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ABSTRACT 

Modelling human gait has become an invaluable tool in a wide range of fields such as 

robotics and rehabilitation. With progress in computing, model complexity has advanced 

quickly but nevertheless, the contributions of incremental increases in model complexity 

are poorly understood. This thesis addresses this through a series of modelling studies. 

The first investigation examined the advantages and disadvantages of inverted pendulum 

(IP) models of walking, using a forward dynamics approach, by comparing to a normal set 

of experimental gait data. It was shown that the biggest failing of these models is their 

inability to adequately simulate double stance. 

The second investigation sought to highlight the effects of additional model complexities 

on the kinematics and kinetics, using optimisation. The additions, added one-by-one, 

were a knee joint, an ankle and static foot, a moving foot and a swing leg. The presence 

of a knee joint and an ankle moment were shown to be largely responsible for the initial 

peak in the vertical ground force reaction (GRF) curve. The second peak in this curve was 

achieved through a combination of heel rise and the presence of a swing leg. This gave 

mathematical evidence for the true determinants of human gait. 

A double support model was produced next, using a novel method to constrain both feet 

to the ground and calculate the GRF distribution. This was run in conjunction with the 

best single support model to simulate a whole gait cycle. Despite the problem of 

discontinuities at the transitions between double and single support, the whole gait cycle 

simulation had mean kinematic and mean GRF errors of less than a single standard 

deviation from the normal experimental data set. 

The final study collected gait and anthropometric data from ten subjects, which was then 

applied to the full gait cycle model. The model was shown to be adaptable to different 

people; a property that would be important for any computational model to be used in 

clinical assessment and diagnostics. 

  



1 

 

1 GENERAL INTRODUCTION 

The modelling of human movement is a concept that has applications in a wide range of 

fields such as prosthetics (Pedersen et al., 1997; Srinivasan et al., 2009), robotics 

(Ephanov & Hurmuzlu, 2002; Rostami & Bessonnet, 2001) and rehabilitation (Yamaguchi 

& Zajac, 1990). It provides an understanding of the underlying processes that determine 

why humans walk the way they do. It can help identify specific impairments affecting 

people with pathologies that inhibit their ability to walk in a natural manner and hence 

the appropriate treatment or orthotic can be prescribed. In industry, where the health 

and safety of workers is paramount, it can be used to investigate actions that may cause 

potential injury.  

For a process that most people take for granted and perform every day without thinking 

about it, comprehending the way in which we walk, and why it is so, is not only intriguing 

from a scientific perspective but also practically beneficial. In spite of this, our 

understanding of walking is still quite limited. For years, conceptual modelling was the 

standard in the gait analysis field (Saunders et al., 1953) i.e. models based on observation 

and theories rather than measurable evidence. Using simplified approximations of the 

geometries relevant to walking and broadly based on observation, gait was defined as 

having six different mechanisms, or ‘gait determinants’. These were pelvic rotation and 

obliquity, stance phase knee flexion, ankle mechanisms, foot mechanisms and lateral 

body displacement. These mechanisms were said to smooth the trajectory of a person’s 

centre of mass (CM) and therefore reduce energy dissipation during walking. However, a 

number of experimental and mathematical based studies have since brought into 

question the validity of some of these determinants (Baker et al., 2004; Della Croce et al., 

2001; Gard & Childress, 1997, 1999; Kerrigan et al., 2001; Kuo, 2007). 

As gait analysis progressed, simple mathematical models of walking became more 

important. Unlike those concepts developed purely from observation, these studies 

provided mathematical evidence to justify their claims, which consequently carried more 

weight. The body would be approximated into a number of rigid body segments, joined 

together, that were assumed to have point masses and each was given appropriate 

geometric and inertial properties. These could then be used to investigate numerous 
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aspects of gait analysis but due to the many assumptions made, simple models were 

often purpose designed to only investigate one or two specific aspects of walking at a 

time. 

However, the advent of more powerful computers and faster processors led to great 

advances in the sophistication of gait models. It made possible three-dimensional models 

with multiple bones, joints, muscles and degrees-of-freedom (DOF) accounted for. This 

made it possible to investigate many more of the kinematics and kinetics of walking in a 

single model, including the contributions of individual muscles, something that could not 

be done with the more simple models. Due to their complexity, they also required more 

sophisticated techniques to come to a solution. They are often indeterminate problems 

i.e. the number of variables is greater than the number of equations defining the 

movement. As a consequence, a desirable condition is often determined and 

optimisation approaches are used to produce a solution achieving it. 

This development was undeniably progress but it was not natural progression. By going 

from simple link segment models to complex computer models in one step, the natural 

evolution of modelling has been omitted. Is there justification for investigating what 

happens in between? At what point can a model be considered ‘appropriately complex’ 

for the hypothesis it is being used to investigate? If we haven’t tested the optimisation 

solution techniques on simple systems, how can we be confident in their application to 

systems we don’t fully understand, such as the advanced models? 

 

1.1 Definitions 

Throughout this project, the following terminology will be used: 

 

Gait Model:  This refers to the kinematic structure (segments and 

joints) that has been defined, the inertial parameters 

applied to it and the simplifications and assumptions that 

have been made. 
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Modelling Framework: This refers to the general methods used to derive 

mathematical models of the kinematics and kinetics of 

specific gait models. 

Simulation:  This refers to the generation of time-based results using the 

mathematical model, for a particular gait model, and other 

techniques such as numerical integration and optimisation, 

given a definition of certain input variables. 

 

In the general academic literature these terms are often used interchangeably but for 

clarity within this thesis, these definitions will be adhered to. 

 

1.2 Chapter summary 

In the following chapter, a comprehensive review of the relevant literature will be 

performed. This is to assess the current ‘state-of-the-art’ and avoid simply repeating the 

work of other researchers. This review will indicate where there are gaps in our collective 

knowledge. Following this, appropriate and specific research questions and aims will be 

outlined. 

Chapter 3 will look into the very simple models of gait that have only a single DOF and 

evaluate their benefits and shortcomings when compared to one another as well as 

experimental data. 

Chapter 4 will advance the very simple models by sequentially adding extra DOF or other 

complexities. This will provide a good indication of a particular mechanism’s effect on the 

kinematics and kinetics of the gait cycle and hopefully give an indication of why this is 

beneficial overall. Continuing the theme of starting at a fundamental level and building 

up, this chapter will consider the single support phase only. 

Chapter 5 will look into double support phase models. This has the added complexity of 

having two points where the model interacts with external forces (i.e. the ground) which 

imposes additional kinematic constraints. Next, an amalgamation of the double and 
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single support simulations will allow half a gait cycle to be simulated, which, given a 

constraint of bilateral symmetry, may be considered to simulate a full gait cycle. 

Chapter 6 will test the versatility of the models developed in the previous chapters. Gait 

data will be collected from a number of different people and the individual characteristics 

of each person will be used as inputs to the model. It will then be seen in what areas the 

model can make successful predictions and what areas it fails. 

The final chapter will be a general discussion, summarising the findings of the project 

overall. How well the work was able to address the research questions will be examined 

and suggestions regarding future investigations, following on from these findings, will be 

considered. 

A diagram outlining the contents of each chapter is shown in Figure 1.1. 
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

General introduction

Based on a paper written to 
investigate the strengths and 

weaknesses of single DOF models

Sequential increases in 
complexity to single stance 

models

Double stance phase modelling 
and consequently full gait cycle 

simulations

Testing the model with 
individuals’ data sets, rather than 

a grouped data set

A comprehensive review of the 
literature relevant to the topic

General discussion summarising 
the project as a whole

 

Figure 1.1: A summary of the proposed outline of the thesis 
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2 LITERATURE REVIEW 

2.1 Simple models 

Simple walking models can be very useful for investigating various features of gait. These 

models often consist of rigid body segments used to represent the different sections of 

the body or sometimes just the lower extremities. The entire mass of each segment acts 

at a single point on the segment (the CM), a given distance from the segment’s end. The 

parameters defining each segment, such as length, mass, CM position, moment of inertia, 

etc., will have been taken from an anatomically reliable source. Many of these types of 

models will focus on the sagittal plane only. 

The number of segments used is quite variable. The simplest model of walking is the 

Inverted Pendulum (IP) model (Baker et al., 2004; Buczek et al., 2006; Kuo, 2007). This 

model uses a single rigid segment representing the stance leg, pivoting about its distal 

end. The entire mass of the body acts at a single point at the proximal end and there is no 

moment of inertia (Figure 2.1). Although very primitive, the model can produce kinetic 

results similar to those found during empirical tests, particularly in the anterior-posterior 

direction. However, the predictions in the superior-inferior direction are less accurate 

with the curve of the ground reaction force (GRF) component failing to produce the 

double peak shape familiar to gait analysts. 

 

 

Figure 2.1: Inverted Pendulum model (Buczek et al., 2006) 
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This particular model has been shown to not require any external forces and can work 

purely on the principle of conservation of energy (Baker et al., 2004; Kuo, 2007). It has 

been postulated that the reason people do in fact expend energy during walking is 

because of the step-to-step transition. At the end of the step, the velocity of the CM of 

the IP is not travelling in the same direction as it does at the start of the step. This is a 

condition that needs to be met so that the process can be deemed cyclic, as walking is 

known to be. This would require either an infinite acceleration to change the mass’ 

direction instantaneously, or other mechanisms that altered the mass’ path during the 

step to ensure that its initial and terminal velocities were equal in magnitude and 

direction. 

An alternative to the IP model is the spring loaded inverted pendulum (SLIP) model of 

locomotion (Bullimore & Burn, 2007; Hong et al., 2013; Millard et al., 2011; Poulakakis, 

2010; Poulakakis & Grizzle, 2009; Soyguder & Alli, 2012). The structure of this model is 

the same except it incorporates a spring mechanism within the segment. The results for 

both GRF components match much better for this model as the vertical curve is now 

essentially a sine wave, thus achieving a double peak shape. This still does not nullify the 

problem of the step-to-step transition though. 

Models incorporating more than a single segment often use hinge joints to represent the 

joints of the body (Figure 2.2). This forms what are known as multi-link inverted 

pendulums (Duan et al., 1997; Pandy & Berme, 1988a) which have an inherent instability. 

Some researchers have chosen to combat this problem by taking inspiration from the SLIP 

model and incorporating spring-damper mechanisms at certain joints within a multi-

segment model (Pandy & Berme, 1988b; Siegler et al., 1982). An alternative method, 

which preserves biological accuracy better, is to actuate the joints. This means having the 

joints modelled as simple hinges but with joint moments applied, acting about these 

hinges. This can be achieved through dynamic structures, such as angular springs and 

dampers (Duan et al., 1997), or simply by applying joint moments when deriving the 

equations of motion  (Pandy & Berme, 1988b). 
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Figure 2.2: Examples of multi-segment models, incorporating springs and dampers (Pandy & Berme, 

1988b) 

 

The selection of these joint actuations and the initial conditions of the model are 

important factors that can have a large effect on the results of the simulation (Pandy & 

Berme, 1988b). Potentially, the trial and error method of exhaustive search could be used 

to select initial angles, velocities and spring/damping constants. This is understandable 

for the spring and damping coefficients because they have no anatomical equivalent and 

could potentially be non-linear. However, selecting the initial conditions of joint angles 

and angular velocities in this manner is very inefficient as data gathered from practical 

testing can be used (Siegler et al., 1982). This has the additional advantage of providing 

kinematic and kinetic data throughout the whole cycle, against which the model’s 

performance can be judged. The best and most efficient way of determining these values 

however, is through the use of an optimising algorithm (Duan et al., 1997). Given an 

objective function to minimise/maximise, these algorithms will find the optimal values for 

the model parameters. A method of confirming that the most appropriate values for both 

initial states and actuations have been chosen is a sensitivity analysis (Pandy & Berme, 

1988b). This is a systematic method that provides further confidence in the selections 

made. 

A few studies have used pre-determined temporal functions to define how the joint 

actuations change over time, as they are observed to do so in gait laboratory 

experiments. One such study used basic step or ramp functions to do just this (Pandy & 

Berme, 1988b). Other methods of defining these curves, such as polynomials or Fourier 

series, may be able to achieve a moment profile curve closer to those recorded 

empirically. 
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Another feature of simple models is the necessity to make simplifications and 

assumptions. These are required in order to make the mathematics more tolerable but 

detrimentally affect the accuracy of the solution. This may include ignoring the effects of 

the swing leg (Siegler et al., 1982) or, if the swing leg is modelled, it might be decoupled 

from the stance leg (Pandy & Berme, 1988b). The justification for these assumptions is 

that the swing leg does not have a great effect on GRF. 

A common problem seems to be how to model the foot. The foot-ground interaction has 

to be considered in order for the GRF is calculated correctly, and so does the pivoting 

mechanism to ensure that one or more of Perry’s ‘rockers’ can be modelled correctly 

(Perry, 1992). These rockers are: 

 Heel rocker: From the time of initial contact until foot flat. 

 Ankle rocker: From the time of foot flat until heel rise. 

 Forefoot rocker: From the time of heel rise until the metatarsal heads leave the 

ground. 

 Toe rocker: From when the metatarsal heads leave the ground until toe off. 

Many models have chosen to ignore the foot completely (Baker et al., 2004; Buczek et al., 

2006; Duan et al., 1997; Kuo, 2007; Pandy & Berme, 1988b; Siegler et al., 1982) and 

hence they behave as if ankle rocker covers the whole cycle. Some have modelled feet as 

solid segments fixed perpendicular to the leg segments (Siegler et al., 1982) but this is still 

not very anatomically accurate. The best way to mimic the four rockers seems to be 

having separate models for each (Pandy & Berme, 1988b) and transition between them 

by taking the terminal state of the previous model as the initial state for the subsequent 

model. 

One common use for simple models is inverse dynamics. This is the process of using 

kinematic and kinetic data recorded in practical experiments in order to calculate the 

joint forces and moments. This is done simply by way of Newton’s laws. 

There is some debate over the benefit of three-dimensional (3D) inverse dynamics when 

compared to the planar equivalent (2D). Some have observed little difference between 

the two methods, particularly when comparing ‘inter-individual variation’, and hence 
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called for 2D to become the industry standard as this was the quicker and simpler of the 

two (Alkjaer et al., 2001). This opinion is directly contrasted by others who stress the 

benefits of the 3D method. It illustrates the importance of the work performed by the hip 

joint in the frontal plane to aid balance (Eng & Winter, 1995; Hardt & Mann, 1980) and 

gives the rotational patterns of the joints. That latter point is of particular importance to 

those studying and attempting to rehabilitate pathological gait. In cerebral palsy 

treatment, reducing rotational abnormalities is a priority so knowledge of this movement 

is paramount (Apkarian et al., 1989). 

Although a conclusion to this debate has not been reached, the methods of investigation 

do add credence to the idea of sequentially increasing the complexity of subsequent 

models and analysing the perceived benefits. 

A good judge of accuracy for a forward dynamics, simple model is to compare the results 

to those of practical experiments (Buczek et al., 2006; Pandy & Berme, 1988b; Siegler et 

al., 1982). This can be in terms of kinematics (joint angles etc.) or by calculating the 

kinetics (GRF). A good validation of the mathematics would be to then perform an inverse 

dynamics analysis to confirm that the calculated joint moments match the actuations 

applied. Often the comparison appears to be based purely on visual assessment of plots. 

A better gauge for a model’s ability to simulate human walking would be to calculate 

numerical error values from the empirical data. 

Other simple models can act simply as justification for developing a more complex one. 

Since complex models are more expensive, take longer to create and solve, and require 

much greater processing power, it is a good idea to develop a simpler model that can 

investigate a particular hypothesis and indicate whether it is an area worth exploring. 

Equally useful would be if the simple model refuted the hypothesis, thus saving time and 

money from being wasted. 

The difficulty of deriving the equations of motion of a link segment system increases 

exponentially with the number of DOF accounted for. A generalised formula has been 

developed for an n-link open chain, using Newtonian mechanics (Pandy & Berme, 1988a). 

Constraints can also be added to the end effector of this chain in order to form a closed 

chain and model the double support phase of walking. A shortcoming of this formula is 

that it does not make concessions for either impact at the instant of foot contact or 
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branched segment chains, but this is not a problem with the mathematics, it is merely 

outside the scope of the algorithm. This particular technique will be discussed further in 

later chapters. 

 

2.2 Complex models 

The more complex models of walking provide a greater insight into the roles played by 

different muscles, muscle groups and tendons at different points in the gait cycle. From 

this information, stronger arguments can be made regarding the determinants of gait, 

thus helping to explain why people walk the way they do. With the ever-increasing power 

of computer processors, the length of time these types of models take to produce a 

solution will become much more manageable and they could potentially be used as an 

integral part of a patient’s clinical assessment. 

These are multi-segment, multiple DOF models that consider large numbers of individual 

muscle-like actuators, rather than just the joint actuations provided by the simple 

models. The difference is important as it illustrates how the joint moments were 

produced. For a participant with pathological gait, just knowing that they have a weak hip 

moment, for example, as a simple model could show, is not enough. A complex model 

could show which muscles were the cause of the weak hip moment and the appropriate 

treatment could be prescribed. 

 

2.2.1 Muscle modelling 

The involvement of muscles adds further to the complexity of the mathematics involved 

because now not only is an intricate dynamic system being accounted for but biological 

soft tissue behaviour must also be considered. Force-Length-Velocity relationships for 

each muscle must be represented so that the predicted performance of a given muscle is 

physically possible (Davy & Audu, 1987; Thelen & Anderson, 2006). Improvements have 

been shown when the same model evolves from treating muscle excitations as 

instantaneous (Thelen et al., 2003) to factoring in delays between activation and 
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excitation (Thelen & Anderson, 2006). Many models neglect to model the difference 

between fast and slow twitch muscles (Anderson & Pandy, 2003). 

Some researchers have modelled the muscles using series-elastic springs, dampers and 

clutches (Davy & Audu, 1987; Endo & Herr, 2009), but the most common method is to 

use Hill-type ‘musculotendon units’ (MTUs) (Anderson & Pandy, 2001a; Arnold et al., 

2010; Endo & Herr, 2009; Jonkers et al., 2003; Yamaguchi & Zajac, 1990) as illustrated in 

Figure 2.3. 

 

 

Figure 2.3: A Hill-type muscle model (Arnold et al., 2010) 

 

In the same way that some models grouped together individual muscles into muscle 

groups (Davy & Audu, 1987; Yamaguchi & Zajac, 1990), it is also possible to divide the 

action of a single muscle into multiple actuators (Anderson & Pandy, 2001a). The benefit 

of this is that it provides a better anatomical representation of the muscle’s geometry 

and the directions of the forces it produces.  

The different methods of defining the muscle activation profiles are more numerous than 

those for the simple models. Some have used dynamic features, such as springs and 

series-elastic clutches (Endo & Herr, 2009), whereas other have defined the curves by 

functions. This has been attempted using a multitude of techniques including Fourier 

series, polynomials, first-order differential functions or a combination of discretisation 

and interpolation (Anderson & Pandy, 2001a, 2001b; Anderson & Pandy, 2003; Jonkers et 

al., 2003; Koh et al., 2009; Ren et al., 2007). The constants or coefficients required to 

define each of these representations are often selected by an algorithm built into the 

solution process. 
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2.2.2 Common assumptions 

As with any type of modelling, simplifications and assumptions are often made. As with 

the simple models, a particularly troublesome area is the foot-ground contact. This has 

been approached by means of mass-spring-damper systems (Figure 2.4) being 

incorporated into the foot (Anderson & Pandy, 2001a; Yamaguchi & Zajac, 1990) or by 

carefully defining the shape of the foot (Ren et al., 2007) so that its rollover mechanism 

appears to mimic the four rockers (Perry, 1992). 

 

 

Figure 2.4: Example of mass-spring-damper mechanism to model foot contact (Yamaguchi & Zajac, 1990) 

 

Whenever the head, arms and trunk (HAT) are modelled as a single segment, this nullifies 

any effect the swinging of the arms may have on the kinetics of walking. This is a widely 

used assumption in gait modelling (Anderson & Pandy, 2001b; Koopman et al., 1995; Ren 

et al., 2007; Yamaguchi & Zajac, 1990) where the focus is the lower extremities. Earlier 

investigations had been even simpler, ignoring HAT segments and the motion of the 

pelvis was predetermined by a fixed path (Davy & Audu, 1987). 

Another common assumption is that of bilateral symmetry (Anderson & Pandy, 2001b; 

Ren et al., 2007). This means that only half a gait cycle need be simulated thus halving the 

processing required. In order to ensure this condition is met, constraints are often 

required so that the initial states of the right limbs are equivalent to the terminal states 

of the left limbs and vice versa. 

When assumptions are made, Crowninshield (Crowninshield & Brand, 1981) emphasises 

the point that it is important to select the ‘muscle prediction criteria based on 

physiological bases rather than on an arbitrary or mathematically convenient’ one. 
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2.2.3 Solution methods 

Many different techniques have been used to solve complex walking models (Ren et al., 

2006). Central Pattern Generators (CPG) have been used to mimic the interaction 

between the brain and the muscles/skeleton during walking (Ogihara & Yamazaki, 2001; 

Taga, 1995; Taga et al., 1991; Yamazaki et al., 1996). The state of the musculoskeletal 

system and its environment at a given time is sensed by the CPG. It will then produce the 

appropriate outputs that will activate the muscles in such a way so as to produce the 

desired motion. CPGs have associated values called ‘connection weights’ that must be 

determined, either by trial and error (Taga et al., 1991) or optimisation (Taga, 1995). 

These types of models are exclusively forward dynamics problems and thus require large 

computational processing power. Whether or not this method is used by humans in 

reality is still debated (Duysens & Van De Crommert, 1998; Van De Crommert et al., 

1998). 

Another method is to use Control Engineering techniques. Popular in robotics studies, 

this can be used to track pre-determined joint trajectories (Hurmuzlu, 1993; Juang, 2000). 

The torque at the joints is adapted so as to produce the joint patterns. In practice, a 

drawback of this method is that it doesn’t make any concessions for unexpected 

disturbances such as obstacles or external forces. By defining the controls to achieve a 

given performance criterion, rather than trajectory tracking, a quick controller has been 

shown to be able to overcome unexpected perturbations in practical robot experiments 

(Morimioto et al., 2003). 

The idea that walking can be performed with zero joint moments, purely through ballistic 

behaviour is known as passive walking theory (Mcgeer, 1990; Mcmahon, 1984). This has 

been shown to be viable on a sloping floor (Garcia, Chatterjee, & Ruina, 1998; Goswami, 

1999; Goswami et al., 1997; Goswami et al., 1998) but it has some shortcomings. The 

action of the HAT segment is not considered and all models are limited to the sagittal 

plane only. The argument of no muscle action also fails to explain how walking velocity 

can be determined (Mcmahon, 1984). 

Another solution technique is to use an optimisation algorithm. After defining the initial 

conditions as the inputs to the algorithm, some parameters are chosen as the control 

variables. An objective function is also stated. The optimiser then uses an iterative 
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process, altering the control variables each time, to determine the values for which the 

objective function is at a minimum or maximum, depending upon the problem. 

 

2.2.4 Static Optimisation 

 There are two different types of optimisation problem, known as static and dynamic. A 

static optimisation is one that occurs for a given time instant. At that time, given the data 

regarding joint angles and GRF, it is an indeterminate problem because there could be 

numerous muscle activation combinations that produce those results. The optimiser 

solves the indeterminate problem by calculating the kinetics according to an objective 

function, also known as cost functions.  

The number of muscles a model replicates often depends upon the aims and solution 

techniques being used. Some solution methods, such as static optimisation, use little 

processing power and can solve quickly, meaning that it is possible to model large 

numbers of muscles without it being too detrimental to the solution time (Anderson & 

Pandy, 2001a). Such studies have previously considered anywhere between 30 and 50 

different muscles and muscle groups (Arnold et al., 2010; Crowninshield & Brand, 1981; 

Glitsch & Baumann, 1997; Patriarco et al., 1981; Pedersen et al., 1997) as shown in 

Figure 2.5. 

 

 

Figure 2.5: An example of a complex model incorporating a large number of individual muscles (Arnold et 

al., 2010) 



16 

 

A drawback of static optimisation, however, is that it is greatly dependent upon the 

accuracy of the input data, usually collected via gait lab tests. Another is that since the 

objective function for a static optimisation is inherently time-independent, this does not 

allow the overall aim of the entire walking cycle to be investigated (Anderson & Pandy, 

2001b). In addition to these issues, if the problem is solved for a number of consecutive 

time instants, unrealistic discontinuities in muscle force could arise in the predictions as 

the solution is independent of those that have gone before it (Davy & Audu, 1987).  

Static optimisation is common in inverse dynamics studies (Crowninshield & Brand, 1981; 

Glitsch & Baumann, 1997; Hardt, 1978; Pedersen et al., 1997; Röhrle et al., 1984). One 

investigation employed this method to examine the difference between 2D and 3D 

inverse dynamics using a complex walking model (Glitsch & Baumann, 1997). The findings 

of this study suggested that the 2D technique could underestimate total joint forces by 

up to 60%. This once more emphasises the point that increasing the complexity of 

consecutive models in small increments could provide knowledge that may otherwise be 

overlooked. 

 

2.2.5 Dynamic optimisation 

Dynamic optimisation is another method for gait simulation. This often involves forward 

dynamic techniques and is used to predict the motion of the model over a given time. 

Thus, in contrast to static optimising, the predictions made for late stance are dependent 

upon what has happened earlier in the cycle.  

Since this method uses forward, rather than inverse dynamics, simulations require much 

more computational effort to achieve a solution and so large numbers of muscles would 

slow the process down considerably, making it impractical. These types of studies tend to 

use single actuations to represent the effort of muscle groups (e.g. iliopsoas, vasti, 

hamstrings, dorsiflexors etc.), which can still pinpoint a problem area for a participant, 

albeit not with the same precision. Typically these models will model ten or fewer muscle 

groups (Davy & Audu, 1987; Yamaguchi & Zajac, 1990) but more recent models have 

been able to utilise more powerful computers to consider over 20 individual muscles 

(Anderson & Pandy, 2001a; Jonkers et al., 2003). 
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They are predictive and have time-dependent objective functions. This means that novel 

movements can result and it is also possible to investigate the overall goal of a particular 

motor task (Ren et al., 2007; Thelen & Anderson, 2006). This can be particularly useful for 

those investigating motions other than walking (Hatze, 1981), where there is a more 

obvious measure of performance i.e. jumping higher, farther, etc. 

This ability to produce novel motion can lead to physically impossible solutions being 

produced so it is often necessary to apply constraints to the joints of the model to avoid 

things like hyperextensions (Anderson & Pandy, 2001a, 2001b; Anderson & Pandy, 2003; 

Ren et al., 2007). 

As mentioned, the types of objective functions differ between static and dynamic 

optimisations. Previous static optimisation works have used functions such as muscular 

endurance (Crowninshield & Brand, 1981), a fatigue criterion accounting for stride time, 

kinematics and joint forces and moments (Koopman et al., 1995), the sum of the squared 

muscle stresses (Glitsch & Baumann, 1997) or the sum of the cubed muscle stresses 

(Pedersen et al., 1997). Opinion seems to largely be in favour of the main goal of walking 

being to reduce the effort required from the muscles. A similar trend is apparent when 

the cost functions of dynamic optimisation studies are observed; metabolic expenditure 

per distance travelled (Anderson & Pandy, 2001a, 2001b; Anderson & Pandy, 2003), the 

sum of total work done by the muscles and enthalpy change during contraction (Davy & 

Audu, 1987), the mechanical energy cost (Channon et al., 1992; Marshall et al., 1989; Ren 

et al., 2007; Yen & Nagurka, 1987). 

Other optimisations will be defined so that they track a data set gathered from laboratory 

testing and the judgement of performance will come from how well other predictions 

match another data set. For example, the muscle forces are controlled so that the 

kinematics of the joint angles correlate which their empirical counterparts. Then a 

comparison can be made between these predicted muscle forces and experiment EMG 

recordings (Thelen & Anderson, 2006). Equally, the EMG readings could be tracked to 

observe whether the correct kinematics result (Jonkers et al., 2003). There are many 

ways of comparing the tracking errors and quantifying the error for the performance 

criterion. Such examples include incorporating static optimisation within a dynamic one 

(Thelen & Anderson, 2006) or a simple least squares method (Cappozzo et al., 1975). 
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2.3 Validation 

With any simulation it is important to provide validation so that the results can be 

considered accurate. The most common way to do this is by means of experimental data 

captured in a gait laboratory. In the world of gait modelling, a low number of participants 

is quite common, perhaps only five or six (Anderson & Pandy, 2001a, 2001b; Anderson & 

Pandy, 2003; Crowninshield et al., 1978; Patriarco et al., 1981). Some studies have only 

used a single participant (Glitsch & Baumann, 1997; Pedersen et al., 1997). The 

justification for these low numbers is that often it is the performance of the model that is 

being examined, as opposed to some hypothesis regarding a particular group of 

participants. In fact, it could be argued that a large number of participants could be 

detrimental to the simulations. Gait data is often captured and presented in terms of 

‘percentage of the gait cycle’ rather than in terms of absolute time. The instances at 

which certain gait events occur varies between participants so taking a data curve 

averaged across multiple participants could potentially be less representative than using 

a single person’s data. In clinical applications, the model would only be used for an 

individual participant anyway. 

Gait analysts used to capture the motion of the participant by attaching LEDs to specified 

anatomical landmarks and, from the path of these LEDs captured by cameras, the 

segment positions and joint angles could be calculated (Crowninshield et al., 1978; Röhrle 

et al., 1984). More recently, researchers have been able to use reflective markers that are 

tracked by infra-red cameras to perform this same task (Anderson & Pandy, 2001a; 

Anderson & Pandy, 2003; Glitsch & Baumann, 1997; Pedersen et al., 1997). For the 

kinetics, almost all studies will use a walkway instrumented with force plates to record 

the GRF and perform multiple trials per participant, although it is possible that even intra-

participant averaging could lessen accuracy. Many will also record electromyographic 

(EMG) data to provide knowledge of the temporal changes in the activation of different 

muscles  (Anderson & Pandy, 2001a; Anderson & Pandy, 2003; Crowninshield et al., 1978; 

Davy & Audu, 1987; Glitsch & Baumann, 1997; Patriarco et al., 1981; Pedotti, 1977; 
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Yamaguchi & Zajac, 1990). Information detailing the best ways to perform such 

experiments is readily available (Delagi & Perotto, 1980). 

The anatomical parameters, such as segment lengths and the participant’s height and 

weight can be measured in the gait lab, thus making the model participant specific. 

Generic values, as well as information gathered from cadaver studies regarding the 

inertial properties of different body segments, can be found in previous works 

(Crowninshield et al., 1978; Winter, 1979). These data sources are widely accepted and 

used in other works (Yamaguchi & Zajac, 1990) due to the difficulties and administrative 

processes involved in obtaining permission for cadaver studies. 

 

2.4 Case study 

A key body of work in the field of complex, dynamic optimisation modelling is that of 

Anderson and Pandy. A single complex model they developed has provided numerous 

insights in multiple studies (Anderson & Pandy, 2001a, 2001b; Anderson & Pandy, 2003; 

Pandy, 2003). 

The model in question was a three-dimensional, 23 DOF model with 54 active MTUs 

(Figure 2.6). It was made up of ten segments. The pelvis was a single rigid segment with 

six DOF, the head, arms and torso were modelled as a single rigid body (HAT) and the 

other eight segments were divided evenly between the two legs. The feet consisted of 

hindfoot and forefoot segments. The muscles were defined appropriately to best 

represent the anatomical structure. The HAT segment was controlled by six back and 

abdominal muscles and each leg had 24 muscles to control it. Certain muscles, such as 

the gluteus maximus and gluteus medius/minimus, had to be separated into two 

separate actuators due to the complex geometry at their pelvic origin. This assumption 

meant the model could better replicate their actions. 
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Figure 2.6: Pandy and Anderson’s complex gait model (Anderson & Pandy, 2001b) 

 

For any simulation it is important to prove its validity. For this particular model, practical 

testing was performed and the results of the comparison were analysed in different 

papers (Anderson & Pandy, 2001a; Anderson & Pandy, 2003; Pandy, 2003).  

The experimental testing itself consisted of five healthy adult males, whose age, height 

and weight were all taken into consideration. Each participant was required to perform 

four laps of a 400m track as a warm up. On the third of these laps, the number of steps 

the participant took, and the time taken, were recorded. Due to the way in which the 

model was built, with the head, arms and trunk being modelled as a single segment, the 

participants performed all walking tasks with their arms folded across their chest. The 

participant then entered the gait laboratory and with the use of a metronome, they 

reproduced their natural outdoor walking rhythm along an 11m track, instrumented with 

force plates. During these indoor walking trials, the participant had passive reflective 

markers attached to them at specific locations. The motion of these markers and hence 

the particular body segments, was captured using specialist cameras. EMG recordings 

were also taken throughout the trials. Each participant performed five trials, all of which 

were video recorded as well. For each participant, anthropometric data was taken. 

Using mean data collected from a gait lab study as the initial conditions, an optimisation 

problem was constructed. Assuming bilateral symmetry, half a gait cycle was simulated 

over a fixed time of 0.56s, which was the mean time taken for half a cycle in the gait lab 

testing. Constraints were applied so that joint angles and velocities, as well as muscle 

excitation and activation, at the end of the left side of gait were equal to those at the 

start of the right side of gait. The cost function of the optimisation was the total 
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metabolic energy divided by the anterior-posterior displacement of the CM. The energy 

used by each muscle was the sum of basal metabolic heat, shortening heat, activation 

heat, maintenance heat and mechanical work. A penalty function was included in the cost 

function to avoid joint hyperextension. The authors were keen to highlight that their 

model was not given a ‘tracking’ problem; that is to say the kinematic motion was not 

strictly defined. Instead, only initial and final conditions were set. 

One of its first uses was to investigate the differences between static and dynamic 

solutions and to justify the use of each for different scenarios (Anderson & Pandy, 

2001b). Firstly, a dynamic simulation was performed. The cost function to be minimised 

was metabolic energy per unit of distance travelled with the constraint being that it had 

to produce a cyclic gait pattern. The activation profiles of the muscles were defined by 

first-order differential functions. There were two different static problems set up, relating 

to the way in which the muscles were modelled. In the first one, they behaved as ideal 

force generators; in the second they were constrained by their respective force-length-

velocity profiles. In both cases, the joint moments produced by the forward dynamic 

solution were the inputs, the muscle activations were the variables and the sum of the 

squares of the muscle activations was the objective function to be minimised. The results 

showed a good agreement between all the models. This led the authors to conclude that, 

if the inverse dynamics problem can be solved accurately, the use of predictive dynamic 

optimisation over static is not justifiable. However in situations where accurate 

experimental data is unavailable or a time-dependent performance criterion is desired 

then it is very useful. The key conclusion the authors draw is that the two methods should 

complement one another. 

The dynamic model was also compared to the gait lab data to see how well it was able to 

predict the basic kinematics and ground reaction forces (Anderson & Pandy, 2001a), as 

well as the individual muscle contributions to gait (Anderson & Pandy, 2003). Each muscle 

excitation history was defined by discretised ‘control nodes’. These were spread at equal 

time intervals across the excitation history and interpolated between. The values of all 

these nodes, as well as the initial values of each muscle excitation, were used as the 

control parameters in the dynamic optimisation. Once again, the cost function was 

minimising metabolic energy expenditure per unit distance travelled. 
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The results of this model were relatively close to the experimental data. In contrast to 

Pandy’s double inverted pendulum model, which suggested that the first and second 

peaks in the vertical ground reaction force were caused by mechanisms at the knee and 

ankle respectively, the more complex model claimed it was hip and ankle mechanisms 

respectively (Pandy, 2003). This difference is explained by the increased complexity. 

Where the complex model is able to perform all six determinants of gait (Saunders et al., 

1953), the double inverted pendulum can only reproduce three of them. 

Upon closer inspection however there were some flaws. Although the predicted vertical 

component of GRF displayed the double peak shape, it contained a lot of spikes and was 

not a smooth curve like the empirical data. In addition to this, the contributions of 

“inertial forces”, “centrifugal forces”, “muscle forces” etc. appeared to rise or drop 

instantaneously at milestones such as heel rise and contralateral heel strike. 

A large kinematic anomaly was the excessive transverse pelvic rotation around heel 

strike. The explanation for this is the heel-strike force required to decelerate the swing 

leg. The participants did not exhibit this behaviour in the practical testing which suggests 

there is a more sophisticated method used by humans than the model is able to replicate. 

The explanation proffered for the spikes and discontinuities in ground reaction force 

components was due to the way in which the foot was modelled when in contact with 

the ground. A mass-spring-damper system was used. The model also predicted the 

metabolic energy consumption rate to be much greater than the results published 

elsewhere. This was explained by a lack of arm swing in the model and simplifications 

made in muscle modelling. For example, considerations of the difference between fast 

and slow twitch muscles were not made. They also state that, despite over 10,000 hours 

of processing time, it is possible that the solution hadn’t completely converged. 

In spite of these drawbacks, most of the kinematic behaviour of the simulation appeared 

close to reality. This suggested that minimum metabolic energy expenditure per distance 

travelled may indeed be a valid criterion for walking. They were also able to postulate the 

individual contributions of the different muscles of the lower limbs at different times in 

the gait cycle and although the magnitudes may not have been perfect due to spikes and 

step changes, the general proportions make good references for future work, particularly 

when EMG data is unavailable. 



23 

 

A slightly modified version of this model was used by Thelen and Anderson (2006) to 

investigate whether it could be solved within a more manageable time. The body was 

now modelled as an eight segment, 21 DOF structure, actuated by 92 MTUs. A number of 

extra considerations were made when solving the model. They state that due to 

measurement errors in practical data captured for comparison and modelling 

assumptions, kinematics and kinetics are often dynamically inconsistent. This means that 

models will predict extra, external forces known as residual forces. They hoped to 

produce a dynamically more consistent model by using a ‘residual elimination algorithm 

(REA)’ and taking into consideration time delays between muscle excitation and 

activation. 

The solving method was unique too. They used a ‘computed muscle control (CMC)’ 

algorithm. This meant using the joint angle errors (when compared to those recorded 

from ten healthy male participants) at a given time to calculate the appropriate angular 

acceleration of the joint required, so as to match the joint angles at the next time instant. 

Muscle activation and contraction dynamics were integrated from the previous time step 

to work out the upper and lower bounds on the force that each muscle could produce at 

the current time step. A static optimisation was then used to calculate the appropriate 

muscle forces needed to achieve the necessary joint angular accelerations, by means of 

the equations of motion. This process was repeated for every time interval. 

The results showed that the kinematic root mean-squared (RMS) errors were mostly less 

than 1° and the predicted muscle activation profiles, visually, appeared fairly consistent 

with the experimental data. It is important to highlight, however, that this method is a 

tracking problem, whereas the previous studies (Anderson & Pandy, 2001a; Anderson & 

Pandy, 2003) used a performance based dynamic optimisation which can produce novel 

motions. 

 

2.5 Discussion 

Simple mathematical models are good for giving generalised ideas of the purposes of 

different gait mechanisms. Also, by the absence of a mechanism, they can postulate the 

effects of these. Some good studies will postulate the effect of a mechanism and then 
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create a new model that incorporates it, validating the prediction (Pandy & Berme, 

1988b). Where they struggle is in identifying the functions of specific muscles. The results 

are also affected by considerable assumptions. 

Complex models give much clearer ideas of reality and are more anatomically 

representative. The results of complex model studies still have irregularities though and 

their causes are not fully understood. A good summary of their pros and cons, as well as 

the considerations they have to make, is given by Otten (2003). 

Pandy quite nicely summarises the roles played by both simple and complex models in his 

paper comparing an inverted pendulum model, a double inverted pendulum model and a 

complex model (Pandy, 2003). It was stated that simple models “identify basic features of 

muscle function” and complex models “discern the functional roles of specific muscles in 

movement”.  

An interesting point to note is that the simple models of gait vary between active (Buczek 

et al., 2006) and passive (Garcia, Chatterjee, Ruina, et al., 1998; Siegler et al., 1982; Zhe et 

al., 2008), whereas the complex models are almost all active and require muscle action to 

be modelled. This is a strong indication that walking is in fact an active process but is 

performed in such a way that energy expenditure is minimal. This gives further credence 

to those studies that minimised the energy used to travel a given distance as their 

measure of performance (Anderson & Pandy, 2001a; Anderson & Pandy, 2003; Ren et al., 

2007). 

These different models employ different techniques as well. Inverse dynamics is very 

useful in both simple and complex numerical models, although there is some debate 

about the extent to which model complexity has an effect on the results given (Alkjaer et 

al., 2001; Apkarian et al., 1989; Eng & Winter, 1995). 

The optimisation of kinematic and kinetic parameters is becoming a very popular method 

in gait analysis and it seems that future studies will become dependent upon it. This can 

be a time consuming process, particularly for the predictive, forward dynamics models, 

but produces worthwhile results. 

It should be considered important to quantify the performance of a model so that fair 

comparisons can be made. One way to do this would be to make RMS comparisons 
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between the empirically captured data and the predictions of the simulation (Koh et al., 

2009; Thelen & Anderson, 2006). 

Very little work appears to have been done to transition from the simple to the complex 

models. This is true for both the complexity of the dynamics of the model and for the 

sophistication of the techniques used to provide the solutions. A gradual increase in the 

dynamic complexity would help highlight the effects that can be attributed to an 

individual mechanism, providing numerical justification for gait determinants. Advanced 

solution techniques applied to simple models could also potentially provide better 

solutions and provide insights previously unobserved. 

 

2.6 Research questions and project aims 

This project will begin by investigating the simplest model of normal human gait, the 

inverted pendulum, and incrementally augment the complexity of each subsequent 

model. This will be achieved by increasing the number of DOF accounted for and by 

incorporating complex modelling techniques, such as dynamic optimisation. The 

following questions are to be investigated: 

 

1. What are the strengths and weaknesses of the inverted pendulum for predicting 

the sagittal kinematics and kinetics of healthy human walking? 

 

2. To what extent can a sequence of numerical models, incrementally increasing in 

complexity, highlight the effects of different gait mechanisms? 

 

3. What is the minimum complexity required for a numerical model to predict the 

kinematics and kinetics of healthy sagittal bipedal gait, within a single standard 

deviation range 

a. for one-legged single support? 

b. for two-legged single support? 
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c. for the full gait cycle? 

 

4. Considering interpersonal differences, the time cost and the solution accuracy, 

how close is gait modelling to becoming a clinically usable tool? 

 

For clarification, ‘gait mechanisms’, as referenced in Research Question 2, are defined as 

any traits, be they kinematic (e.g. knee flexion) or kinetic (e.g. the double peaks of the 

vertical GRF curve), that are characteristic of healthy human walking. 

Figure 2.7 once more shows the outline for the thesis but now includes information on 

where each of the research questions will be addressed. 
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

General introduction

Based on a paper written to 
investigate the strengths and 

weaknesses of single DOF models

Sequential increases in 
complexity to single stance 

models

Double stance phase modelling 
and consequently full gait cycle 

simulations

Testing the model with 
individuals’ data sets, rather than 

a grouped data set

A comprehensive review of the 
literature relevant to the topic

General discussion summarising 
the project as a whole

Research question 1

Research question 2

Research question 3

Research question 4

 

Figure 2.7: A summary of the outline of the thesis and where each research question will be addressed 
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3 SIMPLE MODELS 

3.1 Introduction 

The aim of this chapter is to answer the first research question regarding the advantages 

and disadvantages to approximating human walking to an inverted pendulum.  

In terms of the thesis as a whole, the findings of this chapter will provide a good 

foundation for further chapters to build upon. The work here will highlight in what areas 

the simplest models of walking provide good approximations of reality, and in which 

areas they perform inadequately. This will provide a justifiable focus for future model 

development. 

In addition, another outcome of the work with simple models will be to help establish a 

successful framework for further examination of more complex and unpredictable 

models. The second research question is regarding the effects of sequentially modelling 

and having a consistent investigation protocol for all models will also give credence to the 

findings. The framework proposed will start by outlining the specifics of the particular 

link-segment model being investigated, such as DOF, constraints etc. All models will have 

the foot-ground interaction as a workless constraint. Lagrangian mechanics will then be 

used to generate the equations of motion of that dynamic system. These equations of 

motion will be numerically integrated over a given time period during a simulation, 

tracking specific aspects of a clinical dataset (for this chapter, walking velocity is the 

focus). Finally, the outputs of the simulation will be compared to other aspects of the 

clinical dataset (e.g. kinematics and kinetics) to assess the ability of that model to predict 

healthy gait. 

In this chapter, the approach will be to firstly appraise the relevant literature on the topic 

of inverted pendulum dynamics to develop an understanding of the current state of the 

art. Next the two models to be tested will be illustrated and described before the 

mathematical framework of the two models is outlined. This will include derivations of 

the equations of motion, an explanation of the numerical integration procedure and the 

relevant equations for calculating properties such as Ground Reaction Force (GRF). The 

simulation setup will be described next before the results for each of the simulations will 
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be given. Finally, there will be a discussion of what can be drawn from the results and 

some concluding remarks. 

This chapter has been submitted for publication as a full paper to Gait and Posture. 

 

3.2 Literature 

One of the first mentions of the term “inverted pendulum” (IP) as a model of the stance 

phase of walking was by Cavagna et al. (1976) although similar concepts can be traced 

much earlier ((Alexander (1976); Elftman (1966); Saunders et al. (1953)). More recently 

the IP has formed the basis of a growing body of work associated with the Dynamic 

Walking movement (summarised by Kuo, 2007) which is based on principles first 

elucidated by Mochon and McMahon (1980) and subsequently by Tad McGeer (1990; 

1993). Recent work of this group has tended to focus on the transitions from one step to 

the next (Donelan et al., 2002a; Donelan et al., 2002b; Kuo et al., 2005). The group, as 

well as other researchers, have presented several extended versions of IP models 

including springs, dampers, telescopic actuators, additional segments and joints. (Ankarali 

et al., 2012; Hong et al., 2013; Kim & Park, 2011; Koolen et al., 2012; O'connor & Kuo, 

2007; Srinivasan, 2010). 

This work has focussed on energetics and stability whereas the kinematics and kinetics of 

movement are more relevant to most clinical biomechanists and are less well 

understood. The mechanics of the IP itself (as opposed to the transitions) were presented 

briefly by Anderson and Pandy (appendix of 2003) who gave a brief description of the 

GRF. A more comprehensive comparison with gait data by Buczek et al. (2006) concluded 

that the IP predicts the anterior velocity of the whole body CM and anterior component 

of the GRF reasonably well but not the vertical components.  

The aim of this chapter is thus to build on the work of Buczek et al (2006) in extending the 

ideas of the Dynamic Walking Group into the domain of clinical biomechanics. This 

includes extending their analysis to include fast and slow walking velocities and the IP 

model to include a hip joint controlled by a joint actuator in such a way as to maintain an 

upright trunk. Whilst this is unlikely to affect the overall dynamics of the system (it is still 

a one DOF system) it will allow an investigation of the extent to which hip flexor and 
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extensor activity measured using inverse dynamics during normal walking can be 

attributed to the requirements of an IP model. There is considerable current interest in 

the decomposition of the GRF to investigate the function of different muscles (Anderson 

& Pandy, 2003; Francis et al., 2013; Liu et al., 2006) and the analysis of the IP model has 

been extended to evaluate the contribution of the hip actuator to the GRF. 

 

3.3 The Models 

Figure 3.1a shows the free body diagram for Model 1. The inertial properties of the IP 

have been altered from the ‘traditional’ IP models (Buczek et al., 2006). Previously the 

entire mass of the body acted at a single point at the end of the pendulum. For this 

model, the total mass has been redistributed to two separate points so now the ‘leg’ has 

been assigned a mass (  ), with the CM at a point a given distance (  ) from the pivot, 

and moment of inertia (  ). This change was motivated by the desire for the mass 

properties of the leg to be the same in both models to avoid an associated confounding 

effect. The mass of the rest of the body (  ) acts at a single point at the ‘hip joint’, a 

given distance (  ) from the pivot. The mass at the hip has zero moment of inertia. The 

anterior-posterior direction is defined as the x axis and the vertical direction is defined as 

the y axis. 

Using information taken from Winter (1979, 1991), all data regarding lengths, distance 

and mass distributions were taken for a person of 1.80m height and 80 kg mass 

(Table 3.1; see also Appendix A.1). The position of the IP was specified by the angle that 

its axis of symmetry makes with the vertical (  ). 

Figure 3.1b shows the free body diagram for Model 2 which consists of two segments of 

lengths    and   . The inertial properties of the two segments are specified by the 

respective masses (   and   ) and moments of inertia (   and   ) of the respective CMs, 

which are located at defined distances from the distal ends of the segments (   and   ). 

The positions of each segment are specified by the angles that their longitudinal axes 

make with the vertical (   and   ). A hip moment,  , is applied at the joint between the 
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two segments. The equations of motion for Model 2 can be derived, as can the formulae 

for the horizontal and vertical components of the GRF. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Free body diagrams for a) Model 1 (including the calculation approximations in bold) and b) 

Model 2. 

 

3.4 The Modelling Framework 

3.4.1 Lagrangian Dynamics 

Lagrangian dynamics was selected to derive the equations of motion for the models in 

this study. This was deemed preferable to other methods, such as Newtonian dynamics, 

because it works independent of co-ordinate frame and uses energy calculations, as 

opposed to forces and moments, hence requiring less prior knowledge of the entire 

system. Previous studies that have detailed the Newtonian mechanics used, required the 

GRF to be measured or specified as a function of the kinematics (Pandy & Berme, 1988a, 
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1988b). This is avoided in Lagrangian mechanics as the ground contact is modelled as a 

workless constraint. 

Equation 3.1 gives the governing equation for Lagrangian mechanics (Onyshko & Winter, 

1980): 

 

 

  

  

  ̇
 

  

  
   

Equation 3.1 

 

The term ‘ ’ is the Lagrange function and is defined as the difference between the kinetic 

energy of the system,  , and the potential energy,  . Calculating these values allows the 

equations of motion for a given system to be derived. 

The equations of motion for Model 1 are derived first. In order for this to be done, the 

two masses are equated to a single mass ( ) with a given moment of inertia ( ), acting at 

a given distance from the pivot (  ). 

 

        

   
(         )

(     )
 

  (     (     )
 )  (     (     )

 ) 

Equations 3.2, 3.3, 3.4 

 

Next the kinetic and potential energy values of the system are calculated. 

 

  
 

 
    

 

 
    

 

      

 

      



33 

 

   
 

 
   

  ̇  
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Equation 3.5, 3.6, 3.7 

 

Partial differentials of   with respect to  ̇ ,    are taken in order to evaluate the variables 

in the Lagrange governing equation (Equation 3.1). 

 

(   
   ) ̈             

  ̈  
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Equation 3.8 

 

This is decomposed into two terms. These are the acceleration due to gravity, which is a 

function of angular position, and the acceleration due to centripetal effects, which is a 

function of angular position and velocity. 

 

 ̈  
    

(   
   )

     

 ̈    

Equations 3.9, 3.10 

 

The derivation of the equations of motion for Model 2 is slightly more complicated. 

Initially, it is treated as a two segment open chain, with two DOF. The addition of the hip 

joint moment later will reduce it to a one DOF system. 

The governing Lagrange equation for a model with an actuated joint is shown below 

(Equation 3.11).  Without any external input, the right hand side of the equation would 

be zero (as in Equation 3.1), but these models are to be actuated by joint moments,   , 

so the effects of these on the DOF must be incorporated. 
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Equation 3.11 

 

Where    are the generalised forces derived from a consideration of virtual work (  ): 
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Equation 3.12 

 

Where     refers to the change in the state vector. The two obvious choices for     are 

joint angle (  ) or segment angle (  ) to the vertical. 
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Equation 3.13 

 

This would mean    is equal to     if joint angles are used or         if the segment 

angles to the vertical are used. Although selecting the joint angles as the reference de-

couples the generalised force terms, it makes the functions for the energy calculations 

much more complex. Consequently, segment angles to the vertical are preferable and will 

be used throughout this thesis. 

Now the derivation of the governing equation can begin by evaluating the kinetic and 

potential energy values. To do this, the cartesian coordinates of the masses are 

considered: 

 

            ,              

                    ,                         

Equations 3.14, 3.15, 3.16, 3.17 
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The linear velocities of the masses are defined by the first derivatives. 

 

 ̇           ̇ ,   ̇           ̇  

 ̇           ̇          ̇ ,    ̇           ̇          ̇  

Equations 3.18, 3.19, 3.20, 3.21 

 

The resultant velocities are calculated. 
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Equations 3.22, 3.23 

 

Kinetic and potential energy calculations allow the Lagrangian function to be evaluated. 
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Equations 3.24, 3.25, 3.26 
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Partial differentials of   with respect to  ̇ ,    are taken in order to evaluate the variables 

in the Lagrange function. 

 

  

  ̇ 

  ̇ (    
      

    )   ̇ (         (     )) 

 

  
(

  

  ̇ 

)   ̈ (    
      

    )   ̈ (         (     ))   ̇ ( ̇   ̇ )(         (     )) 

 

  

   

   ̇  ̇ (         (     ))  (         )       

Equations 3.27, 3.28, 3.29 
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Equations 3.30, 3.31, 3.32 

 

From these calculations and Equation 3.11, the equations of motion can be written in 

matrix form. 
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Equation 3.33 
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From Equation 3.33,   is calculated so as to enforce the constraint that the angular 

acceleration of segment 2 is zero. When the value of   is known, this leads to a single 

equation of motion to calculate the angular acceleration of segment 1. Using the same 

method as Model 1, this acceleration is divided into gravity, centripetal and muscle 

terms. 

 

3.4.2 Numerical integration 

The equations of motion calculate the angular accelerations of each of the DOF to be 

calculated for a given time instant. For a forward dynamic simulation, these acceleration 

values must be used to calculate the subsequent angular position and velocity values for 

the next time instant. The new angular position and velocity values are then put into the 

equations of motion to calculate a new angular acceleration. This cycle is repeated 

iteratively for a desired number of time instants. 

In this study, the method, by which the new angular positions and velocities are 

calculated, is a numerical integration, based on a Taylor expansion. 
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Equation 3.34 
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Equation 3.35 

 

Given that:  
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Equation 3.36 

 

Therefore the following estimation of the next angular position is made. 
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Equation 3.37 

 

Similarly, the next angular velocity value is evaluated. 
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Equations 3.38, 3.39 

 

3.4.3 Ground reaction force calculations 

In order to properly assess the kinetic performance of each simulation, the vertical and 

horizontal components of the GRF are to be evaluated and compared to experimental 

measurements. 

Starting with Model 1 and taking inspiration from Anderson and Pandy (2003) who 

applied Newton’s second law to determine the components of the ground reaction in the 

vertical direction,  this approach can be extended to determine the horizontal component 

as well:  
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          ̈ 

Equations 3.40, 3.41 

 

Substituting expressions for  ̈  and  ̈: 

 

 ̈    ̈        ̇        

 ̈    ̈        ̇        

Equations 3.42, 3.43 

and for  ̈  using Equation 3.8 and rearranging gives: 
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Equation 3.44, 3.45 

 

Anderson and Pandy (2003) grouped terms involving g and denoted these as 

‘gravitational’ terms. All terms containing   ̇ were denoted as ‘centripetal’ terms. 
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Equations 3.46, 3.47, 3.48, 3.49 

 

Model 2 is approached in the same way to calculate the GRF beneath it. The vertical 

component of GRF can be expressed in terms of linear vertical accelerations, and the 

horizontal component of GRF is calculated using the same method. 
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Equations 3.50, 3.51, 3.52 
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Equations 3.53, 3.54, 3.55 
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To decompose the GRF into gravitational, centripetal and muscular terms, the c1 and c2 

terms from Equation 3.33 are separated: 

 

   
 (         )          

             

   
           (     ) ̇ 

     
          (     ) ̇ 

  

   
      

    

Equations 3.56, 3.57, 3.58, 3.59, 3.60, 3.61 

 

Using these variables in Equation 3.33 calculates the angular accelerations attributable to 

the respective source for the segment  . Substituting these values further into 

Equations 3.50-55 gives the GRF due to these accelerations. 

 

3.5 Simulation Methods 

The lengths    and   , the distribution of mass between    and   , the CM positions on 

their segments,    and   , and the moments of inertia,    and   , were all selected using 

Winter’s data (1979, 1991). These are displayed in Table 3.1 (also see Appendix A.1). 

 

    (kg)   (m)   (m)   (kg.m2) 

1 12.88 0.53 0.95 1.25 

2 67.12 0.32 0.85 18.53 

Table 3.1: Values for model parameters 

 

The same source was used for gait data against which the outputs of the simulations 

were judged. These covered a range of walking velocities and average temporal spatial 

parameters and are displayed in Table 3.2. The simulations were assumed to represent 

the half-gait cycle from the middle of one double support phase to the middle of the 

next. All Winter’s data were thus time normalized to this definition of a step. 



41 

 

  
Slow Normal Fast 

Step length 

m 0.69 0.75 0.82 

dimensionless 0.71 0.77 0.84 

Cadence 

steps/min 87 105 123 

dimensionless 0.46 0.55 0.65 

Velocity 

m/s 1.00 1.21 1.68 

dimensionless 0.32 0.42 0.54 

Table 3.2: Average temporal spatial parameters for Winter’s data 

 

The equations of motion of the two models were integrated numerically over 10-3s 

intervals. The leg segment in both models was assumed to move through an arc of  θ 

symmetrical about the vertical and this was set to ensure the required average step 

length for the experimental data (      ). The initial angular velocity was then optimised 

to ensure that the time taken to swing through this arc resulted in the required cadence 

(note that this also constrains the average walking velocity). All graphical output was time 

normalized to step duration. 

Inverse dynamics were subsequently performed using a standard Newton-Euler 

approach. This provided validation for the forward dynamic calculations, as well as 

allowing a comparison of the moments acting about the ‘hip’ in each of the models. 

An examination of the GRFs constituent parts was also undertaken. The terms in the GRF 

equations were separated and the forces attributable to ‘gravitational’, ‘centripetal’ and 

‘muscular’ effects were calculated. 

 
3.6 Results 

Figure 3.2 represents the components of hip velocity at the three different walking 

velocities for Models 1 and 2. Differences between the models are almost indiscernible 

graphically, particularly the vertical velocity curves, emphasising how close the results are 
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to one another. The RMS values in Table 3.3 confirm that differences are always less than 

or equal to 0.03m/s.  

The way the horizontal velocity varied across the gait cycle followed the same patterns 

observed in the experimental data (see  

Table 3.4). During mid-stance the vertical velocity also showed a good match between 

the predicted and experimental data (within 0.08m/s at all walking velocities). The 

predicted data differed from the experimental values over the first and last quarters of 

the step (half gait cycle). This showed that the models did not account for the 

mechanisms the body uses to ensure a zero vertical velocity at foot contact and thus 

avoid a discontinuity in velocity, allowing for a smooth cyclic pattern. 

The RMS values in Table 3.3 showed that the two sets of predictions of hip velocity and 

the GRF were close to one another. As expected, the incorporation of joint actuation in 

this model made little difference to the overall dynamics of movement. 

Figure 3.3 presents the GRFs at different walking velocities for the Models 1 and 2, in the 

horizontal and vertical directions. All plots include the decomposition into gravity and 

centripetal components for Model 1 and gravity, centripetal and muscle moment 

components for Model 2. 

Again the total GRF components for Models 1 and 2 appeared similar and this was 

confirmed by the RMS values in Table 3.3. As expected the centripetal component varied 

minimally between the two models and the gravitational component differed by an RMS 

of 2.2% bodyweight (BW) with a maximum difference of 4.2% BW. This difference 

appeared to be accounted for by the component due to the hip muscles. There was a 

good match with the experimental data for the horizontal component of the total GRF 

predicted for both models (within 7.31% BW for all walking velocities). The match for the 

vertical component, however, varied up to 40.82% BW. It was still reasonable during mid-

stance (within 15.36% BW) but poor over the first and fourth quarter of the step (up to 

54.65% BW difference). Over these phases, as walking velocity increased, the match with 

experimental data became weaker. 
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Figure 3.2: The linear velocity components for Models 1 and 2 at different walking velocities. The shaded 

areas indicate experimental data and double support periods. The line thicknesses of Model 2’s velocity 

component curves have been increased so as to help distinguish between the two models’ results. This is 

difficult, particularly for the vertical component of velocity, where the results were almost identical. 
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Figure 3.3: The GRF components for Models 1 (top six) and 2 (bottom six) models at different walking 

velocities 
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Slow Natural Fast 

Velocity (m/s) 

x 0.03 0.03 0.02 

y 0.01 0.01 0.01 

Ground 

Reaction Force 

(%BW) 

x 3.18 3.16 2.83 

y 1.50 1.61 1.57 

Gravitational 

component of 

GRF (%BW) 

x 0.38 0.45 0.62 

y 1.60 1.86 2.16 

Centripetal 

component of 

GRF (%BW) 

x 0.26 0.36 0.52 

y 0.90 1.14 1.50 

Table 3.3: The RMS of the difference between Models 1 and 2 predictions 

 

  
Model 1 Model 2 

  
Slow Natural Fast Slow Natural Fast 

Velocity 

(m/s) 

x 0.03 0.04 0.04 0.01 0.02 0.04 

y 0.17 0.25 0.34 0.17 0.24 0.34 

Ground 

Reaction 

Force (%BW) 

x 5.96 3.63 5.34 3.26 3.25 7.31 

y 9.82 21.05 40.82 9.72 19.91 39.56 

Hip Moment 

(Nm)  
11.92 19.66 39.48 16.96 13.06 31.52 

 

Table 3.4: The RMS of the differences between the models’ predictions and the experimental data 
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Hip joint moment graphs can be produced for both models by applying inverse dynamics 

and they can be compared to experimental data (Figure 3.4). For all walking velocities, 

the IP model had zero moment about the hip. This is because the mass at the hip had 

zero rotary moment of inertia. For the Model 2, the moment varied from an extensor 

moment at the start of the cycle to a flexor moment of equal magnitude at the end. This 

matched the broad pattern seen in the experimental data with the magnitude at natural 

velocity with an RMS error of only 13.06Nm. 

 

 

Figure 3.4: The hip joint moments (flexion positive) for Models 1 (red) and 2 (blue) models at different 

walking velocities 

 

3.7 Discussion 

The aim of this study was to further investigate what insights simple IP based models can 

give into the mechanisms that drive human walking. The IP model of walking has been 

described as the “simplest walking model” (Garcia, Chatterjee, Ruina, et al., 1998). 

Despite this only one previous paper has set out to describe the biomechanical 

characteristics of the IP and then only at a single walking velocity (Buczek et al., 2006). 

Adding a HAT segment held upright by an actuator (representing the hip extensor 

musculature) was a simple modification that could make the model more physiologically 

representative of human walking and allow a calculation of the hip muscle activity 

required to support the trunk. The simulation still had just one DOF and it was thus 
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possible to compare this with the first model to give an understanding of how much this 

muscle activity affects movement in simple models.   

The horizontal component of GRF was predicted well by both models throughout the 

stance phase. Researchers often make the assumption that in early stance and 

particularly in the push-off phase, muscle activity is required to generate the horizontal 

component of the GRF (Perry & Burnfield, 2010). The results of the IP model show that 

these are a natural consequence of the body’s posture and muscle forces are not 

necessarily required. 

Model 2 was able to predict the hip moment curves well (less than 32Nm for all walking 

velocities), particularly at natural walking velocity (RMS error of 13.06Nm). This provides 

evidence for the primary purpose of the hip moment being to maintain the upright 

posture of the trunk and therefore illustrating how even a simple anatomical extension to 

the IP model can provide extra insight into gait mechanics. 

One of the biggest failures of these two models is that they are not inherently cyclic. A 

symmetrical IP inevitably results in a motion in which the vertical component of velocity 

is equal and opposite at either end of the step cycle. It is thus clearly not possible to 

simply string together IP steps sequentially to model walking. Although vertical and 

horizontal components of velocity match experimental data over the middle 50% of the 

step the modelled vertical velocity differs markedly from experimental data over the first 

and last 25%. This suggests that whilst the IP may be regarded as a good model of single 

support (particularly the middle part) it is not a good model of double support. 

A number of studies have addressed the step-to-step transition issue. There are 

numerous examples of such modelling in the literature, a particular strand of this 

associates energy loss with the “collision” that is inevitable at the transition from one IP 

step to the next (Adamczyk & Kuo, 2009; Donelan et al., 2001; Donelan et al., 2002a; 

Donelan et al., 2002b; Kuo, 2007; Kuo et al., 2005; Srinivasan & Ruina, 2006). The analysis 

in this chapter, however, highlights the inadequacies of modelling double support as a 

simple transition between consecutive IP steps and questions whether such modelling of 

energy loss based on these assumptions is reasonable. 
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This model failing was also implicit in a vertical component of the GRF which was always 

below bodyweight (essentially the CM has a negative acceleration throughout the gait 

cycle). The IP thus fails the first pre-requisite of normal walking – adequately supporting 

bodyweight. The average vertical force under either foot is about 10% less than 

bodyweight. Empirical data show the characteristic double bump of the vertical 

component of the GRF which IP models cannot predict (Anderson & Pandy, 2003). It is 

interesting that even this data however gives an average force under each limb of below 

bodyweight over each step. This emphasizes the importance of double support, during 

which the forces under both limbs add to give the highest overall force on the body at 

any time during the gait cycle, as a mechanism for ensuring bodyweight is supported. 

Differences between the IP model and empirical data increased with increasing walking 

velocity suggesting that the IP performs worse at higher walking velocities. 

The predicted contribution of hip musculature to the GRF was quite different to the 

findings of Anderson and Pandy (2003). They stated that hip extensors contributed up to 

40% BW in early single support, considerably more than Model 2. On the other hand they 

found that the hip flexors provided minimal contribution, anywhere throughout single 

support in agreement with the Model 2. The differences may be attributed to the model 

dependency of ‘induced accelerations’ as highlighted by Chen (2006). 

Decomposing the GRF into its constituent parts is a relatively new technique (Anderson & 

Pandy, 2003) and is still poorly understood. This study has analysed this for two very 

simple models and it is here where the largest differences are observed between the two 

models with the “gravitational” GRF differing at the beginning and end of the step (the 

vertical component is up to 4.2% BW larger for Model 1). This difference is almost exactly 

that which is attributed to the hip muscles in the HAT model (the centrifugal component 

and total force are very nearly identical). Considering the free body diagram and the 

similarity in the way the two models move, gravity would appear to have an extremely 

similar effect on both models and it may be that labelling this as the “gravity” component 

is misleading. The difference is attributable to the different structures of the models (one 

has a hip joint, the other doesn’t). This component is that which would be exerted by the 

structure in the absence of movement or muscular action and “structural support” might 

be considered a better label than “gravity”. The explanation of the analytical results is 
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then that the jointed HAT structure is inherently less resistant to collapse under the same 

gravitational forces as the IP and muscle activity is required to allow it to move similarly. 

In summary, consideration of these two models suggests that IP based models appear to 

give valuable insights into the fundamental mechanisms by which the body moves 

through single support. They are not cyclically consistent, however, and cannot serve as 

reliable models for the transition from one step to the next. Incorporation of an actuated 

hip joint identifies the primary role of the hip musculature in stance as that of keeping 

the HAT upright. Alternative explanations for the role of this muscle function during 

walking have been offered, such as support of bodyweight (Anderson & Pandy, 2003; Liu 

et al., 2006; Liu et al., 2008). 

 

3.8 Conclusions 

Overall this study has been very useful for laying the fountains for further models to build 

upon.  The IP model of walking has been shown to produce a fairly good approximation of 

walking during single support but cannot replicate double support. The addition of an 

actuated hip joint has given mathematical evidence towards the hypothesis that hip 

muscle action is focussed on maintaining an upright trunk. These conclusions directly 

address the first Research Question. In addition, the framework implemented for this 

investigation has been shown to produce results effectively.  

With these observations in mind, the next chapter of this thesis will focus on fine-tuning 

the accuracy of the single support phase. This will be approached by producing a 

sequence of models that incrementally increase in complexity. It is hoped that, just like 

the addition of the hip joint moment, each new element will provide mathematical 

evidence for what its role in walking might be. 

Chapter 5 will investigate double support and what extra considerations need to be 

accounted for in order to produce an adequate solution. 
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4 SINGLE SUPPORT MODELS 

4.1 Introduction 

In this chapter, the simple models addressed previously will be advanced by the inclusion 

of extra DOF and additional complexities. There are previous studies in the same vein as 

this but there are a number of considerations that set this particular investigation apart 

from those, as described in Section 4.2. The goal of this work was to address Research 

Question 2: to see what can be learnt from sequential increases in model complexity.  

The simulations discussed in this chapter focus solely on the single support phase of 

walking thus avoiding the step-to-step transition problems discussed in Chapter 3 and 

addressed in Chapter 5. This will help to address the first parts of Research Question 3: 

what is the minimum level of complexity required to adequately model one-legged and 

two-legged single support? 

The structure of the chapter will be much the same as the previous one. An appraisal of 

the relevant literature will be given first. Following that, the modelling framework will be 

laid out. This explains the mathematics used to produce a model capable of making 

predictions and why certain choices were taken. The next step will be to outline the 

models themselves. This will include a free body diagram of each structure and 

explanations of their intricacies. The simulation procedure will then be considered. This 

covers any restrictions or constraints put on the motion and how the best prediction was 

discovered. The results of the simulations will be given and discussed, highlighting any 

evidence for the effects caused by additional complexities. The chapter will end with 

some concluding remarks about what has been learnt and what this means for the 

project as a whole.  

 

4.2 Literature 

The work of the Dynamic Walking group and others that champion the Spring Loaded 

Inverted Pendulum (SLIP) model (Bullimore & Burn, 2007; Hong et al., 2013; Millard et al., 

2011; Poulakakis, 2010; Poulakakis & Grizzle, 2009; Soyguder & Alli, 2012) was discussed 
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in the previous chapters. While this does produce a realistic CM motion, and hence better 

GRF curves, it considers neither anatomical accuracy nor how its parameters translate to 

reality. The SLIP model replaces the knee joint mechanism with a telescopic, straight leg 

containing a spring of defined stiffness. It is unable to predict joint angle time-histories or 

joint moment time-histories since it is only the whole body CM that behaves as it does in 

healthy walking. If it were used to simulate experimental data it may be found that a 

given stiffness, k N/m, produces the optimum correlation but how can this information be 

used when the human knee does not contain a spring mechanism? 

Another aspect of these types of models also seems to be that they tend to ignore the 

kinetic results (Duan et al., 1997). Even those that give GRF curves are unable to predict 

joint moment time-histories (Siegler et al., 1982) or use very simple approximations, such 

as step or ramp functions (Pandy & Berme, 1988a). Kinetic results not only provide 

information regarding the accuracy and validity of simulations but are also useful in a 

clinical environment. 

One of the major focuses of this project, as stated in Research Question 2, is to develop a 

sequence of models that incrementally augments complexity so that the effect of a 

particular additional mechanism or DOF on the kinematics and/or kinetics of walking can 

be observed. This would illustrate the benefit of each additional complexity included in a 

gait model and also provide mathematical evidence for or against ‘The Determinants of 

Gait’. These are six properties of healthy human walking (pelvic rotation, pelvic obliquity, 

knee flexion, lateral displacement of the CM, and knee and ankle mechanisms) first 

proposed by Saunders et al. (Saunders et al., 1953), as ways that the body minimises 

energy consumption by translating the CM “through a sinusoidal pathway of low 

amplitude in which the deflections are gradual”. There have been numerous experimental 

based studies to test this idea (Della Croce et al., 2001; Gard & Childress, 1997, 1999; 

Kerrigan et al., 2000; Kerrigan et al., 2001; Ortega & Farley, 2005), as well as conceptual 

ones (Kuo, 2007) but a mathematically based examination would provide the strongest 

evidence for their validity. 
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4.3 The Modelling Framework 

4.3.1 Introduction 

Lagrangian dynamics was once more used to derive the equations of motion for all 

models. As mentioned in the previous chapter, Lagrange’s equation for the derivation of 

the equations of motion of an actuated, open-link chain is: 

 

 

  
(
  

  ̇ 

)  
  

   

    

Equation 4.1 

 

This gives one equation for every DOF of the system. Instantaneously for a known state 

vector (     ̇ ), each equation is linear with respect to the generalised accelerations ( ̈ ). 

This means the set of equations of motion can be put into matrix form and easily inverted 

so as to give the accelerations, as a function of the state vector (  ,  ̇ ) and the applied 

moments (  ), at any given time instant. Knowing the values of these accelerations 

allows for the numerical integration over time. 

One unknown, that has a large impact on the acceleration values, is the time-history 

profiles of the joint moment activations. The solution is to use an optimisation procedure 

with these joint moments as the input parameters and a cost function that quantifies the 

error of the predicted state vectors over time from those of the measured data. 

Once the generalised accelerations, velocities and positions are known, over the given 

time period, inverse dynamics can be used to equate the vertical and horizontal 

components of the GRF and how they change over time. 

 

4.3.2 Generalised formula for n-link chain equations of motion 

A generalised formula for the equations of motion of a link model of n segments has been 

previously developed for use in gait modelling, using a Newtonian approach (Pandy & 

Berme, 1988a). This project repeated this investigation but instead, used Lagrangian 

mechanics to develop the formula. A great advantage of this generalised formula is the 
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time saved in developing the equations of motion for models with a large number of DOF, 

where a manual approach would be unmanageable. 

The following derivation is for an open-link chain consisting of n rigid, straight segments, 

where the ground acted as a workless constraint at one end of the chain and the other 

end was free. Each segment has the following characteristics (Figure 4.1). The angular 

position of ‘segment  ’ is defined as the angle the segment makes with the vertical. The 

right hand rule is used for angles, angular velocities, accelerations and moments (i.e. 

anticlockwise is positive). The total length of the segment is   . The position of the CM of 

the segment is defined by two values,    and   . These values operate within the segment 

coordinate frame, rather than a global one, where    is parallel to the length of the 

segment and    is perpendicular. The force due to gravity acting at the CM is    . The 

direction of progression is in the positive x direction and upwards is the positive y 

direction.  

For these generalised formulae to be valid, a number of assumptions are made. There is 

no branching and each segment is connected to any adjacent segments by frictionless 

hinge joints. The model is 2D, in the sagittal plane, and the hinge joints are the only DOF. 

For each segment, there are two controlled muscle moments acting directly on the 

proximal and distal ends respectively. 

 

 

 

 

 

 

 

 

Figure 4.1: The geometry of any given segment 
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Firstly, the coordinates of the masses are considered: 
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Equations 4.2, 4.3 

 

The linear velocities of the masses are defined by the first derivatives. 
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Equations 4.4, 4.5 

 

The resultant velocities are calculated for each mass. 
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Equation 4.6 

 

Where the sigma notation ∑
{   |   }
       means   and   cover all of the values from 1 to 

(   ), but are never the same as one another. To give a simple example, say (   ) 

equals 3, and the summation is of the function   , then: 
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Equation 4.7 

 

In order to calculate the equations of motion of a system using Lagrangian mechanics, the 

kinetic energy,  , and the potential energy,  , of the system must be calculated. 
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Equation 4.8 
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Equation 4.9 

 

The Lagrangian function is calculated by subtracting the potential energy from the kinetic. 
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Equation 4.10 

 

Partial differentials of   with respect to  ̇  and    are taken in order to evaluate the 

variables in the Lagrange function. 
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Equations 4.11, 4.12, 4.13 

 

From these calculations, the equations of motion can be written in matrix form. 
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Equation 4.14 

 

For a given row,  , and a given column,  , the following formulae are used: 
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Equation 4.15 
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Equation 4.16 

 

Matrix   can then be inverted and used to produce the vector  ̈ , which gives the angular 

acceleration for each of the segments of the chain. 

A MATLAB (v 2011a, The MathWorks Inc., Natick, MA, 2011) script was written that, given 

the model parameters and DOF as inputs, automated the coding of these equations of 

motion (see Appendix A.2). 
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4.3.3 Numerical integration 

The equations of motion were numerically integrated for each time instant using the 

same Taylor expansion method used in the previous chapter (Section 3.4.2). 

 

4.3.4 Ground reaction force calculations 

In order to properly assess the kinetic performance of each simulation, the vertical and 

horizontal components of the ground reaction force were to be evaluated and compared 

to experimental measurements.  

By considering the vertical direction first, Newton’s second law of motion is used: 
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Equation 4.17 

Where: 

 

 ̈             
  

 (√  
    

 ) (  ̈    (   (     
  

  

))   ̇ 
 
   (   (     

  

  

)))

 ∑   (  ̈        ̇ 
 
     )

   

   

 

Equation 4.18 

 

Similarly, for the horizontal direction: 
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Equation 4.19 
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Where: 
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Equation 4.20 

 

4.4 Sequential Model development 

Initial model development focussed exclusively on the single support phase of walking. 

The approach was to add extra mechanisms and DOF one by one so that the complexity 

of the model increases sequentially. The differences between the results the models 

produce would then indicate which characteristics of walking can be attributed to which 

mechanisms.  

Another area of interest was how additional complexities in the model dynamics affected 

the kinematic and kinetic predictions it would make. It was possible that a higher number 

of DOF would mean the model was able to produce a more accurate GRF but equally it 

could mean that the kinematic accuracy, for a given segment, would be compromised as 

a larger number of segment angles would have to be considered in the cost function and 

thus trade-offs would be required. 

 

4.4.1 Three degrees-of-freedom (Model 3) 

Augmenting Model 2 of walking (from Section 3.3) by separating the leg into thigh and 

shank/foot segments, a three DOF model was developed (Figure 4.2). No foot mechanism 

was used so the model pivots about a workless constraint at a point on the ground. The 

respective values for  ,  ,   and   for the thigh and shank/foot segments were assigned 

using Winter’s formulae (1979, 1991) for a person of 80kg mass and 1.8m height (see 

Table 4.1 and Appendix A.1). 
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Actuation moments were applied at the hip and knee joints. However, unlike Model 2, 

where the size of the joint moment was that which resulted in zero acceleration for the 

HAT segment, all joint moment trajectories were defined by a number of optimisation 

variables (this is described more in-depth in Section 4.5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Model 3: A three degrees-of-freedom model of human walking 

 

    (kg)   (m)   (m)   (m)   (kg.m2) 

1 4.880 0.201 0.000 0.510 0.220 

2 8.000 0.233 0.000 0.410 0.140 

3 67.120 0.337 0.000 0.900 13.375 

Table 4.1: Values for model parameters of Model 3 
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4.4.2 Four degrees-of-freedom (Model 4) 

The next mechanism to be added was a stance foot. This took more consideration than 

simply adding an extra segment. In all previous models, the GRF had acted at a single 

point, where the first segment met the ground. This is known to not be the case in reality. 

The point of application of the GRF is called the centre of pressure (COP) and moves 

along the long axis of the foot during stance (Figure 4.3). 

 

 

Figure 4.3: Centre of pressure motion during stance (Whittle, 2007) 

 

Another issue arises when the kinematics of the foot during single support are 

considered. At the start of the single support phase, the foot is often flat on the ground. 

The segment defining the foot extends from the pivot with the ground (at the metatarsal 

head) to the ankle joint. At this angle and with zero initial velocity, the weight of the foot 

and other segments will accelerate it downwards, causing the model to collapse through 

the ground. A constraint is required to stop the downward motion of the foot and 

represent the action of the ground. 

Both of these issues, the COP movement and the ground action, are effectively the same 

problem and consequently they can both be solved by a single solution. In dynamics, a 
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force offset from a point (in this case, the pivot at the metatarsal heads) can be equated 

to the same force acting at that point plus a moment about the point (Figure 4.4). 

 

 

 

 

Figure 4.4: The real-life position of the GRF (left) and how it is approximated by the model (right) 

 

The value of this moment is calculated so as to produce zero angular acceleration for the 

foot segment, using the same method as Model 2 did for its HAT segment. Dividing the 

moment by the vertical component of GRF gives the horizontal distance between the COP 

and the pivot point. When this distance reaches zero, i.e. the COP has reached the pivot 

point,      is set to stay at zero, and the foot segment is now free to move and begins to 

the rise. This is likely to cause a gradient discontinuity in      and hence the GRF curves. 

Unfortunately, this could not be avoided. 

The foot mechanism was added to the previous model so as to create a four DOF model 

(Figure 4.5). This meant that the model was essentially divided into two ‘submodels’, foot 

flat and heel rise, with the difference between the two being the constraint on the foot 

segment’s motion. These submodels would be run sequentially so the final state of the 

foot flat phase would be the initial state of the heel rise phase. Importantly, a single 

optimisation would cover both phases. 

The mass of the shank segment was divided between the tibia and foot segments and 

each was given the appropriate moment of inertia (Winter, 1979, 1991). An actuating 

moment was added at the ankle joint. The pivot point was defined as the metatarsal head 

and therefore the foot length is defined as the distance from the ankle joint to the 

metatarsal head. A full set of the model parameters is shown in Table 4.2 (see also 

Appendix A.1).  
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    (kg)   (m)   (m)   (m)   (kg.m2) 

1 1.160 0.075 0.000 0.150 0.060 

2 3.720 0.247 0.000 0.435 0.064 

3 8.000 0.233 0.000 0.410 0.140 

4 67.120 0.337 0.000 0.900 13.375 

Table 4.2: Values for model parameters of Model 4 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Model 4: A four degrees-of-freedom model of human walking 

 

4.4.3 Seven degrees-of-freedom (Model 5) 

The final single support model added a swing leg (shown in red in Figure 4.6) to the 

stance leg (blue) and HAT (grey) segments.Since the generalised formula could not model 

branched chains, the HAT segment was modelled horizontally but given zero length. The 

MH 

GRF 

MK 

MA 
MGRF 



66 

 

CM of the segment was positioned correctly and the moment of inertia was calculated in 

terms of the participant’s height. This also allowed the two legs to interact dynamically, 

while maintaining two separate hip joints and hip joint moments. A full set of the model 

parameters is given in Table 4.3 (see also Appendix A.1). 

 

    (kg)   (m)   (m)   (m)   (kg.m2) 

1 1.160 0.075 0.000 0.150 0.006 

2 3.720 0.247 0.000 0.435 0.064 

3 8.000 0.233 0.000 0.410 0.140 

4 54.240 0.000 0.337 0.000 10.809 

5 8.000 0.178 0.000 0.410 0.140 

6 3.720 0.188 0.000 0.435 0.064 

7 1.160 0.075 0.000 0.150 0.006 

Table 4.3: Values for model parameters of Model 5 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Model 5: A seven degrees-of-freedom model of human walking 
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This model also incorporated the use of two submodels, defining foot flat and heel rise 

respectively. They were run sequentially with a single optimisation, exactly like Model 4. 

 

4.5 Simulation methods 

To ensure a fair comparison between the different models, the method used to perform 

simulations was the same for each one. The natural walking velocity of 1.2m/s was taken 

from Winter’s data (1979, 1991), a single gait cycle was calculated to take approximately 

0.9 seconds. Many sources cite a single support period as being approximately 40% of the 

full gait cycle (Kirtley, 2006; Perry, 1992; Rose & Gamble, 1994; Whittle, 2007) and so the 

time for which the simulations were run was to be 0.36 seconds. All the initial conditions 

were taken from the experimental data and anthropometric measures mentioned by 

Winter (1979, 1991). 

 

4.5.1 Joint moments 

Each joint moment was defined by 21 nodes starting at t=0, and then at evenly spaced 

intervals until t=0.36. These nodes defined the magnitude of the moment at that given 

time instant. The moment values between the nodes were determined using spline 

interpolation function in MATLAB. The spline function uses piecewise cubic polynomials 

to create the interpolated values (De Boor, 1978). Using cubics means that there are no 

discontinuities in the first derivative of moment. 

Figure 4.7 shows the moment definition procedure. In the first plot on the left, a range of 

one standard deviation either side of the experimental mean value for a particular knee 

moment is shown. Continuing to the top row, the next plot (top centre) shows the 

positions of the moment nodes if they were to define a curve equivalent to the 

experimental mean. To the right of that (top right) is a plot showing how interpolating 

between these nodes produces this curve with a value calculated for every single time 

instant. The bottom row of plots illustrates how altering these node values affects the 

resulting moment curve. This allows the user or optimisation algorithm to investigate the 

effects of increasing or decreasing joint moments at a given time period in the gait cycle. 
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Figure 4.7: Moment nodes and interpolation 

 

4.5.2 Optimisation parameters 

The models in this project are all forward dynamics simulations, meaning that, given an 

initial starting point,  the kinematics are determined from kinetic inputs (in this case joint 

moments). Firstly, the optimisation parameters were chosen to include the initial angular 

positions (from the vertical axis) and angular velocities of the body segments. This 

information could have been taken from the experimental data but preliminary testing 

showed that relatively minor changes in these values could have large effects on the 

simulation results, so it was considered preferable that the optimiser select the precise 

values. In addition to the initial state, the moment nodes were also deemed to be 

optimised parameters. This is necessary since these are unknown quantities that had the 

most control over the resulting movement of the model. The initial estimates for all these 

values were taken from the experimental data. 
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4.5.3 Cost function 

One of the ideas behind this study has been stated as the application of complex solution 

techniques to simple models (Section 2.5). An optimisation approach has often been 

applied to complex dynamic models, but rarely to simple models. Often the cost 

functions used are specific to complex models, relating to muscle fatigue and stress 

(Glitsch & Baumann, 1997; Koopman et al., 1995; Pedersen et al., 1997), factors which 

aren’t considered by the simpler mechanical models. Tracking kinematics and/or kinetics 

(Thelen & Anderson, 2006) is a possible solution technique that could be applied to the 

simpler models. 

For this study, the chosen cost function was the kinematic match with the experimental 

data, as determined by a number of root mean square (RMS) error calculations 

(Equations 4.21, 4.22). For a thorough comparison, the experimental data was 

interpolated using the spline fit function in MATLAB (as explained in Section 4.5.1) so that 

error could be calculated for every available time instant. 

For segment  , at each time instant,  , the difference between the predicted segment 

angle (       
) and the mean experimental value ( ̅      

) was calculated. These values 

were then divided by their respective experimental standard deviation values, for that 

segment, at that given time instant (       
). The results were then squared. The mean 

value of these squares was taken and then square rooted to produce the RMS error value 

for that particular segment. The sum of the RMS error values for each of the segments 

was the cost function (   ). 

 

     
√∑ ((

       
  ̅      

       

)

 

) 

 
 

   ∑    

 

 

Equations 4.21, 4.22 
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The reason each of the difference calculations was divided by the appropriate standard 

deviation value was to ensure a fair weighting for each of the segment angles. For 

example, an angular difference of 5° would be of greater significance for the foot 

segment than it would for the femur segment, so incorporating standard deviations takes 

this into account. It also meant that if the cost function was changed and incorporated 

properties with different SI units, it wouldn’t be a problem since all RMS errors would be 

in terms of standard deviations. 

This cost function was chosen to see both how well the model could match the desired 

kinematic motion. Once the simulation result was given, observations of how well the 

resulting kinetics agreed with reality were made. Some models required further 

constraints but these are detailed in the respective results sections. 

Winter’s data (1979, 1991) were used as the input (joint moment trajectories) to the 

model and for comparison (segment angle trajectories), as an assessment of its success. 

Kinematic data for a single HAT segment was not available from this source however. 

Instead, guidance was taken from a number of studies (Ceccato et al., 2009; Krebs et al., 

1992; Opila-Correia, 1990; Thorstensson et al., 1982). Based on the data given by these 

studies, it seemed a fair approximation was a mean value of zero throughout the whole 

gait cycle (i.e. vertical HAT segment), with a consistent standard deviation range of ±5°. 

 

4.5.4 Algorithms 

The final consideration is the algorithm used to solve the optimisation problem. 

Simulations in this project used MATLAB to perform parameter optimisation and achieve 

the best results given the desired cost function. There are two ‘toolboxes’ that contain 

built in optimisation algorithms; the ‘OPTIMISATION TOOLBOX’ and the ‘GLOBAL 

OPTIMISATION TOOLBOX’. 

The solvers in the MATLAB OPTIMISATION TOOLBOX are all what are known as ‘local 

optimisation’ algorithms (Lagarias et al., 1998; Nocedal & Wright, 2006). What this means 

is that if a function has more than one minimum point then the closest one to the initial 

estimate will be found. Obviously, this may not be the absolute minimum point for the 

function (see Figure 4.8).  
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Global optimisation is a technique that is used to calculate the highest or lowest values of 

a non-linear function that has multiple maxima and minima. This is a much better method 

of optimisation because it doesn’t require as much knowledge about the initial estimate 

or the function domain as local optimisation does. 

 

 

 

 

 

 

 

Figure 4.8: Illustration of Local Optimisation behaviour. The dots indicate the initial estimate and the 

stars show the solutions the solver found. 

 

In practice, it is used to find optimal, often novel and counter-intuitive designs for 

products and is especially good when a compromise is required between certain design 

parameters. It is also faster at finding these solutions than exhaustive search methods. 

There are many different solvers that can be used in the MATLAB GLOBAL OPTIMISATION 

TOOLBOX, each using different algorithms and resulting in differing levels of precision, 

depending upon the type of problem being solved. It is recommended that a solver is run 

more than once on the same problem to determine the reliability of the result and that 

once an output is gained, a local solver is used, with this output as the initial estimate, to 

obtain the required degree of accuracy. 

The ‘Global search’ function in MATLAB, using an interior-point algorithm, was chosen for 

use in this study (Ugray et al., 2007). It is a type of multi-start algorithm but incorporates 

a heuristic aspect. The random start points generated are assigned penalty values 

depending upon their respective cost function value and their adherence to any problem 

constraints. Any points with too high a penalty value are ignored. 
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Figure 4.9 shows a three-dimensional representation of how a cost function may change 

against two variables. To find the global minimum, the first step is for multiple random 

start points to be generated. The point with the lowest penalty value is selected and the 

local minimum is found. The vector from the start point to the minimum is then taken as 

the radius of a ‘basin’ around the minimum. It is then assumed that any further start 

points within this basin will find this minimum and so don’t need evaluating (Figure 4.10). 

Next, a new random start point is chosen. Assuming it is still below the threshold value it 

is selected, if not it is rejected. If a new start point finds a minimum that already has a 

basin, the basin radius is expanded to that start point (Figure 4.11). 

 

 

Figure 4.9: 3D plot of a cost function 
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Figure 4.10: From multiple random start points, the chosen first start point finds a local minimum (the 

star) creating the first basin (the ring) 

 

 

Figure 4.11: Basin expansion (bottom) and a new start point within an existing basin (top) 
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Eventually, the lowest value of the local minima found is taken to be the absolute 

minimum. 

Each simulation in this study consisted of a global optimiser being employed multiple 

times, with the same start point, so as to investigate its repeatability. Next, the optimum 

global output was then fed as the input into a local optimiser (Lagarias et al., 1998; 

Nocedal & Wright, 2006) to increase the accuracy of the result. This was implemented as 

an automated process in MATLAB. 

 

4.6 Results 

The shaded areas on each of the following plots show the values covered by ±1 standard 

deviation from the experimental mean. The solid lines show the results predicted by 

simulations. 

The moment graphs are oriented so that anticlockwise is positive, as according to the 

right hand rule for moments, as opposed to gait analysis conventions. 

 

4.6.1 Model 3 – Three degrees-of-freedom 

An extra penalty function was added to the optimiser to prevent knee hyperextension. 

Bearing in mind the right hand rule was used for positive segment angles, if the femur 

segment angle became less than that of the shank/foot segment (rotated further 

clockwise), the cost function was set to 9999. This meant the optimiser would avoid all 

solutions that included hyperextension. 

The plots in Figure 4.13 show a comparison between the predicted motion and empirical 

data at equally spaced time intervals between the beginning (top left) and end (bottom 

right) of single stance. The experimental angular position data of the tibia is used for 

comparison with the simulation results for the angular position of the shank/foot 

segment. 

The results of this simulation looked encouraging for the first half of single support but 

the kinematics showed that the leg, particularly the shank/foot segment, has rotated too 

far forward by the end of single stance (Figure 4.12 and Figure 4.13). Similarly, the kinetic 
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correlation looked good during the first half of stance with both moment curves within 

their respective standard deviation ranges of their experimental data (Figure 4.14) and 

the vertical GRF curve appearing to show the peak, dropping to a mid-stance trough 

(Figure 4.15). However, these predictions deteriorated during the second half of the 

simulation. 

 

 

Figure 4.12: The kinematic predictions for Model 3 
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Figure 4.13: The kinematic predictions (solid) vs the empirical means (dotted) for Model 3 

 

Figure 4.14: The joint moment predictions for Model 3 
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Figure 4.15: The GRF predictions for the Model 3 

 

There were two explanations for the poor predictions in the second half of the 

simulation. The first was the lack of ankle moment and as a consequence there was less 

control over the shank/foot segment as there would be in reality. In addition to this, the 

foot is not modelled as a separate segment and hence the contact with the ground is a 

single point rather than distributed under the sole of the foot. Nor is the forward motion 

of the COP modelled, which would affect support, particularly in late stance, where the 

errors are occurring. 

Consequently, it was proposed that an alternative three DOF model be used. This time, 

instead of treating the first segment as a shank/foot combination, it was treated as solely 

a tibial segment. This, however, raised another issue over where the mass of the stance 

foot would be incorporated. The model displayed in Figure 4.16 was the solution. This 

model was named Model 3.1 and a full set of model parameters is given in Table 4.4 (see 

also Appendix A.1) 
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Figure 4.16: Model 3.1: A three degrees-of-freedom model of human walking with a static foot 

 

    (kg)   (m)   (m)   (m)   (kg.m2) 

1 1.160 0.075 0.000 0.150 0.006 

2 3.720 0.247 0.000 0.435 0.064 

3 8.000 0.233 0.000 0.410 0.140 

4 67.120 0.337 0.000 0.900 13.375 

Table 4.4: Values for model parameters of Model 3.1 

 

This model incorporated a foot segment but it remained static (indicated on the free 

body diagram by its darker colour). This retained three DOF but provided a better support 

mechanism and mass distribution. An extra moment was added to the ankle joint. All 

other aspects of the simulation were kept the same. Figure 4.17-Figure 4.20 are the 

simulation results for this model. 
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Figure 4.17: The kinematic predictions for Model 3.1 

 

Figure 4.18: The kinematic predictions (solid) vs the empirical means (dotted) for Model 3.1 
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Figure 4.19: The joint moment predictions for Model 3.1 

 

Figure 4.20: The GRF predictions for Model 3.1 
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As the model did not have a moving foot, the empirical kinematic data was plotted as if 

the foot didn’t move in Figure 4.18. The simulation was able to achieve a result where all 

segment angles remained within the standard deviation ranges throughout the entirety 

of single support. 

The joint moment time-histories gave interesting results (Figure 4.19). Each curve 

exhibited the appropriate shape, as given by the experimental results, but was translated 

just outside its standard deviation range; the hip showed more extension, the knee more 

flexion and the ankle more plantarflexion.  

The vertical GRF curve clearly showed a distinct initial peak and mid-stance trough, 

although the peak was not as high in magnitude as the experimental data had suggested 

(Figure 4.20). The horizontal GRF improved in the first half of stance, staying within the 

standard deviation range. Both curves strayed from the empirical data in the second half 

of stance, although not quite as drastically as the previous model. 

A numerical comparison of the two models’ simulation results (Table 4.5) highlights the 

improvements achieved by separating the tibia and foot segments, even though the 

number of DOF remained constant. The kinematic errors decreased by approximately 

70% from the original model and the GRF error reduced by over 70%. 

It should be noted that although the cost functions, used in this study, normalised the 

RMS errors by each parameters respectively standard deviation values, the data is given 

here in appropriate units. This is to help conceptualise the error in terms of ‘real world’ 

measures. 
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Model 3 Model 3.1 

Segment angles (°) 

Tibia 6.67 2.36 

Femur 4.18 0.93 

HAT 0.31 0.06 

    

Joint moments 

(Nm) 

Ankle N/A 23.63 

Knee 48.11 26.52 

Hip 34.80 24.24 

    

GRF (%BW) 
y 71.91 20.32 

x 22.89 6.38 

 

Table 4.5: The prediction RMS errors with the experimental data for Models 3 and 3.1 

 

4.6.2 Model 4 - Four degrees-of-freedom 

Two penalty functions were added to the optimiser; one to prevent knee hyperextension 

and one to ensure heel rise achieved a sufficient angle. Both of these conditions were 

applied in the same way as the Model 3 constraint. The cost function would be set to 

9999 should either one of two constraints not be met. Bearing in mind the right hand rule 

was used for positive segment angles, if the femur angle was less than (rotated further 

clockwise) than the tibia angle at any point during the simulation, then the penalty was 

applied. If the final value of the foot segment angle was not less than 55° from the 

vertical (approximately two standard deviations from the experimental mean) then the 

penalty was applied. This meant the optimiser would avoid all solutions where such 

results occurred.  

The dotted vertical line on each of the plots indicates the time at which heel rise began. 
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The kinematic results for Model 4 all remained within the single standard deviation range 

of the experimental mean values, apart from the foot segment which rose too slowly in 

the second half of stance (Figure 4.21 and Figure 4.22). 

 

 

Figure 4.21: The kinematic predictions for Model 4 
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Figure 4.22: The kinematic predictions (solid) vs the empirical means (dotted) for Model 4 

 

The moment curves all followed the correct patterns but were once again translated 

outside of the standard deviation ranges, in the same way as they were for Model 3.1 

(Figure 4.23). 

In Figure 4.24, the first peak of the vertical GRF component, while present, was once 

again lower than the experimental data measurements but this was the only time at 

which either vertical or horizontal values were outside the standard deviation range. For 

the first time, the second vertical GRF peak was present. 

Table 4.6 shows, for each parameter of the simulation, the RMS error from the 

experimental data mean values. 
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Figure 4.23: The joint moment predictions for Model 4 

 

Figure 4.24: The GRF predictions for Model 4 
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Model 4 

Segment angles (°) 

Foot 5.62 

Tibia 1.84 

Femur 1.64 

HAT 0.02 

   

Joint moments (Nm) 

Ankle 21.41 

Knee 23.50 

Hip 24.84 

   

GRF (%BW) 
y 8.91 

x 1.28 

 

Table 4.6: The RMS errors from the experimental means for Model 4 

 

4.6.3 Model 5 - Seven degrees-of-freedom 

No extra penalty functions were required for this model. The dotted vertical line on each 

of the plots indicates the time at which heel rise began. 

Table 4.7 shows, for each parameter of the simulation, the RMS error from the 

experimental data mean values. 
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  Model 5 

  
Stance Swing 

Segment angles (°) 

Foot 4.65 0.40 

Tibia 1.00 0.93 

Femur 2.14 0.63 

HAT 0.02 

    

Joint moments 

(Nm) 

Ankle 10.06 1.07 

Knee 5.63 8.07 

Hip 31.16 15.63 

    

GRF (%BW) 
y 9.45 

 
x 0.64 

 
 

Table 4.7: The RMS errors from the experimental means for Model 5 

 

This model was able to produce a very strong kinematic match with a mean segment 

angle RMS error of 1.4°. The stance foot was once again slow to rise in late stance but its 

final angular position was just on the edge of the desired range (Figure 4.25 and 

Figure 4.26). 

The moment curves stayed mostly within the experimental ranges for the first half of 

stance (Figure 4.27). There were a number of spikes in the curves in the second half of 

stance (notably swing knee and both hips) but the general patterns exhibited were close 

to the empirical measurements. 

The GRF component curves in Figure 4.28 were quite similar to those produced by Model 

4 except with more obviously visible gradient change at the transition between the foot-
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flat and heel rise phases of single support. After heel rise, both curves are closer to the 

experimental means than their equivalents for Model 4. 

 

 

Figure 4.25: The segment angle predictions for Model 5. Blue is stance leg; red is swing leg.  
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Figure 4.26: The kinematic predictions (solid) vs the empirical means (dotted) for Model 5 

 

Figure 4.27: The joint moment predictions for Model 5. Blue is stance leg; red is swing leg. 
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Figure 4.28: The GRF predictions for Model 5 

 

4.7 Discussion 

The main aim of this study was to investigate how incremental increases in model 

complexity affected the simulation results produced. This was considered in terms of 

both the kinematic and kinetic correlations with an experimental data set. It was hoped 

that from these results, new evidence for the causes of, and reasons for, different gait 

mechanisms, could be inferred. The models in this chapter sequentially added a knee 

joint, an ankle/foot mechanism and a swing leg and observed the consequences of doing 

so. 

Model 3 was conceived as being only slightly more complex than Model 2 from the 

previous chapter. A knee joint was added to the leg, dividing it into femur and shank/foot 

segments. This knee joint was controlled by the optimiser defined moment. The only 

other change from Model 2 was that the hip joint moment was now also defined by the 

optimiser, rather than calculated so as to maintain an upright trunk segment. Although 
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this model strayed badly from the experimental data in the second half of stance, both in 

terms of kinematics and kinetics, during the first half of stance the characteristic initial 

peak and mid stance trough of the vertical GRF curve were observed (Figure 4.15). This is 

something that was not seen in Model 2 (Figure 3.3). Although there have been two 

changes from Model 2, since the trunk remains vertical throughout this simulation, as it 

did for Model 2, the appearance of the initial peak and mid-stance trough has to be 

attributable to the presence of an actuated knee joint. The peak, however, was lower in 

magnitude than the experimental data so it is possible that in reality, there is another 

mechanism during walking, not modelled in this simplified design, which helps augment 

this peak. 

Model 3.1 was similar to Model 3 except an ankle joint moment was incorporated. In 

order to do this, a static foot segment was used to provide a joint, and this also had the 

consequence of providing a more true-to-life geometry and mass distribution. Fairly 

intuitively, this addition stopped the model ‘falling’ too far forward during late stance 

due to a wider base of support and a control moment at the pivot (compare Figure 4.18 

with Figure 4.13). Changes that were more difficult to predict beforehand were the 

improvements to both vertical and horizontal GRF component curves in early single 

support (Figure 4.20). It can be inferred from this that ankle moment is one of the 

mechanisms that contributes to the initial vertical GRF peak, in addition to the presence 

of the knee joint. However, once more the peak is lower than the experimental data so 

these cannot be considered the only contributing factors. 

It was observed, however, that the moment curves were translated outside of the 

standard deviation range, despite following the correct shape. This only happens after 

the ankle moment has been added but before the swing leg is added (i.e. only for Models 

3.1 and 4). So it seems that the optimiser is using the ankle moment to compensate for 

the lack of a swing leg. The offset is towards plantarflexion moment, which suggests that 

the ankle moment is being used to resist forward motion which otherwise would have 

been resisted by the action of the swing leg in the last half of single support. 

Model 4 advanced the static foot model (Model 3.1) so as to allow heel rise to occur 

when the point at which the ground reaction vector acted (the COP) reached the anterior 

pivot at the metatarsal heads. Aside from this, everything else remained the same. The 
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results of this simulation, prior to the point of heel rise, were very similar to those of 

Model 3.1. This is to be expected because before that point they are equivalent models. 

After that point, key differences were observed. Both the vertical and horizontal 

components of GRF improved to the point that they were both within the respective 

standard deviation ranges of the empirical data. This was the first model to show the 

second peak in the vertical GRF force so this is evidence to suggest that the second peak 

is created by the presence of the ankle/foot mechanism (compare Figure 4.24 with 

Figure 4.20). It is hypothesised that the behaviour of the horizontal GRF component 

illustrates the ‘push-off’ action and hence shows walking to be an active process, rather 

than mainly passive. 

The most obvious shortcoming of Model 4 was the fact that the heel did not rise fast 

enough or achieve a final angle within the experimental standard deviation range. It 

could have been the case that this was a problem inherent within the framework of the 

model; a consequence of the simple constraint restricting the foot’s motion. Another 

explanation could be that, due to the lack of a swing leg, mass that would have otherwise 

been much further forward and decelerating had just been incorporated into the HAT 

segment mass. This meant it was much further back and moving much more slowly. 

The moment curves in Model 4 were like those observed in Model 3.1; the correct shape 

but translated outside of the standard deviation range. Again this may be attributable to 

the optimiser using the ankle moment to compensate for the lack of a swing leg. 

The additional complexity of including swing leg segments in Model 5 provided further 

improvements to mass distribution and also the accelerations of the different masses. 

This did indeed increase the amount of heel rise, albeit only just into the standard 

deviation range of the empirical measurements. Interestingly, this improved heel rise was 

achieved despite starting at a later point than it did in Model 4. 

The joint moments for Model 5 were mostly within the standard deviation ranges, unlike 

Models 3.1 and 4 where the moment curves appeared to follow the correct patterns 

except they were translated outside of the standard deviation ranges. After heel rise 

however, the behaviour of the some moments became more erratic, with a number of 

spikes appearing. This may be attributed to the simple fact that the model still lacks some 
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important complexities and the optimiser has been able to compensate for this by 

making many small adjustments to the joint moment trajectories. 

Table 4.8 displays all the results of the different models and their simulations. It is very 

easy to compare Models 3 (3 DOF) and 3.1 (3 DOF with ankle moment), in terms of 

kinematics and GRF, as their error calculations were the same. It can be seen that Model 

3.1 was a vast improvement, decreasing both these error values to approximately 30% of 

their original values. 

It is, however, very difficult to fairly compare between the other different models and say 

definitively that one performs better than another. It could be argued that even using the 

mean values is unfair. Model 4 has a foot segment, the movement of which is restricted 

by a constraint, so it may be that achieving a good kinematic match for this segment is 

much more difficult. This would skew the mean error value. Even if the mean kinematic 

RMS error for Model 4 was worked out without taking the foot segment into account, the 

result would not be fair to compare against that of Model 3.1, even though the 

calculation used to evaluate these error values would be exactly the same for both 

models. This is because Model 4 will have had to make compromises with the accuracy of 

the HAT, femur and tibia segment kinematics, in order to achieve improved foot segment 

kinematics. 

Another limitation of Model 3.1, that actually gives it an unfair advantage in comparisons 

with other models, is that there was no restriction on COP position. The moment 

constraining the foot segment to remain static was calculated as whatever value was 

necessary to maintain zero angular acceleration. As a result, the COP was able to move in 

front of the pivot point, and that’s exactly what happened for this simulation. This 

effectively permitted non-physiological ankle moment behaviour and this may go some 

way to explain why the segment angle RMS error was lower for this model than for 

Model 4 (Table 4.8). 

Despite having almost double the number of segments, and therefore theoretically 

requiring greater compromise, Model 5 has a lower mean kinematic RMS error than 

Model 4. Both models have the same constraint of motion on the stance foot so that 

cannot be considered unfair weighting for this comparison. Whereas the improved mass 

distribution between Models 3 and 3.1 was relatively small, there is a much more 
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significant redistribution of mass between Models 4 and 5. This relates directly to the 

position of the COP as the mass of the swing leg is no longer incorporated into the HAT 

segment mass but is further forward instead, thus allowing a more realistic COP 

progression. This, in turn, means that the constraint on the stance foot is less detrimental 

to the kinematics of Model 5 than it was to Model 4.  

 

Model 3 3.1 4 5 

Mean segment 

angle RMS 

error (°) 

3.72 1.12 2.28 1.40 

Mean joint 

moment RMS 

error (Nm) 

41.46 24.80 23.25 11.94 

Mean GRF RMS 

error (%BW) 
47.40 13.35 5.09 5.04 

Table 4.8: The RMS errors from the experimental means for all models 

 

A comparison of the moment RMS error values is similarly difficult due to different 

numbers of joint moments being used in different models. In addition to this, the 

moment time-histories are ‘controlled’ by the optimiser and are unconstrained so as to 

maximise the chance of finding an optimum kinematic match. A fair assessment of a 

model’s performance should be a parameter that is independent of the simulation setup 

and an output of the solution, whereas the joint moments are an input. 

The only fair comparison seems to be the mean GRF RMS error values because they are 

calculated the same way for all the models and are independent of the simulation 

process. They are also an output; they are not being optimised at all. Figure 4.29 

illustrates how the mean GRF RMS error changed with increasing complexity. The general 

trend is that as complexity increases, GRF RMS error decreases. It can also be observed 

that the rate at which this error decreases, from one model to the next more complex 
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one, is reducing. This means that the extra complexity is resulting in smaller increases in 

accuracy. This suggests that there may in fact be a level of complexity that can be 

deemed ‘appropriate’ i.e. the optimum trade-off between accuracy of predictions and 

the time costs to produce a solution. This is however, a small sample number, so this 

conclusion cannot be drawn with any conviction.  

 

 

Figure 4.29: The mean GRF RMS error with increasing model complexity from left to right 

 

4.8 Conclusions 

Following on from the work in Chapter 3, the modelling of the single support phase was 

refined by sequentially increasing model complexity. The next chapter examines double 

support modelling before unifying the best single and double support models to fully 

simulate a gait cycle and thus directly addresses the final part of Research Question 3: 

“What is the minimum complexity required for a numerical model to predict the 
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kinematics and kinetics of healthy sagittal bipedal gait, within a single standard deviation 

range, for the full gait cycle?” 

The sequential addition of extra complexities showed that the presence of a knee joint 

and an active ankle moment both contribute greatly to achieving the initial peak in the 

vertical GRF component curve. The curves observed were too low however, so these are 

not the sole contributors. The action of heel rise is largely responsible for producing the 

second peak in the vertical GRF component curve. The accuracy of this second peak is 

further improved by the presence of a swing leg as it permits a more realistic mass 

distribution and acceleration behaviour. These observations directly answer Research 

Question 2: “To what extent can a sequence of numerical models, incrementally 

increasing in complexity, highlight the effects of different gait mechanisms?” 

It has been shown that a seven DOF model of walking achieves a simulation where the 

predicted kinematics and GRF curves are within the single standard deviation range for 

the vast majority of the simulation time. This goes some way to answering the first two 

parts of Research Question 3: “What is the minimum complexity required for a numerical 

model to predict the kinematics and kinetics of healthy sagittal bipedal gait, within a 

single standard deviation range, for one-legged (first part) and two-legged (second part) 

single support?” 
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5 DOUBLE SUPPORT AND FULL GAIT CYCLE MODELS 

5.1 Introduction 

This project has already observed the shortcomings of simple walking models when it 

comes to modelling double support and step-to-step transitions (Chapter 3). 

Discontinuities will often arise in the velocity of the system’s CM and the GRF that is 

produced. Better double support modelling will help move the system CM along a more 

anatomically accurate path and adding constraints to try to achieve bilateral symmetry 

will minimise step-to-step discontinuities. 

As the previous chapter highlighted, this project aims to encompass all aspects of healthy 

walking, and this includes the resulting kinetics. A difficulty that arises with double 

support modelling is how to distribute the GRF between the two ground contact points. 

There are more unknowns than defining equations, thus creating an indeterminate 

problem. Ren et al. (2007) used a smooth transition assumption to combat this problem. 

It may be possible to utilise an optimisation function also but this study found a novel 

way to calculate these forces using the underlying mechanics, the details of which are 

described in this chapter. 

This work will be focussed on attempting to answer Research Question 3c: what is the 

minimum complexity required for a numerical model to predict the kinematics and 

kinetics of healthy sagittal bipedal gait, within a single standard deviation range, for a full 

gait cycle? An important part of this is achieving good double support results. This again 

contributes to the clinical relevance of the simulations. 

In terms of the wider project aims, the work in this chapter will allow simulations of full 

gait cycles to be performed. In the next chapter, where data will be collected from a 

number of different subjects, the simulations can be individualised with each person’s 

data. This would be a fundamental requirement for any clinically applicable gait model. 

The structure of this chapter will be much the same as the previous. Firstly the modelling 

framework will be described. This will describe where these models are different, 

mathematically, from the single support ones and what this means for the results 
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produced. Next, the specifics of the different models and their dynamics will be laid out 

in free body diagrams before the setup for the simulation will be outlined. 

 

5.2 The Modelling Framework 

5.2.1 Lagrangian multipliers and constraints 

The mathematics that will be used in this chapter is an extension of the Lagrange 

mechanics used in the previous one. Whereas the last chapter was concerned with open-

link chains, double support models require closed-link chains. Further considerations 

regarding the appropriate constraints to achieve this goal must be made. An advantage of 

Lagrange mechanics is that it is possible to apply constraints relatively simply using 

‘Lagrange multipliers’.  

In order to apply a constraint, the jth constraint function (   ) is defined such that: 

 

     

Equation 5.1 

 

Therefore, the governing Lagrange equation is modified to include the Lagrange 

multipliers: 
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Equation 5.2 

 

For a given number of constraint equations, m, the same number of new unknown 

variables need to be solved. This is done by incorporating the constraint equations into 

the matrix formulation of the equations of motion, thus solving for  ̈  and    

simultaneously. If the constraint equations are purely position (only contain    terms), 
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they need to be differentiated twice so that they contain  ̈  terms. This new equation 

then needs to be separated into two functions, one that contains only the  ̈  terms and 

one that contains the rest of the terms (see Equation 5.3). These terms can now be 

incorporated into the matrix formulation (Equation 5.4). 
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Equation 5.4 

 

It’s important to note that  ̈  is no longer independent. For a chain with n DOF and m 

constraint equations, only n-m are independent. In theory, computing  ̈  for all DOF 

should still produce solutions which are consistent with the constraint equations. 

However, it is possible that computational rounding errors may occur, which over the 

course of a whole simulation, would accumulate. Consequently, for this study, the 

numerical integration of the angular positions and angular velocities will be performed, in 

the same way as previous chapters, for the first n-m links in the chain and the constraint 

equations will be used for the final m segments (Ülker, 2010). 

The Lagrange multipliers are also useful in another way. It is possible to calculate the 

force required to maintain a given constraint and this can be very useful in understanding 

the system dynamics. In the case of this study, the forces required to hold the trailing 

foot to the ground can be used to calculate the GRF under that foot. By using inverse 

dynamics, in the same way as before, to calculate the total GRF, a simple subtraction can 

be used to assess the GRF distribution. This process is detailed in Section 5.2.4. 

Aside from these changes, the rest of the simulation procedure will be the same. The 

same optimisation framework is applied to determine the moment actuations required 

for driving the model to track the measured generalised coordinates. 
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5.2.2 Four-chain example 

The following is a worked example (Ülker, 2010) of how Lagrange multipliers and 

constraints can be incorporated so as to constrain the end of a four-segment chain to the 

ground (Figure 5.1). This requires the application of two constraint equations,    and   , 

to restrict motion in the horizontal and vertical directions respectively, in order to hold 

the end of the chain to a point on the ground, a given distance,  , from the start of the 

chain: 

 

 

 

 

 

 

 

 

Figure 5.1: A four segment closed chain 
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These are combined and rearranged to give: 
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Equation 5.7 

 

The following trigonometric identities are substituted into Equation 5.7 and 
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 ⁄ )    is assumed. 
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Equations 5.8, 5.9 
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Equation 5.10 

 

A number of terms are grouped to make the expression more manageable: 
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Equations 5.11, 5.12, 5.13, 5.14, 5.15, 5.16 

 

A quadratic equation can now be evaluated, solved for   and hence give   . 

 

           

where: 

              

        

              

Equation 5.17 

 

Once    is known, the constraint equations are used to calculate   . To calculate the 

velocities of these two dependent segments, the constraint equations are differentiated. 

 

  ̇          ̇          ̇          ̇           

Equation 5.18 
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Equation 5.19 

 

Equation 5.18 is divided by       and Equation 5.19 is divided by      , then the latter is 

subtracted from the former: 
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Equation 5.20 

 

The other dependent angular velocity can be calculated from Equation 5.18 and 

Equation 5.19. 

Now that all the angular position and angular velocity values are known, the equations of 

motion can be evaluated. As mentioned before, the constraint equations are 

incorporated into the same matrix formulation that is used to calculate  ̈ . Since neither 

   nor    contain any of the unknowns, they are differentiated twice by time, before 

being incorporated into the matrix formulation. This gave: 
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Equation 5.21 

 

The unknowns can be solved by way of matrix algebra. 

 

5.2.3 Numerical integration 

The equations of motion were numerically integrated for each time instant using the 

same Taylor expansion method used in the previous chapters (Section 3.4.2), except for 
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the two dependent segments which are calculated for each time step by the method 

outlined in the constrained four segment chain example (Section 5.2.2). 

 

5.2.4 Ground reaction force calculations 

During double support, since both feet are in contact with the ground, the GRF can be 

calculated but there is an infinite number of ways this can be distributed between the 

two feet. Previous models have made a smooth transition assumption (Ren et al., 2007) 

but there is another way, specific to the models in this project, that is preferred. The 

Lagrangian multipliers provide constraint forces that restrict motion for the point of 

contact between the trailing foot and the ground. Since the constraint forces are acting 

upon the trailing foot and it is stationary, it can be assumed that the GRF components 

beneath it are equal to these constraint forces. The forces the constraints produce can be 

expressed: 

 

   
  

  

   

 

  

Equation 5.22 

 

For this model    . However, it was preferable to have the forces in the   and   

directions. Therefore: 
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The GRF components are calculated in the same way as they were for the single support 

models. This gives the total force underneath both feet so these values are then 

subtracted from the relevant total GRF component value in order to give the force 

beneath the leading foot. 

 

5.3 Double support model 

The double support model was originally designed using the same seven DOF model as 

for Model 5 single support. However, it was discovered that using the experimental data 

segment angles with the model’s proportions, both feet did not remain on the ground 

throughout. This was because the feet of the seven DOF model extended from ankles to 

metatarsal head only. A toe segment was added to the trailing foot, hence creating a 

closed chain of eight segments and the ground but, because of the dependent segments, 

it only had seven DOF. This toe segment had no mass so did not affect the mass 

distribution of the system. 

Three different phases of double support were defined as submodels. The differences 

between these phases were to do with the designated pivot points and the constraints 

applied. These submodels were run sequentially i.e. the final conditions of Phase 1 were 

the initial conditions of Phase 2 and the final conditions of Phase 2 were the initial 

conditions of Phase 3. This meant all three were grouped into a single simulation and 

therefore, a single optimisation procedure. Collectively, they were named the DS model. 

 

5.3.1 Phase 1: Lead heel contact to lead foot flat 

The first phase to be modelled began at the exact instant that the lead foot made contact 

with the ground. The lower limb and HAT segments were represented by eight rigid links. 

Unlike the previous seven segment model that was used for single support, the lead foot 

segment extended from the ankle to the point of contact with the ground at the heel. The 

  and   distances for the foot were chosen so as to keep the mass in the same position as 

it was for single support, relative to the ankle joint (dashed lines on Figure 5.2). At the 

other end of the chain, the end of the trailing toe segment was constrained to a fixed 
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point on the ground. There was also a moment acting about the end of the toe segment, 

constraining it to remain flat until said moment reached zero (as indicated on Figure 5.2 

by the darker colouring). This constraint worked in the exact same way as for the 

transition in single support between foot flat and heel rise. It was effectively tracking the 

COP underneath the toe segment. The dependent segments were the trailing foot and 

tibia. Phase 1 ended when the lead foot became flat on the ground. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: DS model, phase 1: A free body diagram 

 

5.3.2 Phase 2: Lead foot flat to trail foot toe-rise 

Phase 2 began at the point where the lead foot became flat on the ground. In this model, 

the leading foot and trailing toe segments were stationary (indicated by the darker 

colouring on the diagram Figure 5.3) so there were only six moving segments. The 

dependent segments were the trailing foot and tibia. The simulation continued until trail 

foot toe-rise. 
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Figure 5.3: DS model, phase 2: A free body diagram 

 

5.3.3 Phase 3: Trail foot toe-rise to trail foot toe-off 

Phase 3 began at the point where the metatarsal head of the trailing foot left the ground. 

In this model, the lead foot was stationary (hence the dark colouring on the diagram in 

Figure 5.4) so there were only seven moving segments. For this phase of the model, the 

dependent segments were the trailing foot and trailing toe segments. 
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Figure 5.4: DS model, phase 3: A free body diagram 

 

5.4 Simulation methods 

A single simulation ran all three double support submodels consecutively, where the 

terminal state of one was the initial state of the next. The time for which the simulations 

were run was chosen to be 0.09 seconds. This time span covered 10% of a full gait cycle 

at the chosen walking velocity. Many sources cite approximately 10% as the length of the 

double support phase (Kirtley, 2006; Perry, 1992; Rose & Gamble, 1994; Whittle, 2007). 

All the initial conditions were taken from the experimental data mentioned by Winter 

(1979, 1991). The anthropometric measures were the same as those for Model 5 

(Table 4.3). 

 

5.4.1 Joint moments 

Each joint moment was defined by 6 nodes starting at t=0, and then at evenly spaced 

intervals until t=0.09. These points represented 2% instants between 0-10% of the gait 

cycle because these were the points for which experimental data were available. 
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5.4.2 Optimisation parameters 

The optimised parameters were the initial angular positions (from the vertical axis), initial 

angular velocities of the body segments, and the moment nodes (see Section 4.5.1). The 

initial estimates for all these values were taken from the experimental data. 

 

5.4.3 Cost function 

The chosen cost function was the kinematic RMS error from the experimental data. This 

was calculated in the same way as the previous study (Section 4.5.3). 

Winter’s data  (1979, 1991) and the HAT kinematic approximation (see Section 4.5.3) 

were used as the input to the model and for comparison, as an assessment of its success, 

just like for the single support models. For each parameter, there were 6 data points from 

the experimental data (the final time instant being the same as the initial time instant in 

the single support simulations). The experimental data was interpolated in MATLAB, 

using the spline function (Section 4.5.1), and comparisons were made at every 10-3 

seconds time interval. A Root Mean Squared (RMS) error comparison, normalised by the 

parameter’s standard deviation, was used to give a single numerical value of the error 

between simulation and experimental results. 

 

5.4.4 Algorithms 

For all double support simulations, the GlobalSearch MATLAB (Section 4.5.4) function was 

used and then followed with a local optimisation function (Lagarias et al., 1998; Nocedal 

& Wright, 2006) in order to find a more accurate solution. 

 

5.5 Results 

The shaded areas on each of the following plots show the values covered by ±1 standard 

deviation from the experimental mean. The solid lines show the results predicted by 

simulations. The dotted lines on the graphs below indicate the time at which the lead 

foot flat and trailing foot toe-rise events occurred. 
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The only extra constraint for this simulation was one to ensure the solution was not 

complex. For complex solutions, the cost function was set to 9999 so that the optimiser 

would avoid these results. 

The kinematic results for the DS model were all within their respective experimental data 

standard deviation ranges for almost the entirety of the simulation. Only the lead foot 

was slightly outside the standard deviation range (4.45°) in early stance (RMS error of 

5.29°). 

The moment curves were more erratic with only one (trailing ankle joint moment) 

remaining within the standard deviation range for the full simulation time. The mean 

error of 16.46Nm appeared to be in a similar range to the single support models 

(Table 4.8) but, considering that this simulation ran for a quarter of the time of the single 

support ones, the error would be expected to be lower. 

The GRF curves were predicted well, remaining within the experimental data range 

throughout the simulation. There were slight discontinuities is the gradient of the GRF 

curves at the point of foot flat (the first dotted line). This is because at this point, the foot 

segment goes from having an angular velocity to having zero velocity in a single time 

instant. This was unavoidable given the dynamics of the model. 
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Figure 5.5: The segment angle predictions for the DS model. Blue is lead leg; red is trail leg. 

 

Figure 5.6: The kinematic predictions (solid) vs the empirical means (dotted) for the DS model 



112 

 

 

Figure 5.7: The joint moment predictions for the DS model. Blue is lead leg; red is trail leg. 

 

Figure 5.8: The GRF moment predictions for the DS model 
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  DS Model 

  
Leading Trailing 

Segment angles (°) 

Foot 1.85 1.11 

Tibia 0.55 1.70 

Femur 0.76 0.39 

HAT 0.03 

    

Joint moments 

(Nm) 

Ankle 22.66 7.04 

Knee 19.87 16.04 

Hip 10.53 22.64 

    

GRF (%BW) 
y 0.67 3.76 

x 0.25 1.51 

 

Table 5.1: The RMS error values for the DS model 

 

5.6 Full gait cycle simulation 

To simulate a full gait cycle, the double support simulation results were plotted in 

conjunction with the single support ones. No extra simulation or optimisation procedure 

was performed and there was no continuation enforced between the final state of the DS 

model and the initial state of Model 5 (and vice versa). This meant that discontinuities 

were possible at the transitions between double and single support.  

The following plots illustrate what happened when the best results for each were added 

together; the DS model followed by Model 5 of single support. This meant no continuity 

of angular positions, velocities, accelerations or moments were enforced at the transition 

from double to single support. This was referred to as the ‘Sum’ model. 
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5.6.1 Sum model 

The layouts of the following plots are slightly different to previous models. The plots have 

been designed to show behaviour over a full gait cycle. For example, for a given segment, 

the plot will track its behaviour starting as part of the leading leg in double support, then 

the stance leg in single support, then the trailing leg in double support, and finally the 

swing leg in single support (Figure 5.10). The same thing is done for the joint moments 

(Figure 5.11) and GRF (Figure 5.12). The purpose of this is to give a clearer idea of how 

the model can handle step-to-step transition. 

The plot showing the kinematic comparison with the experimental means (Figure 5.9), 

however, is shown at equalled spaced time instants starting at t=0 and ending at the end 

of the first half gait cycle. This provides a better idea of how the two compare and avoids 

repetition.  

The dotted lines on plots indicate the transitions between the different model phases. 

 

 

Figure 5.9: The kinematic predictions (solid) vs the empirical means (dotted) for the Sum model 
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Figure 5.10: The segment angle predictions for the Sum model 
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Figure 5.11: The joint moment predictions for the Sum model 

 

Figure 5.12: The GRF moment predictions for the Sum model 
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The numerical error values (Table 5.2) also only consider the first half of the gait cycle so 

as to separate the results for equivalent parameters on opposite legs. 

 

  Sum Model 

  
Leading/Stance Trailing/Swing 

Segment angles (°) 

Foot 4.24 0.59 

Tibia 0.93 1.13 

Femur 1.94 0.59 

HAT 0.02 

    

Joint moments 

(Nm) 

Ankle 13.59 3.30 

Knee 10.24 10.05 

Hip 28.24 17.25 

    

GRF (%BW) 
y 8.47 1.86 

x 0.58 0.73 

Table 5.2: The RMS error values for the Sum model 

 

The strengths and weaknesses of the predictions of the different kinematic and kinetic 

parameters in this model have already been described separately in the sections detailing 

the single and double support models. What have not been addressed are the 

discontinuities in these parameters at the transitions from double to single support and 

from the first half of the gait cycle to the second (Table 5.3). No constraints had been 

added to minimise these discontinuities but in terms of kinematics, they were relatively 

small. The mean kinematic discontinuity was 1.93° which was skewed by the foot 

segment which had an individual mean error of 3.04°. This segment was expected to have 

the largest errors since it is the segment that has constraints applied to it. 
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The joint moment discontinuities were much wider ranging from as little as 1.32Nm to 

215.66Nm. These were in no way optimised so this explains why they had much greater 

discontinuities than the kinematics. 

The horizontal GRF component performed very well with a mean discontinuity less than 

1% of bodyweight. The vertical component had a large drop of approximately 20% of 

bodyweight at the first double to single support transition. 

 

 
TO1 FC1 TO2 FC2 Mean 

Segment 

angles (°) 

0.03 8.96 1.97 1.21 3.04 

1.37 1.03 3.83 1.03 1.81 

0.98 1.25 4.03 5.07 2.83 

0.03 0.02 0.03 0.02 0.02 

      

Joint 

moments 

(Nm) 

3.13 5.16 1.32 2.90 3.13 

3.95 27.57 35.72 5.92 18.29 

27.64 215.66 5.31 10.82 64.86 

      

GRF (%BW) 
20.05 1.95 1.36 6.70 7.52 

0.70 1.52 0.75 0.55 0.88 

Table 5.3: Discontinuities at both toe-off and foot contact events, during the full gait cycle, for the Sum 

model  

 

5.7 Discussion 

This work has shown that it is possible to model double support, rather successfully, with 

a sagittal, eight segment chain. The only drawback of this simulation was that the 

predicted joint moments did not match the experimental data as well as the kinematics 
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and GRFs did. It may be possible that a solution existed that whereby the joint moments’ 

collective error was much less but this required a trade-off that compromised the 

kinematic match. The optimisation algorithm would have dismissed this solution as it was 

concerned only with minimising the kinematic error. 

An interesting factor of the DS model was that it required a moment about the trailing 

foot metatarsal in order to achieve a workable solution. This moment was in the range of 

0-25Nm so was far from trivial. It is hypothesised that this is present so as to assist the 

push-off mechanism used during walking. 

The application of Lagrange multipliers to provide the necessary constraints was very 

successful. Not only did they restrict the motion of the trailing foot but using the 

constraint forces to calculate the GRF distribution was shown to be a very effective 

method, for both horizontal and vertical directions, with a mean GRF RMS error of only 

2.91% BW. 

The moment curves for the DS model were the only area where large RMS errors 

occurred. As mentioned, the mean RMS error was similar to that of the single stance 

Model 5 (16.46Nm compared to 11.94Nm) but over a shorter simulation time it is much 

more noticeable. These errors could be a result of the chain being closed, rather than 

having a free end. However, it is difficult to be too critical of the moment curves since 

they were not optimised in any way.  

Both the DS model and single support Model 5 have been shown to simulate their 

respective stages of walking with a good degree of success so it stands to reason that the 

Sum model for a full gait cycle would also produce strong results. What was less obvious, 

though, was that most of the discontinuities between these models would be relatively 

small. This did mean, however, that the larger discontinuities stood out more. 

In terms of kinematics, the largest errors were for the foot segment. This is 

understandable as it is the only segment (for which kinematic errors are calculated) upon 

which constraints are placed. Aside from the foot, the only other error that is of concern 

is that of the tibia segment, when it is on the trailing limb, at the second toe off event. 

This can be explained by the fact that this is the point at which this segment goes from 
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being dependent, during double support, to independent, during single support. Such a 

change in the governing dynamics of a segment is likely to produce error. 

There was one joint moment discontinuity that eclipsed the rest and that was the stance 

hip moment at the transition from single to double support. The error arises in the single 

support phase as the moment value at the start of double support is within the 

experimental standard deviation range. In terms of model dynamics, it makes sense that 

the largest error is at the end of the half gait cycle simulation, because in forward 

dynamics, errors accumulate from earlier in the simulation. A possible explanation for 

this behaviour could be because this moment has a direct effect on the HAT segment 

mass, which is the largest of the system’s masses. With the opposite leg in front, it may 

be that the standing hip moment has to make this large adjustment so as to keep the HAT 

segment from tipping forwards, holding it upright. This concurs with the conclusion 

drawn in Chapter 3 that maintaining an upright trunk is a key role for the hip moments 

during walking. 

The other large joint moment discontinuities are of the knee joint moment. These are at 

the first transition from single to double support (27.57Nm) and at the second transition 

from double to single (35.72Nm). Both of these discontinuities occur when this knee 

moment is on the trailing limb. The key to these errors again is the difference between 

dependent and independent segments. At the transitions named, the tibia segment 

adjacent to these knee moments is changing between being dependent and independent. 

As discussed before, this can cause kinematic discontinuities which would almost 

certainly have a large effect on the required knee joint moment. 

Despite these large discontinuities in moment curves, the GRF curves’ discontinuities are 

relatively small. The horizontal GRF, in particular, has a mean discontinuity of only 0.88% 

BW. The largest error was that of the vertical GRF under the lead foot at the transitions 

from double to single stance. It is hypothesised that, once again, the fact that this point is 

the point at which the trailing tibia and foot segments went from having dependent 

angular positions and angular velocities, to having them independently defined, is highly 

significant here. 

A suggestion for potential future work would be to eliminate or reduce these 

discontinuities as much as possible. This would require starting Model 5 from the 
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terminal state of the DS model to eliminate errors at the double to single support 

transitions and then adding some kind of constraint to ensure that the terminal state of 

Model 5 was as close as possible to the initial state of the DS model. 

Throughout this discussion, a repeated source of error has been the change of the tibia 

and foot segments from dependent to independent and vice versa. It would be 

interesting to investigate the effects of choosing two different dependent segments, e.g. 

the femur segments. A small error in angle for the femur would have less of an effect on 

the system overall than the same error for the foot, say. This is because its length, it 

would mean that the CM displacement caused by this angle error would be much smaller 

than it would be for the foot. 

Focussing on the limitations of this model will help to assess where further improvements 

could be made but it is important that the success of the current model’s performance is 

not overlooked. Firstly, the gauge of success of the model has been based on a tolerance 

of one standard deviation either side of the experimental mean value, and has been 

deemed to have performed well. It is known that this accounts for approximately 68% of 

the population. There is great variation in the way different people walk so one standard 

deviation either way may even be too stringent. Two standard deviations either side of 

the experimental mean constitutes approximately 95% of the population and when the 

results of the Sum model are reassessed with these criteria, it can be seen just how well 

the model performs. The RMS error values for every parameter fall within this range. 

Some kinetic parameters do stray out of this range but only for short times. The 

horizontal and vertical GRF components beneath the lead/stance limb are within this 

range for 99% and 97% of the simulation, respectively. The ankle, knee and hip moments 

of the same limb are within this range for 84%, 93% and 92% of the simulation, 

respectively. All other predictions are within the two standard deviation range for 100% 

of the simulation. 

 

5.8 Conclusions 

An eight segment model has been shown to effectively model the double support stage 

of walking. The use of Lagrange multipliers also proved to be a reliable method to apply 
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the necessary constraints, as well as assess the GRF distribution when there were two 

contact points with the ground. The fact that a trailing foot metatarsal moment was 

required gives further credence to the hypothesis of an active push-off action in walking. 

A combination of this model with the best single support walking model provided good 

predictions over the complete gait cycle. There were, however, some discontinuities at 

the transitions from one stage to the next. Suggestions for further investigations to 

attempt to eliminate or reduce these discontinuities have been put forward. 

With an acceptable model of a full gait cycle, data can now be collected for a number of 

different subjects and applied to the model. Individualised simulations of each person’s 

walking will be performed, in order to test the versatility of the model when it comes to 

different geometries, walking patterns, heights, weights, etc.  
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6 DATA COLLECTION AND ANALYSIS 

6.1 Introduction 

The real essence of clinical gait analysis is to provide insight into the differences between 

individuals. The previous chapters in this project have used averaged data from the 

literature (1979, 1991) and this method has been a good standard against which to gauge 

the success of simulations, proving the general applicability of the modelling approach. 

However, this does not give any information regarding the differences from one person 

to the next. This is an important distinction that must be considered when addressing 

Research Question 4: ‘considering interpersonal differences, the time cost and the 

solution accuracy, how close is gait modelling to becoming a clinically usable tool?’ 

To rigorously test the capabilities of a given model, individuals’ measurements and 

proportions should be used as inputs. Common anthropometric measures and 

proportions are detailed numerically in Winter’s data set (1979, 1991) but once again 

these are averages and may not be accurate for all people (see Appendix A.1). If the 

model is equally successful for a variety of different individuals with various weights, 

heights, proportions and walking velocities, it will make it more appropriate for use in 

clinical diagnostics. 

The study in this chapter will collect gait data from ten healthy participants, five male and 

five female, with a range of heights, weights and walking velocities. Healthy individuals 

were chosen because inter-individual differences are small and if these can be detected, 

then larger differences, between patients and healthy people, should be even easier to 

demonstrate. These data will be applied to the Sum model for each person and a 

simulation of a full gait cycle will be performed. Each person’s simulation will be 

compared to their own experimental data. 

In this chapter, firstly, an appraisal of relevant literature will be undertaken. This will 

highlight the issues faced by previous investigations in this area. Next, the process for 

capturing personalised individual data will be outlined. This involves recruitment of 

participants, the laboratory set up, the software used, the experimental method and 

post-processing. Following this, a description of how the data were imported into 
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MATLAB will be given. The results of simulations attempting to match these data will be 

given, with the best and worst matches described and analysed. 

 

6.2 Literature 

The kinematics and kinetics of healthy adults walking are illustrated in many text books 

(Kirtley, 2006; Perry, 1992; Whittle, 2007). As one would expect from such publications 

though, it is generic behaviour and always in relation to percentage of gait cycle rather 

than time. Another shortcoming of these books is that they display their data in graphical 

form only, making numerical comparisons difficult and inaccurate. 

There have been journal papers that have used computer models to predict healthy adult 

walking (Anderson & Pandy, 2001a; Anderson & Pandy, 2003) but again they do not 

publish their data numerically. 

There are studies that have applied advanced models to individualised datasets, with the 

widely used freeware OpenSim (Delp et al., 2007) now allowing this function. However, 

clinically useful insights are difficult to interpret from these investigations (Gerus et al., 

2013; Liu et al., 2008; Reinbolt et al., 2011; Steele et al., 2013; Steele et al., 2010; Van Der 

Krogt et al., 2013). 

There seems to be a problem with complex walking models, which is widely 

acknowledged informally but rarely published in the literature. This is that they are 

particularly sensitive to the model parameter selection and a large amount of time can be 

spent adjusting these parameters so as to produce a convergent solution. This can 

sometimes even require values beyond a sensible physiological range (Arnold et al., 

2010). This is somewhat intuitive as these models are essentially large non-linear dynamic 

systems and consequently small changes to the inputs can have a large effect on the 

solution. It can be hypothesised, therefore, that the less complex models, while still 

dependent upon non-linear dynamics, will produce more stable solutions because they 

rely upon fewer input parameters. 

However, very simple models are not the obvious solution either. Taking Model 2 

(Section 3.3) from this project as an example, sensible customisation of the model to a 
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given person’s data seems nigh on impossible. Firstly, there is the problem of 

anthropometry and which measurements should be used for the mass, length, moment 

of inertia and CM position of the single leg segment, since some of these values will vary 

over time. Then, there is the issue of how to optimise the leg’s trajectory. Would the hip 

joint centre be the only consideration? As was shown in Chapter 3, this model does not 

adequately simulate double stance either so comparisons during that phase would have 

large errors. 

 

6.3 Method 

The purpose of the practical experimentation was to produce person-specific data, some 

of which could be used as the input to the model and some which could be used to assess 

the strength of a simulation’s kinematic and kinetic predictions. 

Firstly, anthropometric measurements were needed in order for the model to accurately 

replicate the specific person. These included the lengths of all the different segments 

used in the Sum model, the person’s height and their total mass. From the total mass and 

segment lengths, the approximate mass, moment of inertia, and the position of the CM 

of any given segment could be evaluated. These still relied on formulae outlined in 

Winter’s books (1979, 1991) and shown in Appendix A.1. 

The data collected during the walking trials provided all of the kinematic and kinetic 

curves that were previously taken from the normal set, for example, the time history of a 

given segment angle. These could be used to calculate the RMS error values for each 

comparison parameter. 

 

6.3.1 Participant recruitment 

Ethical approval for the study was granted by the University of Salford, School of Health 

Sciences Research Ethics Panel (Appendix A.3). 

The participants were volunteers and were recruited using posters (Appendix A.4) on 

University noticeboards, in accordance with the University of Salford ethical procedure. 
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The inclusion criteria were for adults (over 18 years old) who could walk unaided, with no 

illness or pathology that affected their gait. There was no upper bound on their age. 

Upon expressing interest, each person was supplied with a participant information sheet 

(Appendix A.5) and an appointment time to come to the University gait lab was arranged. 

Upon arrival, each was again supplied with a copy of the information sheet and was able 

to ask any questions they may have had. Next, they were asked to complete and sign a 

participant consent form (Appendix A.6). 

 

6.3.2 The research environment 

The data collection took place in the University of Salford’s purpose-built Brian Blatchford 

Gait Laboratory (Figure 6.1). Within the floor of the 10m walkway are mounted six force 

plates (two portable Kistler 9286aa, four fixed Kistler 9281b). Force plates 1 to 5 are in a 

line, along the direction of progression of walking, and force plate 6 is to the right of force 

plate 3. Mounted to the walls are 12 Vicon T40 infra-red cameras. There are no windows 

in the laboratory so there was no chance of external light interference. 

 

 

Figure 6.1: The University of Salford’s Brian Blatchford Lab 
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6.3.3 Calibration 

The software used for the data collection was Vicon (Vicon Motion Systems Ltd, Oxford, 

UK). Before any data collection could take place, the cameras needed to be calibrated to 

the capture volume. Each camera only sees a 2D image, but with a combination of 12 2D 

images from different angles, the position of a given marker can be identified, relative to 

a designated origin. For reference, the x direction will describe the anterior-posterior axis 

(the direction of progression during the walking trials), y will describe the superior-

inferior axis and z will describe the medial-lateral axis, in keeping with the terminology of 

the models. 

A T-shaped wand with infra-red LEDs on was waved within the desired volume 

(approximately 5m by 1.2m by 1.5m). Since the LEDs are a known distance apart from 

one another, the software can work out the positions and orientations of the cameras, 

relative to one another. The origin was chosen to be the first right corner of the force 

plate (that is to say all the other force plates had positive x position values) and was 

defined by placing the wand so that junction of the T-shape was at this corner 

(Figure 6.2). This allowed the software to orient the cameras, relative to the force plates. 

  

 

Figure 6.2: Camera calibration and setting the origin 

 

  



128 

 

6.3.4 Marker positioning 

The marker setup used was the Vicon lower body Plug-in Gait model. This model is very 

widely used in the gait analysis community (Benedetti et al., 2011; Bonnefoy-Mazure et 

al., 2013; Davis Iii et al., 1991; Ferrari et al., 2008; Gutierrez-Farewik et al., 2006; Horsak 

& Baca, 2013; Kadaba et al., 1989; Raspovic, 2013; Riley et al., 2007; Rueda et al., 2013; 

Syczewska et al., 2010; Thummerer et al., 2012). An advantage of this model was that it 

allowed the software to perform an inverse dynamics algorithm and give time-histories 

for the joint moments which could then be compared to those predicted by the Sum 

model. 

Segments are created for the pelvis, thighs, shanks and feet. These segments are triangles 

defined by three points determined by the marker positions. For this study, wand 

markers were used for the thigh and shank markers. The theory behind this idea was that 

if the marker were on the skin, the triangles created would be narrow and as such, a 

small skin artefact could result in a large change in segment angle. When the wand was 

used, any artefact movement of that marker would have a less drastic effect on the 

segment angle, thus minimising measurement error. 

In addition to the Plug-in Gait marker set, there were extra markers added so as to 

provide all the necessary information for the MATLAB simulation. Since it was planned to 

track joint centres, it was decided that including medial knee and ankle markers would 

simplify calculating these joint centres. Markers were also placed on the first metatarsal 

head, on the instep of the foot, and on the nail of the hallux. 

In order for these markers to be recognised by the Vicon software, they had to be given 

marker names. To do this a customised version of the Plug-in Gait model was coded by 

editing the .vst file in an XML writing program. 
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Figure 6.3: The marker placement 

 

6.3.5 Anthropometric measurements 

Several anthropometric measurements were necessary for the purposes of the Plug-in 

Gait model. Each participant had their height and weight taken. The right and left leg 

lengths were measured from the anterior superior iliac spine (ASIS) to the medial 

malleolus. A pair of callipers was used to measure the medial-lateral knee and ankle 

widths. 
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Along with the height and weight, some further measurements were taken for use as 

inputs to the MATLAB simulations. The femur length was taken as the distance for 

greater trochanter to lateral knee epicondyle and tibia length was taken as the distance 

from lateral knee epicondyle to lateral malleolus. The distance between the medial 

malleolus and the first metatarsal head was taken as foot length and that between the 

first metatarsal head and the tip of the hallux was taken as the toe length. Since the Sum 

model was bilaterally symmetrical, these measurements were taken on both legs and 

mean values were used. 

 

6.3.6 Experimental method 

Data was collected for 10 subjects (5 male and 5 female) aged 25.5 ± 2.5 years, with 

masses of 70.5 ± 15.5 kg and heights of 1.725 ± 0.105 m. Once the anthropometric 

measurements were taken and the markers were placed correctly, each subject was 

asked to stand as still as possible, with their arms folded across their chest, on the first 

force plate, to perform a static trial. It was important that all the markers could be seen 

by the cameras. The purpose of the static trial was to calculate certain calibration 

quantities. The angle between the posterior and anterior pelvis markers or between the 

feet markers, for example, gave the ‘offset’ angles of these segments, during the ‘neutral’ 

position. Further calculations regarding joint centre positions were also performed at this 

stage. 

Next the dynamic trials were performed. Each participant started at one end of the lab’s 

walkway. This meant at least three steps were taken before they were in the recording 

region, allowing them to get into their natural rhythm before recordings were made. 

They were asked to walk, as naturally as possible, with a self-selected velocity, to the 

other end of the walkway. Their walk was observed so as to make sure that ‘clean 

contacts’ were made with the first, second and third force plates. A clean contact was 

defined as one where the landing foot contacted exclusively one force plate. The reason 

clean contacts were required on each of these force plates was because the double 

support data (for use in model simulations) were taken from force plates 1 and 2, and the 

single support data was defined from the moment the trailing foot left force plate 1, until 
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the moment it contacted force plate 3. Little instruction was given so that the subject 

didn’t alter their natural gait pattern in order to achieve clean hits on the force plates. 

When clean contacts were made with the first three force plates it was defined as a ‘good 

trial’. Each subject was asked to keep on traversing the walkway until five good trials 

were achieved. Between each trial, the force plates were set to a zero level. 

 

6.3.7 Post-processing 

Once the trials had been recorded in Vicon, some post-processing was required to export 

the necessary information. All of the data (marker positions, GRF and joint moments) 

were exported as an ASCII file so as to provide numerical values to import into MATLAB 

for comparison with the project’s models. 

A MATLAB script was coded to import the ASCII files and extract the necessary numerical 

values. The data chosen were from the first time frame where a force value was 

registered on force plate 2 and continued until the final time frame before a force value 

was recorded on force plate 3. This meant that the data would start with a double 

support period (on force plates 1 and 2) followed by a single support period (on force 

plate 2), giving the same half gait cycle as is simulated by the Sum model. In accordance 

with the simulation, bilateral symmetry was assumed. 

Using the time frames defined by the force plate data, the marker data were selected. 

These gave the x, y and z coordinates of each of the markers, relative to the origin at the 

corner of force plate 1. In order to make this raw data usable for the simulations, the 

joint centre coordinates had to be calculated. All of the following calculations were taken 

from previous research into the topic of hip joint centre position prediction (Davis Iii et 

al., 1991; Harrington et al., 2007). For these calculations, all lengths were in millimetres. 

To calculate the hip joint centre, firstly, the pelvic origin,   ,  must be defined. This is 

taken as the midpoint of the left and right ASIS marker vectors: 

 

   
           

 
 

Equation 6.1 
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The posterior pelvis point, or sacrum, is defined as the midpoint of the posterior superior 

iliac spine (PSIS) markers: 

 

  
           

 
 

Equation 6.2 

 

Next, the axes of the pelvic coordinate system are defined. It should be noted at this 

point that the x, y and z axes’ definitions are not the same for the Vicon system as they 

are for the MATLAB models. The medio-lateral axis,  ̂ , is taken as the vector from the 

left ASIS to the right ASIS. The proximal axis,  ̂ , is taken as being perpendicular to the 

medio-lateral axis and the vector between the pelvic origin and the sacrum. Finally, the 

anterior axis,  ̂ , is taken as perpendicular to the medio-lateral and proximal axes. 

 

 ̂  
           

|           |
 

 

 ̂  
 ̂  (    )

| ̂  (    )|
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Equations 6.3, 6.4, 6.5 

 

By consolidating these three axes into a single matrix, the direction cosine matrix for the 

pelvis (DCMP) is formed. 

 

     (
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) 

Equation 6.6 
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The vector, HP, gave the positions of the hip joint centres within the pelvic coordinate 

frame. The ± symbol in the y direction indicates whether it is the left or right hip joint 

centre being calculated. 

 

   (
           
           

 (           )
) 

Equation 6.7 

 

Where PD, pelvic depth, is “the distance between the midpoints of the line segments 

connecting the two ASIS and the two PSIS” (Harrington et al., 2007) and PW, pelvic width, 

is the distance between the left and right ASIS markers. The latter is a constant value 

calculated during the static trial (see Section 6.3.6). 

Finally, the hip joint centre coordinates, relative to the global axis are calculated. 

 

            

Equation 6.8 

 

Since the model assumes that the left and right hips have the same coordinates, the 

mean values of the left and right hip joint centres’ positions were taken. 

The knee and ankle joint centre calculations were much simpler. The mean of the lateral 

and medial markers’ coordinates, for the respective leg and joint, were taken. 

The position of the HAT segment mass was taken as having the same x position as the 

combined hip joint and a y position was calculated using the static trial data and formulae 

from Winter (1979, 1991) detailed in Appendix A.1. 

In the Sum model, the origin of the Cartesian coordinates was defined as the point at 

which the heel of the lead foot contacts the ground. The coordinate origin defined for the 

Vicon system was the front right corner of force plate 1, as viewed by the walker. In order 

to equate the Vicon data to fit the model, all the marker data were offset in relation to 

the lead foot heel marker position at the start of the gait cycle. 
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For comparison with previous models, the segment angles were computed. For segment 

 , the following calculation was used for the segment angle: 

 

        (
       

       
) 

Equation 6.9 

 

Where    and    are the coordinates of the end of the segment closest to the start of the 

chain and      and      are the coordinates of the other end of the segment. 

Once all the relevant data had been imported and extra calculations had been made for 

each trial, for a given subject, the following statistic data for that person were evaluated. 

Firstly, the data from each trial were normalised and interpolated to cover from 0% to 

50% of a gait cycle, in 1% steps, in order to make trials of different time lengths more 

comparable. Next, from each percentage value, the mean magnitude over the five trials 

was taken for each kinematic and kinetic parameter. This allowed the calculation of a 

standard deviation value for each percentage of the gait cycle. 

 

6.3.8 Simulation setup 

Simulations were run for each of the subjects. The dimensions and inertial properties of 

the Sum model were adapted to represent those of each person. The setups for the 

single support, double support and full gait cycle simulations were the same as those 

described for Model 5, the DS model and the Sum model respectively (see Chapters 4 

and 5). The only differences were that for the single and double support simulations, the 

timings were changed to those recorded for the particular trial being studied. Each 

double support simulation had six equally-spaced moment nodes for each joint moment, 

and each single support simulation had 21 equally-spaced moment nodes for each joint 

moment, regardless of total time taken. 
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For each of the simulations, the cost function was designed to minimise the RMS error 

between the predicted joint centre kinematics and those measured during the 

experiment, for that specific person. 

Since joint centres were used for kinematic comparisons with experimental data, a datum 

had to be defined for the trunk segment. A formula was used from Winter’s data (1979, 

1991) to calculate the position of the HAT CM and this was used as the point of 

comparison (see Appendix A.1). This has been illustrated on the figures displaying the 

body segment kinematics against trial data (see Sections 6.4.3 and 6.4.4). 

For each person, a single trial was chosen. The reason for this was that using the mean of 

all five trials would create “averaged” data, just like Winter’s dataset (1979, 1991) that 

had been used previously. Using a single trial would give the most accurate 

representation of how that person walked. The values from that particular trial were 

taken as the kinematic and kinetic experimental data, against which the simulation 

predictions would be compared, and the simulations’ time lengths were adapted 

accordingly. However, the standard deviation range values were those evaluated from all 

five of that subject’s trials, which were given in terms of percentage gait cycle (as 

described in Section 6.3.7). These were adapted to apply to the time length of the chosen 

trial.  

 

6.3.9 Statistical Analysis 

In order to assess if the success of the model, as determined by the RMS error values, 

was affected by subject characteristics (such as height, mass, gait cycle time etc.) 

Pearson’s correlation coefficients ( ) were calculated (Equation 6.10).  

 

  
(
∑(   ̅)(   ̅)

   )

    
 

Equation 6.10 
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In the equation,   and   are the values in the two sets of data,  ̅ and  ̅ are the respective 

mean values of these two sets,    and    are the respective standard deviation values of 

these two sets, and   is the number of values in the sets. 

The MATLAB function ‘corr’, part of the STATISTICS TOOLBOX, was used to calculate this 

value and also gave the associated ‘p-value’ (Best & Roberts, 1975; Gibbons, 1985; 

Hollander & Wolfe, 1973; Kendall, 1970). This determines the probability that the null 

hypothesis occurred by chance, with a value of less than 0.05 being widely accepted as 

meaning that the correlation given is a significant one (Breakwell et al., 2012). 

It was also useful to investigate correlations in the RMS error values when ranked over 

the ten subjects. For this purpose, Spearman’s rank correlation coefficients (  ) were 

evaluated (Equation 6.11). 

 

     
 ∑  

 (    )
 

Equation 6.11 

 

When the two sets of   values being compared are ranked in order,   is a set of   values, 

formed by the differences in the two rankings for each subject. 

 

6.4 Results 

The following tables provide a summary of the performance of the Sum model when 

customised to specific people’s data. The full data can be found in Appendix A.7. 

 

6.4.1 RMS errors 

Table 6.1 shows, for each subject, the mean RMS error in their predicted segment angles 

(includes all segments), joint centre positions (includes both x and y direction errors), 

moments (at all joints) and GRFs (both x and y components). Although the cost function 

was calculated by normalising these errors by experimental standard deviation, the 
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values are given here in terms of units relevant to each parameter group to make their 

interpretation easier. It should also be noted that the mean RMS error for joint centre 

position considers only errors in the linear x and y directions, not absolute displacement. 

For example, if the predicted position of a joint was 3mm to the right and 4mm higher 

than the experimental position, this would be treated as two separate errors, rather than 

the absolute distance error of 5mm. 

 

 

Mean RMS error 

Subject Segment Angle (°) 
Joint centre 

position (mm) 
Moments (Nm) GRF (%BW) 

1 1.86 13.07 18.64 3.64 

2 1.33 9.30 20.82 2.91 

3 3.09 20.97 12.97 3.10 

4 3.51 21.85 13.95 3.36 

5 1.63 9.33 14.79 2.08 

6 4.23 19.79 10.03 5.07 

7 2.75 21.67 12.06 2.90 

8 1.71 13.79 18.56 2.55 

9 2.74 28.29 17.99 2.11 

10 3.49 15.51 21.05 3.56 

Mean 2.64 17.36 16.09 3.13 

 
Table 6.1: The mean RMS error values for each subject, for the different kinematic and kinetic values 

 

Table 6.2 shows a breakdown of all the predicted values that were compared to 

experimental data, and the mean RMS error for each, across all ten subjects. The errors 

are separated into the results for each leg, during the first half of the gait cycle. 
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Met 

x 0.40 30.33 

y 2.27 22.02 

Ankle 

x 8.24 31.26 

y 7.38 22.95 

Knee 

x 18.61 24.08 

y 11.68 17.81 

Hip 

x 22.84 22.84 

y 13.44 13.44 

HAT 

x 28.88 

 
y 13.94 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 4.00 2.90 

 
Tibia 2.94 3.23 

 
Femur 1.87 1.73 

 
HAT 1.78 

Jo
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m
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m
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ts

 

(N
m

)  
Ankle 14.45 5.51 

 
Knee 14.82 9.09 

 
Hip 25.85 26.79 

G
R

F 
(%

B
W

) 

 
y 7.57 1.98 

 
x 2.21 0.76 

 

Table 6.2: The mean RMS error values for each comparison parameter, across all subjects 
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6.4.2 Discontinuities 

The concept of discontinuities in simulations was introduced and discussed in Chapter 5. 

These occur when the terminal state of the double support phase is not exactly equal to 

the initial state of the single support phase, and vice versa.  

Table 6.3 shows the mean discontinuity values, for each subject, in their predicted 

segment angles, joint centre positions, moments and GRFs. The values are given in the 

unit of measurement specific to that parameter group. 

 

 

Mean discontinuities 

Subject Segment Angle (°) 
Joint centre 

position (mm) 
Moments (Nm) GRF (%BW) 

1 2.50 17.39 51.33 3.67 

2 2.32 11.43 71.81 5.42 

3 3.10 19.77 21.57 3.13 

4 4.02 21.86 20.13 7.91 

5 2.17 13.68 27.72 2.63 

6 5.09 20.38 15.81 8.36 

7 3.52 13.53 20.79 5.12 

8 1.73 10.82 50.37 5.00 

9 3.24 18.62 50.10 4.47 

10 4.98 18.25 68.96 6.76 

Mean 3.27 16.57 39.86 5.25 

 
Table 6.3: The mean discontinuity values for each subject, for the different kinematic and kinetic values 

 

Table 6.4 shows all the measured parameters and the mean discontinuities, calculated 

across all subjects. Data from the both legs have been combined so as to represent the 

behaviour a single limb, moving through a full gait cycle simulation. Discontinuity values 

are given for the first and second toe-off events (TO1 and TO2) and the first and second 

foot contact events (FC1 and FC2). 
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TO1 FC1 TO2 FC2 

Jo
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Met 

x 0.00 0.00 32.00 0.00 

y 0.00 15.40 28.73 35.39 

Ankle 
x 0.07 0.00 35.65 0.00 

y 0.20 22.76 27.31 21.85 

Knee 
x 20.28 0.00 29.78 0.00 

y 1.25 21.67 22.60 20.86 

Hip 
x 45.54 0.00 45.54 0.00 

y 13.58 22.34 13.58 22.34 

HAT 
x 44.91 0.00 44.91 0.00 

y 13.60 23.59 13.60 23.59 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.08 5.49 6.22 2.44 

 
Tibia 2.85 2.16 4.56 3.22 

 
Femur 5.35 4.02 4.65 2.19 

 
HAT 1.18 3.33 1.18 3.33 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 6.43 8.47 7.55 2.20 

 
Knee 11.54 18.25 25.50 5.46 

 
Hip 46.51 169.57 142.05 34.77 

G
R

F 
(%

B
W

) 

 
y 12.78 10.28 2.58 6.72 

 
x 3.31 3.53 0.92 1.84 

 

Table 6.4: The mean discontinuity values for each comparison parameter, across all subjects 

 

  



141 

 

6.4.3 The best results 

The following results describe the best performer for each parameter group (i.e. segment 

angles, joint centre positions, GRF). These are not necessarily the same subject 

throughout. The lowest segment angle RMS error and the lowest GRF RMS error, for 

example, could be for different subjects. 

 

The best joint centre position and segment angle predictions 

Figure 6.4-Figure 6.6 show the kinematic predictions of the simulation for Subject #2, 

which had the lowest mean RMS error for joint centre positions (9.30mm) and segment 

angles (1.33°). From observation alone, it can be seen on the graphs of joint centre 

positions that the largest deviations from the experimental data come at the end of the 

swing phase. Throughout the first half of the gait cycle, most joint centres stayed within 

their respective standard deviation ranges. 

The greatest deviations from the experimental data, in terms of segment angles, were 

during the first double support phase and towards the end of the first single support 

phase. The segment angles during swing phase were mostly within their standard 

deviation ranges. 

The mean discontinuity over all joint centre positions was 11.43mm; the second lowest of 

all the subjects (only Subject #8 was less at 10.82). The largest error was that of the 

metatarsal joint, at the second foot contact event in the gait cycle, in the y direction 

(45.73mm) 

The largest segment angle discontinuities were both for the foot segment at first foot 

contact (6.74°) and second toe-off (6.30°). For both of these events it was the trailing 

foot. The mean segment angle discontinuity (2.32°) was below the inter-subject mean 

(3.27°). 
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Figure 6.4: The joint centre predictions for Subject #2 
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Figure 6.5: The segment angle predictions for Subject #2 
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Figure 6.6: The kinematic predictions (solid) vs the experimental trial data (dotted) for Subject #2 

 

The best GRF predictions 

Figure 6.7 shows the GRF predictions of the simulation for Subject #5, which had the 

lowest RMS error for GRF (2.08% BW).  

The resulting GRF curves do have discontinuities, the greatest of which occurs for the 

vertical component, at the transition from single to double support (7.70% BW). 

However, the mean GRF discontinuity for this subject was only 2.63% BW; the lowest of 

all the subjects. 
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Figure 6.7: The GRF predictions for Subject #5 

 

The best joint moment predictions 

Figure 6.8 shows the joint moment predictions for Subject #6, which had the lowest mean 

RMS error for joint moments (10.03Nm). 

The mean discontinuity over all joint moments for this subject (15.81Nm) was the lowest 

of all the subjects. 
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Figure 6.8: The joint moment predictions for Subject #6 

 

6.4.4 The worst results 

The following results describe the worst performer for each parameter group (i.e. 

segment angles, joint centre positions, GRF). These are not necessarily the same subject 

throughout. The highest segment angle RMS error and the highest GRF RMS error, for 

example, could be for different subjects. 

 

The worst joint centre position predictions 

Figure 6.9 and Figure 6.10 show the kinematic predictions of the simulation for Subject 

#9, which had the highest mean RMS error for joint centre positions (28.29mm). 

The mean discontinuity over all joint centre positions for this subject (18.62mm) was 

greater than the mean across all subjects (16.57mm). 
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Figure 6.9: The kinematic predictions (solid) vs the experimental trial data (dotted) for Subject #9 
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Figure 6.10: The joint centre predictions for Subject #9 
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The worst segment angle predictions 

Figure 6.11 and Figure 6.12 show the kinematic predictions of the simulation for Subject 

#6, which had the highest mean RMS error for segment angles (4.23°). This subject also 

had the highest mean discontinuity value for segment angles (5.09°), attributable mainly 

the trail/swing leg femur and foot segments at the second double to single support 

transition (13.17° and 15.71° respectively). 

 

 

Figure 6.11: The kinematic predictions (solid) vs the experimental trial data (dotted) for Subject #6 
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Figure 6.12: The segment angles predictions for Subject #6  
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The worst GRF predictions 

Figure 6.13 shows the GRF predictions of the simulation for Subject #6, which also had 

the highest mean RMS error for GRF (5.07% BW). From the graph it is clear that the main 

problem was during single support but particularly the transition to it, from double 

support, where the vertical component under the leading foot displays a discontinuity of 

almost 25% BW. 

 

 

Figure 6.13: The GRF predictions for Subject #6 

 

The worst joint moment predictions 

Figure 6.14 shows the joint moment predictions for Subject #10, which had the highest 

mean RMS error for joint moments (21.05Nm). 

The mean discontinuity over all joint moments for this subject (68.96Nm) was the highest 

of all the subjects. 
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Figure 6.14: The joint moment predictions for Subject #10 

 

6.4.5 Inter-subject comparisons 

Table 6.5 shows the correlation coefficients for certain person-specific characteristics 

(height, mass and gait cycle time) and the RMS error values for the different kinematic 

and kinetic parameters. These are given in terms of both Pearson’s correlation and 

Spearman’s ranked correlation. The associated p-values are also shown. Figure 6.15-

Figure 6.17 illustrate these correlations graphically. 

Significant correlations (p<0.05) were only found between the height of the participant 

and the RMS error of the predicted joint moments, and between the mass of the 

participant and the RMS error of the predicted joint moments. 

There were other weak correlations observed. These were segment angle to height, 

segment angle to mass and GRF to mass.  
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  RMS error 

  

Segment 

angles 

Joint centre 

positions 

Joint 

moments 
GRF 

Height 

ρ -0.31 -0.05 0.76 -0.21 

p-value 0.38 0.89 0.01 0.56 

ρs -0.22 -0.11 0.67 0.04 

p-value 0.54 0.76 0.03 0.92 

      

Mass 

ρ -0.43 0.02 0.77 -0.45 

p-value 0.22 0.96 0.01 0.19 

ρs -0.52 -0.18 0.77 -0.28 

p-value 0.13 0.63 0.01 0.43 

      

Gait cycle 

time 

ρ 0.15 0.28 0.26 0.10 

p-value 0.68 0.43 0.48 0.78 

ρs 0.21 0.23 0.21 0.25 

p-value 0.55 0.52 0.57 0.49 

 

Table 6.5: The Pearson’s Correlation Coefficients (ρ) with their respective p-values, and Spearman’s rank 

correlation coefficient (ρs) with their respective p-values, for comparisons of RMS errors and certain 

subject characteristics 

 



154 

 

 

Figure 6.15: Comparison of RMS errors against height for all subjects 

 

Figure 6.16: Comparison of RMS errors against mass for all subjects 



155 

 

 

Figure 6.17: Comparison of RMS errors against gait cycle time for all subjects 

 

6.5 Discussion 

The big change from previous modelling work that this study incorporated was the 

‘personalisation’ of each simulation. For each person tested, the model was adapted to 

their specific dimensions and inertial properties, and was compared to their particular 

data set, rather than the general data used during model development. The necessity for 

this change was to test the adaptability of the model; a characteristic it would require to 

become useful in a clinical environment. 

Another change from the previous simulation setup was the use of joint centre positions 

as a measure of the kinematic error. The segment angle RMS errors were still calculated 

for comparison. It was observed that, when ranked in order of joint centre position RMS 

error and then by segment angle RMS error, there was a positive correlation with a 

Spearman’s rank correlation coefficient of 0.66 (p=0.04). The fact that this wasn’t a 

perfect correlation shows that optimising for joint centre position does give different 
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results to optimising for segment angle, and hence provides justification for the decision 

to assess kinematic error in this new way. 

Something that was discussed in detail during the model development was the presence 

of discontinuities between single and double support stages of the model. These were 

also still present for all of these person-specific simulations. Those discontinuities 

observed in the original model were compared to the results from the subject specific 

simulations. In terms of segment angles, there was only one subject that had smaller 

discontinuities than the original model (Subject #8). There were five subjects that had 

smaller discontinuities in their moment curves (Subject #s 3, 4, 5, 6 & 7) and three with 

smaller discontinuities in their GRF curves (Subject #s 1, 3 & 5). 

Table 6.5 shows the Pearson’s correlation coefficient when the errors of each of the 

subjects were compared against height (Figure 6.15), mass (Figure 6.16) and gait cycle 

time (Figure 6.17). Significant correlations were observed between joint moment RMS 

error and both the height and the mass of the subject. A quick calculation shows the 

Pearson’s correlation coefficient between height and mass was 0.79 (p=0.01) so it would 

be fair to say that joint moment RMS error increases for ‘larger’ people. A possible 

explanation for this could be that larger people require generally larger moments in order 

to move their longer, heavier body segments. Therefore, the absolute error value in 

newton-metres may be larger than that of a smaller person but proportionally, as a 

percentage of the total moment produced, the error may be equivalent. This is confirmed 

when using the error values normalised by standard deviations, since no significant 

correlations are found. 

There were some weak correlations observed that, despite having p-values greater than 

0.05, are still worthwhile discussing. The height of a participant had a weak negative 

correlation with segment angle error. Assuming that taller people have longer body 

segments helps to explain this phenomenon. Consider the example of a tall and a short 

person. The optimiser was coded to minimise joint centre position error so let’s assume 

that for a given joint, the knee say, the RMS error is 5mm for both participants. The taller 

person will have a longer tibial segment and therefore the 5mm error causes a smaller 

change in segment angle than it does for the short person’s tibial segment. 
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The mass of the person also weakly correlated with segment angle and GRF. It has 

already been shown that mass correlated with height so it stands to reason that it would 

also appear to correlate with segment angles. In terms of the mass and GRF connection, 

better segment angle predictions would suggest more accurate segment angular 

accelerations. These accelerations, along with the segment masses, are the basis for 

calculating the GRF. 

The correlations for the other measured kinematic and kinetic values with these subject-

specific variables were mostly quite low suggesting that the model is not unjustly biased 

towards one type of subject. Also, the p-values are all quite high. Most authors cite a p-

value of less than 0.05 as evidence that there is a significant correlation (Breakwell et al., 

2012) so the high p-values here are an indication that a significant correlation does not 

exist. 

Aside from a low number of subjects, there were other limitations to this method as a 

means of investigating the model. The preparation of the data collected from the gait lab 

tests, for example, was not perfect. There were six force plates in the laboratory. The 

data for comparison was taken from the first instant of double support of force plates 1 

and 2, and continued until the first instant of interaction with force plate 3. This meant 

that the data collected would show one double support stage, followed by a single 

support stage, in the same way that the model behaved. As with the model, bilateral 

symmetry was assumed. The fault with this assumption is that there could be a 

discontinuity in the experimental data between the end of the first half of the gait cycle 

and the start of the second half, or at the transition from one gait cycle to another. This 

did not seem to have too much of an adverse effect on the results, however. 

Another limitation was with the model itself. Assuming bilateral symmetry meant that 

the respective segments on each leg were modelled the same length as one another i.e. 

both femurs were the same length. This is not necessarily the case in reality and small 

differences could potentially make large differences to the simulation results. If this 

model were ever used in a clinical setting for people with pathologies or prostheses, this 

issue would have to be addressed as their walking patterns, geometries and mass 

distributions would not necessarily be bilaterally symmetrical. 
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6.6 Conclusions 

The full gait cycle model of healthy human walking was shown to have versatility when it 

came to use with different people. Preliminary tests explored any bias in terms of patient 

height, mass or walking velocity, and explanations were proposed. Some of the 

limitations of this model and this study’s method have been discussed.  

The experimental data gathered here showed much greater variation than was allowed 

by the ‘normal’ data set used in the model development. This showed that what is 

considered the ‘normal’ way to walk does not necessarily apply to everyone and there is 

a necessity for subject-specific modelling. 

The final chapter in this thesis will take the findings here, and in previous chapters, and 

summarise the ‘bigger picture’. The conclusions that each of these investigations has 

drawn, and hypotheses that have been suggested as a result, will be analysed in further 

detail. The benefits and drawbacks of these kinds of studies will be addressed and 

suggestions for improvements and future work will be considered. 
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7 GENERAL DISCUSSION 

7.1 Introduction 

Musculoskeletal modelling has gained considerable momentum in the gait analysis field 

as it is very useful in providing insight into why we walk the way we do, which is not 

immediately obvious from observation alone. In silico experimentation also permits 

investigations that would be difficult to perform in practice, providing knowledge that 

was previously unavailable. 

The overall purpose of this thesis was to investigate the progress of these types of 

models. Incorporating extra DOF and muscles in a model allows more realism but can blur 

cause and effect relationships in gait that provide an understanding of why we have 

developed to use specific mechanisms. In addition to this, with increasing complexity 

there is often an increasing dependence upon assumptions. Less complex models, with 

fewer considerations, make these relationships more easily observable and thus are 

worthwhile exploring. 

After a short introduction in the first chapter, Chapter 2 explored the current state-of-

the-art of modelling through an appraisal of the relevant literature. From this, areas of 

interest that warranted further investigation were highlighted and specific research 

questions were outlined. 

Chapter 3 examined the strengths and weaknesses of forward dynamic IP models, 

comparing them to one another, as well as a ‘normal’ set of experimental walking data. 

This was done for three different walking velocities. 

Chapter 4 focussed on the single stance period of gait. A generalised Lagrange 

formulation for a joint actuated, open chain, dynamic system was developed and used to 

produce four models, each incorporating more complexity than the previous one. An 

optimisation procedure was performed in an attempt to track the ‘normal’ kinematic 

data. After a solution was given, the resulting kinetics were observed and used as a 

comparative measure of model performance. The effects of each of the individual 

complexities were highlighted. 
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Chapter 5 focussed on the double stance period of gait. A framework was developed, 

employing Lagrange Multipliers to augment the previous generalised formulation 

(Chapter 4), giving a new one for joint actuated, closed chain, dynamic systems. This was 

not only a method of applying the necessary constraints, but also aided the calculation of 

the GRF distribution between the two ground contact points. The same optimisation 

procedure was used to develop a double support solution. The amalgamation of the 

double support solution and the single support solution produced results for a whole gait 

cycle. 

Chapter 6 took the model of the full gait cycle and tested its versatility. The 

anthropometric measurements and gait data of ten participants were collected in 

practical experiments. These data were then input into the model and the optimisation 

procedure was used once more to produce a solution that matched that individual’s 

kinematic data by minimising the RMS error between predicted and experimental data. 

The variables that affected model performance were examined. 

In this discussion, each of the research questions will be reviewed. The extent to which 

the various studies in this thesis were able to answer each of these questions, will be 

considered. Following this, the general limitations of the methods and models used 

throughout these studies will be analysed. This will lead on to a section proposing how 

this work could be taken further and what such work might discover. Finally, the 

conclusions of the thesis, as a whole, will be outlined. 

 

7.2 Research question 1 

What are the strengths and weaknesses of the inverted pendulum for predicting the 

sagittal kinematics and kinetics of healthy human walking? 

 

This research question was explored exclusively in Chapter 3 of this thesis. Two different 

IP models, one incorporating a HAT segment, were compared to each other and 

experimental data. In terms of strengths, the IP models were able to show a good 

prediction of linear CM velocity, in both x and y directions, during the single support 
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phase of gait. Also, during single support, the x and y components of GRF were close to 

that of the experimental data. The y component curve was not the right shape, but the 

magnitude was close. The weaknesses of IP models of gait were most apparent during 

the double support phase. The vertical linear velocity and vertical GRF component curves 

had large errors from their experimental data counterparts during this period. It was also 

noted that these discrepancies tended to increase with walking velocity. These errors 

were greatest at the transition from one step to the next. This lead to the conclusion that 

IP models cannot adequately model the double support phase of walking. 

 

7.3 Research question 2 

To what extent can a sequence of numerical models, incrementally increasing in 

complexity, highlight the effects of different gait mechanisms? 

 

This phenomenon can be observed across several different chapters in this thesis. Firstly, 

in Chapter 3, the traditional IP model (Model 1) was extended to include a HAT segment 

and a hip moment (Model 2), the value of which is calculated so as to keep the HAT 

segment upright, maintaining only a single DOF. The predictions of the two models were 

very similar in terms of kinematics and GRF. The point of interest was that the predicted 

hip moment curve of Model 2, was very similar to that of the experimental data. This 

suggested that maintaining an upright trunk during walking was a key role of the hip joint 

moment. In Chapter 4, the addition of a knee joint was shown to be the primary 

contributor to the first peak in the vertical GRF component curve by allowing a better 

representation of the whole body CM motion in the first half of single support. The 

addition of a static foot and ankle moment improved the GRF component curves in the 

second half of single support but the action of heel rise in the next model was shown to 

be the major contributing factor towards achieving the second peak in the vertical GRF 

component curve. It was hypothesised that this is evidence for an active ‘push-off’ 

mechanism from the trailing foot at the end of single support. The addition of a swing leg 

increased the realism of the mass distribution and refined the second peak further. 
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The process of incrementally increasing the complexity from one model to the next 

meant that hypotheses could be proposed regarding the roles of different muscle actions 

and kinematic movements made during gait. It was able to provide mathematical 

evidence for the true ‘determinants of gait’, rather than just basing ideas on observation. 

 

7.4 Research question 3 

What is the minimum complexity required for a numerical model to predict the kinematics 

and kinetics of healthy sagittal bipedal gait, within a single standard deviation range 

a) for one-legged single support? 

b) for two-legged single support? 

c) for the full gait cycle? 

 

One-legged single support models were examined in both Chapter 3 and Chapter 4. The 

most complex of these models was Model 4, incorporating knee and ankle joints and 

permitting heel rise, with four DOF. The curves for Model 4’s predicted kinematics and 

GRF components fell outside the ±1 standard deviation range for parts of the single 

support period. This was most notable for the foot segment angle during the heel rise 

stage and the vertical GRF component curve during the first half of single support. 

However, when the errors were normalised by the experimental data standard 

deviations, this was the only single-legged model for which the mean segment angle RMS 

error (0.59 σ) and the mean GRF RMS error (0.98 σ) were both less than one. This was 

deemed within the acceptable criteria of part ‘a’ of this research question. 

There was only one two-legged model of single support: Model 5, which had seven DOF. 

Once again, the predicted kinematics and kinetics fell outside the single standard 

deviation range of the normal data for parts of the gait cycle. As with Model 4 though, 

when the errors were normalised by the experimental data standard deviations, both 

mean segment angle RMS error (0.37 σ) and mean GRF RMS error (0.94 σ) were less than 

one, hence making it acceptable for part ‘b’ of this research question. 
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In order to get a workable model for the double support period, it was necessary to add a 

toe segment to the trailing foot, so there were eight segments but the presence of two 

dependent segments meant there were still only seven DOF in total. The Sum model of a 

full gait cycle was formed by combining the seven DOF double support model with the 

seven DOF single support model. The mean values of both segment angle RMS error and 

GRF RMS error, when normalised by standard deviation, were both less than one (0.35 σ 

and 0.5 σ, respectively). 

However, there were some weaknesses. As well as the periods at which some predictions 

strayed from the experimental standard deviation range, there were discontinuities at 

the transitions between double and single support stages. In spite of these drawbacks, 

this model was acceptable under the criteria of part ‘c’ of this research question. 

It should be noted that for all these ‘accepted’ models, the mean moment RMS error 

values, when normalised by standard deviation, were not less than one. However, since 

the moment actuations were the optimisation variables, it was highly likely that these 

could drift from their experimental values so it was decided not to use these in the 

measure of performance of the models. 

 

7.5 Research question 4 

Considering interpersonal differences, the time cost and the solution accuracy, how close 

is gait modelling to becoming a clinically usable tool? 

 

For predictive gait modelling to become a clinically useful tool, any model used would 

have to be able to adapt to the characteristics of a wide variety of people. The 

adaptability of the Sum model was tested in Chapter 6. Data was collected for ten 

different participants, input into the model and optimisation was used to minimise the 

joint centre position RMS error from that specific subject’s gait data. The results showed 

varying degrees of accuracy but were definitely promising. There are limitations and 

potential areas for improvement with this model, which are discussed in detail in 

Section 7.6. 
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In terms of time cost however, these models achieve a solution in a much more 

manageable time than the very complex models cited in the literature. Whereas 

Anderson and Pandy’s complex model used 10,000 hours of processing time (Anderson & 

Pandy, 2003), the most complex simulations in this study took approximately 8-12 hours. 

This implies that clinical application is a much more realistic prospect. 

Realistically, in order to provide all the data that a clinician might need, a more complex 

model than this would be necessary. It is recommended that the engineers developing 

the models liaise with clinical staff to identify which data they require and thus which 

complexities are essential to incorporate in a model. However, with the rate at which 

computer processing power is increasing and the rate at which the cost of such 

processors is decreasing, it won’t be long before computational modelling is an integral 

part of the clinical analysis and diagnostics. 

 

7.6 General limitations 

There are a number of limitations with the models used throughout this study. Firstly, all 

the models were 2D, sagittal plane only. This meant that subtleties such as hip rotation 

were not accounted for, which could have an effect on quantities like step length. Other 

actions and motions that could have affected the model results, such as arm swing, were 

omitted because the head, arms and trunk were all grouped together in a single segment. 

Some researchers have previously modelled just the trunk itself using multiple segments 

(Ceccato et al., 2009) so a single HAT segment assumption could have a great effect. 

In terms of a clinical environment, it is likely that modelling would be used to help 

diagnose and treat people with some kind of pathology. The fact that this model only 

considers healthy human walking is therefore a limitation. Many assumptions were 

possible for a healthy model that would have to be changed in order to produce one that 

works with pathological or prosthetic gait. The first example of this is the bilateral 

symmetry assumption. This means that the properties of a given segment on one leg are 

identical to its equivalent on the other leg. They are the same length, mass, have the 

same moment of inertia and behave the same way as each other over the gait cycle, 

except in anti-phase. Obviously, this will not necessarily be the case for pathological 
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walking. Asymmetrical gait is common, particularly in patients with cerebral palsy (CP) or 

similar conditions (Dobson et al., 2011; Rodda et al., 2004). 

Some pathological conditions mean that the first contact with the ground is with the 

forefoot or toe and sometimes the foot will never be flat on the ground (Dobson et al., 

2011; Rodda et al., 2004). A weakness of these models when it comes to modelling 

pathologies is that the foot interaction with the ground is rather restricted. All of the 

different ‘rockers’ (Perry & Burnfield, 2010) are modelled by different submodels, but the 

order in which they occur is determined before the start of a simulation.  

The discontinuities between the double and single support stages have been discussed at 

length throughout this thesis. This is caused because both the double and single support 

models have their initial state defined by the optimiser, so when they are run 

concurrently, the initial state of one will not necessarily be the same as the terminal state 

of the previous. The best way to combat this would to be to force the initial state of one 

simulation to be equal to the terminal state of the previous. This is discussed further in 

Section 7.7 and some preliminary results are shown in Appendix A.8. 

The fact that the actuations in these models were defined by actuated joint moments is 

another simplification. Some muscles and tendon are ‘biarticular’ (cross two or more 

joints) so their action is not highlighted when overall moment is the only consideration. 

Throughout the model development process, a normal dataset, taken from Winter’s work 

(1979, 1991), was used as a comparison to measure each model’s performance. Not only 

that, but many of the properties such as segment mass, length, moment of inertia, CM 

position etc. were all taken from generic proportions based on height or simple formulae 

based on segment length. These were developed from previous studies (Dempster, 1955; 

Dempster et al., 1959; Drillis & Contini, 1966), some of which had used cadavers. But why 

was this taken as a ‘gold standard’? The reason was because there are so few of these 

types of studies. This is because they are very difficult to reproduce and ethical approval 

is difficult to attain. Just the three studies referenced by Winter (Dempster, 1955; 

Dempster et al., 1959; Drillis & Contini, 1966), have over 2000 citations between them. 

Essentially, these are the data that are available. They may not be perfect for every 

subject but they provide a good approximation. 
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Where possible, the study in Chapter 6 collected individualised data to reduce the use of 

approximations, but some were still necessary, for example to calculate the moment of 

inertia of a segment. 

The data collection is prone to error also. There is measurement error of equipment such 

as tape measures, cameras and force plates, and marker error caused by placement and 

skin artefact. There are also calculations based on generalities. The joint centre positions, 

for example, involved calculations based on the subjects’s proportions, as did the HAT 

segment CM position. 

The inverse dynamics used by the Vicon software to calculate the joint moments, rely on 

sections of the body being approximated into three-dimensional segments and thus 

maybe under- or overestimate the true value. 

Despite these limitations, the Vicon system for gait data capture is one of the most widely 

used and trusted systems throughout the gait analysis community and was thus 

considered acceptable for this particular study. 

 

7.7 Future work 

Throughout this thesis there have been discussions regarding the failings and limitations 

of the models used, as well as the potential reasons for them. From these a number of 

suggestions for future development have been proposed. 

Firstly, in order to thoroughly investigate the bias of the model to a particular 

characteristic of the subject being modelled, a study with a larger number of people 

should be performed. This would make the statistical analysis more persuasive. 

An asymmetric model with fewer constraints on foot behaviour would be required so 

that pathological gaits could be modelled. This would necessitate a new solution to the 

COP motion when the foot is in contact with the ground, possibly requiring a multi-

segment foot. This simulation might also consider incorporating a decision tree to 

determine which submodel would be most appropriate to use at a given time. 
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Other changes that could aid the modelling of pathological gait include expanding to 

three dimensions or using a multi-segment trunk, with a more realistic mass distribution, 

to investigate what effect this would have on the posture of the simulated gait pattern. 

In order for a model to become clinically useful, it needs to provide as much information 

as possible. An issue highlighted in the discussion of the limitations of this model was that 

it only considers overall joint moment and makes no concessions for biarticular muscles. 

A future extension of this work could be to model muscles and muscle groups, and use 

these to provide the necessary actuation. Static optimisation could be incorporated to 

determine the contribution of biarticular muscles. In addition to this, geometric means 

could be used to determine the potential force generation of different muscles and 

muscle groups. 

A particular problem for the Sum model was the behaviour of the segments that were 

dependent during the double support phase and then independent during the single 

support phase. An investigation is proposed to study the effects of changing dependency 

on different segments. It is hypothesised that for larger segments with lower rotational 

velocities, such as the femur segments, this change will have a less significant effect. 

Another drawback of the Sum model was the problem of discontinuities between double 

and single support phases. In order to combat this, the terminal state of the first double 

support period would need to be used as the initial state for the first single support 

period. With the bilateral symmetry assumption still in place, hence only half the gait 

cycle is modelled, there is still the problem over ensuring the terminal state of the single 

support period is equal, or as close as possible to, the initial state of the double support 

period. This could perhaps be done by incorporating a penalty condition into the 

optimiser’s cost function. 

An interesting result of the study was how the model solutions reflect on the original 

‘Determinants of Gait’ (Saunders et al., 1953). In order to develop their hypotheses, 

Saunders et al. started with a ‘compass gait’, much like an IP, and added features one by 

one. The models in this study started with the IP and added different gait features one by 

one (the rationale for each subsequent addition can be found in Appendix A.9). The focus 

of this investigation was the effects of these mechanisms on gait kinetics, as opposed to 

how well they helped the whole body CM achieve a smooth sinusoidal pathway, as 
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Saunders et al. stated. However, it is logical to assume that this motion is what helps us 

produce these kinetic profiles. This project has shown the importance of stance phase 

knee flexion, and foot and ankle mechanisms but the addition of further complexities 

would be required to investigate how important hip rotation, pelvic obliquity and lateral 

CM displacement are to the walking process. Clearly, this would require the model to be 

extended to 3D. 

 

7.8 General conclusions 

 The very simple models do not adequately simulate gait. 

 For forward dynamic simulations, the sequential addition of extra complexities 

highlights ‘cause and effect’ relationships, helping to identify the true 

determinants of gait. 

 Lagrangian mechanics and Lagrange Multipliers have many advantages when it 

comes to equation of motion development, constraint applicant and force 

distribution in gait models. 

 Computational predictive modelling is set to play a key role in the future of gait 

analysis and rehabilitation. 
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A APPENDICES 

A.1 Formulae for generalised body parameters 

 

Segment 
Segment mass 

/Total body mass 
CM position /Segment length 

Radius of gyration 

/Segment length 

  
From proximal end From distal end About CM 

Foot 0.0145 0.5 0.5 0.475 

Shank 0.0465 0.433 0.567 0.302 

Thigh 0.1 0.433 0.567 0.323 

Foot and shank 0.061 0.606 0.394 0.416 

Total leg 0.161 0.447 0.553 0.326 

HAT 0.678 0.626 0.374 0.496 

 

Table A.1: The formulae for calculating generalised body parameters as functions of a person’s height 

and weight (Winter, 1979, 1991) 

 

 
 

Figure A.1: Body proportions based on height (Winter, 1979, 1991) 
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A.2 MATLAB code for the generation of the equations of motion for an n-

link, open chain 

Below is the MATLAB script that generated the code for the equations of motion for an 

open link, multi-segment chain. The number of segments, n, can be changed depending 

upon the model being defined. Using nested loops and ‘if’ conditions, the strings that 

make up the individual elements of the   and   matrices (Equation 4.14) are produced. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% AN EQUATION OF MOTION GENERATOR FOR N-LINK OPEN-CHAIN MODEL %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all; close all; clc; 

  
%%%%%%%%%%%%%%%% Set the number of degrees of freedom %%%%%%%%%%%%%%%%%%%%% 
n=3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  

  
for h=1:n 

 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

C{h}={'(((g.*sin(theta((i+1),' int2str(h) '))).*((m(' int2str(h) ').*d(' 

int2str(h) '))+((sum(m(' int2str(h+1) ':end))).*l(' int2str(h) ')))))-

(((g.*cos(theta((i+1),' int2str(h) '))).*((m(' int2str(h) ').*e(' 

int2str(h) ')))))'}; 

 
     C{h}=cell2mat(C{h}); 

 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
    for j=1:n 

         
        if h<j 

 
B{h,j}={'((cos(theta((i+1),' int2str(h) ')-theta((i+1),' int2str(j) 

'))).*(((m(' int2str(j) ').*d(' int2str(j) '))+((sum(m(' 

int2str(j+1) ':end))).*l(' int2str(j) '))).*l(' int2str(h) 

')))+((sin(theta((i+1),' int2str(j) ')-theta((i+1),' int2str(h) 

'))).*(((m(' int2str(j) ').*e(' int2str(j) '))).*l(' int2str(h) 

')))'}; 

 
C{h}={C{h} '-((vel((i+1),' int2str(j) ').^2).*(sin(theta((i+1),' 

int2str(h) ')-theta((i+1),' int2str(j) '))).*(((m(' int2str(j) 

').*d(' int2str(j) '))+((sum(m(' int2str(j+1) ':end))).*l(' 

int2str(j) '))).*l(' int2str(h) ')))-((vel((i+1),' int2str(j) 

').^2).*(cos(theta((i+1),' int2str(j) ')-theta((i+1),' int2str(h) 

'))).*(((m(' int2str(j) ').*e(' int2str(j) '))).*l(' int2str(h) 

')))'}; 

 
             C{h}=cell2mat(C{h}); 
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        elseif h==j 

 
B{h,j}={'(m(' int2str(h) ').*(d(' int2str(h) ').^2))+(m(' 

int2str(h) ').*(e(' int2str(h) ').^2))+(sum(m(' int2str(h+1) 

':end)).*(l(' int2str(h) ').^2))+I(' int2str(h) ')'}; 

 
        elseif h>j 

 

B{h,j}={'((cos(theta((i+1),' int2str(j) ')-theta((i+1),' int2str(h) 

'))).*(((m(' int2str(h) ').*d(' int2str(h) '))+((sum(m(' 

int2str(h+1) ':end))).*l(' int2str(h) '))).*l(' int2str(j) 

')))+((sin(theta((i+1),' int2str(h) ')-theta((i+1),' int2str(j) 

'))).*(((m(' int2str(h) ').*e(' int2str(h) '))).*l(' int2str(j) 

')))'}; 
C{h}={C{h} '+((vel((i+1),' int2str(j) ').^2).*(sin(theta((i+1),' 

int2str(j) ')-theta((i+1),' int2str(h) '))).*(((m(' int2str(h) 

').*d(' int2str(h) '))+((sum(m(' int2str(h+1) ':end))).*l(' 

int2str(h) '))).*l(' int2str(j) ')))+((vel((i+1),' int2str(j) 

').^2).*(cos(theta((i+1),' int2str(h) ')-theta((i+1),' int2str(j) 

'))).*(((m(' int2str(h) ').*e(' int2str(h) '))).*l(' int2str(j) 

')))'}; 

 
            C{h}=cell2mat(C{h}); 

 
        end 

         
        B{h,j}=cell2mat(B{h,j}); 

 
    end 

 

    C{h}={C{h} '+Mom(i+1,' int2str(h+1) ')-Mom(i+1,' int2str(h) ')'}; 
     

    C{h}=cell2mat(C{h}); 

 
end 

 

 

For n=3, the   and   matrices produced are shown on the next pages. The strings that 

make up the individual elements of these matrices were evaluated, for each time step, as 

part of the numerical integration procedure (Section 4.3.3). 
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A.3 Letter confirming ethical approval 
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A.4 Recruitment poster 

 

 
 
 
 
 
 
 
 
 

 
 

Are you over 18? 
 

Are you healthy and able to walk unaided? 
 

Participants are required for a study collecting healthy walking 
kinematics and kinetics for use in predictive computer simulations. 

 
For more information, please email m.p.mcgrath@edu.salford.ac.uk 

 
 

 
Ref: http://www.salford.ac.uk/__data/assets/image/0007/111301/varieties/pageThumb.jpg 
  

School of 

Health Sciences 



176 

 

A.5 Participant Information Sheet  

 

Study Title: The Kinematics and Kinetics of Healthy Human Walking 

I would like to invite you to take part in a research study. Please take time to read this 

information sheet thoroughly. Please feel free to then ask any questions you may have 

and decide whether or not you wish to take part. Once you completely understand the 

study, you will be asked to sign a consent form in order to take part. From that point on, 

your participation is entirely voluntary and you may withdraw at any time, without giving 

a reason. 

All information collected in this study is confidential and if you choose to withdraw, all 

your data will be deleted. 

 

What is the purpose of the study? 

The main purpose of this study is to gather data that can be used to test the reliability of 

a computer simulation that aims to predict how a person walks. Using measurements of 

the size of a subject’s limbs, their height and their weight, predictions can be made about 

how that subject’s body will move over time, along with the forces and torques required 

to produce that motion. This prediction will be compared to the same data, as measured 

in the laboratory. 

 

Why have I been invited? 

You have been invited because you are a healthy adult. The group of subjects will consist 

of an even spread of males and females, as well as a variety of heights, weights and ages. 

 

Do I have to take part? 

Participation is voluntary and you can choose to withdraw at any time. 

What will happen to me if I take part? 
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If you choose to partake you will need to attend the gait laboratory at the University of 

Salford for a single session of approximately two hours.  

During this session, you will be required to wear shorts and a t-shirt and be barefooted. 

The researcher will firstly take measurements of your height, weight and the distances 

between the joints of your legs. These are common measurement procedures used by 

physiotherapists/biomechanists etc. Next, retro-reflective markers will be placed (using 

double-sided tape and/or bandages) at certain positions on your feet, legs and hips. You 

will then be asked to walk along a track approximately 10m in length. Infra-red cameras 

positioned around the gait lab will record the motion of these markers in three 

dimensions. You will be asked to repeat these walks until five successful trials have been 

recorded.  

All data and recordings are confidential and will not identify the subject. 

 

What will I have to do? 

The only requirement is that you attend the prearranged appointment time and perform 

the walking task. 

 

What are the possible disadvantages and risks of taking part? 

Since this test only involves barefoot walking, realistically, the potential for injury is very 

low. 

 

What if there is a problem? 

If you have a concern about any aspect of this study, you should ask to speak to the 

researcher who will do their best to answer your questions (email: 

m.p.mcgrath@edu.salford.ac.uk). 

If you remain unhappy and wish to complain formally you can do this through the 

University complaints procedure by contacting the supervision team of the primary 
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researcher, who will follow the University Procedure for Allegations of Scientific or Ethical 

Misconduct. 

 

Will my taking part in the study be kept confidential? 

All information collected is kept confidential. All data and recordings made will be kept 

secure and password protected, with no personal identifying markers whatsoever. The 

data will only be used by the primary researcher for their PhD studies. 

 

What will happen if I don’t carry on with the study? 

If you decide to withdraw from the study, you have the right to request that all data 

relating to you be deleted. 

 

What will happen to the results of the research study? 

The results of this study will be used for testing the reliability of computer simulations of 

walking, which make up a PhD project. 

 

Further information and contact details: 

Primary researcher: Michael McGrath 

Supervisors: Dr Richard Baker and Dr David Howard 

 
Information Sheet based on: COREC/NHS National Patient Safety Agency. Information Sheets and 
Consent Forms – Guidance for Researcher and Reviewers’ Version 3.0 Dec 2006.  
Link to IRAS website - IRAS 
 

 

  

https://www.myresearchproject.org.uk/
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A.6 Research Participant Consent Form 

 

Title of Project: The Kinematics and Kinetics of Healthy Human Walking 

Ethics Ref No: HSCR13/18 

Name of Researcher: Michael McGrath 

                                                                 (Delete as appropriate) 

 

I confirm that I have read and understood the information sheet 
for the above study and what my contribution will be. 

Yes No 

      

I have been given the opportunity to ask questions (face to face, 
via telephone and e-mail) Yes No 

 

I agree to digital images being taken during the research exercises  

 
Yes No 

 

I understand that my participation is voluntary and that I can 
withdraw from the research at any time without giving any reason Yes No 

 

I understand how the researcher will use my results, who will see 
them and how the data will be stored.  Yes No 

 

I agree to take part in the above study  

 
Yes No 

 
Name of participant 

 
………………………………………………………………………… 
 

Signature ………………………………………………………………………… 
 

Date ………………………………. 
 
Name of researcher taking consent 

 
Michael McGrath 

Researcher’s e-mail address m.p.mcgrath@edu.salford.ac.uk 
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A.7 All practical data 

 

Characteristics 

Subject Gender Age Height Mass DS time SS time Total time 

1 M 25 1.8 80 0.10 0.43 0.53 

2 F 27 1.77 70 0.11 0.38 0.49 

3 F 27 1.76 63 0.10 0.43 0.53 

4 F 25 1.63 57.5 0.07 0.39 0.46 

5 F 28 1.62 65 0.09 0.36 0.45 

6 F 24 1.64 55 0.07 0.42 0.49 

7 M 27 1.69 64 0.10 0.44 0.54 

8 M 26 1.83 72 0.11 0.40 0.51 

9 M 27 1.8 86 0.11 0.41 0.52 

10 M 23 1.82 76 0.12 0.43 0.55 

 

Table A.2: Characteristics of each of the subjects 

 

The following tables show, for each participant, the overall RMS errors for different 

kinematic and kinetic parameters, as well as the discontinuities at the transitions 

between double and single support. Note that although the cost functions used error 

values normalised by standard deviation, the errors here are quoted in terms of the unit 

of measurement, specific to that parameter. The RMS error values also only consider the 

first half of the gait cycle so as to separate the results for equivalent parameters on 

opposite legs. For the discontinuity tables, data from the both legs have been combined 

so as to represent the behaviour a single limb, moving through a full gait cycle simulation. 
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A.7.1 Subject 1 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.36 0.76 

y 0.51 8.50 

Ankle 

x 3.40 0.83 

y 4.47 4.38 

Knee 

x 1.33 1.32 

y 11.73 4.25 

Hip 

x 2.47 2.47 

y 3.66 3.66 

HAT 

x 3.29 

 
y 3.69 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 4.51 0.64 

 
Tibia 1.58 1.12 

 
Femur 2.65 0.68 

 
HAT 0.28 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 8.11 8.38 

 
Knee 3.76 6.82 

 
Hip 8.68 5.10 

G
R

F 
(%

B
W

) 

 
y 2.25 0.44 

 
x 2.86 1.00 

 

Table A.3: The RMS error values for Subject 1 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 50.56 0.00 12.64 

y 0.00 15.29 22.46 62.13 24.97 

Ankle 

x 0.06 0.00 44.48 0.00 11.13 

y 0.15 7.64 21.53 7.83 9.29 

Knee 

x 6.03 0.00 39.54 0.00 11.39 

y 0.35 9.82 27.75 13.52 12.86 

Hip 

x 63.33 0.00 63.33 0.00 31.67 

y 24.31 0.57 24.31 0.57 12.44 

HAT 

x 70.32 0.00 70.32 0.00 35.16 

 
y 23.98 0.67 23.98 0.67 12.32 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.06 3.29 3.20 4.21 2.69 

 
Tibia 0.82 0.55 1.09 2.45 1.23 

 
Femur 8.28 4.15 2.20 1.98 4.15 

 
HAT 1.20 2.65 1.20 2.65 1.93 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 2.06 12.40 0.67 1.14 4.07 

 
Knee 11.50 18.86 63.42 9.78 25.89 

 
Hip 40.04 215.06 227.46 13.56 124.03 

G
R

F 
(%

B
W

) 

 
y 3.57 3.11 2.53 7.59 4.20 

 
x 6.51 2.78 0.66 2.57 3.13 

 

Table A.4: The discontinuity values for Subject 1 
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A.7.2 Subject 2 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.49 0.55 

y 0.67 0.57 

Ankle 

x 3.43 0.69 

y 0.51 0.76 

Knee 

x 0.83 0.90 

y 0.60 1.15 

Hip 

x 0.73 0.73 

y 1.07 1.07 

HAT 

x 0.72 

 
y 1.67 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 1.20 0.64 

 
Tibia 1.16 0.65 

 
Femur 1.60 0.53 

 
HAT 0.08 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 7.71 4.90 

 
Knee 4.91 7.52 

 
Hip 14.51 19.24 

G
R

F 
(%

B
W

) 

 
y 1.99 2.28 

 
x 0.50 3.75 

 

Table A.5: The RMS error values for Subject 2 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 9.78 0.00 2.45 

y 0.00 10.58 16.25 45.73 18.14 

Ankle 
x 0.01 0.00 17.15 0.00 4.29 

y 0.03 23.97 15.98 24.09 16.02 

Knee 
x 9.81 0.00 21.41 0.00 7.80 

y 0.12 25.97 20.44 19.07 16.40 

Hip 
x 25.09 0.00 25.09 0.00 12.55 

y 11.98 16.26 11.98 16.26 14.12 

HAT 
x 16.82 0.00 16.82 0.00 8.41 

 

y 12.07 16.21 12.07 16.21 14.14 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.01 6.74 6.30 1.04 3.52 

 
Tibia 1.34 0.58 0.84 2.67 1.36 

 
Femur 4.92 4.81 3.02 0.89 3.41 

 

HAT 1.46 0.50 1.46 0.50 0.98 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 5.78 1.32 2.03 1.99 2.78 

 
Knee 0.28 12.11 66.72 8.32 21.86 

 

Hip 109.26 184.53 449.75 19.57 190.78 

G
R

F 
(%

B
W

) 

 
y 19.21 3.67 1.28 14.03 9.55 

 
x 1.03 0.72 2.31 1.13 1.30 

 

Table A.6: The discontinuity values for Subject 2 



185 

 

A.7.3 Subject 3 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.81 1.80 

y 1.06 4.85 

Ankle 

x 3.58 2.54 

y 3.81 5.74 

Knee 

x 3.11 2.19 

y 5.96 10.17 

Hip 

x 3.77 3.77 

y 6.92 6.92 

HAT 

x 4.41 

 
y 8.70 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 6.77 0.85 

 
Tibia 4.08 2.05 

 
Femur 2.26 1.98 

 
HAT 0.18 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 7.33 5.17 

 
Knee 3.11 3.04 

 
Hip 6.91 3.77 

G
R

F 
(%

B
W

) 

 
y 1.78 1.19 

 
x 2.37 1.05 

 

Table A.7: The RMS error values for Subject 3 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 31.52 0.00 7.88 

y 0.00 16.46 1.29 22.64 10.10 

Ankle 
x 0.02 0.00 54.54 0.00 13.64 

y 0.07 29.99 0.36 32.17 15.65 

Knee 
x 24.03 0.00 21.30 0.00 11.33 

y 1.31 31.22 31.58 32.68 24.20 

Hip 
x 70.67 0.00 70.67 0.00 35.33 

y 16.94 25.38 16.94 25.38 21.16 

HAT 
x 74.50 0.00 74.50 0.00 37.25 

 

y 16.82 25.41 16.82 25.41 21.12 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.03 6.63 6.95 2.76 4.09 

 
Tibia 3.24 0.32 6.22 0.22 2.50 

 
Femur 6.63 2.23 9.44 0.96 4.82 

 

HAT 0.68 1.30 0.68 1.30 0.99 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 2.06 9.76 0.75 0.97 3.38 

 
Knee 4.56 12.62 6.29 4.72 7.05 

 

Hip 27.28 164.65 23.23 2.01 54.29 

G
R

F 
(%

B
W

) 

 
y 0.78 13.54 1.70 5.11 5.28 

 
x 2.54 0.80 0.04 0.54 0.98 

 

Table A.8: The discontinuity values for Subject 3 
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A.7.4 Subject 4 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.12 2.81 

y 0.28 24.06 

Ankle 

x 5.56 1.20 

y 3.82 4.51 

Knee 

x 2.61 2.28 

y 12.46 15.52 

Hip 

x 3.78 3.78 

y 8.47 8.47 

HAT 

x 4.18 

 
y 8.83 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 4.43 0.47 

 
Tibia 4.03 2.30 

 
Femur 5.06 2.27 

 
HAT 0.15 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 5.20 4.64 

 
Knee 6.99 7.55 

 
Hip 10.27 9.37 

G
R

F 
(%

B
W

) 

 
y 3.62 0.58 

 
x 4.12 1.75 

 

Table A.9: The RMS error values for Subject 4 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 18.91 0.00 4.73 

y 0.00 14.11 99.82 20.43 33.59 

Ankle 
x 0.01 0.00 16.66 0.00 4.17 

y 0.02 29.07 99.91 24.76 38.44 

Knee 
x 29.53 0.00 30.63 0.00 15.04 

y 2.28 17.05 24.74 11.87 13.98 

Hip 
x 70.58 0.00 70.58 0.00 35.29 

y 17.58 23.00 17.58 23.00 20.29 

HAT 
x 65.37 0.00 65.37 0.00 32.68 

 

y 17.71 22.99 17.71 22.99 20.35 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.01 8.54 6.20 4.01 4.69 

 
Tibia 4.47 3.00 13.42 8.40 7.32 

 
Femur 6.70 2.72 0.95 2.15 3.13 

 

HAT 0.97 0.88 0.97 0.88 0.93 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 2.55 15.32 1.93 4.13 5.98 

 
Knee 9.63 10.74 2.20 15.78 9.59 

 

Hip 39.44 97.78 29.06 13.02 44.83 

G
R

F 
(%

B
W

) 

 
y 15.59 26.14 4.63 0.53 11.72 

 
x 2.79 2.11 0.70 10.84 4.11 

 

Table A.10: The discontinuity values for Subject 4 
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A.7.5 Subject 5 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.84 0.50 

y 1.19 2.99 

Ankle 

x 2.28 0.81 

y 2.83 5.97 

Knee 

x 0.84 1.16 

y 3.38 3.95 

Hip 

x 0.88 0.88 

y 4.26 4.26 

HAT 

x 1.13 

 
y 5.26 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 2.67 0.50 

 
Tibia 1.22 1.78 

 
Femur 2.00 0.29 

 
HAT 0.14 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 6.47 6.72 

 
Knee 4.15 4.41 

 
Hip 5.22 3.36 

G
R

F 
(%

B
W

) 

 
y 0.39 1.17 

 
x 0.82 1.09 

 

Table A.11: The RMS error values for Subject 5 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 35.75 0.00 8.94 

y 0.00 14.11 7.26 53.55 18.73 

Ankle 
x 0.04 0.00 37.23 0.00 9.32 

y 0.10 25.17 7.35 11.86 11.12 

Knee 
x 13.29 0.00 28.58 0.00 10.47 

y 0.52 22.57 18.53 13.79 13.85 

Hip 
x 31.61 0.00 31.61 0.00 15.80 

y 18.11 10.24 18.11 10.24 14.18 

HAT 
x 40.58 0.00 40.58 0.00 20.29 

 

y 17.94 10.31 17.94 10.31 14.12 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.04 5.88 0.47 1.35 1.94 

 
Tibia 1.99 0.68 2.10 0.92 1.42 

 
Femur 7.53 6.86 0.63 1.25 4.07 

 

HAT 1.68 0.79 1.68 0.79 1.24 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 12.57 2.37 22.05 1.02 9.50 

 
Knee 7.65 9.64 21.43 3.36 10.52 

 

Hip 18.35 145.48 13.70 75.07 63.15 

G
R

F 
(%

B
W

) 

 
y 4.87 7.70 0.09 3.53 4.05 

 
x 3.67 0.53 0.50 0.16 1.22 

 

Table A.12: The discontinuity values for Subject 5 
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A.7.6 Subject 6 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.70 3.12 

y 0.97 7.62 

Ankle 

x 7.36 3.70 

y 9.06 9.91 

Knee 

x 2.35 2.24 

y 6.10 6.08 

Hip 

x 3.10 3.10 

y 12.12 12.12 

HAT 

x 3.31 

 
y 11.02 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 13.48 2.28 

 
Tibia 3.62 3.21 

 
Femur 2.54 3.94 

 
HAT 0.41 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 3.53 15.19 

 
Knee 4.78 11.19 

 
Hip 9.22 12.95 

G
R

F 
(%

B
W

) 

 
y 4.11 0.47 

 
x 3.62 1.03 

 

Table A.13: The RMS error values for Subject 6 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 35.75 0.00 8.94 

y 0.00 14.11 7.26 53.55 18.73 

Ankle 
x 0.04 0.00 37.23 0.00 9.32 

y 0.10 25.17 7.35 11.86 11.12 

Knee 
x 13.29 0.00 28.58 0.00 10.47 

y 0.52 22.57 18.53 13.79 13.85 

Hip 
x 31.61 0.00 31.61 0.00 15.80 

y 18.11 10.24 18.11 10.24 14.18 

HAT 
x 40.58 0.00 40.58 0.00 20.29 

 

y 17.94 10.31 17.94 10.31 14.12 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.04 5.88 0.47 1.35 1.94 

 
Tibia 1.99 0.68 2.10 0.92 1.42 

 
Femur 7.53 6.86 0.63 1.25 4.07 

 

HAT 1.68 0.79 1.68 0.79 1.24 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 12.57 2.37 22.05 1.02 9.50 

 
Knee 7.65 9.64 21.43 3.36 10.52 

 

Hip 18.35 145.48 13.70 75.07 63.15 

G
R

F 
(%

B
W

) 

 
y 4.87 7.70 0.09 3.53 4.05 

 
x 3.67 0.53 0.50 0.16 1.22 

 

Table A.14: The discontinuity values for Subject 6 
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A.7.7 Subject 7 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.01 0.82 

y 0.71 3.43 

Ankle 

x 0.87 0.86 

y 0.28 1.14 

Knee 

x 1.07 0.41 

y 0.11 0.22 

Hip 

x 1.21 1.21 

y 0.18 0.18 

HAT 

x 4.54 

 
y 33.38 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 1.87 1.53 

 
Tibia 3.35 2.00 

 
Femur 1.45 2.73 

 
HAT 0.50 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 11.59 9.47 

 
Knee 5.20 8.18 

 
Hip 10.09 5.58 

G
R

F 
(%

B
W

) 

 
y 1.92 0.71 

 
x 2.80 2.04 

 

Table A.15: The RMS error values for Subject 7 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 18.36 0.00 4.59 

y 0.00 16.46 7.43 14.82 9.68 

Ankle 
x 0.04 0.00 23.39 0.00 5.86 

y 0.09 29.91 7.13 48.37 21.37 

Knee 
x 33.11 0.00 26.63 0.00 14.94 

y 3.54 20.84 11.06 37.80 18.31 

Hip 
x 20.43 0.00 20.43 0.00 10.22 

y 0.87 41.11 0.87 41.11 20.99 

HAT 
x 15.41 0.00 15.41 0.00 7.71 

 

y 0.85 42.44 0.85 42.44 21.64 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.04 6.54 7.33 1.40 3.83 

 
Tibia 4.90 2.39 0.75 4.67 3.18 

 
Femur 2.02 7.22 1.92 3.94 3.78 

 

HAT 0.89 5.68 0.89 5.68 3.28 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 1.99 3.77 1.16 0.18 1.78 

 
Knee 13.30 11.67 5.18 1.93 8.02 

 

Hip 23.68 148.63 25.84 12.10 52.56 

G
R

F 
(%

B
W

) 

 
y 16.14 12.65 0.85 0.40 7.51 

 
x 3.73 5.96 0.81 0.40 2.72 

 

Table A.16: The discontinuity values for Subject 7 
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A.7.8 Subject 8 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.39 0.73 

y 0.65 5.69 

Ankle 

x 5.10 1.29 

y 11.63 6.43 

Knee 

x 1.16 1.44 

y 10.09 7.54 

Hip 

x 0.59 0.59 

y 5.56 5.56 

HAT 

x 0.58 

 
y 5.66 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 2.29 0.45 

 
Tibia 0.48 0.88 

 
Femur 0.66 0.56 

 
HAT 0.06 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 4.63 4.34 

 
Knee 6.14 7.38 

 
Hip 5.77 8.85 

G
R

F 
(%

B
W

) 

 
y 0.49 0.84 

 
x 0.35 1.80 

 

Table A.17: The RMS error values for Subject 8 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 1.97 0.00 0.49 

y 0.00 15.29 3.90 28.17 11.84 

Ankle 
x 0.35 0.00 1.20 0.00 0.39 

y 0.97 17.24 3.70 27.67 12.40 

Knee 
x 0.90 0.00 19.53 0.00 5.11 

y 0.93 28.73 17.33 32.03 19.76 

Hip 
x 15.44 0.00 15.44 0.00 7.72 

y 6.51 39.45 6.51 39.45 22.98 

HAT 
x 9.10 0.00 9.10 0.00 4.55 

 

y 6.53 39.46 6.53 39.46 23.00 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.40 0.84 4.88 2.02 2.03 

 
Tibia 0.07 3.11 3.81 2.30 2.32 

 
Femur 2.39 3.49 0.30 1.00 1.79 

 

HAT 1.04 0.48 1.04 0.48 0.76 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 11.99 14.40 20.91 2.49 12.45 

 
Knee 9.34 41.21 22.06 5.52 19.53 

 

Hip 37.20 185.83 184.72 68.80 119.14 

G
R

F 
(%

B
W

) 

 
y 3.49 8.73 3.29 7.44 5.74 

 
x 0.04 14.18 0.79 2.06 4.26 

 

Table A.18: The discontinuity values for Subject 8 
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A.7.9 Subject 9 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.63 3.00 

y 0.91 4.76 

Ankle 

x 4.57 3.21 

y 3.75 4.17 

Knee 

x 4.46 5.66 

y 19.50 3.93 

Hip 

x 4.80 4.80 

y 4.30 4.30 

HAT 

x 4.76 

 
y 5.40 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 4.60 1.42 

 
Tibia 5.31 3.06 

 
Femur 3.43 0.92 

 
HAT 0.11 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 7.63 4.90 

 
Knee 3.72 2.70 

 
Hip 6.44 4.62 

G
R

F 
(%

B
W

) 

 
y 1.85 0.39 

 
x 1.78 0.76 

 

Table A.19: The RMS error values for Subject 9 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 36.96 0.00 9.24 

y 0.00 16.46 20.71 47.07 21.06 

Ankle 
x 0.02 0.00 72.11 0.00 18.03 

y 0.06 3.66 9.50 15.70 7.23 

Knee 
x 27.96 0.00 43.40 0.00 17.84 

y 1.95 14.60 20.34 13.12 12.50 

Hip 
x 72.12 0.00 72.12 0.00 36.06 

y 17.26 16.80 17.26 16.80 17.03 

HAT 
x 60.13 0.00 60.13 0.00 30.07 

 

y 17.51 16.82 17.51 16.82 17.17 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.02 5.14 3.85 1.27 2.57 

 
Tibia 3.83 2.91 5.65 1.16 3.39 

 
Femur 6.23 1.04 13.24 1.03 5.38 

 

HAT 2.05 1.18 2.05 1.18 1.61 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 2.89 9.55 3.77 3.91 5.03 

 
Knee 15.32 6.82 10.33 1.43 8.47 

 

Hip 78.14 256.13 156.20 56.74 136.80 

G
R

F 
(%

B
W

) 

 
y 15.01 2.52 1.41 10.86 7.45 

 
x 3.80 0.37 1.33 0.42 1.48 

 

Table A.20: The discontinuity values for Subject 9 
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A.7.10 Subject 10 

 

   
Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.50 4.10 

y 0.96 11.16 

Ankle 

x 7.96 5.27 

y 3.99 8.16 

Knee 

x 4.98 2.45 

y 14.34 11.11 

Hip 

x 2.95 2.95 

y 4.01 4.01 

HAT 

x 9.90 

 
y 7.28 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 6.49 1.30 

 
Tibia 3.22 7.16 

 
Femur 3.71 2.43 

 
HAT 1.63 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 7.90 10.10 

 
Knee 7.34 8.98 

 
Hip 5.09 16.77 

G
R

F 
(%

B
W

) 

 
y 5.57 2.09 

 
x 3.48 1.93 

 

Table A.21: The RMS error values for Subject 10 
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 
Met 

x 0.00 0.00 27.06 0.00 6.77 

y 0.00 18.81 43.92 32.73 23.86 

Ankle 
x 0.13 0.00 31.62 0.00 7.94 

y 0.36 39.68 43.09 21.57 26.18 

Knee 
x 49.12 0.00 19.48 0.00 17.15 

y 0.83 37.17 3.77 29.96 17.93 

Hip 
x 34.97 0.00 34.97 0.00 17.49 

y 4.68 32.15 4.68 32.15 18.42 

HAT 
x 44.03 0.00 44.03 0.00 22.02 

 

y 5.08 44.42 5.08 44.42 24.75 

Se
gm

en
t 

an
gl

e
s 

(°
) 

 
Foot 0.14 8.64 7.26 1.04 4.27 

 
Tibia 6.49 0.70 9.14 3.72 5.01 

 
Femur 1.93 2.34 1.66 3.33 2.31 

 

HAT 1.55 15.12 1.55 15.12 8.34 

Jo
in

t 
m

o
m

en
ts

 

(N
m

)  
Ankle 18.71 14.90 21.42 4.40 14.86 

 
Knee 38.28 42.72 39.73 2.16 30.72 

 

Hip 66.80 184.89 308.32 85.19 161.30 

G
R

F 
(%

B
W

) 

 
y 24.29 7.95 1.00 8.72 10.49 

 
x 3.31 7.16 1.38 0.30 3.04 

 

Table A.22: The discontinuity values for Subject 10 
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A.8 Preliminary investigation of future work 

Preliminary work on a ‘Continuous’ model was done. The initial state of the single support 

phase was defined by the terminal state of the double support phase. A penalty function 

observed the RMS error for each segment angle for the final time instant. If the error was 

greater than a single standard deviation, a penalty of 500 was added to the cost function. 

This value weighted the optimisation in favour of reducing discontinuities. The transition 

from double to single support was defined by the instant the vertical GRF component 

under the trailing foot reached zero, rather than by a specific time.  

The results are shown below. 

 

 

Figure A.2: The kinematic predictions (solid) vs the empirical means (dotted) for the Continuous model 
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Figure A.3: The segment angle predictions for the Continuous model 
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Figure A.4: The joint centre position predictions for the Continuous model 
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Figure A.5: The joint moment predictions for the Continuous model  

 

Figure A.6: The GRF moment predictions for the Continuous model 
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Lead/stance Trail/swing 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 

Met 

x 0.70 30.52 

y 3.14 10.12 

Ankle 

x 6.30 33.74 

y 8.51 4.02 

Knee 

x 14.33 36.49 

y 6.50 7.13 

Hip 

x 31.99 31.99 

y 5.78 5.78 

HAT 

x 19.67 

 
y 5.98 

Se
gm

en
t 

an
gl

e
s 

(°
)  

Foot 4.10 5.53 

 
Tibia 1.28 2.11 

 
Femur 3.21 4.67 

 
HAT 2.80 

Jo
in

t 
m

o
m

en
ts

 (
N

m
) 

 
Ankle 14.32 7.22 

 
Knee 13.39 10.98 

 
Hip 12.92 22.83 

G
R

F 
(%

B
W

) 

 
y 10.30 3.97 

 
x 2.67 1.81 

 

Table A.23: The RMS error values for the Continuous model 
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In terms of kinematics, the model performed well. In Figure A.2 it appeared as if the 

predicted data performed too short a step but it was important to remember that this 

comparison was with the experimental means. A closer inspection of the segment angle 

plots (Figure A.3) showed that only the lead/stance femur and HAT were not within the 

standard deviation range at the end of the first half of the gait cycle. This was also visible 

when looking at the hip joint position in the x direction in Figure A.4. 

The joint moment (Figure A.5) and GRF curves (Figure A.6) followed the correct patterns 

but were not smooth. There were numerous small spikes throughout. The maximum 

error in GRF came during single support, just before heel rise. Overall though, the mean 

GRF RMS error, despite being skewed by such spikes, was only 4.69% BW. 

The problem of discontinuities between double and single support had been resolved by 

starting Phase 4 with the terminal conditions of Phase 3. However, the transition from 

step-to-step could only be constrained with a penalty function so there was still potential 

for error (except with the joint moments which had been made constant over the full gait 

cycle). Table A.24 shows the discontinuities that still occurred. 

For the continuous full gait cycle model, the kinematic error is low before heel rise, but 

there are a number of obvious problems in late stance. The lead/stance femur finishes 

the simulation lagging behind the experimental data. One possible explanation for this 

could be that because the simulation is purely sagittal, factors such as pelvic rotation are 

neglected. This further justifies expanding to three dimensions. 

The HAT segment leans too far forward at the end of the simulation. This may be due to 

the head, arms and trunk being modelled as a single segment. It is also possible that the 

optimiser has found a solution that uses this trunk lean as a compensatory measure for 

the hip joints being behind the experimental means. This could have been to progress the 

COP forward, allowing the heel of the stance foot to rise further or at a faster rate.  
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TO 1 FC 1 TO 2 FC 2 Mean 

Jo
in

t 
ce

n
tr

e 
p

o
si

ti
o

n
s 

(m
m

) 

Met 

x 0.00 0.00 2.26 0.00 0.56 

y 0.00 14.11 1.28 33.15 12.14 

Ankle 

x 0.00 0.00 2.07 0.00 0.52 

y 0.00 31.14 1.28 21.41 13.46 

Knee 

x 0.92 0.00 3.10 0.00 1.01 

y 0.04 28.83 0.06 21.58 12.63 

Hip 

x 1.50 0.00 1.50 0.00 0.75 

y 0.27 17.04 0.27 17.04 8.66 

HAT 

x 1.54 0.00 1.54 0.00 0.77 

 
y 0.27 18.91 0.27 18.91 9.59 

Se
gm

en
t 

an
gl

e
s 

(°
)  

Foot 0.00 10.10 0.23 1.74 3.02 

 
Tibia 0.12 0.56 0.21 0.08 0.24 

 
Femur 0.09 6.76 0.07 6.37 3.32 

 
HAT 0.01 7.96 0.01 7.96 3.99 

Jo
in

t 
m

o
m

en
ts

 (
N

m
) 

 
Ankle 1.65 0.00 1.04 0.00 0.67 

 
Knee 0.46 0.00 1.10 0.00 0.39 

 
Hip 0.68 0.00 0.96 0.00 0.41 

G
R

F 
(%

B
W

) 

 
y 0.19 10.24 0.00 6.63 4.27 

 
x 0.17 7.34 0.00 0.72 2.06 

 

Table A.24: Discontinuities for the Continuous model 
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Despite the efforts to produce a fully continuous simulation, there were still some 

discontinuities. They occurred at a different point in the gait cycle to those in the IP 

models, but they still occurred. This would be a key area for improvement for any future 

studies in this area. More complex constraint functions in the optimiser might be a 

solution. 

It was noticed, upon closer inspection of the different kinematics of the Sum and 

Continuous models, that the greatest differences were the angular velocities of the 

trail/swing tibia and foot segments, particularly at the transition between double support 

and single support (Table A.25). It was likely that the reason for this was due to these 

being dependent segments during double support, giving more justification for studying 

the effects of changing the dependent segments. 

 

Model Lead 

foot 

Lead 

tibia 

Lead 

femur 
HAT 

Trail 

femur 

Trail 

tibia 

Trail 

foot 

Sum 0.00 -161.57 -61.31 9.74 224.03 -81.93 -92.25 

Continuous 0.00 -122.04 -87.09 -5.73 225.75 -215.43 91.67 

Difference 0.00 -39.53 25.78 15.47 -1.72 133.50 -183.92 

 

Table A.25: Comparison of the angular velocities, in °/s, at the transition from double to single support 

for the Sum and Continuous models. In bold are the largest differences. 
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A.9 Rationale behind sequential complexity increases 

Chapters 3 and 4 in this thesis focussed on starting with the simplest model of human 

walking, the IP model, and sequentially adding extra complexities. This was done one by 

one, thus highlighting the effects each one had on the resulting kinematics and kinetics of 

gait. As stated in Section 7.7, the process performed by Saunders et al. (Saunders et al., 

1953), which led to the proposal of the original Determinants of Gait, was a very similar 

one. They started with a compass gait, which just like the IP model, has straight, rigid 

legs, pivoting about a fixed point on the ground, and added their Determinants 

sequentially. 

The order in which different mechanisms were added in this study was not the same as 

that of Saunders et al. The reason for this was that this study provided feedback at each 

step and so it was then inferred which extra complexities were likely to provide the 

desired effects. 

The first change, from Model 1 to Model 2, was the addition of a HAT segment. This 

decision was based upon what was the greatest anatomical difference between Model 1 

and reality. This also necessitated the addition of a hip joint moment which was able to 

provide extra insight. It was observed that the GRF component curves had not altered 

drastically and what were missing were the characteristic double peaks of the vertical 

GRF component. The next greatest anatomical change that was hypothesised to affect 

the GRF under the stance limb was knee flexion. Thus Model 3 incorporated a knee joint 

and the result was the first vertical GRF peak. 

It was then decided that in order to achieve the second peak, a mechanism that has an 

effect in late single support would be required. This would be the incorporation of a foot. 

However, this change would require an ankle moment as well. In order to highlight the 

changes that could be attributed to each, Model 3.1 had the ankle moment only, with the 

foot remaining static, and Model 4 had both the ankle moment and a moving foot. It was 

shown that ankle moment improves the initial peak, contributes to the second peak and 

improves horizontal GRF prediction in late single support. However, heel rise was shown 

to have the greatest effect on the second vertical GRF peak and the horizontal GRF 

prediction in late single support.  
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The final change was to add a swing leg, creating Model 5. The reason this was added last 

was because the earlier changes were more likely to have a greater effect on the stance 

limb GRF curves, since they were changes made to the stance limb itself. The swing leg 

was shown to improve the prediction of the second peak in the vertical GRF, as well as 

improve the horizontal GRF prediction in late single support. 
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