate of 2.12GHz and each pulse had an average power of 0.95W for 

7.5W of pump power. Higher repetition rates of up to 5GHz have also been 

reported by other authors (9). These types of laser configuration rely on the 

nonlinear mechanism of Kerr lensing for mode-locking and the synthesis of 

femtosecond pulses. 

The availability of broadband femtosecond pulses at such high repetition rates are 

particularly useful sources of optical frequency combs for application in the field of 

optical frequency metrology and atomic clocks (10). Other key applications of such 

broadband few femtosecond lasers include high resolution molecular spectroscopy,  
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holography, Terahertz generation, high harmonic generation (11) and as light 

sources for the generation of attosecond pulses.  

 

1.2 High harmonic generation 

The process of high harmonic generation has been used to generate pulses which 

have been recorded to be as short as 80 as (12) and are composed of frequencies 

within the ultraviolet and x-ray regions of the frequency spectrum (13, 14). High 

harmonic generation occurs when highly intense femtosecond pulses of infra red 

wavelength ( 𝑒.𝑔 𝜆 = 1.45 𝜇𝑚 (15)) are focused in an atomic or molecular 

medium, causing the emission of higher order harmonics. High harmonics are 

generated when an electron is dragged away from the core of an atom / molecule 

in a fraction of an optical cycle. The electron then undergoes a large amplitude 

oscillation therefore gaining a large kinetic energy. The subsequent re-collision of 

the electron with the atom / molecule can cause the emission of higher energy 

photons. Various orders of harmonic frequencies can be generated through the 

variation of electron trajectories within the medium. A more in depth description of 

the process of high harmonic generation is given in references (16, 17). High 

harmonic generation has been shown to be capable of generating bandwidths 

suitable for the synthesis of pulses of attosecond duration. Pulses generated using 

this method usually have a low total energy due to the process having a low 

efficiency of around < 10−6 (13). The maximum attainable bandwidth is 

determined by the cut-off frequency of the medium which is related to the 

maximum amount of energy which can be extracted from an electron re-collision 

(18).  Several other schemes employing temporal gratings have been proposed to 

increase the conversion efficiency of high harmonic generation and to reduce the 

requirements on the required duration of the applied driving pulses (~5𝑓𝑠) needed 

to generate isolated attosecond pulses [19-28]. 
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A powerful method for confining the process of ultra-short pulse generation to a 

single event involves the use of a modulating polarisation (19). This technique 

exploits the dependence of the high harmonic generation on the polarisation of the 

pulses used to drive the light – matter interaction. Such dependence can be 

exploited using a pulse that is elliptically polarised in its wings and linearly polarised 

around the peak of the pulse (20). This can lead to the production of isolated 

attosecond pulses.  

The conversion efficiency of this method strongly depends on the length of the 

input pulses used to generate the extreme ultraviolet radiation, where longer pulse 

durations decrease the conversion efficiency. The addition of a second harmonic 

field reduces the requirements of the duration of the applied driving pulse. When 

the relative phase between the two laser harmonics is optimised, the synthesis of 

attosecond pulses has been shown to take place once for every optical cycle of the 

applied field (20). Researchers have reported high photon fluxes and conversion 

efficiencies of 6 x 10−6  employing this method (22). 

A two colour method for generating attosecond pulses was proposed in 2007 by 

Merdji and co-workers (23) and was later demonstrated by researchers in 2009 

(15). This method employs the use of a fundamental near infra-red pulse 

(𝜆 = 1.45 𝜇𝑚) along with a detuned second harmonic (𝜆 = 0.8 𝜇𝑚) pulse (15), 

which can be generated by a near infra-red tuneable optical parametric amplifier 

(24, 25).  Researchers observed that the harmonic conversion efficiency for two-

colour excitation was much larger than in experiments using a single frequency 

pulse, which suggested that the detuned second harmonic was responsible for 

increasing conversion efficiency (24, 25).   

Takahashi and co-workers [28] also recently showed that longer driving pulses 

(~30𝑓𝑠) can drive the generation of broadband spectra around the cut-off spectral 

region (the medium dependant region where harmonic generation typically stops). 

This reduces the requirements on the driving pulse durations required to produce 

an attosecond pulse (26, 27). The advantage of using this method is that medium 
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ionisation is reduced and conversion efficiencies of around 10−5 can be achieved. 

Therefore high intensity attosecond pulses can be synthesised in a neutral gas (28). 

The above methods of high harmonic generation are capable of producing low 

energy attosecond pulses consisting of frequencies in the extreme ultraviolet and 

soft x-ray regions. The low pulse energies occur because the process of generating 

very high order harmonics is inefficient. 

 

1.3 Raman scattering 

The field of attoscience would benefit from higher power femtosecond pulses with 

a spectral range in the visible to ultraviolet. Such pulses could be used to explore 

electronic resonances in molecules and would present the opportunity for several 

new measurement methods and experiments to be investigated such as high 

resolution molecular spectroscopy. There would be the additional benefit of a wide 

and varied selection of optical components readily available for use in the visible 

and ultraviolet range of the spectrum.  

A number of schemes aimed at the generation of short pulses in the visible to 

ultraviolet spectral range have been under development since the late 1990’s (29-

32). These schemes employ Raman scattering in a medium composed of molecules 

oscillating in phase. This involves a modulation of the refractive index of the 

medium which drives multiple Raman sidebands as the field propagates through 

the medium (33, 34). This offers the possibility of a much more efficient conversion 

of pump light into a broadband spectrum and the synthesis of high intensity pulses. 

Molecular modulation offers the possibility of generating high energy few-

femtosecond pulses, which could be suitable pump sources for high harmonic 

generation. 
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A Raman active medium such as molecular hydrogen under the influence of a 

strong electromagnetic field can undergo two-photon inelastic scattering (Raman 

scattering). After the interaction of an incident laser photon of frequency 𝜔0 and a 

molecule the scattered photon has a lower frequency 𝜔−1 and is known as a first 

Stokes photon. The frequency difference between the original laser photon and the 

scattered photon is equal to the frequency separation of the rotational or 

vibrational molecular energy levels of the molecule 𝜔𝑅, which is known as the 

Raman transition frequency. The energy lost by the original laser photon is 

absorbed by the molecule and leaves it in an excited state. Further interaction 

between laser photons and the excited molecule can also produce a scattered 

photon with a higher frequency  𝜔1 known as an anti-Stokes photon. Figure 1a 

demonstrates the four wave mixing process required to generate anti-Stokes 

photons in a Raman medium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a – The molecular energy levels 0 and 2 are separated by the Raman 
frequency 𝝎𝑹. The generation of anti-Stokes photons is a four wave mixing 
process. The Raman medium gains energy from Stokes scattering in the form 
of an optical phonon. This excess energy can be released when the incident 
laser interacts with the excited molecular energy level. In this case the 
scattered photon is of higher frequency (energy). 
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The frequencies generated through this process take the form: 

𝜔𝑗 = 𝜔0 + 𝑗𝜔𝑅 

where 𝑗 =. . .−3,−2,−1, 0, 1, 2, 3 … indicates the order of the sideband. Negative 

integers label the Stokes frequencies and positive integers label the anti-Stokes 

frequencies, 𝜔0 is the frequency of the incident pump photon. Each frequency 

within the spectrum is separated by the frequency of the exploited Raman 

transition 𝜔𝑅 of the medium. 

When large laser intensities are employed the Raman process can cascade 

which leads to the generation of a large number of frequency components 

separated by the Raman transition frequency (35). Researchers have demonstrated 

that the efficiency of Raman scattering can be improved by the introduction of a 

seed amplitude at the first Stokes frequency (36-42). This reduces the pump 

intensities required for the generation of higher order radiation because stimulated 

scattering increases the level of the seed and allows it to act as a pump source for 

higher orders of Stokes radiation. 

Bi-harmonic pumping and symmetric pumping [43, 44] have been shown to 

increase the efficiency of Raman scattering and can produce many orders of Stokes 

and anti-Stokes sideband radiation.  Bi-harmonic pumping requires that the applied 

pump laser and Stokes seed have similar levels of intensity, and symmetric pumping 

requires that they also possess the same temporal shape, polarisation and 

propagate collinearly. The frequencies of the applied laser fields are chosen such 

that their frequency difference equals the transition frequency of the Raman 

medium 𝜔𝑅. 

The application of two laser fields produces a coherent molecular oscillation which 

modulates the incident laser fields to produce a broad frequency comb of Raman 

sidebands (45, 46, 47).  

The above techniques can generate very large bandwidths which can span the 

entire ultraviolet, visible and near infrared range of the spectrum (45, 46, 47) and 

are suitable for the generation of ultra-short pulses (39). Broadband Raman spectra 
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are of great interest due to their potential application in inertial confinement 

fusion, where broadband laser- plasma interactions could reduce the growth rates 

of laser-plasma driven instabilities which inhibit plasma heating (29). Spreading the 

applied laser energy across a large spectrum inhibits the growth of parasitic 

processes whilst maintaining a high level of energy transfer to the plasma (30, 48). 

Broadband spectra have also triggered advances in precision measurements (49) 

and optical frequency metrology (50), laser-gas based sensing (51) and the 

characterisation of molecules (52). 

 

1.4 Optical micro-resonators 

Another emerging branch of physics relating to the generation of broadband 

spectra utilises the confinement of light within optical micro-resonator / micro-

cavity structures to generate broad frequency combs. Such structures trap light in 

small volumes through the mechanism of total internal reflection or distributed 

Bragg reflection (or a mixture both) and can support a spectrum of optical modes 

which depend on the shape and size of the cavity structure. Typical, rotationally 

symmetric, micro-structures have radii from 1 𝜇𝑚  to 100 𝜇𝑚 and can be 

fabricated from a wide range of materials. 

 A large number of micro resonator / micro-cavity geometries have been explored 

for various applications, such as the microsphere (53), microtorus (54), microdisk 

(55), quadrupolar micro-resonator (56), micropillar (57) and photonic crystal defect 

micro-cavities (58). It is critical to produce micro-structures with a small modal 

volume, V, and a high quality factor, Q. The quality factor is defined as the ratio of 

energy stored to energy dissipated by the resonator / cavity. The ratio Q/V 

determines the strength of the light-matter interactions within the micro-structure, 

and this value needs to be maximised for the generation of broad spectra. The 

simultaneous requirements of high Q and small V have however been found to be 

contradictory, as the Q-factor decreases exponentially as the micro-structures 

decrease in size. 
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Micro-structures can generate broad spectra through a combination of parametric 

interactions (59) and non-degenerate four-wave mixing (60). Two conditions have 

to be satisfied before parametric interactions are observed. Firstly, momentum has 

to be conserved (61) within the cavity and, secondly, the energy of the system has 

to be conserved, hence only specific levels of medium dispersion are allowed. 

However, providing that dispersion is minimised the generated spectrum can 

contain phase coherent sidebands with equidistant frequency spacing. The 

frequency spacing of the sidebands is determined by the specific dimensions of 

each micro-cavity which controls the frequency of the allowable cavity modes. 

Broadband frequency combs, high intra-cavity intensities and high efficiencies have 

been demonstrated using optical micro-cavities (62, 63, 65). 

 

1.5 Development of the theory of Raman scattering 

The work presented within this thesis investigates the cavity confinement of a 

Raman active medium. The equations of multi-wave stimulated Raman scattering 

derived by Hickman and Bischel (66) will be used to simulate how such a system 

evolves in terms of medium (such as dispersion) and cavity (such as boundary 

condition) parameters. Before going into further detail regarding the Raman cavity 

system it is worthwhile to review the historical development of the theory of 

Raman scattering. 

The inelastic scattering of light was predicted in 1923 by Adolf Smekal (67) and later 

discovered on 28 February 1928 by C.V. Raman (68, 33) who received the Nobel 

Prize in 1930 after a series of investigations into the molecular diffraction of light. 

The inelastic scattering process which he discovered was entitled Raman scattering. 

There has been a large amount of research aimed towards characterising the 

generation of Stokes and anti-Stokes radiation under a variety of conditions. In 

1963, Y.R. Shen and N. Bloembergen (69) published a detailed account of the theory 

of stimulated Raman scattering. They described the effect classically as the result of 
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light waves coupling to optical phonons within a material and offered a qualitative 

description of experimental results published around that time. 

Many theoretical investigations (70 , 71) relating to the Raman effect had great 

success describing experimental observations of stimulated Raman scattering, 

though they only considered the interaction between a limited number of 

frequency components. Usually only the pump, first Stokes and first anti-Stokes 

components were considered. These simple theories neglected the population 

dynamics of the molecules within the system by making the assumption that most 

of the molecules remained in the ground state which is a valid approximation for 

most Raman active media. 

In 1978, V. Wilke and W. Schmidt (72) observed the efficient production of high 

order anti-Stokes radiation. This could not be explained by the existing theories of 

stimulated Raman scattering and, in 1981, a paper entitled Efficient frequency 

conversion by stimulated Raman scattering was published (70). This new theory 

showed that the generation of high order anti-Stokes waves arose as a natural 

consequence of casting the problem in a multi-wave form, which included all 

possible frequency components. Such initial works dealt with the problem in the 

limit of small molecular excitation. This limited the ability to accurately describe the 

conversion efficiencies of anti-Stokes generation when compared with 

experimental data.  

The multi-wave approach was generalised in 1986 by Hickman, Paisner and Bischel 

(73) to describe higher-order Stokes and anti-Stokes frequency components arising 

from input pulses strong enough to induce significant molecular excited state 

populations. This new theory was also later extended by Hickman and Bischel (66) 

to include off axis wave vector mismatch.  

Several papers have been published which discuss results generated using the 

theory derived by Hickman and Bischel, for both steady state (no transient 

evolution of the molecular excitation) and transient (the molecular excitation 

evolves in time) systems (31 , 32, 74). Bandwidths greater than the width of the 

pump frequency have been predicted (31). 
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Several authors have proposed parameter regimes which maximise the bandwidth 

for different types of Raman media such as molecular hydrogen and nitrogen (29, 

30, 66, 70, 74).  Bandwidths of approaching 150 sidebands (of intensity comparable 

to the pump beam) have been predicted in air at atmospheric pressure through the 

exploitation of the 𝐽 = 8 → 10 rotational transition of atmospheric N2. McDonald 

et al determined that resonant symmetric pumping techniques were optimal for 

the generation of large bandwidths in air. There two pump beams of equal 

intensity, matching temporal shape and linear polarisation (30, 43) were employed. 

The frequencies of the pump beams were specifically chosen to have a frequency 

difference resonant with the Raman transition (32). 

 

1.6 Thesis content 

The work presented in this thesis describes the generation of coherent broadband 

spectra in a cavity confined Raman medium such as hydrogen and atmospheric 

nitrogen. The contents of this thesis are as follows: 

CHAPTER 2 - The semi-classical ultra broadband multi-frequency Raman (UMRG) 

envelope equations are derived in Bloch form and normalised. 

CHAPTER 3 + 4- A three wave gain suppression analysis is derived which describes a 

subset of the UMRG equations in terms of linear general solutions. The analysis is 

extended to include intra-cavity pump depletion, and then each gain suppression 

model is compared to the results of numerical simulations, for a large range of 

parameters. The points at which the analysis breaks down are discussed in terms of 

non-parametric sideband growth. The analysis is further extended in chapter 5 to 

include finite levels of linear detuning. 

CHAPTER 5 - Multi-frequency simulations of the cavity system, with a single pump 

beam, are performed. The growth of bandwidth, total intensity and medium 

excitation amplitude are characterised for finite levels of dispersion. The gain 

suppression analysis derived in chapter 4 is shown to describe the results of the 

multi-frequency simulations in certain parameter regimes. 
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CHAPTER 6- Multi-frequency simulations are performed with symmetric pumping 

applied at the cavity boundary. Large bandwidths are shown to be generated and 

are described in terms of parametric and non-parametric growth mechanisms. 

Specific parameter regimes which optimise bandwidth growth are also discussed. 

CHAPTER 7 - Femtosecond pulses are synthesised from results of multi-frequency 

simulations. The pulse power densities, energies and durations are given in physical 

units.  Results are also presented which model realistic coupling mirror reflection 

profiles (with limited reflection bandwidths).  

CHAPTER 8 + 9 - The transverse UMRG equations are modelled and the results of 

multi-frequency simulations are presented. The roles of beam diffraction, finite 

transverse structure and transverse beam separation are considered in detail for 

both the (1+1)D and (1+2)D UMRG equations. 

CHAPTER 10 - The effects of linear and nonlinear detuning are discussed with 

specific emphasis on (1+1)D transverse UMRG. 
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CHAPTER 2 

Derivation of the UMRG equations 

Throughout this chapter the ultra-broadband multi-frequency Raman equations 

(UMRG) will be derived. The UMRG equations were originally developed to explain 

large conversion efficiencies and bandwidths generated in experiments conducted 

on various Raman media (73).  They describe the growth of Raman spectra in terms 

of the molecular dynamics of the medium (66), and show that large conversion 

efficiencies arise as a direct consequence of deriving the equations in terms of an 

infinite number of plane waves. The derivation given in reference (73) will be 

followed but steps omitted from the original derivation will be included. Particular 

emphasis is placed on the derivation of the Bloch equations from the density 

matrix. 

 

2.1 Semi-classical theory of multi-wave stimulated Raman scattering 

We wish to find a set of solutions to the nonlinear wave equation (2.1). These 

solutions will describe a set of plane waves travelling through a Raman active 

medium such as molecular hydrogen or molecular nitrogen. The envelope 

equations derived in this chapter will be normalised in accordance with the 

normalisation process used within reference (66). This final form of the envelope 

equations will be used in all simulations and analyses within this thesis. 

The one dimensional nonlinear wave equations is; 

� 𝜕
2

𝜕𝑧2
−  1

𝑐2
𝜕2

𝜕𝑡2
� 𝜖(𝑧, 𝑡) = 4𝜋

𝑐2
𝜕2𝑃
𝜕𝑡2

  ,       (2.1) 

where the electric field 𝜖 is of the form 

𝜖(𝑧, 𝑡) =  ∑ 𝐸𝑗(𝑧, 𝑡)𝑐𝑜𝑠�𝜔𝑗(𝑡𝑙𝑎𝑏 − 𝑧 𝑐⁄ ) + ∅𝑗�𝑗  ,        (2.2) 

 



 
CHAPTER 2: Derivation of the UMRG equations 

14 
 

and the frequencies 𝜔𝑗 are defined by 

𝜔𝑗 = 𝜔0 + 𝑗𝜔𝑅 ,         (2.3) 

where 𝑗 is an integer which defines each Stokes or anti-Stokes index, and 𝜔𝑅 is the  

exploited Raman transition frequency of the medium.  The difference frequency 

between any two adjacent waves can drive the transition between molecular 

energy levels. The oscillating polarisation created in this process takes the form of P 

within equation (2.1). The right hand side of equation (2.1) acts as the source term 

which can generate further higher order frequency sidebands. The macroscopic 

polarisation of the medium P will be obtained from the quantum-mechanical 

density matrix which describes the molecule/field interaction, and will be described 

in terms of Bloch-vectors of the two-photon Bloch equations (75). 

The wavefunction of a single hydrogen molecule under the influence of the field 

given in (2.2) will be considered and the time dependent wavefunction will be 

written  as a set of zero-field eigenfunctions. The coefficients of the wavefunction 

will be obtained and all equations will be written in terms of the longitudinal 

distance z and the retarded time frame 𝑡 = 𝑡𝑙𝑎𝑏 − 𝑧 𝑐⁄ .  

We can begin by assuming that the energies  ħ𝑊𝑛 and  eigenfunctions  | �𝑛〉� of the 

unperturbed Hamiltonian 𝐻0 are known, therefore solutions to the time dependant 

Schrödinger equation can be obtained: 

(𝐻0 + 𝑉)𝜓 = 𝑖ħ 𝑑𝜓
𝑑𝑡

        (2.4) 

where, 

 𝑉 = −𝑝𝜖      (2.5) 

and 𝑝 is the electronic dipole-moment operator. The perturbing potential can be 

described as a sum of potentials occurring with frequencies 𝜔𝑗 

𝑉 =  −1
2
𝑝∑ 𝑉𝑗𝑒𝑖𝜔𝑗𝑡𝑗 + 𝑐. 𝑐.     (2.6) 
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and 

𝑉𝑗 = 𝐸𝑗𝑒𝑖𝜙𝑗   .       (2.7) 

The solution to equation (2.4) can be expanded   

𝜓 =  ∑ 𝑐𝑛𝑒−𝑖𝑊𝑛𝑡| �𝑛〉�∞
𝑛       (2.8) 

where n = 1,2 are the indices corresponding to the 0 and 1 vibrational or rotational 

energy levels of the molecule. We will assume that n = 3,4,.. refer to the vibrational 

/ rotational energy levels on higher electronic transitions. Through the substitution 

of equation (2.8) into equation (2.4)  we can obtain a set of coupled equations for 

𝑐𝑛. 

Substituting equation (2.8) into equation (2.4) gives, 

𝑉∑ 𝑐𝑛𝑒−𝑖𝑊𝑛𝑡| �𝑛〉�∞
𝑛=1 = 𝑖ħ 𝑑𝑐𝑛

𝑑𝑡
𝑒−𝑖𝑊𝑛𝑡| �𝑛〉�           (2.9) 

and projecting equation (2.9) onto the eigenstate �〈𝑘�|ǀ and re-arranging gives, 

𝑖ħ 𝑑𝑐𝑘
𝑑𝑡

= ⟨𝑘|𝑉|𝑛⟩∑ 𝑐𝑛𝑒−𝑖𝑊𝑛𝑡+𝑖𝑊𝑘𝑡∞
𝑛 .             (2.10) 

Making the substitution 𝑘 = 𝑛,𝑛 = 𝑛′ equation (2.10) becomes 

𝑖ħ 𝑑𝑐𝑛
𝑑𝑡

= −1
2
∑ 𝑐𝑛′𝑝𝑛𝑛′ ∑ (𝑉𝑗𝑒𝑖(𝜔𝑗+𝑊𝑛𝑛′)𝑡 + 𝑉𝑗∗𝑒

−𝑖(𝜔𝑗−𝑊𝑛𝑛′)𝑡)𝑗
∞
𝑛′=1  ,  (2.11) 

where  𝑝𝑛𝑛′ = ⟨𝑛|𝑝|𝑛′⟩ and 𝑊𝑛𝑛′ = 𝑊𝑛 −𝑊𝑛′ , where 𝑊𝑛𝑛′ represents the 

frequency difference between the energy levels 𝑛 and 𝑛′. 

 

2.2 The two state Schrödinger equation 

We can now consider the specific case of  𝑛 = 1,2 and  𝑝12 = 0  where the 

rotational / vibrational levels 1 and 2 are taken to be on the same electronic state, 

and therefore possess no dipole interaction. We will also choose to neglect all 

terms except 𝑝1𝑛and 𝑝𝑛2 because only the interactions between the 1,2 and 𝑛𝑡ℎ 

levels are required. With these stipulations equation (2.11) can be partially 
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uncoupled. Higher energy states are eliminated by applying the adiabatic 

approximation where the interaction between the molecule and laser is taken to be 

far off resonance and will not affect the higher electronic states. Therefore the 

population in these states will be constant and its possible to solve for 𝑐𝑛 (where 

𝑛 = 3,4,5 …) in terms of 𝑐1and 𝑐2.  

This solution is valid when the time dependence of 𝑐1 and 𝑐2 is small compared to 

other time dependant terms in equation (2.11). In this limit, 

𝑐𝑛 = − 1
2ħ
∑ 𝑐𝑛′𝑝𝑛𝑛′ ∑ �−𝑉𝑗𝑒

𝑖(𝜔𝑗+𝑊𝑛𝑛′)𝑡

𝜔𝑗+𝑊𝑛𝑛′
+

𝑉𝑗
∗𝑒−𝑖(𝜔𝑗−𝑊𝑛𝑛′)𝑡

𝜔𝑗−𝑊𝑛𝑛′
�𝑗

2
𝑛′=1 .  (2.12) 

Substituting equation (2.12) into equation (2.11) for n = 1,2 and keeping only terms 

which do not oscillate at a high frequency such as a laser frequency leads to 

equations for 𝜕𝑐1
𝜕𝑡

 and 𝜕𝑐2
𝜕𝑡

. 

For example, selecting 𝑛 = 1,𝑛′ = 3  in equation (2.11), 

 𝑖ħ 𝑑𝑐1
𝑑𝑡

= −1
2
𝑐3𝑝13 ∑ (𝑉𝑗𝑒𝑖(𝜔𝑗+𝑊13)𝑡 + 𝑉𝑗∗𝑒−𝑖(𝜔𝑗−𝑊13)𝑡)𝑗   

 (2.13) 

 and substituting equation (2.12) gives 

𝑖ħ 𝑑𝑐1
𝑑𝑡

= − 1
4ħ
𝑝13𝑐1𝑝31 ∑ �𝑉𝑗𝑒𝑖(𝜔𝑗+𝑊13)𝑡 + 𝑉𝑗∗𝑒−𝑖(𝜔𝑗−𝑊13)𝑡�𝑗 �−𝑉𝑗𝑒

𝑖(𝜔𝑗+𝑊31)𝑡

𝜔𝑗+𝑊31
+

𝑉𝑗
∗𝑒−𝑖(𝜔𝑗−𝑊31)𝑡

𝜔𝑗−𝑊31
� − 1

4ħ
𝑝13𝑐2𝑝32 ∑ �𝑉𝑗𝑒𝑖(𝜔𝑗+𝑊13)𝑡 + 𝑉𝑗∗𝑒−𝑖(𝜔𝑗−𝑊13)𝑡�𝑗 (−𝑉𝑗𝑒

𝑖(𝜔𝑗+𝑊32)𝑡

𝜔𝑗+𝑊32
+

𝑉𝑗
∗𝑒−𝑖(𝜔𝑗−𝑊32)𝑡

𝜔𝑗−𝑊32
)  , 

      (2.14) 

𝑖ħ
𝑑𝑐1
𝑑𝑡

= −
1

4ħ
𝑝13𝑐1𝑝31��−

𝑉𝑗𝑉𝑗∗

𝜔𝑗 + 𝑊31
+

𝑉𝑗𝑉𝑗∗

𝜔𝑗 −𝑊31
�

𝑗

−
1

4ħ
𝑝13𝑐1𝑝32��−

𝑉𝑗𝑉𝑗−1∗

𝜔𝑗 + 𝑊32
+

𝑉𝑗𝑉𝑗−1∗

𝜔𝑗 −𝑊32
�

𝑗

   .           

                                          (2.15) 
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Repeating the above process for n = 4,5,6,.. gives the full equations for 𝜕𝑐1
𝜕𝑡

 and 𝜕𝑐2
𝜕𝑡

 

which can be written in matrix form: 

𝑖ħ 𝜕
𝜕𝑡
�
𝑐1
𝑐2� = �𝐻11 𝐻12

𝐻21 𝐻22
� �
𝑐1
𝑐2�     (2.16) 

and the components of the two-level Schrödinger equation are given as  

        𝐻11 = −1
4
∑ 𝛼11∞
𝑗 𝑉𝑗𝑉𝑗∗  ,     

       𝐻12 = −1
4
∑ 𝛼12∞
𝑗 𝑉𝑗𝑉𝑗−1∗   

                      𝐻21 = 𝐻12∗  ,                               (2.17) 

        𝐻22 = −1
4
∑ 𝛼22∞
𝑗 𝑉𝑗𝑉𝑗∗  , 

where the polarizability is given as, 

                𝛼𝑖𝑘 = 1
ħ
∑ 𝑝𝑖𝑛𝑝𝑛𝑘 �

1
𝑊𝑛𝑖−𝜔𝑗

+ 1
𝑊𝑛𝑘+𝜔𝑗

�∞
𝑛=3  .    (2.18) 

The dependence of  𝛼𝑖𝑘 on 𝜔𝑗 is small when the frequencies are far from resonance 

with the higher electronic levels. For the selected medium (molecular hydrogen) 

𝛼𝑖𝑘 are taken here to be constants. The summations within equations (2.17) can be 

defined as 

Ω = 𝛼12
2ħ
∑ 𝑉𝑗𝑉𝑗−1∗𝑗   ,         (2.19) 

𝐼 = ∑ 𝑉𝑗𝑉𝑗∗𝑗  .      (2.20) 

Where 𝐼 is the total incoherent intensity of the electric field in the system and Ω is 

identified as the two-photon Rabi frequency. The latter is the frequency of 

oscillation for the molecular transition of the two-state system and is associated 

with the strength of the coupling between the molecular transition and the 

interacting electric field. The two-state Schrodinger equation can be described in 

terms of the components of the optical Bloch vector (𝑢, 𝑣,𝑤), and the Bloch 

equations can be derived following the standard method (75, 76) which we will now 

follow. 
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2.3 The optical Bloch equations and density matrix 

The optical Bloch equations are a system of equations which describe the 

resonance behaviour of quantum systems where only two energy levels are 

interacting. This makes them a useful tool for gaining insight into the physical 

properties which couple quantum systems to electromagnetic fields. The optical 

Bloch equations can be derived from the components of the density matrix for the 

two-state system: 

𝜌 = �
𝜌11 𝜌12
𝜌21 𝜌22� ,                     (2.21) 

where the components are defined as 

 𝜌11 = 𝑐1𝑐1∗       (2.22) 

   𝜌12 = 𝜌21∗ = 𝑐1𝑐2∗𝑒𝑖𝑊21𝑡      (2.23) 

 𝜌22 = 𝑐2𝑐2∗ .      (2.24) 

 

To include detuning from resonance we make the following transformation 

   𝑐2 = 𝑐2̅𝑒𝑖𝛿𝜔𝑡 ,     (2.25) 

where 𝛿𝜔 = 𝑊21 − 𝜔𝑅 is the detuning. The components of the density matrix then 

become 

 𝜌11 = 𝑐1𝑐1∗       (2.26) 

                          𝜌12 = 𝜌21∗ = 𝑐1𝑐2̅∗𝑒𝑖𝑊21𝑡−𝑖𝛿𝜔𝑡      (2.27) 

𝜌22 = 𝑐2̅𝑐2̅∗ .      (2.28) 

Equation (2.16) is also modified by the above transformation, and takes the form 

𝑖ħ 𝜕𝑐1
𝜕𝑡

= 𝐻11𝑐1 + 𝐻12𝑐2̅               (2.29) 

−𝑖ħ 𝜕𝑐2̅∗

𝜕𝑡
= 𝐻12𝑐1∗ + (𝐻22 + ℏ𝛿𝜔)𝑐2̅∗ .     (2.30) 
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Taking the time derivative of the density matrix component (2.27) and substituting, 

equations (2.29) and (2.30) give 

𝜕𝜌12
𝜕𝑡

= 𝑖
ħ

(𝐻22 − 𝐻11 + ℏ𝛿𝜔)𝜌12 + 𝑖
ħ

(𝜌11 − 𝜌22)𝐻12𝑒𝑖(𝑊21−𝛿𝜔)𝑡 + 𝑖(𝑊21 − 𝛿𝜔)𝜌12 . 

  (2.31) 

One can eliminate the exponential term within equation (2.31) through the 

introduction of a slowly varying quantity 𝜎12defined by 

𝜌12 = 𝜎12𝑒𝑖(𝑊21−𝛿𝜔)𝑡.               (2.32) 

Equation (2.31) can now be rewritten in terms of this slowly varying quantity 

𝜕𝜎12
𝜕𝑡

= 𝑖
ħ

(𝐻22 − 𝐻11 + ℏ𝛿𝜔)𝜎12 −
1
𝑇2
𝜎12 + 𝑖

ħ
(𝜌11 − 𝜌22)𝐻12 ,  (2.33) 

where 𝑇2 is a phenomenological relaxation time. The addition of relaxation times to 

the density matrix equations of motion are well justified in reference (76). In a 

closed system the population of the upper energy level would decay due to 

spontaneous emission. The relaxation time (or dephasing time) 𝑇2 describes how 

the oscillation of the molecular dipole moment decays.  

Equation (2.33) can be written in terms of the intensity and two-photon Rabi 

frequency 

𝜕𝜎12
𝜕𝑡

= −𝑖 ��𝛼22−𝛼11
4ħ

� 𝐼 + 𝛿𝜔�𝜎12 −
1
𝑇2
𝜎12 −

𝑖
2

(𝜌11 − 𝜌22)Ω .  (2.34) 

Defining 𝜎12 = 1
2

(𝑢 − 𝑖𝑣) , Ω = Ω𝑅 + 𝑖Ω𝐼 and splitting equation (2.34) into its real 

and imaginary components gives 

𝜕𝑢
𝜕𝑡

= −Δ𝑣 − 𝑢
𝑇2
− Ω𝐼(𝜌22 − 𝜌11)     (2.35) 

𝜕𝑣
𝜕𝑡

= Δ𝑢 − 𝑣
𝑇2
− Ω𝑅(𝜌22 − 𝜌11) ,    (2.36) 

where the detuning is given by  

Δ = ��𝛼22−𝛼11
4ħ

� 𝐼 + 𝛿𝜔�.            (2.37) 
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Taking the derivatives of equations (2.26) and (2.28) gives 

                               𝜕𝜌11
𝜕𝑡

= 𝑖
ħ

(𝐻21𝜎12 − 𝐻12𝜎21) + 𝜌22
𝑇1

     (2.38) 

    𝜕𝜌22
𝜕𝑡

= 𝑖
ħ

(𝐻12𝜎21 − 𝐻21𝜎12) − 𝜌22
𝑇1

 ,   (2.39) 

where 𝜎21 = 𝜎12∗  and  𝑇1 is also a phenomenological relaxation time which has been 

included in the standard way to define the decay of the population of the upper 

energy state, and in turn the population gain of the lower energy state due to 

spontaneous emission. Defining the population difference 𝑤 = 𝜌22 − 𝜌11 and using 

equations (2.38) and (2.39) one can define the equation of motion for the 

population difference as 

                                       𝜕𝑤
𝜕𝑡

= Ω𝑅𝑣 + Ω𝐼𝑢 −  𝑤−𝑤0
𝑇1

  ,     (2.40) 

where 𝑤0is the initial population difference, which accounts for the fact that the 

initial population difference of the molecule in thermal equilibrium can have some 

value other than -1. 

Hence the complete set of optical Bloch equations are given as 

                                                     𝜕𝑢
𝜕𝑡

= −Δ𝑣 − 𝑢
𝑇2
− Ω𝐼𝑤                    

                          𝜕𝑣
𝜕𝑡

= Δ𝑢 − 𝑣
𝑇2
− Ω𝑅𝑤                                        (2.41) 

        𝜕𝑤
𝜕𝑡

= Ω𝑅𝑣 + Ω𝐼𝑢 −  𝑤−𝑤0
𝑇1

  .                                         

The Bloch equations fully illustrate the coupling of the molecule and optical field in 

terms of a 3-vector with three real components (𝑢, 𝑣,𝑤). The goal of describing the 

quantum system for molecular hydrogen was to find an explicit form for the 

polarisation induced by the potential (2.6); this polarisation can then be inserted 

into the nonlinear wave equation (2.1) and yield a set of envelope equations 

defining the amplitudes 𝑉𝑗. 
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2.4 The molecular polarisation 

The polarisation can be obtained from 

〈𝑝〉 = ⟨𝜓(𝑡)|𝑝|𝜓(𝑡)⟩                (2.42) 

〈𝑝〉  =

 ∑ 𝑐1𝑐𝑛∗𝑝𝑛1𝑒𝑖𝑊𝑛1𝑡∞
𝑛=3 + 𝑐2̅𝑐𝑛∗𝑝𝑛2𝑒𝑖(𝑊𝑛2+𝛿𝜔)𝑡 + 𝑐𝑛𝑐1∗𝑝1𝑛𝑒𝑖𝑊1𝑛𝑡 + 𝑐𝑛𝑐2̅∗𝑝2𝑛𝑒𝑖(𝑊2𝑛−𝛿𝜔)𝑡. 

 (2.43) 

Using equations (2.12) and (2.18), equation (2.43) can be reduced to 

〈𝑝〉 =

�𝛼12𝑐1∗𝑐2̅𝑉𝑗𝑒𝑖𝜔𝑗−1𝑡 + 𝛼21∗ 𝑐1∗𝑐2̅𝑉𝑗∗𝑒−𝑖𝜔𝑗+1𝑡 + 𝛼21𝑐2̅∗𝑐1𝑉𝑗𝑒𝑖𝜔𝑗+1𝑡 + 𝛼12∗ 𝑐2̅∗𝑐1𝑉𝑗∗𝑒−𝑖𝜔𝑗−1𝑡� . 

(2.44) 

Multiplying the polarisation by the number density of the molecules 𝑁 initially in 

the ground state gives the macroscopic polarisation 𝑃 which can be written in 

terms of the Bloch vector. 

𝑃 = 1
4

(𝑢 + 𝑖𝑣)𝑁𝛼12 ∑ �𝑉𝑗𝑒𝑖𝜔𝑗−1𝑡 + 𝑉𝑗∗𝑒−𝑖𝜔𝑗+1𝑡�𝑗 + 𝑐. 𝑐.    (2.45) 

The macroscopic polarisation represents how the ensemble of quantum systems 

acts under the influence of the applied field given by equation (2.2). This 

polarisation can be substituted into equation (2.1). The field amplitudes 𝑉𝑗 are 

taken to be slowly varying (only first derivatives are retained) and the differential 

operator is expressed in the coordinates 𝑧 and retarded time (73). By equating each 

frequency components coefficient we can obtain a set of coupled differential 

equations describing the field amplitudes: 

𝜕𝑉𝑗
𝜕𝑧

= 𝜔𝑗𝜋𝑁𝛼12
𝑐

�𝑉𝑗+1(𝑣 − 𝑖𝑢) − 𝑉𝑗−1(𝑣 + 𝑖𝑢)� .     (2.46) 
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2.5 Wave vector mismatch 

The above field equation (2.46) can be further generalised to include longitudinal 

wave vector mismatch Δ𝑘𝑗 which allows for wave vectors to differ from the value 

𝑘𝑗0 = 𝜔𝑗

𝑐
 which characterises on axis propagation in a medium with no dispersion. 

 

 

 

 

 

 

As demonstrated by Figure 1a, the wave vector mismatch takes the form 

Δ𝑘𝑗 = 𝑘𝑗 cos θj −
𝜔𝑗

𝑐
  .    (2.47) 

For small cone angles, Δ𝑘𝑗 can be approximated by 

Δ𝑘𝑗 = 𝑘𝑗 −
𝜔𝑗

𝑐
  .     (2.48) 

The introduction of wave vector mismatch leads to the electric field given in 

equation (2.2) taking a new form 

𝜖(𝑧, 𝑡) =  ∑ 𝐸𝑗(𝑧, 𝑡)𝑐𝑜𝑠�𝜔𝑗(𝑡𝑙𝑎𝑏 − 𝑧 𝑐⁄ ) − Δ𝑘𝑗𝑧 + ∅𝑗�𝑗   .  (2.49) 

Under the expansion (2.49) the envelope field equations (2.46) becomes 

generalised through the incorporation of mismatch terms which account for the 

effects of off axis propagation or refractive index phase contributions when all the 

optical fields propagate collinearly. 

𝜕𝑉𝑗
𝜕𝑧

= −𝑖Δ𝑘𝑗𝑉𝑗 + 𝜔𝑗𝜋𝑁𝛼12
𝑐

�𝑉𝑗+1(𝑣 − 𝑖𝑢) − 𝑉𝑗−1(𝑣 + 𝑖𝑢)�  .  (2.50) 

 

Figure 2a – The z component of the wave vector differs from the 
dispersionless case. 
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The mismatch term on the right hand side of equations (2.50) can be eliminated 

through the introduction of ansatz 

𝑉𝑗(𝑧, 𝑡) =  𝐹𝑗𝑒−𝑖Δ𝑘𝑗𝑧,      (2.51) 

𝜕𝐹𝑗
𝜕𝑧

= 𝜔𝑗𝜋𝑁𝛼12
𝑐

�𝐹𝑗+1(𝑣 − 𝑖𝑢)𝑒−𝑖�Δ𝑘𝑗+1−Δ𝑘𝑗�𝑧 − 𝐹𝑗−1(𝑣 + 𝑖𝑢)𝑒𝑖�Δ𝑘𝑗−Δ𝑘𝑗−1�𝑧�.  

 (2.52) 

The medium excitation 𝑞(𝑧, 𝑡) can be defined as 

𝑣 + 𝑖𝑢 = 𝑞(𝑧, 𝑡)𝑒−𝑖(Δ𝑘0−Δ𝑘−1)𝑧 ,    (2.53)  

and the mistuning can be identified as  

Δj = �Δ𝑘𝑗 − Δ𝑘𝑗−1� − (Δ𝑘0 − Δ𝑘−1).   (2.54) 

Implementing equations (2.53) and (2.54) yields the field equations for 𝐹𝑗(𝑧, 𝑡) 

𝜕𝐹𝑗
𝜕𝑧

= 𝜔𝑗𝜋𝑁𝛼12
𝑐

�𝑞∗𝐹𝑗+1𝑒−𝑖Δj+1𝑧 − 𝑞𝐹𝑗−1𝑒𝑖Δj𝑧�.    (2.55) 

 

2.6 Medium dynamics 

The time evolution of the medium excitation can be analysed using equations (2.41) 

where 

𝜕(𝑣+𝑖𝑢)
𝜕𝑡

= − 1
𝑇2

(𝑣 + 𝑖𝑢) − 𝑖∆(𝑣 + 𝑖𝑢) − (Ω𝑅 + 𝑖Ω𝐼)𝑤 ,            (2.56) 

and substituting equation (2.53) gives 

𝜕𝑞
𝜕𝑡

= −�1
𝑇2

+ 𝑖∆� 𝑞 − Ωei(Δ𝑘0−Δ𝑘−1)𝑧𝑤 ,                (2.57) 

where the detuning is now given as 

Δ = �𝛼22−𝛼11
4ħ

�∑ 𝐹𝑗𝐹𝑗∗𝑗 + 𝛿𝜔 .       (2.58) 
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Through the use of equations (2.19), (2.51) and (2.54) one can re-write equation 

(2.57) in terms of the field components 𝐹𝑗 and mistuning Δ𝑗  

𝜕𝑞
𝜕𝑡

= −�1
𝑇2

+ 𝑖∆� 𝑞 − 𝑤 𝛼12
2ħ
∑ 𝐹𝑗𝐹𝑗−1∗𝑗 𝑒−𝑖Δj𝑧 .  (2.59) 

The dynamics of the population difference can also be described in terms of the 

field components 𝐹𝑗 and the medium excitation 𝑞 by using equation (2.41) and 

(2.53) which gives 

𝜕𝑤
𝜕𝑡

= 1
2
�𝑖𝑞 𝛼21

2ħ
∑ 𝐹𝑗∗𝐹𝑗−1𝑗 𝑒𝑖Δj𝑧 + (𝑖Ω𝐼𝐼𝑚|𝑞| + +𝑖Ω𝑅𝑅𝑒|𝑞|)𝑒−𝑖(Δ𝑘0−Δ𝑘−1)𝑧� −  𝑤−𝑤0

𝑇1
 .  

  (2.60) 

 

2.7 The UMRG equations 

If the medium is taken to be relatively unpopulated, i.e. 𝑤 = −1 and 𝜕𝑤
𝜕𝑡

= 0 the 

governing equations of the Raman system become 

𝜕𝐹𝑗
𝜕𝑧

= 𝜔𝑗𝜋𝑁𝛼12
𝑐

�𝑞∗𝐹𝑗+1𝑒−𝑖Δj+1𝑧 − 𝑞𝐹𝑗−1𝑒𝑖Δj𝑧�  

𝜕𝑞
𝜕𝑡

= −�1
𝑇2

+ 𝑖∆� 𝑞 + 𝛼12
2ħ
∑ 𝐹𝑗𝐹𝑗−1∗𝑗 𝑒−𝑖Δj𝑧                                   (2.61) 

Δ = �𝛼22−𝛼11
4ħ

�∑ 𝐹𝑗𝐹𝑗∗𝑗 + 𝛿𝜔 , 

where equations (2.61) are known as the Ultra-broadband Multi-frequency Raman 

Generation equations (UMRG equations). 

 The normalised form of equations (2.61) are given as 

 
𝜕𝐴𝑗
𝜕𝑍

= 𝜔𝑗

2𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍�  

�𝑇2
𝑡𝑝
� 𝜕𝑃
𝜕𝜏

= −(1 + 𝑖𝛿)𝑃 + ∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γjZ,                                 (2.62) 

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔� . 
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The parameter  γj = Δj
gI0

 is the normalised mistuning which defines the level of 

medium dispersion for the jth frequency component, 𝑍 = gI0z is the gain-length 

product where g is the steady -state gain coefficient and I0 is the intensity of the 

pump.  𝜏 = 𝑡
𝑡𝑝

 is time normalised by the pump pulse width 𝑡𝑝.  

The normalisation process undertaken in reference (32) can be found in Appendix 

A. Equations (2.62) form a complete set of multi-wave (parametrically and non 

parametrically coupled) envelope equations, where each field component is linked 

to every other field in the system through multiple four-wave interactions. 

The steady state form of equations (2.62) are given as 

𝜕𝐴𝑗
𝜕𝑍

= 𝜔𝑗

2𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍�  

    𝑃 = 1
(1+𝑖𝛿)

∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γjZ                                 (2.63) 

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔� . 

Generally, the steady state UMRG equations need to be numerically integrated and 

only the specific case of zero mistuning, γj = 0, offers analytical solutions (such 

solutions will not be discussed here).   

Unless otherwise specified the results throughout this thesis are presented for a 

cavity containing molecular hydrogen at 1 atmosphere of pressure where the 

transition of interest is the S(1) rotational transition. The pump laser frequency is 

taken to be 𝜔0
2𝜋𝑐

= 18900 𝑐𝑚−1, and the transition frequency is taken to be 

𝜔𝑅
2𝜋𝑐

= 587 𝑐𝑚−1. The gain of the exploited transition will be taken to be                  

0.2 GWcm-1 and the dephasing time 𝑇2 is taken to be  approximately 2 ns (74).   
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The UMRG equations can also be derived in such a way as to include transverse 

dimensions where the electric field envelope is of the form 

𝜖(𝑥′,𝑦′, 𝑧, 𝑡) =  ∑ 𝐸𝑗(𝑥′,𝑦′, 𝑧, 𝑡)𝑐𝑜𝑠�𝜔𝑗(𝑡𝑙𝑎𝑏 − 𝑧 𝑐⁄ ) − Δ𝑘𝑗𝑧 + ∅𝑗�𝑗  .              (2.65) 

In this case the normalised steady state transverse multi-frequency Raman 

equations take the form given in reference (78) 

𝜕𝐴𝑗
𝜕𝑍

− 𝑖𝑑𝑗∇T2𝐴𝑗 = 𝜔𝑗

2𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍�  

   𝑃(𝑥,𝑦) = 1
(1+𝑖𝛿)

∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γjZ                                         (2.66) 

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔�. 

Where ∇T2  is the scaled transverse Laplacian, which is scaled by the half width of a 

reference Gaussian beam, 𝜔𝑃. The parameter 𝑑𝑗 is a set of diffraction terms which 

characterise the diffraction of each frequency component of the total electric field. 

In Reference (78) the diffraction terms are normalised to the width of a reference 

Gaussian beam in which case the set of diffraction terms are equal to 

 𝑑𝑗 =  𝐿𝑅
4𝐿𝐷

𝑗  .                       (2.67) 

Where 𝐿𝑅 is the stimulated Raman scattering gain length 

𝐿𝑅 = 1
gI0

,     (2.68) 

and 𝐿𝐷
𝑗  is the diffraction length of each frequency component of the electric field 

𝐿𝐷
𝑗 = 𝜔𝑗𝜔𝑃

2

2𝑐
.     (2.69) 

The combination of equations (2.68) and (2.69) means that the diffraction terms 

have the same normalisation as the normalised spatial length 𝑍. 
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The implementation of the UMRG equations is carried out using various numerical 

schemes such as Runge Kutta methods (79, 80, 81) and finite difference schemes 

such as Crank-Nicolson methods (82, 83) and ADI methods (84). A detailed account 

of each specific method and their implementation can be found in appendix B. 

 

2.8 Cavity UMRG 

The theoretical work presented throughout this thesis characterises the growth of 

broadband frequency spectra in a Raman medium confined within a unidirectional 

ring cavity. The ring cavity consists of four mirrors at 45° angles and confines the 

Raman medium. Three of the mirrors are taken to be broadband with unity 

reflectivity and the final mirror is a partially transmitting coupling mirror. 

The constant wave (CW) multi-frequency Raman equations derived in chapter 2 are 

used to simulate the growth of broadband Raman spectra within the cavity. The 

system is initially pumped adiabatically at the pump, 𝜔0, and first Stokes, 𝜔−1, 

frequencies (two-colour pumping) and the Raman equations are numerically 

integrated over the cavity length, 𝑍𝑐. At the end of each cavity transit the amplitude 

of each frequency component is subject to a bulk mirror reflectivity and further 

pumping at the pump and first Stokes frequencies. 

 Throughout a cavity transit each frequency component is assumed to be subject to 

a total phase shift of 4𝜋 through reflections at each mirror surface. The case of 

limited bandwidth mirrors will be covered in chapter 8. A basic diagram of the 

cavity geometry is given in figure 2b. 
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Figure 2b – Raman cavity geometry, the amplitudes generated within the 
Raman medium are subject to pumping and loss at the final cavity mirror. 

 

 

Figure 2c– Diagram of the basic setup for symmetric pumping of molecular 
hydrogen (77). 
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Typical non-cavity Raman experiments can produce multiple Raman sideband 

frequencies through molecular modulation induced by pumping at both a pump 

frequency 𝜔0 and first Stokes sideband frequency 𝜔−1. Such non-cavity Raman 

experiments can be capable of generating several sideband frequencies (~30 in the 

case of molecular hydrogen) which are suitable for the synthesis of femtosecond 

pulses. A basic diagram for symmetrically pumped molecular hydrogen is given in 

figure 2c. 
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CHAPTER 3 

The Gain suppression analysis 

It has been shown both theoretically (69) and experimentally (84) that in the 

presence of dispersion (wave-vector mismatch) the first Stokes and anti-Stokes 

sidebands experience exponential gain which is proportional to the level of 

dispersion. In the case of zero dispersion (phase-matched condition) the gain is 

suppressed and the parametric coupling between the waves leads to the 

termination of their growth (through the depletion of the medium excitation).  

Gain suppression can be shown to occur mathematically by considering a 3-wave 

subset of the UMRG envelope equations (first Stokes, pump and first anti-Stokes 

sidebands). The substitution of a trial plane wave solution reduces the envelope 

equations to an eigenvalue equation, which is quadratic with respect to the gain 

parameter. The complex roots of the eigenvalue equation can then be used to find 

general solutions which describe the growth of the sideband amplitudes. 

Before undertaking the analysis of the full multi-wave UMRG equations, and 

characterising the growth of the Stokes and anti-Stokes bandwidth within the ring 

cavity system, it is instructive to look at the dynamics of a simpler 3-wave 

subsystem which consists of the first Stokes, pump and first anti-Stokes 

components  (𝑗 = −1,0,1). All higher order sidebands are taken to be zero 

amplitude and do not contribute to the evolution of the 3-wave system. 

 Throughout this chapter a 3-wave parametric gain suppression analysis will be 

derived, which extends the original work presented by Shen and Bloembergen (69) 

to include cavity boundary conditions (periodic boundary pumping and loss), and 

also the effects of pump depletion and a finite Stokes shift  𝜀 = 𝜔𝑅
𝜔0

 . In these gain 

suppression analyses only a single pump, at the  𝑗 = 0 frequency, is considered. 

We seek here approximate linear solutions to the UMRG equations (2.62) which will 

describe the gain of the Stokes amplitude.  
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The governing envelope equations (steady-state) for the 3-wave Raman system, 

without a cavity, are given by equation (2.63) as  

𝑑𝐴−1
𝑑𝑍

= 1
2

(1 − 𝜀)�|𝐴0|2𝐴−1 + 𝐴02𝐴1∗𝑒𝑖𝛾1𝑍�      (3.1) 

 

𝑑𝐴0
𝑑𝑍

= 1
2

[𝐴0(|𝐴1|2 − |𝐴−1|2)]        (3.2) 

 

𝑑𝐴1
𝑑𝑍

=  −1
2

(1 + 𝜀)�|𝐴0|2𝐴1 + 𝐴02𝐴−1∗ 𝑒𝑖𝛾1𝑍� ,    (3.3) 

where the Stokes shift parameter 𝜀 = 𝜔𝑅
𝜔0

 . 

Assuming zero pump depletion, 𝑑𝐴0
𝑑𝑍

= 0, and denoting for the mth cavity round trip 

in the medium 𝐴02 = 𝐴0,𝑚
2 = �𝐴0,𝑚�

2
𝑒𝑖2𝜃𝑚    

where  𝜃𝑚 = arg�𝐴0,𝑚� , and similarly 𝐴−1 = 𝐴−1,𝑚 and 𝐴1 = 𝐴1,𝑚. Equations (3.1) 

and (3.3) become 

𝑑𝐴−1,𝑚
𝑑𝑍

= �𝐴0,𝑚�
2

2
(1 − 𝜀)�𝐴−1,𝑚 + 𝐴1,𝑚

∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�                  (3.4) 

 

𝑑𝐴1,𝑚
𝑑𝑍

=  − �𝐴0,𝑚�
2

2
(1 + 𝜀)�𝐴1,𝑚 + 𝐴−1,𝑚

∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚� .                (3.5) 

These sidebands are assumed to be subject to a lumped loss at a coupling mirror of 

amplitude reflectivity 𝑅𝑗 for the field 𝐴𝑗: 

𝐴−1,𝑚+1(𝑍 = 0) =  𝑅−1𝐴−1,𝑚(𝑍 = 𝐿)   

 𝐴1,𝑚+1(𝑍 = 0) =  𝑅1𝐴1,𝑚(𝑍 = 𝐿). 

 

For the undepleted pump model, one could model the intra-cavity pump field 
through 

   𝐴0,𝑚+1 = 𝐴0 +  𝐴0,𝑚𝑅0𝑒−𝛼𝐿+𝑖∅   ,𝑚 = 1,2,3 …  ,            (3.6) 
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where α includes any linear loss, 𝐿 = 𝑍𝑐 is the cavity length, 𝑅0 is the pumps 

(amplitude) cavity mirror reflectivity and 𝑚 is the transit number. 𝛼 defines any 

linear loss within the cavity and ∅ defines any pump mistuning from cavity 

resonance. 

For the undepleted model the evolution of the pump may be treated as a geometric 

series, since 

𝑚 = 1,    𝐴0,𝑚 =  𝐴0 

𝑚 = 2,    𝐴0,𝑚 = 𝐴0 +  𝐴0𝑅0𝑒−𝛼𝐿+𝑖∅ = 𝐴0(1 + 𝑅0𝑒−𝛼𝐿+𝑖∅)   

𝑚 = 3,    𝐴0,𝑚 =  𝐴0 + 𝑅0𝑒−𝛼𝐿+𝑖∅𝐴0�1 + 𝑅0𝑒−𝛼𝐿+𝑖∅� = 𝐴0�1 + 𝑅0𝑒−𝛼𝐿+𝑖∅ +

(𝑅0𝑒−𝛼𝐿+𝑖∅)2) , etc. 

Thus, the series can be defined as 

𝐴0,𝑚 = ∑ 𝐴0(𝑅0𝑒−𝛼𝐿+𝑖∅)𝑗−1𝑚
𝑗=1 = 𝐴0(1−𝑅0𝑚𝑒−𝑚(𝛼𝐿+𝑖∅))

(1−𝑅0𝑒−𝛼𝐿+𝑖∅)
 . 

There are two cases of interest defined by this model such as the resonant high-

finesse limit, where 𝑅0𝑒−𝛼𝐿= 1, and the case of 𝑅0𝑒−𝛼𝐿< 1. The high finesse case 

causes the pump to grow as 𝑚𝐴0, while for any value of finite cavity loss the series 

converges. Convergence depends on the inequality �𝑅0 𝑒−(𝛼𝐿+𝑖∅)� < 1 (i.e. the 

modulus is less than unity). 

It is convenient to conjugate the Stokes field equation, so that the model now takes 

the form 

𝑑𝐴−1,𝑚
𝑑𝑍

= �𝐴0,𝑚�
2

2
(1 − 𝜀)�𝐴−1,𝑚 + 𝐴1,𝑚

∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�                  (3.7) 

 

𝑑𝐴1,𝑚
∗

𝑑𝑍
=  − �𝐴0,𝑚�

2

2
(1 + 𝜀)�𝐴1,𝑚

∗ + 𝐴−1,𝑚𝑒−𝑖𝛾1𝑍−𝑖2𝜃𝑚� .  (3.8) 

These equations pose an eigenvalue problem with a periodic set of eigenfunctions, 

𝐴−1,𝑚, 𝐴1,𝑚
∗ , and eigenvalues 𝐾𝑚±  which permit general solutions to be constructed. 
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We seek trial eigensolutions of the form: 

𝐴−1,𝑚(𝑍) =  𝑎−1,𝑚𝑒
��𝐾𝑚+𝑖

𝛾1
2 �𝑍+𝑖𝜃𝑚�          (3.9) 

𝐴1,𝑚
∗ (𝑍) = 𝑎1,𝑚

∗ 𝑒��𝐾𝑚−𝑖
𝛾1
2 �𝑍−𝑖𝜃𝑚� .    (3.10) 

Introducing the trial eigensolutions into equations (3.7) and (3.8) gives. 

 

𝑎−1,𝑚 �𝐾𝑚 +  𝑖 𝛾1
2
� = �𝐴0,𝑚�

2

2
(1 − 𝜀)�𝑎−1,𝑚 + 𝑎1,𝑚

∗ �       (3.11) 

𝑎1,𝑚
∗ �𝐾𝑚 −  𝑖 𝛾1

2
� =   − �𝐴0,𝑚�

2

2
(1 + 𝜀)�𝑎1,𝑚

∗ + 𝑎−1,𝑚�  .   (3.12) 

This can be expressed in matrix form, 

 

 �
𝐾𝑚 +  𝑖 𝛾1

2
−  �𝐴0,𝑚�

2

2
(1 − 𝜀) − �𝐴0,𝑚�

2

2
(1 − 𝜀)

�𝐴0,𝑚�
2

2
(1 + 𝜀) 𝐾𝑚 −  𝑖 𝛾1

2
+  �𝐴0,𝑚�

2

2
(1 + 𝜀)

�
𝑎−1,𝑚
𝑎1,𝑚
∗ = 0

0        (3.13) 

Taking the determinant of the coefficient matrix to determine non-trivial sideband 

solutions gives: 

𝐾𝑚2 + ��𝐴0,𝑚�
2
𝜀�𝐾𝑚 + 𝛾12

4
+ 𝑖 �𝐴0,𝑚�

2
𝛾1

2
= 0,         (3.14) 

which has complex solutions: 

𝐾𝑚± =  − �𝐴0,𝑚�
2
𝜀

2
± 1

2
���𝐴0,𝑚�

2
𝜀�

2
− 4 �𝛾1

4
+ 𝑖 �𝐴0,𝑚�

2
𝛾1

2
�    .   (3.15) 

Splitting equation (3.15) into its real and imaginary components yields, 

𝐾𝑚± = 𝑅𝑒[𝐾𝑚±] + 𝑖𝐼𝑚(𝐾𝑚±) ,  
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𝑅𝑒[𝐾𝑚±] =

 − �𝐴0,𝑚�
2
𝜀

2
±  1

2√2
���𝐴0,𝑚�

4
𝜀2 − 𝛾12� + ���𝐴0,𝑚�

4
𝜀2 − 𝛾12�

2
+ 4�𝐴0,𝑚�

4
𝛾12�

1
2

  (3.16) 

 

𝐼𝑚[𝐾𝑚±] = ∓  1
2√2

�− ��𝐴0,𝑚�
4
𝜀2 − 𝛾12� + ���𝐴0,𝑚�

4
𝜀2 − 𝛾12�

2
+ 4�𝐴0,𝑚�

4
𝛾12�

1
2

 ,     

(3.17) 

where 𝑅𝑒[𝐾𝑚±] parameterises the growth (or attenuation) of the eigenmodes of the 

Raman sidebands within the cavity. The imaginary component is linked to the phase 

evolution of the eigenmodes of each sideband. 

General solutions to the envelope equations can be written as a linear combination 

of eigensolutions with coefficients 𝐶𝑘𝑠,𝑚and 𝐶𝑘𝑎,𝑚 (where 𝑘 = 1,2) 

𝐴−1,𝑚(𝑍) =  �𝐶1𝑠,𝑚𝑒𝐾𝑚
+𝑍 + 𝐶2𝑠,𝑚𝑒𝐾𝑚

−𝑍�𝑒𝑖
𝛾1
2 𝑍+𝑖𝜃𝑚     (3.18) 

𝐴1,𝑚
∗ (𝑍) =  �𝐶1𝑎,𝑚𝑒𝐾𝑚

+𝑍 + 𝐶2𝑎,𝑚𝑒𝐾𝑚
−𝑍�𝑒−𝑖

𝛾1
2 𝑍−𝑖𝜃𝑚  .   (3.19) 

The cavity boundary conditions then determine the form of the coefficients 

involved in the general solutions. Setting  𝑍 = 0 in equations (3.18) and (3.19) gives 

𝐴−1,𝑚(0) =  �𝐶1𝑠,𝑚 + 𝐶2𝑠,𝑚�𝑒𝑖𝜃𝑚       (3.20) 

𝐴1,𝑚
∗ (0) =  �𝐶1𝑎,𝑚 + 𝐶2𝑎,𝑚�𝑒−𝑖𝜃𝑚   .    (3.21) 

Taking the 𝑍-derivative of equations (3.18) and (3.19) and equating the results to 

equations (3.7) and (3.8) respectively and setting  𝑍 = 0 

 �𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚𝑒𝑖𝜃𝑚 + �𝐾𝑚− + 𝑖 𝛾1

2
� 𝐶2𝑠,𝑚𝑒𝑖𝜃𝑚 =  �𝐴0,𝑚�

2

2
(1 − 𝜀)�𝐴−1,𝑚(0) +

                                                                   𝐴1,𝑚
∗ (0)𝑒𝑖2𝜃𝑚�                                                   

                                                        

(3.22) 
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�𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚𝑒−𝑖𝜃𝑚 + �𝐾𝑚− − 𝑖 𝛾1

2
�𝐶2𝑎,𝑚𝑒−𝑖𝜃𝑚 =  − �𝐴0,𝑚�

2

2
(1 + 𝜀)�𝐴1,𝑚

∗ (0) +

𝐴−1,𝑚(0)𝑒−𝑖2𝜃𝑚�. 

(3.23) 

Substituting equation (3.20) into equation (3.22) and re-arranging gives 

�2𝐾𝑚++𝑖𝛾1−�𝐴0,𝑚�
2(1−𝜀)�

�𝐴0,𝑚�
2(1−𝜀)

 𝐶1𝑠,𝑚 +  
�2𝐾𝑚−+𝑖𝛾1−�𝐴0,𝑚�

2(1−𝜀)�

�𝐴0,𝑚�
2(1−𝜀)

 𝐶2𝑠,𝑚 = 𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚  ,  

(3.24) 

while substituting equation (3.21) into equation (3.23) and re-arranging gives 

 

�2𝐾𝑚+−𝑖𝛾1+�𝐴0,𝑚�
2(1+𝜀)�

�𝐴0,𝑚�
2(1+𝜀)

 𝐶1𝑎,𝑚 +  
�2𝐾𝑚−−𝑖𝛾1+�𝐴0,𝑚�

2(1+𝜀)�

�𝐴0,𝑚�
2(1+𝜀)

 𝐶2𝑎,𝑚 = −𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚  .       

(3.25) 

The derivatives of equations (3.18) and (3.19) equated to equations (3.7) and (3.8), 

when 𝑍 = 0 gives 

�𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚𝑒

𝐾𝑚++𝑖
𝛾1
2 𝑍+𝑖𝜃𝑚 + �𝐾𝑚− + 𝑖 𝛾1

2
� 𝐶2𝑠,𝑚𝑒

𝐾𝑚−+𝑖
𝛾1
2 +𝑖𝜃𝑚 =  �𝐴0,𝑚�

2

2
(1 −

𝜀)�𝐴−1,𝑚 + 𝐴1,𝑚
∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�   

(3.26) 

�𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚𝑒

𝐾𝑚+−𝑖
𝛾1
2 𝑍−𝑖𝜃𝑚 + �𝐾𝑚− − 𝑖 𝛾1

2
� 𝐶2𝑎,𝑚𝑒

𝐾𝑚−−𝑖
𝛾1
2 −𝑖𝜃𝑚 =  − �𝐴0,𝑚�

2

2
(1 +

𝜀)�𝐴1,𝑚
∗ + 𝐴−1,𝑚𝑒−𝑖𝛾1𝑍−𝑖2𝜃𝑚� . 

(3.27) 
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The substitution of equations (3.18) and (3.19) into both equations (3.26) and (3.27) 

gives 

��𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚 −  �𝐴0,𝑚�

2

2
(1 − 𝜀)�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� 𝑒�𝐾𝑚

+−𝐾𝑚−�𝑍 =  �𝐴0,𝑚�
2

2
(1 −

𝜀)�𝐶2𝑠,𝑚 + 𝐶2𝑎,𝑚� − �𝐾𝑚− + 𝑖 𝛾1
2
� 𝐶2𝑠,𝑚  

(3.28) 

��𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚 +  �𝐴0,𝑚�

2

2
(1 + 𝜀)�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� 𝑒�𝐾𝑚

+−𝐾𝑚−�𝑍 =  − �𝐴0,𝑚�
2

2
(1 +

𝜀)�𝐶2𝑠,𝑚 + 𝐶2𝑎,𝑚� − �𝐾𝑚− − 𝑖 𝛾1
2
� 𝐶2𝑎,𝑚  . 

(3.29) 

Taking the derivative of equations (3.28) and (3.29) and setting Z = 0 gives 

 

(𝐾𝑚+ − 𝐾𝑚−) ��𝐾𝑚+ + 𝑖
𝛾1
2
�𝐶1𝑠,𝑚 −  

�𝐴0,𝑚�
2

2
(1 − 𝜀)�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� = 0 

(3.30) 

(𝐾𝑚+ − 𝐾𝑚−) ��𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚 +  �𝐴0,𝑚�

2

2
(1 + 𝜀)�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� = 0 .                 

  (3.31) 

When 𝐾𝑚+ ≠ 𝐾𝑚− , re-arranging equation (3.30) or (3.31) gives the ratio 

 

𝐶1𝑎,𝑚
𝐶1𝑠,𝑚

= 2𝐾𝑚++𝑖𝛾1−�𝐴0,𝑚�
2(1−𝜀)

�𝐴0,𝑚�
2(1−𝜀)

   ,      (3.32) 

 

and comparing equation (3.32) to equation (3.25), with use of equation (3.20) one 

finds the ratio of the complementary components 

𝐶2𝑎,𝑚
𝐶2𝑠,𝑚

= 2𝐾𝑚−+𝑖𝛾1−�𝐴0,𝑚�
2(1−𝜀)

�𝐴0,𝑚�
2(1−𝜀)

   .     (3.33) 
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The use of relations (3.20) and (3.25) then yields equations for 𝐶1𝑠,𝑚 and 𝐶2𝑠,𝑚 

 

𝐶1𝑠,𝑚 =
�𝐴0,𝑚�

2(1−𝜀)𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2(1−𝜀)−2𝐾𝑚−−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚+−𝐾𝑚−�
  , 

(3.34) 

 

𝐶2𝑠,𝑚 =
�𝐴0,𝑚�

2(1−𝜀)𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2(1−𝜀)−2𝐾𝑚+−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚−−𝐾𝑚+�
  .  

(3.35) 

The above expressions fully define the mode coefficients involved in the gain 
suppression analysis for an undepleted pump. 

Setting the Stokes shift 𝜀 = 0, transit number 𝑚 = 0 and �𝐴0,𝑚�
2

= 1 recovers the 

results of the gain suppression analysis of Shen and Bloembergen (69). 

  

3.1 The depleted pump model 

In later sections, where predictions made by the gain suppression analysis are 

compared to results from numerical simulations, it is found that the undepleted 

pump model accurately describes the evolution of the first Stokes and anti-Stokes 

amplitudes for cavity configurations with relatively short cavity lengths, small initial 

Stokes seed and low coupling mirror reflectivity. When parameters are selected to 

include moderate cavity lengths, larger initial seed amplitudes or higher levels of 

cavity mirror reflectivity, it is found that there are increased levels of pump 

depletion within the Raman medium. These trends are expected because larger 

initial Stokes seed amplitudes and longer interaction lengths lead to more 

developed evolution of the Stokes and anti-Stokes amplitudes. Similarly, higher 

cavity reflectivity increases the amplitudes of the (nonlinearly) interacting waves. 

The undepleted pump analysis thus fails to capture these effects. To provide a more 

complete picture of the wave dynamics it is worth including the effect of intra-
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cavity pump depletion in a form other than the general linear loss mechanisms 

described by 𝛼 in equation (3.6). 

Taking into account the envelope equation for the pump amplitude (equation (3.2)) 

𝑑𝐴0
𝑑𝑍

=
1
2

[𝐴0(|𝐴1|2 − |𝐴−1|2)] 

it can be seen that an increase in the Stokes (𝑗 = −1) amplitude leads to a decrease 

in the amplitude of the pump. For short cavity lengths the right hand side of 

equation (3.2) can be taken to be zero. This is equally so for low initial Stokes seeds. 

However, this simplification does not apply when the initial level of the Stokes 

amplitude, or cavity length, is appreciable. 

To extend the range of accuracy of this cavity gain suppression analysis, one can to 

find a solution to equation (3.2) and express this in terms of the general solutions 

given by the gain suppression analysis. Such a solution can be easily obtained by 

writing the envelope equation for the intra-cavity pump amplitude in the following 

form 

𝑑𝐴0,𝑚
𝑑𝑍

= 𝑓(𝑍)𝐴0,𝑚 ,    (3.36) 

and the function 𝑓(𝑍) is defined as 

𝑓(𝑍) =  1
2
���𝐴1,𝑚�

2
− �𝐴−1,𝑚�

2
��  .     (3.37) 

Re-arranging equation (3.36) gives 

𝑑𝐴0,𝑚
𝐴0,𝑚

= 𝑓(𝑍)𝑑𝑍 ,     (3.38) 

and after integration 

�ln𝐴0,𝑚�𝐴0,𝑚(0)
𝐴0,𝑚(𝑍′)

= [∫ 𝑓(𝑍)𝑑𝑍 ]0𝑍=𝑍
′
 .     (3.39) 

This yields a formal solution for the pump amplitude  

𝐴0,𝑚(𝑍′) =  𝐴0,𝑚(𝑍′ = 0)𝑒�∫ 𝑓(𝑍)𝑑𝑍 𝑍=𝑍′
𝑍=0 � .         (3.40) 

The function 𝑓(𝑍) can be evaluated using the general solutions for the first Stokes 

and anti-Stokes amplitudes and its integration can be safely handled via the 
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trapezium rule. The inclusion of pump depletion extends the validity of the gain 

suppression analysis to a larger range of parameters. This is demonstrated later in 

Figure 3a, where a stronger agreement between the depletion model and 

numerical results is illustrated. 

 

3.2 The small dispersion regime 

As expressions can be complicated, it is worth deriving approximate solutions to the 

gain suppression analysis. The case of particular interest is the case of small 

dispersion, and it will be shown throughout the following analysis that cavity 

pumping masks the effects of dispersion through suppression of the Stokes gain. 

The small dispersion regime is of particular interest because for all but the most 

extreme choice of initial conditions cavity pumping supports the inequality  

𝛾12 ≪ 𝜀2�𝐴0,𝑚�
2
 (where the chosen level of normalised dispersion is much smaller 

than the pump intensity multiplied by the Stokes shift).  

A simple form of the gain parameter can be obtained using the above inequality 

and the Taylor expansion  √1 + 𝑥 = 1 +  𝑥 2� −  𝑥
2

8�  . 

Equation  (3.16) can be written as  

𝑅𝑒[𝐾𝑚±] =  −
�𝐴0,𝑚�

2
𝜀

2

±  
1

2√2
���𝐴0,𝑚�

4
𝜀2 − 𝛾12�

+ ��𝐴0,𝑚�
8
𝜀4 −  2𝛾12�𝐴0,𝑚�

4
𝜀2 + 4�𝐴0,𝑚�

4
𝛾12�

1
2
 

           

where the term 𝛾14 has been dropped due to its very small value. 
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Dividing the term within the square root by a factor of �𝐴0,𝑚�
8
𝜀4 gives 

𝑅𝑒[𝐾𝑚±] =  − �𝐴0,𝑚�
2
𝜀

2
±  1

2√2

⎣
⎢
⎢
⎢
⎡

��𝐴0,𝑚�
4
𝜀2 − 𝛾12� + �𝐴0,𝑚�

4
𝜀2

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

1 + 

⎝

⎜
⎛
4𝛾1

2

𝜀2
�  − 2𝛾12

�𝐴0,𝑚�
4
𝜀2

⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤
1
2

 , 

(3.41) 

and applying the Taylor expansion to the second order gives 

𝑅𝑒[𝐾𝑚±] =  − �𝐴0,𝑚�
2
𝜀

2
±  1

2√2
���𝐴0,𝑚�

4
𝜀2 − 𝛾12� + �𝐴0,𝑚�

4
𝜀2 �1 + 2𝛾12

�𝐴0,𝑚�
4
𝜀4
−

𝛾12

�𝐴0,𝑚�
4
𝜀2
− 2𝛾14

�𝐴0,𝑚�
8
𝜀8
− 𝛾14

2�𝐴0,𝑚�
8
𝜀4

+ 2𝛾14

�𝐴0,𝑚�
8
𝜀6
��

1
2  ,   (3.42) 

which can be rewritten as 

𝑅𝑒[𝐾𝑚±] =  − �𝐴0,𝑚�
2
𝜀

2
±  1

2√2
�2�𝐴0,𝑚�

4
𝜀2 − 2𝛾12�𝐴0,𝑚�

4
𝜀2 − 2𝛾12 + 2 𝛾12

𝜀2
− 2𝛾14

�𝐴0,𝑚�
4
𝜀6

+

𝛾14

2�𝐴0,𝑚�
4
𝜀2
− 2𝛾14

�𝐴0,𝑚�
4
𝜀4
�
1
2  .    (3.43) 

After dropping terms proportional to 𝛾14 a simple equation for the real component 

of the gain parameter is found to be 

𝑅𝑒[𝐾𝑚±] =  − �𝐴0,𝑚�
2
𝜀

2
±  1

2
��𝐴0,𝑚�

4
𝜀2 − 𝛾12�𝐴0,𝑚�

4
𝜀2 + 𝛾12

𝜀2
 ,  (3.44) 

and following the same method , an expression for the imaginary component of the 

gain can also be found to be 

𝐼𝑚[𝐾𝑚±] = ∓𝛾12

𝜀2
 .    (3.45) 

Equations  (3.44) and (3.45) offer a few insights into cavity gain suppression. Firstly 

there is always a small dispersion dependent contribution to the Stokes phase from 

the imaginary component of the gain parameter. Secondly, when large pump 

intensities build up as a result of cavity pumping the real component of the positive 
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gain approaches an amplitude of  [𝐾𝑚±]  ≈ 0 , which is the gain experienced with 

zero dispersion. 

The above results indicate that in the extreme limit that 𝑚 → ∞ and  𝛾12 ≪

𝜀2�𝐴0,𝑚�
2
  equations (3.18) and (3.19) become the zero dispersion gain equations, 

given as 

𝑅𝑒[𝐾𝑚±] ≈  − �𝐴0,𝑚�
2
𝜀

2
±  �𝐴0,𝑚�

2
𝜀

2
 ,   (3.46) 

𝐼𝑚[𝐾𝑚±] = ∓𝛾12

𝜀2
 ≈ 0 .    (3.47) 

Hence the positive and negative Stokes gains are given as, 

𝐾𝑚+ =  0 ,     (3.48) 

𝐾𝑚− =  −�𝐴0,𝑚�
2
𝜀 .    (3.49) 

Using the above expressions for the gain parameters and equations (3.34), (3.35) 

and (3.18),  a simple expressions for the first Stokes amplitude can be found to be 

𝐴−1,𝑚(𝑍) =

 𝐴−1,𝑚(0)𝑒𝑖
𝛾1
2 𝑍+2𝑖𝜃𝑚 + (1−𝜀)

2𝜀
𝐴1,𝑚
∗ (0) �𝑒𝑖

𝛾1
2 𝑍+2𝑖𝜃𝑚 − 𝑒�−�𝐴0,𝑚�

2
𝜀 + 𝑖𝛾12 �𝑍+2𝑖𝜃𝑚� +

(1−𝜀)
2𝜀

𝐴−1,𝑚(0) �𝑒𝑖
𝛾1
2 𝑍 − 𝑒�−�𝐴0,𝑚�

2
𝜀 +𝑖𝛾12 �𝑍� − 𝑖 𝛾1𝐴−1,𝑚(0)

2�𝐴0,𝑚�
2
𝜀
�𝑒𝑖

𝛾1
2 𝑍 − 𝑒�−�𝐴0,𝑚�

2
𝜀 +𝑖𝛾12 �𝑍� . 

(3.50) 

In the limit of small 𝑍 the Taylor expansion 𝑒𝑥 ≈ 1 + 𝑥 can be applied and equation 

(3.50) reduces to,  

𝐴−1,𝑚(𝑍) =

𝐴−1,𝑚(0)𝑒2𝑖𝜃𝑚 + 𝑖𝛾1𝐴−1,𝑚(0)
2

�𝑒2𝑖𝜃𝑚 − 1�𝑍 + (1−𝜀)
2

�𝐴0,𝑚�
2
�𝐴1,𝑚

∗ (0)𝑒2𝑖𝜃𝑚 −

𝐴−1,𝑚(0)�𝑍 .                       (3.51) 

The above expression can be further simplified by specifying that 𝜃𝑚 = 0, in which 

case the expression for the growth of the Stokes amplitude becomes 
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𝐴−1,𝑚(𝑍) = 𝐴−1,𝑚(0) + (1−𝜀)
2

�𝐴0,𝑚�
2
�𝐴1,𝑚

∗ (0) − 𝐴−1,𝑚(0)�𝑍 ,   (3.52) 

and similarly an equation for the anti-Stokes amplitude can be found to be  

𝐴1,𝑚
∗ (𝑍) = 𝐴1,𝑚

∗ (0) − (1+𝜀)
2

�𝐴0,𝑚�
2
�𝐴1,𝑚

∗ (0) + 𝐴−1,𝑚(0)�𝑍 .  (3.53) 

Equations (3.52) and (3.53) specify the growth of each sideband amplitude during 

each cavity transit in the limit, → ∞ . They can also be recognised as the amplitude 

equations for the zero dispersion regime (zero positive gain). 

Defining the cavity boundary conditions to be 

𝐴−1,𝑚+1(0) = 𝐴−1,𝑚(𝑍)𝑅0 , 

𝐴1,𝑚+1
∗ (0) = 𝐴1,𝑚

∗ (𝑍)𝑅0 , 

and 

𝐴0,𝑚 = �𝐴0(𝑅0)𝑗−1
𝑚

𝑗=1

 

allows recurrence relations to be constructed from equations (3.52) and (3.53), 

given as 

𝐴−1,𝑚+1(𝑍) = �𝐴−1,𝑚(𝑍) + (1−𝜀)
2

�𝐴0,𝑚�
2
�𝐴1,𝑚

∗ (𝑍) − 𝐴−1,𝑚(𝑍)�𝑍� 𝑅0  (3.54) 

𝐴1,𝑚+1
∗ (𝑍) = �𝐴1,𝑚

∗ (𝑍) − (1+𝜀)
2

�𝐴0,𝑚�
2
�𝐴1,𝑚

∗ (𝑍) + 𝐴−1,𝑚(𝑍)�𝑍� 𝑅0 . (3.55) 

The above relations show that each cavity transit depends on the final amplitudes 

of the preceding cavity transit. This gives rise to a series of terms ((𝑚 + 1) terms) 

which decrease in amplitude as the number of cavity transits is increased, forming a 

convergent series. Two specific cases of interest arise as  𝑚 → ∞, the choice of 

𝑅0 = 1 and 𝑅0 < 1. In the first case the Stokes and anti-Stokes intensities reach a 

steady state and further cavity transits (and cavity pumping) produce no further 

sideband growth, and in the second case the intensities reach their maximum level 

and then decrease after each further cavity transit in proportion to 𝑅02, where  

|𝐴−1|2 → 0 and |𝐴1|2 → 0. 
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The above equations apply specifically to the small dispersion regime  𝛾12 ≪

𝜀2�𝐴0,𝑚�
2
 as 𝑚 → ∞. When larger levels of dispersion are considered extra terms 

(proportional to the level of dispersion) also contribute to the growth of sidebands. 

However the final results, at large  𝑚, and in the limits of 𝑅0 = 1 and 𝑅0 < 1 

remain consistent with the analysis given above. Figures 4a and 4b provide 

examples of Stokes growth within the cavity when 𝑅0 = 1 and 𝑅0 < 1 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a – When the chosen value of reflectivity is less than unity the 
Stokes (solid line) and anti-Stokes (dashed line) intensities reach their 
maximum level and then decrease with every further cavity transit by a 
factor of 𝑹𝟎𝟐. 
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Through the selection of a specific parameter regime the gain suppression analysis 

has provided simple equations which characterise the growth of the first Stokes and 

anti-Stokes sidebands within the cavity. Equation (3.44) implies that cavity pumping 

leads to gain suppression within the cavity.  

 

 

 

 

 

 

 

Figure 3b – When the chosen value of reflectivity is unity the Stokes (solid 
line) and anti-Stokes (dashed line) intensities reach a fixed level. Further 
cavity transits give rise to no additional growth.  
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3.3 The gain parameter 𝑲± 

The results of the previous section indicated that gain suppression occurs within the 

cavity system because of pumping. This will now be considered in more detail, 

starting with the variation of the gain parameter with respect to dispersion for non-

cavity UMRG.  

Gain suppression in non-cavity UMRG has been well documented in reference (25). 

In the absence of dispersion (𝛾1 = 0) gain is fully suppressed, while for finite values 

of dispersion the level of gain becomes positive and increases with increasing levels 

of dispersion. Looking at equations (3.41) and (3.42) for the first transit only (𝑚 =

0) the results from reference (25) can be recovered. Figure 3c shows the evolution 

of the real component of 𝐾0+ which is the exact curve given for the non-cavity 

UMRG system (for H2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3c – The 𝒎 = 𝟎 Gain curve is the same gain curve for the non-cavity 
UMRG gain suppression analysis, as found in reference (25) for H2. For this 
particular figure the range of values for the dispersion has been extended 
past the range explored in reference (25). 
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When considering the gain in the cavity system it can be recognised from equations 

(3.16) that the level of gain is determined not only by the level of dispersion and 

Stokes shift but also cavity pumping.  

Figure 3d shows how the Stokes gain decreases as the pump intensity builds up 

within the cavity.  In the case of the undepleted pump model the gain decreases 

geometrically to a fixed value which depends on both the level of dispersion which 

specifies the initial gain and the choice of cavity mirror reflectivity which 

determines the final pump amplitude. These results agree with equation (3.44) 

which indicates that the real positive gain decreases towards zero as the pump 

intensity builds up within the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3d – Positive ( 𝑲𝒎
+ ) gain curves for the undepleted pump model for 

increasing values of cavity mirror reflectivity. The selection of higher values 
of reflectivity leads to a greater decrease in the amount of positive gain over 
a number of cavity transits. The gain decreases in proportion to the growth 
of the pump intensity. 
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When the depleted pump gain suppression model is taken into account the level of 

pump depletion affects the growth of the gain parameter. The results of figure 3e 

show that increasing amounts of pump depletion (proportional to the level of the 

Stokes and anti-Stokes intensities) slows down cavity gain suppression, and can 

significantly alter the shape of the gain curve.  When pump depletion is taken into 

account the Stokes and anti-Stokes sidebands experience a greater level of 

parametric gain for a large number of cavity transits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3e – Positive ( 𝑲𝒎
+ ) gain curves for the undepleted (dashed line) and 

depleted (solid line) pump models for increasing values of cavity mirror 
reflectivity. A significant amount of pump depletion offsets the loss of 
positive Stokes gain incurred by boundary pumping. 
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3.4 Gain suppression vs numerical simulations 

Throughout this section the results given by both the undepleted and depleted 

pump gain suppression models will be compared to results achieved by the 

numerical integration of the initial system of equations (3.1), (3.2) and (3.3). A 

broad range results are provided in Appendix C which demonstrate the accuracy of 

the depleted and undepleted pump analysis. The results are given for a range of 

initial Stokes seeds, coupling mirror reflectivity and cavity lengths.  

Since the gain suppression analysis represents a linear approximation of the 

nonlinear equations (3.1 and 3.3) it will not provide suitable results over certain 

ranges of parameters.  The analysis is expected to break down at points where the 

chosen parameter regime produces large (nonlinearly interacting) Stokes and anti-

Stokes amplitudes, and when terms contributing to non-parametric growth in the 

UMRG equations become large.  

The results of the analysis will now be compared to results of numerical simulations 

to yield insight into the points at which the gain suppression analysis begins to 

break down. The parameter regimes of interest are cavity length, dispersion and 

Stokes seed amplitude. 

Figures 3f, 3g and 3h represent the ranges of parameters for which the gains 

suppression analysis applies, which cover dispersion, Stokes seed amplitude and 

coupling mirror reflectivity respectively. These figures take the form of contour 

plots where the red and blue regions represent strong levels of agreement and 

strong levels of disagreement respectively. The measure of agreement is that the 

ratio of the Stokes intensity predicted by the gain suppression analysis to the value 

given by numerical integration of the UMRG equations should fall within the range,  

0.9 > 1 < 1.1. 
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Together figures 3f,3g and 3h indicate that the gain suppression analysis breaks 

down when combinations of large levels of dispersion, large initial Stokes seeds, 

high values of coupling mirror reflectivity and moderate to long cavity lengths are 

employed.  These results indicate that strong disagreement between the analysis 

and simulations exist when parameter regimes are chosen which lead to the 

generation of large sideband amplitudes. In the case of simulations of the UMRG 

equations, the Stokes and anti-Stokes amplitudes are nonlinearly interacting, and 

when the amplitudes become large enough the results of the simulations differ 

from those of the linear gain suppression analysis. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3f – This figure demonstrates the accuracy of the gain suppression 
analysis for a range of cavity lengths and values of dispersion.  The red are 
indicates where the analysis fully agrees with the numerical simulations, and 
the blue section indicates strong disagreements.  
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Figure 3g – This figure demonstrates the accuracy of the gain suppression 
analysis for a range of cavity lengths and levels of initial Stokes seed. The 
red are indicates the where the analysis fully agrees with the numerical 
simulations, and the blue section indicates strong disagreements.  

 

 

Figure 3h – This figure demonstrates the accuracy of the gain suppression 
analysis for a range of values of cavity length and Reflectivity. The red 
indicates the where the analysis fully agrees with the numerical simulations, 
and the blue section indicates strong disagreements.  
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If a combination of finite levels of dispersion and long cavity lengths is considered. 

Such as the ranges considered in figure 3f. The affects of non-parametric terms 

contributing to sideband growth in the UMRG equations also needs to be 

considered. The agreement between the numerical results and gain suppression 

analysis can begin to differ when non-parametric terms begin to drive the growth of 

the sideband amplitudes 

The effects of non-parametric growth can be characterised by considering the 

extreme limit of long cavity length and a high level of dispersion. In this case the 

integral of the second term on the right hand side of equation (3.1) effectively gives 

∫𝐴02𝐴1∗𝑒𝑖𝛾1𝑍 𝑑𝑍 = 0.     (3.56) 

Equation (3.56) holds true when 𝛾1𝑧 causes exponential terms to oscillate rapidly.  

In this limit the equation effectively has an average of zero and equations (3.1 and 

3.3) reduce to 

𝑑𝐴−1
𝑑𝑍

= 1
2

(1 − 𝜀)[|𝐴0|2𝐴−1] ,              (3.57) 

 

𝑑𝐴1
𝑑𝑍

=  −1
2

(1 + 𝜀)[|𝐴0|2𝐴1] .          (3.58) 

Where equations (3.57 and 3.58) are governed by non-parametric terms and 

describe the extreme case of high dispersion and long cavity lengths. The gain 

suppression analysis fails to describe the UMRG equations in this limit.  

It has been made clear that the accuracy of the gain suppression restricts its use to 

parameter regimes which include short cavity lengths, small to moderate initial 

Stokes seed amplitudes and small to moderate levels of dispersion. In these 

regimes Stokes and anti-Stokes growth is approximately linear (in terms of the 

numerical simulations) and non-parametric growth is minimised (in the case of 

finite dispersion). It will be shown in later chapters, that the above parameter 

regimes are optimal for bandwidth growth in the symmetrically pumped multi-

wave analysis. 
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CHAPTER 4 

Gain suppression analysis with finite linear detuning 

The effect of the two-photon detuning present in equations (2.63) has so far been 

ignored. The detuning is given as:  

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔�  ,   (4.1) 

and has both linear and nonlinear components.  

This section of the thesis will extend the framework of the previous gain 

suppression analysis to include the linear two-photon detuning from Raman 

resonance. 

 

The linear detuning is given as: 

𝛿𝜔 = 𝑊21 − (𝜔0 − 𝜔−1) =  𝑊21 − 𝜔𝑅.   (4.2) 

The governing envelope equations for the 3-wave Raman system are obtained from 

equations (2.63): 

𝑑𝐴−1
𝑑𝑍

= (1−𝜀)
2(1−𝑖𝛿)

�|𝐴0|2𝐴−1 + 𝐴02𝐴1∗𝑒𝑖𝛾1𝑍�       

   

𝑑𝐴0
𝑑𝑍

= 1
2(1−𝑖𝛿)

�𝐴0∗𝐴−1𝐴1𝑒−𝑖𝛾1𝑍 + |𝐴1|2𝐴0� −
1

2(1+𝑖𝛿)
�𝐴0∗𝐴−1𝐴1𝑒−𝑖𝛾1𝑍 + |𝐴−1|2𝐴0�    

(4.3) 

𝑑𝐴1
𝑑𝑍

=  − (1+𝜀)
2(1+𝑖𝛿)

�|𝐴0|2𝐴1 + 𝐴02𝐴−1∗ 𝑒𝑖𝛾1𝑍� .     

Employing a similar method to the one applied in the last chapter a gain 

suppression analysis for finite detuning can be derived, where equations for the 

gain 𝐾𝑚± and general solutions to the above envelope equations can be found: 

𝐾𝑚± =  − (1+𝑖𝛿)�𝐴0,𝑚�
2
𝜀

𝐷
± (∝𝑅+ 𝑖 ∝𝐼)    ,    (4.4) 

where D = 1 + 𝛿2 and 
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∝𝑅

=  
1
√2

⎣
⎢
⎢
⎢
⎡
�

(1 − 𝛿2)�𝐴0,𝑚�
4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�

+ ��
(1− 𝛿2)�𝐴0,𝑚�

4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�
2

+
4�𝐴0,𝑚�

4 �𝜀2�𝐴0,𝑚�
2𝛿 − 𝐷𝛾1�

2

𝐷4
�

1
2

, 

∝𝐼

=
1
√2

⎣
⎢
⎢
⎢
⎡
−�

(1 − 𝛿2)�𝐴0,𝑚�
4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�

+ ��
(1− 𝛿2)�𝐴0,𝑚�

4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�
2

+
4�𝐴0,𝑚�

4 �𝜀2�𝐴0,𝑚�
2𝛿 − 𝐷𝛾1�

2

𝐷4
�

1
2

. 

(4.5) 

Splitting equation (4.4) into its real and imaginary components yields: 

   𝐾𝑚± = 𝑅𝑒[𝐾𝑚±] + 𝑖𝐼𝑚[𝐾𝑚±] ,  

 

𝑅𝑒[𝐾𝑚±] =  1
2
�− �𝐴0,𝑚�

2
𝜀

𝐷
±∝𝑅�            (4.6) 

 

𝐼𝑚[𝐾𝑚±] = 1
2
�− 𝛿�𝐴0,𝑚�

2
𝜀

𝐷
∓∝𝐼�   ,               (4.7) 

where 𝑅𝑒[𝐾𝑚±] is linked to the growth (or attenuation) of the Raman sidebands 

within the cavity. The general solutions for equations (4.3) are given as: 

𝐴−1,𝑚(𝑍) =  �𝐶1𝑠,𝑚𝑒𝐾𝑚
+𝑍 + 𝐶2𝑠,𝑚𝑒𝐾𝑚

−𝑍�𝑒𝑖
𝛾1
2 𝑍+𝑖𝜃𝑚     (4.8) 

𝐴1,𝑚
∗ (𝑍) =  �𝐶1𝑎,𝑚𝑒𝐾𝑚

+𝑍 + 𝐶2𝑎,𝑚𝑒𝐾𝑚
−𝑍�𝑒−𝑖

𝛾1
2 𝑍−𝑖𝜃𝑚  .   (4.9) 
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Where the constants are given as: 

𝐶1𝑎,𝑚
𝐶1𝑠,𝑚

= �2𝐾𝑚++𝑖𝛾1�𝐷

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

− 1   ,      (4.10) 

 

𝐶2𝑎,𝑚
𝐶2𝑠,𝑚

= (2𝐾𝑚−+𝑖𝛾1)𝐷

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

− 1   ,    (4.11) 

 

𝐶1𝑠,𝑚 =
�𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �−2𝐾𝑚−−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚+−𝐾𝑚−�
  , 

(4.12) 

 

𝐶2𝑠,𝑚 =
�𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �−2𝐾𝑚+−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚−−𝐾𝑚+�
  .  

(4.13) 

The full derivation of the finite detuning gain suppression analysis is similar to the 

zero detuning derivation given in chapter 4, therefore the derivation of the finite 

detuning analysis will only be provided in Appendix D. By setting 𝛿 = 0 in the above 

expressions one recovers the zero detuning analysis derived in chapter 3. 

The form of the pump envelope equation from equations (4.3) complicates the use 

of a depleted pump analysis because it would need to be solved numerically, 

therefore only the undepleted model is considered in the following analysis. The 

code used to generate the results of the gain suppression analysis, for both the 

current chapter and chapter 3, is given in Appendix E. 
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4.1 The small dispersion regime 

As the above expressions can be complicated it is again worth considering 

approximate solutions to the finite detuning gain suppression analysis, where the 

case of interest is the small dispersion regime.  

In the case of small dispersion and in the limit that  𝑚 → ∞, the dispersion of the 

medium can be assumed to be small enough that the inequality  𝛾12 ≪  𝜖2�𝐴0,𝑚�
4
 

holds true. 

Recalling equations (4.5) and (4.6) the real component of the gain is defined as: 

𝑅𝑒[𝐾𝑚±] =  
1
2
�−

�𝐴0,𝑚�
2
𝜀

𝐷
±∝𝑅� 

∝𝑅=

1
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4
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2
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4
𝜀2

𝐷2
+ 2𝛾1�𝐴0,𝑚�

2
𝛿

𝐷
− 𝛾12�

2

+
4�𝐴0,𝑚�

4
�𝜀2�𝐴0,𝑚�

2
𝛿−𝐷𝛾1�

2

𝐷4
�

1
2

  .    

(4.14) 

The second group of terms on the right hand side of equation (4.14) can be defined 

as:  

𝑆 = �(1−𝛿2)�𝐴0,𝑚�
4
𝜀2

𝐷2
+ 2𝛾1�𝐴0,𝑚�

2
𝛿

𝐷
− 𝛾12�

2

+
4�𝐴0,𝑚�

4
�𝜀2�𝐴0,𝑚�

2
𝛿−𝐷𝛾1�

2

𝐷4
 ,    (4.15) 

and after some re-arranging:  

𝑆 = 𝜀4�𝐴0,𝑚�
8
�(1−𝛿2)

𝐷2
+ 2𝛾1𝛿

𝐷𝜀2�𝐴0,𝑚�
2 −

𝛾12

�𝐴0,𝑚�
4
𝜀2
�
2

+
4𝜀4�𝐴0,𝑚�

8
�𝛿−𝐷 𝛾1

𝜀2�𝐴0,𝑚�
2�

2

𝐷4
 .

 (4.16) 
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Expanding the terms in equation (4.16) and dropping terms including  𝛾1
2

𝜀2
  gives: 

𝑆 = 𝜀4�𝐴0,𝑚�
8
�(1−𝛿2)2

𝐷4
+ 4𝛾12𝛿2

𝐷2𝜀4�𝐴0,𝑚�
4 + 4𝛾1𝛿(1−𝛿2)

𝐷3𝜀2
+

4�𝛿2+𝐷2 𝛾12

𝜀4�𝐴0,𝑚�
4−

2𝐷𝛿𝛾1
𝜀2�𝐴0,𝑚�

2�

𝐷4
� ,

 (4.17) 

and neglecting terms which include 𝛾12

𝜀4�𝐴0,𝑚�
4 reduces equation (4.17) to: 

𝑆 = 𝜀2�𝐴0,𝑚�
4

𝐷
�1 − 4𝛾1𝛿

𝜀2�𝐴0,𝑚�
2�

1
2
 .         (4.18) 

Equation (4.14) can now be re-written using (4.18) as: 

∝𝑅= 𝜀�𝐴0,𝑚�
2

𝐷
 ,         (4.19) 

hence the real component of the gain takes the form: 

𝑅𝑒[𝐾𝑚±] = �𝐴0,𝑚�
2
𝜀

2𝐷
(−1 ± 1) .        (4.20) 

Equation (4.20) has the same form as (4.46) and is in fact the zero dispersion form 

of the gain parameter. Following the same procedure yields an equation describing 

the evolution of the imaginary component of the gain parameter: 

𝐼𝑚[𝐾𝑚±] = 𝛿�𝐴0,𝑚�
2
𝜀

2𝐷
(−1 ∓ 1) .       (4.21) 

The finite levels of detuning leads to the attenuation of both the real and imaginary 

components of the gain by a factor of D = 1 + 𝛿2.  𝐼𝑚[𝐾𝑚+]  is also modified by a 

factor of 𝛿 hence the chosen sign of the detuning changes the sign of the phase of 

each sideband. 

As with the non-cavity case the zero dispersion gain equations arise from gain 

suppression as a result of cavity pumping. This occurs in a way analogous to that of 

the zero detuning analysis.  
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4.2 The gain parameter 𝑲± 

The evolution of the gain parameter under the influence of linear detuning will now 

be discussed. Taking equation (4.4) for the first transit (𝑚 = 0) the variation of the 

initial Stokes gain for various levels of detuning can be shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a demonstrates that the introduction of detuning can have a large impact 

on the amount of gain experienced by the Stokes and anti-Stokes amplitudes. The 

peak of the curve given in figure 4a suggests that an optimal level of detuning exists 

which maximises the real component of the positive gain parameter. Figure 4b 

shows how the maximum Stokes gain when (𝑚 = 0) evolves for a range of values of 

dispersion and linear detuning. 

 

Figure 4a – The introduction of linear detuning changes the initial value of 
the positive gain asymmetrically, positive detuning increases the gain, and 
negative detuning decreases the gain, this figure also shows maximum gain 
at a particular value of positive linear detuning.  
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The choice of (𝑚 = 0) is equivalent to a non cavity system, and the results within 

figure 4b, suggests that in the absence of a cavity the parametric gain of the Stokes 

and anti-Stokes amplitudes could be maximised through the selection of an optimal 

value of linear detuning. The value of the detuning required to maximise gain 

depends on the chosen level of dispersion.  

 

 

 

 

 

Figure 4b – The real component of the positive gain has a maximum value 
when there is a positive linear detuning, the amount of detuning required 
to have maximum initial gain depends on the amount of medium 
dispersion. Hence for a non cavity system an optimum level of detuning 
could be selected to maximise the Stokes gain. 
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When considering the gain in terms of the cavity system, equations (4.4) and (4.5) 

include terms where the detuning and dispersion parameters are scaled by the 

pump intensity. Therefore after each cavity transit the growth of the pump 

intensity moves the peak value of the parametric gain to larger values of detuning 

(because the intensity increases). In the case of a cavity the Stokes gain can only be 

maximised for the first cavity transit, after which cavity pumping moves the gain off 

its peak value. Figure 4c provides an example of the peak gain shift produced by 

pumping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4c – The real component of the positive gain. This figure 
demonstrates that for increasing numbers of cavity transits the maximum 
positive gain peak shifts towards higher levels of positive detuning.  To 
achieve maximum gain in the cavity system the detuning would have to 
change in proportion to the increasing pump intensity.  
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4.3 The Stokes and anti-Stokes sidebands 

The results of the zero detuning and finite detuning gain suppression analyses can 

now be compared. Figure 4d shows the Stokes intensity for the zero detuning case 

and figure 4e shows the intensity when there is a finite positive detuning.  

 

 

. 

 

 

 

 

 

 

 

 

 

When a positive level of detuning is employed the maximum Stokes intensity 

generated in the cavity is greater than the intensity generated when the level of 

detuning is zero. This implies an increased level of parametric gain over the initial 

stages of sideband growth. This coincides with the gain curve shown in figure 4a 

and 4c which show a positive level of linear detuning leads to an increased level of 

initial gain which decreases with each cavity transit. 

 

 

 

Figure 4d – The growth of the normalised Stokes intensity with zero 
detuning. 

 



 
CHAPTER 4: Gain suppression analysis with finite linear detuning 

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The long term growth of the Stokes intensity given in figure 4e resembles the zero 

dispersion case given in figure 4d where the growth of the pump intensity drives 

the gain parameter towards zero (mimicking the zero dispersion regime).  It is clear 

from figure 4e that even when a finite level of detuning is applied the Stokes 

intensity converges to a maximum value (recall the recurrence relations from 

chapter 3). In the case of figure 4d and 4e the coupling mirror reflectivity, 𝑅0 < 1, 

causes the intensity to eventually decrease to zero as 𝑚 → ∞. 

 

 

 

Figure 4e – The growth of the normalised Stokes intensity when a positive 
level of detuning is employed. There is a large initial intensity build-up 
which then decreases over many cavity transits; the long term level of 
intensity decreases in a way which corresponds with the zero detuning 
results given in figure 4d. 
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The results of the finite detuning analysis indicate that a finite level of detuning 

contributes to the growth of sidebands within the cavity, where in the presence of 

finite detuning the Stokes and anti-Stokes amplitudes are subject to large levels of 

gain during their initial growth.  

Both the finite and zero-detuning analysis indicate that as 𝑚 → ∞ any initial level of 

Stokes gain is suppressed by pumping and  the growth of the Stokes and anti-Stokes 

amplitudes converges to a maximum value, after which the amplitudes can either 

decrease in proportion to the coupling mirror reflectivity or remain at a constant 

value (constant only for unity reflectivity mirrors). 

The results of the gain suppression analysis indicate that a cavity system with only a 

single applied pump will be unsuitable for the generation of large bandwidths or 

synthesis of short pulses. 
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CHAPTER 5 

Non-cavity UMRG and the ring cavity with a single pump 

We can begin the analysis of full multi-frequency simulations of UMRG by first 

considering the growth of bandwidth in symmetrically pumped hydrogen without a 

cavity. Results will be presented later in this chapter which characterise bandwidth 

generation in the ring cavity with only a single pump at the 𝜔0 frequency and an 

initial seed (equal in amplitude to the pump) at the first Stokes frequency, 𝜔−1, 

which will be applied at the start of the first cavity transit. The growth of bandwidth 

within the cavity will then be compared to the results of the gain suppression 

analysis given in chapter 3. Finally examples of pulses synthesised from frequency 

spectra generated by both non-cavity and cavity UMRG will be characterised and 

compared.  

Many authors have presented work describing the non-cavity plane wave and 

transient UMRG equations for a range of parameters (29, 30, 66, 70, 74). For the 

purpose of this thesis, results will be provided which generalise the growth of the 

frequency bandwidth, total intensity and medium excitation for the cases of zero 

and finite dispersion.  

It has already been shown that a non-cavity system is capable of generating 

bandwidths containing approximately 30 new frequency components for both zero 

and finite levels of dispersion (30, 74), and for particular levels of dispersion the 

bandwidth can be optimised to reach levels of approximately 35 frequency 

components of comparable intensity. Figure 5a gives examples of the bandwidth 

growth for both zero and a finite level of dispersion. 
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When there is no dispersion, the bandwidth generated by the non-cavity system 

can reach a stable level, and the point at which the bandwidth stabilises coincides 

with the depletion of the medium excitation amplitude. Depletion occurs when 

contributions of the Stokes and anti-Stokes wings of the spectrum to the medium 

excitation are approximately equal in magnitude and opposite in sign.  

When a finite level of dispersion is employed, sideband growth can be further 

amplified by parametric gain, which arises as a consequence of non-zero wave 

vector mismatch between sidebands, and can lead to the generation of greater 

bandwidth. In the case of finite dispersion, the medium excitation amplitude is 

never fully depleted and the system does not reach a stable level of bandwidth. 

Figure 5a provides an example of the levels of bandwidth generated for zero 

 

Figure 5a – This figure shows the growth of bandwidth for both zero 
dispersion and finite dispersion. For a normalised dispersion of 0.00275 there 
is a noticeable increase in the amount of bandwidth. 

 



 
CHAPTER 5: Non-cavity UMRG and the ring cavity with a single pump 

65 
 

dispersion and a finite level of dispersion. In the case of finite dispersion a greater, 

but unstable, level of bandwidth can be achieved. 

The growth of each frequency component of the Raman spectra is driven by both 

parametric and non-parametric processes. When a large level of dispersion is 

employed the maximum bandwidth can be restricted by non parametric growth 

(72); an example of this is given later in figure 5d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total intensity of the multi-frequency spectrum is found to decrease with 

increasing propagation length. In the case of zero dispersion the intensity levels out 

at a fixed value, and the point at which the intensity reaches a steady state also 

coincides with the depletion of the medium excitation amplitude. 

 

Figure 5b – This figure shows how the intensity varies over propagation 
through the medium.  When there is no dispersion the intensity reaches a 
stable level;  When a finite level of dispersion is present the total intensity 
continues to decrease with increasing propagation distance. 
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However, when a finite level of dispersion is employed, the intensity no longer 

reaches a fixed level and continues to decrease with increasing propagation length. 

This indicates a continuation of sideband growth, see figure 5b. This coincides with 

the higher bandwidths observed in figure 5a. 

As previously discussed, when there is no dispersion, parametric generation of 

sidebands drives the medium excitation amplitude to zero (𝑃 from equations 

(2.63)). This occurs because the total contribution to the medium excitation, made 

by the Stokes and anti-Stokes wings of the spectrum, cancel each other out. This is 

best described in terms of the first Stokes sideband, pump and first anti-Stokes 

sideband. In the case of zero dispersion, the anti-Stokes sideband amplitude grows 

𝜋 out of phase with the Stokes amplitude, and when the Stokes and anti-Stokes 

amplitudes reach similar magnitudes their contributions to the medium excitation 

cancel out. Hence the medium excitation is driven to zero and sideband growth 

stops. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5c – This figure shows how the medium excitation variable 𝑷 evolves 
as the spectrum propagates through the medium for two values of 
normalised dispersion. 
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When a finite level of dispersion is introduced the growth of the medium excitation 

changes significantly. This occurs because dispersion alters the phase of each 

sideband and means that sidebands, which would usually grow with opposite 

phases, no longer provide cancelling contributions to the medium excitation. 

Changes in sideband phase contributions manifest themselves as oscillations in the 

medium excitation amplitude, such as the oscillation shown in figure 5c. The non-

zero medium excitation amplitude causes the generation of higher bandwidth 

levels, and a corresponding drop in intensity of the multi-frequency spectrum, as 

shown in figures 5a and 5b.   

 

5.1 Large levels of dispersion and long propagation lengths 

When large levels of dispersion are considered (or low levels of dispersion and long 

propagation lengths) non-parametric terms inherent in equations (2.63) dominate 

the growth of the Raman spectra and lead to cascaded Raman scattering.  

Figure 5d provides an example of the growth of the frequency spectrum when a 

Stokes cascade occurs. The cascade process is detrimental to the growth of anti-

Stokes sidebands and therefore limits the overall bandwidth (72). When a Stokes 

cascade occurs, only two frequency components of appreciable intensity occur at 

any one point in space, and as the spectrum propagates through the medium the 

flow of energy moves towards lower frequency sidebands. The rapid re-distribution 

of the pump energy into the Stokes wing of the spectrum means that no anti-Stokes 

sidebands of appreciable intensity can form, though some anti-Stokes radiation 

does exist at a very small level. 
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5.2 The ring cavity with a single pump  

Results will now be presented which generalise the growth of the frequency 

spectrum in a cavity with only one pump beam at the 𝜔0 frequency which is re-

introduced at the beginning of every cavity transit. An initial seed amplitude will be 

applied at the first Stokes frequency at the beginning of the first cavity transit, and 

will possess an amplitude equal to that of the pump. The coupling mirror is taken to 

be partially transmitting (as described in chapter 3) and the amplitude of each 

frequency component of the total electric field will experience the same reflectivity 

i.e. the mirror has a uniform reflectivity over the entire frequency range of the 

simulations. 

 

 

Figure 5d – Cascaded Stokes scattering occurs for large levels of normalised 
dispersion (or very long propagation distances). The frequency index defines 
the order of the Stokes radiation i.e. -1 indicates the first Stokes sideband, -2 
the second and so on. 
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At short normalised cavity lengths the bandwidth generated using a single pump 

cavity is similar in the case of zero dispersion, and for small levels of dispersion. In 

both cases the bandwidth initially grows to a level similar to that of the non cavity 

system and after further cavity transits the bandwidth dies away, as shown in figure 

5e. These results bear a resemblance to the results obtained by the gain 

suppression analysis in chapter 3; this will be described in more detail in section 

5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5e – The bandwidth generated by a single pump cavity drops off with 
as the number of cavity transits increases. The evolution of the bandwidth is 
similar for both zero dispersion and low levels of dispersion. 
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If longer normalised cavity lengths and finite levels of dispersion are employed, 

larger levels of bandwidth such as those shown in figure 5f can be achieved. In this 

case the medium excitation amplitude drives the growth of new sidebands and 

remains undepleted, the medium excitation amplitude will be discussed in detail in 

section 5.3. The above result indicates that certain parameter regimes, which 

include long cavity lengths and non-zero levels of dispersion, can support the 

generation of multiple sidebands. Sidebands generated in these regimes can reach 

intensities which are far greater than the initial pump intensity. 

 

 

 

 

Figure 5f – At longer normalised cavity lengths finite levels of dispersion can 
support the growth of a higher level of bandwidth than the zero dispersion 
case. 
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5.3 Medium excitation in the ring cavity  

We have already discussed the growth of bandwidth within the ring cavity in terms 

of the medium excitation amplitude. For short normalised cavity lengths, the 

medium excitation amplitude evolves in a similar way to that of the non cavity 

system, where the excitation amplitude is eventually depleted by the growth of 

new sidebands. In this case the sidebands possess phases which drive the depletion 

of the medium excitation amplitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5g – The medium excitation amplitude drops with increasing cavity 
transits. Finite dispersion offsets the depletion of the excitation amplitude. 
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Figure 5g shows that for both zero dispersion and a small level of dispersion the 

medium excitation amplitude can be driven to zero.  In the case of finite dispersion 

the depletion of the medium excitation occurs at a much slower rate because of the 

dispersion related phases of the sidebands.  

If longer cavity lengths are employed the amplitude of the medium excitation can 

grow to large levels, such as those shown in figure 5h. Large levels of medium 

excitation occur because of non-cancelling contributions to the medium excitation 

amplitude, and the large pump amplitudes achieved by cavity pumping. The 

medium excitation amplitude drives the growth of sideband and is linked to the 

increased levels of bandwidth shown in figure 5f. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5h – A finite level of dispersion and a longer cavity length causes the 
medium excitation to increase with an increasing number of cavity transits.  
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5.4 Sideband phase 

Throughout the previous sections the sideband phases have been discussed with 

respect to the growth of frequency bandwidth and the level of the medium 

excitation amplitude. Therefore the phase evolution of both the first Stokes and 

anti-Stokes sidebands, under the influence of finite levels of normalised dispersion, 

will now be discussed. 

The phase angles of Stokes and anti-Stokes sidebands can be affected by finite 

levels of medium dispersion, and as previously discussed the sideband phases can 

control the level of the medium excitation amplitude. Figures 5i and 5j give 

examples of how the phase angle of the first Stokes and anti-Stokes sidebands can 

change in the presence of a finite level of dispersion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5i – A finite level of dispersion changes the phase angle of the Stokes 
sideband and therefore its contribution to the medium excitation amplitude. 
At short normalised cavity lengths there is only a small difference in the 
phase angles given by both zero and finite dispersion. 
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From both figures  5i and 5j it is clear that finite levels of medium dispersion 

introduce phase changes to the sidebands, and for the particular parameter regime 

employed in figures 5i and 5j  both the Stokes and anti-Stokes sidebands possess 

negative phase. When sidebands share the same phase it implies that their 

contributions increase the medium excitation. This contributes to the growth of the 

large excitation amplitude shown in figure 5h and the increased levels of bandwidth 

shown in figure 5f. 

The results presented in this chapter have so far indicated that the cavity (with only 

a single pump) is unable to maintain a high level of bandwidth, unless the chosen 

parameter regime allows the phase of each sideband to evolve in such a way as to 

sustain the medium excitation amplitude over a large number of cavity transits. It 

will be shown in section 5.6 that the spectra generated in these parameter regimes 

are unsuitable for the synthesis of ultra-short pulses. 

 

Figure 5j – In the case of zero dispersion the anti-Stokes phase angle is 𝝅. 
The level of dispersion given in this figure causes the anti-Stokes sideband 
to grow with a phase angle of approximately  −𝝅. 
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5.5 The gain suppression analysis and multi-frequency simulations 

The results of multi-wave simulations of the single pump cavity, employing a short 

normalised cavity length, can be further explained using the results of gain 

suppression analysis derived in chapter 3. 

The main results of the gain suppression analysis indicated that for most choices of 

initial parameters, which include short cavity lengths or small levels of dispersion, 

the parametric gain is eventually decreased by a geometrically increasing pump 

intensity. The results also showed that in the limit, 𝑚 → ∞ (after many cavity 

transits), and when the coupling mirror reflectivity is less than unity, such that 

𝑅𝑗 = 𝑅0 < 1, each sideband reaches a peak level and then depletes as a function of 

𝑅02𝑚 towards zero intensity. Examples of the evolution of the Stokes intensity given 

by the 3-wave gain suppression analysis were given in figure 3j and examples which 

cover wider parameter ranges can be found in appendix C. 

When considering multi-wave simulations of the single pump cavity the results 

show a clear resemblance to the results of the 3-wave gain suppression analysis. 

There is a link between increasing the level of dispersion and the Stokes sideband 

reaching higher peak intensity. This can be attributed to an increased level of 

parametric gain over the first few cavity transits. Figure 5k gives an example of the 

growth of the first Stokes sideband in relation to increasing levels of normalised 

dispersion. 
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The Stokes intensity profiles given figure 5k indicate that the gain suppression 

analysis can describe the growth characteristics of amplitudes in the multi-wave 

results, providing that the parameter choice falls within the small dispersion, short 

cavity regime. 

 

 

 

 

 

 

Figure 5k – multi-wave simulations show that increasing the level of 
dispersion increases the growth of the first Stokes sideband intensity. For 
any level of dispersion the intensity reaches a peak value and then 
decreases as a function of cavity mirror reflectivity toward zero intensity. 
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5.6 The Fourier synthesis of pulses 

The results given for non-cavity UMRG indicated that for certain parameter regimes 

bandwidths can be generated which are suitable for the synthesis of trains of low 

intensity few femtosecond pulses. Figure 5l gives an example of a typical pulse 

given by the inverse Fourier transform of the Raman spectra generated by a non-

cavity system at an optimal (but relatively long) normalised propagation distance of 

𝑍 = 100. It is clear that the frequency spectrum used to synthesise this pulse 

suffers from poor phase matching between sidebands, hence the pulse has a high 

average power. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5l – IFFT pulse profile. The arrows indicate a half peak pulse width of 
1.75 femtoseconds. The pulse energy is spread over the entire width of the 
time domain indicating poor phase matching between the sidebands. The 
pulse intensity is given in arbitrary units.  
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In the case of the cavity system the results of figure 5f have shown that for the right 

choice of parameters, such as finite levels of dispersion and relatively long cavity 

lengths, the cavity system can generate bandwidths containing multiple sidebands. 

However, the level of bandwidth is achieved at the expense of phase matching 

between sidebands. Figure 5m gives an example of a pulse generated by a single 

pump cavity with a moderate normalised cavity length and finite dispersion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5m – IFFT pulse profile. The single pump cavity produces two pulses 
over one cycle. The pulses have time spans of approximately 7.5 
femtoseconds and 10 femtoseconds, with a separation of approximately 20 
femtoseconds between peaks. Both peaks have normalised intensities 
which are several times greater than that of the initial pump intensity at 
𝝎𝟎. 
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It is clear from the results given in figure 5m that poor phase matching between the 

components of the frequency spectrum leads to the synthesis of pulses of long 

durations with a high average intensity. 

These results presented in this chapter all point to the fact that the single pump 

cavity is unsuitable for the efficient generation of femtosecond pulses, when only a 

single pump beam is employed. To increase the efficiency of sideband generation, 

and improve phase matching between sidebands, it is necessary to consider 

symmetric pumping at the pump and first Stokes frequencies. 
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CHAPTER 6 

Sideband generation in the ring cavity with two applied 

pump beams 

Symmetric pumping of the cavity system will now be explored. Pump beams will be 

employed at the pump, 𝜔0, and first Stokes frequency, 𝜔−1, which are introduced 

at the start of each cavity transit. The end cavity mirror is taken to be partially 

transmitting with a uniform reflectivity over the entire frequency range covered by 

the simulations. Throughout this chapter simulations of the cavity system will be 

quantified in terms of bandwidth and the total intensity of the multi-frequency 

spectrum, and parameters which can optimise bandwidth generation will be 

discussed, such as dispersion, linear detuning and the ratio of applied pump 

amplitudes.  

The results presented in this chapter will cover only a single value of cavity mirror 

reflectivity (amplitude), 𝑅𝑗 = 0.99. Simulations including finite reflection bandwidth 

cavity mirrors (of varying configuration) will be discussed in chapter 7.  

Before considering any particular parameter regimes it is worth describing how 

cavity pumping and losses can affect the overall growth of bandwidth. The loss 

mechanism arises as a consequence of the partially transmitting input / output 

coupling mirror, and there is also a characteristic drop in intra-cavity intensity 

associated with frequency conversion within the Raman medium. It is clear that 

defining a non unity value of cavity mirror reflectivity sets a limit on the maximum 

achievable intra-cavity intensity. 

The efficiency of cavity pumping depends on the phases of the pump and first 

Stokes amplitudes at the end of each cavity transit, because interference between 

the applied pump beams and the intra-cavity amplitudes (at the same frequencies) 

can be destructive and decrease the efficiency of cavity pumping. 
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6.1 Zero dispersion 

The results presented in chapter 5 indicated that the total amount of frequency 

bandwidth can be restricted by the choice of cavity length and level of dispersion. 

The generation of multiple sidebands could only be achieved through the use of 

finite levels of dispersion and long cavity lengths, and such parameter regimes give 

rise to strong levels of non-parametric growth and poor phase matching between 

sidebands, meaning that the resulting frequency spectrum was unsuitable for the 

generation of high power few-femtosecond pulses. 

The introduction of pumping of the first Stokes sideband can be shown to increase 

the levels of bandwidth generated in the cavity by a significant amount. Figure 6a 

shows bandwidth growth within the cavity for a range of cavity lengths, with zero 

medium dispersion and zero linear detuning. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6a – When there is no dispersion the symmetrically pumped cavity is 
capable of generating very large bandwidths. The choice of cavity mirror 
reflectivity limits the maximum achievable bandwidth.  
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When there is no dispersion, and the coupling mirror reflectivity is close to unity, 

very large bandwidths can be generated. The large levels of bandwidth shown in 

figure 6a occur because sidebands are generated parametrically during each cavity 

transit, and the maximum value of bandwidth is only restricted by the chosen value 

of coupling mirror reflectivity. If 𝑅𝑗 = 1 then the level of bandwidth is only limited 

by the frequency range of the simulation and can grow indefinitely. 

Figure 6b gives an example of the bandwidth generated when the normalised cavity 

length is relatively short (𝑍𝑐 = 0.1). The bandwidth initially reaches a high level, 

over a number of the cavity transits, but then eventually decreases to a much 

smaller level, which is approximately equal to the level of bandwidth obtained in 

the non-cavity case. The final bandwidth after a very large number of cavity transits 

contains mainly Stokes sidebands, which contain most of the intensity of the 

spectrum. The intensity data given in figure 6c corresponds to the bandwidth data 

given in figure 6b, and demonstrates that after a large number of cavity transits the 

intensity contained within the Stokes wing of the spectrum contains over double 

the intensity of the anti-Stokes wing. 
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The results of figures 6b and 6c share similarities with the results of chapter 5, and 

demonstrate that the addition of a second pump beam allows the cavity to 

generate a reasonable number of sidebands (approximately equal to the non-cavity 

case) which possess a large intensity. There is an underlying process which causes 

the majority of the pump energy to be transferred into the Stokes wing of the 

spectrum, which restricts the overall bandwidth. This will be discussed in detail in 

section 6.5. 

 

 

 

 

 

Figure 6b – At short cavity lengths the symmetrically pumped cavity will not 
maintain a high level of bandwidth. Most of the pump energy is transferred 
to the Stokes wing of the spectrum and the anti-Stokes sidebands are 
depleted leading to a drop bandwidth. 
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When moderate to large normalised cavity lengths are considered, a high level of 

bandwidth can be maintained through symmetric pumping (see figure 6a). Figure 

6d gives a specific example of the large levels of bandwidth which can be achieved 

at longer cavity lengths. Figure 6e represents the intensity data corresponding to 

figure 6d and shows an even distribution between each wing of the frequency 

spectrum. 

The intensity contained within the Stokes and anti-Stokes wings of the spectrum are 

much greater when longer cavity lengths are employed. Generally longer cavity 

lengths (in the case of zero dispersion) allow a more even distribution of the 

applied pump energy. Therefore greater levels of intensity can be achieved in 

higher order sidebands, rather than the majority of the intensity remaining at lower 

order sidebands (close to the pump frequency). The overall bandwidth, in the case 

of figure 6d, is only limited by intensity losses at the cavity mirror. 

 

Figure 6c – At short cavity length the intensity of the spectrum is initially 
evenly distributed between the Stokes and anti-Stokes wings of the 
spectrum. After many cavity transits the Stokes wing of the spectrum 
contains the largest level of intensity. 
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The results, in the case of zero dispersion, indicate that large numbers of sidebands 

can be generated through symmetric pumping techniques, and with the right 

selection of cavity length an even distribution of energy between each wing of the 

spectrum can be achieved (see figures 6d and 6e).  The large numbers of sidebands 

and high intensities offer the possibility of generating high intensity sub-

femtosecond pulses. Examples of pulses generated in the cavity will be discussed in 

chapter 7. 

 

 

 

 

 

Figure 6d – At long cavity lengths a large amount of bandwidth can be 
generated and maintained. The bandwidth is only limited by the overall loss 
of intensity in the system due to sideband growth and cavity mirror losses. 
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6.2 Finite levels of medium dispersion 

Finite levels of dispersion must now be considered, and its effect on bandwidth 

growth discussed. The introduction of a finite level of dispersion requires that the 

effects of non-parametric growth need to be considered. The growth of high order 

(high frequency) sidebands can be particularly sensitive to finite levels of dispersion 

because of the frequency dependence of the refractive index of the medium, where 

higher frequency sidebands are subject to large levels of dispersion. 

As with the zero dispersion case, short cavity lengths will first be considered. When 

the cavity length is relatively short, the bandwidth grows in a way similar to the 

zero dispersion case, where the bandwidth grows to a large peak value and then 

eventually drops to a low level after a number of cavity transits. The main 

difference between the zero and finite dispersion results, given in figures 6b and 6f 

 

Figure 6e – At longer cavity lengths the intensity in the cavity is more evenly 
distributed between Stokes and anti-Stokes sidebands. The intensity reaches 
its peak value after ~𝟒𝟎𝟎 cavity transits. 
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respectively, is that the peak level of bandwidth is much higher in the zero 

dispersion results. 

When longer cavity lengths are considered (in the finite dispersion regime), large 

levels of bandwidth can be achieved which persist over a large number of cavity 

transits. Bandwidths containing up to 500 frequency components, such as the 

bandwidth shown in figure 6g, can be achieved. However, the peak level of 

bandwidth is much smaller than the zero dispersion equivalents (recall figure 6d). 

 

 

 

 

 

 

 

 

 

 

 

 

The limitation of the peak bandwidths, shown in figures 6g and 6h, can be explained 

by considering the non-cavity results given in chapter 5 for the large dispersion 

regime. The results demonstrated how the Raman envelope equations have a 

strong dependence on the product of cavity length and dispersion, and in the limit 

of large dispersion the UMRG equations can be reduced to a form consisting solely 

of non-parametric terms, and describe the formation of a Stokes cascade. 

 

Figure 6f – At very small normalised cavity lengths and finite dispersion the 
bandwidth growth is similar to that of the zero dispersion case where  large 
bandwidth is initially generated which drops off with increasing numbers of 
cavity transits. 
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Hence in the limit of large dispersion and long propagation distances the UMRG 

equations (2.63) describing sideband growth become: 

             
𝜕𝐴𝑗
𝜕𝑍

= 𝜔𝑗

2𝜔0
𝐴𝑗 ��𝐴𝑗+1�

2
− �𝐴𝑗−1�

2
�  .   (6.1) 

Equation (6.1) has solutions of the form: 

𝐴𝑗 = exp � 𝜔𝑗

2𝜔0
��𝐴𝑗+1�

2
− �𝐴𝑗−1�

2
� 𝑍� .       (6.2) 

Equation (6.2) indicates that sidebands grow exponentially in proportion to the 

intensity of a higher order sideband, and are attenuated in proportion to the 

intensity of a lower order sideband. Hence in the limit of large dispersion the 

energy of the spectrum flows towards the lowest possible sideband frequency. It is 

also clear from the form of equation (6.2) that non-parametric sideband growth can 

occur independently of the level of medium excitation. 

If we consider the Cauchy type dispersion equation from appendix B we can 

recognise the fact that high order anti-Stokes sidebands experience larger levels of 

dispersion than the rest of the spectrum. The limits of bandwidth growth, such as 

those shown in figures 6f, 6g and 6h, can be described in terms of Stokes cascading.  

When any combination of dispersion and cavity length is considered, a high order 

anti-Stokes sideband will exist which experiences a level of dispersion large enough 

to cause the sideband to grow non-parametrically. This sideband represents the 

point at which bandwidth stops growing, because any energy transferred to this 

sideband (in the early stages of a cavity transit) will cascade back into the lower 

frequency components of the spectrum. The interplay between parametric 

sideband growth and Stokes cascading from higher frequencies manifests itself as 

oscillations in the bandwidth growth shown in figures 6g and 6h. Figure 6h clearly 

identifies the point made above by demonstrating the relationship between longer 

normalised cavity lengths and decreased levels of bandwidth.  
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Figure 6g – At long cavity lengths the maximum bandwidth is limited by the 
level of dispersion. 

 

 

Figure 6h – Shorter cavity lengths produce the largest bandwidths when 
there is a finite level of dispersion. 
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It is also clear from 6h that an optimal cavity length exists (𝑍𝑐 = 0.1) which 

maximises the level of bandwidth generated by the cavity. 

 

6.3 Finite levels of linear detuning. 

In chapter 4 the finite detuning gain suppression analysis provided results which 

showed finite levels of detuning can increase the peak intensities of the sidebands.  

If the medium excitation amplitude from equation (2.63) is considered, it can be 

recognised that the medium excitation amplitude is scaled by a factor of 1
(1+𝑖𝛿). In 

this case any level of detuning decreases the level of the medium excitation 

amplitude. The results of simulations indicate that the bandwidth can be optimised 

through the selection of specific levels of linear detuning. The results also indicate 

that for most parameter regimes any selection of positive detuning can increase the 

overall level of bandwidth. Generally the level of detuning required to optimise the 

bandwidth depends on the chosen cavity length. Figure 6i provides results for a 

range of linear detunings for a normalised cavity length of 𝑍𝑐 = 2 and finite 

dispersion. 

Figure 6i indicates that when finite levels of linear detuning are employed the 

bandwidth generated by the cavity can be significantly increased above the levels 

generated without linear detuning, and at the specific level of 𝛿 = 0.2 the cavity 

produces its peak level of bandwidth.  It is also clear that employing larger levels of 

detuning enables bandwidths to be generated which are only slightly less than the 

peak value. Figure 6j provides results for a range of linear detunings for a 

normalised cavity length of 𝑍𝑐 = 0.01  with a finite level of dispersion. The peak 

level of bandwidth of the cavity can be generated by a range of detunings, where 

0.035 < 𝛿 < 0.2. 
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Figure 6i – Finite levels of detuning increase the bandwidth generated by the 
cavity and there exists an optimal level of detuning for the chosen cavity 
length. 

 

 

Figure 6j – Finite levels of detuning allow large bandwidths to be generated 
when short normalised cavity lengths are used. Like figure 6i an optimum 
level of linear detuning exists. 
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The results given in figure 6j are for the same range of detunings as figure 6i but for 

a much shorter normalised cavity length. These results also suggest that the cavity 

system can be optimised by a finite level of linear detuning. In the case of figure 6j 

the increase in bandwidth level, due to finite levels of detuning, can be much 

greater than the increase shown in figure 6i, and bandwidths can be achieved which 

are over fifty times larger than the bandwidths obtained for zero linear detuning.  

 

 

 

 

 

 

 

 

 

 

 

If the normalised cavity length is taken to be even shorter such as  𝑍𝑐 = 0.0001 and 

the linear detuning is zero the symmetrically pumped cavity can only generate a 

bandwidth that is comparable in size to the non-cavity results. However, when the 

normalised cavity length is very short, a small level of detuning can cause the 

generation of large levels of bandwidth.  Very short cavity lengths are of particular 

interest because they can reduce the effects of finite levels of dispersion, and 

minimise levels of non-parametric sideband growth.  

 

Figure 6k – At very short cavity lengths and zero linear detuning we find that 
the cavity can generate bandwidths comparable to the non-cavity system. 
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Figure 6l provides examples of bandwidth growth for several levels of detuning. 

These results show that the introduction of linear detuning can increase levels of 

bandwidth growth, even when the cavity length is extremely short. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6m gives the total intensity data of the multi-frequency spectrum 

corresponding to the bandwidth data given in figure 6l. There is a characteristic 

drop in the total intensity of the frequency spectrum which corresponds to the 

increased levels of sideband growth in the cavity. 

The results from chapter 5, for the non-cavity system, showed that up to 30 

sideband amplitudes could be generated over a normalised distance of 𝑍 = 25. The 

results given in figure 6l demonstrate that finite levels of detuning allow 

bandwidths of up to 100 frequency components can be generated in a cavity with a 

normalised length which is many orders of magnitude (105) shorter than the length 

of the example non-cavity system. The intensity of the multi-frequency spectrum 

can also be up to two orders of magnitude larger. 

 

Figure 6l – At very short cavity lengths we find that finite levels of detuning 
can optimise the level of bandwidth generated by the cavity system. 
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6.4 The pump ratio 

So far the results have only covered symmetric pumping of the cavity system, 

therefore throughout this section the ratio of the pump amplitudes, 𝐴−1 𝐴0� ,  will 

be varied. In the case of the non-cavity system symmetric pumping is preferred 

because it provides the maximum medium excitation amplitude required for driving 

sideband growth. When the applied pump ratio is less than unity, peak levels of 

bandwidth are reduced significantly. Figure 6n demonstrates the change in 

bandwidth growth with respect to variations of the pump ratio, and shows unity 

pump ratios (symmetric pumping) to be optimal for the generation of bandwidth. 

 

  

 

Figure 6m – A drop in the total intensity contained within the frequency 
spectrum corresponds with the increased bandwidths generated by the 
cavity. After many cavity transits to total intensity reaches a fixed level, 
indicating that bandwidth growth has stopped and cavity pumping matches 
the intensity losses experienced by the spectrum. 
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Symmetric pumping is not necessarily optimum for bandwidth generation in the 

cavity system. Simulations of the cavity demonstrate robustness with regard to 

changes in the pump ratio. Large levels of bandwidth can be produced for pump 

ratio’s as small as 0.1, but the best results are achieved for pump ratios in the range 

0.5 – 1. The results of figure 6o indicate that the cavity doesn’t have to be pumped 

symmetrically to produce large bandwidths.  

When small cavity lengths are considered, small pump ratios can be shown to be 

optimal for the generation of bandwidth. The use of a small pump ratio provides 

results which share similarities with the results for finite levels of detuning, in which 

the level of bandwidth can be optimised. Figure 6p give results obtained for a short 

cavity length of 𝑍𝑐 = 0.0001 for a range of pump ratios. At this cavity length the 

largest bandwidths are only generated when the pumping ratio is less than unity, 

and bandwidths of up to ~90 frequency components can be generated when an 

optimal pumping ratio of 0.5 is applied. Generally the results of figures 6o and 6p 

suggest that the pump ratio required to maximise bandwidth levels within the 

cavity depends on the length of the cavity. 

 

Figure 6n – The non cavity system generates the largest levels of 
bandwidths when the level of pumping is symmetric. 
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Figure 6o – The cavity system can produce large bandwidths when non unity 
pump ratios are employed. This is unlike the non-cavity system where a unity 
pump ratio is preferred for bandwidth generation 

 

 

Figure 6p - Large bandwidths can be generated in a very short cavity when a 
small pump ratio is employed. In this case a pump ratio of 0.5 allows the 
cavity to generate a bandwidth containing approximately 90 frequency 
components. 
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6.4 Sideband intensities 

The results presented in this chapter have thus far demonstrated that finite levels 

of detuning and non-unity pump ratios can increase the levels of bandwidth 

generated by the cavity system. The increased levels of bandwidth can be explained 

in a relatively simple manner by considering how the intensity levels at the pump 

and first Stokes amplitudes grow within the cavity.  

The results of figure 6k, for a symmetrically pumped cavity of length 𝑍𝑐 = 0.0001, 

demonstrated that under certain parameter regimes, such as short cavity length 

and small levels of dispersion, the level of bandwidth growth can be restricted. If 

the growths of intensities at specific frequencies are taken into account, then the 

reasons for observing a reduced level of bandwidth can be attributed to the severe 

depletion of the pump amplitude.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6q - The pump is subject to large levels of depletion and the first 
Stokes intensity grows to a large level. After 200 cavity transits the pump 
intensity is approximately zero. This coincides with the restricted bandwidth 
shown in figure 6k. 
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Figure 6q gives the intensity growth data for both the pump and first Stokes 

sideband and clearly shows that the Stokes sideband grows to a large intensity 

through the depletion of the pump, as well as pumping at the Stokes frequency. 

Recalling the envelope equations (2.63) it can be recognised that each sideband 

grows in proportion to the amplitudes of the neighbouring sidebands. 

𝜕𝐴𝑗
𝜕𝑍

= 𝜔𝑗

2𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍� . 

If the first anti-Stokes sideband, 𝑗 = 1, is chosen as an example and the pump 

considered to be severely depleted, such that  𝐴0 ≈ 0, then the envelope equation 

reduces to 

𝜕𝐴1
𝜕𝑍

= 𝜔1
2𝜔0

�𝑃∗𝐴2𝑒−𝑖γ2𝑍� . 

 

Therefore, if the pump amplitude undergoes strong levels of depletion, and reduces 

to approximately zero we find that the first anti-Stokes sideband grows only in 

proportion to the second order anti-Stokes sideband. In this extreme limit no 

further energy is transferred into the anti-Stokes wing of the spectrum, therefore 

anti-Stokes sidebands do not contribute to the bandwidth. 

If the equation for the medium excitation amplitude is also considered, it can be 

used to describe how finite levels of detuning and non-unity pump ratio’s can 

produce the increased levels of bandwidth shown in figures 6l and 6p. 

 

𝑃 = 1
(1+𝑖𝛿)

∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γjZ . 
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The level of the medium excitation amplitude directly influences the rate at which 

new sidebands are generated, and in the case of the cavity system this amplitude 

can grow to be very large. The above formula indicates that a small pump ratio or 

finite level of linear detuning can reduce the level of the excitation amplitude, and 

therefore decrease the rate of sideband generation within the cavity. 

Decreasing the rate of sideband generation also reduces pump depletion therefore 

allowing the pump intensity to grow to a level which is sufficient to support the 

generation of a large number of anti-Stokes sidebands (or bandwidth). Figure 6r 

gives an example of the intensity growth for both the pump and first Stokes 

sideband when a finite level of detuning is employed, and figure 6s gives intensity 

results for a non-unity pump ratio. Through comparison of figures 6q, 6r and 6s we 

can recognise that finite levels of detuning and non-unity pump ratios allow larger 

intensities to build up at the pump frequency, this allows the sustained growth of 

higher order anti-Stokes sidebands. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6r - With the introduction of a finite level of detuning we find that the 
pump intensity stays at much larger level. This is required for driving anti-
Stokes sideband growth. 
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Figure 6s - With the pump ratio set to 0.6 we find that the pump intensity 
stays at a relatively large level. This allows anti-Stokes sidebands to be 
maintained at an appreciable intensity. 
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CHAPTER 7 

Normalisation and pulse reconstruction 

The results of previous chapters have been given in terms of normalised 

parameters. Normalisation has allowed results to be obtained without having to 

specify the level of pump intensity, 𝐼0, or gain parameter, 𝑔, of the medium. This 

reduces the number of parameters which need to be considered when describing 

bandwidth growth within the cavity system. Normalisation has allowed large ranges 

of parameter regimes to be compared, and the processes limiting bandwidth 

growth to be quantified in terms of normalised parameters. The results of 

simulations are easily un-normalised when specific values of pump intensity and 

gain are specified. 

Throughout this chapter examples of pulse profiles will be reconstructed from 

frequency data obtained by simulations of the cavity system, these results will also 

be un-normalised to obtain values for the peak power density, average power 

density and total energy density of the reconstructed pulses. An initial pump power 

density of  𝐼0 = 106 𝑊𝑐𝑚−2 and a gain parameter of  𝑔 = 0.2 𝑐𝑚𝐺𝑊−1 will be 

applied for each of the results (unless otherwise specified), and it will be assumed 

that the value of intensity occurs at the start of the first cavity transit, after 

transmission through the coupling mirror. The cavity length can be recovered in 

units of centimetres from the gain length product,  𝑍 = 𝑔𝐼0𝑧 . By using the 

parameters specified above the intensity of each sideband, and therefore the 

synthesised pulses, can be recovered in units of 𝑊𝑐𝑚−2.  

By first considering the non-cavity system, and employing the values for pump 

power and gain specified above, it can be recognised that specifying the gain length 

product also specifies the level of normalised dispersion, γj = Δj
gI0

.  The value of 

normalised dispersion employed in the following results is  γ1 ≈ 10, unless 

otherwise specified.  It can also be recognised, from the gain length product, that 

small levels of pump intensity imply that ‘short’ normalised distances can actually 

correspond to long un-normalised (physical) distances.   
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It has already been shown that large levels of normalised dispersion can limit 

bandwidth levels, see chapters 5 and 6. Large levels of normalised dispersion can 

also be shown to cause the generation of a spectrum with poor phase matching 

between sidebands. This corresponds to the synthesis of poor quality pulses in the 

time domain. The non-cavity system would require large pump intensities to 

generate a broad spectrum of phase-matched sidebands. 

 

 

 

 

 

 

 

 

 

 

 

Pulses synthesised from spectra generated in the cavity system will now be 

considered. Figure 7a gives an example of a pulse generated by a cavity with a 

normalised cavity lengh of  𝑍𝑐 = 1 and, from the gain lengths product; this 

corresponds to a distance of 50 metres.  In the case of figure 7a the relatively low 

level of pump intensity implies that the system is subject to a large normalised 

dispersion (quoted earlier), hence the product of cavity length and dispersion 

ensures that only low levels of bandwidth can be obtained. The resulting spectrum 

also suffers from poor phase matching between sidebands, and gives rise to the 

synthesis of pulses with high average power densities and long durations. 

 

Figure 7a – With a cavity length of 𝟓𝟎 𝒎 we find that poor phase matching 
between sidebands produces pulses with many peaks spread across the time 
domain. 
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The results of chapter 6 indicated that at high levels of normalised dispersion the 

largest levels of bandwidth can be produced at relatively short cavity lengths. The 

results have also indicated that finite levels of linear detuning or non-unity pumping 

ratios could be employed to optimise the level of bandwidth. By choosing to 

employ short normalised cavity lengths, 𝑍𝑐 = 0.001, corresponding to a distance of 

0.05 metres, pulses can be synthesised which have femtosecond duration and a 

high peak power density, such as the pulse given in figure 7b which has a duration 

of 2.9 𝑓𝑠, a peak power density of 16 𝐺𝑊𝑐𝑚−2, average power density 

0.8 𝐺𝑊𝑐𝑚−2 and total energy density of 46 𝜇𝐽𝑐𝑚−2. 

 

 

Figure 7b – When the cavity length is short the cavity generates a sufficiently 
wide bandwidth which is capable of synthesising a 𝟐.𝟗 𝒇𝒔 pulse with a peak 
power of 𝟏𝟔 𝑮𝑾𝒄𝒎−𝟐 and a total energy of  𝟒𝟔 𝝁𝑱𝒄𝒎−𝟐. 
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If the same length cavity is employed, with a finite level of linear detuning, the level 

of bandwidth is optimised. However, the introduction of a finite level of detuning 

changes the phase of each sideband; this causes two distinct pulses to be formed 

per optical cycle. Figure 7c provides an example of the pulses formed when linear 

detuning is employed. The pulses have durations of 1.3 𝑓𝑠 and 2. 5 𝑓𝑠, each with a 

peak power of  14 𝐺𝑊𝑐𝑚−2. The average power density is  0.47 𝐺𝑊𝑐𝑚−2, and the 

total energy density contained within both pulses of 53 𝜇𝐽𝑐𝑚−2. These results 

indicate that a finite level of detuning can increase pulse energies whilst 

maintaining short pulse durations, but finite levels of detuning effectively lead to 

the doubling of the pulse repetition rate through the generation of two distinct 

femtosecond pulses per optical cycle. 

 

 

 

Figure 7c– A finite level of linear detuning causes the generation of two 
pulses within one optical cycle and both pulses are of high peak power 
~𝟏𝟒 𝑮𝑾𝒄𝒎−𝟐 with durations 𝟏.𝟑 𝒇𝒔 and 𝟐.𝟓 𝒇𝒔 (left to right). 
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The results provided in chapter 6 also indicated that non-symmetric pumping could 

produce large levels of bandwidth which can be greater than the levels generated 

by symmetric pumping. Figure 7d shows a 3.6 𝑓𝑠 pulse and a 1.4 𝑓𝑠 pulse 

generated for a pump ratio of 0.5 in a 0.05 metre long cavity, which is the same 

length as in figures 7b and 7c. The pulses have peak power densities of 

9 𝐺𝑊𝑐𝑚−2and 5 𝐺𝑊𝑐𝑚−2 respectively. The average power density across the time 

domain is 0.69 𝐺𝑊𝑐𝑚−2 and the total energy contained within the pulses is 

39 𝜇𝐽𝑐𝑚−2.  The results of figure 7b and 7d indicate that reducing the pump ratio 

leads to the synthesis of shorter pulses with slightly reduced peak powers. It is also 

apparent that non-unity pumping ratios can cause the formation of two distinct 

pulses per optical cycle, much like the results given in figure 7c for finite linear 

detuning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7d – Employing a non unity pump ratio produces two pulses per optical 
cycle. The first pulse has a higher peak power density of 𝟗 𝑮𝑾𝒄𝒎−𝟐 and 
duration of 𝟑.𝟔 𝒇𝒔  and the second pulse has a lower peak power density of 
𝟓 𝑮𝑾𝒄𝒎−𝟐 but a much shorter duration of 𝟏.𝟒 𝒇𝒔. The time axis in this figure 
covers two optical cycles. 
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7.1 A realistic cavity mirror reflection profile 

Modelling the cavity output mirror as infinitely broad with a uniform reflectivity has 

so far proven useful for determining the characteristics and limitations of sideband 

generation within the cavity.  

The cavity system will now be tested by considering realistic coupling mirror 

reflectivity profiles.The main two types of mirror suited to high power and 

broadband application are metallic and dielectric mirrors. Metallic mirrors generally 

have broad reflection bandwidths which are characterised by a high reflectivity, 

covering a broad spectrum, with a sharp cut-off at the edges of the reflection 

bandwidth. The three most common metallic mirrors include silver, gold and 

aluminium which have reflection bandwidths covering ranges from 450 𝑛𝑚 −

20 𝜇𝑚, 800 𝑛𝑚 − 20 𝜇𝑚 and 250 𝑛𝑚 − 20 𝜇𝑚 respectively with average 

reflectance ranging from 90% to ~98% . The applications of metallic mirrors are 

restricted because of strong levels of absorption in the ultra-violet region of the 

spectrum, and relatively low damage thresholds. 

Dielectric mirrors have smaller reflection bandwidths compared to a metallic 

mirror, but their reflection profile can be easily tailored to suit most applications 

because of the large selection of dielectric coatings available for use. Some ultra 

broadband dielectric mirrors have reflection bandwidths covering 350 𝑛𝑚 −

1100 𝑛𝑚 with a reflectance  > 99%. Dielectric mirrors also have the benefit of 

having much higher damage thresholds and find application in current Ti:Sapphire 

femtosecond lasers (5, 6).  
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Figure 7e provides an example reflection profile for a broadband dielectric output 

coupler with an average reflectivity of 0.95 over a reflection bandwidth 450 𝑛𝑚 −

1100 𝑛𝑚. This reflection offers a more realistic example from which the input / 

output coupling mirror of the Raman ring cavity can be modelled.  Other 

commercially available coupling mirrors cover a wide range of different 

bandwidths, with different levels of reflectivity. Some mirrors are also designed to 

have broad reflectivity profiles, with narrow transmission bands centred at a 

particular frequency. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mirror profiles, such as the one given in figure 7e, restrict the maximum level of 

bandwidth which can be achieved by the cavity. The cavity length requires 

optimisation if pulses of femtosecond duration and of maximum possible intensity 

are to be achieved. This means that the cavity length has to be chosen such that 

 

Figure 7e - A realistic example of a commercially available input / output 
coupling mirror with a peak amplitude reflectivity of 0.95. It is clear that this 
reflectivity profile covers mostly Stokes wavelengths, and any wavelength 
falling outside of this range is subject to a reflectivity of 0 and is rejected from 
the cavity. 
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sidebands, with frequencies which fall within the reflection profile of the cavity 

mirror, reach their maximum possible intensity. 

Figure 7f provides an example of a 3.9 𝑓𝑠 pulse generated in a 0.3 𝑚 long cavity 

when employing the output mirror reflection profile provided in figure 7e. The 

pulse has a peak power density of  0.9 𝐺𝑊𝑐𝑚−2, average power density 

61 𝑀𝑊𝑐𝑚−2 and energy density of 3.5 𝜇𝐽𝑐𝑚−2. The results given in figure 7f show 

that when employing realistic mirror reflection profiles the cavity can still support 

the synthesis of femtosecond pulses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7f - When the reflectivity profile given in figure 7e is employed we find 
that a pulse of 𝟑.𝟗 𝒇𝒔 with a peak power density of 𝟎.𝟗 𝑮𝑾𝒄𝒎−𝟐 can be 
generated.  The duration and power of this pulse is optimised for a cavity 
length of 𝟎.𝟑 𝒎. 
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7.2 Atmospheric Nitrogen as the Raman medium 

In 1997 McDonald et al (32) presented a paper regarding the generation of 

broadband light in air. The results indicated that large bandwidths could be 

generated in air by employing resonant symmetric pumping techniques, and 

exploiting the J = 8 - 10 rotational transition of atmospheric nitrogen. The Stokes 

shift and Raman gain coefficient of the exploited transition are given as 𝜔𝑅 =

78  𝑐𝑚−1 and 𝑔 = 0.005 𝑐𝑚𝐺𝑊−1 respectively (32, 43), and the initial pump 

intensity is again chosen to be 106 𝑊𝑐𝑚−2. Using the levels of intensity and gain 

specified above, the level of normalised dispersion can be calculated using a Cauchy 

dispersion relation for air. The level of normalised dispersion is found to be large, 

γj = Δj
gI0

≈ 20, and has a level which is approximately twice the value calculated for 

molecular hydrogen at atmospheric pressure. The increase in dispersion occurs 

because of the higher refractive index of atmospheric nitrogen. 

Atmospheric nitrogen as a medium for use in UMRG has been well documented in 

references (32). Symmetric pumping allows large numbers of sidebands to be 

generated (32). Reference (32) also indicated that bandwidth can be optimised by a 

particular value of normalised medium dispersion, and showed how the optimal 

level of dispersion can vary between different Raman media, such as molecular 

hydrogen and atmospheric nitrogen, by an order of magnitude. 

It can be recognised that the width of the exploited Raman transition dictates the 

number of Stokes and anti-Stokes sidebands required for the generation of a 

femtosecond pulse. For example, if the Raman transition frequencies of molecular 

hydrogen and nitrogen are compared, then the transition frequency of hydrogen is 

found to be roughly 7.5 times larger the transition of nitrogen. The Fourier 

bandwidth theorem implies that, to support a single femtosecond pulse, 

atmospheric nitrogen would need to support 7.5 times more bandwidth than 

hydrogen. Sideband phases also become important when such a large number of 

sidebands are required for the synthesis of a pulse, because poor phase matching 

between sidebands can lead to pulses being synthesised with durations which are 

longer than their theoretical Fourier limit.  
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The underlying processes that control bandwidth growth within the ring cavity, 

such as parametric and non-parametric growth, remain the same regardless of the 

choice of Raman medium. Therefore the maximum bandwidth can be optimised by 

the choice of cavity length, linear detuning, pumping ratio and cavity mirror 

reflectivity. Examples of pulses, synthesised from spectra generated in cavity 

confined atmospheric nitrogen, will now be presented. The cavity mirror reflectivity 

profile used in the simulations is the given in figure 7e. 

 

 

 

 

 

 

 

 

 

 

 

 

As with the previous results, for molecular hydrogen, when employing an example 

of a realistic coupling mirror the cavity length can be chosen as to optimise the 

duration and power of the synthesised pulses. Figure 7g provides an example of a 

35 𝑓𝑠 pulse generated in a 0.3 𝑚 long cavity with a peak power density of 

1.5 𝐺𝑊𝑐𝑚−2, average power density 0.12 𝐺𝑊𝑐𝑚−2 and pulse energy density of 

53 𝜇𝐽. If figure 7g is compared to figure 7f it is apparent that pulses synthesised 

from spectra generated in atmospheric nitrogen, are approximately one order of 

 

Figure 7g - With atmospheric nitrogen as the medium we find that the cavity 
is capable of generating sufficient bandwidth to support the synthesis of 
𝟑𝟓 𝒇𝒔 pulses, with a peak power density of 𝟏.𝟓 𝑮𝑾𝒄𝒎−𝟐, in a 𝟎.𝟑 𝒎 long 
cavity. 
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magnitude longer in duration than pulses produced in hydrogen and possess 

greater peak power and pulse energy density.  

The relatively long pulse duration of figure 7g corresponds to a frequency 

bandwidth that is narrower than the reflection bandwidth of the cavity mirror. The 

lack of frequency bandwidth generated by the cavity can be attributed to large level 

of normalised dispersion, and losses at the cavity mirror. Therefore, to reduce 

coupling losses and obtain the maximum possible bandwidth, a higher reflectivity 

profile must be employed, like the one given in figure 7e, with a higher reflectivity 

of 0.99 over a reflection bandwidth of 450 𝑛𝑚 − 1100 𝑛𝑚 . 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing the coupling mirror reflectivity leads to the generation of a broadband 

frequency spectrum with a much higher intensity, and corresponds to a high 

intensity femtosecond pulse in the time domain. 

 

Figure 7h - With atmospheric nitrogen as the medium and by employing a 
cavity mirror of higher reflectivity the cavity is found to be capable of 
generating sufficient bandwidth to support the synthesis of 𝟏𝟏 𝒇𝒔 pulses 
with a peak power density of 𝟏𝟔 𝑮𝑾𝒄𝒎−𝟐 in a 𝟎.𝟏𝟐 𝒎 long cavity. 
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 Figure 7h shows an example of a 11 𝑓𝑠 pulse generated in a 0.12 𝑚 long cavity 

with a peak power density of 16.5 𝐺𝑊𝑐𝑚−2, average power density of 

0.4 𝐺𝑊𝑐𝑚−2 and energy density of 181 𝜇𝐽𝑐𝑚−2. The duration of the pulse given in 

figure 7h is over three times shorter than that of figure 7g and carries over three 

times as much energy. The pulse given in figure 7h has a duration which is just over 

twice that of the pulse given in figure 7f for molecular hydrogen but with a much 

higher peak power density. 

To obtain shorter pulse durations and higher peak power densities much greater 

pump intensities would need to be employed to increase the gain length product, 

𝑍 = 𝑔𝐼0𝑧.  The benefits of employing higher power pump beams will now be 

discussed. 

7.3 High power pump beams and attosecond pulses 

Throughout this chapter, pumping has been defined by relatively low intensity 

pump beams, 𝐼0 = 106 𝑊𝑐𝑚−2, such as those produced by CW lasers. The process 

of UMRG has also been modelled using the steady state UMRG equations (2.63). 

The steady state equations are derived from equations (2.62) by specifying that the 

width of the pump pulse is greater than the dephasing time of the medium, 𝑡𝑝 ≫

𝑇2. The time taken for light to traverse the cavity also needs to be considered so 

that it can be compared to pulse times, 𝑡𝑝, of possible pump lasers. 

The time taken for light to travel through the cavity is given as: 

𝑇𝑐𝑎𝑣 = 𝑍𝑐
𝑐

  ,     (7.1) 

where 𝑐 is the speed of light. By specifying that 𝑧𝑐 = 0.05 𝑚 we find the transit 

time to be: 

𝑇𝑐𝑎𝑣 ≈ 0.16 𝑛𝑠  

hence the time taken for a wave to complete 𝑚 cavity transits is: 

𝑇𝑚 = 𝑇𝑐𝑎𝑣.𝑚.     (7.2) 
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Defining the pump beam as a square pump pulse provided by a diode pumped 

Nd:YAG laser, with a 10 𝑛𝑠 duration carrying 3 𝐽 of energy and a 15 𝑚𝑚 spot size, 

the peak power can be calculated to be approximately 0.3 𝐺𝑊 and therefore the 

peak intensity of 0.17 𝐺𝑊𝑐𝑚−2 is achieved. High intensity pump pulses can be 

achieved with a relatively large beam diameter, thereby reducing the level of beam 

diffraction, as will be discussed in chapters 8 and 9. 

Through the comparison of the transit time and the pulse, 𝑡𝑝 ≫ 𝑇𝑐𝑎𝑣, and using 

equation (8.2) it can be shown that multiple cavity transits can occur over the 

duration of the pump pulse. When 𝑡𝑝 ≫ 𝑇𝑐𝑎𝑣 and 𝑡𝑝 ≫ 𝑇2  the steady state UMRG 

equations given by (2.63) offer a suitable description of the system.  

Using the quoted intensity, 𝐼0 = 0.17 𝐺𝑊𝑐𝑚−2, and cavity length, 0.05 𝑚, the gain 

length product yields a normalised cavity length 𝑍𝑐 = 0.17 and the normalised level 

of dispersion as γ1 = 6.5 x 10−2. If these parameters are applied to a simulation, 

and the reflection profile given in figure 8e is specified, the inverse Fourier 

transform of the resulting frequency spectrum yields a near Fourier limited 2.5 𝑓𝑠 

pulse with a peak power density of 42.5 𝐺𝑊𝑐𝑚−2, average power density of 

2 𝐺𝑊𝑐𝑚−2and pulse energy density of 0.16 𝑚𝐽𝑐𝑚−2,  as shown in figure 7i. 
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The results of figure7i demonstrate that increasing the level of pump intensity also 

increases the peak intensity of synthesised pulses. Large pump intensities also allow 

bandwidth generation to be achieved at shorter cavity lengths, therefore leading to 

the generation of a spectrum containing phase matched sidebands which can allow 

the synthesis of the shortest possible pulses. It is clear that an increased level of 

pump intensity is beneficial for the generation of high intensity few-femtosecond 

pulses.  

 

 

 

 

 

Figure 7i – When a large level of pump intensity is employed a cavity length 
can be chosen such that the cavity can support the synthesis of a 𝟐.𝟓 𝒇𝒔 
pulse with a peak power density of 𝟒𝟐.𝟓 𝑮𝑾𝒄𝒎−𝟐 and a total energy of  
𝟎.𝟏𝟔 𝒎𝑱𝒄𝒎−𝟐. 

 



 
CHAPTER 7: Normalisation and pulse reconstruction 

115 
 

If atmospheric nitrogen is used as the Raman medium, together with the reflection 

profile given in figure 7e and a pump intensity of 𝐼0 = 0.17 𝐺𝑊𝑐𝑚−2results are 

achieved which show the cavity to be capable of generating sufficient bandwidth to 

support a 8.5 𝑓𝑠  pulse with a peak power density of 155 𝐺𝑊𝑐𝑚−2, average power 

density of 3 𝐺𝑊𝑐𝑚−2 and energy density of 1.3 𝑚𝐽𝑐𝑚−2, as given in figure 7j.  

 

 

 

 

 

 

 

 

 

 

 

 

Figures 7g and 7j both indicate that pulses generated in atmospheric nitrogen have 

longer durations, greater peak intensities and greater levels of pulse energy density 

than pulses generated in molecular hydrogen at atmospheric pressure. Higher 

intensity pulses are generated in atmospheric nitrogen because the Raman 

transition frequency of nitrogen is much smaller. This means that the repetition 

rate of the synthesised pulse train is smaller, and therefore more energy is 

contained within each pulse cycle. 

 

 

Figure 7j – When a high level of pump intensity is employed, and 
atmospheric Nitrogen is the chosen Raman medium, the cavity can generate 
bandwidths suitable for the synthesis of a 𝟖.𝟓 𝒇𝒔 pulse with a peak power 
density of 𝟏𝟓𝟓 𝑮𝑾𝒄𝒎−𝟐 and a total energy density of 𝟏.𝟑 𝒎𝑱𝒄𝒎−𝟐. 
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It is also worth noting that the peak power densities given figures 7i and 7j are 

calculated assuming that the multi-frequency beam, generated by the cavity, has a 

spot diameter of 15 𝑚𝑚. However, most applications of femtosecond pulses 

require beams with much smaller spot sizes. If the multi-frequency beam of figure 

7i were focussed onto a spot size of 1𝜇𝑚 there would be a substantial increase in 

the level of peak power density, which would be approaching levels of 

~1019 𝑊𝑐𝑚−2 which implies pulses with energy densities ~105 𝐽𝑐𝑚−2. 

 

7.4 Band pass mirror 

Thus far the intensities of the applied pump lasers have been quoted as occurring at 

the start of the first cavity transit at 𝑍 = 0. Any rejection of the incident pump, 

through reflection at the cavity mirror, has been ignored. This obviously represents 

a large loss of the incident pump energy and makes cavity pumping incredibly 

inefficient. 

 To avoid reflection losses from the coupling mirror we could choose to employ a 

mirror with a narrow transmission band centred at the pump frequency. Such 

mirrors are employed in Ti:Sapphire laser oscillators as pump mirrors, and as 

mirrors for the selection of specific cavity modes. These types of mirrors have 

reflection bandwidths which can cover the entire gain bandwidth of the Ti:Sapphire 

medium. 

The reflection profile given in figure 7e will now be considered, but with a 

transmission band centred at the pump and first Stokes wavelengths. Hence a 

reflection profile is achieved that is highly transmitting at only the pumped 

wavelengths. Employing the modified reflectivity profile, a pump intensity of 

1 𝐺𝑊𝑐𝑚−2  and a normalised level of dispersion of γ1 = 1 x 10−2  yields a high 

intensity bandwidth that supports the synthesis of few-femtosecond pulses.   
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An example of the  2.2 𝑓𝑠 intra-cavity pulse, generated whilst employing the 

modified mirror profile and hydrogen as the medium, is given in figure 7k. The pulse 

has a peak power density of 90 𝐺𝑊𝑐𝑚−2, average power density 3.49 𝐺𝑊𝑐𝑚−2  

and energy density 0.2 𝑚𝐽𝑐𝑚−2. This result implies that the synthesis of pulses 

becomes more efficient when the coupling mirror allows transmission of the 

applied pump beams. 

 

 

 

 

 

 

 

 

 

 

 

 

7.5 The ideal cavity 

The ideal case of a coupling mirror with a very broad reflection bandwidth, with 

100% transmission at the pump and first Stokes frequencies, and no medium 

dispersion will now be considered. The chosen medium is hydrogen and the applied 

pump intensity is taken to be 1 𝐺𝑊𝑐𝑚−2.  Simulations show that, for this selection 

of parameters, very large bandwidths can be generated which contain 

approximately ~600 sidebands of comparable intensity. Such spectra can be shown 

 

Figure 7k – When 𝟏𝟎𝟎% transmission at the pump and first Stokes 
frequency is employed the cavity can maintain bandwidth suitable for the 
synthesis of a 𝟐.𝟐 𝒇𝒔 pulse with a peak power density of 𝟗𝟎 𝑮𝑾𝒄𝒎−𝟐 and a 
total energy density of 𝟎.𝟐 𝒎𝑱𝒄𝒎−𝟐 . 
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to be suitable for the synthesis of pulses as short as 60 attoseconds. An example of 

such a pulse is given in figure 7l and has a peak power density of 70 𝑇𝑊𝑐𝑚−2, 

average power density of 73 𝐺𝑊𝑐𝑚−2 and energy density of 4.2 𝑚𝐽𝑐𝑚−2. 

 

 

 

 

 

 

 

 

 

 

 

 

The results presented in this chapter demonstrate the generation of few-

femtosecond pulse trains. The duration and power of such pulses depends on the 

applied pump intensity and the reflectivity profile of the chosen cavity mirror. The 

optimal choice of cavity mirror possesses a reflection profile with a transmission 

band centred at the pumping frequencies.  

The results presented in this chapter show that reflection bandwidths available to 

current dielectric mirrors restricts the level of bandwidth generated by cavity. 

Mirrors with broader reflection bandwidths could enable the synthesis of pulse 

trains, of attosecond duration, with peak powers of tens of terawatts, and focussing 

of such pulses could lead to power densities approaching  1020𝑊𝑐𝑚−2. 

 

Figure 7l – When the level of dispersion is negligible and the reflection 
bandwidth of the coupling mirror is broad (covering over 𝟔𝟎𝟎 sidebands) a 
pulse of 60 attosecond duration can be synthesised. 
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CHAPTER 8 

(1+1)D Cavity UMRG 

At the end of chapter 2 the transverse UMRG equations were stated, and the 

diffraction terms discussed and normalised. The following chapters are devoted to 

the analysis of transverse UMRG with cavity boundary conditions in both one and 

two transverse dimensions (and the longitudinal coordinate). To begin, the full 

complexity of the transverse equations will be restricted by confining the spatial 

structure of the fields to only a single transverse dimension. 

The transverse UMRG equations in the non-cavity context have been thoroughly 

analysed and documented in reference (78) for both one and two transverse 

dimensions. The results indicated that the development of spatial structure of each 

frequency component is most rapid at the centre of the beam. This occurs because 

frequency conversion is driven by higher levels of light intensity at the beam centre; 

therefore the rate of frequency conversion at the edges of the beam is much lower. 

The variation of intensity across the transverse axis gives rise to a range of 

conversion rates which drive the formation of complex transverse structures at 

each of the sideband frequencies. 

These results also indicated that in the limit of zero dispersion and zero diffraction 

(𝛾𝑗 = 𝑏𝑗 = 0) bandwidths could be achieved which matched the bandwidth 

predicted by the dispersionless steady state plane wave UMRG equations (2.63), 

and that the combination of finite dispersion and relatively strong diffraction can be 

shown to decrease the maximum bandwidth (though the bandwidth is still close to 

one octave). Another important characteristic highlighted by reference (78) is the 

quality of the multi-frequency beams generated by UMRG which have a reasonably 

smooth and axially confined multi-frequency transverse energy distribution. 

The introduction of transverse dimensions substantially increases the demands on 

both computational power and simulation time. Even when restricting the analysis 

to only one transverse dimension, solving the equations remains computationally 

expensive. This is not only because of the number of frequency components 
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modelled by the simulations but also because of the cavity boundary conditions and 

the large number of cavity transits.  

When considering (1+1)D transient UMRG with cavity boundary conditions in the 

limit of zero dispersion and zero diffraction, we find that the results strongly agree 

with the dispersionless plane wave results. Extremely large bandwidths can be 

generated which are only restricted by the reflectivity profile of the coupling mirror, 

and the level of medium dispersion. The results given throughout this chapter are 

achieved from simulations which model the cavity mirror reflection profile given in 

figure 7e.  

 

 

 

 

 

 

 

 

 

 

 

The results of simulating the (1+1)D transverse UMRG can be shown to be in 

agreement with the plane wave results given in previous chapters. Bandwidth 

growth responds to various types of parameter changes, such as increasing levels of 

dispersion and finite levels of linear detuning, in a way which is analogous to the 

plane wave system. With the introduction of transverse structure, the effects of 

finite levels of beam diffraction (recall equation 2.69) also need to be considered. 

 

Figure 8a – Cavity confined transverse UMRG can generate stable bandwidths 
which cover the reflection bandwidth of the cavity mirror. The diffraction 
length is, 𝑳𝑫 = 𝟐𝟎. 
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This has been found to have an effect on bandwidth growth which is analogous to 

that of longitudinal dispersion (78) and can have a strong impact on the levels of 

bandwidth generated in relatively long cavities. 

The following simulations model molecular hydrogen as the cavity medium. The 

pump and first Stokes beams are taken to be Gaussian and focused into a small spot 

size, 15 𝑚𝑚, with a central peak intensity of 𝐼0 = 106𝑊𝑐𝑚−2. Each result 

presented in this chapter will be obtained for a chosen normalised cavity length of 

𝑍𝑐 = 0.05 with zero detuning, 𝛿 = 0, zero dispersion, 𝛾1 = 0, and a normalised 

diffraction length of, 𝐿𝐷 = 20, unless otherwise specified. Because the chosen 

reflectivity profile is that of figure 7e, it is clear that the maximum level of 

bandwidth is dictated by the spectrum of the cavity mirror. Figure 8a shows how 

the bandwidth can grow to its maximum level, which covers the spectral bandwidth 

of the cavity mirror, and reaches a fixed level after 30 cavity transits. Figure 8b 

shows the corresponding growth of the total multi-frequency intensity. The results 

of figures 8a and 8b imply that a fixed spectrum with a large intensity could be 

coupled out of the cavity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8b – The total intensity of the multi-frequency spectrum reaches a 
large level which is almost stable. The diffraction length is, 𝑳𝑫 = 𝟐𝟎. 
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To gain insight into the process of transverse UMRG, the intensity profiles of 

specific Raman sidebands should be considered. Figure 8c represents the 

normalised transverse intensity distribution for the first Stokes sideband, pump and 

first anti-Stokes sidebands after 100 cavity transits. The simulation employed the 

same parameter regime as the results given in figures 8a and 8b. Each sideband has 

intensity much greater than the initial Gaussian pump beam.  

It is apparent from the results of figure 8c that each sideband amplitude (after 100 

cavity transits) carries a much larger intensity than the initially applied pump beam. 

Each profile is symmetric with respect to the beam centre and can have sharp, 

highly intense peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8c – The transverse intensity profiles of the first Stokes (j = -1), pump 
(j  = 0) and first anti- Stokes (j = 1) sidebands. Each of the frequency 
components carries a large intensity. The diffraction length is, 𝑳𝑫 = 𝟐𝟎. 
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The medium excitation amplitude also possesses transverse structure and causes 

varying levels of growth across the transverse plane. It can be recognised just from 

the sideband profiles given in figure 8c that the medium excitation will carry large 

amplitude with a steep sided transverse profile.  

The transverse distribution of the medium excitation plays a vital role in the 

shaping of each sidebands transverse intensity profile. This will be demonstrated in 

chapter 11 when nonlinear detuning is discussed in terms of the non-cavity system. 

 

8.1 RMS width of the multi-frequency beam 

It is useful to conduct the analysis of transverse UMRG in terms of the root mean 

square width of the total transverse intensity profile (78). Figure 8d explores the 

broadening of the transverse profile for a range of diffraction lengths (input beam 

radii). This is of particular importance when tightly focussed laser beams are 

required to achieve the high peak power densities required for efficient sideband 

generation.  

The results of figure 8d are generalised by assuming that the combination of laser 

power and beam radius are chosen in a way which maintains the peak pump power 

density at a level of  𝐼0 = 106𝑊𝑐𝑚−2 . Doing this ensures that the results obtained 

from each simulation are subject to the same level of gain length product. 
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It is already known from the results given in reference (78) that, when the 

diffraction length is short, the total transverse intensity profile becomes 

significantly broadened to the point where bandwidth growth is strongly inhibited.  

Figure 8d represents the RMS width of the multi-frequency beams transverse 

intensity profile, for a range of diffraction lengths. Each of the results has been 

taken after 200 cavity transits and corresponds to the point after which each 

simulation reaches a stable bandwidth, and a stable level of intensity.  

The results of figure 8d indicate that a large degree of beam diffraction can occur at 

the shortest diffraction lengths. The change in RMS width, with respect to 

increasing levels of beam diffraction, shows a similar trend to that of the non-cavity 

system, where the RMS width of the multi-frequency beam increases as the 

diffraction length is decreased. The overall trend is expected because applying 

boundary conditions does not directly influence beam diffraction. 

 

Figure 8d – The RMS width of the total multi-frequency beam taken at 200 
cavity transits for a range of diffraction lengths.  The widest beams are 
achieved for the shortest diffraction lengths, and can be several times wider 
than the initial Gaussian pump beam. 
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Figures 8e and 8f represent the bandwidth and total multi-frequency intensity data, 

corresponding to the data given in figure 8d. The comparison of figures 8d and 8e 

shows that whilst the RMS width can vary significantly between chosen diffraction 

lengths, the bandwidth level remains constant (at its maximum). 

 

 

 

 

 

 

 

 

 

 

 

The comparison of figures 8c and 8f indicate that the total intensity of the multi-

frequency beam changes as a function of diffraction length in a way which is 

opposite to that of the RMS width. The largest levels of intensity occur at the 

longest diffraction lengths, and correspond to the narrowest RMS beam widths.  

Significantly lower levels of intensity occur for shorter diffraction lengths because 

beam diffraction leads to diffractive spreading of the pump beam. Strong levels of 

diffraction decrease the overall growth rate of the sidebands, and leads to each 

sideband possessing a decreased level of intensity.   

 

 

 

Figure 8e – The cavity achieves its maximum level of bandwidth regardless of 
the level of diffraction length. 
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8.2 Transverse beam separation 

When considering realistic cavity mirrors, the damage threshold also needs to be 

considered. Throughout this thesis, pump powers have been deliberately specified 

to fall within the damage threshold limits of dielectric and metallic mirror coatings. 

The transverse analysis allows a possible method of reducing mirror and medium 

damage to be considered.  

The transition from a plane wave analysis to that of transverse UMRG allows the 

transverse separation of the applied pump lasers to be considered. This is achieved 

by ensuring that the peak intensities of the applied pump and first Stokes lasers do 

not fully overlap in the transverse plane when incident on the cavity mirror, or 

when travelling through the medium. 

 

Figure 8f– Very short diffraction lengths leads to a decreased level of 
normalised intensity contained within the cavity. When longer diffraction 
lengths are applied the spectrum contains much larger intensities. 
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The combined effect of beam separation and beam diffraction decreases the peak 

level of the multi-frequency intensity incident on the cavity mirror surface. This 

occurs because beam separation increases the RMS width of the multi frequency 

beam and decreases beam overlap. Including finite levels of beam separation could 

therefore decrease the chances of cavity mirror damage, whilst also preventing the 

breakdown of the Raman medium. 

The results given in figure 8g represent the bandwidth levels obtained when 

employing varying levels of transverse beam separation. The results imply that large 

transverse beam separations, up to the width of the pump, can be employed with 

little adverse effects on the level of bandwidth generated by the cavity. However, 

the rate of bandwidth growth does decrease slightly as larger beam separations are 

applied. 

At large beam separations, the peak intensities of the applied pump beams are 

separated by an appreciable distance, beam diffraction is therefore necessary to 

produce the beam overlap required and drive sideband growth. 

 

Figure 8g – The maximum bandwidth of the cavity can be generated for a 
very broad range of beam separations. The diffraction length is, 𝑳𝑫 = 𝟐𝟎.   
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Measuring the RMS width of beam profiles generated by the cavity, for a range of 

beam separations, yields the results given in figure 8h. These results, coinciding 

with the bandwidth results given in figure 8g, demonstrate a linear relationship 

between the final RMS width of the multi-frequency beam and the applied level of 

beam separation. The results of figures 8g and 8h imply that large beam 

separations can be applied (equal to the pump width), without any adverse effects 

on the final level of bandwidth. 

 

Figure 8h –The RMS width of multi-frequency beam generated after 𝟐𝟎𝟎 
cavity transits varies linearly with increasing levels of pump separation. The 
diffraction length is, 𝑳𝑫 = 𝟐𝟎.  
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CHAPTER 9 

(1+2)D Cavity UMRG 

The analysis of (1+1)D transverse UMRG in the previous chapter yielded some 

interesting results in terms of beam diffraction and transverse separation of the 

applied pump lasers . Very few experimental situations arise in which modelling 

only a single transverse dimension is applicable. This chapter will extend the 

analysis further and provide results obtained from the simulation of transverse 

UMRG in two transverse dimensions. 

The  (1+2)D UMRG equations (2.66) are simulated with cavity boundary conditions. 

Each of the results has been obtained for a chosen normalised cavity length of 

𝑍𝑐 = 0.05 , zero detuning, 𝛿 = 0 ,and zero dispersion 𝛾1 = 0. The normalised 

diffraction length is relatively short, 𝐿𝐷 = 20. The addition of a further transverse 

dimension significantly increases computational requirements. Solution of the 

equations requires the use of very large multi-dimensional arrays which can occupy 

vast amounts of a computer systems virtual memory. To reduce computational 

requirements, the number of sidebands computed by the simulation has been 

reduced by simulating the reflection profile given in figure 7e. 

The results of the previous chapter have already shown that a combination of 

transverse structure and beam diffraction can produce complex transverse intensity 

profiles at each sideband frequency.  Such intensity profiles arise from a lack of 

intensity confinement at the beam centre, where the peak intensity at the centre of 

the beam diffuses out across the transverse axis. This is in contrast to the plane 

wave analysis where the intensity is confined to a single point. The re-distribution 

of the pump intensity causes each point on the transverse axis to experience a 

different level of driving amplitude. Hence the level of sideband growth varies along 

the transverse axis. When the extension is made to include two transverse 

dimensions we find that a combination of transverse beam effects and cavity 

boundary conditions can produce complex transverse intensity profiles which can 

exhibit multiple ring structures of alternating high and low intensity. 
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Figure 9a provides examples of intensity profiles for a range of sideband amplitudes 

ranging from the 8th order Stokes sideband to the 3rd order anti-Stokes sideband. It 

is immediately apparent from these results that the Stokes wing of the spectrum 

carries the most intensity, signified by the brighter rings at the Stokes orders. Each 

Stokes sideband also possesses a wider beam profile than its anti-Stokes 

counterpart, the difference in beam diameters occurs because of a combination of 

the higher intensities present in the Stokes wing of the spectrum, and the 

frequency dependence of beam diffraction.  

Each component of the spectrum shown in figure 9a exhibits multiple rings of 

alternating high and low intensity which are approximately symmetric around the 

centre of the transverse axes.  

 

Figure 9a – Transverse intensity profiles for sidebands ranging from the 8th 
order Stokes to the 3rd order anti-Stokes sideband. These results were taken 
after 50 cavity transits with the parameters specified as 𝒁𝒄 = 𝟎.𝟎𝟓, 𝑳𝑫 = 𝟐𝟎 
and 𝜹 = 𝟎. It must be noted that the beam profiles are symmetric. 
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Figure 9a only shows a limited selection of the sidebands contributing to the level 

of bandwidth, however, the actual spectrum includes 23 sidebands of comparable 

intensity. Figure 9b shows the bandwidth generated by the cavity reaching a stable 

level, of 23 sidebands, after approximately 35  cavity transits. Comparing the 

results of figures 9b and 8a, from the previous chapter, shows that the same levels 

of bandwidth are achieved for (1+1)D and (1+2)D simulations. These results indicate 

that the addition of a further transverse dimension has very little effect on the 

overall level of bandwidth growth. 

Figures 9c and 9d provide results for the intensity of the multi-frequency beam, 

generated by the cavity, and its RMS width. Both figures indicate that a high 

intensity multi-frequency beam, many orders of magnitude larger than the initial 

pump beam, can be generated, and that the resulting beam reaches a fixed RMS 

width. These results imply that when the cavity length is much shorter than the 

beam diffraction length, such that  𝑍𝑐
𝐿𝐷
≪ 1,  a multi-frequency beam of fixed 

intensity and transverse profile can be generated by the cavity. 

 

Figure 9b – The bandwidth reaches a fixed level much like the results given 
for the plane wave and (1+1)D analysis. 
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Figure 9c – The total intensity contained within the multi-frequency beam is 
far greater than the applied pump intensity and reaches a stable level after 
25 cavity transits. 

 

 

Figure 9d – The RMS width of the multi-frequency beam reaches a stable 
level, implying that no further beam diffraction occurs after 35 cavity 
transits. 
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9.1 Transverse beam separation 

The notion of transverse beam separation was introduced in the previous chapter 

as a possible way of allowing higher intensity pump beams to be applied whilst 

avoiding possible damage to the coupling mirror of the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9e – Transverse intensity profiles for a range of sidebands ranging 
from the 8th order Stokes to the 3rd order anti-Stokes sideband. These results 
were taken after 50 cavity transits with the chosen parameters given as 
𝒁𝒄 = 𝟎.𝟎𝟓, 𝑳𝑫 = 𝟐𝟎 and 𝜹 = 𝟎 and an applied beam separation of 𝟎.𝟕𝟎 
between the pump and first Stokes beams. 
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The results presented in this section are achieved for a relatively large value of 

beam separation, 𝐿𝑆 = 0.70.  In the case of two transverse dimensions the beam 

separation corresponds to a radial distance between the peaks of the Gaussian 

shaped pump beams. Figure 9e includes intensity profiles for a range of sideband 

amplitudes ranging from the 8th order Stokes sideband to the 3rd order anti-Stokes 

sideband. These results were achieved using the same parameter regime as the 

results of figure 9a with the addition of transverse beam separation. 

There are some immediately apparent differences between figures 9e and 9a. The 

results imply that employing finite beam separations produces spectra in which the 

sideband beam profiles are no longer symmetric, with respect to the centre of the 

beam axis. Sidebands, such as the first Stokes sideband at  𝑗 = −1, can possess high 

intensity peaks at the edge of the beams, however, the peaks of each sidebands 

transverse profile do not overlap, such that the resulting multi-frequency beam has 

a smoother transverse intensity profile 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9f – With an applied beam separation of 𝟎.𝟕𝟎 the bandwidth still 
reaches a stable level which is slightly larger than the bandwidth shown in 
figure 9b. 
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Figure 9f shows bandwidth growth within the cavity when the above beam 

separation is applied and, for the chosen parameter regime, the results show that 

the introduction of finite levels of beam separation does not affect the overall 

bandwidth growth rate or final level of bandwidth. 

 

 

 

 

 

 

 

 

 

 

 

 

The multi-frequency beam generated by the cavity also reaches a maximum RMS 

width, which depends on the level of beam diffraction and level of applied beam 

separation. The comparison of figures 9d and 9g shows that beam separation 

increases the final RMS width in a way which appears to follow the linear increase 

shown in figure 8h, for the (1+1)D transverse UMRG equations. 

 

Figure 9g – With an applied beam separation of 𝟎.𝟕𝟎 the RMS width of the 
multi-frequency beam reaches a stable level. The final beam width is 
increased in proportion to the applied beam separation and remains wider 
than the beam width given in figure 9d. 
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CHAPTER 10 

Linear and nonlinear detuning 

The results of previous chapters have not included the effects of nonlinear detuning 

(Stark shift). Nonlinear detuning, or Stark shift, occurs when the intensities of the 

pump lasers (and resulting Raman spectra) are large enough to broaden/shift the 

Raman transition of the medium. This results in non-resonant excitation of the 

medium, therefore reducing the rate at which Raman scattering events occur. 

Throughout the following chapter, the effects of linear and nonlinear detuning will 

be explored, with specific emphasis on plane wave and transverse non-cavity 

UMRG.  

The detuning, including the nonlinear detuning, is given by the normalised UMRG 

equations (2.63) as 

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔�. 

The nonlinear component of the detuning is proportional to total multi-frequency 

intensity, and is scaled by a factor which contains the on-diagonal polarizability 

tensor components 

𝑇2I0 �
𝛼22−𝛼11

4ħ
�.  

An approximate value for the above scaling term can be calculated by using 

approximate values for the tensor components (which need to be inferred 

experimentally).  
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In the case of hydrogen we will choose to specify the value of the polarizability as: 

�
𝛼22 − 𝛼11

4ħ
� ≈ 3 × 10−4 𝑘𝑔−1𝑠2 

and specifying the level of intensity as I0 = 1 𝐺𝑊𝑚−2 and the dephasing time as 

𝑇2 = 2 𝑛𝑠 gives the scaling factor for the nonlinear detuning as 

 

𝑇2I0 �
𝛼22−𝛼11

4ħ
� ≈ 6 × 10−3. 

The nonlinear detuning is a unitless quantity and dimensionally consistent with the 

UMRG equations.  

From the scaling factor and the equation for the total detuning defined above it can 

be recognised that, for the choice of pump intensity, the nonlinear contribution to 

the detuning is significantly smaller than the linear contribution. It must be noted 

that for larger applied pump intensities the level of nonlinear detuning will reach a 

significant level. 

The nonlinear detuning influences the level of medium excitation,  

𝑃 = 1
(1+𝑖𝛿)

∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γjZ , 

such that large levels of detuning reduce the absolute level of medium excitation. 
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10.1 The non-cavity system (𝜸𝟏 = 𝟎,𝜹𝝎 = 𝟎) 

The non-cavity system will now be considered in the case of zero dispersion and 

zero linear detuning. The medium excitation becomes: 

𝑃 =
1

�1 + 𝑖T2I0 �
𝛼22 − 𝛼11

4ħ �∑ 𝐴𝑗𝐴𝑗∗𝑗 �
�𝐴𝑗𝐴𝑗−1∗

𝑗

 

 

𝑃(𝑍 = 0) =  1
1+𝑖6×10−3

 . 

therefore the medium excitation is initially subject to a small level of nonlinear 

detuning at 𝑍 = 0. Figure 10a shows that, under the influence of weak nonlinear 

detuning, the medium excitation amplitude grows as though the total level of 

detuning is zero. Hence, the data in figure 10a is indistinguishable from the zero 

dispersion, zero detuning data given earlier in chapter 6. 

 The matching data for the total intensity, provided in figure 10b, also indicates that 

small levels of nonlinear detuning have a negligible effect on the non-cavity system. 
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Figure 10a – The medium excitation amplitude is depleted as sidebands are 
generated. Although the simulation incorporated a finite level of nonlinear 
detuning, the results are indistinguishable from the zero detuning results. 

 

 

Figure 10b – The total level of intensity decreases as sidebands are 
generated. This data is also indistinguishable from the zero detuning results. 
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10.2 Finite linear and nonlinear detuning 

In the absence of nonlinear detuning the medium excitation can be shown to 

change symmetrically with respect to the sign of the applied level of linear 

detuning. Figure 10c shows the initial value of the medium excitation, 𝑃(𝑍 = 0), for 

a range of applied linear detuning, varying symmetrically about 𝑇2𝛿𝜔 = 0. 

 

 

 

 

 

 

 

 

 

 

 

  

When nonlinear detuning is taken into account the medium excitation can be 

shown to change asymmetrically with respect to the sign of detuning. Figure 10d 

shows the variation of 𝑃(𝑍 = 0), for much smaller values of linear detuning than 

those shown in figure 10c.  

Asymmetry arises from the positive contribution made by the nonlinear detuning. 

In other words the maximum level of medium excitation is achieved for a negative 

value of detuning, 𝑇2𝛿𝜔 = −6 × 10−3, which is equal in magnitude to the 

nonlinear contribution. 

 

Figure 10c – The initial level of medium excitation, at 𝒁 = 𝟎, varies 
symmetrically with respect to the sign of linear detuning. 
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The maximum rate of sideband growth is also achieved for a linear detuning of 

𝑇2𝛿𝜔 = −6 × 10−3 .  Therefore specific levels of linear detuning can be chosen to 

optimise the level of bandwidth, and do so by cancelling out the contributions of 

the nonlinear detuning. Employing the correct level of linear detuning ensures that 

the total detuning is close to zero during the initial stages of sideband growth. 

However, the actual difference in sideband growth rate is almost negligible for 

weak levels of nonlinear detuning.  

Although relatively weak levels of nonlinear detuning have been shown to provide a 

near negligible contribution to sideband growth, it will be shown throughout the 

following section that stronger levels of nonlinear detuning, and large intensities, 

can significantly affect bandwidth growth in the cavity system.  

 

 

Figure 10d – The medium excitation amplitude varies asymmetrically with 
respect to the sign of detuning. The vertical line represents the position of 
zero linear detuning. 
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10.3 Nonlinear detuning and the cavity system 

The nonlinear component of the detuning provides a relatively small contribution 

to the total level of detuning when compared to the linear component (at least for 

the chosen level of pump intensity). This means, in terms of the non-cavity results, 

that nonlinear detuning has an almost negligible effect on bandwidth growth. 

This is not the case in the cavity system where large intra-cavity intensities can give 

rise to a large nonlinear detuning. It is therefore important to consider nonlinear 

detuning and its effects on bandwidth growth within the cavity. The following 

results are gathered from simulations which model a cavity mirror with an infinitely 

broad reflection bandwidth and a uniform value of reflectivity, such that 

𝑅𝑗 = 0.99, 

𝑗 =  −∞, . . ,−1, 0, 1, … ,∞ .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10e – Very large bandwidths can be achieved in the cavity for a range 
of linear detuning. The normalised cavity length is  𝒁𝒄 = 𝟎.𝟏, the level of 
dispersion is zero, 𝜸𝟏 = 𝟎. A finite level of nonlinear detuning  (𝟔 × 𝟏𝟎−𝟑) is 
also employed. 
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It can be shown that large bandwidths can still be generated by the cavity, even 

under the influence of nonlinear detuning. Figure 10e provides an example of the 

levels of bandwidth generated in a cavity, with a normalised cavity length of 

𝑍𝑐 = 0.1, zero dispersion, 𝛾1 = 0  and a finite level of nonlinear detuning for a 

range of applied linear detunings. 

The bandwidths shown in figure 10e are similar to results achieved by simulations 

without nonlinear detuning (recall figure 6a). The levels of bandwidth, and the rate 

of bandwidth growth, have a slight asymmetric variation with respect to the sign of 

the applied linear detuning. However, in the case of figure 10e, it is clear that linear 

detuning has the strongest contribution to the total level of detuning, and therefore 

determines the rate of sideband growth. 

  

 

 

 

 

 

 

 

 

 

 

When greater levels of nonlinear detuning are considered (higher levels of pump 

intensity) the effects of nonlinear detuning become more pronounced. Figure 10f 

provides examples of bandwidth growth curves for three levels of nonlinear 

 

Figure 10f – Bandwidth growth for three levels of nonlinear detuning, 
𝟔 × 𝟏𝟎−𝟒 ,𝟔 × 𝟏𝟎−𝟑,𝟔 × 𝟏𝟎−𝟐, given as the blue, green and red traces, 
respectively. The normalised cavity length is 𝒁𝒄 = 𝟎.𝟏, and the linear 
detuning is 𝑻𝟐𝜹𝝎 = −𝟑. 
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detuning, 6 × 10−4, 6 × 10−3, 6 × 10−2 with a fixed level of linear detuning, 

𝑇2𝛿𝜔 =  −3.  

When the levels of nonlinear detuning are increased, the sideband growth rates are 

attenuated, and the maximum levels of bandwidth are also decreased. This is 

mirrored in the results of figure 10f which show that the largest levels of 

bandwidth, and fastest bandwidth growth rates, occur for weaker levels of 

nonlinear detuning. 

As with the non-cavity case, the attenuated bandwidth can be linked with a 

decreased level of medium excitation amplitude. 

 

10.4 Nonlinear detuning and gain suppression 

The gain suppression analysis derived in chapter 4, for finite linear detuning, 

𝑇2𝛿𝜔 ≠ 0, can be modified to include nonlinear detuning. This can be achieved by 

re-defining the detuning parameters, such that 

𝛿 = 𝑇2𝛿𝜔 → 𝛿𝑚 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗,𝑚(0) 𝐴𝑗,𝑚

∗ (0)𝑗 + 𝛿𝜔� , 

 

𝐷 = (1 + 𝛿)2 → 𝐷𝑚 = (1 + 𝛿𝑚)2 . 

 

The re-definition ensures that the detuning depends on the level of multi-frequency 

intensity defined at the start of each cavity transit. Employing these parameters 

also redefines the gain parameter, 𝐾±, such that  

𝐾𝑚± =  − (1+𝑖𝛿𝑚)�𝐴0,𝑚�
2
𝜀

𝐷𝑚
± (∝𝑅+ 𝑖 ∝𝐼)  .   

The real and imaginary contributions, ∝𝑅 and ∝𝐼,  to the gain parameter are given 

as 

 



 
CHAPTER 10: Nonlinear detuning 

 

145 
 

∝𝑅=

 1
√2
��(1−𝛿𝑚2 )�𝐴0,𝑚�
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∝𝐼=
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�

1
2

. 

 

The re-defined gain parameter, given above, now depends on the total intra-cavity 

multi-frequency intensity of the spectrum. This ensures that the level of gain is 

directly influenced by intra-cavity sideband growth.  

The intensities of the Stokes and anti-Stokes sidebands can suppress exponential 

Stokes gain by increasing the level of nonlinear detuning. This is in addition to the 

strong levels of gain suppression already induced by cavity pumping (as discussed in 

chapters 3 and 4). 

However, for relatively weak pump intensities, 𝐼0, the nonlinear detuning provides 

a negligible contribution to the gain parameter, which means that under most 

parameter regimes it is acceptable to discard the nonlinear component of the 

detuning altogether. 
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10.5 Linear and nonlinear detuning in transverse UMRG 

The above results have shown that nonlinear detuning can influence sideband 

growth (bandwidth growth), particularly when large initial pump intensities are 

applied. However, the most interesting aspects of linear and nonlinear detuning are 

only made apparent when transverse UMRG is considered. 

The remainder of this chapter considers the effects of linear and nonlinear detuning 

on non-cavity (1+1)D transverse UMRG. 

When the electric field components possess a finite transverse structure, it can be 

shown that the nonlinear component of the detuning also takes on a transverse 

structure, which is proportional to the total multi-frequency intensity, such that 

𝛿𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑥,𝑍 = 0) =  6 × 10−4 𝐽(𝑥,𝑍 = 0)  

where 𝐽(𝑥,𝑍 = 0) is the transverse intensity profile of the multi-frequency beam 

defined at the beginning of the Raman medium.  

 

 

 

 

 

 

 

 

 

 
 

Figure 10g – The nonlinear detuning has a small magnitude but possesses a 
finite transverse structure. 
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Figure 10g gives an example of the transverse profile of the nonlinear detuning at 

𝑍 = 0, and figure 10h provides an example of the transverse profile possessed by 

the total detuning when a positive linear detuning is specified. 

The results of figures 10g and 10h demonstrate that the nonlinear detuning 

possesses a finite transverse structure which matches that of the total multi-

frequency intensity (but with a much smaller amplitude). The transverse structure 

also depends on the sign of the applied linear detuning.  

 

 

 

 

 

 

 

 

 

 

 

When nonlinear detuning is excluded from simulations, the transverse structure of 

the medium excitation depends entirely on the structure of the sideband 

amplitudes. However, when nonlinear detuning is taken into account, the medium 

excitation is also scaled by a term proportional to the total transverse intensity. In 

this case the medium excitation takes on a transverse structure which can be 

modified by changing the value of the linear detuning.  

The medium excitation at the beginning of the Raman medium is defined as 

 

Figure 10h  – This figure provides the magnitude of the total detuning, for a 
positive level of linear detuning. It is clear that the nonlinear detuning 
contributes to the transverse structure of the detuning profile.  
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𝑃(𝑍 = 0) =  𝐴0(𝑥,𝑍=0)𝐴−1∗ (𝑥,𝑍=0) 
1+𝑖(𝛿𝜔+6×10−4𝐽(𝑥,𝑍=0)) . 

The above equation indicates that the overall structure of the medium excitations 

transverse profile depends on the total level of detuning. Using the above equation 

we can calculate the transverse profile of the medium excitation, the results of this 

are given in figure 10i. 

 

 

 

 

 

 

 

 

 

 

 

 

The results of figure 10i indicate that specifying levels of linear detuning with 

different signs can alter the shape of the medium excitations transverse profile. A 

positive level of linear detuning produces a flat transverse profile with a positive 

peak at the centre of the axis, and a negative detuning produces a flat profile with a 

depression around the centre of the beam axis.  

 

 

Figure 10i  – The medium excitation shares a profile similar to that of the 
total detuning given in figure 10h.  It is clear that a negative linear detuning 
can decrease the level of the medium excitation around the centre of the 
beam axis. 
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The nonlinear component of the detuning provides a relatively small contribution 

to the transverse profile of the total detuning. However, the overall level of 

detuning can be shown to influence the growth of multi-frequency beam profiles. 

Figure 10j gives three examples of transverse multi-frequency beam profiles, for a 

negative detuning, 𝑇2𝛿𝜔 = −0.4, zero detuning, 𝑇2𝛿𝜔 = 0, and a positive 

detuning, 𝑇2𝛿𝜔 = 0.4, taken after a normalised propagation distance of 𝑍 = 25. 

The normalised level of dispersion and diffraction length, specified for each 

simulation, are 𝐿𝐷 = 200, and 𝛾1 = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

The three specified levels of detuning, given above, result in the generation of 

multi-frequency beams with vastly different transverse intensity profiles. The 

results show that a level of negative detuning produces a beam profile which is 

narrower than the zero detuning case, and conversely, a positive detuning produces 

a multi-frequency beam with a much broader transverse profile.  

 

Figure 10j  – This figure presents, multi-frequency, transverse intensity 
profiles for three levels of detuning, 𝑻𝟐𝜹𝝎 = −𝟎.𝟒 (blue trace), 𝑻𝟐𝜹𝝎 = 𝟎 
(green trace) and 𝐓𝟐𝜹𝝎 = 𝟎.𝟒 (red trace). The narrowest and broadest 
profiles occur for negative and positive detuning, respectively. 
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The three profiles given in figure 10j have RMS widths of 2.7840 (blue trace, 

𝑇2𝛿𝜔 = −0.4), 2.9760 (green trace, 𝑇2𝛿𝜔 = 0) and 4.4640 (red trace, 𝑇2𝛿𝜔 = 0.4).  

The profiles beam widths indicate an asymmetric relationship between the sign of 

the applied linear detuning and the width of the multi-frequency beam. 

The effects of detuning can be explored further by considering the transverse 

intensity distribution of sidebands contributing to the total multi-frequency beam.  

Figures 10k, 10l and 10m represent the transverse intensity distribution of the 

spectra which contribute to the multi-frequency intensity profiles given in figure 

10j. Hence, figures, 10k, 10l and 10m represent sideband spectra generated after a 

propagation distance of 𝑍 = 25 for a negative detuning, 𝑇2𝛿𝜔 = −0.4, zero 

detuning, 𝑇2𝛿𝜔 = 0, and a positive detuning, 𝑇2𝛿𝜔 = 0.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10k  – This figure represents the transverse intensity profile of each 
sideband. The sideband index represents each order of Stokes, 𝒋 < 0, and 
anti-Stokes, 𝒋 > 0, sideband.  The results are taken after a normalised 
propagation distance of 𝒁 = 𝟐𝟓, for a diffraction length of 𝑳𝑫 = 𝟐𝟎𝟎 and 
linear detuning, 𝑻𝟐𝜹𝝎 =  −𝟎.𝟒. 
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Figure 10l  – This figure represents the transverse intensity profile of each 
sideband. The sideband index represents each order of Stokes, 𝒋 < 0, and 
anti-Stokes, 𝒋 > 0, sideband.  The results are taken after a normalised 
propagation distance of 𝒁 = 𝟐𝟓, for a diffraction length of 𝑳𝑫 = 𝟐𝟎𝟎 and 
linear detuning, 𝑻𝟐𝜹𝝎 =  𝟎. 

 

 

Figure 10m  – This figure represents the transverse intensity profile of each 
sideband. The sideband index represents each order of Stokes, 𝒋 < 0, and 
anti-Stokes, 𝒋 > 0, sideband.  The results are taken after a normalised 
propagation distance of 𝒁 = 𝟐𝟓, for a diffraction length of 𝑳𝑫 = 𝟐𝟎𝟎 and 
linear detuning, 𝑻𝟐𝜹𝝎 =  𝟎.𝟒. 
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The spectra shown in figures 10k, 10l and 10m contain roughly the same number of 

sideband components, however, each spectra has a unique shape which is 

determined by the sign of the applied linear detuning. 

In the case of negative detuning, shown in figure 10k, the highest order sidebands 

have the narrowest transverse profiles with high intensity peaks located at the 

centre of the axis. The lower order sidebands have much wider beam profiles with a 

more even intensity distribution across the transverse plane. 

When no linear detuning is employed the spectrum takes on a different form, 

shown in figure 10l. The results of figure 10l show an even distribution of energy 

between each wing of the sideband spectrum and that each sideband, except for 

sidebands located on the very edge of the spectrum, possesses a similar transverse 

intensity profile. 

A positive detuning gives rise to a spectrum of sidebands with extremely broad 

transverse intensity profiles. The broadest profiles occur at high order Stokes 

sidebands and the narrowest occur at higher order anti-Stokes sidebands. In the 

specific case of figure 10m each sidebands transverse profile consists of several, 

evenly distributed, high intensity peaks. 

 

10.6 Beam narrowing and beam broadening 

Reference (85) presents theoretical and experimental results which indicate that 

Raman self focussing (and defocusing) can occur in an adiabatically pumped Raman 

medium. The results were achieved by employing two circularly, and oppositely, 

polarised pump beams (pump and first Stokes) to adiabatically pump the medium 

for a maximum level of coherence. The pump beams were chosen to be oppositely 

polarised to inhibit the generation of higher order Stokes and anti-Stokes radiation. 

The results, given in reference (85), show that beam narrowing (self focussing) 

occurs when positive levels of detuning are specified, and that beam broadening 

(self defocusing) also occurs for  negative levels of linear detuning. 



 
CHAPTER 10: Nonlinear detuning 

 

153 
 

The authors attributed self focusing to the transverse structure and sign of the 

molecular excitation amplitude, which can be either in phase or in anti-phase with 

respect to the two photon driving amplitude (85), and contributes to the refractive 

index of each frequency component (which varies transversely). 

Two-frequency simulations (including only the pump and first Stokes amplitudes) of 

the steady state transverse UMRG equations have been found to be  in agreement  

with the experimental results given in reference (85). The results of such 

simulations show that positive (negative) levels of linear detuning can decrease 

(increase) the RMS width of a two-frequency beam during propagation through the 

Raman medium. Variation in the RMS width is demonstrated in figure 10n, where 

the RMS beam width is taken after a propagation distance of 𝑍 = 25, for a range 

of positive and negative linear detunings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10n  –  Two-frequency simulations yield results for the RMS width of a 
two-frequency beam taken, after a distance normalised distance of 𝒁 =
𝟐𝟓, for a range of applied levels of linear detuning. 
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The results of figure 10n show a variation with respect to detuning which is in 

agreement with the results given in reference (85). If the multi-frequency results of 

section 10.5 are considered, it can be recognised that levels of positive and 

negative detuning have opposite effects on two-frequency (pump, and first Stokes) 

and multi-frequency beams. 

The above statement can be clarified further by considering the RMS widths of 

multi-frequency beams, achieved in multi-frequency simulations of transverse 

UMRG. Figure 10o covers a smaller parameter regime than figure 10n but 

demonstrates that a negative (positive) detuning causes the generation of a multi-

frequency beam which is narrower (wider) than a beam achieved for zero detuning.    

 

  

 

 

 

 

 

 

 

 

The difference in results between the two-frequency and multi-frequency beams 

arises from phase contributions of each sideband to the medium excitation. When 

positive and negative levels of detuning are employed, the medium excitation 

amplitude evolves to have substantially different transverse profiles, such that a 

negative (positive) detuning causes large intensities build up at the centre (edge) of 

the beams transverse profile. 

 

Figure 10o  –  Multi-frequency simulations yield results for the RMS width of 
the multi-frequency beam, taken after a normalised distance of 𝒁 = 𝟐𝟓, 
for a range of applied levels of linear detuning. 
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Figure 10p  – When a negative linear detuning, 𝑻𝟐𝜹𝝎 = −𝟎.𝟒, is employed 
the medium excitation amplitude remains axially confined during 
propagation, over a normalised distance of 𝒁 = 𝟐𝟓. 

 

 

Figure 10q  – When a positive linear detuning, 𝑻𝟐𝜹𝝎 = 𝟎.𝟒, is employed the 
medium excitation amplitude carries large peaks at the edge of the 
transverse beam, over a normalised distance of 𝒁 = 𝟐𝟓. 
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 Figures 10p and 10q show how the transverse profile of the medium excitation 

amplitude (real component) evolves over a normalised propagation distance of 

𝑍 = 25 for 𝑇2𝛿𝜔 = −0.4 and  𝑇2𝛿𝜔 = 0.4, respectively. 

A positive value of detuning causes the generation of a medium excitation with 

large peaks at the edge of its transverse structure, and therefore drives the 

generation of sidebands with large transverse profiles 

A negative value of detuning causes the generation of a medium excitation with a 

peak centred on the transverse axis. In this case, the medium excitation drives the 

generation of sidebands with peak intensities which are confined to the centre of 

the transverse axis. 

The results given above show a strong level of agreement with the experimental 

results of reference (85) and indicate that beam focussing and defocusing can occur 

in the steady state regime (as well as the adiabatic regime (85)). The results also 

show that beam focusing and defocusing can influence sideband growth and the 

RMS width of the resulting multi-frequency beam. 

The closing sections of this chapter represent the foundations for further work to 

be carried out in the area of transverse UMRG and cavity enhanced transverse 

UMRG, which will now be discussed in the concluding chapter. 
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CHAPTER 11 

Conclusion 

To conclude this thesis two questions will be answered: what are the main 

achievements of this thesis, and what further work can be achieved.  

In answer to the first question we can begin by listing the main achievement in the 

order in which they occur throughout this thesis. 

1) The normalised plane wave steady state UMRG equations have been 

derived in Bloch form, resulting in a set of coupled (parametric and non-

parametric coupling) envelope equations. The envelope equations are 

accompanied by medium equations which describe the strength of the 

medium excitation, which drives sideband growth, and the population 

dynamics of the Raman transition. 

 
The transverse Raman equations are stated and the accompanying, 

frequency dependent, diffraction lengths specified and normalised in terms 

of the gain length product of the Raman transition. 

 
2) Advanced numerical methods have been applied for the solution of the 

UMRG equations. Detailed descriptions of the methods have been provided 

in appendix B, they have been left out of the main thesis to save space and 

allow continuity between chapters.  

 
The numerical methods required for the simulation of the transverse (1+1)D 

and (1+2)D equations have been discussed in detail. Specific emphasis has 

been placed on the 3rd order Runge-Kutta method, Crank-Nicolson finite 

difference method and the alternating direction implicit (ADI) finite 

difference method.  
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The splitting of the transverse UMRG equations into their linear and 

nonlinear components has been described in detail. Each finite difference 

method, required for the integration of the linear components of the UMRG 

equations, has been derived in the form of tridiagonal matrix equations.  

 
An example of the 3rd order Runge-Kutta and ADI integration routines have 

also been provided in appendix B, together with a discussion on their 

implementation regarding the full (1+2)D transverse integration code. 

 
3) A gain suppression analysis has been derived which captures the growth of a 

three wave subsystem of the UMRG equations in terms of parametric gain. 

The analysis constitutes a set of linear solutions the subset of the UMRG 

equations involving the pump, first Stokes and first anti-Stokes sidebands. 

The gain parameter is found to be a function of medium and cavity 

parameters, and defines the level of sideband amplification within the 

cavity. 

An approximate form of the gain suppression equations has been found in 

the small dispersion regime, which yields a set of recurrence relations. The 

approximate solutions can be used to describe how parametric Stokes gain 

and sideband growth are suppressed in the cavity boundary conditions. In 

the limit of 𝑅0 = 1  the Stokes amplitude has been shown, analytically and 

numerically, to reach a steady state. In the limit 𝑅0 < 1 the Stokes intensity 

has also been shown to reach peak value, after which the intensity 

decreases as a function of reflectivity, to zero intensity. 

The limits of the gain suppression analysis have been studied in terms of a 

range of parameters. The analysis has been shown to break down for 

parameter regimes which produce high intensity sidebands, specifically in 

the regimes of large levels of normalised dispersion, long cavity lengths and 

large Stokes seed amplitudes. The breakdown of the analysis has been 

described in terms of the nonlinearity of UMRG and non-parametric growth 

mechanisms. 
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4) The cavity gain suppression analysis has been extended to include finite 

levels of linear detuning and captures the affect of detuning on the gain 

parameter.  An approximate solution has been derived for the small 

dispersion regime which exhibits similar results to the zero detuning 

derivation, except for a scaling factor proportional to the inverse of the 

detuning squared.  

 
The form of the gain parameter suggests that Stokes gain can be optimised 

by the choice of specific levels of linear detuning. However, it has been 

shown that, in the case of the cavity system, pumping drives the gain 

parameter off its optimum level within a few cavity transits.  

 
5) Multi-frequency simulations of the cavity system, with only a single pump 

beam, have been discussed. Results have been presented which show the 

single pump system to be incapable of generating sufficient bandwidth to 

support the synthesis of femtosecond pulses.  The gain suppression analysis 

has been shown, for certain parameter regimes, to accurately describe some 

of the main results of the multi-frequency simulations. 

 

6) Multi-frequency simulations of UMRG in a symmetrically pumped cavity 

have shown that very large bandwidths can be achieved which can cover 

many octaves.  

 
The choice of cavity mirror reflectivity and the product of normalised 

dispersion and cavity length have been shown to be the main parameters 

which limit the maximum level of bandwidth. Results have also been 

presented which indicate that the bandwidth, and intensity of the resulting 

spectrum, can be optimised by finite levels of linear detuning and non-unity 

pumping ratios (non-symmetric pumping). 

 

7) Realistic cavity mirror profiles have been modelled, and the results of multi-

frequency simulations have shown the cavity to be capable of generating a 

spectrum of high intensity sidebands (covering the reflection bandwidth of 
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the mirror). The best results have been achieved for cavities of with 

relatively short normalised cavity lengths, where the cavity length can be 

several orders of magnitude shorter than typical non-cavity Raman 

experiments. 

 
Spectra generated by the cavity have been shown to be suitable for the 

synthesis of trains of pulses with gigahertz repetition rates. Examples of 

pulses have been provided which have durations ranging from tens of 

attoseconds in duration to a few femtoseconds. Such pulses can have peak 

powers, ranging from tens of gigawatts to a few terawatts, and low average 

powers. The duration and power of such pulses have been shown to depend 

on the level of applied pump intensity, normalised dispersion, linear 

detuning and pumping ratio. It has been shown that limited reflection 

bandwidths of current commercially available coupling mirrors restricts the 

minimum achievable duration and intensity of pulses generated by the 

cavity. 

 
In the ideal case, with a coupling mirror with an ultra-broadband reflectivity 

profile and zero medium dispersion, the cavity has been shown to be 

capable of generating sufficient bandwidth to support the synthesis of ultra-

short pulses, ~60 attoseconds, with very high peak power densities 

70 𝑇𝑊𝑐𝑚−2. 

 

8) A hybrid Runge-Kutta  / finite difference method has been employed for the 

simulation of the (1+1)D and (1+2)D transverse UMRG equations. Results of 

simulations have demonstrated the generation of stable frequency spectra, 

with each sideband possessing a complex transverse structure and a large 

total intensity.  

The structure of each sideband’s transverse profile has been shown to occur 

as a result of the transverse variation of the medium excitation variable, and 

the level of diffraction experienced by the multi-frequency beam.  
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The results have also demonstrated that in particular parameter regimes, 

such as long diffraction lengths and short cavity lengths, the resulting multi-

frequency beam can reach a fixed RMS width and intensity profile. This has 

been shown to occur because of pumping and losses at the coupling mirror, 

which results in the largest levels of intensity occurring at the centre of the 

beam axis. 

 
9) Nonlinear detuning has been shown to have little effect on the levels of 

bandwidth generated by the non-cavity and cavity systems, unless very large 

pump intensities are employed (nonlinear detuning is proportional to the 

pump intensity, 𝐼0). 

 

Results of simulations of non-cavity transverse UMRG have demonstrated 

that beam narrowing and broadening can be induced by finite levels of 

linear detuning.  Simulations which include only two frequency components 

(pump and first Stokes) show that beam narrowing (broadening) occurs for 

positive (negative) levels of linear detuning, whereas, multi-frequency 

simulations demonstrate a relationship which is opposite to the two-wave 

case. 

 
In summary the plane wave analysis of cavity enhanced UMRG has been shown to 

be capable of generating bandwidths suitable for the synthesis of ultra-short pulses 

of high peak power and gigahertz repetition rates (equal to the Raman transition 

frequency). The results of transverse UMRG have been shown to offer agreement 

with the plane wave results, even when moderate levels of beam diffraction are 

considered. 
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Possible further work in extension to the work presented in this thesis includes 

 

1) Further characterisation of non-cavity and cavity transverse UMRG in terms 

of medium and cavity parameters, diffraction and transverse beam 

separation. The effects of curved cavity mirrors and the resulting beam 

focusing and defocusing also need to be considered. 

 
2) Nonlinear and linear detuning also needs further consideration in terms of 

Raman self focusing and defocusing effects.  The effects of detuning on 

cavity enhanced transverse UMRG is of particular interest, where beam 

focusing could offset the diffraction of the resulting multi-frequency beam. 

 
3) The plane wave results could be extended to cover various Raman media, or 

other discrete transitions in hydrogen and atmospheric nitrogen. The aim is 

to further generalise the conclusions made in this thesis. A broad selection 

of suitable Raman media would enable peak pulse powers, repetition rates 

and pulse durations to be tailored, and optimised, for specific applications. 

Femtosecond pulses could be made available which have central 

wavelengths ranging from the infra-red to the ultra-violet regions of the 

electromagnetic spectrum.   

 
4) Transient UMRG in the ring cavity context could also be analysed with 

specific emphasis on the highly transient regime 𝑡𝑝 ≪ 𝑇2 where few 

nanosecond pulses are used to pump the Raman medium. The analysis 

could also then be extended to include population dynamics of the exploited 

Raman transition, therefore capturing dynamical medium effects. 
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As a final note, it has been made clear throughout this thesis that to achieve the 

shortest possible pulses using cavity confined UMRG (possibly of attosecond 

duration), cavity mirror technology requires further developments to produce 

dielectric cavity mirrors with much broader reflectivity profiles. 

 
Such developments have been made to produce optical components suitable for 

use with other femtosecond laser systems, such as the Ti:sapphire laser. If similar 

efforts are placed on the development of mirror coatings suitable for cavity 

enhanced UMRG then the synthesis of trains of high power pulses, of attosecond 

duration, could be made possible. 
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APPENDIX A 

Equations (2.61) are more easily integrated in their dimensionless form. 

Choosing:  

𝐹𝑗(𝑧, 𝑡) = 𝐹0(0,0)𝐴0(𝑧, 𝑡) = 𝐹0𝐴0 ,                         A.1 

𝛽 = 𝜔0𝜋𝑁𝛼12
𝑐

 ,        A.2 

and defining the gain length product as:  

𝑍 = g|𝐹0|2𝑧 =  gI0z .             A.3 

The field equation from equations (2.61) can be re-written in terms of A.2 and A.3 

as: 

 gI0
𝜕𝐴𝑗
𝜕𝑍

= 𝛽 𝜔𝑗

𝜔0
�𝑞∗𝐴𝑗+1𝑒

−𝑖
Δj+1
gI0

𝑍 − 𝑞𝐴𝑗−1𝑒
𝑖
Δj
gI0

𝑍� ,                        A.4 

where the normalised mistuning can be defined as: 

γj = Δj
gI0

 ,              A.5 

    gI0
𝜕𝐴𝑗
𝜕𝑍

= 𝛽 𝜔𝑗

𝜔0
�𝑞∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑞𝐴𝑗−1𝑒𝑖γj𝑍� .          A.6 

Through the selection of:  

𝑞 = 𝐶𝑃(𝑍, 𝑡)     A.7  

and using equations A.1-A.5 the equation for the medium dynamics of the system 

(2.61) can be re-written as: 

�𝑇2
𝑡𝑝
� 𝜕𝑃
𝜕𝜏

= −(1 + 𝑖𝛿)𝑃 + 𝛼12𝑇2I0
2ħ𝐶

∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γj𝑍 ,      A.8 

and if the units are chosen such that 𝛼12𝑇2I0
2ħ𝐶

≡ 1 hence 𝐶 = 𝛼12𝑇2I0
2ħ

 and equations 

A.6 and A.8 become: 



 
APPENDIX A 

165 
 

    gI0
𝜕𝐴𝑗
𝜕𝑍

= 𝛽𝐶 𝜔𝑗

𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍� ,         A.9 

�𝑇2
𝑡𝑝
� 𝜕𝑃
𝜕𝜏

= −(1 + 𝑖𝛿)𝑃 + ∑ 𝐴𝑗𝐴𝑗−1∗
𝑗 𝑒−𝑖γj𝑍 .         A.10 

Choosing the units such that gI0 ≡ 2𝛽𝐶 so that the field equation takes its final 

dimensionless form: 

    
𝜕𝐴𝑗
𝜕𝑍

= 𝜔𝑗

2𝜔0
�𝑃∗𝐴𝑗+1𝑒−𝑖γj+1𝑍 − 𝑃𝐴𝑗−1𝑒𝑖γj𝑍� .  A.11 
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APPENDIX B 

This appendix contains a description of the numerical methods employed for the 

simulation of the UMRG equations. Basic versions of the one dimensional plane 

wave and (1+2)D  MATLAB codes are provided. For the sake of saving space the 

initially specified parameters of the simulation have been removed. 

 Numerical Methods 

The code written to simulate a Raman ring cavity in one dimension was produced 

using the MathWorks matlab programming environment. The system of steady 

state, plane wave coupled multi-frequency Raman equations, (2.63), can be solved 

using built in matlab integration functions such as ODE45 and ODE113. 

ODE45 is a one step solver which uses the explicit Runge-Kutta 4th /5th order 

formula to solve ordinary differential equations to both 4th and 5th order accuracy. 

The solver is adaptive and can choose an appropriate step size to control the error 

in the 4th order solution, and does so by comparing the 4th and 5th order solutions.  

If the measured error of a solution is greater than the tolerances specified by the 

user, then the solver will reduce its step size to control the error. The step size can 

also be increased if the solution has higher accuracy than the specified tolerance 

(80). 

ODE113 is a variable order Adams-Bashforth-Moulton solver which can be more 

efficient than ODE45 at stringent tolerances, or when the systems of equations are 

computationally expensive to evaluate. This solver gives solutions which can be up 

to 13th order accurate and can also vary its step size to maintain error tolerances. 

The overall accuracy of the solutions given by these solvers depends on both the 

relative and absolute error tolerance specified for the Integration. The absolute 

error tolerance defines the maximum allowable error of a solution, and the relative 

error tolerance defines how large the error can be relative to the correct value of 

the solution.  
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At stringent error tolerances ODE113 is more efficient than ODE45 and in the case 

of the plane wave UMRG equations used throughout this thesis both methods offer 

similar levels of accuracy and speed.  

The inbuilt Matlab ODE solvers offer levels of accuracy and computational 

efficiencies which are hard to achieve with home built ODE solving software 

(without great difficulty). Therefore the Matlab ODE solvers are to provide 

extremely accurate solutions for the plane wave UMRG equations. 

 

The plane wave code 

This section of code generates the initial input vector containing the initial 

amplitudes of each frequency component: 

Ain = zeros(length(n),1); 

Ain(ipump) = Apump; 

Ain(iStokes) = AStokes; 

Aout(1,:) = Ain.'; 

 

A vector containing the frequency of each sideband is generated, the units of 

frequency are in 𝑐𝑚−1: 

 

omega       =   omega0 + n*omegaR; 

C           =   omega/2/omega0/epsilon; 

 

The dispersion coefficients for each frequency component can be calculated using a 

simple Cauchy type equation or a Sellmeier type equation: 

gamma = (n*gamma1.*(1 + (n-1)*epsilon/2)); 

Gamma1 = zeros(size(gamma)); 

Gamma1(1:length(gamma)-1) = gamma(2:length(gamma))/epsilon; 

Gamma2 = gamma/epsilon; 



 
APPENDIX B 

168 
 

The tolerances of the integration routine are defined before the routine is 

performed, through the inbuilt function “options”: 

err = ones(nmax+nmin+1,1)*1e-10; 

options = odeset('RelTol',1e-6,'AbsTol',err);%,'MaxStep',1e-6); 

 

The main loop integrates the set of UMRG equations defined by “ODEcwUMRG” 

over the specified cavity length and repeats for a number of cavity transits specified 

by “Ntrans”. After the integration is performed the resulting set of amplitudes are 

subject to the cavity boundary conditions, such as cavity mirror losses and pumping 

at the pump and first Stokes frequencies. 

The function to be integrated ‘ODEcwUMRG.m’ is given at the end of this section. 

for j = 1:Ntrans+1 

(u,A) = ode45('ODEcwUMRG',u,Ain,options,nwave,Delta,C,Gamma1,Gamma2); 

Aout(j+1,:) = A(3,:); 

Aout(j+1,:) = R*Aout(j+1,:); 

Aout(j+1,ipump) = exp(i*phiP)*Aout(j+1,ipump) + Apump; 

Aout(j+1,iStokes) = exp(i*phiS)*Aout(j+1,iStokes) + AStokes;    

Ain = Aout(j+1,:).';    

end 

The set of amplitudes which occur at the end of a cavity transit can be used to 

calculate the frequency bandwidth of the Raman spectra. The calculated frequency 

bandwidth is a good comparative measure for how the frequency spectrum grows 

over each cavity transit, and provides a standard which can be used to compare 

different parameter regimes.  
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We have chosen to define the bandwidth as the number of frequency components 

which have intensities  ≥  |𝐴0(𝑍 = 0)|2

100
 , where |𝐴0(𝑍 =  0)|2  is the initial normalised 

pump intensity at the start of the first cavity transit: 

for k = 1:Ntrans+1 

s1 = find(abs(Aout(k,:)).^2 >= 1/100);    

BW(k) = length(s1);  

end 

 

The wave vector mismatch (dispersion) parameters described above can be 

determined from a Cauchy type dispersion equation (74). The levels of dispersion 

experienced by each frequency component can be determined from the 

fundamental dispersion between the pump and first Stokes components.   

An alternative approach to the Cauchy type equation is to employ a Sellmeier type 

equation (78), this can provide a more accurate representation of the levels of 

dispersion at high order anti-Stokes sideband frequencies. The increased accuracy 

arises from correction terms for absorption resonances of the medium.  

In the case of Sellmeier dispersion the refractive index is modelled using: 

𝜇𝑗 = 1 + 𝛿0Ω0d/(Ω02 − 𝜔𝑗2) , 

where 𝛿0 = 1.4 𝑥 10−4𝑎𝑚𝑎𝑔𝑎𝑡−1, Ω0
2𝜋𝑐

= 1.17 𝑥 10−5𝑐𝑚−1  (78) is a resonant 

frequency of the medium, 𝑑 is the gas density of the medium and 𝜔𝑛 is the 

frequency of the Raman sideband. Both types of dispersion equation are available 

for use within the plane wave code and, when considering limited bandwidths, both 

offer similar levels of accuracy. 
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The function ODEcwUMRG.m which is called by the main plane wave cavity code is 

integrated using an inbuilt Matlab integration routine such as ODE45 (as described 

at the start of the appendix). 

 

 

 

 

 

 

 

 

 

 

 

Solving the transverse UMRG equations 

The transverse Raman (UMRG) equations (2.65) are to be solved using a hybrid split 

step Runge Kutta / finite difference scheme. The transverse components of the 

(1+1)D equations are solved by employing a Crank-Nicolson scheme (82, 83), and 

the (1+2)D equations are to be solved using an alternating direction (ADI)  implicit 

finite difference approach (84).   

The Runge Kutta integration method (79, 80, 81), employed in the transverse 

simulations, is third order accurate in the propagation direction, and the finite 

difference schemes are second order accurate in each set of coordinates. 
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The hybrid method requires the UMRG envelope equations to be split into both 

their linear and nonlinear components. The linear components form a set of 1D or 

2D equations, given as 

𝜕𝐴𝑗
𝜕𝑍

= 𝑖𝑑𝑗∇T2𝐴𝑗 ,     (B3.1) 

where equation (B3.1) is just a wave equation and can be solved using numerous 

integration methods of varying accuracy and efficiency. 

The hybrid method requires that the integration be split into two steps, where the 

first step deals with the integration of the nonlinear components of the UMRG 

equations. The solution is then propagated over the transverse coordinates using a 

finite difference scheme, and the output is used as initial conditions, for the 

solution of the nonlinear components, over the final half step.  The total process 

results in the linear and nonlinear components of the UMRG equations being 

propagated over a full step in the longitudinal coordinate. 

 

Crank-Nicolson 

Finite difference methods approximate partial derivatives of a function, 𝑢𝑖𝑗𝑛 , on a 

set of grid points in terms of finite difference expressions: defining a three 

dimensional grid  (𝑖 × 𝑗 × 𝑛) where 𝑖, 𝑗 and 𝑛 correspond to units of 𝑋, 𝑌 and Z 

forming the spatial grid. 

By first focussing on the (1+1)D form of equation (B3.1) and choosing an arbitrary 

initial grid point, the derivatives can be defined  as: 

𝑑𝑢
𝑑𝑍

= 𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑧
 , 

𝑑2𝑢
𝑑𝑋2

= 𝑢𝑖+1
𝑛 −𝑢𝑖−1

𝑛

∆𝑥2
. 

Where ∆𝑧 and ∆𝑥2 are the step sizes in the Z and X directions, respectively. 
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The above differences are centred on an arbitrary grid point to a second order 

accurate approximation. Substituting the above differences into equation (B3.1) 

results in an explicit expression for 𝑢𝑖𝑛+1 in terms of known 𝑢𝑖𝑛’s. The resulting 

expression is easy to implement but has an unstable solution unless the ratio, ∆𝑧
∆𝑥2

, is 

small.  

The instability problem can be overcome by instead considering implicit finite 

difference scheme such as the Crank-Nicolson scheme, which happens to be 

unconditionally stable (for all selections of ∆𝑧
∆𝑥2

) and is second order in both the 𝑍 

and 𝑋 directions. 

The expressions defining the finite differences in the Crank-Nicolson scheme are 

given as: 

𝑑𝑢
𝑑𝑍

= 𝑢𝑖
𝑛+1−𝑢𝑖

𝑛

∆𝑧
 , 

𝑑2𝑢
𝑑𝑋2

= 𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛 +𝑢𝑖+1

𝑛+1−2𝑢𝑖
𝑛+1+𝑢𝑖−1

𝑛+1

2∆𝑥2
 . 

The above difference approximations are centred about an intermediate spatial 

step, 𝑍 + ∆𝑧  and therefore provide an average value for the derivatives. 

Substituting the above expressions into equation (3.1) results in a system of linear 

equations which can be expressed in terms of a tridiagonal matrix (82): 

⎣
⎢
⎢
⎢
⎡
𝐵0 𝐶0 0 0  ⋯ 0
𝐴1 𝐵1 𝐶1 0 ⋯ 0
0 𝐴2 𝐵2 𝐶2 0
⋮ ⋱ ⋱ ⋱ ⋮
0 … 0 𝐴𝑖 𝐵𝑖 𝐶𝑖⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑢0

𝑛+1

𝑢1𝑛+1

𝑢2𝑛+1
⋮

𝑢𝑖𝑛+1⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝐷0
𝐷1
𝐷2
⋮
𝐷𝑖 ⎦
⎥
⎥
⎥
⎤

 , 

𝐴𝑖 = − 𝑖𝑑𝑗
2∆𝑥2

 , 

𝐵𝑖 = 1
∆𝑧

+ 𝑖𝑑𝑗
2∆𝑥2

 , 

𝐶𝑖 = − 𝑖𝑑𝑗
2∆𝑥2

 , 



 
APPENDIX B 

173 
 

𝐷𝑖 = 𝑖𝑑𝑗
2∆𝑥2

𝑢𝑖+1𝑛 + 𝑖𝑑𝑗
2∆𝑥2

𝑢𝑖−1𝑛 + � 1
∆𝑧

+ 𝑖𝑑𝑗
2∆𝑥2

� 𝑢𝑖𝑛 . 

Solutions to equation (3.1) can be found by solving the above tridiagonal matrix 

problem. Tridiagonal matrix problems can be solved efficiently using the methods 

of Gaussian elimination and back substitution. 

 

ADI finite difference method 

When considering the solution of the (1+2)D form of equation (B3.1) the Crank-

Nicolson method is found to be unsuitable. Although a naive generalisation of the 

Crank-Nicolson scheme could be used to find solutions, the computation of such 

solutions is highly inefficient and requires a very large number of operations to be 

performed to solve the resulting ‘block’ tridiagonal matrix. 

The alternating direction implicit method (ADI) offers a computationally efficient 

alternative. The ADI method is implemented in two steps, with each step being 

implicit in one transverse direction and explicit in the other (alternating the 

transverse coordinate between steps).  

Equation (B3.1) can be written in terms of the two-step ADI scheme (84) as: 

𝑢𝑖,𝑗
𝑛+1 2� − 𝑢𝑖,𝑗𝑛

∆𝑧
2�

= 𝑖𝑑𝑗 �
𝑢𝑖+1,𝑗
𝑛+1 2� − 2𝑢𝑖,𝑗

𝑛+1 2� + 𝑢𝑖−1,𝑗
𝑛+1 2�

∆𝑥2
+
𝑢𝑖,𝑗+1𝑛 − 2𝑢𝑖,𝑗𝑛 + 𝑢𝑖,𝑗−1𝑛

∆𝑦2
� , 

  

𝑢𝑖,𝑗𝑛+1 − 𝑢𝑖,𝑗
𝑛+1 2�

∆𝑧
2�

= 𝑖𝑑𝑗 �
𝑢𝑖+1,𝑗
𝑛+1 2� − 2𝑢𝑖,𝑗

𝑛+1 2� + 𝑢𝑖−1,𝑗
𝑛+1 2�

∆𝑥2
+
𝑢𝑖,𝑗+1𝑛+1 − 2𝑢𝑖,𝑗𝑛+1 + 𝑢𝑖,𝑗−1𝑛+1

∆𝑦2
� , 

 

where the first equation is implicit in 𝑋 and explicit in the 𝑌 coordinate, and the 

second equation is implicit in Y and explicit in 𝑋. Each difference equation forms a 

tridiagonal matrix problem which can be solved by Gaussian elimination, like the 
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Crank-Nicolson scheme described above, and performing both steps results in a 

solution given at the point  𝑍 + ∆𝑧. 

The implementation of the ADI method requires the solution of a dual tridiagonal 

matrix problem (given above) to be performed twice for each Raman frequency 

component during each time step  𝑍 + ∆𝑧. 

An example of the ADI integration routine used to solve the (1+2)D UMRG is 

provided in the final section of this appendix. The full integration routine requires a 

large number of calculations to be performed. The number of calculations can be 

estimated by defining the number of frequency components and an example grid, 

such that the 𝑋 and 𝑌 axes contain 500 points each, the 𝑍 coordinate is split into 

1000 steps and the number of frequency components is 𝑗 = 100. 

Starting with the ADI section of the code, each step in the longitudinal direction 

requires that the tridiagonal matrix solver is called 𝑗(𝑋 + 𝑌) times (which in itself 

performs a large number of calculations). 

The Runge-Kutta code is performed 2𝑗 times per longitudinal step, therefore the 

total number of calculations per step is  2𝑗 + 𝑗(𝑋 + 𝑌) = 200,400, and multiplying 

by the number of 𝑍 steps results in a total number of calculations for the 

simulation, ≈ 2𝑒8.  

Although large numbers of calculations can increase simulation times the main 

disadvantage is the vast memory requirements of multi-dimensional simulations. 

Most desktop machines can run out of memory very quickly when performing 

simulations of (1+1)D and (1+2D) equations 

Using the above values for grid size we can calculate the size of the matrix required, 

for storing the transverse amplitudes, of each Raman frequency component, in a 

typical (1+2)D simulation (non-cavity). The resulting four dimensional matrix has a 

large number of components, (𝑋 × 𝑌 × 𝑍 × 𝑗) = 4𝑒9, which can take up a large 

amount of virtual memory, up to 4 gigabytes, when being used to perform 

calculations.  
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To reduce computational requirements simulations will be performed with the 

smallest possible grid size (without sacrificing accuracy) for the least number of 

frequency components. This will be achieved by only considering realistic examples 

of cavity mirrors (with limited restricted reflection bandwidths). 

 

The (1+2)D code 

This section of the appendix contains the integration routines used in the (1+2)D 

UMRG code, which are written in the Matlab syntax. 

The third order Runge Kutta routine is defined as:  

       B0(1:Nx,1:Ny) = A1(1,1:Nx,1:Ny); 

       B1(1:Nx,1:Ny) = A1(2,1:Nx,1:Ny); 

 

f1 = ((omega(1))/(2*omega0))*conj(P).*B1.*exp(-       

i*gamma(2)*z(j-1)); 

 

f2 = ((omega(1))/(2*omega0))*conj(P).*(B1).*exp(-

i*gamma(2)*(z(j-1)+dz/4)); 

 

f3 = ((omega(1))/(2*omega0))*conj(P).*(B1).*exp(-

i*gamma(2)*(z(j-1)+dz/2)); 

A1(1,1:Nx,1:Ny) = B0 + (dz/6)*(f1 + 4*f2 + f3); 

    

for jj = 2:nwave - 1   

        B0(1:Nx,1:Ny) = A1(jj,1:Nx,1:Ny); 

        B1(1:Nx,1:Ny) = A1(jj+1,1:Nx,1:Ny); 

        B2(1:Nx,1:Ny) = A1(jj-1,1:Nx,1:Ny); 

f1 = ((omega(jj))/(2*omega0))*(conj(P).*B1.*exp(-

i*gamma(jj+1)*z(j-1)) - P.*B2.*exp(i*gamma(jj)*z(j-1))); 
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f2 = ((omega(jj))/(2*omega0))*(conj(P).*(B1).*exp(-

i*gamma(jj+1)*(z(j-1)+dz/4)) - 

P.*B2.*exp(i*gamma(jj)*(z(j-1)+dz/4))); 

         

f3 = ((omega(jj))/(2*omega0))*(conj(P).*(B1).*exp(-

i*gamma(jj+1)*(z(j-1)+dz/2)) - 

P.*B2.*exp(i*gamma(jj)*(z(j-1)+dz/2))); 

         

A1(jj,1:Nx,1:Ny) = B0 + (dz/6)*(f1 + 4*f2 + f3);    

end        

        B0(1:Nx,1:Ny) = A1(nwave,1:Nx,1:Ny); 

        B1(1:Nx,1:Ny) = A1(nwave-1,1:Nx,1:Ny);     

 

f1 = -

(omega(nwave))/(2*omega0))*P.*B1.*exp(i*gamma(nwave)*z(j

-1)); 

    

f2 = -

((omega(nwave))/(2*omega0))*P.*(B1).*exp(i*gamma(nwave)*

(z(j-1)+dz/4)); 

     

f3 = -

((omega(nwave))/(2*omega0))*P.*(B1).*exp(i*gamma(nwave)*

(z(j-1)+dz/2)); 

 

A1(nwave,1:Nx,1:Ny) = B0 + (dz/6)*(f1 + 4*f2 + f3); 

 

The above Runge-Kutta routine propagates the nonlinear components of the UMRG 

equations over half a step, 𝑍 + ∆𝑧
2

. The equations are solved “nwave” times, with 

the first and last envelopes being solved outside of the main integration loop.  

The resulting solution is then propagated in the transverse coordinates (linear 

component of the UMRG equation) using the ADI scheme described above.   
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An example of the ADI code is given as: 

Ldif = i*(1/((omega(jj)/omega0)*4*LD)); 

 

TL = dz; 

TR1(1:Nx) = -TL; 

TR2(1:Nx) = (((4*dx^2)/Ldif)+2*TL); 

TR3(1:Nx) = -TL; 

 

for jjj = 2:Ny-1 

for jjjj = 1:Nx 

 

TR4(jjjj) = A1(jj,jjjj,jjj)*(((4*dx^2)/Ldif)-2*TL) + 

A1(jj,jjjj,jjj+1)*TL + A1(jj,jjjj,jjj-1)*TL; 

 

end 

[A2(jj,1:Nx,jjj)] = TDMAsolver(TR1,TR2,TR3,TR4); 

end 

 

for jjjj = 1:Nx 

TR44(jjjj) = A1(jj,jjjj,1)*(((4*dx^2)/Ldif)-2*TL) + 

A1(jj,jjjj,2)*TL; 

 

TR444(jjjj) = A1(jj,jjjj,Ny)*(((4*dx^2)/Ldif)-2*TL) + 

A1(jj,jjjj,Ny-1)*TL; 

end 

 

[A2(jj,1:Nx,1)] = TDMAsolver(TR1,TR2,TR3,TR44); 

[A2(jj,1:Nx,Ny)] = TDMAsolver(TR1,TR2,TR3,TR444);  

 

The above section of the ADI code deals with the first half step (implicit in 𝑋) of the 

full transverse solution. This means that the 𝑌 coordinate are held stationary whilst 

the 𝑋 coordinate is varied. 
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The code begins by defining the constants, “TR1, TR2, TR3”, which correspond 

to  𝐴𝑖  , 𝐵𝑖 and 𝐶𝑖 from the tridiagonal matrix problem. The parameter 𝐷𝑖  ,“TR4”, is 

then calculated for each point on the 2D transverse grid.  The resulting sets of 

parameters are passed into the tridiagonal matrix solver, “TDMAsolver”.  

The matrix solver returns the solution for the transverse amplitude at 𝑍 + ∆𝑧
2

 which 

serves as the initial values for the second half step, where the second step feeds the 

solution back into a similar piece of code which is implicit in 𝑌. Performing both 

transverse steps results in a solution for the transverse amplitude at  𝑍 + ∆𝑧.  
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APPENDIX C 

This appendix contains results for the gain suppression analysis derived in chapter 

3. Each of the figures compares the depleted and un-depleted pump models to 

results given by numerical integration of the UMRG equations. 

Each figure shows the growth of Stokes intensity within the cavity as predicted by 

the depleted pump model, un-depleted pump model and the numerical results as 

blue, green and red traces respectively. 

Cavity length 

Two different levels of boundary mirror reflectivity will be considered  𝑅0 = 0.90, 

𝑅0 = 0.95 and results are  given in increasing increments of cavity length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1 - At short cavity lengths the results of each gain suppression analysis 
model are in agreement with the results of the numerical simulation. 
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Figure C2 - As the cavity lengths is increased we find that the un-depleted 
model fails to reproduce the numerical results 

 

 

Figure C3 - As the cavity lengths is increased we find that the un-depleted 
model fails to reproduce the numerical results 
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Figure C4  - As the cavity lengths is increased we find that the un-depleted 
model fails to reproduce the numerical results 

 

 

 

Figure C5 - As the cavity lengths is increased we find that the un-depleted 
model fails to reproduce the numerical results 
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Figure C6 - At long cavity lengths both the un-depleted and depleted gain 
suppression models fail to accurately capture the numerical results. 

 

 

 

Figure C7 - At long cavity lengths both the un-depleted and depleted gain 
suppression models fail to accurately capture the numerical results. 
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The above figures ranging from figure C1 to C7 show that for a reflectivity of 

𝑅0 = 0.9 the depleted and un-depleted gain suppression models accurately model 

the growth of Stokes intensity within the cavity. At short cavity lengths both models 

provide the same level of accuracy, but as the cavity length is increased we find that 

the depleted pump model provides a more accurate result which is closer the 

results produced by the numerical integration of the UMRG equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C8 - As with the results given for 𝑹 = 𝟎.𝟗 both gain suppression 
models provide similar levels of accuracy at short cavity lengths. 
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Figure C9 - As with the results given for 𝑹 = 𝟎.𝟗 both gain suppression 
models provide similar levels of accuracy at short cavity lengths. 

 

 

Figure C10 - As the cavity length is increased we find that the un-depleted 
model begins to provide less accurate results. 
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Figure C11 - As the cavity length is increased we find that the un-depleted 
model begins to provide less accurate results 

 

 

Figure C12 - As the cavity length is increased we find that the un-depleted 
model begins to provide less accurate results 
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Figure C13 - At long cavity lengths we find that both gain suppression models 
provide less accurate results. The depleted model still offers results which 
follow the general shape of the numerical results but over predicts the 
maximum intensity achieved in the cavity. 

 

 

Figure C14 - At long cavity lengths we find that both gain suppression 
models provide less accurate results. The depleted model still offers results 
which follow the general shape of the numerical results but over predicts 
the maximum intensity achieved in the cavity. 
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When a higher level of reflectivity is chosen, 𝑅0 = 0.95, we again  find that both the 

depleted and un-depleted models offer similar levels of accuracy at shorter cavity 

lengths, but at longer cavity lengths we find that the differences between the 

results are much more pronounced. The depleted pump model provides more 

accurate results for a greater range of parameters. The shapes of the intensity 

curves generated by each analysis are vastly different at longer cavity lengths and 

the depleted pump model offers a curve with a similar shape to the numerical 

results. 

Initial Stokes seed 

We now present results when varying the initial Stokes seed and the results will be 

given for the two levels of cavity mirror reflectivity given above. The cavity length 

will be kept at a fixed value of 𝑍𝑐 = 0.1  and the Stokes seed will be increased in 

increments of 0.1 between each figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C15 - When a small level of initial Stokes seed is employed we find that 
both the depleted and un-depleted models provide results which match the 
numerical results. 
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Figure C16 - With only a small increase in the level of initial Stokes seed we 
find that the un-depleted model begins to produce inaccurate results. 

 

 

Figure C17 - The depleted pump model provides accurate results for a broad 
range of initial Stokes seeds. 
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Figure C18 - The depleted pump model provides accurate results for a broad 
range of initial Stokes seeds. 

 

 

Figure C19 - When the applied Stokes seed has the same intensity as the 
pump beam we find a significant difference between the depleted and un-
depleted models. 
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The results for a reflectivity of 𝑅0 = 0.9 show that as the level of initial Stokes seed 

is increased the depleted pump model more accurately describes the growth of the 

Stokes intensity over a greater number of cavity transits and produces results which 

closely resemble the results of the numerical analysis. 

 When the reflectivity is increased to 𝑅0 = 0.95 we find that the depleted 

pump model still offers the most accurate results and that the difference in results 

between the depleted pump and un-depleted pump gain suppression models are 

much more pronounced, where the un-depleted pump model can predict Stokes 

intensities up to 3 times larger than that of the numerical data and depleted pump 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C20 - When a small level of initial Stokes seed is employed we find 
that both the depleted and un-depleted models provide results which match 
the numerical results. 
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Figure C21 - With only a small increase in the level of initial Stokes seed we 
find that the un-depleted model begins to produce inaccurate results. 

 

 

Figure C22 - The depleted pump model provides accurate results for a broad 
range of initial Stokes seeds. 
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Figure C23 - The depleted pump model provides accurate results for a broad 
range of initial Stokes seeds 

 

 

Figure C24 - When the applied Stokes seed has the same intensity as the 
pump beam we find a significant difference between the depleted and un-
depleted models. 

 



 
APPENDIX D 

193 
 

APPENDIX D 

This appendix contains the derivation of the finite dispersion gain suppression 
analysis. 

 

The governing envelope equations for the 3-wave Raman system are obtained from 
equations (2.63): 

𝑑𝐴−1
𝑑𝑍

= (1−𝜀)
2(1−𝑖𝛿) �|𝐴0|2𝐴−1 + 𝐴02𝐴1∗𝑒𝑖𝛾1𝑍�           (D.1) 

 

𝑑𝐴0
𝑑𝑍

= 1
2(1−𝑖𝛿)

�𝐴0∗𝐴−1𝐴1𝑒−𝑖𝛾1𝑍 + |𝐴1|2𝐴0� −
1

2(1+𝑖𝛿)
�𝐴0∗𝐴−1𝐴1𝑒−𝑖𝛾1𝑍 + |𝐴−1|2𝐴0�  

(D.2) 

 

𝑑𝐴1
𝑑𝑍

= − (1+𝜀)
2(1+𝑖𝛿)

�|𝐴0|2𝐴1 + 𝐴02𝐴−1∗ 𝑒𝑖𝛾1𝑍� .           (D.3) 

 

The the Stokes shift parameter is 𝜀 = 𝜔𝑅
𝜔0

  and the detuning is given as:  

𝛿 = 𝑇2 �I0 �
𝛼22−𝛼11

4ħ
�∑ 𝐴𝑗𝐴𝑗∗𝑗 + 𝛿𝜔� . 

Denoting for the mth cavity round trip in the medium 𝐴02 = 𝐴0,𝑚
2 = �𝐴0,𝑚�

2
𝑒𝑖2𝜃𝑚   ,  

where  𝜃𝑚 = arg�𝐴0,𝑚� , and similarly 𝐴−1 = 𝐴−1,𝑚 and 𝐴1 = 𝐴1,𝑚, equations (D.1) 

and (D.3) become: 

𝑑𝐴−1,𝑚
𝑑𝑍

= �𝐴0,𝑚�
2

2
(1−𝜀)

(1−𝑖𝛿) �𝐴−1,𝑚 + 𝐴1,𝑚
∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�                  (D.4) 

 

𝑑𝐴1,𝑚
𝑑𝑍

=  − �𝐴0,𝑚�
2

2
(1+𝜀)

(1+𝑖𝛿) �𝐴1,𝑚 + 𝐴−1,𝑚
∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚� .                 (D.5) 

The sidebands are subject to a loss at the coupling mirror in the form of the mirror 

reflectivity 𝑅𝑗, hence the boundary conditions are given as: 

𝐴−1,𝑚+1(𝑍 = 0) =  𝑅−1𝐴−1,𝑚(𝑍 = 𝐿)   
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 𝐴1,𝑚+1(𝑍 = 0) =  𝑅1𝐴1,𝑚(𝑍 = 𝐿). 

For the undepleted pump model one could model the intra-cavity pump field 
through 

Where   𝐴0,𝑚+1 = 𝐴0 + 𝐴0,𝑚𝑅0𝑒−𝛼𝐿+𝑖∅   ,𝑚 = 1,2,3 …  ,            (D.6) 

and α includes any linear loss, 𝐿 = 𝑍𝑐  is the cavity length, 𝑅0 is the pump 

(amplitude) cavity mirror reflectivity and 𝑚 is the transit number. 𝛼 defines any 

linear loss within the cavity and ∅ defines any pump mistuning from cavity 

resonance. 

For the undepleted model, evolution of the pump may be treated as a geometric 

series where: 

𝑚 = 1,    𝐴0,𝑚 =  𝐴0 

𝑚 = 2,    𝐴0,𝑚 = 𝐴0 +  𝐴0𝑅0𝑒−𝛼𝐿+𝑖∅ = 𝐴0(1 + 𝑅0𝑒−𝛼𝐿+𝑖∅)   

𝑚 = 3,    𝐴0,𝑚 =  𝐴0 + 𝑅0𝑒−𝛼𝐿+𝑖∅𝐴0�1 + 𝑅0𝑒−𝛼𝐿+𝑖∅� = 𝐴0�1 + 𝑅0𝑒−𝛼𝐿+𝑖∅ +
(𝑅0𝑒−𝛼𝐿+𝑖∅)2) . 

Therefore the series can be defined as: 

𝐴0,𝑚 = ∑ 𝐴0(𝑅0𝑒−𝛼𝐿+𝑖∅)𝑗−1𝑚
𝑗=1 = 𝐴0(1−𝑅0𝑚𝑒−𝑚(𝛼𝐿+𝑖∅))

(1−𝑅0𝑒−𝛼𝐿+𝑖∅)
 . 

 

There are two cases of interest defined by this model, the resonant high-finesse 

limit where 𝑅0𝑒−𝛼𝐿= 1 and the case of 𝑅0𝑒−𝛼𝐿< 1. The high finesse case causes the 

pump to grow as 𝑚𝐴0 while for any value of finite cavity loss the series converges, 

convergence depends on the inequality �𝑅0 𝑒−(𝛼𝐿+𝑖∅)� < 1 (the modulus is less than 

unity). 

It is convenient to conjugate the Stokes field equation so that, the model now takes 

the form: 

𝑑𝐴−1,𝑚
𝑑𝑍

= �𝐴0,𝑚�
2

2
(1−𝜀)

(1−𝑖𝛿) �𝐴−1,𝑚 + 𝐴1,𝑚
∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�              (D.7) 
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𝑑𝐴1,𝑚
∗

𝑑𝑍
=  − �𝐴0,𝑚�

2

2
(1+𝜀)

(1−𝑖𝛿) �𝐴1,𝑚
∗ + 𝐴−1,𝑚𝑒−𝑖𝛾1𝑍−𝑖2𝜃𝑚� ,   (D.8) 

These equations pose an eigenvalue problem with a periodic set of eigenfunctions, 

𝐴−1,𝑚, 𝐴1,𝑚
∗ , and eigenvalues 𝐾𝑚± , which permit general solutions to be 

constructed. 

We seek trial eigensolutions of the form: 

𝐴−1,𝑚(𝑍) =  𝑎−1,𝑚𝑒
��𝐾𝑚+𝑖

𝛾1
2 �𝑍+𝑖𝜃𝑚�          (D.9) 

𝐴1,𝑚
∗ (𝑍) = 𝑎1,𝑚

∗ 𝑒��𝐾𝑚−𝑖
𝛾1
2 �𝑍−𝑖𝜃𝑚� .    (D.10) 

Introducing the trial eigensolutions into equations (D.7) and (D.8) gives: 

 

𝑎−1,𝑚 �𝐾𝑚 +  𝑖 𝛾1
2
� = �𝐴0,𝑚�

2

2
(1−𝜀)

(1−𝑖𝛿) �𝑎−1,𝑚 + 𝑎1,𝑚
∗ � ,      (D.11) 

𝑎1,𝑚
∗ �𝐾𝑚 −  𝑖 𝛾1

2
� =   − �𝐴0,𝑚�

2

2
(1+𝜀)

(1−𝑖𝛿) �𝑎1,𝑚
∗ + 𝑎−1,𝑚�  .   (D.12) 

This can be expressed in matrix form: 

 

 �
𝐾𝑚 +  𝑖 𝛾1

2
−  �𝐴0,𝑚�

2

2
(1−𝜀)

(1−𝑖𝛿) − �𝐴0,𝑚�
2

2
(1−𝜀)

(1−𝑖𝛿)

�𝐴0,𝑚�
2

2
(1+𝜀)

(1−𝑖𝛿) 𝐾𝑚 −  𝑖 𝛾1
2

+  �𝐴0,𝑚�
2

2
(1+𝜀)

(1−𝑖𝛿)

�
𝑎−1,𝑚
𝑎1,𝑚
∗ = 0

0        (D.13) 

Taking the determinant of the coefficient matrix, to determine non-trivial sideband 

solutions, gives: 

𝐾𝑚2 + ��𝐴0,𝑚�
2
𝜀�𝐾𝑚

(1+𝑖𝛿)
(1+𝛿2) + 𝛾12

4
+ �𝐴0,𝑚�

2
𝛾1

2
(𝑖−𝛿)

(1+𝛿2) = 0 ,        (D.14) 

which has complex solutions: 

𝐾𝑚± =  − (1+𝑖𝛿)�𝐴0,𝑚�
2
𝜀

𝐷
± (∝𝑅+ 𝑖 ∝𝐼)  ,            (D.15) 

where D = 1 + 𝛿2 and: 
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∝𝑅

=
1
√2

⎣
⎢
⎢
⎢
⎡
�

(1 − 𝛿2)�𝐴0,𝑚�
4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�

+ ��
(1− 𝛿2)�𝐴0,𝑚�

4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�
2

+
4�𝐴0,𝑚�

4 �𝜀2�𝐴0,𝑚�
2𝛿 − 𝐷𝛾1�

2

𝐷4
�

1
2

, 

∝𝐼

=
1
√2

⎣
⎢
⎢
⎢
⎡
−�

(1 − 𝛿2)�𝐴0,𝑚�
4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�

+ ��
(1− 𝛿2)�𝐴0,𝑚�

4𝜀2

𝐷2 +
2𝛾1�𝐴0,𝑚�

2𝛿
𝐷

− 𝛾12�
2

+
4�𝐴0,𝑚�

4 �𝜀2�𝐴0,𝑚�
2𝛿 − 𝐷𝛾1�

2

𝐷4
�

1
2

. 

(D.16) 

Splitting equation (D.15) into its real and imaginary components yields: 

   𝐾𝑚± = 𝑅𝑒[𝐾𝑚±] + 𝑖𝐼𝑚[𝐾𝑚±] ,  

 

𝑅𝑒[𝐾𝑚±] =  1
2
�− �𝐴0,𝑚�

2
𝜀

𝐷
±∝𝑅�            (D.17) 

 

𝐼𝑚[𝐾𝑚±] = 1
2
�− 𝛿�𝐴0,𝑚�

2
𝜀

𝐷
∓∝𝐼�   ,               (D.18) 

where 𝑅𝑒[𝐾𝑚±] is linked to the growth (or attenuation) of the Raman sidebands 

within the cavity. 

General solutions to the envelope equations can be written as a linear combination 

of eigensolutions with coefficients 𝐶𝑘𝑠,𝑚and 𝐶𝑘𝑎,𝑚 (where 𝑘 = 1,2): 

𝐴−1,𝑚(𝑍) =  �𝐶1𝑠,𝑚𝑒𝐾𝑚
+𝑍 + 𝐶2𝑠,𝑚𝑒𝐾𝑚

−𝑍�𝑒𝑖
𝛾1
2 𝑍+𝑖𝜃𝑚     (D.19) 

𝐴1,𝑚
∗ (𝑍) =  �𝐶1𝑎,𝑚𝑒𝐾𝑚

+𝑍 + 𝐶2𝑎,𝑚𝑒𝐾𝑚
−𝑍�𝑒−𝑖

𝛾1
2 𝑍−𝑖𝜃𝑚  .   (D.20) 
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The cavity boundary conditions then determine the form of the coefficients 

involved in the general solutions. Setting  𝑍 = 0 in equations (D.19) and (D.20) 

gives: 

𝐴−1,𝑚(0) =  �𝐶1𝑠,𝑚 + 𝐶2𝑠,𝑚�𝑒𝑖𝜃𝑚       (D.21) 

𝐴1,𝑚
∗ (0) =  �𝐶1𝑎,𝑚 + 𝐶2𝑎,𝑚�𝑒−𝑖𝜃𝑚   .    (D.22) 

Taking the 𝑍-derivative of equations (D.19) and (D.20), equating the results to 

equations (D.7) and (D.8) respectively and setting  𝑍 = 0 gives: 

�𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚𝑒𝑖𝜃𝑚 + �𝐾𝑚− + 𝑖 𝛾1

2
� 𝐶2𝑠,𝑚𝑒𝑖𝜃𝑚 =  �𝐴0,𝑚�

2

2
(1−𝜀)(1+𝑖𝛿)

𝐷
�𝐴−1,𝑚(0) +

𝐴1,𝑚
∗ (0)𝑒𝑖2𝜃𝑚�    

(D.23) 

�𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚𝑒−𝑖𝜃𝑚 + �𝐾𝑚− − 𝑖 𝛾1

2
�𝐶2𝑎,𝑚𝑒−𝑖𝜃𝑚 =  − �𝐴0,𝑚�

2

2
(1+𝜀)(1+𝑖𝛿)

𝐷
�𝐴1,𝑚

∗ (0) +

𝐴−1,𝑚(0)𝑒−𝑖2𝜃𝑚�. 

(D.24) 

Substituting equation (D.21) into equation (D.23) and re-arranging gives: 

 

�2𝐾𝑚++𝑖𝛾1−�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

𝐷 �

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

𝐷

 𝐶1𝑠,𝑚 +  
�2𝐾𝑚−+𝑖𝛾1−�𝐴0,𝑚�

2(1−𝜀)(1+𝑖𝛿)
𝐷 �

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

𝐷

 𝐶2𝑠,𝑚 =

𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚 , 

(D.25) 

Likewise equations (D.22) and (D.24) also give: 

 

�2𝐾𝑚+−𝑖𝛾1+�𝐴0,𝑚�
2(1+𝜀)(1+𝑖𝛿)

𝐷 �

�𝐴0,𝑚�
2(1+𝜀)(1+𝑖𝛿)

𝐷

 𝐶1𝑎,𝑚 +  
�2𝐾𝑚−−𝑖𝛾1+�𝐴0,𝑚�

2(1+𝜀)(1+𝑖𝛿)
𝐷 �

�𝐴0,𝑚�
2(1+𝜀)(1+𝑖𝛿)

𝐷

 𝐶2𝑎,𝑚 =

−𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚 . 

    (D.26) 

Taking the derivatives of equations (D.19) and (D.20), and equating them to 

equations (D.7) and (D.8) respectively gives: 
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�𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚𝑒

𝐾𝑚++𝑖
𝛾1
2 𝑍+𝑖𝜃𝑚 + �𝐾𝑚− + 𝑖 𝛾1

2
� 𝐶2𝑠,𝑚𝑒

𝐾𝑚−+𝑖
𝛾1
2 +𝑖𝜃𝑚 =

 �𝐴0,𝑚�
2

2
(1−𝜀)(1+𝑖𝛿)

𝐷
�𝐴−1,𝑚 + 𝐴1,𝑚

∗ 𝑒𝑖𝛾1𝑍+𝑖2𝜃𝑚�   

(D.27) 

�𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚𝑒

𝐾𝑚+−𝑖
𝛾1
2 𝑍−𝑖𝜃𝑚 + �𝐾𝑚− − 𝑖 𝛾1

2
� 𝐶2𝑎,𝑚𝑒

𝐾𝑚−−𝑖
𝛾1
2 −𝑖𝜃𝑚 =

 − �𝐴0,𝑚�
2

2
(1+𝜀)(1+𝑖𝛿)

𝐷
�𝐴1,𝑚

∗ + 𝐴−1,𝑚𝑒−𝑖𝛾1𝑍−𝑖2𝜃𝑚� . 

(D.28) 

The substitution of equations (D.19) and (D.20) into both equations (D.27) and 
(D.28) gives: 

 

��𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚 −  �𝐴0,𝑚�

2

2
(1−𝜀)(1+𝑖𝛿)

𝐷
�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� 𝑒�𝐾𝑚

+−𝐾𝑚−�𝑍 =

 �𝐴0,𝑚�
2

2
(1−𝜀)(1+𝑖𝛿)

𝐷
�𝐶2𝑠,𝑚𝐶2𝑎,𝑚� − �𝐾𝑚− + 𝑖 𝛾1

2
� 𝐶2𝑠,𝑚  

(D.29) 

��𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚 +  �𝐴0,𝑚�

2

2
(1+𝜀)(1+𝑖𝛿)

𝐷
�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� 𝑒�𝐾𝑚

+−𝐾𝑚−�𝑍 =

− �𝐴0,𝑚�
2

2
(1+𝜀)(1+𝑖𝛿)

𝐷
�𝐶2𝑠,𝑚 + 𝐶2𝑎,𝑚� − �𝐾𝑚− − 𝑖 𝛾1

2
� 𝐶2𝑎,𝑚  . 

(D.30) 

Taking the derivative of equation (D.29) and (D.30) and setting Z = 0 gives: 

 

(𝐾𝑚+ − 𝐾𝑚−) ��𝐾𝑚+ + 𝑖 𝛾1
2
� 𝐶1𝑠,𝑚 −  �𝐴0,𝑚�

2

2
(1−𝜀)(1+𝑖𝛿)

𝐷
�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� = 0                  

(D.31) 

 

(𝐾𝑚+ − 𝐾𝑚−) ��𝐾𝑚+ − 𝑖 𝛾1
2
� 𝐶1𝑎,𝑚 +  �𝐴0,𝑚�

2

2
(1+𝜀)(1+𝑖𝛿)

𝐷
�𝐶1𝑠,𝑚 + 𝐶1𝑎,𝑚�� = 0 . 

(D.32) 

When 𝐾𝑚+ ≠ 𝐾𝑚− re-arranging equation (D.31) or (D.32) gives the ratio: 
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𝐶1𝑎,𝑚
𝐶1𝑠,𝑚

= �2𝐾𝑚++𝑖𝛾1�𝐷

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

− 1   ,      (D.33) 

 

and by comparing equation (D.33) to equation (D.26) and using equation (D.21) one 

also finds the corresponding ratio: 

𝐶2𝑎,𝑚
𝐶2𝑠,𝑚

= (2𝐾𝑚−+𝑖𝛾1)𝐷

�𝐴0,𝑚�
2(1−𝜀)(1+𝑖𝛿)

− 1   .     (D.34) 

 

Using the relation (D.21), equation (D.26) can be re-arranged to give equations for, 
𝐶1𝑠,𝑚, 𝐶2𝑠,𝑚: 

 

𝐶1𝑠,𝑚 =
�𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �−2𝐾𝑚−−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚+−𝐾𝑚−�
   

(D.35) 

 

𝐶2𝑠,𝑚 =
�𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �𝐴1,𝑚
∗ (0)𝑒𝑖𝜃𝑚+��𝐴0,𝑚�

2
�(1−𝜀)(1+𝑖𝛿)

𝐷 �−2𝐾𝑚+−𝑖𝛾1�𝐴−1,𝑚(0)𝑒−𝑖𝜃𝑚

2�𝐾𝑚−−𝐾𝑚+�
  .  

(D.36) 

These equations fully define the gain suppression analysis for an undepleted pump 

with finite detuning. 

Setting the Stokes shift 𝜀 = 0, transit number 𝑚 = 0, detuning 𝛿 = 0  and  

�𝐴0,𝑚�
2

= 1 retrieves the gain suppression analysis of Shen and Bloembergen [69]. 
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APPENDIX E 

This appendix contains the finite detuning gain suppression code. Setting 𝛿 = 0 

retrieves the zero detuning gain suppression analysis. Each stage of the code is 

described so the code can be easily compared to the gain suppression analysis 

derived in chapter 4.  

The gain suppression code is repeated for N cavity transits. 

for m = 1:N 

M = A(ipump,m); 

The real and imaginary components 𝛼𝑅 and 𝛼𝐼 are calculated using the pump 

amplitude, M, given at the start of the cavity transit. Delta defines the level of 

detuning, D = 1+Delta2, gamma1 defines the level of dispersion and epsilon is the 

Stokes shift. 

alphaR(m) = (1/2)*(((M.^4)*(epsilon^2)*(1-Delta^2)/(D^2) + 

(2*gamma1*(M.^2)*Delta/(D)) - (gamma1^2)) + sqrt((((M.^4)*(epsilon^2)*(1-

Delta^2)/(D^2) + (2*gamma1*(M.^2)*Delta/D) - (gamma1^2)).^2) + 

(4*(M.^4)*(Delta*(M.^2)*(epsilon^2) - D*gamma1)^2)/(D^4))); 

alphaR(m) = sqrt(alphaR(m)); 

alphaI(m) = (1/2)*(-((M.^4)*(epsilon^2)*(1-Delta^2)/(D^2) + 

(2*gamma1*(M.^2)*Delta/(D)) - (gamma1^2)) + sqrt((((M.^4)*(epsilon^2)*(1-

Delta^2)/(D^2) + (2*gamma1*(M.^2)*Delta/D) - (gamma1^2)).^2) + 

(4*(M.^4)*(Delta*(M.^2)*(epsilon^2) - D*gamma1)^2)/(D^4))); 

alphaI(m) = sqrt(alphaI(m)); 

The gain parameters 𝐾𝑚± are calculated from the real and imaginary components 𝛼𝑅 

and 𝛼𝐼. 

Kneg(m) = (1/2)*(-((1+i*Delta)*(M.^2)*epsilon/D) - (alphaR(m) + i*alphaI(m))); 

Kpos(m) = (1/2)*(-((1+i*Delta)*(M.^2)*epsilon/D) + (alphaR(m) + i*alphaI(m))); 
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The constants required for the general solution of the Stokes and anti-Stokes 

components can now be calculated using the gain parameter. 

 C1s(m) = (((1-epsilon)*conj(A(iAStokes,m))*(M.^2)*DD/D) + (((M.^2)*(1-

epsilon)*(DD/D)) - i*gamma1 -2*Kneg(m))*A(iStokes,m))/(2*(Kpos(m) - 

Kneg(m))); 

 C2s(m) = (((1-epsilon)*conj(A(iAStokes,m))*(M.^2)*DD/D) + (((M.^2)*(1-

epsilon)*(DD/D)) - i*gamma1 -2*Kpos(m))*A(iStokes,m))/(2*(Kneg(m) - 

Kpos(m))); 

 

 C1a(m) = C1s(m)*(((2*(Kpos(m) + (i*gamma1/2))*D)/((M.^2)*(1-epsilon)*DD)) - 

1); 

 C2a(m) = C2s(m)*(((2*(Kneg(m) + (i*gamma1/2))*D)/((M.^2)*(1-epsilon)*DD)) - 

1); 

 

Az(iStokes,:) = (C1s(m).*exp(Kpos(m)*Z) 

+C2s(m).*exp(Kneg(m)*Z)).*exp(i*Z*(gamma1/2)); 

Az(iAStokes,:) = conj((C1a(m).*exp(Kpos(m)*Z) + C2a(m).*exp(Kneg(m)*Z)).*exp(-

i*Z*(gamma1/2))); 

The general solutions for the first Stokes and first anti-Stokes amplitudes are now 

calculated and the boundary conditions applied.  The initial conditions for the next 

cavity transit are now saved in a 3 by N matrix. 

A(ipump,m+1)=Apump+A(ipump,m)*R; 

A(iStokes,m+1)=Az(iStokes,ndZ)*R; 

A(iAStokes,m+1) = Az(iAStokes,ndZ)*R; 

end 
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